forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlorenz_transformation_four_vector.py
205 lines (160 loc) · 5.56 KB
/
lorenz_transformation_four_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Lorenz transformation describes the transition from a reference frame P
to another reference frame P', each of which is moving in a direction with
respect to the other. The Lorenz transformation implemented in this code
is the relativistic version using a four vector described by Minkowsky Space:
x0 = ct, x1 = x, x2 = y, and x3 = z
NOTE: Please note that x0 is c (speed of light) times t (time).
So, the Lorenz transformation using a four vector is defined as:
|ct'| | γ -γβ 0 0| |ct|
|x' | = |-γβ γ 0 0| *|x |
|y' | | 0 0 1 0| |y |
|z' | | 0 0 0 1| |z |
Where:
1
γ = ---------------
-----------
/ v^2 |
/(1 - ---
-/ c^2
v
β = -----
c
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
"""
from __future__ import annotations
from math import sqrt
import numpy as np # type: ignore
from sympy import symbols # type: ignore
# Coefficient
# Speed of light (m/s)
c = 299792458
# Symbols
ct, x, y, z = symbols("ct x y z")
ct_p, x_p, y_p, z_p = symbols("ct' x' y' z'")
# Vehicle's speed divided by speed of light (no units)
def beta(velocity: float) -> float:
"""
>>> beta(c)
1.0
>>> beta(199792458)
0.666435904801848
>>> beta(1e5)
0.00033356409519815205
>>> beta(0.2)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
"""
if velocity > c:
raise ValueError("Speed must not exceed Light Speed 299,792,458 [m/s]!")
# Usually the speed u should be much higher than 1 (c order of magnitude)
elif velocity < 1:
raise ValueError("Speed must be greater than 1!")
return velocity / c
def gamma(velocity: float) -> float:
"""
>>> gamma(4)
1.0000000000000002
>>> gamma(1e5)
1.0000000556325075
>>> gamma(3e7)
1.005044845777813
>>> gamma(2.8e8)
2.7985595722318277
>>> gamma(299792451)
4627.49902669495
>>> gamma(0.3)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
>>> gamma(2*c)
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
"""
return 1 / (sqrt(1 - beta(velocity) ** 2))
def transformation_matrix(velocity: float) -> np.array:
"""
>>> transformation_matrix(29979245)
array([[ 1.00503781, -0.10050378, 0. , 0. ],
[-0.10050378, 1.00503781, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(19979245.2)
array([[ 1.00222811, -0.06679208, 0. , 0. ],
[-0.06679208, 1.00222811, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(1)
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
0.00000000e+00],
[-3.33564095e-09, 1.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.00000000e+00]])
>>> transformation_matrix(0)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
>>> transformation_matrix(c * 1.5)
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
"""
return np.array(
[
[gamma(velocity), -gamma(velocity) * beta(velocity), 0, 0],
[-gamma(velocity) * beta(velocity), gamma(velocity), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
)
def transform(
velocity: float, event: np.array = np.zeros(4), symbolic: bool = True
) -> np.array:
"""
>>> transform(29979245,np.array([1,2,3,4]), False)
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
>>> transform(29979245)
array([1.00503781498831*ct - 0.100503778816875*x,
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(19879210.2)
array([1.0022057787097*ct - 0.066456172618675*x,
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(299792459, np.array([1,1,1,1]))
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
>>> transform(-1, np.array([1,1,1,1]))
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
"""
# Ensure event is not a vector of zeros
if not symbolic:
# x0 is ct (speed of ligt * time)
event[0] = event[0] * c
else:
# Symbolic four vector
event = np.array([ct, x, y, z])
return transformation_matrix(velocity).dot(event)
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
four_vector = transform(29979245)
print("Example of four vector: ")
print(f"ct' = {four_vector[0]}")
print(f"x' = {four_vector[1]}")
print(f"y' = {four_vector[2]}")
print(f"z' = {four_vector[3]}")
# Substitute symbols with numerical values:
values = np.array([1, 1, 1, 1])
sub_dict = {ct: c * values[0], x: values[1], y: values[2], z: values[3]}
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(0, 4)]
print(f"\n{numerical_vector}")