forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinversions.py
153 lines (126 loc) · 4.48 KB
/
inversions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Given an array-like data structure A[1..n], how many pairs
(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are
called inversions. Counting the number of such inversions in an array-like
object is the important. Among other things, counting inversions can help
us determine how close a given array is to being sorted.
In this implementation, I provide two algorithms, a divide-and-conquer
algorithm which runs in nlogn and the brute-force n^2 algorithm.
"""
def count_inversions_bf(arr):
"""
Counts the number of inversions using a naive brute-force algorithm
Parameters
----------
arr: arr: array-like, the list containing the items for which the number
of inversions is desired. The elements of `arr` must be comparable.
Returns
-------
num_inversions: The total number of inversions in `arr`
Examples
---------
>>> count_inversions_bf([1, 4, 2, 4, 1])
4
>>> count_inversions_bf([1, 1, 2, 4, 4])
0
>>> count_inversions_bf([])
0
"""
num_inversions = 0
n = len(arr)
for i in range(n - 1):
for j in range(i + 1, n):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def count_inversions_recursive(arr):
"""
Counts the number of inversions using a divide-and-conquer algorithm
Parameters
-----------
arr: array-like, the list containing the items for which the number
of inversions is desired. The elements of `arr` must be comparable.
Returns
-------
C: a sorted copy of `arr`.
num_inversions: int, the total number of inversions in 'arr'
Examples
--------
>>> count_inversions_recursive([1, 4, 2, 4, 1])
([1, 1, 2, 4, 4], 4)
>>> count_inversions_recursive([1, 1, 2, 4, 4])
([1, 1, 2, 4, 4], 0)
>>> count_inversions_recursive([])
([], 0)
"""
if len(arr) <= 1:
return arr, 0
mid = len(arr) // 2
P = arr[0:mid]
Q = arr[mid:]
A, inversion_p = count_inversions_recursive(P)
B, inversions_q = count_inversions_recursive(Q)
C, cross_inversions = _count_cross_inversions(A, B)
num_inversions = inversion_p + inversions_q + cross_inversions
return C, num_inversions
def _count_cross_inversions(P, Q):
"""
Counts the inversions across two sorted arrays.
And combine the two arrays into one sorted array
For all 1<= i<=len(P) and for all 1 <= j <= len(Q),
if P[i] > Q[j], then (i, j) is a cross inversion
Parameters
----------
P: array-like, sorted in non-decreasing order
Q: array-like, sorted in non-decreasing order
Returns
------
R: array-like, a sorted array of the elements of `P` and `Q`
num_inversion: int, the number of inversions across `P` and `Q`
Examples
--------
>>> _count_cross_inversions([1, 2, 3], [0, 2, 5])
([0, 1, 2, 2, 3, 5], 4)
>>> _count_cross_inversions([1, 2, 3], [3, 4, 5])
([1, 2, 3, 3, 4, 5], 0)
"""
R = []
i = j = num_inversion = 0
while i < len(P) and j < len(Q):
if P[i] > Q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(P) - i
R.append(Q[j])
j += 1
else:
R.append(P[i])
i += 1
if i < len(P):
R.extend(P[i:])
else:
R.extend(Q[j:])
return R, num_inversion
def main():
arr_1 = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
num_inversions_bf = count_inversions_bf(arr_1)
_, num_inversions_recursive = count_inversions_recursive(arr_1)
assert num_inversions_bf == num_inversions_recursive == 8
print("number of inversions = ", num_inversions_bf)
# testing an array with zero inversion (a sorted arr_1)
arr_1.sort()
num_inversions_bf = count_inversions_bf(arr_1)
_, num_inversions_recursive = count_inversions_recursive(arr_1)
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = ", num_inversions_bf)
# an empty list should also have zero inversions
arr_1 = []
num_inversions_bf = count_inversions_bf(arr_1)
_, num_inversions_recursive = count_inversions_recursive(arr_1)
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = ", num_inversions_bf)
if __name__ == "__main__":
main()