diff --git a/include/gguf.h b/include/gguf.h new file mode 100644 index 000000000..79ee20206 --- /dev/null +++ b/include/gguf.h @@ -0,0 +1,202 @@ +// This file contains functionality related to "GGUF" files, the binary file format used by ggml. +// GGUF files have the following structure: +// +// 1. File magic "GGUF" (4 bytes). +// 2. File version (uint32_t). +// 3. Number of ggml tensors in file (int64_t). +// 4. Number of key-value-pairs in file (int64_t). +// 5. For each KV pair: +// 1. The key (string). +// 2. The value type (gguf_type). +// 3a. If the value type is GGUF_TYPE_ARRAY: +// 1. The type of the array (gguf_type). +// 2. The number of elements in the array (uint64_t). +// 3. The binary representation of each element in the array. +// 3b. Otherwise: +// 1. The binary representation of the value. +// 6. For each ggml tensor: +// 1. The tensor name (string). +// 2. The number of dimensions of the tensor (uint32_t). +// 3. For each dimension: +// 1. The size of the tensor in the dimension (int64_t). +// 4. The tensor data type (ggml_type). +// 5. The tensor data offset in the tensor data binary blob (uint64_t). +// 7. The tensor data binary blob (optional, aligned). +// +// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator. +// All enums are stored as int32_t. +// All bool values are stored as int8_t. +// If the special key "general.alignment" (uint32_t) is defined it is used for alignment, +// otherwise GGUF_DEFAULT_ALIGNMENT is used. +// +// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de) + +#pragma once + +#include "ggml.h" + +#include +#include + +#define GGUF_MAGIC "GGUF" +#define GGUF_VERSION 3 + +#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment" + +#define GGUF_DEFAULT_ALIGNMENT 32 + +#ifdef __cplusplus +extern "C" { +#endif + + // types that can be stored as GGUF KV data + enum gguf_type { + GGUF_TYPE_UINT8 = 0, + GGUF_TYPE_INT8 = 1, + GGUF_TYPE_UINT16 = 2, + GGUF_TYPE_INT16 = 3, + GGUF_TYPE_UINT32 = 4, + GGUF_TYPE_INT32 = 5, + GGUF_TYPE_FLOAT32 = 6, + GGUF_TYPE_BOOL = 7, + GGUF_TYPE_STRING = 8, + GGUF_TYPE_ARRAY = 9, + GGUF_TYPE_UINT64 = 10, + GGUF_TYPE_INT64 = 11, + GGUF_TYPE_FLOAT64 = 12, + GGUF_TYPE_COUNT, // marks the end of the enum + }; + + struct gguf_context; + + struct gguf_init_params { + bool no_alloc; + + // if not NULL, create a ggml_context and allocate the tensor data in it + struct ggml_context ** ctx; + }; + + GGML_API struct gguf_context * gguf_init_empty(void); + GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params); + //GGML_API struct gguf_context * gguf_init_from_buffer(..); + + GGML_API void gguf_free(struct gguf_context * ctx); + + GGML_API const char * gguf_type_name(enum gguf_type type); + + GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx); + GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx); + GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx); + + GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx); + GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found + GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id); + + GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id); + GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id); + + // will abort if the wrong type is used for the key + GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id); + GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id); + GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id); + GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id); + + // get raw pointer to the first element of the array with the given key_id + // for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference) + GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id); + + // get ith C string from array with given key_id + GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i); + + GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx); + GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found + GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id); + GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id); + GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id); + GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id); + + // removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist) + GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key); + + // overrides an existing KV pair or adds a new one, the new KV pair is always at the back + GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); + GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val); + GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val); + GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val); + GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val); + GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val); + GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val); + GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val); + GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val); + GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val); + GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val); + GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val); + + // creates a new array with n elements of the given type and copies the corresponding number of bytes from data + GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n); + + // creates a new array with n strings and copies the corresponding strings from data + GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n); + + // set or add KV pairs from another context + GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src); + + // add tensor to GGUF context, tensor name must be unique + GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor); + + // after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated + // in such a way that the tensor data remains as one contiguous block (except for padding) + GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type); + + // assumes that at least gguf_get_tensor_size bytes can be read from data + GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data); + + // writing gguf files can be done in 3 ways: + // + // - write the entire gguf_context to a binary file in a single pass: + // + // gguf_write_to_file(ctx, fname, /*only_meta =*/ false); + // + // - write only the meta data to a file, then re-open the file and append the tensor data: + // + // gguf_write_to_file(ctx, fname, /*only_meta =*/ true); + // FILE * f = fopen(fname, "ab"); + // fwrite(f, ...); // write tensor data + // fclose(f); + // + // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data: + // + // FILE * f = fopen(fname, "wb"); + // const size_t size_meta = gguf_get_meta_size(ctx); + // fseek(f, size_meta, SEEK_SET); + // fwrite(f, ...); // write tensor data + // void * data = malloc(size_meta); + // gguf_get_meta_data(ctx, data); + // rewind(f); + // fwrite(data, 1, data, f); + // free(data); + // fclose(f); + // + + // write the entire context to a binary file + GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta); + + // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding + GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx); + + // writes the meta data to pointer "data" + GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data); + +#ifdef __cplusplus +} +#endif diff --git a/src/gguf.cpp b/src/gguf.cpp new file mode 100644 index 000000000..655ed600a --- /dev/null +++ b/src/gguf.cpp @@ -0,0 +1,1325 @@ +#include "ggml.h" +#include "ggml-backend.h" +#include "ggml-impl.h" +#include "gguf.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +template +struct type_to_gguf_type; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT8; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT8; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT16; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT16; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_BOOL; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_STRING; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT64; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT64; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; +}; + +static const std::map GGUF_TYPE_SIZE = { + {GGUF_TYPE_UINT8, sizeof(uint8_t)}, + {GGUF_TYPE_INT8, sizeof(int8_t)}, + {GGUF_TYPE_UINT16, sizeof(uint16_t)}, + {GGUF_TYPE_INT16, sizeof(int16_t)}, + {GGUF_TYPE_UINT32, sizeof(uint32_t)}, + {GGUF_TYPE_INT32, sizeof(int32_t)}, + {GGUF_TYPE_FLOAT32, sizeof(float)}, + {GGUF_TYPE_BOOL, sizeof(int8_t)}, + {GGUF_TYPE_STRING, 0}, // undefined + {GGUF_TYPE_ARRAY, 0}, // undefined + {GGUF_TYPE_UINT64, sizeof(uint64_t)}, + {GGUF_TYPE_INT64, sizeof(int64_t)}, + {GGUF_TYPE_FLOAT64, sizeof(double)}, +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +static const std::map GGUF_TYPE_NAME = { + {GGUF_TYPE_UINT8, "u8"}, + {GGUF_TYPE_INT8, "i8"}, + {GGUF_TYPE_UINT16, "u16"}, + {GGUF_TYPE_INT16, "i16"}, + {GGUF_TYPE_UINT32, "u32"}, + {GGUF_TYPE_INT32, "i32"}, + {GGUF_TYPE_FLOAT32, "f32"}, + {GGUF_TYPE_BOOL, "bool"}, + {GGUF_TYPE_STRING, "str"}, + {GGUF_TYPE_ARRAY, "arr"}, + {GGUF_TYPE_UINT64, "u64"}, + {GGUF_TYPE_INT64, "i64"}, + {GGUF_TYPE_FLOAT64, "f64"}, +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +size_t gguf_type_size(enum gguf_type type) { + auto it = GGUF_TYPE_SIZE.find(type); + return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; +} + +struct gguf_kv { + std::string key; + + bool is_array; + enum gguf_type type; + + std::vector data; + std::vector data_string; + + template + gguf_kv(const std::string & key, const T value) + : key(key), is_array(false), type(type_to_gguf_type::value) { + GGML_ASSERT(!key.empty()); + data.resize(sizeof(T)); + memcpy(data.data(), &value, sizeof(T)); + } + + template + gguf_kv(const std::string & key, const std::vector & value) + : key(key), is_array(true), type(type_to_gguf_type::value) { + GGML_ASSERT(!key.empty()); + data.resize(value.size()*sizeof(T)); + for (size_t i = 0; i < value.size(); ++i) { + const T tmp = value[i]; + memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); + } + } + + gguf_kv(const std::string & key, const std::string & value) + : key(key), is_array(false), type(GGUF_TYPE_STRING) { + GGML_ASSERT(!key.empty()); + data_string.push_back(value); + } + + gguf_kv(const std::string & key, const std::vector & value) + : key(key), is_array(true), type(GGUF_TYPE_STRING) { + GGML_ASSERT(!key.empty()); + data_string = value; + } + + const std::string & get_key() const { + return key; + } + + const enum gguf_type & get_type() const { + return type; + } + + size_t get_ne() const { + if (type == GGUF_TYPE_STRING) { + const size_t ne = data_string.size(); + GGML_ASSERT(is_array || ne == 1); + return ne; + } + const size_t type_size = gguf_type_size(type); + GGML_ASSERT(data.size() % type_size == 0); + const size_t ne = data.size() / type_size; + GGML_ASSERT(is_array || ne == 1); + return ne; + } + + template + const T & get_val(const size_t i = 0) const { + GGML_ASSERT(type_to_gguf_type::value == type); + if constexpr (std::is_same::value) { + GGML_ASSERT(data_string.size() >= i+1); + return data_string[i]; + } + const size_t type_size = gguf_type_size(type); + GGML_ASSERT(data.size() % type_size == 0); + GGML_ASSERT(data.size() >= (i+1)*type_size); + return reinterpret_cast(data.data())[i]; + } + + void cast(const enum gguf_type new_type) { + const size_t new_type_size = gguf_type_size(new_type); + GGML_ASSERT(data.size() % new_type_size == 0); + type = new_type; + } +}; + +struct gguf_tensor_info { + struct ggml_tensor t; // for holding the equivalent info + uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` +}; + +struct gguf_context { + uint32_t version = GGUF_VERSION; + + std::vector kv; + std::vector info; + + size_t alignment = GGUF_DEFAULT_ALIGNMENT; + size_t offset = 0; // offset of `data` from beginning of file + size_t size = 0; // size of `data` in bytes + + void * data = nullptr; +}; + +struct gguf_reader { + FILE * file; + + gguf_reader(FILE * file) : file(file) {} + + template + bool read(T & dst) const { + return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); + } + + template + bool read(std::vector & dst, const size_t n) const { + dst.resize(n); + for (size_t i = 0; i < dst.size(); ++i) { + if constexpr (std::is_same::value) { + bool tmp; + if (!read(tmp)) { + return false; + } + dst[i] = tmp; + } else { + if (!read(dst[i])) { + return false; + } + } + } + return true; + } + + bool read(bool & dst) const { + int8_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = tmp != 0; + return true; + } + + bool read(enum ggml_type & dst) const { + int32_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = ggml_type(tmp); + return true; + } + + bool read(enum gguf_type & dst) const { + int32_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = gguf_type(tmp); + return true; + } + + bool read(std::string & dst) const { + uint64_t size = -1; + if (!read(size)) { + return false; + } + dst.resize(size); + return fread(dst.data(), 1, dst.length(), file) == dst.length(); + } + + bool read(void * dst, const size_t size) const { + return fread(dst, 1, size, file) == size; + } +}; + +struct gguf_context * gguf_init_empty(void) { + return new gguf_context; +} + +template +bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector & kv, const std::string & key, const bool is_array, const size_t n) { + if (is_array) { + std::vector value; + try { + if (!gr.read(value, n)) { + return false; + } + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); + return false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); + return false; + } + kv.emplace_back(key, value); + } else { + T value; + if (!gr.read(value)) { + return false; + } + kv.emplace_back(key, value); + } + return true; +} + +struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { + const struct gguf_reader gr(file); + struct gguf_context * ctx = new gguf_context; + + bool ok = true; + + // file magic + { + std::vector magic; + ok = ok && gr.read(magic, 4); + + if (!ok) { + fprintf(stderr, "%s: failed to read magic\n", __func__); + gguf_free(ctx); + return nullptr; + } + + for (uint32_t i = 0; i < magic.size(); i++) { + if (magic[i] != GGUF_MAGIC[i]) { + fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]); + gguf_free(ctx); + return nullptr; + } + } + } + + // header + int64_t n_kv = 0; + int64_t n_tensors = 0; + + if (ok && gr.read(ctx->version)) { + if (ctx->version == 1) { + fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); + ok = false; + } + if (ctx->version > GGUF_VERSION) { + fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", + __func__, ctx->version, GGUF_VERSION); + ok = false; + } + } else { + ok = false; + } + + if (ok && gr.read(n_tensors)) { + static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); + if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { + fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", + __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); + ok = false; + } + } else { + ok = false; + } + + if (ok && gr.read(n_kv)) { + static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); + if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { + fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", + __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); + ok = false; + } + } else { + ok = false; + } + + if (!ok) { + fprintf(stderr, "%s: failed to read header\n", __func__); + gguf_free(ctx); + return nullptr; + } + + // KV pairs + { + for (int64_t i = 0; ok && i < n_kv; ++i) { + std::string key; + gguf_type type = gguf_type(-1); + bool is_array = false; + uint64_t n = 1; + + try { + ok = ok && gr.read(key); + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); + ok = false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); + ok = false; + } + for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { + if (key == ctx->kv[j].key) { + fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); + ok = false; + } + } + if (!ok) { + break; + } + + ok = ok && gr.read(type); + if (type == GGUF_TYPE_ARRAY) { + is_array = true; + ok = ok && gr.read(type); + ok = ok && gr.read(n); + } + if (!ok) { + break; + } + + switch (type) { + case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper(gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_ARRAY: + default: + { + fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); + ok = false; + } break; + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); + gguf_free(ctx); + return nullptr; + } + GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); + + const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); + ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); + + if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { + fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); + gguf_free(ctx); + return nullptr; + } + } + + // read the tensor info + for (int64_t i = 0; ok && i < n_tensors; ++i) { + struct gguf_tensor_info info; + + // tensor name + { + std::string name; + try { + ok = ok && gr.read(name); + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); + ok = false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); + ok = false; + } + if (name.length() >= GGML_MAX_NAME) { + fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); + ok = false; + break; + } + ggml_set_name(&info.t, name.c_str()); + + // make sure there are no duplicate tensor names + for (int64_t j = 0; ok && j < i; ++j) { + if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { + fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); + ok = false; + break; + } + } + } + if (!ok) { + break; + } + + // tensor shape + { + uint32_t n_dims = -1; + ok = ok && gr.read(n_dims); + if (n_dims > GGML_MAX_DIMS) { + fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", + __func__, info.t.name, n_dims, GGML_MAX_DIMS); + ok = false; + break; + } + for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { + info.t.ne[j] = 1; + if (j < n_dims) { + ok = ok && gr.read(info.t.ne[j]); + } + + // check that all ne are non-negative + if (info.t.ne[j] < 0) { + fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", + __func__, info.t.name, j, info.t.ne[j]); + ok = false; + break; + } + } + + // check that the total number of elements is representable + if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || + (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || + (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { + + fprintf(stderr, "%s: total number of elements in tensor '%s' with shape " + "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", + __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); + ok = false; + break; + } + } + if (!ok) { + break; + } + + // tensor type + { + ok = ok && gr.read(info.t.type); + + // check that tensor type is within defined range + if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { + fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n", + __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); + ok = false; + break; + } + const size_t type_size = ggml_type_size(info.t.type); + const int64_t blck_size = ggml_blck_size(info.t.type); + + // check that row size is divisible by block size + if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { + fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " + "not a multiple of block size (%" PRId64 ")\n", + __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); + ok = false; + break; + } + + // calculate byte offsets given the tensor shape and type + info.t.nb[0] = type_size; + info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); + for (int j = 2; j < GGML_MAX_DIMS; ++j) { + info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; + } + } + if (!ok) { + break; + } + + // tensor data offset within buffer + ok = ok && gr.read(info.offset); + + ctx->info.push_back(info); + } + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor info\n", __func__); + gguf_free(ctx); + return nullptr; + } + GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); + + // we require the data section to be aligned, so take into account any padding + if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { + fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__); + gguf_free(ctx); + return nullptr; + } + + // store the current file offset - this is where the data section starts + ctx->offset = ftell(file); + + // compute the total size of the data section, taking into account the alignment + { + ctx->size = 0; + for (size_t i = 0; i < ctx->info.size(); ++i) { + const gguf_tensor_info & ti = ctx->info[i]; + if (ti.offset != ctx->size) { + fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", + __func__, ti.t.name, ti.offset, ctx->size); + fprintf(stderr, "%s: failed to read tensor data\n", __func__); + gguf_free(ctx); + return nullptr; + } + ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); + } + } + + // load the tensor data only if requested + if (params.ctx != nullptr) { + // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob + // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of + // the ggml_tensor structs to the appropriate locations in the binary blob + + // compute the exact size needed for the new ggml_context + const size_t mem_size = + params.no_alloc ? + (n_tensors )*ggml_tensor_overhead() : + (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; + + struct ggml_init_params pdata = { + /*mem_size =*/ mem_size, + /*mem_buffer =*/ nullptr, + /*no_alloc =*/ params.no_alloc, + }; + + *params.ctx = ggml_init(pdata); + if (*params.ctx == nullptr) { + fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__); + gguf_free(ctx); + return nullptr; + } + + struct ggml_context * ctx_data = *params.ctx; + + struct ggml_tensor * data = nullptr; + + if (!params.no_alloc) { + data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); + + ok = ok && data != nullptr; + + // read the binary blob with the tensor data + ok = ok && gr.read(data->data, ctx->size); + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__); + ggml_free(ctx_data); + *params.ctx = nullptr; + gguf_free(ctx); + return nullptr; + } + + ctx->data = data->data; + } + + ggml_set_no_alloc(ctx_data, true); + + // create the tensors + for (size_t i = 0; i < ctx->info.size(); ++i) { + const struct gguf_tensor_info & info = ctx->info[i]; + + struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); + + ok = ok && cur != nullptr; + + if (!ok) { + break; + } + + ggml_set_name(cur, info.t.name); + + // point the data member to the appropriate location in the binary blob using the tensor info + if (!params.no_alloc) { + cur->data = (char *) data->data + info.offset; + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to create tensors\n", __func__); + ggml_free(ctx_data); + *params.ctx = nullptr; + gguf_free(ctx); + return nullptr; + } + + ggml_set_no_alloc(ctx_data, params.no_alloc); + } + + return ctx; +} + +struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { + FILE * file = ggml_fopen(fname, "rb"); + + if (!file) { + fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname); + return nullptr; + } + + struct gguf_context * result = gguf_init_from_file_impl(file, params); + fclose(file); + return result; +} + +void gguf_free(struct gguf_context * ctx) { + if (ctx == nullptr) { + return; + } + delete ctx; +} + +const char * gguf_type_name(enum gguf_type type) { + auto it = GGUF_TYPE_NAME.find(type); + return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; +} + +uint32_t gguf_get_version(const struct gguf_context * ctx) { + return ctx->version; +} + +size_t gguf_get_alignment(const struct gguf_context * ctx) { + return ctx->alignment; +} + +size_t gguf_get_data_offset(const struct gguf_context * ctx) { + return ctx->offset; +} + +int64_t gguf_get_n_kv(const struct gguf_context * ctx) { + return ctx->kv.size(); +} + +int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { + // return -1 if key not found + int64_t keyfound = -1; + + const int64_t n_kv = gguf_get_n_kv(ctx); + + for (int64_t i = 0; i < n_kv; ++i) { + if (strcmp(key, gguf_get_key(ctx, i)) == 0) { + keyfound = i; + break; + } + } + + return keyfound; +} + +const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].get_key().c_str(); +} + +enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); +} + +enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].is_array); + return ctx->kv[key_id].get_type(); +} + +const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); + return ctx->kv[key_id].data.data(); +} + +const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); + return ctx->kv[key_id].data_string[i].c_str(); +} + +size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + + if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { + return ctx->kv[key_id].data_string.size(); + } + + const size_t type_size = gguf_type_size(ctx->kv[key_id].type); + GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); + return ctx->kv[key_id].data.size() / type_size; +} + +uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val().c_str(); +} + +const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); + return ctx->kv[key_id].data.data(); +} + +int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { + return ctx->info.size(); +} + +int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { + // return -1 if tensor not found + int64_t tensor_id = -1; + + const int64_t n_tensors = gguf_get_n_tensors(ctx); + + for (int64_t i = 0; i < n_tensors; ++i) { + if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { + tensor_id = i; + break; + } + } + + return tensor_id; +} + +size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].offset; +} + +const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].t.name; +} + +enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].t.type; +} + +size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ggml_nbytes(&ctx->info[tensor_id].t); +} + +int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { + const int64_t key_id = gguf_find_key(ctx, key); + if (key_id >= 0) { + ctx->kv.erase(ctx->kv.begin() + key_id); + } + return key_id; +} + +template +static void gguf_check_reserved_keys(const std::string & key, const T val) { + if (key == GGUF_KEY_GENERAL_ALIGNMENT) { + if constexpr (std::is_same::value) { + GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); + } else { + GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); + } + } +} + +void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, std::string(val)); +} + +void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { + gguf_check_reserved_keys(key, data); + gguf_remove_key(ctx, key); + + const size_t nbytes = n*gguf_type_size(type); + std::vector tmp(nbytes); + if (!tmp.empty()) { + memcpy(tmp.data(), data, nbytes); + } + ctx->kv.emplace_back(key, tmp); + ctx->kv.back().cast(type); +} + +void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { + gguf_check_reserved_keys(key, data); + gguf_remove_key(ctx, key); + + std::vector tmp(n); + for (size_t i = 0; i < n; ++i) { + tmp[i] = data[i]; + } + ctx->kv.emplace_back(key, tmp); +} + +// set or add KV pairs from another context +void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { + const int64_t n_kv = gguf_get_n_kv(src); + for (int64_t i = 0; i < n_kv; ++i) { + const struct gguf_kv & kv = src->kv[i]; + + if (!kv.is_array) { + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val().c_str()); break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + continue; + } + + const size_t ne = kv.get_ne(); + + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: + case GGUF_TYPE_BOOL: { + gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); + } break; + case GGUF_TYPE_STRING: { + std::vector tmp(ne); + for (size_t j = 0; j < ne; ++j) { + tmp[j] = kv.data_string[j].c_str(); + } + gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + } +} + +void gguf_add_tensor( + struct gguf_context * ctx, + const struct ggml_tensor * tensor) { + GGML_ASSERT(tensor); + if (gguf_find_tensor(ctx, tensor->name) != -1) { + GGML_ABORT("duplicate tensor name: %s", tensor->name); + } + + struct gguf_tensor_info ti; + ti.t = *tensor; + ti.offset = ctx->info.empty() ? 0 : + ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); + ctx->info.push_back(ti); +} + +void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { + const int64_t tensor_id = gguf_find_tensor(ctx, name); + if (tensor_id < 0) { + GGML_ABORT("tensor not found: %s", name); + } + struct ggml_tensor * tensor = &ctx->info[tensor_id].t; + const size_t type_size = ggml_type_size(type); + const int64_t blck_size = ggml_blck_size(type); + + tensor->type = type; + GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); + + tensor->nb[0] = type_size; + tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); + for (int i = 2; i < GGML_MAX_DIMS; i++) { + tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; + } + + // update offsets + const int64_t n_tensors = gguf_get_n_tensors(ctx); + for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { + ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); + } +} + +void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { + const int64_t tensor_id = gguf_find_tensor(ctx, name); + if (tensor_id < 0) { + GGML_ABORT("tensor not found: %s", name); + } + + ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const +} + +struct gguf_writer { + std::vector & buf; + + gguf_writer(std::vector & buf) : buf(buf) {} + + template + void write(const T & val) const { + for (size_t i = 0; i < sizeof(val); ++i) { + buf.push_back(reinterpret_cast(&val)[i]); + } + } + + void write(const std::vector & val) const { + buf.insert(buf.end(), val.begin(), val.end()); + } + + void write(const bool & val) const { + const int8_t val8 = val ? 1 : 0; + write(val8); + } + + void write(const std::string & val) const { + { + const uint64_t n = val.length(); + write(n); + } + for (size_t i = 0; i < val.length(); ++i) { + buf.push_back(reinterpret_cast(val.data())[i]); + } + } + + void write(const char * val) const { + write(std::string(val)); + } + + void write(const enum ggml_type & val) const { + write(int32_t(val)); + } + + void write(const enum gguf_type & val) const { + write(int32_t(val)); + } + + void write(const struct gguf_kv & kv) const { + const uint64_t ne = kv.get_ne(); + + write(kv.get_key()); + + if (kv.is_array) { + write(GGUF_TYPE_ARRAY); + write(kv.get_type()); + write(ne); + } else { + write(kv.get_type()); + } + + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: { + write(kv.data); + } break; + case GGUF_TYPE_BOOL: { + for (size_t i = 0; i < ne; ++i) { + write(kv.get_val(i)); + } + } break; + case GGUF_TYPE_STRING: { + for (size_t i = 0; i < ne; ++i) { + write(kv.get_val(i)); + } + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + } + + void write_tensor_meta(const struct gguf_tensor_info & info) const { + write(info.t.name); + + const uint32_t n_dims = ggml_n_dims(&info.t); + write(n_dims); + + for (uint32_t j = 0; j < n_dims; ++j) { + write(info.t.ne[j]); + } + write(info.t.type); + write(info.offset); + } + + void pad(const size_t alignment) const { + while (buf.size() % alignment != 0) { + const int8_t zero = 0; + write(zero); + } + } + + void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { + GGML_ASSERT(buf.size() - offset_data == info.offset); + + GGML_ASSERT(ggml_is_contiguous(&info.t)); + const size_t offset = buf.size(); + const size_t nbytes = ggml_nbytes(&info.t); + + buf.resize(offset + nbytes); + if (info.t.buffer) { + ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); + } else { + GGML_ASSERT(info.t.data); + memcpy(buf.data() + offset, info.t.data, nbytes); + } + + pad(alignment); + } +}; + +void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta) { + const struct gguf_writer gw(buf); + + const int64_t n_kv = gguf_get_n_kv(ctx); + const int64_t n_tensors = gguf_get_n_tensors(ctx); + + // write header + gw.write(GGUF_MAGIC[0]); + gw.write(GGUF_MAGIC[1]); + gw.write(GGUF_MAGIC[2]); + gw.write(GGUF_MAGIC[3]); + gw.write(ctx->version); + gw.write(n_tensors); + gw.write(n_kv); + + // write key-value pairs + for (int64_t i = 0; i < n_kv; ++i) { + gw.write(ctx->kv[i]); + } + + // write tensor info + for (int64_t i = 0; i < n_tensors; ++i) { + gw.write_tensor_meta(ctx->info[i]); + } + + // we require the data section to be aligned + gw.pad(ctx->alignment); + + if (only_meta) { + return; + } + + const size_t offset_data = gw.buf.size(); + + // write tensor data + for (int64_t i = 0; i < n_tensors; ++i) { + gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); + } +} + +bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { + FILE * file = ggml_fopen(fname, "wb"); + + if (!file) { + fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); + return false; + } + + std::vector buf; + gguf_write_to_buf(ctx, buf, only_meta); + const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); + fclose(file); + return ok; +} + +size_t gguf_get_meta_size(const struct gguf_context * ctx) { + // only return size + std::vector buf; + gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); + return buf.size(); +} + +void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { + std::vector buf; + gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); + memcpy(data, buf.data(), buf.size()); +}