forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflip_augmentation.py
131 lines (116 loc) · 4.4 KB
/
flip_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import glob
import os
import random
from string import ascii_lowercase, digits
import cv2
"""
Flip image and bounding box for computer vision task
https://paperswithcode.com/method/randomhorizontalflip
"""
# Params
LABEL_DIR = ""
IMAGE_DIR = ""
OUTPUT_DIR = ""
FLIP_TYPE = 1 # (0 is vertical, 1 is horizontal)
def main() -> None:
"""
Get images list and annotations list from input dir.
Update new images and annotations.
Save images and annotations in output dir.
>>> pass # A doctest is not possible for this function.
"""
img_paths, annos = get_dataset(LABEL_DIR, IMAGE_DIR)
print("Processing...")
new_images, new_annos, paths = update_image_and_anno(img_paths, annos, FLIP_TYPE)
for index, image in enumerate(new_images):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
letter_code = random_chars(32)
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0]
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
print(f"Success {index+1}/{len(new_images)} with {file_name}")
annos_list = []
for anno in new_annos[index]:
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(obj)
with open(f"/{file_root}.txt", "w") as outfile:
outfile.write("\n".join(line for line in annos_list))
def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
"""
- label_dir <type: str>: Path to label include annotation of images
- img_dir <type: str>: Path to folder contain images
Return <type: list>: List of images path and labels
>>> pass # A doctest is not possible for this function.
"""
img_paths = []
labels = []
for label_file in glob.glob(os.path.join(label_dir, "*.txt")):
label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0]
with open(label_file) as in_file:
obj_lists = in_file.readlines()
img_path = os.path.join(img_dir, f"{label_name}.jpg")
boxes = []
for obj_list in obj_lists:
obj = obj_list.rstrip("\n").split(" ")
boxes.append(
[
int(obj[0]),
float(obj[1]),
float(obj[2]),
float(obj[3]),
float(obj[4]),
]
)
if not boxes:
continue
img_paths.append(img_path)
labels.append(boxes)
return img_paths, labels
def update_image_and_anno(
img_list: list, anno_list: list, flip_type: int = 1
) -> tuple[list, list, list]:
"""
- img_list <type: list>: list of all images
- anno_list <type: list>: list of all annotations of specific image
- flip_type <type: int>: 0 is vertical, 1 is horizontal
Return:
- new_imgs_list <type: narray>: image after resize
- new_annos_lists <type: list>: list of new annotation after scale
- path_list <type: list>: list the name of image file
>>> pass # A doctest is not possible for this function.
"""
new_annos_lists = []
path_list = []
new_imgs_list = []
for idx in range(len(img_list)):
new_annos = []
path = img_list[idx]
path_list.append(path)
img_annos = anno_list[idx]
img = cv2.imread(path)
if flip_type == 1:
new_img = cv2.flip(img, flip_type)
for bbox in img_annos:
x_center_new = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]])
elif flip_type == 0:
new_img = cv2.flip(img, flip_type)
for bbox in img_annos:
y_center_new = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]])
new_annos_lists.append(new_annos)
new_imgs_list.append(new_img)
return new_imgs_list, new_annos_lists, path_list
def random_chars(number_char: int = 32) -> str:
"""
Automatic generate random 32 characters.
Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
>>> len(random_chars(32))
32
"""
assert number_char > 1, "The number of character should greater than 1"
letter_code = ascii_lowercase + digits
return "".join(random.choice(letter_code) for _ in range(number_char))
if __name__ == "__main__":
main()
print("DONE ✅")