-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmv_model.py
115 lines (95 loc) · 4.59 KB
/
mv_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Copyright (C) 2019 Fraunhofer-Gesellschaft zur Foerderung der angewandten
Forschung e.V. acting on behalf of its Fraunhofer Institute for Cell Therapy
and Immunology (IZI).
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.
"""
from ribmodel import ribmodel
if __name__ == "__main__":
import os
import tutil
# let theano compile somewhere else
compileDir = os.path.join(os.getenv('HOME'), '.theano_mvLocal')
tutil.setFlag('base_compiledir', compileDir)
tutil.setFlag('blas.ldflags', '"-L/usr/lib/ -lblas"')
import theano
import theano.tensor as tt
import numpy as np
import pymc3 as pm
class mv_model(ribmodel):
def _make_model(self):
from pymc3.distributions.transforms import interval
# only the 1 % of highest expressed genes
gc = np.sum(self.nCounts, axis = 1)
zeros = np.any(np.int_(self.counts) == 0, axis = 1)
nzCounts = self.counts[~zeros]
ind = np.logical_and(~zeros, gc > np.percentile(gc, 99))
self.feature_selection = ind
subCounts = self.counts[ind]
nsubCounts = self.nCounts[gc > np.percentile(gc, 99.9)]
print('Data shape:')
print(subCounts.shape)
mCounts = np.int_(subCounts)
multiNn = np.sum(mCounts, axis = 0)
ldata = self.tau_log_E_p[:, ind]
p_f = .95
p_t = .95
sparsity = 2 # ToDo: fit LKJCholeskyCov to corr distribution
n = self.pheno['tcRes'].values[:, None]
tc = self.pheno['tcEst'].values[:, None]
cMean = np.mean(ldata, axis=0)
#cMean.shape = cMean.shape + (1,)
cSd = np.std(ldata, axis=0)
#cSd.shape = cMean.shape
#cSdMv = np.stack(np.diag(l) for l in cSd)
# https://stats.stackexchange.com/questions/237847/what-are-the-properties-of-a-half-cauchy-distribution
n_dim = mCounts.shape[0]
n_samp = mCounts.shape[1]
# nummerical padding
numpad = 1e-5
def pa2alpha(p_a):
return (p_a + p_f - 1) / (p_t + p_f - 1)
def alpha2pa(alpha):
return (alpha * (p_t + p_f - 1)) - p_f + 1
def mixCounts(x, alpha):
return tt.sum(x * alpha, axis = 0)
def mixSep(x_f, x_t, alpha):
exp_f = tt.nnet.softmax(x_f)
exp_t = tt.nnet.softmax(x_t)
result = ((1 - alpha) * exp_f) + (alpha * exp_t)
return result
with pm.Model() as model:
# bounds with nummerical padding
p_a = pm.Beta('p_a', alpha=(n * tc) + 1, beta=(n * (1 - tc)) + 1,
transform=pm.distributions.transforms.Interval(1 - (p_f + numpad), (p_t + numpad)),
shape=(n_samp, 1), testval=alpha2pa(tc))
alpha = pm.Deterministic('alpha', pa2alpha(p_a))
mus_f = pm.Normal('mus_f', mu = cMean, sd = cSd, shape = n_dim, testval = cMean)
mus_t = pm.Normal('mus_t', mu = cMean, sd = cSd, shape = n_dim, testval = cMean)
sdd = pm.HalfNormal.dist(sd = cSd)
packed_L_t = pm.LKJCholeskyCov('packed_L_t', n = n_dim,
eta = sparsity, sd_dist = sdd)
packed_L_f = pm.LKJCholeskyCov('packed_L_f', n = n_dim,
eta = sparsity, sd_dist = sdd)
chol_f = pm.expand_packed_triangular(n_dim, packed_L_f, lower=True)
chol_t = pm.expand_packed_triangular(n_dim, packed_L_t, lower=True)
x_f = pm.MvNormal('x_f', mu = mus_f, chol = chol_f, testval = ldata, shape = (n_samp, n_dim))
x_t = pm.MvNormal('x_t', mu = mus_t, chol = chol_t, testval = ldata, shape = (n_samp, n_dim))
x = pm.Deterministic('x', mixSep(x_f, x_t, alpha))
obs = pm.Multinomial('obs', n=multiNn, p=x, observed=mCounts.T,
dtype='int64', shape=mCounts.T.shape)
return model
if __name__ == "__main__":
import pickle
model = mv_model()
model.trace(jobs = 1)
with open('mv_model.pkl', 'wb') as buff:
pickle.dump(model, buff)