forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsol1.py
74 lines (65 loc) · 2.01 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Project Euler Problem 27
https://projecteuler.net/problem=27
Problem Statement:
Euler discovered the remarkable quadratic formula:
n2 + n + 41
It turns out that the formula will produce 40 primes for the consecutive values
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes
for the consecutive values n = 0 to 79. The product of the coefficients, −79 and
1601, is −126479.
Considering quadratics of the form:
n² + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that
produces the maximum number of primes for consecutive values of n, starting with
n = 0.
"""
import math
def is_prime(k: int) -> bool:
"""
Determine if a number is prime
>>> is_prime(10)
False
>>> is_prime(11)
True
"""
if k < 2 or k % 2 == 0:
return False
elif k == 2:
return True
else:
for x in range(3, int(math.sqrt(k) + 1), 2):
if k % x == 0:
return False
return True
def solution(a_limit: int = 1000, b_limit: int = 1000) -> int:
"""
>>> solution(1000, 1000)
-59231
>>> solution(200, 1000)
-59231
>>> solution(200, 200)
-4925
>>> solution(-1000, 1000)
0
>>> solution(-1000, -1000)
0
"""
longest = [0, 0, 0] # length, a, b
for a in range((a_limit * -1) + 1, a_limit):
for b in range(2, b_limit):
if is_prime(b):
count = 0
n = 0
while is_prime((n**2) + (a * n) + b):
count += 1
n += 1
if count > longest[0]:
longest = [count, a, b]
ans = longest[1] * longest[2]
return ans
if __name__ == "__main__":
print(solution(1000, 1000))