diff --git a/docs/examples/2d/02-train.py b/docs/examples/2d/02-train.py index 66170ea..619ca0d 100644 --- a/docs/examples/2d/02-train.py +++ b/docs/examples/2d/02-train.py @@ -41,7 +41,7 @@ # We set the `max_iterations` equal to 5000 for demonstration purposes. #
(This takes around 20 minutes on a Mac Book Pro with an Apple M2 Max chip). -device = "mps" # 'mps', 'cpu', 'cuda:0' +device = "cuda:0" # 'mps', 'cpu', 'cuda:0' max_iterations = 5000 train_config = TrainConfig( @@ -62,5 +62,6 @@ # Now we can begin the training!
# Uncomment the next two lines to train the model. +# + # from cellulus.train import train # train(experiment_config) diff --git a/docs/examples/2d/03-infer.py b/docs/examples/2d/03-infer.py index ca2ad3d..1e9d20e 100644 --- a/docs/examples/2d/03-infer.py +++ b/docs/examples/2d/03-infer.py @@ -82,7 +82,7 @@ #
The device could be set equal to `cuda:n` (where `n` is the index of # the GPU, for e.g. `cuda:0`), `cpu` or `mps`. -device = "mps" # "cuda:0", 'mps', 'cpu' +device = "cuda:0" # "cuda:0", 'mps', 'cpu' # We initialize the `inference_config` which contains our # `embeddings_dataset_config`, `segmentation_dataset_config` and @@ -91,7 +91,6 @@ # would like the cell membrane to be segmented or the nucleus. post_processing = "nucleus" -bandwidth = 15.0 inference_config = InferenceConfig( dataset_config=asdict(dataset_config), @@ -100,7 +99,6 @@ post_processed_dataset_config=asdict(post_processed_dataset_config), post_processing=post_processing, device=device, - bandwidth=bandwidth, ) # ## Initialize `experiment_config` @@ -180,4 +178,3 @@ bottom_left_cmap=new_cmp, bottom_right_cmap=new_cmp, ) -# -