-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExtraction.v
160 lines (144 loc) · 4.63 KB
/
Extraction.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
(***************************************************************************
* Code extraction for structural polymorphism *
* Jacques Garrigue, October 2007 - Jun 2009 *
***************************************************************************)
Set Implicit Arguments.
Require Import List Arith Metatheory ML_SP_Domain.
Require Omega.
Import Infer2.
Import MyEval2.
Import Sound3.
Import Infer.Unify.
Import MyEval.
Import Rename.Sound.Infra.
Import Defs.
Import Rename2.Sound2.JudgInfra.
Import Judge.
Import Infer2.
Definition t :=
trm_app
(trm_cst (Const.matches (NoDup_nodup (5 :: nil))))
(trm_abs (trm_bvar O)).
(* This doesn't seem to work inside Coq (some things don't get evaluated) *)
(* Eval compute in typinf' t. *)
Definition decidable (A : Set) (P : A -> Prop) :=
forall x, {P x} + {~P x}.
Definition ok_dec : decidable (@ok sch).
intro E; induction E; env_fix.
auto.
destruct a; env_fix.
destruct IHE.
case_eq (get v E); intros.
right*; intro.
elim (binds_fresh H).
inversions* H0.
auto.
right*.
Defined.
Inductive type_n (n:nat) : typ -> Prop :=
| typn_bvar : forall m, m < n -> type_n n (typ_bvar m)
| typn_fvar : forall x, type_n n (typ_fvar x)
| typn_arrow : forall T1 T2,
type_n n T1 -> type_n n T2 -> type_n n (typ_arrow T1 T2).
Hint Constructors type_n : core.
Definition type_n_dec : forall n , decidable (type_n n).
introv T; induction* T.
destruct* (le_lt_dec n n0).
right*; intro. inversions H. Omega.omega.
destruct IHT1.
destruct* IHT2.
right*; intro. inversions* H.
right*; intro. inversions* H.
Defined.
Lemma type_n_typ_body : forall T Xs,
(type_n (length Xs) T <-> type (typ_open_vars T Xs)).
Proof.
unfold typ_open_vars.
intros; split.
induction 1; simpl*.
induction T; simpl*; intros.
destruct* (le_lt_dec (length Xs) n).
unfold typ_fvars in H.
rewrite <- (map_length typ_fvar) in l.
rewrite (nth_overflow _ _ l) in H. inversion H.
inversions* H.
Qed.
Definition list_forall_dec : forall (A:Set) (P:A->Prop),
decidable P -> decidable (list_forall P).
introv HP l; induction l.
left*.
destruct* (HP a).
right*; intro. inversion* H.
Defined.
Definition scheme_dec : decidable scheme.
intros [T Ks].
unfold scheme, typ_body; simpl.
set (n := length Ks). clearbody n.
destruct (type_n_dec n T).
puts (list_forall_dec (type_n_dec n)).
unfold All_kind_types.
puts (list_forall_dec (fun k => H (kind_types k))).
destruct (H0 Ks).
left*; intuition; subst. apply* (proj1 (type_n_typ_body T Xs)).
apply* list_forall_imp; intros. simpl in H1.
apply* list_forall_imp; intros.
apply* (proj1 (type_n_typ_body x0 Xs)).
right*; intro.
elim n0; clear -H1.
destruct (var_freshes {} n).
destruct* (H1 x); clear H1.
apply* list_forall_imp; intros. simpl in H1.
refine (list_forall_imp _ _ H1); intros.
rewrite (fresh_length _ _ _ f).
refine (proj2 (type_n_typ_body x1 x) H2); auto*.
right*; intro.
elim n0; clear -H.
destruct (var_freshes {} n).
destruct* (H x); clear H.
rewrite (fresh_length _ _ _ f).
refine (proj2 (type_n_typ_body T x) H0); auto*.
Defined.
Definition env_prop_dec : forall (A:Set) (P:A->Prop),
decidable P -> decidable (env_prop P).
introv HP E; induction E.
left*; intro; intros. elim H.
destruct a; env_fix.
destruct* (HP a).
Defined.
Lemma env_weaker_refl : forall E, Rename2.env_weaker E E.
Proof.
introv x; intros.
exists (@nil kind).
rewrite* <- app_nil_end.
Qed.
Definition typinf1 : forall E t,
{p:kenv*typ | let (K,T) := p in K; E |Gc|= t ~: T}+
({env_fv E <> {}}+{forall K T, ~ K;E |Gc|= t ~: T}).
intros.
case_eq (S.is_empty (env_fv E)); intros.
assert (Hempty: env_fv E = {}).
puts (S.is_empty_2 H).
apply eq_ext; split2*. intro Ha; elim (H0 _ Ha).
clear H; destruct (ok_dec E).
destruct (env_prop_dec scheme_dec E).
case_eq (typinf' E t0); intros.
left*; exists p. destruct p.
apply* typinf_sound'.
right*; right*; introv Typ.
destruct* (Rename2.typing_remove_gc Typ {} (@env_weaker_refl E))
as [K' [HK' Typ']].
destruct* (typinf_principal' Hempty Typ') as [K0 [T' [TI]]].
rewrite H in TI; discriminate.
right*.
right*.
right*; left*.
intro. rewrite H0 in H.
puts (S.is_empty_1 (S.empty_1)).
rewrite H1 in H; discriminate.
Defined.
Definition eval1 fenv t h := eval fenv h nil nil t nil.
(* Export and try to do this in ocaml *)
Require Import Extraction.
(* Extraction Language Haskell. *)
Set Extraction AccessOpaque.
Extraction "typinf" typinf1 eval1.