-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_6_plot.py
240 lines (207 loc) · 9.13 KB
/
figure_6_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
from typing import List
import pandas as pd
import seaborn as sns
sns.set_theme(style="white")
sns.set_context("paper", font_scale=2)
sns.set_palette("bright")
pp = PdfPages('figure_6.pdf')
# plt.rcParams['figure.constrained_layout.use'] = True
plt.rcParams['font.family'] = 'monospace'
# plt.rcParams["figure.figsize"] = (9,3)
# ep_rew_mean = pd.read_csv('wandb_export_2023-12-27T04 05 40.439-05 00.csv')
# ep_rew_mean_extr = pd.read_csv('wandb_export_2023-12-27T04 05 23.104-05 00.csv')
ep_rew_mean = pd.read_csv('wandb_export_2024-01-02T02 27 23.887-05 00.csv')
ep_rew_mean_extr = pd.read_csv('wandb_export_2024-01-02T02 27 03.970-05 00.csv')
print(ep_rew_mean['Step'])
print(ep_rew_mean.keys())
print(ep_rew_mean_extr.keys())
def smooth(scalars: List[float], weight: float) -> List[float]: # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
keys = ep_rew_mean.keys()
ep_rew_mean[keys[0]] = smooth(ep_rew_mean[keys[0]], 0.8)
ep_rew_mean[keys[1]] = smooth(ep_rew_mean[keys[1]], 0.8)
ep_rew_mean[keys[2]] = smooth(ep_rew_mean[keys[2]], 0.8)
keys = ep_rew_mean_extr.keys()
ep_rew_mean_extr[keys[0]] = smooth(ep_rew_mean_extr[keys[0]], 0.8)
ep_rew_mean_extr[keys[1]] = smooth(ep_rew_mean_extr[keys[1]], 0.8)
ep_rew_mean_extr[keys[2]] = smooth(ep_rew_mean_extr[keys[2]], 0.8)
# import pdb; pdb.set_trace()
fig, ax = plt.subplots(1,2, figsize=(6,3))
# sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean",
# data=ep_rew_mean[:60], label='With social reward', ax=ax[0])
# sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean",
# data=ep_rew_mean[80:], label='', ax=ax[0], color='black')
# sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean_extrinsic",
# data=ep_rew_mean_extr[:60], label='', ax=ax[1])
# sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean_extrinsic",
# data=ep_rew_mean_extr[80:], label='', ax=ax[1], color='black')
# ax = sns.lineplot(x="x", y="y2",
# data=data, alpha=0.5, color='blue', label='')
# ax.axvline(x = 4, ymin = 0, ymax = 1, color='black')
# ax[0].legend()
# ax[0].legend(prop={'size': 12})
# ax[0].legend(loc=[.15,.05], prop={'size': 16})
# ax[0].set(xlabel='Step', ylabel='Intrinsic Reward')
# ax[1].set(xlabel='Step', ylabel='Extrinsic Reward')
# ax[0].set_xlabel('Episodes (x $10^3$)', size=16)
# ax[0].set_ylabel('Internal reward', size=16)
# ax[1].set_xlabel('Episodes (x $10^3$)', size=16)
# # print(dir(ax[0].xaxis.label._x))
# # print(ax[0].xaxis.label._y)
# # print(ax[1].xaxis.label._y)
# print(ax[0].yaxis.label._x)
# print(ax[0].yaxis.label._y)
# # print(ax[1].xaxis.get_label_position())
# ax[0].yaxis.set_label_coords(-.35, 3.)
# ax[1].xaxis.set_label_coords(.35, -0.19)
# ax[1].set_ylabel('Goals reached', size=16)
# ax[1].yaxis.set_ticks([0.3, 0.35, 0.4])
# ax[1].yaxis.set_ticklabels([0.75, 0.875, 1])
# # ax[0].set_xlim([80., 180.])
# print(ax[1].get_xlim())
# ax[0].set_xlim(ax[1].get_xlim())
# ax[0].xaxis.set_ticks([100, 150])
# ax[1].xaxis.set_ticks([100, 150])
# ax[0].xaxis.set_ticklabels([10, 15])
# ax[1].xaxis.set_ticklabels([10, 15])
# divider = make_axes_locatable(ax[0])
# ax2 = divider.new_vertical(size="600%", pad=0.1)
# fig.add_axes(ax2)
# sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean",
# data=ep_rew_mean[80:], label='', ax=ax2, color='black')
# ax2.set_ylabel('')
# ax2.set_xlabel('')
# ax2.set_ylim(0.375, 0.6)
# ax[0].spines['top'].set_visible(False)
# ax2.spines.top.set_visible(False)
# ax2.spines['bottom'].set_visible(False)
# ax2.spines.bottom.set_linewidth(0)
# ax[0].set_ylim(0.0, 0.3)
# ax2.tick_params(bottom=False, labelbottom=False)
# ax[0].tick_params(left=False, labelleft=False)
# d = .5 # proportion of vertical to horizontal extent of the slanted line
# kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12,
# linestyle="none", color='k', mec='k', mew=1, clip_on=False)
# ax[0].plot([0], [1.], transform=ax[0].transAxes, **kwargs)
# ax2.plot([0], [0], transform=ax2.transAxes, **kwargs)
divider = make_axes_locatable(ax[0])
ax2 = divider.new_horizontal(size="600%", pad=0.1)
fig.add_axes(ax2)
divider2 = make_axes_locatable(ax[1])
ax3 = divider2.new_horizontal(size="600%", pad=0.1)
fig.add_axes(ax3)
sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean_extrinsic",
data=ep_rew_mean_extr[80:], label='', ax=ax3, color='black')
sns.lineplot(x="Step", y="minigrid_figure_5-walls-handpicked-reward-model_env-2-1235-1 - rollout/ep_rew_mean",
data=ep_rew_mean[80:], label='', ax=ax2, color='black')
ax2.set_ylabel('')
ax2.set_xlabel('Episodes (x $10^3$)', size=16)
# ax2.set_ylim(0.375, 0.6)
ax2.set_xlim(71.20000007420757, 176.7999999964663)
# ax[0].spines['right'].set_visible(False)
# ax2.spines.top.set_visible(False)
ax2.spines['left'].set_visible(False)
ax2.spines.left.set_linewidth(0)
# ax2.spines.bottom.set_linewidth(0)
ax[0].set_ylim(0.4, 0.6)
ax2.set_xticks([100, 150])
ax2.set_xticklabels([10, 15])
ax2.tick_params(left=False, labelleft=False)
ax[0].tick_params(bottom=False, labelbottom=False)
ax3.set_ylabel('')
ax3.set_xlabel('Episodes (x $10^3$)', size=16)
# ax3.set_ylim(0.375, 0.6)
ax3.set_xlim(71.20000007420757, 176.7999999964663)
# ax[0].spines['right'].set_visible(False)
# ax3.spines.top.set_visible(False)
ax3.spines['left'].set_visible(False)
ax3.spines.left.set_linewidth(0)
# ax3.spines.bottom.set_linewidth(0)
ax[1].set_ylim(0.3, 0.4)
ax3.set_xticks([100, 150])
ax3.set_xticklabels([10, 15])
ax3.tick_params(left=False, labelleft=False)
ax[1].tick_params(bottom=False, labelbottom=False)
# ax[0].set_xlabel('Episodes (x $10^3$)', size=16)
ax[0].set_ylabel('Internal reward', size=16)
# ax[1].set_xlabel('Episodes (x $10^3$)', size=16)
# print(dir(ax[0].xaxis.label._x))
# print(ax[0].xaxis.label._y)
# print(ax[1].xaxis.label._y)
print(ax[0].yaxis.label._x)
print(ax[0].yaxis.label._y)
# print(ax[1].xaxis.get_label_position())
# ax[0].yaxis.set_label_coords(-.35, 3)
# ax[0].yaxis.set_label_coords(-.1, .5)
ax[0].xaxis.set_label_coords(.6, -0.19)
ax[1].xaxis.set_label_coords(.35, -0.19)
ax[1].set_ylabel('Goals reached', size=16)
ax[0].yaxis.set_ticks([0.4, 0.5, 0.6])
ax[0].yaxis.set_ticklabels([0.4, 0.5, 0.6])
ax[1].yaxis.set_ticks([0.3, 0.35, 0.4])
ax[1].yaxis.set_ticklabels([0.75, 0.875, 1])
# ax[0].set_xlim([80., 180.])
# print(ax[1].get_xlim())
# ax[0].set_xlim(ax[1].get_xlim())
# ax[0].xaxis.set_ticks([100, 150])
ax[1].xaxis.set_ticks([100, 150])
# ax[0].xaxis.set_ticklabels([10, 15])
ax[1].xaxis.set_ticklabels([10, 15])
d = 2. # proportion of vertical to horizontal extent of the slanted line
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
ax[0].plot([1], [0], transform=ax[0].transAxes, **kwargs)
ax2.plot([0], [0], transform=ax2.transAxes, **kwargs)
ax[1].plot([1], [0], transform=ax[1].transAxes, **kwargs)
ax3.plot([0], [0], transform=ax3.transAxes, **kwargs)
# ax.set_titles("{col_name}")
# # ax.legend.set_title(None)
# ax.legend.set_visible(False)
# # print(dir(ax.legend))
# ax.fig.suptitle('Handpicked Generalizations', y=1.05)
# fig.suptitle("Reward hacking")
# x = ep_rew_mean['Step']
# ymin = ep_rew_mean['minigrid_figure_3a - log_reward_model/Loss/train__MIN']
# ymax = ep_rew_mean['minigrid_figure_3a - log_reward_model/Loss/train__MAX']
# ax.fill_between(x, ymin, ymax, color='blue', alpha=0.25)
# ax.xaxis.set_ticklabels([0, 2, 4, 8, 10, 12])
# ax.xaxis.set_ticks([0, 30, 60, 90, 120])
# ax.xaxis.set_ticklabels([0, 0.1, 0.5, 2])
# ax.xaxis.set_ticks([0, 0.1, 0.5, 2])
# ax.xaxis.set_ticks([60, 90, 120, 150])
# ax.set(xlabel='Environment', ylabel='Reward')
# plt.yscale("log")
# ax.yaxis.set_ticks([5e-4, 5.4e-4, 5.8e-4])
# ax.yaxis.set_ticklabels([5e-4, 5.4e-4, 5.8e-4])
# ax.set_ylim(0, 1)
# plt.axis('scaled')
# plt.axis('square')
# plt.gca().set_aspect(2)
# plt.get_layout_engine().set(w_pad=4 / 72, h_pad=4 / 72, hspace=0,
# wspace=0)
# plt.tight_layout()
# plt.tight_layout(pad=0, w_pad=1, h_pad=1)
# plt.gca().autoscale_view('tight')
# plt.axis('equal')
# plt.gca().set_aspect('equal', adjustable='box')
# ax.set_aspect('equal', adjustable='box')
# ax_nr.set_aspect('equal', adjustable='box')
plt.subplots_adjust(left=0., bottom=0., top=1., right=1., wspace=.5)
# fig.tight_layout()
sns.despine()#left=True)#right = True, left = True)
# pp.savefig(pad_inches=1.5, bbox_inches='tight')
pp.savefig(bbox_inches='tight')
pp.close()