-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_3a.py
1716 lines (1439 loc) · 66.2 KB
/
figure_3a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from minigrid.core.constants import COLOR_NAMES, DIR_TO_VEC
from minigrid.core.grid import Grid
from minigrid.core.mission import MissionSpace
from minigrid.core.world_object import Door, Goal, Key, Wall, Lava
from minigrid.manual_control import ManualControl
from minigrid.minigrid_env import MiniGridEnv
# from minigrid.wrappers import ImgObsWrapper, NoDeath, RGBImgPartialObsWrapper
from stable_baselines3 import PPO
from typing import Any, Iterable, SupportsFloat, TypeVar
from typing import Callable, Dict, List, Optional, Tuple, Union
from tqdm import tqdm
import gymnasium as gym
from gymnasium.core import ActType, ObsType, WrapperObsType
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib
import matplotlib.pyplot as plt
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
from stable_baselines3.common.evaluation import evaluate_policy
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import os
import numpy as np
import pickle
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.callbacks import BaseCallback
from gymnasium import spaces
from gymnasium.core import ActionWrapper, ObservationWrapper, ObsType, Wrapper
from minigrid.core.constants import COLOR_TO_IDX, OBJECT_TO_IDX, STATE_TO_IDX
import warnings
from stable_baselines3.common import type_aliases
from stable_baselines3.common.vec_env import DummyVecEnv, VecEnv, VecMonitor, is_vecenv_wrapped, VecTransposeImage
import time
import wandb
import argparse
from distutils.util import strtobool
# 1235, 1237, 1238, 1239, 1240
# seed = 1236
# seed = 1241
# seed = 1242
# # seed = 1234
# # seed = 1235
# seed = 1236
# np.random.seed(seed)
# torch.manual_seed(seed)
np.set_printoptions(precision=2, suppress=True)
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1236,
help="seed of the experiment")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="social-play",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default="",
help="the entity (team) of wandb's project")
args = parser.parse_args()
# fmt: on
return args
def encode_observation(env):
env = env.unwrapped
full_grid = env.grid.encode()
full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array(
[OBJECT_TO_IDX["agent"], COLOR_TO_IDX["red"], env.agent_dir]
)
w = env.unwrapped.width-1-1
h = env.unwrapped.height-1-1
full_grid = np.pad(full_grid, ((w, h), (w, h), (0, 0)), 'constant', constant_values=0)
partial_grid = full_grid[env.agent_pos[0]+1+w-w:env.agent_pos[0]+w+w,env.agent_pos[1]+1+h-h:env.agent_pos[1]+h+h]
for i in range(env.agent_dir):
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.flip(partial_grid, axis=1).copy()
is_goal = np.expand_dims(partial_grid[...,0] == OBJECT_TO_IDX["goal"], -1)
partial_grid = np.concatenate([partial_grid, is_goal], axis=-1)
return partial_grid
class FullyObsWrapper(ObservationWrapper):
"""
Fully observable gridworld using a compact grid encoding instead of the agent view.
Example:
>>> import gymnasium as gym
>>> import matplotlib.pyplot as plt
>>> from minigrid.wrappers import FullyObsWrapper
>>> env = gym.make("MiniGrid-LavaCrossingS11N5-v0")
>>> obs, _ = env.reset()
>>> obs['image'].shape
(7, 7, 3)
>>> env_obs = FullyObsWrapper(env)
>>> obs, _ = env_obs.reset()
>>> obs['image'].shape
(11, 11, 3)
"""
def __init__(self, env):
super().__init__(env)
new_image_space = spaces.Box(
low=0,
high=255,
shape=(self.env.width*2-5, self.env.height*2-5, 4), # number of cells
dtype="uint8",
)
self.observation_space = new_image_space
def observation(self, obs):
env = self.unwrapped
full_grid = env.grid.encode()
full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array(
[OBJECT_TO_IDX["agent"], COLOR_TO_IDX["red"], env.agent_dir]
)
w = self.env.unwrapped.width-1-1
h = self.env.unwrapped.height-1-1
# print(w, h) w + h - 1 self.env.width-2 2 * size - 5
# # print(full_grid.shape)
# is_target = np.zeros((full_grid.shape[0], full_grid.shape[1], 1))
# is_target[self.target[0], self.target[1]] = 1
# full_grid = np.concatenate([full_grid, is_target], axis=-1)
full_grid = np.pad(full_grid, ((w, h), (w, h), (0, 0)), 'constant', constant_values=0)
# print(full_grid.shape)
# print(env.agent_pos)
# print(w, h)
# print(env.agent_pos[0]+w-w,env.agent_pos[0]+w+w)
# print(env.agent_pos[1]+h-h,env.agent_pos[1]+h+h)
# import pdb; pdb.set_trace()
# print(self.target)
partial_grid = full_grid[env.agent_pos[0]+1+w-w:env.agent_pos[0]+w+w,env.agent_pos[1]+1+h-h:env.agent_pos[1]+h+h]
for i in range(env.agent_dir):
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.rot90(partial_grid, k=1, axes=(1,0))
partial_grid = np.flip(partial_grid, axis=1).copy()
# print(partial_grid.shape)
# # partial_grid[partial_grid[...,0] == OBJECT_TO_IDX["lava"],-1] = 1
# is_lava = np.expand_dims(partial_grid[...,0] == OBJECT_TO_IDX["lava"], -1)
# partial_grid = np.concatenate([partial_grid, is_lava], axis=-1)
is_goal = np.expand_dims(partial_grid[...,0] == OBJECT_TO_IDX["goal"], -1)
partial_grid = np.concatenate([partial_grid, is_goal], axis=-1)
# is_term = (partial_grid[...,0] == OBJECT_TO_IDX["lava"]) | (partial_grid[...,0] == OBJECT_TO_IDX["goal"])
# is_term = is_term & ~partial_grid[...,-1].astype(bool)
# is_term = np.expand_dims(is_term, -1)
# partial_grid = np.concatenate([partial_grid, is_term], axis=-1)
# # is_target = np.zeros_like(is_lava)
# # is_target = np.zeros((partial_grid.shape[0], partial_grid.shape[1], 1))
# # is_target[self.target[0], self.target[1]] = 1
# # partial_grid = np.concatenate([partial_grid, is_target], axis=-1)
# # import pdb; pdb.set_trace()
return partial_grid
def step(
self, action: ActType
) -> tuple[WrapperObsType, SupportsFloat, bool, bool, dict[str, Any]]:
"""Modifies the :attr:`env` after calling :meth:`step` using :meth:`self.observation` on the returned observations."""
obs = self.env.gen_obs()
self.env.obs = self.observation(obs)
observation, reward, terminated, truncated, info = self.env.step(action)
obs = self.observation(observation)
# self.env.obs = obs
return obs, reward, terminated, truncated, info
def smooth(scalars: List[float], weight: float) -> List[float]: # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
class RewardModel(nn.Module):
def __init__(self):
super(RewardModel, self).__init__()
## Reward model
observation_space = spaces.Box(
low=0,
high=255,
# shape=(13, 13, 5), # number of cells
shape=(9, 9, 5), # number of cells
dtype="uint8",
)
n_input_channels = observation_space.shape[0]
features_dim = 1
self.cnn = nn.Sequential(
# nn.BatchNorm2d(n_input_channels),
nn.Conv2d(n_input_channels, 16, (2, 2)),
nn.ReLU(),
nn.Conv2d(16, 32, (2, 2)),
nn.ReLU(),
# nn.Conv2d(32, 64, (2, 2)),
# nn.ReLU(),
# nn.Flatten(0, -1),
nn.Flatten(1, -1),
)
# self.flatten = nn.Flatten(0, -1)
# self.flatten = nn.Flatten(1, -1)
with torch.no_grad():
# n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[0]
n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[1]
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
self.linear = nn.Sequential(
layer_init(nn.Linear(n_flatten, 32)),
nn.ReLU(),
layer_init(nn.Linear(32, 32)),
nn.ReLU(),
# layer_init(nn.Linear(32, 32)),
# nn.ReLU(),
# layer_init(nn.Linear(32, 32)),
# nn.ReLU(),
layer_init(nn.Linear(32, features_dim)),
# nn.ReLU(),
# nn.Softmax(-1)
# nn.Sigmoid(),
)
# self.rewardmodel = nn.Sequential(
# # nn.Flatten(),
# nn.Linear((2*self.width-3) * (2*self.height-3) * 3, 1),
# nn.ReLU(),
# # nn.Softmax(dim=-1),
# )
# self.loss_fn = nn.BCELoss()
self.loss_fn = nn.MSELoss()
# self.loss_fn = nn.BCEWithLogitsLoss()
self.optimizer = optim.Adam(list(self.cnn.parameters()) + list(self.linear.parameters()), lr=3e-5, eps=1e-5)
# self.optimizer = optim.Adam(self.linear.parameters(), lr=3e-4, eps=1e-5)
self.logs = []
self.data = []
self.num_reward = 0
self.train = True
self.weird_data = []
def generate_test_set(self, env_class, log_dir):
np.random.seed(seed)
self.test_data = []
for i in range(1000):
agent_goal_idx = np.random.choice(25*24)
goal_idx = agent_goal_idx % 25
agent_idx = agent_goal_idx // 25
agent_dir = np.random.choice(4)
goal_pos = (goal_idx % 5 + 1, goal_idx // 5 + 1)
agent_pos = (agent_idx % 5 + 1, agent_idx // 5 + 1)
action = np.random.choice(3)
eval_env = env_class(
n_walls=3 if env_class == ComplexEnv else 3,
goal_pos=goal_pos,
agent_start_pos=agent_pos,
agent_start_dir=agent_dir,
render_mode="rgb_array")
eval_env = FullyObsWrapper(eval_env)
eval_env = Monitor(eval_env, log_dir)
obs = eval_env.reset()
if isinstance(obs, tuple):
obs = obs[0]
state = encode_observation(eval_env)
# state_action = self.encode_action(state, action)
# pred = self.forward(state_action[None])[0]
# pred = pred.item()
obs, reward, terminated, truncated, info = eval_env.step(action)
reward = max(reward, 0)
state_action = self.encode_action(state, action)
self.test_data.append((state_action, action, reward))
num_reward = sum([1 if reward > 0. else 0 for _, _, reward in self.test_data])
num_data = len(self.test_data)
frac_rew = 1./(2*num_reward)
frac = 1./(2*(num_data-num_reward))
test_weights = [frac_rew if reward > 0. else frac for _, _, reward in self.test_data]
self.test_weights = test_weights
def filter_train(self):
print('Filtering train...')
new_data = []
for i in tqdm(range(len(self.data))):
state_action, action, reward = self.data[i]
exists = False
for j in range(len(self.test_data)):
state_action2, action2, reward2 = self.test_data[j]
if (state_action == state_action2).all():
exists = True
break
if not exists:
new_data.append((state_action, action, reward))
print(f'Filtered out {len(self.data)-len(new_data)} datapoints')
self.data = new_data
def encode_action(self, state, action):
action_enc = np.expand_dims(state[...,0] == OBJECT_TO_IDX["agent"], -1)
action_enc = action_enc.astype(np.float32)
action_enc *= action
state_action = np.concatenate([state, action_enc], axis=-1)
return state_action
def observe(self, state, action, reward):
if reward > 0.:
self.num_reward += 1
state_action = self.encode_action(state, action)
self.data.append((state_action, action, reward))
# state_action = self.encode_action(state, 0)
# self.data.append((state_action, 0, 0))
# state_action = self.encode_action(state, 1)
# self.data.append((state_action, 1, 0))
else:
state_action = self.encode_action(state, action)
self.data.append((state_action, action, reward))
def learn(self, n_steps=1e4):
# num_reward = self.num_reward
self.train_data = self.data[:len(self.data)*9//10]
self.test_data = self.data[len(self.data)*9//10:]
num_reward = sum([1 if reward > 0. else 0 for _, _, reward in self.train_data])
# num_reward = sum([1 if reward > 0. else 0 for _, _, reward in self.train_data][:len(self.train_data)//2])
# num_reward = sum([1 if reward > 0. else 0 for _, _, reward in self.train_data][len(self.train_data)//2:])
num_data = len(self.train_data)
# num_data = len(self.train_data)//2
frac_rew = 1./(2*num_reward)
frac = 1./(2*(num_data-num_reward))
train_weights = [frac_rew if reward > 0. else frac for _, _, reward in self.train_data]
# weights = [frac_rew if reward > 0. else frac for _, _, reward in self.train_data][:len(self.train_data)//2]
# weights = [frac_rew if reward > 0. else frac for _, _, reward in self.train_data][len(self.train_data)//2:]
# losses = []
num_reward = sum([1 if reward > 0. else 0 for _, _, reward in self.test_data])
num_data = len(self.test_data)
if num_reward == 0:
test_weights = [1./num_data for _ in range(num_data)]
else:
frac_rew = 1./(2*num_reward)
frac = 1./(2*(num_data-num_reward))
test_weights = [frac_rew if reward > 0. else frac for _, _, reward in self.test_data]
self.test_weights = test_weights
num_epochs = 1
batch_size = 10
os.makedirs("log_reward_model", exist_ok=True)
writer = torch.utils.tensorboard.SummaryWriter(log_dir="log_reward_model")
train_sampler = torch.utils.data.WeightedRandomSampler(train_weights, num_samples=len(self.train_data), replacement=True)
train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=batch_size, sampler=train_sampler, drop_last=True)
test_sampler = torch.utils.data.WeightedRandomSampler(test_weights, num_samples=len(self.test_data), replacement=True)
test_dataloader = torch.utils.data.DataLoader(self.test_data, batch_size=batch_size, sampler=test_sampler, drop_last=True)
self.test_dataloader = test_dataloader
# for i in tqdm(range(int(n_steps))):
for epoch_id in range(num_epochs):
for i, batch in tqdm(enumerate(train_dataloader)):
# if epoch_id * len(train_dataloader) + i >= n_steps:
# break
# # import pdb; pdb.set_trace()
# idx = np.random.choice(np.arange(len(self.data)), p=weights)#; self.data[idx][2]
# # idx = np.random.choice(np.arange(len(self.data)//2), p=weights)#; self.data[idx][2]
# # idx = np.random.choice(np.arange(len(self.data)//2, len(self.data)), p=weights)#; self.data[idx][2]
# state_action, action, reward = self.data[idx]
state_action, action, reward = batch
# state_action = state_action.reshape(batch_size, -1)
# reward = reward.reshape(batch_size, -1)
pred, loss = self.forward(state_action, reward)
writer.add_scalar('Loss/train', loss.detach(), epoch_id * len(train_dataloader) + i)
# if epoch_id * len(train_dataloader) + i % 1000 == 0:
loss_test = self.eval_test(n_sample=1)
writer.add_scalar('Loss/test', loss_test, epoch_id * len(train_dataloader) + i)
# loss_tot = 0.
# for j, batch in enumerate(test_dataloader):
# state_action, action, reward = batch
# pred, loss = self.forward(state_action, reward)
# loss_tot += loss
# if j >= 10:
# break
# loss_tot /= len(test_dataloader)
# writer.add_scalar('Loss/test', loss_tot.detach(), epoch_id * len(train_dataloader) + i)
# losses.append(loss.detach())
# losses = smooth(losses, 0.8)
# ymin, ymax = plt.gca().get_ylim()
# plt.plot(range(len(losses)), losses, 'o-')
# plt.axvline(x = 1e4, ymin = ymin, ymax = ymax)
# plt.axvline(x = 2e4, ymin = ymin, ymax = ymax)
# plt.savefig('training_curve.png')
def eval_test(self, n_sample=None):
loss_tot = 0.
# data = np.random.permutation(self.test_data)
do_sample = n_sample is not None
n_sample = n_sample or len(self.test_data)
# for i, batch in enumerate(self.test_dataloader):
for i in range(n_sample):
if do_sample:
j = np.random.choice(range(len(self.test_data)), p=self.test_weights)
else:
j = i
state_action, action, reward = self.test_data[j]
# state_action, action, reward = batch
# pred, loss = self.forward(state_action, reward)
pred, loss = self.forward(state_action[None], torch.Tensor([reward]))
loss_tot += loss.item()
if not do_sample:
print(f'Test loss: {loss_tot / n_sample}')
# print(len(self.test_data))
# import pdb; pdb.set_trace()
return loss_tot / n_sample
def eval_weird(self):
loss_tot = 0.
for i in range(len(self.weird_data)):
obs, gt = self.weird_data[i]
pred, loss = self.forward(obs, gt)
loss_tot += loss
print(f'Weird loss: {loss_tot / len(self.weird_data)}')
# import pdb; pdb.set_trace()
def evaluate(self, env, policy, n_eval_episodes=10):
acc = 0.
count = 0.
for i in range(int(n_eval_episodes)):
obs = env.reset()
# state = encode_observation(env)
# state = encode_observation(base_env)
# action = env.action_space.sample()
# action, _ = policy.predict(obs)
# state_action = self.encode_action(state, action)
# pred = self.forward(state_action)
# assume False
# import pdb; pdb.set_trace()
# acc += not (pred >= 0.5)
# print('reset')
# print(f'{pred.item():0.2f}')
pred = None
terminated = False
truncated = False
if isinstance(obs, tuple):
obs = obs[0]
while not (terminated or truncated):
if pred is not None:
# acc += not (pred >= 0.5)
acc += 1 - pred
count += 1
action, _ = policy.predict(obs)
# state = encode_observation(base_env)
# import pdb; pdb.set_trace()
state = encode_observation(env)
state_action = self.encode_action(state, action)
pred = self.forward(state_action[None])[0]
obs, reward, terminated, truncated, info = env.step(action)
# state_action = self.encode_action(state, action)
# pred = self.forward(state_action)
if terminated:
# print('terminated')
# import pdb; pdb.set_trace()
# acc += pred >= 0.5
acc += pred
count += 1
else: # truncated
# print('truncated')
# acc += not (pred >= 0.5)
acc += 1 - pred
count += 1
# print(f'{pred.item():0.2f}')
env.reset()
# return acc / (n_eval_episodes * 2.)
return acc / count
def evaluate_enumerate(self, env_class, log_dir, accuracy, filename):
matrix = np.zeros((2,2))
counts = np.zeros((2,2))
rewards = []
preds = []
# for idx in range(100):
# for goal_idx in [0]: #range(9):
# for agent_idx in [1]: #range(9):
for goal_idx in range(25):
for agent_idx in range(25):
if goal_idx == agent_idx: continue
for agent_dir in range(4):
# for agent_dir in range(4):
# agent_goal_idx = np.random.choice(72)
# goal_idx = agent_goal_idx % 9
# agent_idx = agent_goal_idx // 9
# agent_dir = np.random.choice(4)
goal_pos = (goal_idx % 5 + 1, goal_idx // 5 + 1)
# height = 7
# if env_class == SimpleEnv:
# if goal_pos[1] >= height//2+1:
# continue
# if env_class == ComplexEnv:
# if goal_pos[1] < height//2+1:
# continue
agent_pos = (agent_idx % 5 + 1, agent_idx // 5 + 1)
eval_env = env_class(
n_walls=3 if env_class == ComplexEnv else 3,
goal_pos=goal_pos,
agent_start_pos=agent_pos,
agent_start_dir=agent_dir,
render_mode="rgb_array")
eval_env = FullyObsWrapper(eval_env)
eval_env = Monitor(eval_env, log_dir)
for action in [0,1,2]:
# for action in [2]:
obs = eval_env.reset()
if isinstance(obs, tuple):
obs = obs[0]
state = encode_observation(eval_env)
state_action = self.encode_action(state, action)
pred = self.forward(state_action[None])[0]
pred = pred.item()
obs, reward, terminated, truncated, info = eval_env.step(action)
reward = max(reward, 0)
pred *= 2.5
reward *= 2.5
# print(reward, pred)
if int(reward) == 1.:
matrix[int(reward)][round(pred)] += pred
else:
matrix[int(reward)][round(pred)] += 1-pred
counts[int(reward)][round(pred)] += 1
rewards.append(reward)
preds.append(pred)
# if int(reward) != round(pred):
# print(action)
# eval_env = env_class(
# n_walls=3 if env_class == ComplexEnv else 3,
# goal_pos=goal_pos,
# agent_start_pos=agent_pos,
# agent_start_dir=agent_dir,
# render_mode="human")
# eval_env = FullyObsWrapper(eval_env)
# eval_env = Monitor(eval_env, log_dir)
# obs = eval_env.reset()
# if isinstance(obs, tuple):
# obs = obs[0]
# # import pdb; pdb.set_trace()
# obs, reward, terminated, truncated, info = eval_env.step(action)
# # import pdb; pdb.set_trace()
np.set_printoptions(precision=2, suppress=True)
print(matrix / counts)
print(matrix)
print(counts)
fig, ax = plt.subplots()
ax.scatter(rewards, preds, alpha=0.2)
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.set_aspect('equal')
ax.set_xlim(lims)
ax.set_ylim(lims)
plt.xlabel('Reward')
plt.ylabel('Prediction')
plt.title(f'On-policy accuracy: {accuracy:2f}')
fig.savefig(filename)
return matrix, counts
def forward(self, obs, gt=None):# action=None, actions=None, prev_dir=None, agent_dir=None, fwd_cell=None):
### Reward model
# observations = torch.from_numpy(obs['image']).float()
# observations[self.agent_pos[0]][self.agent_pos[1]] = torch.tensor(
# [OBJECT_TO_IDX["agent"], COLOR_TO_IDX["red"], self.agent_dir]
# )
# import pdb; pdb.set_trace()
obs = torch.as_tensor(obs).float()
# pred = self.linear(self.cnn(observations))
# cur_dir = torch.as_tensor(DIR_TO_VEC[agent_dir])
# prev_dir = torch.as_tensor(DIR_TO_VEC[prev_dir])
# # dirs = torch.cat([cur_dir, prev_dir]).float()
# if fwd_cell is None:
# obj = -1
# else:
# obj = OBJECT_TO_IDX[fwd_cell.type]
# obj = torch.Tensor([obj]).float()
# dirs = torch.cat([cur_dir, prev_dir, obj]).float()
# pred = self.linear(dirs)
pred1 = self.cnn(obs)
# import pdb; pdb.set_trace()
# pred2 = self.flatten(pred1)
pred = self.linear(pred1)
pred = pred.squeeze(1)
# pred = self.linear(self.cnn(obs))
# pred = F.softmax(pred)
# pred = pred[0][None]
if gt is not None:
# if action == actions.forward:
# if fwd_cell is not None and fwd_cell.type == "goal":
# gt = 1
# else:
# # gt = 1
# gt = 0
# else:
# gt = 0
# gt = max(gt, 0)
# gt = torch.Tensor([gt]).float()
gt = torch.clip(gt, min=0).float()
# _gt = 1
# _gt = torch.Tensor([_gt]).float()
loss = self.loss_fn(pred, gt)
# print(self.loss_fn(pred, _gt))
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
self.optimizer.step()
if loss > 0.1: # 1e-4:
# import pdb; pdb.set_trace()
# print(obs[...,0], obs[...,-1], gt)
self.weird_data.append((obs, gt))
return pred, loss
# self.logs.append([len(self.logs), loss.detach().numpy(), pred.detach().numpy(), gt.numpy()])
# print(loss, pred, gt)
# print(f'{loss.item():.2f}\t{pred.item():.2f}\t{gt.item():.2f}')
# import pdb; pdb.set_trace()
return pred
class SimpleEnv(MiniGridEnv):
def __init__(
self,
size=7,
agent_view_size=13,
agent_start_pos=None, # (1, 1),
agent_start_dir=None, # 0,
max_steps: int | None = None,
reward_model=None,
goal_pos=None, # (3, 3),
n_walls=0,
**kwargs,
):
self.agent_start_pos = agent_start_pos
self.agent_start_dir = agent_start_dir
self.goal_pos = goal_pos
self.n_walls = n_walls
self.reset_counter = 0
mission_space = MissionSpace(mission_func=self._gen_mission)
if max_steps is None:
max_steps = 4 * (size-2)**2//5 # 20 timesteps
super().__init__(
mission_space=mission_space,
grid_size=size,
# agent_view_size=agent_view_size,
# Set this to True for maximum speed
see_through_walls=True,
max_steps=max_steps,
**kwargs,
)
# Allow only 3 actions permitted: left, right, forward
self.action_space = spaces.Discrete(self.actions.forward + 1)
self.reward_mode = 'default' # 'reward_model' 'none'
# self.set_reward_model()
# def set_reward_model(self):
if reward_model is not None:
self.reward_model = reward_model
# else:
# self.reward_model = RewardModel()
# self.goals_collected = 0
# self.should_terminate = True
@staticmethod
def _gen_mission():
return "Coin game"
def _gen_grid(self, width, height):
# Create an empty grid
self.grid = Grid(width, height)
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
# # Generate verical separation wall
# for i in range(0, height):
# self.grid.set(5, i, Wall())
# # Place the door and key
# self.grid.set(5, 6, Door(COLOR_NAMES[0], is_locked=True))
# self.grid.set(3, 6, Key(COLOR_NAMES[0]))
for i in range(self.n_walls):
# Place a wall square in the bottom-right corner
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
while self.grid.get(x, y) or (x, y) == self.agent_start_pos:
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
# for j in range(0, 2):
# for k in range(0, 2):
# self.put_obj(Lava(), x+j, y+k)
self.put_obj(Wall(), x, y)
for i in range(0):
# Place a lava square in the bottom-right corner
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
while self.grid.get(x, y) or (x, y) == self.agent_start_pos:
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
# for j in range(0, 2):
# for k in range(0, 2):
# self.put_obj(Lava(), x+j, y+k)
self.put_obj(Lava(), x, y)
if self.goal_pos is None:
for i in range(1):
# Place a goal square in the bottom-right corner
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
# y = np.random.choice(range(1, height//2+1))
while self.grid.get(x, y) or (x, y) == self.agent_start_pos:
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
self.put_obj(Goal(), x, y)
else:
# self.put_obj(Goal(), width - 2, height - 2)
self.put_obj(Goal(), self.goal_pos[0], self.goal_pos[1])
# self.target = np.array([x, y])
# r = np.random.random()
# if r < 1./3:
# self.put_obj(Goal(), width - 2, height - 2)
# elif r < 2./3:
# self.put_obj(Goal(), width // 2 - 1, height // 2 - 1)
# else:
# self.put_obj(Goal(), 1, height // 2 - 1)
if self.agent_start_pos is None:
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
while self.grid.get(x, y):
x = np.random.choice(range(1, width-1))
y = np.random.choice(range(1, height-1))
self.agent_pos = (x, y)
# Place the agent
else:
self.agent_pos = self.agent_start_pos
if self.agent_start_dir is not None:
self.agent_dir = self.agent_start_dir
else:
self.agent_dir = np.random.choice(4)
# self.mission = f"Coin game {self.target[0]} {self.target[1]}"
self.mission = "Coin game"
def _reward(self) -> float:
"""
Compute the reward to be given upon success
"""
# reward = float(self.reward_model(self.obs) >= 0.5)
# print(reward)
if self.reward_mode == 'default':
# print(1)
return 2./5# - 0.9 * (self.step_count / self.max_steps)
elif self.reward_mode == 'reward_model':
reward = float(self.reward_model(self.obs) >= 0.5)
# reward = self.reward_model(self.obs)
# print(reward)
return reward
else:
# print(0)
return 0
def step(
self, action: ActType
) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
self.step_count += 1
self.action = action
prev_dir = self.agent_dir
self.prev_dir = prev_dir
reward = 0
terminated = False
truncated = False
# Get the position in front of the agent
fwd_pos = self.front_pos
# Get the contents of the cell in front of the agent
fwd_cell = self.grid.get(*fwd_pos)
self.fwd_cell = fwd_cell
# Rotate left
if action == self.actions.left:
self.agent_dir -= 1
if self.agent_dir < 0:
self.agent_dir += 4
# Rotate right
elif action == self.actions.right:
self.agent_dir = (self.agent_dir + 1) % 4
# Move forward
elif action == self.actions.forward:
reward = -0.9 * (1. / self.max_steps) # 1. / (self.width + self.height) #
if fwd_cell is None or fwd_cell.can_overlap():
self.agent_pos = tuple(fwd_pos)
if fwd_cell is not None and fwd_cell.type == "goal":
# self.grid.set(fwd_pos[0], fwd_pos[1], None)
# # Place new goal
# x = np.random.choice(range(1, self.width-1))
# y = np.random.choice(range(1, self.height-1))
# while self.grid.get(x, y):
# x = np.random.choice(range(1, self.width-1))
# y = np.random.choice(range(1, self.height-1))
# self.put_obj(Goal(), x, y)
# self.goals_collected += 1
# if self.goals_remaining == 0:
# terminated = self.should_terminate
# terminated = True
step_count = self.step_count
self.reset()
self.reset_counter += 1
self.step_count = step_count
# terminated = False
# if fwd_pos[0] == self.target[0] \
# and fwd_pos[1] == self.target[1]:
# reward += self._reward() #/ self.num_goals
# else:
# reward = -self._reward()
reward = self._reward()
if fwd_cell is not None and fwd_cell.type == "lava":
# terminated = True
# self.reset()
step_count = self.step_count
self.reset()
# self.reset_counter += 1
self.step_count = step_count
# # Pick up an object
# elif action == self.actions.pickup:
# if fwd_cell and fwd_cell.can_pickup():
# if self.carrying is None:
# self.carrying = fwd_cell
# self.carrying.cur_pos = np.array([-1, -1])
# self.grid.set(fwd_pos[0], fwd_pos[1], None)
# # Drop an object
# elif action == self.actions.drop:
# if not fwd_cell and self.carrying:
# self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying)
# self.carrying.cur_pos = fwd_pos
# self.carrying = None
# # Toggle/activate an object
# elif action == self.actions.toggle:
# if fwd_cell:
# fwd_cell.toggle(self, fwd_pos)
# Done action (not used by default)
elif action == self.actions.done:
pass
else:
raise ValueError(f"Unknown action: {action}")
if self.step_count >= self.max_steps:
truncated = True
if self.render_mode == "human":
self.render()
# if self.reward_mode == 'reward_model':
# reward = self._reward()
if hasattr(self, 'reward_model') and self.reward_model.train:
self.reward_model.observe(self.obs, action, reward)
obs = self.gen_obs()
return obs, reward, terminated, truncated, {}
class ComplexEnv(MiniGridEnv):
def __init__(
self,
size=7,
agent_view_size=13,
agent_start_pos=None, # (1, 1),
agent_start_dir=None, # 0,
goal_pos=None, # (3, 3),
max_steps: int | None = None,
reward_model=None,
n_walls=0,
**kwargs,
):
self.agent_start_pos = agent_start_pos
self.agent_start_dir = agent_start_dir
self.goal_pos = goal_pos
self.n_walls = n_walls
self.reset_counter = 0
mission_space = MissionSpace(mission_func=self._gen_mission)
if max_steps is None:
max_steps = 4 * (size-2)**2//5 # 20 timesteps
super().__init__(
mission_space=mission_space,
grid_size=size,
# agent_view_size=agent_view_size,
# Set this to True for maximum speed
see_through_walls=True,
max_steps=max_steps,