From b19d9ccf252ce2ed81a71d08049a66e11313d672 Mon Sep 17 00:00:00 2001 From: "Gilad S." <7817232+giladgd@users.noreply.github.com> Date: Sat, 4 Jan 2025 10:17:31 +0200 Subject: [PATCH 01/23] fix: Vulkan shader gen binary path (llama/11037) --- src/ggml-vulkan/CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/ggml-vulkan/CMakeLists.txt b/src/ggml-vulkan/CMakeLists.txt index 6d46e5f24..9501de736 100644 --- a/src/ggml-vulkan/CMakeLists.txt +++ b/src/ggml-vulkan/CMakeLists.txt @@ -73,7 +73,7 @@ if (Vulkan_FOUND) OUTPUT ${_ggml_vk_header} ${_ggml_vk_source} - COMMAND ${_ggml_vk_genshaders_cmd} + COMMAND "$/${_ggml_vk_genshaders_cmd}" --glslc ${Vulkan_GLSLC_EXECUTABLE} --input-dir ${_ggml_vk_input_dir} --output-dir ${_ggml_vk_output_dir} From dc5f0bc21a6f0d289bca5f7b9d35de9cec55e19e Mon Sep 17 00:00:00 2001 From: matt23654 Date: Sat, 4 Jan 2025 16:10:30 +0000 Subject: [PATCH 02/23] Support for models with non-512-aligned tensors over RPC. (llama/11047) * Added init tensor calling code * Added get_alloc_size forwarding * Cleaned up and improved type/error handling. * fix: remove trailing whitespaces. * Cleanup and use GGML error logging functions. * Handle potentially dangerous edge cases. * Apply suggestions from code review Co-authored-by: Diego Devesa --------- Co-authored-by: Diego Devesa --- src/ggml-rpc/ggml-rpc.cpp | 140 ++++++++++++++++++++++++++++++++++++-- 1 file changed, 134 insertions(+), 6 deletions(-) diff --git a/src/ggml-rpc/ggml-rpc.cpp b/src/ggml-rpc/ggml-rpc.cpp index 431082426..2213aba9f 100644 --- a/src/ggml-rpc/ggml-rpc.cpp +++ b/src/ggml-rpc/ggml-rpc.cpp @@ -93,9 +93,23 @@ enum rpc_cmd { RPC_CMD_COPY_TENSOR, RPC_CMD_GRAPH_COMPUTE, RPC_CMD_GET_DEVICE_MEMORY, + RPC_CMD_INIT_TENSOR, + RPC_CMD_GET_ALLOC_SIZE, RPC_CMD_COUNT, }; +struct rpc_msg_get_alloc_size_req { + rpc_tensor tensor; +}; + +struct rpc_msg_get_alloc_size_rsp { + uint64_t alloc_size; +}; + +struct rpc_msg_init_tensor_req { + rpc_tensor tensor; +}; + struct rpc_msg_alloc_buffer_req { uint64_t size; }; @@ -461,10 +475,18 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) { } static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { - UNUSED(buffer); - if (ggml_is_quantized(tensor->type)) { - // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized - GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor"); + ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; + + // CUDA backend on the server pads everything to 512 due to CUDA limitations. + // Due to bandwidth constraints, we only call the server init tensor functions if necessary. + // In particular, only quantized tensors need padding + if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) { + rpc_msg_init_tensor_req request; + + request.tensor = serialize_tensor(tensor); + + bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0); + GGML_ASSERT(status); } } @@ -577,8 +599,23 @@ static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) { } static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { - UNUSED(buft); - return ggml_nbytes(tensor); + // See comments in init_tensor. + if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) { + ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; + auto sock = get_socket(buft_ctx->endpoint); + + rpc_msg_get_alloc_size_req request; + + request.tensor = serialize_tensor(tensor); + + rpc_msg_get_alloc_size_rsp response; + bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response)); + GGML_ASSERT(status); + + return response.alloc_size; + } else { + return ggml_nbytes(tensor); + } } static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { @@ -757,6 +794,8 @@ class rpc_server { bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector & response); bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response); bool graph_compute(const std::vector & input, rpc_msg_graph_compute_rsp & response); + bool init_tensor(const rpc_msg_init_tensor_req & request); + bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response); private: ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor); @@ -770,6 +809,36 @@ class rpc_server { std::unordered_set buffers; }; +bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) { + ggml_backend_buffer_type_t buft; + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + + struct ggml_context * ctx = ggml_init(params); + ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor); + + if (tensor == nullptr) { + GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n"); + ggml_free(ctx); + return false; + } + + if (tensor->buffer == nullptr) { + //No buffer allocated. + buft = ggml_backend_get_default_buffer_type(backend); + } else { + buft = tensor->buffer->buft; + } + + response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor); + + ggml_free(ctx); + return true; +} + void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) { ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size); @@ -905,6 +974,40 @@ bool rpc_server::set_tensor(const std::vector & input) { return true; } +bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) { + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + struct ggml_context * ctx = ggml_init(params); + ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor); + if (tensor == nullptr) { + GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n"); + ggml_free(ctx); + return false; + } + + // Call the backend's buffer_init_tensor function + ggml_backend_buffer_t buffer = tensor->buffer; + if (buffer && buffer->iface.init_tensor) { + buffer->iface.init_tensor(buffer, tensor); + } else { + GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n"); + } + + if (tensor->extra != nullptr) { + // This pointer can either be passed around client/server, or probably better stored server-side and kept track of. + // Currently unimplemented. + GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n"); + ggml_free(ctx); + return false; + } + + ggml_free(ctx); + return true; +} + bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector & response) { struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead(), @@ -1058,6 +1161,18 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre } break; } + case RPC_CMD_GET_ALLOC_SIZE: { + rpc_msg_get_alloc_size_req request; + if (!recv_msg(sockfd, &request, sizeof(request))) { + return; + } + rpc_msg_get_alloc_size_rsp response; + server.get_alloc_size(request, response); + if (!send_msg(sockfd, &response, sizeof(response))) { + return; + } + break; + } case RPC_CMD_GET_ALIGNMENT: { if (!recv_msg(sockfd, nullptr, 0)) { return; @@ -1133,6 +1248,19 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre } break; } + case RPC_CMD_INIT_TENSOR: { + rpc_msg_init_tensor_req request; + if (!recv_msg(sockfd, &request,sizeof(request))) { + return; + } + if (!server.init_tensor(request)) { + return; + } + if (!send_msg(sockfd, nullptr, 0)) { + return; + } + break; + } case RPC_CMD_GET_TENSOR: { rpc_msg_get_tensor_req request; if (!recv_msg(sockfd, &request, sizeof(request))) { From 81fde738c071414fd8137f36f066f1f50e259769 Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Sat, 4 Jan 2025 21:09:59 +0100 Subject: [PATCH 03/23] Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver (llama/11074) * Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver * Add (TM) to AMD name check --- src/ggml-vulkan/ggml-vulkan.cpp | 30 +++++++++++++++++++++++------- 1 file changed, 23 insertions(+), 7 deletions(-) diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index 020e61280..d75cd6d61 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -2040,6 +2040,8 @@ static void ggml_vk_load_shaders(vk_device& device) { std::cerr << "Done!" << std::endl; } +static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props); + static vk_device ggml_vk_get_device(size_t idx) { VK_LOG_DEBUG("ggml_vk_get_device(" << idx << ")"); @@ -2175,9 +2177,7 @@ static vk_device ggml_vk_get_device(size_t idx) { device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute; - if (device->vendor_id == VK_VENDOR_ID_INTEL || (device->vendor_id == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) { - // Intel drivers don't support coopmat properly yet - // Only RADV supports coopmat properly on AMD + if (!ggml_vk_khr_cooperative_matrix_support(device->properties, driver_props)) { device->coopmat_support = false; } @@ -2515,7 +2515,6 @@ static vk_device ggml_vk_get_device(size_t idx) { return vk_instance.devices[idx]; } - static void ggml_vk_print_gpu_info(size_t idx) { GGML_ASSERT(idx < vk_instance.device_indices.size()); size_t dev_num = vk_instance.device_indices[idx]; @@ -2565,9 +2564,7 @@ static void ggml_vk_print_gpu_info(size_t idx) { } } - if (props2.properties.vendorID == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) { - // Intel drivers don't support coopmat properly yet - // Only RADV supports coopmat properly on AMD + if (!ggml_vk_khr_cooperative_matrix_support(props2.properties, driver_props)) { coopmat_support = false; } @@ -8088,6 +8085,25 @@ static bool ggml_vk_instance_portability_enumeration_ext_available(const std::ve UNUSED(instance_extensions); } +static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props) { + switch (props.vendorID) { + case VK_VENDOR_ID_INTEL: + // Intel drivers don't support coopmat properly yet + return false; + case VK_VENDOR_ID_AMD: + if (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource) { + // Workaround for AMD proprietary driver reporting support on all GPUs + const std::string name = props.deviceName; + return name.rfind("AMD Radeon RX 7", 0) == 0 || name.rfind("AMD Radeon(TM) RX 7", 0) == 0 || // RDNA 3 consumer GPUs + name.rfind("AMD Radeon PRO W7", 0) == 0 || name.rfind("AMD Radeon(TM) PRO W7", 0) == 0 || // RDNA 3 workstation GPUs + name.rfind("AMD Radeon 7", 0) == 0 || name.rfind("AMD Radeon(TM) 7", 0) == 0; // RDNA 3 APUs + } + return true; + default: + return true; + } +} + // checks #ifdef GGML_VULKAN_CHECK_RESULTS From 55146922673f3a628c89c32f7648417186dfb553 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Mon, 6 Jan 2025 02:33:52 +0100 Subject: [PATCH 04/23] CUDA: add BF16 support (llama/11093) * CUDA: add BF16 support --- src/ggml-cuda/convert.cu | 2 + src/ggml-cuda/ggml-cuda.cu | 3 +- src/ggml-cuda/mmv.cu | 114 +++++++++++++++++++++++------------ src/ggml-cuda/vendors/cuda.h | 1 + src/ggml-cuda/vendors/hip.h | 3 + src/ggml-cuda/vendors/musa.h | 3 + 6 files changed, 87 insertions(+), 39 deletions(-) diff --git a/src/ggml-cuda/convert.cu b/src/ggml-cuda/convert.cu index 3896f956d..5b0dfacef 100644 --- a/src/ggml-cuda/convert.cu +++ b/src/ggml-cuda/convert.cu @@ -680,6 +680,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq3_s_cuda; case GGML_TYPE_F16: return convert_unary_cuda; + case GGML_TYPE_BF16: + return convert_unary_cuda; default: return nullptr; } diff --git a/src/ggml-cuda/ggml-cuda.cu b/src/ggml-cuda/ggml-cuda.cu index c180adc84..0b06be729 100644 --- a/src/ggml-cuda/ggml-cuda.cu +++ b/src/ggml-cuda/ggml-cuda.cu @@ -1728,7 +1728,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft); - bool use_mul_mat_vec = src0->type == GGML_TYPE_F16 + bool use_mul_mat_vec = (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src0->ne[0] % 2 == 0 && src1->ne[1] == 1; bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) @@ -2869,6 +2869,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: + case GGML_TYPE_BF16: #ifdef GGML_USE_MUSA if (a->type == GGML_TYPE_Q3_K) { return false; diff --git a/src/ggml-cuda/mmv.cu b/src/ggml-cuda/mmv.cu index a4b4f6bc1..ac45f2d17 100644 --- a/src/ggml-cuda/mmv.cu +++ b/src/ggml-cuda/mmv.cu @@ -1,9 +1,9 @@ #include "common.cuh" #include "mmv.cuh" -template +template static __global__ void mul_mat_vec( - const half * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row, + const T * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row, const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst) { const int64_t row = blockIdx.x; const int64_t channel = blockIdx.z; @@ -13,7 +13,6 @@ static __global__ void mul_mat_vec( y += channel *stride_channel_y; dst += channel *stride_channel_dst; - const half2 * x2 = (const half2 *) x; const float2 * y2 = (const float2 *) y; extern __shared__ char data_mmv[]; @@ -28,28 +27,44 @@ static __global__ void mul_mat_vec( float sumf; - if (std::is_same::value) { - sumf = 0.0f; + if constexpr (std::is_same::value) { + const half2 * x2 = (const half2 *) x; - for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) { - const float2 tmpx = __half22float2(x2[col2]); - const float2 tmpy = y2[col2]; - sumf += tmpx.x * tmpy.x; - sumf += tmpx.y * tmpy.y; - } - } else { + if (std::is_same::value) { + sumf = 0.0f; + + for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) { + const float2 tmpx = __half22float2(x2[col2]); + const float2 tmpy = y2[col2]; + sumf += tmpx.x * tmpy.x; + sumf += tmpx.y * tmpy.y; + } + } else { #ifdef FP16_AVAILABLE - half2 sumh2 = make_half2(0.0f, 0.0f); + half2 sumh2 = make_half2(0.0f, 0.0f); - for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) { - const float2 tmp = y2[col2]; - sumh2 += x2[col2] * make_half2(tmp.x, tmp.y); - } + for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) { + const float2 tmp = y2[col2]; + sumh2 += x2[col2] * make_half2(tmp.x, tmp.y); + } - sumf = __low2float(sumh2) + __high2float(sumh2); + sumf = __low2float(sumh2) + __high2float(sumh2); #else - NO_DEVICE_CODE; + NO_DEVICE_CODE; #endif // FP16_AVAILABLE + } + } else if constexpr (std::is_same::value) { + const int * x2 = (const int *) x; + sumf = 0.0f; + + for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) { + const int tmpx = x2[col2]; + const float2 tmpy = y2[col2]; + sumf += float(reinterpret_cast(&tmpx)[0]) * tmpy.x; + sumf += float(reinterpret_cast(&tmpx)[1]) * tmpy.y; + } + } else { + static_assert(std::is_same::value, "unsupported type"); } sumf = warp_reduce_sum(sumf); @@ -71,9 +86,9 @@ static __global__ void mul_mat_vec( dst[row] = sumf; } -template +template static void launch_mul_mat_vec_cuda( - const half * x, const float * y, float * dst, + const T * x, const float * y, float * dst, const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, cudaStream_t stream) { @@ -97,35 +112,35 @@ static void launch_mul_mat_vec_cuda( const dim3 block_dims(block_size_best, 1, 1); switch (block_size_best) { case 32: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 64: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 96: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 128: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 160: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 192: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 224: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; case 256: { - mul_mat_vec<<>> + mul_mat_vec<<>> (x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst); } break; default: { @@ -134,25 +149,25 @@ static void launch_mul_mat_vec_cuda( } } +template static void mul_mat_vec_cuda( - const half * x, const float * y, float * dst, + const T * x, const float * y, float * dst, const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, enum ggml_prec prec, cudaStream_t stream) { switch (prec) { case GGML_PREC_DEFAULT: { - launch_mul_mat_vec_cuda(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, + launch_mul_mat_vec_cuda(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst, stream); } break; case GGML_PREC_F32: { - launch_mul_mat_vec_cuda(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, + launch_mul_mat_vec_cuda(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, stride_channel_x, stride_channel_y, stride_channel_dst, stream); } break; } } void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); @@ -164,7 +179,6 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32; - const half * src0_d = (const half *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; @@ -181,7 +195,20 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * const int64_t channel_stride_y = src1->nb[2] / ggml_type_size(src1->type); const int64_t channel_stride_dst = dst->nb[2] / ggml_type_size( dst->type); - mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream()); + switch (src0->type) { + case GGML_TYPE_F16: { + const half * src0_d = (const half *) src0->data; + mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, + channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream()); + } break; + case GGML_TYPE_BF16: { + const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data; + mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, + channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream()); + } break; + default: + GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); + } } void ggml_cuda_op_mul_mat_vec( @@ -190,7 +217,6 @@ void ggml_cuda_op_mul_mat_vec( const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { - GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); @@ -211,8 +237,20 @@ void ggml_cuda_op_mul_mat_vec( const int64_t channel_stride_y = 0; const int64_t channel_stride_dst = 0; - mul_mat_vec_cuda((const half *) src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row, - nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream); + switch (src0->type) { + case GGML_TYPE_F16: { + const half * src0_d = (const half *) src0_dd_i; + mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row, + nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream); + } break; + case GGML_TYPE_BF16: { + const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i; + mul_mat_vec_cuda(src0_d, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row, + nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream); + } break; + default: + GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); + } GGML_UNUSED(ctx); GGML_UNUSED(src1); diff --git a/src/ggml-cuda/vendors/cuda.h b/src/ggml-cuda/vendors/cuda.h index db9f6a165..1746b0732 100644 --- a/src/ggml-cuda/vendors/cuda.h +++ b/src/ggml-cuda/vendors/cuda.h @@ -3,6 +3,7 @@ #include #include #include +#include #include #if CUDART_VERSION < 11020 diff --git a/src/ggml-cuda/vendors/hip.h b/src/ggml-cuda/vendors/hip.h index 3205534d6..c905b15d7 100644 --- a/src/ggml-cuda/vendors/hip.h +++ b/src/ggml-cuda/vendors/hip.h @@ -3,6 +3,7 @@ #include #include #include +#include #ifdef __HIP_PLATFORM_AMD__ // for rocblas_initialize() #include "rocblas/rocblas.h" @@ -121,6 +122,8 @@ #define __has_builtin(x) 0 #endif +typedef hip_bfloat16 nv_bfloat16; + typedef int8_t int8x4_t __attribute__((ext_vector_type(4))); typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4))); static __device__ __forceinline__ int __vsubss4(const int a, const int b) { diff --git a/src/ggml-cuda/vendors/musa.h b/src/ggml-cuda/vendors/musa.h index 1604b8229..6cc1b69ee 100644 --- a/src/ggml-cuda/vendors/musa.h +++ b/src/ggml-cuda/vendors/musa.h @@ -3,6 +3,7 @@ #include #include #include +#include #include #define CUBLAS_COMPUTE_16F CUDA_R_16F #define CUBLAS_COMPUTE_32F CUDA_R_32F @@ -132,3 +133,5 @@ #define cudaKernelNodeParams musaKernelNodeParams #define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed #define cudaStreamEndCapture musaStreamEndCapture + +typedef mt_bfloat16 nv_bfloat16; From 20a72f10d533e4bac43f639389abfda3117f5e2c Mon Sep 17 00:00:00 2001 From: Akarshan Biswas Date: Tue, 7 Jan 2025 11:56:07 +0530 Subject: [PATCH 05/23] SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6 (llama/11087) * SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6 * Revert "SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6" This reverts commit f62dc45f318e48d375e7734b34cbddee81deed52. * Reland: Use get_multi_ptr instead of deprecated get_pointer in wkv6 --- src/ggml-sycl/wkv6.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/ggml-sycl/wkv6.cpp b/src/ggml-sycl/wkv6.cpp index 75ddfb86a..105db6f03 100644 --- a/src/ggml-sycl/wkv6.cpp +++ b/src/ggml-sycl/wkv6.cpp @@ -131,7 +131,7 @@ void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* s [=](sycl::nd_item<3> item_ct1) { rwkv_wkv_f32_kernel( B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d, - item_ct1, shared_mem_acc.get_pointer() + item_ct1, (float*)shared_mem_acc.get_multi_ptr().get() ); }); }); From ef9e2eb584074b8a3a67e9dd7cf8a38daa632495 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Tue, 7 Jan 2025 08:37:02 +0200 Subject: [PATCH 06/23] rpc : code cleanup (llama/11107) Remove duplicated macros, use GGML_LOG_ERROR for errors --- src/ggml-rpc/ggml-rpc.cpp | 49 ++++++++++++++++----------------------- 1 file changed, 20 insertions(+), 29 deletions(-) diff --git a/src/ggml-rpc/ggml-rpc.cpp b/src/ggml-rpc/ggml-rpc.cpp index 2213aba9f..63da2b86b 100644 --- a/src/ggml-rpc/ggml-rpc.cpp +++ b/src/ggml-rpc/ggml-rpc.cpp @@ -27,15 +27,6 @@ #endif #include -#define UNUSED GGML_UNUSED - -#define GGML_DEBUG 0 -#if (GGML_DEBUG >= 1) -#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG(...) -#endif - #ifdef _WIN32 typedef SOCKET sockfd_t; using ssize_t = __int64; @@ -411,7 +402,7 @@ static std::shared_ptr get_socket(const std::string & endpoint) { initialized = true; } #else - UNUSED(initialized); + GGML_UNUSED(initialized); #endif auto sock = socket_connect(host.c_str(), port); if (sock == nullptr) { @@ -640,7 +631,7 @@ static void ggml_backend_rpc_free(ggml_backend_t backend) { } static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { - UNUSED(backend); + GGML_UNUSED(backend); // this is no-op because we don't have any async operations } @@ -850,7 +841,7 @@ void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_ GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size); buffers.insert(buffer); } else { - GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size); + GGML_LOG_ERROR("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size); } } @@ -872,7 +863,7 @@ bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rp GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast(request.remote_ptr); if (buffers.find(buffer) == buffers.end()) { - GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + GGML_LOG_ERROR("[%s] buffer not found\n", __func__); return false; } void * base = ggml_backend_buffer_get_base(buffer); @@ -884,7 +875,7 @@ bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) { GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast(request.remote_ptr); if (buffers.find(buffer) == buffers.end()) { - GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + GGML_LOG_ERROR("[%s] buffer not found\n", __func__); return false; } ggml_backend_buffer_free(buffer); @@ -896,7 +887,7 @@ bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) { GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value); ggml_backend_buffer_t buffer = reinterpret_cast(request.remote_ptr); if (buffers.find(buffer) == buffers.end()) { - GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + GGML_LOG_ERROR("[%s] buffer not found\n", __func__); return false; } ggml_backend_buffer_clear(buffer, request.value); @@ -952,7 +943,7 @@ bool rpc_server::set_tensor(const std::vector & input) { struct ggml_context * ctx = ggml_init(params); ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); if (tensor == nullptr) { - GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__); + GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__); ggml_free(ctx); return false; } @@ -1017,7 +1008,7 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector< struct ggml_context * ctx = ggml_init(params); ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor); if (tensor == nullptr) { - GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__); + GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__); ggml_free(ctx); return false; } @@ -1051,7 +1042,7 @@ bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_co ggml_tensor * src = deserialize_tensor(ctx, &request.src); ggml_tensor * dst = deserialize_tensor(ctx, &request.dst); if (src == nullptr || dst == nullptr) { - GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__); + GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__); ggml_free(ctx); return false; } @@ -1385,14 +1376,14 @@ static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total); - UNUSED(dev); + GGML_UNUSED(dev); } static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) { // TODO: obtain value from the server return GGML_BACKEND_DEVICE_TYPE_GPU; - UNUSED(dev); + GGML_UNUSED(dev); } static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { @@ -1413,7 +1404,7 @@ static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const return ggml_backend_rpc_init(ctx->endpoint.c_str()); - UNUSED(params); + GGML_UNUSED(params); } static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) { @@ -1421,12 +1412,12 @@ static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_b return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str()); - UNUSED(dev); + GGML_UNUSED(dev); } static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { - UNUSED(dev); - UNUSED(op); + GGML_UNUSED(dev); + GGML_UNUSED(op); //TODO: call the remote backend and cache the results return true; } @@ -1463,20 +1454,20 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = { static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) { return "RPC"; - UNUSED(reg); + GGML_UNUSED(reg); } static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) { return 0; - UNUSED(reg); + GGML_UNUSED(reg); } static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) { GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead"); - UNUSED(reg); - UNUSED(index); + GGML_UNUSED(reg); + GGML_UNUSED(index); } static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) { @@ -1485,7 +1476,7 @@ static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const ch } return NULL; - UNUSED(reg); + GGML_UNUSED(reg); } static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = { From 4630db80eec79fa2145f73ae91eb0a6a769d841b Mon Sep 17 00:00:00 2001 From: Diego Devesa Date: Tue, 7 Jan 2025 12:38:05 +0100 Subject: [PATCH 07/23] ggml-backend : only offload from host buffers (llama/11120) --- src/ggml-backend.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/ggml-backend.cpp b/src/ggml-backend.cpp index e2d6c4056..d034f8b7f 100644 --- a/src/ggml-backend.cpp +++ b/src/ggml-backend.cpp @@ -761,7 +761,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st } // skip ROPE since the rope freqs tensor is too small to choose a backend based on it // not an ideal solution - if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { + if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS && ggml_backend_buffer_is_host(src->buffer)) { int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor); // check if a backend with higher prio wants to offload the op if (src_backend_id == sched->n_backends - 1) { From 7150212327f94b24d0e1984165763eab224ab4b3 Mon Sep 17 00:00:00 2001 From: Diego Devesa Date: Tue, 7 Jan 2025 16:11:57 +0100 Subject: [PATCH 08/23] ggml-backend : only offload from host buffers (fix) (llama/11124) --- src/ggml-backend.cpp | 4 ++-- src/ggml-cpu/ggml-cpu-aarch64.cpp | 2 ++ 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/src/ggml-backend.cpp b/src/ggml-backend.cpp index d034f8b7f..dba7be33b 100644 --- a/src/ggml-backend.cpp +++ b/src/ggml-backend.cpp @@ -761,10 +761,10 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st } // skip ROPE since the rope freqs tensor is too small to choose a backend based on it // not an ideal solution - if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS && ggml_backend_buffer_is_host(src->buffer)) { + if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor); // check if a backend with higher prio wants to offload the op - if (src_backend_id == sched->n_backends - 1) { + if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) { for (int b = 0; b < src_backend_id; b++) { if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) { SET_CAUSE(tensor, "1.off"); diff --git a/src/ggml-cpu/ggml-cpu-aarch64.cpp b/src/ggml-cpu/ggml-cpu-aarch64.cpp index 622c63f1f..b311a5b1c 100644 --- a/src/ggml-cpu/ggml-cpu-aarch64.cpp +++ b/src/ggml-cpu/ggml-cpu-aarch64.cpp @@ -4169,6 +4169,8 @@ static ggml_backend_buffer_t ggml_backend_cpu_aarch64_buffer_type_alloc_buffer(g buffer->buft = buft; buffer->iface.init_tensor = ggml_backend_cpu_aarch64_buffer_init_tensor; buffer->iface.set_tensor = ggml_backend_cpu_aarch64_buffer_set_tensor; + buffer->iface.get_tensor = nullptr; + buffer->iface.cpy_tensor = nullptr; return buffer; } From bacc721768c3302fa847775ff44237110cfc08d7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Tue, 7 Jan 2025 18:01:58 +0100 Subject: [PATCH 09/23] GGUF: C++ refactor, backend support, misc fixes (llama/11030) * GGUF: C++ refactor, backend support, misc fixes remove ggml_tensor.backend update CODEOWNERS [no ci] remove gguf_get_data from API revise GGUF API data types --- CMakeLists.txt | 3 +- include/ggml-cpp.h | 1 + include/ggml.h | 140 ----- src/CMakeLists.txt | 4 +- src/ggml-impl.h | 27 +- src/ggml.c | 1276 -------------------------------------------- 6 files changed, 17 insertions(+), 1434 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 393506533..fe8acc803 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -243,7 +243,8 @@ set(GGML_PUBLIC_HEADERS include/ggml-metal.h include/ggml-rpc.h include/ggml-sycl.h - include/ggml-vulkan.h) + include/ggml-vulkan.h + include/gguf.h) set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") #if (GGML_METAL) diff --git a/include/ggml-cpp.h b/include/ggml-cpp.h index 219361af4..a12342c25 100644 --- a/include/ggml-cpp.h +++ b/include/ggml-cpp.h @@ -7,6 +7,7 @@ #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" +#include "gguf.h" #include // Smart pointers for ggml types diff --git a/include/ggml.h b/include/ggml.h index c714fc8c8..8630d92c5 100644 --- a/include/ggml.h +++ b/include/ggml.h @@ -241,12 +241,6 @@ #define GGML_ROPE_TYPE_MROPE 8 #define GGML_ROPE_TYPE_VISION 24 -#define GGUF_MAGIC "GGUF" - -#define GGUF_VERSION 3 - -#define GGUF_DEFAULT_ALIGNMENT 32 - #define GGML_UNUSED(x) (void)(x) #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) @@ -403,12 +397,6 @@ extern "C" { GGML_PREC_F32, }; - enum ggml_backend_type { - GGML_BACKEND_TYPE_CPU = 0, - GGML_BACKEND_TYPE_GPU = 10, - GGML_BACKEND_TYPE_GPU_SPLIT = 20, - }; - // model file types enum ggml_ftype { GGML_FTYPE_UNKNOWN = -1, @@ -587,8 +575,6 @@ extern "C" { struct ggml_tensor { enum ggml_type type; - GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor"); - struct ggml_backend_buffer * buffer; int64_t ne[GGML_MAX_DIMS]; // number of elements @@ -2111,132 +2097,6 @@ extern "C" { int64_t n_per_row, const float * imatrix); - // - // gguf - // - - enum gguf_type { - GGUF_TYPE_UINT8 = 0, - GGUF_TYPE_INT8 = 1, - GGUF_TYPE_UINT16 = 2, - GGUF_TYPE_INT16 = 3, - GGUF_TYPE_UINT32 = 4, - GGUF_TYPE_INT32 = 5, - GGUF_TYPE_FLOAT32 = 6, - GGUF_TYPE_BOOL = 7, - GGUF_TYPE_STRING = 8, - GGUF_TYPE_ARRAY = 9, - GGUF_TYPE_UINT64 = 10, - GGUF_TYPE_INT64 = 11, - GGUF_TYPE_FLOAT64 = 12, - GGUF_TYPE_COUNT, // marks the end of the enum - }; - - struct gguf_context; - - struct gguf_init_params { - bool no_alloc; - - // if not NULL, create a ggml_context and allocate the tensor data in it - struct ggml_context ** ctx; - }; - - GGML_API struct gguf_context * gguf_init_empty(void); - GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params); - //GGML_API struct gguf_context * gguf_init_from_buffer(..); - - GGML_API void gguf_free(struct gguf_context * ctx); - - GGML_API const char * gguf_type_name(enum gguf_type type); - - GGML_API int gguf_get_version (const struct gguf_context * ctx); - GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx); - GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx); - GGML_API void * gguf_get_data (const struct gguf_context * ctx); - - GGML_API int gguf_get_n_kv(const struct gguf_context * ctx); - GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key); - GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id); - - GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id); - GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id); - - // will abort if the wrong type is used for the key - GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id); - GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id); - GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id); - GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id); - GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id); - GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id); - GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id); - GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id); - GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id); - GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id); - GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id); - GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id); - GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id); - GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id); - GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); - GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); - - GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx); - GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name); - GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i); - GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i); - GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i); - - // removes key if it exists - GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key); - - // overrides existing values or adds a new one - GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); - GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val); - GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val); - GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val); - GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val); - GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val); - GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val); - GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val); - GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val); - GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val); - GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val); - GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val); - GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n); - GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n); - - // set or add KV pairs from another context - GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src); - - // manage tensor info - GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor); - GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type); - GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size); - - // writing gguf files can be done in 2 ways: - // - // - write the entire gguf_context to a binary file in a single pass: - // - // gguf_write_to_file(ctx, fname); - // - // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data: - // - // FILE * f = fopen(fname, "wb"); - // fseek(f, gguf_get_meta_size(ctx), SEEK_SET); - // fwrite(f, ...); - // void * data = gguf_meta_get_meta_data(ctx); - // fseek(f, 0, SEEK_SET); - // fwrite(f, data, gguf_get_meta_size(ctx)); - // free(data); - // fclose(f); - // - - // write the entire context to a binary file - GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta); - - // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding - GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx); - GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data); - #ifdef __cplusplus // restrict not standard in C++ # if defined(__GNUC__) diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 84101c32c..ae1cd2337 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -208,6 +208,7 @@ add_library(ggml-base ../include/ggml-backend.h ../include/ggml-cpp.h ../include/ggml-opt.h + ../include/gguf.h ggml.c ggml-alloc.c ggml-backend.cpp @@ -215,7 +216,8 @@ add_library(ggml-base ggml-threading.cpp ggml-threading.h ggml-quants.c - ggml-quants.h) + ggml-quants.h + gguf.cpp) target_include_directories(ggml-base PRIVATE .) diff --git a/src/ggml-impl.h b/src/ggml-impl.h index 549772c57..eab017889 100644 --- a/src/ggml-impl.h +++ b/src/ggml-impl.h @@ -3,6 +3,8 @@ // GGML internal header #include "ggml.h" +#include "gguf.h" + #include #include #include // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/ @@ -551,22 +553,15 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) -// expose GGUF internals for test code - -GGML_API size_t gguf_type_size(enum gguf_type type); - -GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); - -struct gguf_buf { - void * data; - size_t size; - size_t offset; -}; -GGML_API struct gguf_buf gguf_buf_init(size_t size); -GGML_API void gguf_buf_free(struct gguf_buf buf); - -GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta); - #ifdef __cplusplus } #endif + +#ifdef __cplusplus +#include + +// expose GGUF internals for test code +GGML_API size_t gguf_type_size(enum gguf_type type); +GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); +GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta); +#endif // __cplusplus diff --git a/src/ggml.c b/src/ggml.c index 2bbe5f482..90abc6ad4 100644 --- a/src/ggml.c +++ b/src/ggml.c @@ -1588,15 +1588,8 @@ static struct ggml_tensor * ggml_new_tensor_impl( struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); -#ifdef __clang__ - // temporary until ggml_tensor::backend is removed - #pragma clang diagnostic push - #pragma clang diagnostic ignored "-Wdeprecated-declarations" -#endif - *result = (struct ggml_tensor) { /*.type =*/ type, - /*.backend =*/ GGML_BACKEND_TYPE_CPU, /*.buffer =*/ NULL, /*.ne =*/ { 1, 1, 1, 1 }, /*.nb =*/ { 0, 0, 0, 0 }, @@ -1612,10 +1605,6 @@ static struct ggml_tensor * ggml_new_tensor_impl( /*.padding =*/ { 0 }, }; -#ifdef __clang__ - #pragma clang diagnostic pop -#endif - // TODO: this should not be needed as long as we don't rely on aligned SIMD loads //GGML_ASSERT_ALIGNED(result->data); @@ -6417,1271 +6406,6 @@ size_t ggml_quantize_chunk( //////////////////////////////////////////////////////////////////////////////// -struct gguf_str { - uint64_t n; // GGUFv2 - char * data; -}; - -static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = { - [GGUF_TYPE_UINT8] = sizeof(uint8_t), - [GGUF_TYPE_INT8] = sizeof(int8_t), - [GGUF_TYPE_UINT16] = sizeof(uint16_t), - [GGUF_TYPE_INT16] = sizeof(int16_t), - [GGUF_TYPE_UINT32] = sizeof(uint32_t), - [GGUF_TYPE_INT32] = sizeof(int32_t), - [GGUF_TYPE_FLOAT32] = sizeof(float), - [GGUF_TYPE_BOOL] = sizeof(bool), - [GGUF_TYPE_STRING] = sizeof(struct gguf_str), - [GGUF_TYPE_UINT64] = sizeof(uint64_t), - [GGUF_TYPE_INT64] = sizeof(int64_t), - [GGUF_TYPE_FLOAT64] = sizeof(double), - [GGUF_TYPE_ARRAY] = 0, // undefined -}; -static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); - -static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = { - [GGUF_TYPE_UINT8] = "u8", - [GGUF_TYPE_INT8] = "i8", - [GGUF_TYPE_UINT16] = "u16", - [GGUF_TYPE_INT16] = "i16", - [GGUF_TYPE_UINT32] = "u32", - [GGUF_TYPE_INT32] = "i32", - [GGUF_TYPE_FLOAT32] = "f32", - [GGUF_TYPE_BOOL] = "bool", - [GGUF_TYPE_STRING] = "str", - [GGUF_TYPE_ARRAY] = "arr", - [GGUF_TYPE_UINT64] = "u64", - [GGUF_TYPE_INT64] = "i64", - [GGUF_TYPE_FLOAT64] = "f64", -}; -static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); - -union gguf_value { - uint8_t uint8; - int8_t int8; - uint16_t uint16; - int16_t int16; - uint32_t uint32; - int32_t int32; - float float32; - uint64_t uint64; - int64_t int64; - double float64; - bool bool_; - - struct gguf_str str; - - struct { - enum gguf_type type; - - uint64_t n; // GGUFv2 - void * data; - } arr; -}; - -struct gguf_kv { - struct gguf_str key; - - enum gguf_type type; - union gguf_value value; -}; - -struct gguf_header { - char magic[4]; - - uint32_t version; - uint64_t n_tensors; // GGUFv2 - uint64_t n_kv; // GGUFv2 -}; - -struct gguf_tensor_info { - struct gguf_str name; - - uint32_t n_dims; - uint64_t ne[GGML_MAX_DIMS]; - - enum ggml_type type; - - uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` - - // for writing API - const void * data; - size_t size; -}; - -struct gguf_context { - struct gguf_header header; - - struct gguf_kv * kv; - struct gguf_tensor_info * infos; - - size_t alignment; - size_t offset; // offset of `data` from beginning of file - size_t size; // size of `data` in bytes - - //uint8_t * padding; - void * data; -}; - -size_t gguf_type_size(enum gguf_type type) { - GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT); - return GGUF_TYPE_SIZE[type]; -} - -static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) { - if (info->n_dims > GGML_MAX_DIMS) { - fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims); - return false; - } - - if (info->type < 0 || info->type >= GGML_TYPE_COUNT) { - fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type); - return false; - } - - if (strlen(info->name.data) >= GGML_MAX_NAME) { - fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data); - return false; - } - - for (uint32_t i = 0; i < info->n_dims; ++i) { - if (info->ne[i] <= 0) { - fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]); - return false; - } - } - - // prevent overflow for total number of elements - if (INT64_MAX/info->ne[1] <= info->ne[0]) { - fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]); - return false; - } - - if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) { - fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]); - return false; - } - - if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) { - fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]); - return false; - } - - return true; -} - -static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) { - const size_t n = fread(dst, 1, size, file); - *offset += n; - return n == size; -} - -static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) { - p->n = 0; - p->data = NULL; - - bool ok = true; - - ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); - - // early exit if string length is invalid, prevents from integer overflow - if (p->n == SIZE_MAX) { - fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n); - return false; - } - - p->data = calloc(p->n + 1, 1); - if (!p->data) { - fprintf(stderr, "%s: failed to allocate memory for string of length %" PRIu64 "\n", __func__, p->n); - return false; - } - - ok = ok && gguf_fread_el(file, p->data, p->n, offset); - - return ok; -} - -static void gguf_free_kv(struct gguf_kv * kv) { - if (kv->key.data) { - GGML_FREE(kv->key.data); - } - - if (kv->type == GGUF_TYPE_STRING) { - if (kv->value.str.data) { - GGML_FREE(kv->value.str.data); - } - } - - if (kv->type == GGUF_TYPE_ARRAY) { - if (kv->value.arr.data) { - if (kv->value.arr.type == GGUF_TYPE_STRING) { - for (uint64_t j = 0; j < kv->value.arr.n; ++j) { - struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j]; - if (str->data) { - GGML_FREE(str->data); - } - } - } - GGML_FREE(kv->value.arr.data); - } - } -} - -struct gguf_context * gguf_init_empty(void) { - struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context)); - if (!ctx) { - fprintf(stderr, "%s: failed to allocate memory for context\n", __func__); - return NULL; - } - - memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic)); - ctx->header.version = GGUF_VERSION; - ctx->header.n_tensors = 0; - ctx->header.n_kv = 0; - - ctx->kv = NULL; - ctx->infos = NULL; - - ctx->alignment = GGUF_DEFAULT_ALIGNMENT; - ctx->offset = 0; - ctx->size = 0; - - ctx->data = NULL; - - return ctx; -} - -struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { - // offset from start of file - size_t offset = 0; - - char magic[4]; - - // check the magic before making allocations - { - gguf_fread_el(file, &magic, sizeof(magic), &offset); - - for (uint32_t i = 0; i < sizeof(magic); i++) { - if (magic[i] != GGUF_MAGIC[i]) { - fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]); - return NULL; - } - } - } - - bool ok = true; - - struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context)); - if (!ctx) { - fprintf(stderr, "%s: failed to allocate memory for context\n", __func__); - return NULL; - } - - // read the header - { - strncpy(ctx->header.magic, magic, 4); - - ctx->kv = NULL; - ctx->infos = NULL; - ctx->data = NULL; - - ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset); - ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset); - ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset); - - if (ctx->header.version == 1) { - fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__); - gguf_free(ctx); - return NULL; - } - - // sanity-checks to prevent from integer/buffer overflows - - ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info)); - ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead()); - ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv)); - - if (!ok) { - fprintf(stderr, "%s: failed to read header\n", __func__); - gguf_free(ctx); - return NULL; - } - } - - // read the kv pairs - { - const uint64_t n_kv = ctx->header.n_kv; - - if (n_kv > 0) { - ctx->kv = calloc(n_kv, sizeof(struct gguf_kv)); - if (!ctx->kv) { - fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__); - gguf_free(ctx); - return NULL; - } - } - - for (uint64_t i = 0; i < n_kv; ++i) { - struct gguf_kv * kv = &ctx->kv[i]; - - //fprintf(stderr, "%s: reading kv %d\n", __func__, i); - - ok = ok && gguf_fread_str(file, &kv->key, &offset); - ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset); - - //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data); - - switch (kv->type) { - case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break; - case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break; - case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break; - case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break; - case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break; - case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break; - case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break; - case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break; - case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break; - case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break; - case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break; - case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break; - case GGUF_TYPE_ARRAY: - { - ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset); - ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset); - - switch (kv->value.arr.type) { - case GGUF_TYPE_UINT8: - case GGUF_TYPE_INT8: - case GGUF_TYPE_UINT16: - case GGUF_TYPE_INT16: - case GGUF_TYPE_UINT32: - case GGUF_TYPE_INT32: - case GGUF_TYPE_FLOAT32: - case GGUF_TYPE_UINT64: - case GGUF_TYPE_INT64: - case GGUF_TYPE_FLOAT64: - case GGUF_TYPE_BOOL: - { - // prevent from integer overflow in the malloc below - if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) { - fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); - gguf_free(ctx); - return NULL; - } - - kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type)); - if (!kv->value.arr.data) { - fprintf(stderr, "%s: failed to allocate memory for array\n", __func__); - gguf_free(ctx); - return NULL; - } - - ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset); - } break; - case GGUF_TYPE_STRING: - { - // prevent from integer overflow in the malloc below - if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) { - fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); - gguf_free(ctx); - return NULL; - } - - kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str)); - if (!kv->value.arr.data) { - fprintf(stderr, "%s: failed to allocate memory for array\n", __func__); - gguf_free(ctx); - return NULL; - } - - for (uint64_t j = 0; j < kv->value.arr.n; ++j) { - ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset); - } - } break; - case GGUF_TYPE_ARRAY: - default: - { - fprintf(stderr, "%s: invalid array type %d\n", __func__, kv->value.arr.type); - ok = false; - } break; - } - } break; - default: - { - fprintf(stderr, "%s: invalid type %d\n", __func__, kv->type); - ok = false; - } break; - } - - if (!ok) { - break; - } - } - - if (!ok) { - fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); - gguf_free(ctx); - return NULL; - } - } - - // read the tensor infos - if (ctx->header.n_tensors > 0) { - ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info)); - if (!ctx->infos) { - fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__); - gguf_free(ctx); - return NULL; - } - - for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { - struct gguf_tensor_info * info = &ctx->infos[i]; - - for (int j = 0; j < GGML_MAX_DIMS; ++j) { - info->ne[j] = 1; - } - - ok = ok && gguf_fread_str(file, &info->name, &offset); - ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset); - - ok = ok && (info->n_dims <= GGML_MAX_DIMS); - - for (uint32_t j = 0; j < info->n_dims; ++j) { - ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset); - } - - ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset); - ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset); - - ok = ok && gguf_tensor_info_sanitize(info); - - // make sure there is no duplicated tensor names - for (uint64_t j = 0; j < i && ok; ++j) { - if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) { - fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data); - ok = false; - } - } - - if (!ok) { - fprintf(stderr, "%s: failed to read tensor info\n", __func__); - gguf_free(ctx); - return NULL; - } - } - } - - ctx->alignment = GGUF_DEFAULT_ALIGNMENT; - - int alignment_idx = gguf_find_key(ctx, "general.alignment"); - if (alignment_idx != -1) { - ctx->alignment = gguf_get_val_u32(ctx, alignment_idx); - } - - // we require the data section to be aligned, so take into account any padding - { - const size_t offset_pad = offset % ctx->alignment; - - if (offset_pad != 0) { - offset += ctx->alignment - offset_pad; - fseek(file, offset, SEEK_SET); - } - } - - // store the current file offset - this is where the data section starts - ctx->offset = offset; - - // compute the total size of the data section, taking into account the alignment - { - ctx->size = 0; - for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { - struct gguf_tensor_info * info = &ctx->infos[i]; - - const int64_t ne = - (int64_t) info->ne[0] * - (int64_t) info->ne[1] * - (int64_t) info->ne[2] * - (int64_t) info->ne[3]; - - if (ggml_blck_size(info->type) == 0 ) { - // this tensor type support have been removed: - fprintf(stderr, "%s: tensor '%s' of type %d: %s\n", - __func__, info->name.data, (int) info->type, ggml_type_name(info->type)); - gguf_free(ctx); - return NULL; - } - - if (ne % ggml_blck_size(info->type) != 0) { - fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n", - __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type)); - gguf_free(ctx); - return NULL; - } - - const size_t size_cur = ggml_row_size(info->type, ne); - - ctx->size += GGML_PAD(size_cur, ctx->alignment); - } - } - - // load the tensor data only if requested - if (params.ctx != NULL) { - // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob - // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of - // the ggml_tensor structs to the appropriate locations in the binary blob - - // compute the exact size needed for the new ggml_context - const size_t mem_size = - params.no_alloc ? - (ctx->header.n_tensors )*ggml_tensor_overhead() : - (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size; - - struct ggml_init_params pdata = { - .mem_size = mem_size, - .mem_buffer = NULL, - .no_alloc = params.no_alloc, - }; - - *params.ctx = ggml_init(pdata); - if (*params.ctx == NULL) { - fprintf(stderr, "%s: failed to initialize context\n", __func__); - gguf_free(ctx); - return NULL; - } - - struct ggml_context * ctx_data = *params.ctx; - - struct ggml_tensor * data = NULL; - - if (!params.no_alloc) { - data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); - - ok = ok && data != NULL; - - // read the binary blob with the tensor data - ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset); - - if (!ok) { - fprintf(stderr, "%s: failed to read tensor data\n", __func__); - ggml_free(ctx_data); - gguf_free(ctx); - return NULL; - } - - ctx->data = data->data; - } - - ggml_set_no_alloc(ctx_data, true); - - // create the tensors - for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { - const int64_t ne[GGML_MAX_DIMS] = { - ctx->infos[i].ne[0], - ctx->infos[i].ne[1], - ctx->infos[i].ne[2], - ctx->infos[i].ne[3], - }; - - struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne); - - ok = ok && cur != NULL; - - if (!ok) { - break; - } - - ggml_set_name(cur, ctx->infos[i].name.data); - - // point the data member to the appropriate location in the binary blob using the tensor infos - if (!params.no_alloc) { - //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file - cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data - } - } - - if (!ok) { - fprintf(stderr, "%s: failed to read the tensor data\n", __func__); - ggml_free(ctx_data); - gguf_free(ctx); - return NULL; - } - - ggml_set_no_alloc(ctx_data, params.no_alloc); - } - - return ctx; -} - -struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { - FILE * file = ggml_fopen(fname, "rb"); - if (!file) { - fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno)); - return NULL; - } - - struct gguf_context * result = gguf_init_from_file_impl(file, params); - fclose(file); - return result; -} - -void gguf_free(struct gguf_context * ctx) { - if (ctx == NULL) { - return; - } - - if (ctx->kv) { - // free string memory - not great.. - for (uint64_t i = 0; i < ctx->header.n_kv; ++i) { - gguf_free_kv(&ctx->kv[i]); - } - - GGML_FREE(ctx->kv); - } - - if (ctx->infos) { - for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { - struct gguf_tensor_info * info = &ctx->infos[i]; - - if (info->name.data) { - GGML_FREE(info->name.data); - } - } - - GGML_FREE(ctx->infos); - } - - GGML_FREE(ctx); -} - -const char * gguf_type_name(enum gguf_type type) { - return GGUF_TYPE_NAME[type]; -} - -int gguf_get_version(const struct gguf_context * ctx) { - return ctx->header.version; -} - -size_t gguf_get_alignment(const struct gguf_context * ctx) { - return ctx->alignment; -} - -size_t gguf_get_data_offset(const struct gguf_context * ctx) { - return ctx->offset; -} - -void * gguf_get_data(const struct gguf_context * ctx) { - return ctx->data; -} - -int gguf_get_n_kv(const struct gguf_context * ctx) { - return ctx->header.n_kv; -} - -int gguf_find_key(const struct gguf_context * ctx, const char * key) { - // return -1 if key not found - int keyfound = -1; - - const int n_kv = gguf_get_n_kv(ctx); - - for (int i = 0; i < n_kv; ++i) { - if (strcmp(key, gguf_get_key(ctx, i)) == 0) { - keyfound = i; - break; - } - } - - return keyfound; -} - -const char * gguf_get_key(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - return ctx->kv[key_id].key.data; -} - -enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - return ctx->kv[key_id].type; -} - -enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); - return ctx->kv[key_id].value.arr.type; -} - -const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); - return ctx->kv[key_id].value.arr.data; -} - -const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); - struct gguf_kv * kv = &ctx->kv[key_id]; - struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i]; - return str->data; -} - -int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); - return ctx->kv[key_id].value.arr.n; -} - -uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8); - return ctx->kv[key_id].value.uint8; -} - -int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8); - return ctx->kv[key_id].value.int8; -} - -uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16); - return ctx->kv[key_id].value.uint16; -} - -int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16); - return ctx->kv[key_id].value.int16; -} - -uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32); - return ctx->kv[key_id].value.uint32; -} - -int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32); - return ctx->kv[key_id].value.int32; -} - -float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32); - return ctx->kv[key_id].value.float32; -} - -uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64); - return ctx->kv[key_id].value.uint64; -} - -int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64); - return ctx->kv[key_id].value.int64; -} - -double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64); - return ctx->kv[key_id].value.float64; -} - -bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL); - return ctx->kv[key_id].value.bool_; -} - -const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING); - return ctx->kv[key_id].value.str.data; -} - -const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) { - GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); - GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY); - GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING); - return &ctx->kv[key_id].value; -} - -int gguf_get_n_tensors(const struct gguf_context * ctx) { - return ctx->header.n_tensors; -} - -int gguf_find_tensor(const struct gguf_context * ctx, const char * name) { - // return -1 if tensor not found - int tensorfound = -1; - - const int n_tensors = gguf_get_n_tensors(ctx); - - for (int i = 0; i < n_tensors; ++i) { - if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { - tensorfound = i; - break; - } - } - - return tensorfound; -} - -size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) { - return ctx->infos[i].offset; -} - -char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) { - return ctx->infos[i].name.data; -} - -enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) { - return ctx->infos[i].type; -} - -// returns the index -static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) { - const int idx = gguf_find_key(ctx, key); - if (idx >= 0) { - return idx; - } - - const int n_kv = gguf_get_n_kv(ctx); - - ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv)); - ctx->kv[n_kv].key.n = strlen(key); - ctx->kv[n_kv].key.data = strdup(key); - ctx->header.n_kv++; - - return n_kv; -} - -void gguf_remove_key(struct gguf_context * ctx, const char * key) { - const int idx = gguf_find_key(ctx, key); - if (idx >= 0) { - const int n_kv = gguf_get_n_kv(ctx); - gguf_free_kv(&ctx->kv[idx]); - for (int i = idx; i < n_kv-1; ++i) { - ctx->kv[i] = ctx->kv[i+1]; - } - ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv)); - ctx->header.n_kv--; - } -} - -void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_UINT8; - ctx->kv[idx].value.uint8 = val; -} - -void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_INT8; - ctx->kv[idx].value.int8 = val; -} - -void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_UINT16; - ctx->kv[idx].value.uint16 = val; -} - -void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_INT16; - ctx->kv[idx].value.int16 = val; -} - -void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_UINT32; - ctx->kv[idx].value.uint32 = val; -} - -void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_INT32; - ctx->kv[idx].value.int32 = val; -} - -void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_FLOAT32; - ctx->kv[idx].value.float32 = val; -} - -void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_UINT64; - ctx->kv[idx].value.uint64 = val; -} - -void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_INT64; - ctx->kv[idx].value.int64 = val; -} - -void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_FLOAT64; - ctx->kv[idx].value.float64 = val; -} - -void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_BOOL; - ctx->kv[idx].value.bool_ = val; -} - -void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_STRING; - ctx->kv[idx].value.str.n = strlen(val); - ctx->kv[idx].value.str.data = strdup(val); -} - -void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_ARRAY; - ctx->kv[idx].value.arr.type = type; - ctx->kv[idx].value.arr.n = n; - ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type)); - memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type)); -} - -void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) { - const int idx = gguf_get_or_add_key(ctx, key); - - ctx->kv[idx].type = GGUF_TYPE_ARRAY; - ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING; - ctx->kv[idx].value.arr.n = n; - ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str)); - for (int i = 0; i < n; i++) { - struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i]; - str->n = strlen(data[i]); - str->data = strdup(data[i]); - } -} - -// set or add KV pairs from another context -void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { - for (uint32_t i = 0; i < src->header.n_kv; i++) { - switch (src->kv[i].type) { - case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break; - case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break; - case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break; - case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break; - case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break; - case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break; - case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break; - case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break; - case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break; - case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break; - case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break; - case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break; - case GGUF_TYPE_ARRAY: - { - if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) { - const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *)); - for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) { - data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data; - } - gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n); - GGML_FREE((void *)data); - } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) { - GGML_ABORT("nested arrays not supported"); - } else { - gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n); - } - } break; - default: GGML_ABORT("invalid type"); - } - } -} - -void gguf_add_tensor( - struct gguf_context * ctx, - const struct ggml_tensor * tensor) { - GGML_ASSERT(tensor); - if (gguf_find_tensor(ctx, tensor->name) != -1) { - GGML_ABORT("duplicated tensor name"); - } - - const int idx = ctx->header.n_tensors; - ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); - - ctx->infos[idx].name.n = strlen(tensor->name); - ctx->infos[idx].name.data = strdup(tensor->name); - - for (int i = 0; i < GGML_MAX_DIMS; ++i) { - ctx->infos[idx].ne[i] = 1; - } - - ctx->infos[idx].n_dims = ggml_n_dims(tensor); - for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) { - ctx->infos[idx].ne[i] = tensor->ne[i]; - } - - ctx->infos[idx].type = tensor->type; - ctx->infos[idx].offset = 0; - ctx->infos[idx].data = tensor->data; - ctx->infos[idx].size = ggml_nbytes(tensor); - - if (ctx->header.n_tensors > 0) { - ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment); - } - - ctx->header.n_tensors++; -} - -void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { - const int idx = gguf_find_tensor(ctx, name); - if (idx < 0) { - GGML_ABORT("tensor not found"); - } - - ctx->infos[idx].type = type; -} - -void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) { - const int idx = gguf_find_tensor(ctx, name); - if (idx < 0) { - GGML_ABORT("tensor not found"); - } - - ctx->infos[idx].data = data; - ctx->infos[idx].size = size; - - // update offsets - for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) { - ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment); - } -} - -//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) { -// fwrite(&val->n, sizeof(val->n), 1, file); -// fwrite(val->data, sizeof(char), val->n, file); -//} -// -//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) { -// fwrite(val, sizeof(char), size, file); -//} - -struct gguf_buf gguf_buf_init(size_t size) { - struct gguf_buf buf = { - /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size), - /*buf.size =*/ size, - /*buf.offset =*/ 0, - }; - - return buf; -} - -void gguf_buf_free(struct gguf_buf buf) { - if (buf.data) { - GGML_FREE(buf.data); - } -} - -static void gguf_buf_grow(struct gguf_buf * buf, size_t size) { - if (buf->offset + size > buf->size) { - buf->size = 1.5*(buf->offset + size); - if (buf->data) { - buf->data = realloc(buf->data, buf->size); - } - } -} - -static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) { - gguf_buf_grow(buf, sizeof(val->n) + val->n); - - if (buf->data) { - memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n)); - } - buf->offset += sizeof(val->n); - - if (buf->data) { - memcpy((char *) buf->data + buf->offset, val->data, val->n); - } - buf->offset += val->n; -} - -static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) { - gguf_buf_grow(buf, el_size); - - if (buf->data) { - memcpy((char *) buf->data + buf->offset, val, el_size); - } - buf->offset += el_size; -} - -void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { - // write header - gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic)); - gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version)); - gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors)); - gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv)); - - // write key-value pairs - for (uint32_t i = 0; i < ctx->header.n_kv; ++i) { - struct gguf_kv * kv = &ctx->kv[i]; - - gguf_bwrite_str(buf, &kv->key); - gguf_bwrite_el (buf, &kv->type, sizeof(kv->type)); - - switch (kv->type) { - case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break; - case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break; - case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break; - case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break; - case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break; - case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break; - case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break; - case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break; - case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break; - case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break; - case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break; - case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break; - case GGUF_TYPE_ARRAY: - { - gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type)); - gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) ); - - switch (kv->value.arr.type) { - case GGUF_TYPE_UINT8: - case GGUF_TYPE_INT8: - case GGUF_TYPE_UINT16: - case GGUF_TYPE_INT16: - case GGUF_TYPE_UINT32: - case GGUF_TYPE_INT32: - case GGUF_TYPE_FLOAT32: - case GGUF_TYPE_UINT64: - case GGUF_TYPE_INT64: - case GGUF_TYPE_FLOAT64: - case GGUF_TYPE_BOOL: - { - gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type)); - } break; - case GGUF_TYPE_STRING: - { - for (uint32_t j = 0; j < kv->value.arr.n; ++j) { - gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]); - } - } break; - case GGUF_TYPE_ARRAY: - default: GGML_ABORT("invalid type"); - } - } break; - default: GGML_ABORT("invalid type"); - } - } - - // write tensor infos - for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) { - struct gguf_tensor_info * info = &ctx->infos[i]; - - gguf_bwrite_str(buf, &info->name); - gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims)); - for (uint32_t j = 0; j < info->n_dims; ++j) { - gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j])); - } - gguf_bwrite_el(buf, &info->type, sizeof(info->type)); - gguf_bwrite_el(buf, &info->offset, sizeof(info->offset)); - } - - // we require the data section to be aligned, so take into account any padding - { - const size_t offset = buf->offset; - const size_t offset_pad = GGML_PAD(offset, ctx->alignment); - - if (offset_pad != offset) { - uint8_t pad = 0; - for (size_t i = 0; i < offset_pad - offset; ++i) { - gguf_bwrite_el(buf, &pad, sizeof(pad)); - } - } - } - - if (only_meta) { - return; - } - - size_t offset = 0; - - // write tensor data - for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) { - struct gguf_tensor_info * info = &ctx->infos[i]; - - const size_t size = info->size; - const size_t size_pad = GGML_PAD(size, ctx->alignment); - - gguf_bwrite_el(buf, info->data, size); - - if (size_pad != size) { - uint8_t pad = 0; - for (size_t j = 0; j < size_pad - size; ++j) { - gguf_bwrite_el(buf, &pad, sizeof(pad)); - } - } - - GGML_ASSERT(offset == info->offset); - - offset += size_pad; - } -} - -void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { - FILE * file = ggml_fopen(fname, "wb"); - if (!file) { - GGML_ABORT("failed to open file for writing"); - } - - struct gguf_buf buf = gguf_buf_init(16*1024); - - gguf_write_to_buf(ctx, &buf, only_meta); - - fwrite(buf.data, 1, buf.offset, file); - - gguf_buf_free(buf); - - fclose(file); -} - -size_t gguf_get_meta_size(const struct gguf_context * ctx) { - // no allocs - only compute size - struct gguf_buf buf = gguf_buf_init(0); - - gguf_write_to_buf(ctx, &buf, true); - - return buf.offset; -} - -void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { - struct gguf_buf buf = gguf_buf_init(16*1024); - - gguf_write_to_buf(ctx, &buf, true); - - memcpy(data, buf.data, buf.offset); - - gguf_buf_free(buf); -} - void ggml_log_set(ggml_log_callback log_callback, void * user_data) { g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default; g_logger_state.log_callback_user_data = user_data; From 6a87a4358517024bb8c476d8594a3b3bb3544746 Mon Sep 17 00:00:00 2001 From: ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com> Date: Wed, 8 Jan 2025 16:17:29 +0800 Subject: [PATCH 10/23] fix: Vulkan shader gen binary path when Cross-compiling (llama/11096) * fix: Vulkan shader gen binary path when cross compiling --- src/ggml-vulkan/CMakeLists.txt | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/src/ggml-vulkan/CMakeLists.txt b/src/ggml-vulkan/CMakeLists.txt index 9501de736..61de21d6a 100644 --- a/src/ggml-vulkan/CMakeLists.txt +++ b/src/ggml-vulkan/CMakeLists.txt @@ -69,11 +69,15 @@ if (Vulkan_FOUND) file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp") + if (NOT CMAKE_CROSSCOMPILING) + set(_ggml_vk_genshaders_cmd "$/${_ggml_vk_genshaders_cmd}") + endif () + add_custom_command( OUTPUT ${_ggml_vk_header} ${_ggml_vk_source} - COMMAND "$/${_ggml_vk_genshaders_cmd}" + COMMAND ${_ggml_vk_genshaders_cmd} --glslc ${Vulkan_GLSLC_EXECUTABLE} --input-dir ${_ggml_vk_input_dir} --output-dir ${_ggml_vk_output_dir} From 454cfa3c71480a3c77328ccadb75834cc98bfb08 Mon Sep 17 00:00:00 2001 From: Mathieu Baudier Date: Wed, 8 Jan 2025 09:18:13 +0100 Subject: [PATCH 11/23] Disable GL_KHR_cooperative_matrix Vulkan extension if not available. (llama/11117) * Disable GL_KHR_cooperative_matrix Vulkan extension if not available. * Perform Vulkan extensions checks in a more sensible order * Remove unnecessary #ifdef directive --- src/ggml-vulkan/CMakeLists.txt | 14 ++++++++++++++ src/ggml-vulkan/ggml-vulkan.cpp | 18 +++++++++++++++--- .../vulkan-shaders/test_coopmat_support.comp | 7 +++++++ .../vulkan-shaders/vulkan-shaders-gen.cpp | 2 ++ 4 files changed, 38 insertions(+), 3 deletions(-) create mode 100644 src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp diff --git a/src/ggml-vulkan/CMakeLists.txt b/src/ggml-vulkan/CMakeLists.txt index 61de21d6a..c0ddaac82 100644 --- a/src/ggml-vulkan/CMakeLists.txt +++ b/src/ggml-vulkan/CMakeLists.txt @@ -8,6 +8,20 @@ if (Vulkan_FOUND) ../../include/ggml-vulkan.h ) + # Compile a test shader to determine whether GL_KHR_cooperative_matrix is supported. + # If it's not, there will be an error to stderr. + # If it's supported, set a define to indicate that we should compile those shaders + execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_coopmat_support.comp" + OUTPUT_VARIABLE glslc_output + ERROR_VARIABLE glslc_error) + + if (${glslc_error} MATCHES ".*extension not supported: GL_KHR_cooperative_matrix.*") + message(STATUS "GL_KHR_cooperative_matrix not supported by glslc") + else() + message(STATUS "GL_KHR_cooperative_matrix supported by glslc") + add_compile_definitions(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) + endif() + # Compile a test shader to determine whether GL_NV_cooperative_matrix2 is supported. # If it's not, there will be an error to stderr. # If it's supported, set a define to indicate that we should compile those shaders diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index d75cd6d61..077452424 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -1645,6 +1645,7 @@ static void ggml_vk_load_shaders(vk_device& device) { #undef CREATE_MM2 } else #endif // defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) +#if defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) if (device->coopmat_support) { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ @@ -1739,7 +1740,9 @@ static void ggml_vk_load_shaders(vk_device& device) { } #undef CREATE_MM2 #undef CREATE_MM - } else if (device->fp16) { + } else +#endif // defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) + if (device->fp16) { // Create 6 variants, {s,m,l}x{unaligned,aligned} #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \ if (device->mul_mat ## ID ## _l) \ @@ -2242,6 +2245,7 @@ static vk_device ggml_vk_get_device(size_t idx) { last_struct = (VkBaseOutStructure *)&subgroup_size_control_features; } +#if defined(VK_KHR_cooperative_matrix) VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features; coopmat_features.pNext = nullptr; coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR; @@ -2251,6 +2255,7 @@ static vk_device ggml_vk_get_device(size_t idx) { last_struct->pNext = (VkBaseOutStructure *)&coopmat_features; last_struct = (VkBaseOutStructure *)&coopmat_features; } +#endif #if defined(VK_NV_cooperative_matrix2) VkPhysicalDeviceCooperativeMatrix2FeaturesNV coopmat2_features {}; @@ -2283,7 +2288,9 @@ static vk_device ggml_vk_get_device(size_t idx) { device_extensions.push_back("VK_EXT_subgroup_size_control"); } +#if defined(VK_KHR_cooperative_matrix) device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix; +#endif if (coopmat2_support) { #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) @@ -2376,6 +2383,7 @@ static vk_device ggml_vk_get_device(size_t idx) { device_extensions.push_back("VK_KHR_shader_float16_int8"); } +#if defined(VK_KHR_cooperative_matrix) if (device->coopmat_support) { // Query supported shapes std::vector cm_props; @@ -2442,7 +2450,7 @@ static vk_device ggml_vk_get_device(size_t idx) { if (device->coopmat_support) { device_extensions.push_back("VK_KHR_cooperative_matrix"); } - +#endif device->name = GGML_VK_NAME + std::to_string(idx); device_create_info = { @@ -2553,9 +2561,11 @@ static void ggml_vk_print_gpu_info(size_t idx) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; - } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 && +#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) + } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT")) { coopmat_support = true; +#endif #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 && !getenv("GGML_VK_DISABLE_COOPMAT2")) { @@ -2593,6 +2603,7 @@ static void ggml_vk_print_gpu_info(size_t idx) { // Pointer to the last chain element VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_features; +#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features; coopmat_features.pNext = nullptr; coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR; @@ -2608,6 +2619,7 @@ static void ggml_vk_print_gpu_info(size_t idx) { fp16 = fp16 && vk12_features.shaderFloat16; coopmat_support = coopmat_support && coopmat_features.cooperativeMatrix; +#endif std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none"; diff --git a/src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp b/src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp new file mode 100644 index 000000000..8c5dd1bd1 --- /dev/null +++ b/src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp @@ -0,0 +1,7 @@ +#version 460 + +#extension GL_KHR_cooperative_matrix : require + +void main() +{ +} diff --git a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 8111c0638..7b5044798 100644 --- a/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -342,9 +342,11 @@ void process_shaders() { matmul_shaders(true, matmul_id, false, false, false); matmul_shaders(true, matmul_id, false, false, true); +#if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT) // Coopmat, fp32acc and fp16acc matmul_shaders(true, matmul_id, true, false, false); matmul_shaders(true, matmul_id, true, false, true); +#endif #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) // Coopmat2, fp32acc and fp16acc From 7de0ddc13a69236b2f3a687d7a5e90e0c4d8283e Mon Sep 17 00:00:00 2001 From: amritahs-ibm Date: Wed, 8 Jan 2025 16:24:19 +0530 Subject: [PATCH 12/23] llamafile : ppc64le MMA INT8 implementation (llama/10912) This change upstreams llamafile's cpu matrix multiplication kernels for ppc64le using MMA builtins for quantised int8 datatype. This change results in 10% - 70% improvement in total speed(ie all tokens/total time), across various batch sizes. The patch is tested with Meta-Lllama-3-8B, Mistral-7B, Llama-2-7B-chat-hf models on a IBM POWER10 machine. Signed-off-by: Amrita H S --- src/ggml-cpu/llamafile/sgemm.cpp | 842 ++++++++++++++++++++++++++++--- 1 file changed, 773 insertions(+), 69 deletions(-) diff --git a/src/ggml-cpu/llamafile/sgemm.cpp b/src/ggml-cpu/llamafile/sgemm.cpp index 8fce576c3..c22a66287 100644 --- a/src/ggml-cpu/llamafile/sgemm.cpp +++ b/src/ggml-cpu/llamafile/sgemm.cpp @@ -54,6 +54,7 @@ #include "ggml-quants.h" #include +#include #ifdef _MSC_VER #define NOINLINE __declspec(noinline) @@ -1051,6 +1052,704 @@ class tinyBLAS_Q0_AVX { } \ } \ +template +class tinyBLAS_Q0_PPC { + public: + tinyBLAS_Q0_PPC(int64_t k, + const TA *A, int64_t lda, + const TB *B, int64_t ldb, + TC *C, int64_t ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int64_t m, int64_t n) { + mnpack(0, m, 0, n); + } + + private: + + template + inline void save_res(int ii, int jj, int idx, vector float* fin_res) { + for (int I = 0; I < RM; I++) { + for (int J = 0; J < RN; J++) { + *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J); + } + } + } + + template + inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array& comparray, vector float* vs, vector float* fin_res) { + vector signed int vec_C[4]; + vector float CA[4] = {0}; + vector float res[4] = {0}; + __builtin_mma_disassemble_acc(vec_C, ACC); + for (int i = 0; i < 4; i++) { + CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0)); + res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]); + fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]); + } + } + + template + void packNormal(const TA* a, int64_t lda, int rows, int cols, VA* vec, bool flip) { + int64_t i, j; + TA *aoffset = NULL; + VA *vecOffset = NULL; + TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL; + TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL; + __vector_pair C1, C2, C3, C4, C5, C6, C7, C8; + VB c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2]={0}; + VB c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2]={0}; + VB t1, t2, t3, t4, t5, t6, t7, t8; + vector unsigned char xor_vector; + uint8_t flip_vec = 0x80; + xor_vector = vec_splats(flip_vec); + vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}; + vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}; + vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}; + vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}; + + aoffset = const_cast(a); + vecOffset = vec; + j = (rows >> 3); + if (j > 0) { + do { + aoffset1 = aoffset; + aoffset2 = aoffset1 + lda; + aoffset3 = aoffset2 + lda; + aoffset4 = aoffset3 + lda; + aoffset5 = aoffset4 + lda; + aoffset6 = aoffset5 + lda; + aoffset7 = aoffset6 + lda; + aoffset8 = aoffset7 + lda; + aoffset += 8 * lda; + + i = (cols >> 3); + if (i > 0) { + do { + C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs); + C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs); + C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs); + C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4->qs); + C5 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset5->qs); + C6 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset6->qs); + C7 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset7->qs); + C8 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset8->qs); + + __builtin_vsx_disassemble_pair(c1, &C1); + __builtin_vsx_disassemble_pair(c2, &C2); + __builtin_vsx_disassemble_pair(c3, &C3); + __builtin_vsx_disassemble_pair(c4, &C4); + __builtin_vsx_disassemble_pair(c5, &C5); + __builtin_vsx_disassemble_pair(c6, &C6); + __builtin_vsx_disassemble_pair(c7, &C7); + __builtin_vsx_disassemble_pair(c8, &C8); + + t1 = vec_perm(c1[0], c2[0], swiz1); + t2 = vec_perm(c1[0], c2[0], swiz2); + t3 = vec_perm(c3[0], c4[0], swiz1); + t4 = vec_perm(c3[0], c4[0], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset); + vec_xst(t6, 0, vecOffset+16); + vec_xst(t7, 0, vecOffset+32); + vec_xst(t8, 0, vecOffset+48); + + t1 = vec_perm(c1[1], c2[1], swiz1); + t2 = vec_perm(c1[1], c2[1], swiz2); + t3 = vec_perm(c3[1], c4[1], swiz1); + t4 = vec_perm(c3[1], c4[1], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset+64); + vec_xst(t6, 0, vecOffset+80); + vec_xst(t7, 0, vecOffset+96); + vec_xst(t8, 0, vecOffset+112); + + t1 = vec_perm(c5[0], c6[0], swiz1); + t2 = vec_perm(c5[0], c6[0], swiz2); + t3 = vec_perm(c7[0], c8[0], swiz1); + t4 = vec_perm(c7[0], c8[0], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset+128); + vec_xst(t6, 0, vecOffset+144); + vec_xst(t7, 0, vecOffset+160); + vec_xst(t8, 0, vecOffset+176); + + t1 = vec_perm(c5[1], c6[1], swiz1); + t2 = vec_perm(c5[1], c6[1], swiz2); + t3 = vec_perm(c7[1], c8[1], swiz1); + t4 = vec_perm(c7[1], c8[1], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset+192); + vec_xst(t6, 0, vecOffset+208); + vec_xst(t7, 0, vecOffset+224); + vec_xst(t8, 0, vecOffset+240); + + aoffset1 += lda; + aoffset2 += lda; + aoffset3 += lda; + aoffset4 += lda; + aoffset5 += lda; + aoffset6 += lda; + aoffset7 += lda; + aoffset8 += lda; + vecOffset += 256; + i--; + } while(i > 0); + } + j--; + } while(j > 0); + } + + if (rows & 4) { + aoffset1 = aoffset; + aoffset2 = aoffset1 + lda; + aoffset3 = aoffset2 + lda; + aoffset4 = aoffset3 + lda; + aoffset += 4 * lda; + + i = (cols >> 3); + if (i > 0) { + do { + C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs); + C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs); + C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs); + C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4->qs); + + __builtin_vsx_disassemble_pair(c1, &C1); + __builtin_vsx_disassemble_pair(c2, &C2); + __builtin_vsx_disassemble_pair(c3, &C3); + __builtin_vsx_disassemble_pair(c4, &C4); + + t1 = vec_perm(c1[0], c2[0], swiz1); + t2 = vec_perm(c1[0], c2[0], swiz2); + t3 = vec_perm(c3[0], c4[0], swiz1); + t4 = vec_perm(c3[0], c4[0], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset); + vec_xst(t6, 0, vecOffset+16); + vec_xst(t7, 0, vecOffset+32); + vec_xst(t8, 0, vecOffset+48); + + t1 = vec_perm(c1[1], c2[1], swiz1); + t2 = vec_perm(c1[1], c2[1], swiz2); + t3 = vec_perm(c3[1], c4[1], swiz1); + t4 = vec_perm(c3[1], c4[1], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset+64); + vec_xst(t6, 0, vecOffset+80); + vec_xst(t7, 0, vecOffset+96); + vec_xst(t8, 0, vecOffset+112); + + aoffset1 += lda; + aoffset2 += lda; + aoffset3 += lda; + aoffset4 += lda; + vecOffset += 128; + i--; + } while(i > 0); + } + } + if (rows & 3) { + aoffset1 = aoffset; + aoffset2 = aoffset1 + lda; + aoffset3 = aoffset2 + lda; + i = (cols >> 3); + if (i > 0) { + do { + switch(rows) { + case 3: C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs); + __builtin_vsx_disassemble_pair(c3, &C3); + case 2: C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs); + __builtin_vsx_disassemble_pair(c2, &C2); + case 1: C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs); + __builtin_vsx_disassemble_pair(c1, &C1); + break; + } + t1 = vec_perm(c1[0], c2[0], swiz1); + t2 = vec_perm(c1[0], c2[0], swiz2); + t3 = vec_perm(c3[0], c4[0], swiz1); + t4 = vec_perm(c3[0], c4[0], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset); + vec_xst(t6, 0, vecOffset+16); + vec_xst(t7, 0, vecOffset+32); + vec_xst(t8, 0, vecOffset+48); + + t1 = vec_perm(c1[1], c2[1], swiz1); + t2 = vec_perm(c1[1], c2[1], swiz2); + t3 = vec_perm(c3[1], c4[1], swiz1); + t4 = vec_perm(c3[1], c4[1], swiz2); + t5 = vec_perm(t1, t3, swiz3); + t6 = vec_perm(t1, t3, swiz4); + t7 = vec_perm(t2, t4, swiz3); + t8 = vec_perm(t2, t4, swiz4); + if (flip == true) { + t5 = vec_xor(t5, xor_vector); + t6 = vec_xor(t6, xor_vector); + t7 = vec_xor(t7, xor_vector); + t8 = vec_xor(t8, xor_vector); + } + vec_xst(t5, 0, vecOffset+64); + vec_xst(t6, 0, vecOffset+80); + vec_xst(t7, 0, vecOffset+96); + vec_xst(t8, 0, vecOffset+112); + + aoffset1 += lda; + aoffset2 += lda; + aoffset3 += lda; + vecOffset += 128; + i--; + } while(i > 0); + } + } + } + + void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + int m_rem = MIN(m - m0, 8); + int n_rem = MIN(n - n0, 8); + // TO-DO: KERNEL_16x8 and KERNEL_8x16 are having some performance + // issues. After resolving them, below code will be enabled. + /*if (m_rem >= 16 && n_rem >= 8) { + mc = 16; + nc = 8; + gemm<16,8>(m0, m, n0, n); + } else if(m_rem >= 8 && n_rem >= 16) { + mc = 8; + nc = 16; + gemm<8,16>(m0, m, n0, n); + }*/ + if (m_rem >= 8 && n_rem >= 8) { + mc = 8; + nc = 8; + gemm<8,8>(m0, m, n0, n); + } else if (m_rem >= 4 && n_rem >= 8) { + mc = 4; + nc = 8; + gemm<4,8>(m0, m, n0, n); + } else if (m_rem >= 8 && n_rem >= 4) { + mc = 8; + nc = 4; + gemm<8,4>(m0, m, n0, n); + } else if (m_rem >= 4 && n_rem >= 4) { + mc = 4; + nc = 4; + gemm_small<4, 4>(m0, m, n0, n); + } else if ((m_rem < 4) && (n_rem > 4)) { + nc = 4; + switch(m_rem) { + case 1: + mc = 1; + gemm_small<1, 4>(m0, m, n0, n); + break; + case 2: + mc = 2; + gemm_small<2, 4>(m0, m, n0, n); + break; + case 3: + mc = 3; + gemm_small<3, 4>(m0, m, n0, n); + break; + default: + return; + } + } else if ((m_rem > 4) && (n_rem < 4)) { + mc = 4; + switch(n_rem) { + case 1: + nc = 1; + gemm_small<4, 1>(m0, m, n0, n); + break; + case 2: + nc = 2; + gemm_small<4, 2>(m0, m, n0, n); + break; + case 3: + nc = 3; + gemm_small<4, 3>(m0, m, n0, n); + break; + default: + return; + } + } else { + switch((m_rem << 4) | n_rem) { + case 0x43: + mc = 4; + nc = 3; + gemm_small<4, 3>(m0, m, n0, n); + break; + case 0x42: + mc = 4; + nc = 2; + gemm_small<4, 2>(m0, m, n0, n); + break; + case 0x41: + mc = 4; + nc = 1; + gemm_small<4, 1>(m0, m, n0, n); + break; + case 0x34: + mc = 3; + nc = 4; + gemm_small<3, 4>(m0, m, n0, n); + break; + case 0x33: + mc = 3; + nc = 3; + gemm_small<3, 3>(m0, m, n0, n); + break; + case 0x32: + mc = 3; + nc = 2; + gemm_small<3, 2>(m0, m, n0, n); + break; + case 0x31: + mc = 3; + nc = 1; + gemm_small<3, 1>(m0, m, n0, n); + break; + case 0x24: + mc = 2; + nc = 4; + gemm_small<2, 4>(m0, m, n0, n); + break; + case 0x23: + mc = 2; + nc = 3; + gemm_small<2, 3>(m0, m, n0, n); + break; + case 0x22: + mc = 2; + nc = 2; + gemm_small<2, 2>(m0, m, n0, n); + break; + case 0x21: + mc = 2; + nc = 1; + gemm_small<2, 1>(m0, m, n0, n); + break; + case 0x14: + mc = 1; + nc = 4; + gemm_small<1, 4>(m0, m, n0, n); + break; + case 0x13: + mc = 1; + nc = 3; + gemm_small<1, 3>(m0, m, n0, n); + break; + case 0x12: + mc = 1; + nc = 2; + gemm_small<1, 2>(m0, m, n0, n); + break; + case 0x11: + mc = 1; + nc = 1; + gemm_small<1, 1>(m0, m, n0, n); + break; + default: + return; + } + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, m, np, n); + } + + void KERNEL_4x8(int64_t ii, int64_t jj) { + vec_t vec_A[8], vec_B[16] = {0}; + acc_t acc_0, acc_1; + std::array comparray; + vector float fin_res[8] = {0}; + vector float vs[8] = {0}; + for (int l = 0; l < k; l++) { + __builtin_mma_xxsetaccz(&acc_0); + __builtin_mma_xxsetaccz(&acc_1); + packNormal((A+(ii*lda)+l), lda, 4, 8, (int8_t*)vec_A, false); + packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true); + for(int x = 0; x < 8; x++) { + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); + __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x], vec_B[x+8]); + } + for (int I = 0; I<4; I++) { + for (int J = 0; J<4; J++) { + *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); + *((float*)&vs[I+4]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d)); + } + } + auto aoffset = A+(ii*lda)+l; + for (int i = 0; i < 4; i++) { + comparray[i] = 0; + int ca = 0; + const int8_t *at = aoffset->qs; + for (int j = 0; j < 32; j++) + ca += (int)*at++; + comparray[i] = ca; + aoffset += lda; + } + compute<4>(&acc_0, 0, 0, comparray, vs, fin_res); + compute<4>(&acc_1, 0, 4, comparray, vs, fin_res); + } + save_res<4, 4>(ii, jj, 0, fin_res); + save_res<4, 4>(ii, jj+4, 4, fin_res); + } + + void KERNEL_8x4(int64_t ii, int64_t jj) { + vec_t vec_A[16], vec_B[8] = {0}; + acc_t acc_0, acc_1; + std::array comparray; + vector float fin_res[8] = {0}; + vector float vs[8] = {0}; + for (int l = 0; l < k; l++) { + __builtin_mma_xxsetaccz(&acc_0); + __builtin_mma_xxsetaccz(&acc_1); + packNormal((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false); + packNormal((B+(jj*ldb)+l), ldb, 4, 8, (uint8_t*)vec_B, true); + for(int x = 0; x < 8; x++) { + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); + __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]); + } + for (int I = 0; I<8; I++) { + for (int J = 0; J<4; J++) { + *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); + } + } + auto aoffset = A+(ii*lda)+l; + for (int i = 0; i < 8; i++) { + comparray[i] = 0; + int ca = 0; + const int8_t *at = aoffset->qs; + for (int j = 0; j < 32; j++) + ca += (int)*at++; + comparray[i] = ca; + aoffset += lda; + } + compute<8>(&acc_0, 0, 0, comparray, vs, fin_res); + compute<8>(&acc_1, 4, 4, comparray, vs, fin_res); + } + save_res<4, 4>(ii, jj, 0, fin_res); + save_res<4, 4>(ii+4, jj, 4, fin_res); + } + + void KERNEL_8x8(int64_t ii, int64_t jj) { + vec_t vec_A[16], vec_B[16] = {0}; + acc_t acc_0, acc_1, acc_2, acc_3; + std::array comparray; + vector float fin_res[16] = {0}; + vector float vs[16] = {0}; + for (int l = 0; l < k; l++) { + __builtin_mma_xxsetaccz(&acc_0); + __builtin_mma_xxsetaccz(&acc_1); + __builtin_mma_xxsetaccz(&acc_2); + __builtin_mma_xxsetaccz(&acc_3); + packNormal((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false); + packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true); + for(int x = 0; x < 8; x++) { + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); + __builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]); + __builtin_mma_xvi8ger4pp(&acc_2, vec_A[x], vec_B[x+8]); + __builtin_mma_xvi8ger4pp(&acc_3, vec_A[x+8], vec_B[x+8]); + } + for (int I = 0; I<8; I++) { + for (int J = 0; J<4; J++) { + *((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d)); + *((float*)&vs[I+8]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d)); + } + } + auto aoffset = A+(ii*lda)+l; + for (int i = 0; i < 8; i++) { + comparray[i] = 0; + int ca = 0; + const int8_t *at = aoffset->qs; + for (int j = 0; j < 32; j++) + ca += (int)*at++; + comparray[i] = ca; + aoffset += lda; + } + compute<8>(&acc_0, 0, 0, comparray, vs, fin_res); + compute<8>(&acc_1, 4, 4, comparray, vs, fin_res); + compute<8>(&acc_2, 0, 8, comparray, vs, fin_res); + compute<8>(&acc_3, 4, 12, comparray, vs, fin_res); + } + save_res<4, 4>(ii, jj, 0, fin_res); + save_res<4, 4>(ii+4, jj, 4, fin_res); + save_res<4, 4>(ii, jj+4, 8, fin_res); + save_res<4, 4>(ii+4, jj+4, 12, fin_res); + } + + template + void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + vec_t vec_A[8], vec_B[8] = {0}; + vector signed int vec_C[4]; + acc_t acc_0; + + if (end > tiles) + end = tiles; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; + std::array comparray; + vector float res[4] = {0}; + vector float fin_res[4] = {0}; + vector float vs[4] = {0}; + vector float CA[4] = {0}; + __builtin_prefetch((A+(ii*lda)+0)->qs, 0, 1); // prefetch first value + __builtin_prefetch((B+(jj*ldb)+0)->qs, 0, 1); // prefetch first value + for (int l = 0; l < k; l++) { + __builtin_prefetch((A+(ii*lda)+(l+1))->qs, 0, 1); // prefetch one loop ahead + __builtin_prefetch((B+(jj*ldb)+(l+1))->qs, 0, 1); // prefetch one loop ahead + __builtin_mma_xxsetaccz(&acc_0); + packNormal((A+(ii*lda)+l), lda, RM, 8, (int8_t*)vec_A, false); + packNormal((B+(jj*ldb)+l), ldb, RN, 8, (uint8_t*)vec_B, true); + for(int x = 0; x < 8; x+=4) { + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]); + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+1], vec_B[x+1]); + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+2], vec_B[x+2]); + __builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+3], vec_B[x+3]); + } + for (int I = 0; Id) * unhalf((B+((jj+J)*ldb)+l)->d)); + } + } + __builtin_mma_disassemble_acc(vec_C, &acc_0); + auto aoffset = A+(ii*lda)+l; + for (int i = 0; i < RM; i++) { + comparray[i] = 0; + int ca = 0; + const int8_t *at = aoffset->qs; + for (int j = 0; j < 32; j++) + ca += (int)*at++; + comparray[i] = ca; + aoffset += lda; + } + + for (int i = 0; i < RM; i++) { + CA[i] = vec_splats((float)(((double)comparray[i]) * -128.0)); + res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]); + fin_res[i] = vec_madd(res[i], vs[i], fin_res[i]); + } + } + save_res(ii, jj, 0, fin_res); + } + } + + template + inline void kernel(int64_t ii, int64_t jj) { + if constexpr(RM == 4 && RN == 8) { + KERNEL_4x8(ii,jj); + } else if constexpr(RM == 8 && RN == 4) { + KERNEL_8x4(ii,jj); + } else if constexpr(RM == 8 && RN == 8) { + KERNEL_8x8(ii,jj); + } else { + static_assert(false, "RN/RM values not supported"); + } + } + + template + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + if (end > tiles) + end = tiles; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; + kernel(ii, jj); + } + } + + const TA *const A; + const TB *const B; + TC *C; + TA *At; + TB *Bt; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; + const int ith; + const int nth; +}; + template class tinyBLAS_PPC { public: @@ -1070,13 +1769,17 @@ class tinyBLAS_PPC { void (tinyBLAS_PPC::*kernel)(int64_t, int64_t); - void READ_BLOCK(const float* a, int64_t lda, int rows, int cols, float* vec) { + template + void packTranspose(const TA* a, int64_t lda, int rows, int cols, TA* vec) { int64_t i, j; - float *aoffset = NULL, *boffset = NULL; - float *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL; - float *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL; - - aoffset = const_cast(a); + TA *aoffset = NULL, *boffset = NULL; + TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL; + TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL; + __vector_pair C1, C2, C3, C4, C5, C6, C7, C8; + VA c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0}; + VA c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0}; + VA t1, t2, t3, t4, t5, t6, t7, t8; + aoffset = const_cast(a); boffset = vec; j = (rows >> 3); if (j > 0) { @@ -1092,9 +1795,6 @@ class tinyBLAS_PPC { aoffset += 8 * lda; i = (cols >> 3); if (i > 0) { - __vector_pair C1, C2, C3, C4, C5, C6, C7, C8; - vector float c1[2], c2[2], c3[2], c4[2], c5[2], c6[2], c7[2], c8[2]; - vector float t1, t2, t3, t4, t5, t6, t7, t8; do { C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1); C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2); @@ -1174,21 +1874,19 @@ class tinyBLAS_PPC { } while(i > 0); } if (cols & 4) { - vector float c1, c2, c3, c4, c5, c6, c7, c8; - vector float t1, t2, t3, t4, t5, t6, t7, t8; - c1 = vec_xl(0, aoffset1); - c2 = vec_xl(0, aoffset2); - c3 = vec_xl(0, aoffset3); - c4 = vec_xl(0, aoffset4); - c5 = vec_xl(0, aoffset5); - c6 = vec_xl(0, aoffset6); - c7 = vec_xl(0, aoffset7); - c8 = vec_xl(0, aoffset8); - - t1 = vec_mergeh(c1, c2); - t2 = vec_mergeh(c3, c4); - t3 = vec_mergeh(c5, c6); - t4 = vec_mergeh(c7, c8); + c1[0] = vec_xl(0, aoffset1); + c2[0] = vec_xl(0, aoffset2); + c3[0] = vec_xl(0, aoffset3); + c4[0] = vec_xl(0, aoffset4); + c5[0] = vec_xl(0, aoffset5); + c6[0] = vec_xl(0, aoffset6); + c7[0] = vec_xl(0, aoffset7); + c8[0] = vec_xl(0, aoffset8); + + t1 = vec_mergeh(c1[0], c2[0]); + t2 = vec_mergeh(c3[0], c4[0]); + t3 = vec_mergeh(c5[0], c6[0]); + t4 = vec_mergeh(c7[0], c8[0]); t5 = vec_xxpermdi(t1, t2, 0); t6 = vec_xxpermdi(t3, t4, 0); t7 = vec_xxpermdi(t1, t2, 3); @@ -1198,10 +1896,10 @@ class tinyBLAS_PPC { vec_xst(t7, 0, boffset+8); vec_xst(t8, 0, boffset+12); - t1 = vec_mergel(c1, c2); - t2 = vec_mergel(c3, c4); - t3 = vec_mergel(c5, c6); - t4 = vec_mergel(c7, c8); + t1 = vec_mergel(c1[0], c2[0]); + t2 = vec_mergel(c3[0], c4[0]); + t3 = vec_mergel(c5[0], c6[0]); + t4 = vec_mergel(c7[0], c8[0]); t5 = vec_xxpermdi(t1, t2, 0); t6 = vec_xxpermdi(t3, t4, 0); t7 = vec_xxpermdi(t1, t2, 3); @@ -1223,9 +1921,6 @@ class tinyBLAS_PPC { aoffset += 4 * lda; i = (cols >> 3); if (i > 0) { - __vector_pair C1, C2, C3, C4; - vector float c1[2], c2[2], c3[2], c4[2]; - vector float t1, t2, t3, t4, t5, t6, t7, t8; do { C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1); C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2); @@ -1272,22 +1967,20 @@ class tinyBLAS_PPC { } if (cols & 4) { - vector float c1, c2, c3, c4; - vector float t1, t2, t3, t4; - c1 = vec_xl(0, aoffset1); - c2 = vec_xl(0, aoffset2); - c3 = vec_xl(0, aoffset3); - c4 = vec_xl(0, aoffset4); - - t1 = vec_mergeh(c1, c2); - t2 = vec_mergeh(c3, c4); + c1[0] = vec_xl(0, aoffset1); + c2[0] = vec_xl(0, aoffset2); + c3[0] = vec_xl(0, aoffset3); + c4[0] = vec_xl(0, aoffset4); + + t1 = vec_mergeh(c1[0], c2[0]); + t2 = vec_mergeh(c3[0], c4[0]); t3 = vec_xxpermdi(t1, t2, 0); t4 = vec_xxpermdi(t1, t2, 3); vec_xst(t3, 0, boffset); vec_xst(t4, 0, boffset+4); - t1 = vec_mergel(c1, c2); - t2 = vec_mergel(c3, c4); + t1 = vec_mergel(c1[0], c2[0]); + t2 = vec_mergel(c3[0], c4[0]); t3 = vec_xxpermdi(t1, t2, 0); t4 = vec_xxpermdi(t1, t2, 3); vec_xst(t3, 0, boffset+8); @@ -1299,21 +1992,19 @@ class tinyBLAS_PPC { aoffset2 = aoffset1 + lda; aoffset3 = aoffset2 + lda; if (cols & 4) { - vector float c1, c2, c3, c4 = {0}; - vector float t1, t2, t3, t4; - c1 = vec_xl(0, aoffset1); - c2 = vec_xl(0, aoffset2); - c3 = vec_xl(0, aoffset3); - - t1 = vec_mergeh(c1, c2); - t2 = vec_mergeh(c3, c4); + c1[0] = vec_xl(0, aoffset1); + c2[0] = vec_xl(0, aoffset2); + c3[0] = vec_xl(0, aoffset3); + + t1 = vec_mergeh(c1[0], c2[0]); + t2 = vec_mergeh(c3[0], c4[0]); t3 = vec_xxpermdi(t1, t2, 0); t4 = vec_xxpermdi(t1, t2, 3); vec_xst(t3, 0, boffset); vec_xst(t4, 0, boffset+4); - t1 = vec_mergel(c1, c2); - t2 = vec_mergel(c3, c4); + t1 = vec_mergel(c1[0], c2[0]); + t2 = vec_mergel(c3[0], c4[0]); t3 = vec_xxpermdi(t1, t2, 0); t4 = vec_xxpermdi(t1, t2, 3); vec_xst(t3, 0, boffset+8); @@ -1321,14 +2012,13 @@ class tinyBLAS_PPC { } } } - void KERNEL_4x4(int64_t ii, int64_t jj) { vec_t vec_A[4], vec_B[4], vec_C[4]; acc_t acc_0; __builtin_mma_xxsetaccz(&acc_0); for (int l = 0; l < k; l+=4) { - READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A); - READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B); + packTranspose(A+(ii*lda)+l, lda, 4, 4, (TA*)vec_A); + packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B); __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]); @@ -1343,8 +2033,8 @@ class tinyBLAS_PPC { __builtin_mma_xxsetaccz(&acc_0); __builtin_mma_xxsetaccz(&acc_1); for (int64_t l = 0; l < k; l+=4) { - READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A); - READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B); + packTranspose(A+(ii*lda)+l, lda, 4, 4, (TA*)vec_A); + packTranspose(B+(jj*ldb)+l, ldb, 8, 4, (TA*)vec_B); __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]); __builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]); @@ -1364,8 +2054,8 @@ class tinyBLAS_PPC { __builtin_mma_xxsetaccz(&acc_0); __builtin_mma_xxsetaccz(&acc_1); for (int64_t l = 0; l < k; l+=4) { - READ_BLOCK(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A); - READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B); + packTranspose(A+(ii*lda)+l, lda, 8, 4, (TA*)vec_A); + packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B); __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]); @@ -1387,8 +2077,8 @@ class tinyBLAS_PPC { __builtin_mma_xxsetaccz(&acc_2); __builtin_mma_xxsetaccz(&acc_3); for (int l = 0; l < k; l+=8) { - READ_BLOCK(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A); - READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B); + packTranspose(A+(ii*lda)+l, lda, 8, 8, (TA*)vec_A); + packTranspose(B+(jj*ldb)+l, ldb, 8, 8, (TA*)vec_B); for(int x = 0; x < 16; x+=2) { __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]); __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]); @@ -1571,15 +2261,15 @@ class tinyBLAS_PPC { vec_t vec_A[4], vec_B[4]; for (int l=0; l= 4 && RM == 1) { - float* a = const_cast(A+(ii)*lda+l); - READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B); + TA* a = const_cast(A+(ii)*lda+l); + packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B); vec_A[0] = (vec_t)vec_xl(0,a); - vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1)); - vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2)); - vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3)); + vec_A[1] = (vec_t)vec_splats(*((TA*)&vec_A+1)); + vec_A[2] = (vec_t)vec_splats(*((TA*)&vec_A+2)); + vec_A[3] = (vec_t)vec_splats(*((TA*)&vec_A+3)); } else { - READ_BLOCK(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A); - READ_BLOCK(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B); + packTranspose(A+(ii*lda)+l, lda, RM, 4, (TA*)vec_A); + packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (TA*)vec_B); } __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]); __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]); @@ -1589,7 +2279,7 @@ class tinyBLAS_PPC { __builtin_mma_disassemble_acc(vec_C, &acc_0); for (int I = 0; I < RM; I++) { for (int J = 0; J < RN; J++) { - *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); + *((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J); } } } @@ -1812,6 +2502,20 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64 params->ith, params->nth}; tb.matmul(m, n); return true; + +#elif defined(__MMA__) + if (n < 8 && n != 4) + return false; + if (m < 8 && m != 4) + return false; + tinyBLAS_Q0_PPC tb{ + k, (const block_q8_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + params->ith, params->nth}; + tb.matmul(m, n); + return true; + #else return false; #endif From d50565e4246283b8295d18336b189fc14b62f629 Mon Sep 17 00:00:00 2001 From: hydai Date: Thu, 9 Jan 2025 04:03:28 +0800 Subject: [PATCH 13/23] fix: add missing msg in static_assert (llama/11143) Signed-off-by: hydai --- src/ggml-cuda/concat.cu | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/ggml-cuda/concat.cu b/src/ggml-cuda/concat.cu index 2f42b8a95..aafbaf803 100644 --- a/src/ggml-cuda/concat.cu +++ b/src/ggml-cuda/concat.cu @@ -124,7 +124,7 @@ static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE) uint64_t nb1, uint64_t nb2, uint64_t nb3){ - static_assert(dim >= 0 && dim <= 3); + static_assert(dim >= 0 && dim <= 3, "dim must be in [0, 3]"); const int64_t i3 = blockIdx.z; const int64_t i2 = blockIdx.y; From 620b18816fac12ed377e7cf81f699c518973edc4 Mon Sep 17 00:00:00 2001 From: Akarshan Biswas Date: Fri, 10 Jan 2025 05:43:03 +0530 Subject: [PATCH 14/23] SYCL: Refactor ggml_sycl_compute_forward (llama/11121) * SYCL: refactor ggml_sycl_compute_forward * SYCL: add back GGML_USED(dst) to ggml_sycl_cpy * SYCL: add function name to noop debug * SYCL: Some device info print refactoring and add details of XMX availability --- src/ggml-sycl/common.cpp | 4 + src/ggml-sycl/common.hpp | 1 + src/ggml-sycl/concat.cpp | 5 +- src/ggml-sycl/concat.hpp | 3 +- src/ggml-sycl/conv.cpp | 5 +- src/ggml-sycl/conv.hpp | 3 +- src/ggml-sycl/element_wise.cpp | 96 ++++++------ src/ggml-sycl/element_wise.hpp | 48 +++--- src/ggml-sycl/ggml-sycl.cpp | 260 ++++++++++++++++----------------- src/ggml-sycl/outprod.cpp | 6 +- src/ggml-sycl/outprod.hpp | 3 +- src/ggml-sycl/tsembd.cpp | 5 +- src/ggml-sycl/tsembd.hpp | 3 +- src/ggml-sycl/wkv6.cpp | 6 +- src/ggml-sycl/wkv6.hpp | 3 +- 15 files changed, 222 insertions(+), 229 deletions(-) diff --git a/src/ggml-sycl/common.cpp b/src/ggml-sycl/common.cpp index 88314a5cd..022e7b763 100644 --- a/src/ggml-sycl/common.cpp +++ b/src/ggml-sycl/common.cpp @@ -51,6 +51,10 @@ void ggml_sycl_host_free(void* ptr) try { std::exit(1); } +bool gpu_has_xmx(sycl::device &dev) { + return dev.has(sycl::aspect::ext_intel_matrix); +} + int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size) { const int64_t max_range = std::numeric_limits::max(); int64_t sycl_down_blk_size = block_size; diff --git a/src/ggml-sycl/common.hpp b/src/ggml-sycl/common.hpp index 62b4cea3a..e9500f3a1 100644 --- a/src/ggml-sycl/common.hpp +++ b/src/ggml-sycl/common.hpp @@ -662,6 +662,7 @@ inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_t } } +bool gpu_has_xmx(sycl::device &dev); void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, diff --git a/src/ggml-sycl/concat.cpp b/src/ggml-sycl/concat.cpp index a240968ad..d41cfd3a6 100644 --- a/src/ggml-sycl/concat.cpp +++ b/src/ggml-sycl/concat.cpp @@ -158,8 +158,9 @@ static void concat_f32_sycl_non_cont( }); } -void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst) { +void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; queue_ptr stream = ctx.stream(); const int32_t dim = ((int32_t *)dst->op_params)[0]; diff --git a/src/ggml-sycl/concat.hpp b/src/ggml-sycl/concat.hpp index 5a04feaab..e5cb7314c 100644 --- a/src/ggml-sycl/concat.hpp +++ b/src/ggml-sycl/concat.hpp @@ -15,7 +15,6 @@ #include "common.hpp" -void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst); +void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, ggml_tensor *dst); #endif // GGML_SYCL_CONCAT_HPP diff --git a/src/ggml-sycl/conv.cpp b/src/ggml-sycl/conv.cpp index bc4ab1ddb..ddba601e1 100644 --- a/src/ggml-sycl/conv.cpp +++ b/src/ggml-sycl/conv.cpp @@ -71,8 +71,9 @@ static void conv_transpose_1d_f32_f32_sycl( }); } -void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst) { +void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; const float * src0_d = (const float *)src0->data; const float * src1_d = (const float *)src1->data; diff --git a/src/ggml-sycl/conv.hpp b/src/ggml-sycl/conv.hpp index eb20730f9..f9e60dc75 100644 --- a/src/ggml-sycl/conv.hpp +++ b/src/ggml-sycl/conv.hpp @@ -15,7 +15,6 @@ #include "common.hpp" -void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst); +void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, ggml_tensor *dst); #endif // GGML_SYCL_CONV_HPP diff --git a/src/ggml-sycl/element_wise.cpp b/src/ggml-sycl/element_wise.cpp index d05a51f80..4bcd74376 100644 --- a/src/ggml-sycl/element_wise.cpp +++ b/src/ggml-sycl/element_wise.cpp @@ -882,149 +882,149 @@ inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor } -void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqrt); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqrt); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sin); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sin); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_cos); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_cos); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_acc); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_silu); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu_quick); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_tanh); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_relu); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sigmoid); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sigmoid); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardsigmoid); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardswish); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_exp); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_exp); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_log); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_log); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_neg); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_neg); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_step); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_step); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_leaky_relu); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqr); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_upscale); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pad); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_add); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sub); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sub); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_mul); GGML_SYCL_DEBUG("call %s done\n", __func__); } -void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_div); GGML_SYCL_DEBUG("call %s done\n", __func__); } diff --git a/src/ggml-sycl/element_wise.hpp b/src/ggml-sycl/element_wise.hpp index 8152edf58..464432645 100644 --- a/src/ggml-sycl/element_wise.hpp +++ b/src/ggml-sycl/element_wise.hpp @@ -25,52 +25,52 @@ static __dpct_inline__ float op_div(const float a, const float b) { } -void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst); -void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst); #endif // GGML_SYCL_ELEMENTWISE_HPP diff --git a/src/ggml-sycl/ggml-sycl.cpp b/src/ggml-sycl/ggml-sycl.cpp index 312ccfeb8..037c8093e 100644 --- a/src/ggml-sycl/ggml-sycl.cpp +++ b/src/ggml-sycl/ggml-sycl.cpp @@ -54,18 +54,12 @@ static ggml_sycl_device_info ggml_sycl_init() { GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES); int64_t total_vram = 0; -#if defined(GGML_SYCL_FORCE_MMQ) - GGML_LOG_INFO("%s: GGML_SYCL_FORCE_MMQ: yes\n", __func__); -#else - GGML_LOG_INFO("%s: GGML_SYCL_FORCE_MMQ: no\n", __func__); -#endif -#if defined(SYCL_USE_XMX) - GGML_LOG_INFO("%s: SYCL_USE_XMX: yes\n", __func__); -#else - GGML_LOG_INFO("%s: SYCL_USE_XMX: no\n", __func__); -#endif - GGML_LOG_INFO("%s: found %d %s devices:\n", __func__, info.device_count, GGML_SYCL_NAME); - +/* This is a bit misleading; reserved for later */ +// #if defined(SYCL_USE_XMX) +// GGML_LOG_INFO("%s: SYCL_USE_XMX: yes\n", __func__); +// #else +// GGML_LOG_INFO("%s: SYCL_USE_XMX: no\n", __func__); +// #endif for (int i = 0; i < info.device_count; ++i) { info.devices[i].vmm = 0; dpct::device_info prop; @@ -109,11 +103,11 @@ void print_device_detail(int id, sycl::device &device, std::string device_type) name = std::regex_replace(name, std::regex("\\(TM\\)"), ""); auto global_mem_size = prop.get_global_mem_size()/1000000; - - GGML_LOG_INFO("|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(), + std::string xmx = gpu_has_xmx(device) ? "yes" : "no"; + GGML_LOG_INFO("|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|%14s|\n", id, device_type.c_str(), name.c_str(), version.c_str(), prop.get_max_compute_units(), prop.get_max_work_group_size(), prop.get_max_sub_group_size(), - global_mem_size, device.get_info().c_str()); + global_mem_size, device.get_info().c_str(), xmx.c_str()); } void ggml_backend_sycl_print_sycl_devices() { @@ -124,16 +118,16 @@ void ggml_backend_sycl_print_sycl_devices() { GGML_LOG_INFO( "| | | | " - " |Max | |Max |Global | |\n"); + " |Max | |Max |Global | | XMX |\n"); GGML_LOG_INFO( "| | | | " - " |compute|Max work|sub |mem | |\n"); + " |compute|Max work|sub |mem | | or |\n"); GGML_LOG_INFO( "|ID| Device Type| " - "Name|Version|units |group |group|size | Driver version|\n"); + "Name|Version|units |group |group|size | Driver version| Tensor Cores |\n"); GGML_LOG_INFO( "|--|-------------------|---------------------------------------|------" - "-|-------|--------|-----|-------|---------------------|\n"); + "-|-------|--------|-----|-------|---------------------|--------------|\n"); for (int id = 0; id < device_count; ++id) { sycl::device device = dpct::dev_mgr::instance().get_device(id); @@ -164,14 +158,18 @@ static void ggml_check_sycl() try { static bool initialized = false; if (!initialized) { - GGML_LOG_INFO("[SYCL] call ggml_check_sycl\n"); + GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n"); g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0); - GGML_LOG_INFO("%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug); - + GGML_LOG_INFO("GGML_SYCL_DEBUG: %d\n", g_ggml_sycl_debug); +#if defined(GGML_SYCL_FORCE_MMQ) + GGML_LOG_INFO("GGML_SYCL_FORCE_MMQ: yes\n"); +#else + GGML_LOG_INFO("GGML_SYCL_FORCE_MMQ: no\n"); +#endif #if defined(GGML_SYCL_F16) - GGML_LOG_INFO("%s: GGML_SYCL_F16: yes\n", __func__); + GGML_LOG_INFO("GGML_SYCL_F16: yes\n"); #else - GGML_LOG_INFO("%s: GGML_SYCL_F16: no\n", __func__); + GGML_LOG_INFO("GGML_SYCL_F16: no\n"); #endif /* NOT REMOVE, keep it for next optimize for XMX. @@ -1189,7 +1187,6 @@ std::unique_ptr ggml_backend_sycl_context::new_pool_for_device(q /// kernels typedef void (*cpy_kernel_t)(const char * cx, char * cdst); -typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); typedef void (*ggml_sycl_op_mul_mat_t)( ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, @@ -3171,33 +3168,33 @@ catch (sycl::exception const &exc) { } -static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_repeat); GGML_SYCL_DEBUG("call %s done\n", __func__); } -static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_get_rows); GGML_SYCL_DEBUG("call %s done\n", __func__); } -static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_norm); GGML_SYCL_DEBUG("call %s done\n", __func__); } -static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rms_norm); GGML_SYCL_DEBUG("call %s done\n", __func__); } -static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_SYCL_DEBUG("call %s\n", __func__); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_group_norm); GGML_SYCL_DEBUG("call %s done\n", __func__); } @@ -3572,9 +3569,10 @@ __dpct_inline__ static void k_copy_dst_from_contiguous( } } -static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, +static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, ggml_tensor *dst) try { + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers"); const ggml_tensor *ids = dst->src[2]; @@ -3740,12 +3738,12 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale); +static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_scale); } -static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp); +static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_clamp); } static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, @@ -3787,7 +3785,6 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr ggml_type_name(src0->type), ggml_type_name(src1->type)); GGML_ABORT("fatal error"); } - GGML_UNUSED(dst); } catch (sycl::exception const &exc) { @@ -3796,59 +3793,52 @@ catch (sycl::exception const &exc) { std::exit(1); } -static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { // TODO: why do we pass dst as src1 here? - ggml_sycl_cpy(ctx, src0, dst, nullptr); - GGML_UNUSED(src1); + ggml_sycl_cpy(ctx, dst->src[0], dst, nullptr); } -static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf); +static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_diag_mask_inf); } -static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max); +static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_soft_max); } -static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope); +static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rope); } -static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d); +static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pool2d); } -static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col); +static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_im2col); } -static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(ggml_is_contiguous(src0)); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum); +static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst->src[0])); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum); } -static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(ggml_is_contiguous(src0)); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows); +static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst->src[0])); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum_rows); } -static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(ggml_is_contiguous(src0)); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort); +static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst->src[0])); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argsort); } -static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(ggml_is_contiguous(src0)); - ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argmax); +static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(dst->src[0])); + ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argmax); } -static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_UNUSED(src0); - GGML_UNUSED(src1); - GGML_UNUSED(dst); - GGML_UNUSED(ctx); -} void ggml_sycl_set_main_device(const int main_device) try { if (dpct::get_current_device_id() == static_cast (main_device)) { @@ -3871,191 +3861,189 @@ catch (sycl::exception const &exc) { std::exit(1); } -bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) { +bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * dst) { if (!g_sycl_loaded) return false; - ggml_sycl_func_t func; + if (dst->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(dst->src[0]->buffer)) { + ggml_sycl_set_peer_access(dst->src[1]->ne[1], ctx.device); + } - switch (tensor->op) { + switch (dst->op) { case GGML_OP_ARGMAX: - func = ggml_sycl_argmax; + ggml_sycl_argmax(ctx, dst); break; case GGML_OP_CONV_TRANSPOSE_1D: - func = ggml_sycl_op_conv_transpose_1d; + ggml_sycl_op_conv_transpose_1d(ctx, dst); break; case GGML_OP_REPEAT: - func = ggml_sycl_repeat; + ggml_sycl_repeat(ctx, dst); break; case GGML_OP_GET_ROWS: - func = ggml_sycl_get_rows; + ggml_sycl_get_rows(ctx, dst); break; case GGML_OP_DUP: - func = ggml_sycl_dup; + ggml_sycl_dup(ctx, dst); break; case GGML_OP_ADD: case GGML_OP_ADD1: // TODO: more efficient implementation - func = ggml_sycl_add; + ggml_sycl_add(ctx, dst); break; case GGML_OP_SUB: - func = ggml_sycl_sub; + ggml_sycl_sub(ctx, dst); break; case GGML_OP_ACC: - func = ggml_sycl_acc; + ggml_sycl_acc(ctx, dst); break; case GGML_OP_MUL: - func = ggml_sycl_mul; + ggml_sycl_mul(ctx, dst); break; case GGML_OP_LOG: - func = ggml_sycl_log; + ggml_sycl_log(ctx, dst); break; case GGML_OP_DIV: - func = ggml_sycl_div; + ggml_sycl_div(ctx, dst); break; case GGML_OP_UNARY: - switch (ggml_get_unary_op(tensor)) { + switch (ggml_get_unary_op(dst)) { case GGML_UNARY_OP_NEG: - func = ggml_sycl_neg; + ggml_sycl_neg(ctx, dst); break; case GGML_UNARY_OP_STEP: - func = ggml_sycl_step; + ggml_sycl_step(ctx, dst); break; case GGML_UNARY_OP_GELU: - func = ggml_sycl_gelu; + ggml_sycl_gelu(ctx, dst); break; case GGML_UNARY_OP_SILU: - func = ggml_sycl_silu; + ggml_sycl_silu(ctx, dst); break; case GGML_UNARY_OP_GELU_QUICK: - func = ggml_sycl_gelu_quick; + ggml_sycl_gelu_quick(ctx, dst); break; case GGML_UNARY_OP_TANH: - func = ggml_sycl_tanh; + ggml_sycl_tanh(ctx, dst); break; case GGML_UNARY_OP_RELU: - func = ggml_sycl_relu; + ggml_sycl_relu(ctx, dst); break; case GGML_UNARY_OP_SIGMOID: - func = ggml_sycl_sigmoid; + ggml_sycl_sigmoid(ctx, dst); break; case GGML_UNARY_OP_HARDSIGMOID: - func = ggml_sycl_hardsigmoid; + ggml_sycl_hardsigmoid(ctx, dst); break; case GGML_UNARY_OP_HARDSWISH: - func = ggml_sycl_hardswish; + ggml_sycl_hardswish(ctx, dst); break; case GGML_UNARY_OP_EXP: - func = ggml_sycl_exp; + ggml_sycl_exp(ctx, dst); break; default: return false; } break; case GGML_OP_NORM: - func = ggml_sycl_norm; + ggml_sycl_norm(ctx, dst); break; case GGML_OP_GROUP_NORM: - func = ggml_sycl_group_norm; + ggml_sycl_group_norm(ctx, dst); break; case GGML_OP_CONCAT: - func = ggml_sycl_op_concat; + ggml_sycl_op_concat(ctx, dst); break; case GGML_OP_UPSCALE: - func = ggml_sycl_upscale; + ggml_sycl_upscale(ctx, dst); break; case GGML_OP_PAD: - func = ggml_sycl_pad; + ggml_sycl_pad(ctx, dst); break; case GGML_OP_LEAKY_RELU: - func = ggml_sycl_leaky_relu; + ggml_sycl_leaky_relu(ctx, dst); break; case GGML_OP_RMS_NORM: - func = ggml_sycl_rms_norm; + ggml_sycl_rms_norm(ctx, dst); break; case GGML_OP_MUL_MAT: - if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { + if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) { return false; } - func = ggml_sycl_mul_mat; + /* ggml_sycl_mul_mat_id is dependent on ggml_sycl_mul_mat */ + ggml_sycl_mul_mat(ctx, dst->src[0], dst->src[1], dst); break; case GGML_OP_MUL_MAT_ID: - if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { + if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) { return false; } - func = ggml_sycl_mul_mat_id; + ggml_sycl_mul_mat_id(ctx, dst); break; case GGML_OP_OUT_PROD: - func = ggml_sycl_op_out_prod; + ggml_sycl_op_out_prod(ctx, dst); break; case GGML_OP_SCALE: - func = ggml_sycl_scale; + ggml_sycl_scale(ctx, dst); break; case GGML_OP_SQR: - func = ggml_sycl_sqr; + ggml_sycl_sqr(ctx, dst); break; case GGML_OP_SQRT: - func = ggml_sycl_sqrt; + ggml_sycl_sqrt(ctx, dst); break; case GGML_OP_SIN: - func = ggml_sycl_sin; + ggml_sycl_sin(ctx, dst); break; case GGML_OP_COS: - func = ggml_sycl_cos; + ggml_sycl_cos(ctx, dst); break; case GGML_OP_CLAMP: - func = ggml_sycl_clamp; + ggml_sycl_clamp(ctx, dst); break; case GGML_OP_CPY: - func = ggml_sycl_cpy; + ggml_sycl_cpy(ctx, dst->src[0], dst->src[1], dst); break; case GGML_OP_CONT: - func = ggml_sycl_dup; + ggml_sycl_dup(ctx, dst); break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: - func = ggml_sycl_nop; + GGML_SYCL_DEBUG("%s: Tensor NO-OP\n", __func__); break; case GGML_OP_DIAG_MASK_INF: - func = ggml_sycl_diag_mask_inf; + ggml_sycl_diag_mask_inf(ctx, dst); break; case GGML_OP_SOFT_MAX: - func = ggml_sycl_soft_max; + ggml_sycl_soft_max(ctx, dst); break; case GGML_OP_ROPE: - func = ggml_sycl_rope; + ggml_sycl_rope(ctx, dst); break; case GGML_OP_IM2COL: - func = ggml_sycl_im2col; + ggml_sycl_im2col(ctx, dst); break; case GGML_OP_POOL_2D: - func = ggml_sycl_pool2d; + ggml_sycl_pool2d(ctx, dst); break; case GGML_OP_SUM: - func = ggml_sycl_sum; + ggml_sycl_sum(ctx, dst); break; case GGML_OP_SUM_ROWS: - func = ggml_sycl_sum_rows; + ggml_sycl_sum_rows(ctx, dst); break; case GGML_OP_ARGSORT: - func = ggml_sycl_argsort; + ggml_sycl_argsort(ctx, dst); break; case GGML_OP_TIMESTEP_EMBEDDING: - func = ggml_sycl_op_timestep_embedding; + ggml_sycl_op_timestep_embedding(ctx, dst); break; case GGML_OP_RWKV_WKV6: - func = ggml_sycl_op_rwkv_wkv6; + ggml_sycl_op_rwkv_wkv6(ctx, dst); break; default: return false; } - if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) { - ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device); - } - - func(ctx, tensor->src[0], tensor->src[1], tensor); return true; } diff --git a/src/ggml-sycl/outprod.cpp b/src/ggml-sycl/outprod.cpp index ef9af0b76..8e8347ff4 100644 --- a/src/ggml-sycl/outprod.cpp +++ b/src/ggml-sycl/outprod.cpp @@ -3,9 +3,9 @@ #include "outprod.hpp" -void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, - const ggml_tensor* src1, ggml_tensor* dst) { - +void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); diff --git a/src/ggml-sycl/outprod.hpp b/src/ggml-sycl/outprod.hpp index 9c042738a..f50413d3f 100644 --- a/src/ggml-sycl/outprod.hpp +++ b/src/ggml-sycl/outprod.hpp @@ -3,8 +3,7 @@ #include "common.hpp" -void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, - const ggml_tensor* src1, ggml_tensor* dst); +void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst); #endif // GGML_SYCL_OUTPROD_HPP diff --git a/src/ggml-sycl/tsembd.cpp b/src/ggml-sycl/tsembd.cpp index 2ffe3cca9..b877d18c1 100644 --- a/src/ggml-sycl/tsembd.cpp +++ b/src/ggml-sycl/tsembd.cpp @@ -55,8 +55,9 @@ static void timestep_embedding_f32_sycl( }); } -void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor * dst) { +void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; dpct::queue_ptr stream = ctx.stream(); diff --git a/src/ggml-sycl/tsembd.hpp b/src/ggml-sycl/tsembd.hpp index ff854c337..4c18748bb 100644 --- a/src/ggml-sycl/tsembd.hpp +++ b/src/ggml-sycl/tsembd.hpp @@ -15,7 +15,6 @@ #include "common.hpp" -void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor * dst); +void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, ggml_tensor * dst); #endif // GGML_SYCL_TSEMBD_HPP diff --git a/src/ggml-sycl/wkv6.cpp b/src/ggml-sycl/wkv6.cpp index 105db6f03..4fed18c2a 100644 --- a/src/ggml-sycl/wkv6.cpp +++ b/src/ggml-sycl/wkv6.cpp @@ -95,8 +95,10 @@ static void rwkv_wkv_f32_kernel( } } -void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, - const ggml_tensor* src1, ggml_tensor* dst) { +void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { + + const ggml_tensor *src0 = dst->src[0]; + const ggml_tensor *src1 = dst->src[1]; const float* k_d = (const float*)dst->src[0]->data; const float* v_d = (const float*)dst->src[1]->data; diff --git a/src/ggml-sycl/wkv6.hpp b/src/ggml-sycl/wkv6.hpp index ddfa3377b..8c596a997 100644 --- a/src/ggml-sycl/wkv6.hpp +++ b/src/ggml-sycl/wkv6.hpp @@ -3,8 +3,7 @@ #include "common.hpp" -void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor * dst); +void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, ggml_tensor * dst); #endif // GGML_SYCL_WKV6_HPP From 17b0a114a9077cdf3bdb10d648d02102c59a79a9 Mon Sep 17 00:00:00 2001 From: Molly Sophia Date: Fri, 10 Jan 2025 09:58:08 +0800 Subject: [PATCH 15/23] llama: add support for QRWKV6 model architecture (llama/11001) llama: add support for QRWKV6 model architecture (llama/11001) * WIP: Add support for RWKV6Qwen2 Signed-off-by: Molly Sophia * RWKV: Some graph simplification Signed-off-by: Molly Sophia * Add support for RWKV6Qwen2 with cpu and cuda GLA Signed-off-by: Molly Sophia * RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead Signed-off-by: Molly Sophia * Fix some typos Signed-off-by: Molly Sophia * code format changes Signed-off-by: Molly Sophia * Fix wkv test & add gla test Signed-off-by: Molly Sophia * Fix cuda warning Signed-off-by: Molly Sophia * Update README.md Signed-off-by: Molly Sophia * Update ggml/src/ggml-cuda/gla.cu Co-authored-by: Georgi Gerganov * Fix fused lerp weights loading with RWKV6 Signed-off-by: Molly Sophia * better sanity check skipping for QRWKV6 in llama-quant thanks @compilade Signed-off-by: Molly Sophia Co-authored-by: compilade --------- Signed-off-by: Molly Sophia Co-authored-by: Georgi Gerganov Co-authored-by: compilade --- include/ggml.h | 10 ++ src/ggml-cpu/ggml-cpu.c | 200 +++++++++++++++++++++++++++++++- src/ggml-cuda/ggml-cuda.cu | 5 + src/ggml-cuda/gla.cu | 93 +++++++++++++++ src/ggml-cuda/gla.cuh | 3 + src/ggml-cuda/wkv6.cu | 4 +- src/ggml-sycl/wkv6.cpp | 4 +- src/ggml-vulkan/ggml-vulkan.cpp | 4 +- src/ggml.c | 61 ++++++++-- tests/test-backend-ops.cpp | 42 ++++++- 10 files changed, 405 insertions(+), 21 deletions(-) create mode 100644 src/ggml-cuda/gla.cu create mode 100644 src/ggml-cuda/gla.cuh diff --git a/include/ggml.h b/include/ggml.h index 8630d92c5..8f8cb9e1a 100644 --- a/include/ggml.h +++ b/include/ggml.h @@ -501,6 +501,7 @@ extern "C" { GGML_OP_GET_REL_POS, GGML_OP_ADD_REL_POS, GGML_OP_RWKV_WKV6, + GGML_OP_GATED_LINEAR_ATTN, GGML_OP_UNARY, @@ -1859,6 +1860,15 @@ extern "C" { struct ggml_tensor * td, struct ggml_tensor * state); + GGML_API struct ggml_tensor * ggml_gated_linear_attn( + struct ggml_context * ctx, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * q, + struct ggml_tensor * g, + struct ggml_tensor * state, + float scale); + // custom operators typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *); diff --git a/src/ggml-cpu/ggml-cpu.c b/src/ggml-cpu/ggml-cpu.c index b7fefb9dd..2966ff768 100644 --- a/src/ggml-cpu/ggml-cpu.c +++ b/src/ggml-cpu/ggml-cpu.c @@ -11803,9 +11803,9 @@ static void ggml_compute_forward_add_rel_pos( static void ggml_compute_forward_rwkv_wkv6_f32( const struct ggml_compute_params * params, struct ggml_tensor * dst) { - const int64_t T = dst->src[1]->ne[3]; + const int64_t T = dst->src[1]->ne[2]; const int64_t C = dst->ne[0]; - const int64_t HEADS = dst->src[1]->ne[2]; + const int64_t HEADS = dst->src[1]->ne[1]; const int64_t n_seqs = dst->src[5]->ne[1]; const int64_t head_size = C / HEADS; @@ -12000,6 +12000,197 @@ static void ggml_compute_forward_rwkv_wkv6( } } +// ggml_compute_forward_gla + +static void ggml_compute_forward_gla_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + const int64_t T = dst->src[1]->ne[2]; + const int64_t C = dst->ne[0]; + const int64_t HEADS = dst->src[1]->ne[1]; + const int64_t n_seqs = dst->src[4]->ne[1]; + const int64_t head_size = C / HEADS; + const float scale = ggml_get_op_params_f32(dst, 0); + + float * dst_data = (float *) dst->data; + float * state = ((float *) dst->data) + C * T; + + const int ith = params->ith; + const int nth = params->nth; + + if (ith >= HEADS) { + return; + } + + const int h_start = (HEADS * ith) / nth; + const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? + (HEADS * (ith + 1)) / nth : HEADS; + + float * k = (float *) dst->src[0]->data; + float * v = (float *) dst->src[1]->data; + float * q = (float *) dst->src[2]->data; + float * g = (float *) dst->src[3]->data; + + size_t t_stride = HEADS * head_size; // Same to C + + size_t h_stride = C / HEADS; + GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS + size_t h_stride_2d = head_size * head_size; + + if (ith == 0) { + memset(dst_data, 0, T * C * sizeof(float)); + } + ggml_barrier(params->threadpool); + + + #if defined(__AVX__) && !defined(__AVX512F__) + #define GGML_F32X GGML_F32x8 + #define GGML_F32X_SET1 GGML_F32x8_SET1 + #define GGML_F32X_LOAD GGML_F32x8_LOAD + #define GGML_F32X_STORE GGML_F32x8_STORE + #define GGML_F32X_MUL GGML_F32x8_MUL + #define GGML_F32X_FMA GGML_F32x8_FMA + #define GLA_VECTOR_SIZE 8 + #elif defined(__AVX512F__) + #define GGML_F32X GGML_F32x16 + #define GGML_F32X_SET1 GGML_F32x16_SET1 + #define GGML_F32X_LOAD GGML_F32x16_LOAD + #define GGML_F32X_STORE GGML_F32x16_STORE + #define GGML_F32X_MUL GGML_F32x16_MUL + #define GGML_F32X_FMA GGML_F32x16_FMA + #define GLA_VECTOR_SIZE 16 + #elif defined(__ARM_NEON) && defined(__aarch64__) + #define GGML_F32X GGML_F32x4 + #define GGML_F32X_SET1 GGML_F32x4_SET1 + #define GGML_F32X_LOAD GGML_F32x4_LOAD + #define GGML_F32X_STORE GGML_F32x4_STORE + #define GGML_F32X_MUL GGML_F32x4_MUL + #define GGML_F32X_FMA GGML_F32x4_FMA + #define GLA_VECTOR_SIZE 4 + #endif + + #ifdef GLA_VECTOR_SIZE + const int64_t vec_count = head_size / GLA_VECTOR_SIZE; + + for (int64_t t = 0; t < T; t++) { + size_t t_offset = t * t_stride; + size_t state_offset = head_size * C * (t / (T / n_seqs)); + float * state_cur = state + state_offset; + float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; + + for (int64_t h = h_start; h < h_end; h++) { + size_t h_offset = h * h_stride; + size_t t_h_offset = t_offset + h_offset; + size_t h_2d_offset = h * h_stride_2d; + + for (int64_t i = 0; i < head_size; i++) { + size_t t_h_i_offset = t_h_offset + i; + size_t h_2d_i_offset = h_2d_offset + i * h_stride; + + float k_val = k[t_h_i_offset]; + float q_val = q[t_h_i_offset] * scale; + float g_val = g[t_h_i_offset]; + + // Broadcast scalar values to vectors + GGML_F32X k_vec = GGML_F32X_SET1(k_val); + GGML_F32X q_vec = GGML_F32X_SET1(q_val); + GGML_F32X g_vec = GGML_F32X_SET1(g_val); + + for (int64_t j = 0; j < vec_count; j++) { + size_t base_j = j * GLA_VECTOR_SIZE; + size_t t_h_j_offset = t_h_offset + base_j; + size_t h_2d_i_j_offset = h_2d_i_offset + base_j; + + // Load x elements at once + GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]); + GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]); + GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]); + + // Compute kv = v * k + GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec); + + // Compute temp = prev_state * g + kv + GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec); + + // Update dst: dst += temp * q + dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec); + GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec); + + // Update state + GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec); + } + + // Handle remaining elements, this will not be used. + for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) { + size_t t_h_j_offset = t_h_offset + j; + size_t h_2d_i_j_offset = h_2d_i_offset + j; + float v_val = v[t_h_j_offset]; + float kv_val = v_val * k_val; + float prev_state_val = state_prev[h_2d_i_j_offset]; + float temp_val = kv_val + prev_state_val * g_val; + dst_data[t_h_j_offset] += temp_val * q_val; + state_cur[h_2d_i_j_offset] = temp_val; + } + } + } + } + + #else + for (int64_t t = 0; t < T; t++) { + size_t t_offset = t * t_stride; + size_t state_offset = head_size * C * (t / (T / n_seqs)); + float * state_cur = state + state_offset; + float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; + + for (int64_t h = h_start; h < h_end; h++) { + size_t h_offset = h * h_stride; + size_t t_h_offset = t_offset + h_offset; + size_t h_2d_offset = h * h_stride_2d; + + for (int64_t i = 0; i < head_size; i++) { + size_t t_h_i_offset = t_h_offset + i; + size_t h_2d_i_offset = h_2d_offset + i * h_stride; + + float k_val = k[t_h_i_offset]; + float q_val = q[t_h_i_offset] * scale; + float g_val = g[t_h_i_offset]; + + for (int64_t j = 0; j < head_size; j++) { + size_t t_h_j_offset = t_h_offset + j; + size_t h_2d_i_j_offset = h_2d_i_offset + j; + + float v_val = v[t_h_j_offset]; + float kv_val = v_val * k_val; + float prev_state_val = state_prev[h_2d_i_j_offset]; + float temp_val = prev_state_val * g_val + kv_val; + dst_data[t_h_j_offset] += temp_val * q_val; + state_cur[h_2d_i_j_offset] = temp_val; + } + } + } + } + #endif +} + + +static void ggml_compute_forward_gla( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gla_f32(params, dst); + } break; + default: + { + GGML_ABORT("fatal error"); + } + } +} + // ggml_compute_forward_map_unary static void ggml_compute_forward_map_unary_f32( @@ -12749,6 +12940,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_rwkv_wkv6(params, tensor); } break; + case GGML_OP_GATED_LINEAR_ATTN: + { + ggml_compute_forward_gla(params, tensor); + } break; case GGML_OP_MAP_UNARY: { ggml_unary_op_f32_t fun; @@ -13047,6 +13242,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { case GGML_OP_WIN_UNPART: case GGML_OP_GET_REL_POS: case GGML_OP_RWKV_WKV6: + case GGML_OP_GATED_LINEAR_ATTN: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: case GGML_OP_MAP_CUSTOM1_F32: diff --git a/src/ggml-cuda/ggml-cuda.cu b/src/ggml-cuda/ggml-cuda.cu index 0b06be729..8476ee1bc 100644 --- a/src/ggml-cuda/ggml-cuda.cu +++ b/src/ggml-cuda/ggml-cuda.cu @@ -37,6 +37,7 @@ #include "ggml-cuda/unary.cuh" #include "ggml-cuda/upscale.cuh" #include "ggml-cuda/wkv6.cuh" +#include "ggml-cuda/gla.cuh" #include #include @@ -2167,6 +2168,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_RWKV_WKV6: ggml_cuda_op_rwkv_wkv6(ctx, dst); break; + case GGML_OP_GATED_LINEAR_ATTN: + ggml_cuda_op_gated_linear_attn(ctx, dst); + break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: ggml_cuda_cross_entropy_loss_back(ctx, dst); break; @@ -3011,6 +3015,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: case GGML_OP_RWKV_WKV6: + case GGML_OP_GATED_LINEAR_ATTN: return true; case GGML_OP_FLASH_ATTN_EXT: { #ifndef FLASH_ATTN_AVAILABLE diff --git a/src/ggml-cuda/gla.cu b/src/ggml-cuda/gla.cu new file mode 100644 index 000000000..f7d615a82 --- /dev/null +++ b/src/ggml-cuda/gla.cu @@ -0,0 +1,93 @@ +#include "common.cuh" +#include "gla.cuh" + +template +static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale, + const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) { + const int tid = threadIdx.x; + const int bid = blockIdx.x; + + const int head_size = HEAD_SIZE; + const int batch_i = bid / H; + const int head_i = bid % H; + const int state_size = C * head_size; + const int n_seq_tokens = T / B; + + float state[head_size]; + __shared__ float _k[head_size], _r[head_size], _td[head_size]; + + #pragma unroll + for (int i = 0; i < head_size; i++) { + state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; + } + + for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { + __syncthreads(); + _k[tid] = k[t]; + _r[tid] = r[t]; + _td[tid] = td[t]; + __syncthreads(); + + const float _v = v[t]; + float y = 0; + for (int j = 0; j < head_size; j += 4) { + const float4 & k = (float4 &)(_k[j]); + const float4 & r = (float4 &)(_r[j]); + const float4 & td = (float4 &)(_td[j]); + float4 & s = (float4 &)(state[j]); + float4 kv; + + kv.x = k.x * _v; + kv.y = k.y * _v; + kv.z = k.z * _v; + kv.w = k.w * _v; + + s.x = s.x * td.x + kv.x; + s.y = s.y * td.y + kv.y; + s.z = s.z * td.z + kv.z; + s.w = s.w * td.w + kv.w; + + y += r.x * s.x; + y += r.y * s.y; + y += r.z * s.z; + y += r.w * s.w; + } + dst[t] = y * scale; + } + + #pragma unroll + for (int i = 0; i < head_size; i++) { + dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; + } +} + +void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const float * k_d = (const float *)dst->src[0]->data; + const float * v_d = (const float *)dst->src[1]->data; + const float * r_d = (const float *)dst->src[2]->data; + const float * td_d = (const float *)dst->src[3]->data; + const float * s_d = (const float *)dst->src[4]->data; + + const int64_t B = dst->src[4]->ne[1]; + const int64_t T = dst->src[0]->ne[2]; + const int64_t C = dst->ne[0]; + const int64_t H = dst->src[0]->ne[1]; + + float scale; + memcpy(&scale, (float*)dst->op_params, sizeof(float)); + + float * dst_d = (float *)dst->data; + + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32); + GGML_ASSERT(C % H == 0); + GGML_ASSERT(C / H == 64 || C / H == 128); + + + if (C / H == 64) { + gated_linear_attn_f32<64><<>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); + } else { + gated_linear_attn_f32<128><<>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); + } +} diff --git a/src/ggml-cuda/gla.cuh b/src/ggml-cuda/gla.cuh new file mode 100644 index 000000000..2c82ad7dd --- /dev/null +++ b/src/ggml-cuda/gla.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/src/ggml-cuda/wkv6.cu b/src/ggml-cuda/wkv6.cu index 42578341a..bbdafbee5 100644 --- a/src/ggml-cuda/wkv6.cu +++ b/src/ggml-cuda/wkv6.cu @@ -73,9 +73,9 @@ void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst) const float * s_d = (const float *)dst->src[5]->data; const int64_t B = dst->src[5]->ne[1]; - const int64_t T = dst->src[0]->ne[3]; + const int64_t T = dst->src[0]->ne[2]; const int64_t C = dst->ne[0]; - const int64_t H = dst->src[0]->ne[2]; + const int64_t H = dst->src[0]->ne[1]; float * dst_d = (float *)dst->data; diff --git a/src/ggml-sycl/wkv6.cpp b/src/ggml-sycl/wkv6.cpp index 4fed18c2a..b54c20964 100644 --- a/src/ggml-sycl/wkv6.cpp +++ b/src/ggml-sycl/wkv6.cpp @@ -109,9 +109,9 @@ void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { float* dst_d = (float*)dst->data; const int64_t B = dst->src[5]->ne[1]; - const int64_t T = dst->src[0]->ne[3]; + const int64_t T = dst->src[0]->ne[2]; const int64_t C = dst->ne[0]; - const int64_t H = dst->src[0]->ne[2]; + const int64_t H = dst->src[0]->ne[1]; GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index 077452424..1b9174682 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -5633,9 +5633,9 @@ static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subc } static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { - const size_t seq_length = dst->src[0]->ne[3]; + const size_t seq_length = dst->src[0]->ne[2]; const size_t n_embed = dst->ne[0]; - const size_t n_heads = dst->src[0]->ne[2]; + const size_t n_heads = dst->src[0]->ne[1]; const size_t n_seqs = dst->src[5]->ne[1]; ggml_vk_op_f32_rwkv6( diff --git a/src/ggml.c b/src/ggml.c index 90abc6ad4..da5b817e1 100644 --- a/src/ggml.c +++ b/src/ggml.c @@ -968,6 +968,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "GET_REL_POS", "ADD_REL_POS", "RWKV_WKV6", + "GATED_LINEAR_ATTN", "UNARY", @@ -987,7 +988,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "OPT_STEP_ADAMW", }; -static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82"); +static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -1064,6 +1065,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "get_rel_pos(x)", "add_rel_pos(x)", "rwkv_wkv6(k, v, r, tf, td, s)", + "gated_linear_attn(k, v, q, gate, s)", "unary(x)", @@ -1083,7 +1085,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "adamw(x)", }; -static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82"); +static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -4629,15 +4631,13 @@ struct ggml_tensor * ggml_rwkv_wkv6( GGML_ASSERT(ggml_is_contiguous(state)); const int64_t S = k->ne[0]; - const int64_t H = k->ne[2]; - const int64_t n_tokens = k->ne[3]; + const int64_t H = k->ne[1]; + const int64_t n_tokens = k->ne[2]; const int64_t n_seqs = state->ne[1]; { - GGML_ASSERT(k->ne[1] == 1); - GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens); - GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens); - // TODO: RWKV v4 and v5 - GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens); + GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); + GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens); + GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens); GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); } @@ -4656,6 +4656,49 @@ struct ggml_tensor * ggml_rwkv_wkv6( return result; } +// ggml_gated_linear_attn + +struct ggml_tensor * ggml_gated_linear_attn( + struct ggml_context * ctx, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * q, + struct ggml_tensor * g, + struct ggml_tensor * state, + float scale) { + GGML_ASSERT(ggml_is_contiguous(k)); + GGML_ASSERT(ggml_is_contiguous(v)); + GGML_ASSERT(ggml_is_contiguous(q)); + GGML_ASSERT(ggml_is_contiguous(g)); + GGML_ASSERT(ggml_is_contiguous(state)); + + const int64_t S = k->ne[0]; + const int64_t H = k->ne[1]; + const int64_t n_tokens = k->ne[2]; + const int64_t n_seqs = state->ne[1]; + { + GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); + GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens); + GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens); + GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); + } + + // concat output and new_state + const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + ggml_set_op_params_f32(result, 0, scale); + + result->op = GGML_OP_GATED_LINEAR_ATTN; + result->src[0] = k; + result->src[1] = v; + result->src[2] = q; + result->src[3] = g; + result->src[4] = state; + + return result; +} + // ggml_unary static struct ggml_tensor * ggml_unary_impl( diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 1e892f663..3834e0f84 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1659,17 +1659,46 @@ struct test_rwkv_wkv6 : public test_case { ggml_tensor * build_graph(ggml_context * ctx) override { const int64_t n_tokens = n_seq_tokens * n_seqs; - ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); - ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector{ head_size, 1, head_count, n_tokens }.data()); - ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); + ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector{ head_size, head_count }.data()); - ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); + ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector{ head_size * head_size * head_count, n_seqs }.data()); ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s); return out; } }; +// GGML_OP_GATED_LINEAR_ATTN +struct test_gla : public test_case { + const ggml_type type; + + const int64_t head_count; + const int64_t head_size; + const int64_t n_seq_tokens; + const int64_t n_seqs; + + std::string vars() override { + return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); + } + + test_gla(ggml_type type = GGML_TYPE_F32, + int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) + : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + const int64_t n_tokens = n_seq_tokens * n_seqs; + ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector{ head_size, head_count, n_tokens }.data()); + ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector{ head_size * head_size * head_count, n_seqs }.data()); + ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5)); + return out; + } +}; + // GGML_OP_MUL_MAT struct test_mul_mat : public test_case { const ggml_type type_a; @@ -3626,6 +3655,11 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4)); test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4)); + test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1)); + test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1)); + test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4)); + test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4)); + for (int i = 1; i < 9; ++i) { test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); From 67b8cc98b22f0b515cf3bdf2b296a7990d7b02fa Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Fri, 10 Jan 2025 06:39:33 +0100 Subject: [PATCH 16/23] Vulkan: Fix float16 use on devices without float16 support + fix subgroup_size_control validation error (llama/11161) * Vulkan: Remove float16 use in shaders * Fix validation error about subgroup_size_control extension --- src/ggml-vulkan/ggml-vulkan.cpp | 2 +- .../vulkan-shaders/mul_mat_vec.comp | 9 +++---- .../vulkan-shaders/mul_mat_vec_q2_k.comp | 24 +++++++++---------- .../vulkan-shaders/mul_mat_vec_q3_k.comp | 18 +++++++------- .../vulkan-shaders/mul_mat_vec_q4_k.comp | 12 +++++----- .../vulkan-shaders/mul_mat_vec_q5_k.comp | 20 ++++++++-------- .../vulkan-shaders/mul_mat_vec_q6_k.comp | 10 ++++---- src/ggml-vulkan/vulkan-shaders/soft_max.comp | 1 - src/ggml-vulkan/vulkan-shaders/types.comp | 5 +++- 9 files changed, 50 insertions(+), 51 deletions(-) diff --git a/src/ggml-vulkan/ggml-vulkan.cpp b/src/ggml-vulkan/ggml-vulkan.cpp index 1b9174682..649146d7b 100644 --- a/src/ggml-vulkan/ggml-vulkan.cpp +++ b/src/ggml-vulkan/ggml-vulkan.cpp @@ -2277,6 +2277,7 @@ static vk_device ggml_vk_get_device(size_t idx) { if (device->subgroup_size_control) { device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize; device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize; + device_extensions.push_back("VK_EXT_subgroup_size_control"); } device->subgroup_size_control = device->subgroup_size_control && @@ -2285,7 +2286,6 @@ static vk_device ggml_vk_get_device(size_t idx) { if (device->subgroup_size_control) { device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups; - device_extensions.push_back("VK_EXT_subgroup_size_control"); } #if defined(VK_KHR_cooperative_matrix) diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp index 24875cdcf..53902858d 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp @@ -1,9 +1,6 @@ #version 450 -#ifdef FLOAT16 -#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require -#endif -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -27,8 +24,8 @@ void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const #if K_PER_ITER == 8 #if QUANT_R == 2 - const B_TYPE_VEC4 bv02 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]; - const B_TYPE_VEC4 bv13 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4]; + const vec4 bv02 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]); + const vec4 bv13 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4]); const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y); const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w); #else diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp index 934213446..6a9b9b2d1 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -1,5 +1,5 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -40,9 +40,9 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = d.x; - const FLOAT_TYPE dmin = d.y; + vec2 d = vec2(data_a[ib0 + i].d); + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; @@ -63,14 +63,14 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uvec2 qs16 = uvec2(unpack8(qs16_u16)); [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { - B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]; - B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]; - B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]; - B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]; - B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]; - B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]; - B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]; - B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]; + vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]); + vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]); + vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]); + vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]); + vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]); + vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]); + vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]); + vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]); FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp index 86b0159d9..96ef50fdd 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -1,5 +1,5 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -60,14 +60,14 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { - B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]; - B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]; - B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]; - B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]; - B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]; - B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]; - B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]; - B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]; + vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]); + vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]); + vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]); + vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]); + vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]); + vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]); + vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]); + vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]); FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 2; ++l) { diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp index cd1dd8e89..f97eb8744 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -1,6 +1,6 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -45,7 +45,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; - f16vec2 d = data_a[ib0 + i].d; + vec2 d = vec2(data_a[ib0 + i].d); const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); @@ -96,10 +96,10 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { const uint32_t q4_15 = qs64_hi4.w; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { - B_TYPE_VEC4 by10 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4]; - B_TYPE_VEC4 by132 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8]; - B_TYPE_VEC4 by20 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4]; - B_TYPE_VEC4 by232 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8]; + vec4 by10 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 ]); + vec4 by132 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8]); + vec4 by20 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 ]); + vec4 by232 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8]); const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp index 0a68891c3..79d7db0e3 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -1,6 +1,6 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -42,7 +42,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; - f16vec2 d = data_a[ib0 + i].d; + vec2 d = vec2(data_a[ib0 + i].d); const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); @@ -105,14 +105,14 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { const uint32_t q4_15 = qs64_80_hi4.w; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { - B_TYPE_VEC2 by10 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2]; - B_TYPE_VEC2 by116 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8]; - B_TYPE_VEC2 by132 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16]; - B_TYPE_VEC2 by148 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24]; - B_TYPE_VEC2 by20 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2]; - B_TYPE_VEC2 by216 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8]; - B_TYPE_VEC2 by232 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16]; - B_TYPE_VEC2 by248 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24]; + vec2 by10 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 ]); + vec2 by116 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8]); + vec2 by132 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16]); + vec2 by148 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24]); + vec2 by20 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 ]); + vec2 by216 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8]); + vec2 by232 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16]); + vec2 by248 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24]); const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, diff --git a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp index 70e13a56b..041fd27c1 100644 --- a/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +++ b/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp @@ -1,6 +1,6 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" @@ -77,10 +77,10 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uvec4 q3 = uvec4(unpack8(q3_u32)); [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { - B_TYPE_VEC4 by0 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4]; - B_TYPE_VEC4 by32 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8]; - B_TYPE_VEC4 by64 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16]; - B_TYPE_VEC4 by96 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24]; + vec4 by0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 ]); + vec4 by32 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8]); + vec4 by64 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16]); + vec4 by96 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24]); FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 4; ++l) { diff --git a/src/ggml-vulkan/vulkan-shaders/soft_max.comp b/src/ggml-vulkan/vulkan-shaders/soft_max.comp index a25808e16..51fc2dc7e 100644 --- a/src/ggml-vulkan/vulkan-shaders/soft_max.comp +++ b/src/ggml-vulkan/vulkan-shaders/soft_max.comp @@ -1,6 +1,5 @@ #version 450 -#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #extension GL_EXT_control_flow_attributes : enable layout (push_constant) uniform parameter diff --git a/src/ggml-vulkan/vulkan-shaders/types.comp b/src/ggml-vulkan/vulkan-shaders/types.comp index eecc47f3a..f12e61bbe 100644 --- a/src/ggml-vulkan/vulkan-shaders/types.comp +++ b/src/ggml-vulkan/vulkan-shaders/types.comp @@ -2,7 +2,10 @@ #if !defined(GGML_TYPES_COMP) #define GGML_TYPES_COMP -#extension GL_EXT_shader_explicit_arithmetic_types : require +#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require +#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require +#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require +#extension GL_EXT_shader_16bit_storage : require #if defined(DATA_A_F32) #define QUANT_K 1 From e819be6586b48d1a21f6f59eca751b38cd2fa935 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Mon, 13 Jan 2025 13:31:41 +0200 Subject: [PATCH 17/23] ggml : do not define GGML_USE_CUDA when building with GGML_BACKEND_DL (llama/11211) Build fails when using HIP and GGML_BACKEND_DL: ``` /usr/bin/ld: ../ggml/src/libggml.so: undefined reference to `ggml_backend_cuda_reg' collect2: error: ld returned 1 exit status ``` This patch fixes this. --- src/ggml-hip/CMakeLists.txt | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/src/ggml-hip/CMakeLists.txt b/src/ggml-hip/CMakeLists.txt index b15fbd24d..d090ba9bd 100644 --- a/src/ggml-hip/CMakeLists.txt +++ b/src/ggml-hip/CMakeLists.txt @@ -70,7 +70,9 @@ ggml_add_backend_library(ggml-hip ) # TODO: do not use CUDA definitions for HIP -target_compile_definitions(ggml PUBLIC GGML_USE_CUDA) +if (NOT GGML_BACKEND_DL) + target_compile_definitions(ggml PUBLIC GGML_USE_CUDA) +endif() add_compile_definitions(GGML_USE_HIP) From aad910743b760897eafac8587bb2a500f60166dc Mon Sep 17 00:00:00 2001 From: Andreas Kieslinger <47689530+aendk@users.noreply.github.com> Date: Mon, 13 Jan 2025 16:45:53 +0100 Subject: [PATCH 18/23] cuda : CUDA Graph Compute Function Refactor (precursor for performance improvements) (llama/11042) * Refactor: Moves cuda graph executable update step to separate function. * Refactor: Moves cuda graph update check to separate function. * Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability. * Fix: Adds missing reference to maintain_cuda_graph() definition. * Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function. * Refactor: Moves node graph checks and copy ops into individual function for improved readability. * Refactor: Removes code permanently excluded from compilation to increase readability. * Style: Adds missing newline * Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one * Refactor: Makes 'cuda_graph_update_required' a local variable * remove double lines between functions --------- Co-authored-by: slaren --- src/ggml-cuda/ggml-cuda.cu | 404 ++++++++++++++++++++----------------- 1 file changed, 214 insertions(+), 190 deletions(-) diff --git a/src/ggml-cuda/ggml-cuda.cu b/src/ggml-cuda/ggml-cuda.cu index 8476ee1bc..1dac397c4 100644 --- a/src/ggml-cuda/ggml-cuda.cu +++ b/src/ggml-cuda/ggml-cuda.cu @@ -2289,6 +2289,66 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { } #ifdef USE_CUDA_GRAPH +static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, + std::vector & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) { + + // Loop over nodes in GGML graph to obtain info needed for CUDA graph + cuda_ctx->cuda_graph->updated_kernel_arg.clear(); + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { + continue; + } + + if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) { + use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__); +#endif + } + + if (node->op == GGML_OP_MUL_MAT_ID) { + use_cuda_graph = false; // This node type is not supported by CUDA graph capture +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__); +#endif + } + + if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { + // disable CUDA graphs for batch size > 1 for now. + // Changes in batch size or context size can cause changes to the grid size of some kernels. + use_cuda_graph = false; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); +#endif + } + + if (node->op == GGML_OP_CPY) { + // store the copy op parameter which changes with each token. + cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); + // store a pointer to each copy op CUDA kernel to identify it later + void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); + if (!ptr) { + use_cuda_graph = false; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__); +#endif + } else { + if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { + ggml_cuda_cpy_fn_ptrs.push_back(ptr); + } + } + } + + if (!use_cuda_graph) { + break; + } + } + + return use_cuda_graph; +} + static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { graph_node_properties->node_address = node->data; graph_node_properties->node_op = node->op; @@ -2339,149 +2399,105 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra return true; } -#endif -static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; - - ggml_cuda_set_device(cuda_ctx->device); +static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) { -#ifdef USE_CUDA_GRAPH - static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); + if (cuda_graph_update_required) { + // Extract nodes from graph + // First call with null argument gets number of nodes in graph + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); + // Subsequent call with non-null argument gets nodes + cuda_ctx->cuda_graph->nodes.clear(); + cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); + cuda_ctx->cuda_graph->params.clear(); + cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); + if (cuda_ctx->cuda_graph->num_nodes > 0) { + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); - // Objects required for CUDA Graph - if (cuda_ctx->cuda_graph == nullptr) { - cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); + // Loop over nodes, and extract kernel parameters from each node + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + cudaGraphNodeType node_type; + CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); + if (node_type == cudaGraphNodeTypeKernel) { + cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime + if (stat == cudaErrorInvalidDeviceFunction) { + // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. + // We don't need to update blas nodes, so clear error and move on. + cudaGetLastError(); + } else { + GGML_ASSERT(stat == cudaSuccess); + } + } + } + } + } else { + // One of the arguments to the copy kernel is updated for each token, hence we need to + // replace that argument with the updated value in the CUDA graph + // on update steps, the live parameters will already be captured + int k = 0; + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { + char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); + cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; + CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); + } + } } +} + +static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) { - bool use_cuda_graph = true; bool cuda_graph_update_required = false; - // vector of pointers to CUDA cpy kernels, which are required to identify - // kernel parameters which need updated in the graph for each token - std::vector ggml_cuda_cpy_fn_ptrs; - if (cuda_ctx->cuda_graph->graph == nullptr) { - if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { - cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__); -#endif - } + if (cuda_ctx->cuda_graph->instance == nullptr) { + cuda_graph_update_required = true; } - // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, - // or previous graph capture failure. - // Also disable for multi-gpu for now. TO DO investigate - if (disable_cuda_graphs_due_to_env - || cuda_ctx->cuda_graph->disable_due_to_gpu_arch - || cuda_ctx->cuda_graph->disable_due_to_too_many_updates - || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { - use_cuda_graph = false; + // Check if the graph size has changed + if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { + cuda_graph_update_required = true; + cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); } - if (use_cuda_graph) { - if (cuda_ctx->cuda_graph->instance == nullptr) { - cuda_graph_update_required = true; + // Loop over nodes in GGML graph to determine if CUDA graph update is required + // and store properties to allow this comparison for the next token + for (int i = 0; i < cgraph->n_nodes; i++) { + bool has_matching_properties = true; + if (!cuda_graph_update_required) { + has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); } - - // Check if the graph size has changed - if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { + if (!has_matching_properties) { cuda_graph_update_required = true; - cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); - } - - // Loop over nodes in GGML graph to determine if CUDA graph update is required - // and store properties to allow this comparison for the next token - for (int i = 0; i < cgraph->n_nodes; i++) { - bool has_matching_properties = true; - if (!cuda_graph_update_required) { - has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); - } - if (!has_matching_properties) { - cuda_graph_update_required = true; - } - set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); } + set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); + } - // Loop over nodes in GGML graph to obtain info needed for CUDA graph - cuda_ctx->cuda_graph->updated_kernel_arg.clear(); - for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_tensor * node = cgraph->nodes[i]; - - if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { - continue; - } - - if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) { - use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__); -#endif - } - - if (node->op == GGML_OP_MUL_MAT_ID) { - use_cuda_graph = false; // This node type is not supported by CUDA graph capture -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__); -#endif - } - - if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { - // disable CUDA graphs for batch size > 1 for now. - // Changes in batch size or context size can cause changes to the grid size of some kernels. - use_cuda_graph = false; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); -#endif - } - - if (node->op == GGML_OP_CPY) { - // store the copy op parameter which changes with each token. - cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); - // store a pointer to each copy op CUDA kernel to identify it later - void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); - if (!ptr) { - use_cuda_graph = false; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__); -#endif - } else { - if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { - ggml_cuda_cpy_fn_ptrs.push_back(ptr); - } - } - } - - if (!use_cuda_graph) { - break; - } - } + return cuda_graph_update_required; +} - // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. - if (use_cuda_graph && cuda_graph_update_required) { - cuda_ctx->cuda_graph->number_consecutive_updates++; - } else { - cuda_ctx->cuda_graph->number_consecutive_updates = 0; - } +static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { - if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { - cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; + cudaGraphExecUpdateResultInfo result_info; + cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); + if (stat == cudaErrorGraphExecUpdateFailure) { #ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__); + GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__); #endif - } - } - - if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture - CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); + // The pre-existing graph exec cannot be updated due to violated constraints + // so instead clear error and re-instantiate + cudaGetLastError(); + CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); + cuda_ctx->cuda_graph->instance = nullptr; + CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); + } else { + GGML_ASSERT(stat == cudaSuccess); } +} +#endif -#else - bool use_cuda_graph = false; - bool cuda_graph_update_required = false; -#endif // USE_CUDA_GRAPH - - bool graph_evaluated_or_captured = false; +static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, + [[maybe_unused]] std::vector & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph, + bool & cuda_graph_update_required) { while (!graph_evaluated_or_captured) { // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. @@ -2519,19 +2535,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph)); cuda_ctx->cuda_graph->graph = nullptr; } - CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); -#if 0 - if (disable_cuda_graphs_due_to_failed_capture) { - use_cuda_graph = false; - cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__); -#endif - } else { - graph_evaluated_or_captured = true; // CUDA graph has been captured - } -#endif + CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); graph_evaluated_or_captured = true; // CUDA graph has been captured } else { graph_evaluated_or_captured = true; // ggml graph has been directly evaluated @@ -2544,72 +2549,91 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, } // Perform update to graph (if required for this token), and change copy parameter (required for every token) + maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required); - if (cuda_graph_update_required) { - // Extract nodes from graph - // First call with null argument gets number of nodes in graph - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); - // Subsequent call with non-null argument gets nodes - cuda_ctx->cuda_graph->nodes.clear(); - cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); - cuda_ctx->cuda_graph->params.clear(); - cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); - if (cuda_ctx->cuda_graph->num_nodes > 0) { - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); - - // Loop over nodes, and extract kernel parameters from each node - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - cudaGraphNodeType node_type; - CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); - if (node_type == cudaGraphNodeTypeKernel) { - cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime - if (stat == cudaErrorInvalidDeviceFunction) { - // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. - // We don't need to update blas nodes, so clear error and move on. - cudaGetLastError(); - } else { - GGML_ASSERT(stat == cudaSuccess); - } - } - } - } + // Update graph executable + update_cuda_graph_executable(cuda_ctx); + + // Launch graph + CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); +#else + graph_evaluated_or_captured = true; +#endif // USE_CUDA_GRAPH + } +} + +static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + + // vector of pointers to CUDA cpy kernels, which are required to identify + // kernel parameters which need updated in the graph for each token + std::vector ggml_cuda_cpy_fn_ptrs; + +#ifdef USE_CUDA_GRAPH + static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); + + // Objects required for CUDA Graph + if (cuda_ctx->cuda_graph == nullptr) { + cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); + } + + bool use_cuda_graph = true; + bool cuda_graph_update_required = false; + + if (cuda_ctx->cuda_graph->graph == nullptr) { + if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { + cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__); +#endif } + } - // One of the arguments to the copy kernel is updated for each token, hence we need to - // replace that argument with the updated value in the CUDA graph - if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured - int k = 0; - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { - char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); - cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; - CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); - } - } + // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, + // or previous graph capture failure. + // Also disable for multi-gpu for now. TO DO investigate + if (disable_cuda_graphs_due_to_env + || cuda_ctx->cuda_graph->disable_due_to_gpu_arch + || cuda_ctx->cuda_graph->disable_due_to_too_many_updates + || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { + use_cuda_graph = false; + } + + if (use_cuda_graph) { + cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph); + + use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, + ggml_cuda_cpy_fn_ptrs, use_cuda_graph); + + // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. + if (use_cuda_graph && cuda_graph_update_required) { + cuda_ctx->cuda_graph->number_consecutive_updates++; + } else { + cuda_ctx->cuda_graph->number_consecutive_updates = 0; } - // Update graph executable - cudaGraphExecUpdateResultInfo result_info; - cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); - if (stat == cudaErrorGraphExecUpdateFailure) { + if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { + cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; #ifndef NDEBUG - GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__); + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__); #endif - // The pre-existing graph exec cannot be updated due to violated constraints - // so instead clear error and re-instantiate - cudaGetLastError(); - CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); - cuda_ctx->cuda_graph->instance = nullptr; - CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); - } else { - GGML_ASSERT(stat == cudaSuccess); } - // Launch graph - CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); + } + + if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture + CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); + } + #else - graph_evaluated_or_captured = true; + bool use_cuda_graph = false; + bool cuda_graph_update_required = false; #endif // USE_CUDA_GRAPH - } + + bool graph_evaluated_or_captured = false; + + evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required); return GGML_STATUS_SUCCESS; } From 23fbf2f1e157a1f5e39e032613d9ddcd3c88c9d0 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 Jan 2025 09:17:22 +0200 Subject: [PATCH 19/23] sync : llama.cpp ggml-ci --- scripts/sync-llama.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-llama.last b/scripts/sync-llama.last index 3fa11110e..9fea66d40 100644 --- a/scripts/sync-llama.last +++ b/scripts/sync-llama.last @@ -1 +1 @@ -e7da954eccdf39ee795a6135bdb86f0978902681 +504af20ee4eae72080a56d59d744f6774f7901ce From f6cbb381e6dcea5f126efe40abb69f68b01377f3 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 Jan 2025 09:20:27 +0200 Subject: [PATCH 20/23] scripts : sync opencl --- scripts/sync-llama-am.sh | 3 +++ scripts/sync-llama.sh | 1 + scripts/sync-whisper-am.sh | 3 +++ scripts/sync-whisper.sh | 1 + 4 files changed, 8 insertions(+) diff --git a/scripts/sync-llama-am.sh b/scripts/sync-llama-am.sh index 7277fd48f..60261b13d 100755 --- a/scripts/sync-llama-am.sh +++ b/scripts/sync-llama-am.sh @@ -80,6 +80,7 @@ while read c; do ggml/src/ggml-kompute/* \ ggml/src/ggml-metal/* \ ggml/src/ggml-musa/* \ + ggml/src/ggml-opencl/* \ ggml/src/ggml-rpc/* \ ggml/src/ggml-sycl/* \ ggml/src/ggml-vulkan/* \ @@ -129,6 +130,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then # ggml/src/ggml-kompute/* -> src/ggml-kompute/* # ggml/src/ggml-metal/* -> src/ggml-metal/* # ggml/src/ggml-musa/* -> src/ggml-musa/* + # ggml/src/ggml-opencl/* -> src/ggml-opencl/* # ggml/src/ggml-rpc/* -> src/ggml-rpc/* # ggml/src/ggml-sycl/* -> src/ggml-sycl/* # ggml/src/ggml-vulkan/* -> src/ggml-vulkan/* @@ -157,6 +159,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then -e 's/\/ggml\/src\/ggml-kompute\//\/src\/ggml-kompute\//g' \ -e 's/\/ggml\/src\/ggml-metal\//\/src\/ggml-metal\//g' \ -e 's/\/ggml\/src\/ggml-musa\//\/src\/ggml-musa\//g' \ + -e 's/\/ggml\/src\/ggml-opencl\//\/src\/ggml-opencl\//g' \ -e 's/\/ggml\/src\/ggml-rpc\//\/src\/ggml-rpc\//g' \ -e 's/\/ggml\/src\/ggml-sycl\//\/src\/ggml-sycl\//g' \ -e 's/\/ggml\/src\/ggml-vulkan\//\/src\/ggml-vulkan\//g' \ diff --git a/scripts/sync-llama.sh b/scripts/sync-llama.sh index 9e9d9b3e5..92d094b39 100755 --- a/scripts/sync-llama.sh +++ b/scripts/sync-llama.sh @@ -15,6 +15,7 @@ cp -rpv ../llama.cpp/ggml/src/ggml-hip/* src/ggml-hip/ cp -rpv ../llama.cpp/ggml/src/ggml-kompute/* src/ggml-kompute/ cp -rpv ../llama.cpp/ggml/src/ggml-metal/* src/ggml-metal/ cp -rpv ../llama.cpp/ggml/src/ggml-musa/* src/ggml-musa/ +cp -rpv ../llama.cpp/ggml/src/ggml-opencl/* src/ggml-opencl/ cp -rpv ../llama.cpp/ggml/src/ggml-rpc/* src/ggml-rpc/ cp -rpv ../llama.cpp/ggml/src/ggml-sycl/* src/ggml-sycl/ cp -rpv ../llama.cpp/ggml/src/ggml-vulkan/* src/ggml-vulkan/ diff --git a/scripts/sync-whisper-am.sh b/scripts/sync-whisper-am.sh index 9fd61a9f4..8e21dbebf 100755 --- a/scripts/sync-whisper-am.sh +++ b/scripts/sync-whisper-am.sh @@ -67,6 +67,7 @@ while read c; do ggml/src/ggml-kompute/* \ ggml/src/ggml-metal/* \ ggml/src/ggml-musa/* \ + ggml/src/ggml-opencl/* \ ggml/src/ggml-rpc/* \ ggml/src/ggml-sycl/* \ ggml/src/ggml-vulkan/* \ @@ -117,6 +118,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then # ggml/src/ggml-kompute/* -> src/ggml-kompute/* # ggml/src/ggml-metal/* -> src/ggml-metal/* # ggml/src/ggml-musa/* -> src/ggml-musa/* + # ggml/src/ggml-opencl/* -> src/ggml-opencl/* # ggml/src/ggml-rpc/* -> src/ggml-rpc/* # ggml/src/ggml-sycl/* -> src/ggml-sycl/* # ggml/src/ggml-vulkan/* -> src/ggml-vulkan/* @@ -146,6 +148,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then -e 's/\/ggml\/src\/ggml-kompute\//\/src\/ggml-kompute\//g' \ -e 's/\/ggml\/src\/ggml-metal\//\/src\/ggml-metal\//g' \ -e 's/\/ggml\/src\/ggml-musa\//\/src\/ggml-musa\//g' \ + -e 's/\/ggml\/src\/ggml-opencl\//\/src\/ggml-opencl\//g' \ -e 's/\/ggml\/src\/ggml-rpc\//\/src\/ggml-rpc\//g' \ -e 's/\/ggml\/src\/ggml-sycl\//\/src\/ggml-sycl\//g' \ -e 's/\/ggml\/src\/ggml-vulkan\//\/src\/ggml-vulkan\//g' \ diff --git a/scripts/sync-whisper.sh b/scripts/sync-whisper.sh index b5c55951c..57dee2b2b 100755 --- a/scripts/sync-whisper.sh +++ b/scripts/sync-whisper.sh @@ -15,6 +15,7 @@ cp -rpv ../whisper.cpp/ggml/src/ggml-hip/* src/ggml-hip/ cp -rpv ../whisper.cpp/ggml/src/ggml-kompute/* src/ggml-kompute/ cp -rpv ../whisper.cpp/ggml/src/ggml-metal/* src/ggml-metal/ cp -rpv ../whisper.cpp/ggml/src/ggml-musa/* src/ggml-musa/ +cp -rpv ../whisper.cpp/ggml/src/ggml-opencl/* src/ggml-opencl/ cp -rpv ../whisper.cpp/ggml/src/ggml-rpc/* src/ggml-rpc/ cp -rpv ../whisper.cpp/ggml/src/ggml-sycl/* src/ggml-sycl/ cp -rpv ../whisper.cpp/ggml/src/ggml-vulkan/* src/ggml-vulkan/ From ced5e67a762e979d6996e005c17cc97cf1d76fcc Mon Sep 17 00:00:00 2001 From: lhez Date: Tue, 14 Jan 2025 09:24:03 +0200 Subject: [PATCH 21/23] ggml : add opencl backend (skip) (llama/10693) --------- Co-authored-by: Skyler Szot Co-authored-by: Shangqing Gu Co-authored-by: Alexander Angus Co-authored-by: Hongqiang Wang Co-authored-by: Max Krasnyansky --- src/ggml-opencl/CMakeLists.txt | 147 + src/ggml-opencl/ggml-opencl.cpp | 4004 +++++++++++++++++ src/ggml-opencl/kernels/embed_kernel.py | 26 + src/ggml-opencl/kernels/ggml-opencl.cl | 2683 +++++++++++ src/ggml-opencl/kernels/ggml-opencl_cvt.cl | 106 + .../kernels/ggml-opencl_gemv_noshuffle.cl | 265 ++ .../ggml-opencl_gemv_noshuffle_general.cl | 271 ++ src/ggml-opencl/kernels/ggml-opencl_mm.cl | 1225 +++++ .../kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl | 130 + .../kernels/ggml-opencl_transpose_16.cl | 32 + .../kernels/ggml-opencl_transpose_32.cl | 25 + .../kernels/ggml-opencl_transpose_32_16.cl | 35 + 12 files changed, 8949 insertions(+) create mode 100644 src/ggml-opencl/CMakeLists.txt create mode 100644 src/ggml-opencl/ggml-opencl.cpp create mode 100644 src/ggml-opencl/kernels/embed_kernel.py create mode 100644 src/ggml-opencl/kernels/ggml-opencl.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_cvt.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle_general.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_mm.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_transpose_16.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_transpose_32.cl create mode 100644 src/ggml-opencl/kernels/ggml-opencl_transpose_32_16.cl diff --git a/src/ggml-opencl/CMakeLists.txt b/src/ggml-opencl/CMakeLists.txt new file mode 100644 index 000000000..45328a657 --- /dev/null +++ b/src/ggml-opencl/CMakeLists.txt @@ -0,0 +1,147 @@ +find_package(OpenCL REQUIRED) +find_package(Python3 REQUIRED) + +set(TARGET_NAME ggml-opencl) + +ggml_add_backend_library(${TARGET_NAME} + ggml-opencl.cpp + ../../include/ggml-opencl.h) +target_link_libraries(${TARGET_NAME} PRIVATE ${OpenCL_LIBRARIES}) +target_include_directories(${TARGET_NAME} PRIVATE ${OpenCL_INCLUDE_DIRS}) + +if (GGML_OPENCL_PROFILING) + message(STATUS "OpenCL profiling enabled (increases CPU overhead)") + add_compile_definitions(GGML_OPENCL_PROFILING) +endif () + +add_compile_definitions(GGML_OPENCL_SOA_Q) + +if (GGML_OPENCL_USE_ADRENO_KERNELS) + message(STATUS "OpenCL will use matmul kernels optimized for Adreno") + add_compile_definitions(GGML_OPENCL_USE_ADRENO_KERNELS) +endif () + +if (GGML_OPENCL_EMBED_KERNELS) + add_compile_definitions(GGML_OPENCL_EMBED_KERNELS) + + set(OPENCL_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl.cl.h") + set(OPENCL_MM_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mm.cl.h") + set(OPENCL_CVT_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_cvt.cl.h") + + set(OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle.cl.h") + set(OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle_general.cl.h") + set(OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h") + set(OPENCL_TRANSPOSE_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_16.cl.h") + set(OPENCL_TRANSPOSE_32_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32.cl.h") + set(OPENCL_TRANSPOSE_32_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32_16.cl.h") + + set(EMBED_KERNEL_SCRIPT "${CMAKE_CURRENT_SOURCE_DIR}/kernels/embed_kernel.py") + file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated") + + include_directories("${CMAKE_BINARY_DIR}/autogenerated") + + # Python must be accessible from command line + add_custom_command( + OUTPUT ${OPENCL_CL_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl.cl + ${OPENCL_CL_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_MM_CL_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mm.cl + ${OPENCL_MM_CL_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_mm.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_mm.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_CVT_CL_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_cvt.cl + ${OPENCL_CVT_CL_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_cvt.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_cvt.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle.cl + ${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_gemv_noshuffle.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_gemv_noshuffle.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle_general.cl + ${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_gemv_noshuffle_general.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_gemv_noshuffle_general.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl + ${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_mul_mat_Ab_Bi_8x4.cl.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_TRANSPOSE_16_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_16.cl + ${OPENCL_TRANSPOSE_16_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_transpose_16.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_transpose_16.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_TRANSPOSE_32_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32.cl + ${OPENCL_TRANSPOSE_32_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_transpose_32.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_transpose_32.cl.h" + ) + + add_custom_command( + OUTPUT ${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED} + COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} + ${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32_16.cl + ${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED} + DEPENDS kernels/ggml-opencl_transpose_32_16.cl ${EMBED_KERNEL_SCRIPT} + COMMENT "Generate ggml-opencl_transpose_32_16.cl.h" + ) + + target_sources(${TARGET_NAME} PRIVATE + ${OPENCL_CL_SOURCE_EMBED} + ${OPENCL_MM_CL_SOURCE_EMBED} + ${OPENCL_CVT_CL_SOURCE_EMBED} + ${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED} + ${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED} + ${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED} + ${OPENCL_TRANSPOSE_16_SOURCE_EMBED} + ${OPENCL_TRANSPOSE_32_SOURCE_EMBED} + ${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED}) +else () + # copy ggml-opencl.cl to bin directory + configure_file(kernels/ggml-opencl.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl.cl COPYONLY) + configure_file(kernels/ggml-opencl_mm.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mm.cl COPYONLY) + configure_file(kernels/ggml-opencl_cvt.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_cvt.cl COPYONLY) + + configure_file(kernels/ggml-opencl_gemv_noshuffle.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle.cl COPYONLY) + configure_file(kernels/ggml-opencl_gemv_noshuffle_general.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle_general.cl COPYONLY) + configure_file(kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mul_mat_Ab_Bi_8x4.cl COPYONLY) + configure_file(kernels/ggml-opencl_transpose_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_16.cl COPYONLY) + configure_file(kernels/ggml-opencl_transpose_32.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32.cl COPYONLY) + configure_file(kernels/ggml-opencl_transpose_32_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32_16.cl COPYONLY) +endif () diff --git a/src/ggml-opencl/ggml-opencl.cpp b/src/ggml-opencl/ggml-opencl.cpp new file mode 100644 index 000000000..ed90e471a --- /dev/null +++ b/src/ggml-opencl/ggml-opencl.cpp @@ -0,0 +1,4004 @@ +#define CL_TARGET_OPENCL_VERSION 220 +#define CL_USE_DEPRECATED_OPENCL_1_2_APIS + +// suppress warnings in CL headers for GCC and Clang +#pragma GCC diagnostic ignored "-Woverlength-strings" +#ifdef __clang__ +#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct" +#endif + +#include "ggml-opencl.h" +#include "ggml-backend.h" +#include "ggml-impl.h" +#include "ggml-backend-impl.h" +#include "ggml.h" + +#include + +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +#define UNUSED(x) (void)(x) + +#define CL_CHECK(err) \ + do { \ + cl_int err_ = (err); \ + if (err_ != CL_SUCCESS) { \ + GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \ + #err, err_, __FILE__, __LINE__); \ + GGML_ASSERT(0); \ + } \ + } while (0) + +//------------------------------------------------------------------------------ +// OpenCL +//------------------------------------------------------------------------------ + +bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor); + +enum GPU_FAMILY { + ADRENO, + INTEL, + UNKNOWN, +}; + +enum ADRENO_GPU_GEN { + ADRENO_UNKNOWN, + A7X, + A8X, + X1E, +}; + +static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) { + if (strstr(device_name, "730") || + strstr(device_name, "740") || + strstr(device_name, "750")) { + return ADRENO_GPU_GEN::A7X; + } + + if (strstr(device_name, "830")) { + return ADRENO_GPU_GEN::A8X; + } + + if (strstr(device_name, "X1")) { + return ADRENO_GPU_GEN::X1E; + } + + return ADRENO_GPU_GEN::ADRENO_UNKNOWN; +} + +static int get_adreno_cl_compiler_version(const char *driver_version) { + std::string driver_ver_str(driver_version); + size_t compiler_ver_pos = driver_ver_str.find("E031"); + size_t compiler_ver_len = 13; + size_t compiler_ver_offset = 5; + + if (compiler_ver_pos == std::string::npos) { + compiler_ver_pos = driver_ver_str.find("DX"); + if (compiler_ver_pos == std::string::npos) { + return -1; + } + compiler_ver_len = 11; + compiler_ver_offset = 3; + } + + std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len); + std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2); + return std::atoi(major_ver_str.c_str()); +} + +// backend device context +struct ggml_backend_opencl_device_context { + cl_platform_id platform; + std::string platform_name; + + cl_device_id device; + std::string device_name; +}; + +// backend context +struct ggml_backend_opencl_context { + cl_device_id device; + std::string device_name; + + std::string driver_version; + + GPU_FAMILY gpu_family; + ADRENO_GPU_GEN adreno_gen; + + cl_int alignment; + size_t max_alloc_size; + bool fp16_support; + + int adreno_wave_size; + + cl_context context; + cl_command_queue queue; + + cl_program program; + cl_program program_1; + cl_program program_2; + + cl_kernel kernel_add, kernel_add_row; + cl_kernel kernel_mul, kernel_mul_row; + cl_kernel kernel_scale; + cl_kernel kernel_silu, kernel_silu_4; + cl_kernel kernel_gelu, kernel_gelu_4; + cl_kernel kernel_relu; + cl_kernel kernel_clamp; + cl_kernel kernel_norm; + cl_kernel kernel_rms_norm; + cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8; + cl_kernel kernel_soft_max, kernel_soft_max_4; + cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0; + cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16; + cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32; + cl_kernel kernel_mul_mat_f32_f32; + cl_kernel kernel_mul_mat_f16_f16; + cl_kernel kernel_mul_mat_f16_f32_1row; + cl_kernel kernel_mul_mat_f16_f32; + cl_kernel kernel_mul_mat_f16_f32_l4; + cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v; + cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat; + cl_kernel kernel_mul_mat_q4_0_f32_8x_flat; + cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0, + kernel_mul_mat_q4_0_f32_flat_img_v0; + cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat; + cl_kernel kernel_mul_mv_q6_K_f32; + +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + // Transpose kernels + cl_program program_transpose_32; + cl_program program_transpose_32_16; + cl_program program_transpose_16; + cl_kernel kernel_transpose_32; + cl_kernel kernel_transpose_32_16; + cl_kernel kernel_transpose_16; + + cl_mem A_s_d_max; // max scale buffer size for transpose + cl_mem A_q_d_max; // max weight buffer size for transpose + cl_mem B_d_max; // max activation buffer size for transpose + + // Gemm and Gemv related programs, kernels, etc + cl_program program_CL_gemm; + cl_program program_CL_gemv_general; + cl_program program_CL_gemv_4096_1_11008; + cl_program program_CL_gemv_4096_1_4096; + cl_program program_CL_gemv_11008_1_4096; + cl_program program_CL_gemv_32000_1_4096; + cl_kernel CL_mul_mat_Ab_Bi_8x4; + cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general; + cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008; + cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096; + cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096; + cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096; +#endif // GGML_OPENCL_USE_ADRENO_KERNELS +}; + +static ggml_backend_device g_ggml_backend_opencl_device; +static ggml_backend_opencl_device_context g_ggml_ctx_dev_main { + /*.platform =*/ nullptr, + /*.platform_nane =*/ "", + /*.device =*/ nullptr, + /*.device_name =*/ "", +}; + +static int ggml_backend_opencl_n_devices = 0; + +// Profiling +#ifdef GGML_OPENCL_PROFILING +struct ProfilingInfo { + std::string op_name; + std::string kernel_name; + // Kernel execution time in nanoseconds. + cl_ulong duration_ns; + // Global and local work sizes. + size_t global_size[3]; + size_t local_size[3]; + // Op output size. + size_t output_size[4]; +}; + +std::vector g_profiling_info; +#endif + +inline std::string read_file(const std::string &path) { + std::ifstream ifs(path); + if (!ifs) { + return ""; + } + std::string text; + ifs.seekg(0, std::ios::end); + text.resize(ifs.tellg()); + ifs.seekg(0, std::ios::beg); + ifs.read(&text[0], text.size()); + return text; +} + +static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) { + cl_program p; + char *program_log; + size_t program_size; + size_t log_size; + int err; + + program_size = strlen(program_buffer); + + p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); + if(err < 0) { + GGML_LOG_ERROR("OpenCL error creating program"); + exit(1); + } + + err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL); + if(err < 0) { + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); + program_log = (char*) malloc(log_size + 1); + program_log[log_size] = '\0'; + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); + GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log); + free(program_log); + exit(1); + } + + return p; +} + +static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) { + static bool initialized = false; + static ggml_backend_opencl_context *backend_ctx = nullptr; + + if (initialized) { + return backend_ctx; + } + + ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context; + GGML_ASSERT(dev_ctx); + GGML_ASSERT(dev_ctx->platform == nullptr); + GGML_ASSERT(dev_ctx->device == nullptr); + GGML_ASSERT(backend_ctx == nullptr); + + initialized = true; + backend_ctx = new ggml_backend_opencl_context(); + backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN; + + cl_int err; + +#ifdef GGML_PROFILE_OPENCL + GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n"); +#endif + + struct cl_device; + struct cl_platform { + cl_platform_id id; + unsigned number; + char name[128]; + char vendor[128]; + struct cl_device * devices; + unsigned n_devices; + struct cl_device * default_device; + }; + + struct cl_device { + struct cl_platform * platform; + cl_device_id id; + unsigned number; + cl_device_type type; + char name[128]; + }; + + enum { NPLAT = 16, NDEV = 16 }; + + struct cl_platform platforms[NPLAT]; + unsigned n_platforms = 0; + struct cl_device devices[NDEV]; + unsigned n_devices = 0; + struct cl_device * default_device = NULL; + + cl_platform_id platform_ids[NPLAT]; + if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) { + GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n"); + return backend_ctx; + } + + for (unsigned i = 0; i < n_platforms; i++) { + struct cl_platform * p = &platforms[i]; + p->number = i; + p->id = platform_ids[i]; + CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); + CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); + + cl_device_id device_ids[NDEV]; + cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); + if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { + p->n_devices = 0; + } else { + CL_CHECK(clGetDeviceIDsError); + } + p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; + p->default_device = NULL; + + for (unsigned j = 0; j < p->n_devices; j++) { + struct cl_device * d = &devices[n_devices]; + d->number = n_devices++; + d->id = device_ids[j]; + d->platform = p; + CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); + CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); + + if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { + p->default_device = d; + } + } + + if (default_device == NULL && p->default_device != NULL) { + default_device = p->default_device; + } + } + + if (n_devices == 0) { + GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n"); + return backend_ctx; + } + + char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); + char * user_device_string = getenv("GGML_OPENCL_DEVICE"); + int user_platform_number = -1; + int user_device_number = -1; + + unsigned n; + if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { + user_platform_number = (int)n; + } + if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { + user_device_number = (int)n; + } + if (user_platform_number != -1 && user_device_number != -1) { + cl_platform* platform = &platforms[user_platform_number]; + if ((unsigned)user_device_number >= platform->n_devices) { + GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number); + exit(1); + } + default_device = &platform->devices[user_device_number]; + } else { + + struct cl_device * selected_devices = devices; + unsigned n_selected_devices = n_devices; + + if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { + for (unsigned i = 0; i < n_platforms; i++) { + struct cl_platform * p = &platforms[i]; + if (strstr(p->name, user_platform_string) != NULL || + strstr(p->vendor, user_platform_string) != NULL) { + user_platform_number = (int)i; + break; + } + } + if (user_platform_number == -1) { + GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); + exit(1); + } + } + if (user_platform_number != -1) { + struct cl_platform * p = &platforms[user_platform_number]; + selected_devices = p->devices; + n_selected_devices = p->n_devices; + default_device = p->default_device; + if (n_selected_devices == 0) { + GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); + exit(1); + } + } + + if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { + for (unsigned i = 0; i < n_selected_devices; i++) { + struct cl_device * d = &selected_devices[i]; + if (strstr(d->name, user_device_string) != NULL) { + user_device_number = d->number; + break; + } + } + if (user_device_number == -1) { + GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string); + exit(1); + } + } + if (user_device_number != -1) { + selected_devices = &devices[user_device_number]; + n_selected_devices = 1; + default_device = &selected_devices[0]; + } + + GGML_ASSERT(n_selected_devices > 0); + + if (default_device == NULL) { + default_device = &selected_devices[0]; + } + } + + GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); + GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name); + if (default_device->type != CL_DEVICE_TYPE_GPU) { + GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); + } + + dev_ctx->platform = default_device->platform->id; + dev_ctx->device = default_device->id; + backend_ctx->device = default_device->id; + + if (strstr(default_device->name, "Adreno")) { + backend_ctx->gpu_family = GPU_FAMILY::ADRENO; + backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name); + + // Default wave size is 128, A8x uses 64. + if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) { + backend_ctx->adreno_wave_size = 64; + } else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X || + backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) { + backend_ctx->adreno_wave_size = 128; + } else { + backend_ctx->adreno_wave_size = 128; + GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, " + "using wave size %d, " + "may not work as expected\n", + backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size); + } + } else if (strstr(default_device->name, "Intel")) { + backend_ctx->gpu_family = GPU_FAMILY::INTEL; + } else { + GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name); + backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN; + return backend_ctx; + } + +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) { + GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; " + "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n"); + return backend_ctx; + } +#endif + + // Populate backend device name + dev_ctx->platform_name = default_device->platform->name; + dev_ctx->device_name = default_device->name; + backend_ctx->device_name = default_device->name; + + // A local ref of cl_device_id for convenience + cl_device_id device = backend_ctx->device; + + // Check device OpenCL version, OpenCL 2.0 or above is required + size_t device_ver_str_size; + clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size); + char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1); + clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL); + device_ver_buffer[device_ver_str_size] = '\0'; + GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer); + + if (strstr(device_ver_buffer, "OpenCL 2") == NULL && + strstr(device_ver_buffer, "OpenCL 3") == NULL) { + GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n"); + return backend_ctx; + } + + // Check driver version + size_t driver_version_str_size; + clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size); + char *driver_version = (char *)alloca(driver_version_str_size + 1); + clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL); + driver_version[driver_version_str_size] = '\0'; + GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version); + backend_ctx->driver_version = driver_version; + + int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version); + bool has_vector_subgroup_broadcast = + adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17; + GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n", + has_vector_subgroup_broadcast ? "true" : "false"); + + size_t ext_str_size; + clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); + char *ext_buffer = (char *)alloca(ext_str_size + 1); + clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); + ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated + // Check if ext_buffer contains cl_khr_fp16 + backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL; + GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false"); + + // fp16 is required + if (!backend_ctx->fp16_support) { + GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n"); + return backend_ctx; + } + + // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes + // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x) + if (strstr(device_ver_buffer, "OpenCL 3") && + strstr(ext_buffer, "cl_khr_subgroups") == NULL && + strstr(ext_buffer, "cl_intel_subgroups") == NULL) { + GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) " + "(note that subgroups is an optional feature in OpenCL 3.0)\n"); + return backend_ctx; + } + + CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL)); + GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment); + + clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL); + GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024); + + // Check SVM. + cl_device_svm_capabilities svm_caps; + CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0)); + GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n", + svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false"); + GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n", + svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false"); + GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n", + svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false"); + GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n", + svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false"); + + // Print out configurations +#ifdef GGML_OPENCL_SOA_Q + GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n"); +#endif // GGML_OPENCL_SOA_Q + +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n"); +#endif // GGML_OPENCL_USE_ADRENO_KERNELS + + cl_context_properties properties[] = { + (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0 + }; + + CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); + + // A local ref of cl_context for convenience + cl_context context = backend_ctx->context; + + //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), + // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err : + // (queue = clCreateCommandQueue(context, device, 0, &err), err) + //))); + cl_command_queue_properties command_queue_props = 0; +#ifdef GGML_OPENCL_PROFILING + command_queue_props |= CL_QUEUE_PROFILING_ENABLE; +#endif + CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err)); + +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "ggml-opencl.cl.h" + }; +#else + const std::string kernel_src = read_file("ggml-opencl.cl"); +#endif + + std::string compile_opts = + "-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations " + "-cl-finite-math-only -cl-fast-relaxed-math "; + backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts); + + // Non matmul kernels. + CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err)); + CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err)); + CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err)); + CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err)); + CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err)); + CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err)); + CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err)); + CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err)); + CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err)); + CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err)); + CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err)); + CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err)); + CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err)); + CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err)); + CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err)); + CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err)); + CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err)); + + // Matmul kernels. + CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err)); + + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err)); + CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err)); + CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err)); + + // Load additional mulmat kernels. +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src_1 { + #include "ggml-opencl_mm.cl.h" + }; +#else + const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl"); +#endif + backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err)); + CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err)); + + // Load additional data conversion kernels. +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src_2 { + #include "ggml-opencl_cvt.cl.h" + }; +#else + const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl"); +#endif + backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err)); + + // Kernels for Adreno +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string transpose_32_src { + #include "ggml-opencl_transpose_32.cl.h" + }; +#else + const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl"); +#endif + backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err)); + +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string transpose_32_16_src { + #include "ggml-opencl_transpose_32_16.cl.h" + }; +#else + const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl"); +#endif + backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err)); + +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string transpose_16_src { + #include "ggml-opencl_transpose_16.cl.h" + }; +#else + const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl"); +#endif + backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err)); + + // Gemv general + std::string CL_gemv_compile_opts = + " -cl-std=CL2.0 " + " -cl-mad-enable " + " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size); + if (has_vector_subgroup_broadcast) { + CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT "; + } +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src_CL_gemv_general { + #include "ggml-opencl_gemv_noshuffle_general.cl.h" + }; +#else + const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl"); +#endif + + backend_ctx->program_CL_gemv_general = build_program_from_source( + context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err)); + + // Gemv 2048, 16384 + CL_gemv_compile_opts = + " -cl-std=CL2.0 " + " -cl-mad-enable " + " -DLINE_STRIDE_A=2048 " + " -DBLOCK_STRIDE_A=16384 " + " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size); + if (has_vector_subgroup_broadcast) { + CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT "; + } +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src_CL_gemv { + #include "ggml-opencl_gemv_noshuffle.cl.h" + }; +#else + const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl"); +#endif + + backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source( + context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err)); + + // Gemv 2048, 16384 + CL_gemv_compile_opts = + " -cl-std=CL2.0 " + " -cl-mad-enable " + " -DLINE_STRIDE_A=2048 " + " -DBLOCK_STRIDE_A=16384 " + " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size); + if (has_vector_subgroup_broadcast) { + CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT "; + } + + backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source( + context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err)); + + // Gemv 5504, 44032 + CL_gemv_compile_opts = + " -cl-std=CL2.0 " + " -cl-mad-enable " + " -DLINE_STRIDE_A=5504 " + " -DBLOCK_STRIDE_A=44032 " + " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size); + if (has_vector_subgroup_broadcast) { + CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT "; + } + + backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source( + context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err)); + + // Gemv 16000, 128000 + CL_gemv_compile_opts = + " -cl-std=CL2.0 " + " -cl-mad-enable " + " -DLINE_STRIDE_A=16000 " + " -DBLOCK_STRIDE_A=128000 " + " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size); + if (has_vector_subgroup_broadcast) { + CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT "; + } + + backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err)); + + // Gemm +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src_CL_gemm { + #include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h" + }; +#else + const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl"); +#endif + backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts); + CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err)); + + // Allocate intermediate buffers and images + size_t max_A_q_d_bytes = 311164928; + size_t max_A_s_d_bytes = 38895616; + size_t max_B_d_bytes = 45088768; + + CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err)); + CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err)); + CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err)); +#endif // GGML_OPENCL_USE_ADRENO_KERNELS + + // For now we support a single devices + ggml_backend_opencl_n_devices = 1; + + return backend_ctx; +} + +static void ggml_cl2_free(void) { +#ifdef GGML_OPENCL_PROFILING + FILE * fperf = fopen("cl_profiling.csv", "w"); + if (!fperf) { + GGML_LOG_ERROR("Failed to open cl_profiling.csv\n"); + return; + } + + float total_kernel_time = 0; + fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n"); + for (const ProfilingInfo & info : g_profiling_info) { + total_kernel_time += info.duration_ns/1.e6f; + fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n", + info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f, + info.global_size[0], info.global_size[1], info.global_size[2], + info.local_size[0], info.local_size[2], info.local_size[2], + info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]); + } + fclose(fperf); + + GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time); +#endif +} + +//------------------------------------------------------------------------------ +// Tensor extra management +//------------------------------------------------------------------------------ +struct ggml_tensor_extra_cl { + // The buffer object that holds the data. + cl_mem data_device; + // The offset into the buffer object. This is primarily for scratch buffer + // and view operation. + // NB: this offset no longer includes view offset (view_offs). Whenever this + // offset is used, view_offs should be considered. + cl_ulong offset; + // The actual size of the cl_mem object. This is needed when returning the + // block to the pool. + size_t actual_size; + + void reset() { + data_device = nullptr; + offset = 0; + actual_size = 0; + } +}; + +// Additional tensor extra structs for quantized tensors. +// These tensors are loaded from files and should not be allocated in scratch -- +// they should always be allocated from the pool. Hence, they do not have an +// `offset`, which indicate their locations in the scratch buffer. +struct ggml_tensor_extra_cl_q4_0 { + // Quantized values. + cl_mem q = nullptr; + // Quantized values in image1d_buffer_t. + cl_mem q_img = nullptr; + // Scales. + cl_mem d = nullptr; + // Scales in image1d_buffer_t. + cl_mem d_img = nullptr; + // Size of quantized values. + size_t size_q = 0; + // Size of scales. + size_t size_d = 0; + + ~ggml_tensor_extra_cl_q4_0() { + reset(); + } + + void reset() { + // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer. + // They must be properly released so that the original buffer can be + // properly released to avoid memory leak. + if (q != nullptr) { + CL_CHECK(clReleaseMemObject(q)); + q = nullptr; + } + if (d != nullptr) { + CL_CHECK(clReleaseMemObject(d)); + d = nullptr; + } + // Currently, q_img and d_img are only initialized when SMALL_ALLOC is + // enabled. They point to the images in ggml_backend_opencl_buffer_context. + // So, there is no need to release them here. + // TODO: initialize them for non SMALL_PATH path, or remove them. + q_img = nullptr; + d_img = nullptr; + size_q = 0; + size_d = 0; + } +}; + +//------------------------------------------------------------------------------ +// Backend API +//------------------------------------------------------------------------------ + +// +// backend +// +static const char * ggml_backend_opencl_name(ggml_backend_t backend) { + return "OpenCL"; + + UNUSED(backend); +} + +static void ggml_backend_opencl_free(ggml_backend_t backend) { + ggml_cl2_free(); + + GGML_UNUSED(backend); +} + +static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_UNUSED(backend); + GGML_UNUSED(tensor); + GGML_UNUSED(data); + GGML_UNUSED(offset); + GGML_UNUSED(size); +} + +static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_UNUSED(backend); + GGML_UNUSED(tensor); + GGML_UNUSED(data); + GGML_UNUSED(offset); + GGML_UNUSED(size); +} + +static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { + GGML_UNUSED(backend); + GGML_UNUSED(src); + GGML_UNUSED(dst); + return false; +} + +static void ggml_backend_opencl_synchronize(ggml_backend_t backend) { + GGML_UNUSED(backend); +} + +static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { + continue; + } + + bool ok = ggml_cl_compute_forward(backend, node); + if (!ok) { + GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + } + GGML_ASSERT(ok); + } + + return GGML_STATUS_SUCCESS; +} + +static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { + GGML_UNUSED(dev); + + switch (op->op) { + case GGML_OP_NONE: + return true; + case GGML_OP_GET_ROWS: + switch (op->src[0]->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + return true; + case GGML_TYPE_Q4_0: +#ifdef GGML_OPENCL_SOA_Q + // We do not support flattened Q4_0 (and possibly other Q's) + return false; +#else // GGML_OPENCL_SOA_Q + return true; +#endif // GGML_OPENCL_SOA_Q + default: + return false; + } + case GGML_OP_CPY: + case GGML_OP_DUP: + case GGML_OP_CONT: + switch (op->src[0]->type) { + case GGML_TYPE_F32: + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + return true; + default: + return false; + } + case GGML_TYPE_F16: + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + return true; + default: + return false; + } + default: + return false; + } + case GGML_OP_ADD: + case GGML_OP_SCALE: + case GGML_OP_MUL: + return true; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_SILU: + case GGML_UNARY_OP_RELU: + return ggml_is_contiguous(op->src[0]); + default: + return false; + } + case GGML_OP_CLAMP: + case GGML_OP_SOFT_MAX: + case GGML_OP_NORM: + case GGML_OP_RMS_NORM: + return true; + case GGML_OP_MUL_MAT: + if (op->src[0]->type == GGML_TYPE_F16) { + return true; + } else if (op->src[0]->type == GGML_TYPE_F32) { + return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]); + } else if (op->src[0]->type == GGML_TYPE_Q4_0 || + op->src[0]->type == GGML_TYPE_Q6_K) { + return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]); + } + return false; + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + return true; + case GGML_OP_DIAG_MASK_INF: + return op->ne[3] == 1; + case GGML_OP_ROPE: + return true; + default: + return false; + } +} + +// Forward declaration - implementation appears later in the file. +static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type); + +static ggml_guid_t ggml_backend_opencl_guid() { + static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe }; + return &guid; +} + +static ggml_backend_i ggml_backend_opencl_i = { + /* .get_name = */ ggml_backend_opencl_name, + /* .free = */ ggml_backend_opencl_free, + /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */ + /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */ + /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */ + /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */ + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_update = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_opencl_graph_compute, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, +}; + +ggml_backend_t ggml_backend_opencl_init(void) { + ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0); + ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev); + + ggml_backend_t backend = new ggml_backend { + /* .guid = */ ggml_backend_opencl_guid(), + /* .interface = */ ggml_backend_opencl_i, + /* .device = */ dev, + /* .context = */ backend_ctx + }; + + return backend; +} + +bool ggml_backend_is_opencl(ggml_backend_t backend) { + return backend && backend->iface.get_name == ggml_backend_opencl_name; +} + +// +// buffer +// +struct ggml_backend_opencl_buffer_context { + // A buffer context can hold multiple cl_mem objects. This is for flattening + // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where + // each tensor is allocated a separate buffer. When flattening is enabled + // with small allocation, each tensor is backed by two cl_mem objects (for + // quants and scales) packed into a backend_opencl_buffer. + ggml_backend_opencl_buffer_context(cl_mem buf) + : name("OpenCL") { + buffer.push_back(buf); + } + + ~ggml_backend_opencl_buffer_context() { + for (cl_mem buf : buffer) { + CL_CHECK(clReleaseMemObject(buf)); + } + for (cl_mem im : img) { + CL_CHECK(clReleaseMemObject(im)); + } + + // Delete all extras to trigger their destructors + for (ggml_tensor_extra_cl * e : temp_tensor_extras) { + delete e; + } + for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) { + delete e; + } + for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) { + delete e; + } + for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) { + delete e; + } + } + + ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() { + ggml_tensor_extra_cl * extra; + if (temp_tensor_extras.empty()) { + extra = new ggml_tensor_extra_cl(); + } else { + extra = temp_tensor_extras.back(); + temp_tensor_extras.pop_back(); + } + + temp_tensor_extras_in_use.push_back(extra); + + extra->reset(); + return extra; + } + + ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() { + ggml_tensor_extra_cl_q4_0 * extra; + if (temp_tensor_extras_q4_0.empty()) { + extra = new ggml_tensor_extra_cl_q4_0(); + } else { + extra = temp_tensor_extras_q4_0.back(); + temp_tensor_extras_q4_0.pop_back(); + } + + temp_tensor_extras_q4_0_in_use.push_back(extra); + + extra->reset(); + return extra; + } + + void reset() { + for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) { + temp_tensor_extras.push_back(e); + } + temp_tensor_extras_in_use.clear(); + + for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) { + temp_tensor_extras_q4_0.push_back(e); + } + temp_tensor_extras_q4_0_in_use.clear(); + } + + // Pools for extras. Available extras are in `temp_tensor_extras`. Extras + // being used are in `temp_tensor_extras_in_use`. At the first run, new + // extras get created and put in `in_use`. When the buffer is reset via + // the `reset` callback, all extras in `in_use` get moved to available extras + // for reuse. + std::vector temp_tensor_extras; + std::vector temp_tensor_extras_in_use; + std::vector temp_tensor_extras_q4_0; + std::vector temp_tensor_extras_q4_0_in_use; + + // The buffer_context is initially created by ggml_backend_buft_alloc_buffer + // before any tensor is initialized (at the beginning of alloc_tensor_range). + // Hence, there is alway a buffer object in this vector. When each tensor is + // being initialized, this original buffer object will be released if both + // flattening and small allocation are enabled, and additional buffer + // objects will be created in init_tensor to represent flattened quantized + // weights. + std::vector buffer; + // These are image1d_buffer_t objects that wrap around the quants and scales. + // For Q4_0 quantization, there should be two of them - one for quants and + // one for scales. They should be populated only when flattening and small + // allocation are enabled. + std::vector img; + std::string name; +}; + +static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000; + +static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; + delete ctx; +} + +static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) { + return cl_ptr_base; + + GGML_UNUSED(buffer); +} + +static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; + + ggml_cl2_init(buffer->buft->device); + + if (tensor->view_src != nullptr) { + GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft); + + ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra; + GGML_ASSERT(view_extra && "view_extra is nullptr?"); + + // Reuse extra of the parent tensor. The offset of this view tensor + // becomes `extra->offset + view_offs` and needs to be calculated when + // it is used. This changes is needed because of the change to + // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640. + // `buffer` passed in here will always be `tensor->buffer`. It is OK + // to allocate extras from the same buffer context for ordinary + // intermediate tensors. But for views into kv cache tensors, doing so + // would mess up the extras used by kv cache. + // Before #7640, `buffer` is for intermediate tensors, which is always + // different from that of kv cache tensors. + // + // NB: now extra->offset no longer accounts for view_offs. + // NB: this should not apply to weight tensors (for end-to-end runs, but + // may apply for test-backend-ops). + // FIXME: if any unexpected results are seen, double check the offset - + // there could be other places that need fix. + tensor->extra = view_extra; + } else { + { + size_t offset = (char *)tensor->data - (char *)cl_ptr_base; + + ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra(); + extra->offset = offset; + extra->data_device = ctx->buffer[0]; + extra->actual_size = ggml_nbytes(tensor); + + tensor->extra = extra; + } + } +} + +// The optimized gemm and gemv kernels are used for large matrices without batch. +// tensor is the quantized weights matrix. +inline bool use_adreno_kernels(const ggml_tensor *tensor) { + return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 && + tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device); + + cl_context context = backend_ctx->context; + cl_command_queue queue = backend_ctx->queue; + +#ifdef GGML_OPENCL_SOA_Q + // We separate the quantized bits and scale from block_q4_0 by using an + // additional kernel, where each thread handles a block. We first read the + // original weights into a temporary buffer, then create two separate + // buffers for quantized bits and scales, which are then populated by the + // conversion kernel. + if (tensor->type == GGML_TYPE_Q4_0) { + // Tensors should have been preallocated, therefore they should + // already have ggml_tensor_extra_cl as extra. + ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra; + GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized"); + + // Allocate the new extra and create aliases from the original. + ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; + ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0(); + + size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t); + size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2; + GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size"); + + cl_int err; + cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE, + ggml_nbytes(tensor), NULL, &err); + CL_CHECK(err); + CL_CHECK(clEnqueueWriteBuffer( + queue, data_device, CL_TRUE, 0, + ggml_nbytes(tensor), data, 0, NULL, NULL)); + + // We consider the specified offset arg as always, although For weights + // the offset arg should be 0 (we do not assert this). + //GGML_ASSERT(offset == 0); + + // We create subbuffers from the original tensor buffer for scales and + // quants - i.e., scales and quants are aliases into the buffer obejct + // that backs the original tensor. This is a cleaner way to adapt to the + // new memory management. + // In the old code, we allocate new buffers for scales and quants + // respectively, which could still be done but would result in double + // allocation; properly deallocating the preallocated buffer that backs + // the tensors is tricky and would leak the backend specific information + // into the general backend code. + // Does this create misaligned subbuffers (alignment is 1024) in certain + // cases ? + cl_buffer_region region; + + // The original tensor memory is divided into scales and quants, i.e., + // we first store scales, then quants. + // Create subbuffer for scales. + region.origin = extra_orig->offset + tensor->view_offs + offset; + region.size = size_d; + extra->d = clCreateSubBuffer( + extra_orig->data_device, CL_MEM_READ_WRITE, + CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err); + CL_CHECK(err); + + // Create subbuffer for quants. + region.origin = extra_orig->offset + tensor->view_offs + offset + size_d; + region.size = size_q; + extra->q = clCreateSubBuffer( + extra_orig->data_device, CL_MEM_READ_WRITE, + CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err); + CL_CHECK(err); + + //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0; + #ifdef GGML_OPENCL_USE_ADRENO_KERNELS + cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0; + + // The optimized kernels need weights in natural order, so unshuffle. + if (use_adreno_kernels(tensor)) { + kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle; + } + #else + cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0; + #endif // GGML_OPENCL_USE_ADRENO_KERNELS + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d)); + + size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clReleaseMemObject(data_device)); + + tensor->extra = extra; + + // transpose the weights and scales + #ifdef GGML_OPENCL_USE_ADRENO_KERNELS + // Only do transpose for large, non batched matrix + // TODO: use preallocated images instead of sub-buffer then image + if (use_adreno_kernels(tensor)) { + // <----------------------------------------------------------------------------------> // + // start transpose + // <----------------------------------------------------------------------------------> // + int M = tensor->ne[1]; // ne01 + int K = tensor->ne[0]; // ne00 + + // transpose is out of place, so we need to allocate transposed buffers + // <----------------------------------------------------------------------------------> // + // use sub_buffer of max buffer size instead + + size_t q_size_bytes = K * M / 8 * sizeof(float); + cl_buffer_region region; + region.origin = 0; + region.size = q_size_bytes; + cl_mem qT_d = clCreateSubBuffer( + backend_ctx->A_q_d_max, + 0, + CL_BUFFER_CREATE_TYPE_REGION, + ®ion, + &err); + // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err); + CL_CHECK(err); + + // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float); + size_t d_size_bytes = M * (K / 32) * 2; + region.origin = 0; + region.size = d_size_bytes; + cl_mem dT_d = clCreateSubBuffer( + backend_ctx->A_s_d_max, + 0, + CL_BUFFER_CREATE_TYPE_REGION, + ®ion, + &err); + // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err); + CL_CHECK(err); + + // <----------------------------------------------------------------------------------> // + + + // create images from the buffers + // <----------------------------------------------------------------------------------> // + cl_mem q_d_image1D; + cl_mem d_d_image1D; + cl_mem qT_d_image1D; + cl_mem dT_d_image1D; + + cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT }; + cl_image_desc img_desc_1d; + + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.image_width = M * K / 8 / 4; + img_desc_1d.buffer = extra->q; + q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err); + CL_CHECK(err); + + img_fmt_1d = { CL_RGBA, CL_FLOAT }; + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.image_width = M * K / 8 / 4; + img_desc_1d.buffer = qT_d; + qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err); + CL_CHECK(err); + + img_fmt_1d = { CL_RGBA, CL_FLOAT }; + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.image_width = M * K / 32 / 4 / 2; + img_desc_1d.buffer = extra->d; + d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err); + CL_CHECK(err); + + img_fmt_1d = { CL_RGBA, CL_FLOAT }; + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.image_width = M * K / 32 / 4 / 2; + img_desc_1d.buffer = dT_d; + dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err); + CL_CHECK(err); + // <----------------------------------------------------------------------------------> // + + // set up and call the transpose kernels + // <----------------------------------------------------------------------------------> // + // weights + int height_q = M / 8; + int width_q = K / 8 / 4; + kernel = backend_ctx->kernel_transpose_16; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q)); + + size_t local_size_q[3] = {4, 16, 1}; + size_t global_size_q[3] = {static_cast(width_q), static_cast(height_q), 1}; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + + // scales + int height_s = M / 8; + int width_s = K / 32 / 8; + + kernel = backend_ctx->kernel_transpose_16; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s)); + + size_t local_size_s[3] = {4, 16, 1}; + size_t global_size_s[3] = {static_cast(width_s), static_cast(height_s), 1}; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + // <----------------------------------------------------------------------------------> // + + // copy transposed buffer contents to original buffers + // <----------------------------------------------------------------------------------> // + // weights + CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + + // scales + CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + // <----------------------------------------------------------------------------------> // + + // deallocate transpose buffers + // <----------------------------------------------------------------------------------> // + CL_CHECK(clReleaseMemObject(qT_d)); + CL_CHECK(clReleaseMemObject(dT_d)); + + // deallocate temporary images + CL_CHECK(clReleaseMemObject(q_d_image1D)); + CL_CHECK(clReleaseMemObject(d_d_image1D)); + CL_CHECK(clReleaseMemObject(qT_d_image1D)); + CL_CHECK(clReleaseMemObject(dT_d_image1D)); + // <----------------------------------------------------------------------------------> // + // end transpose + // <----------------------------------------------------------------------------------> // + } + #endif // GGML_OPENCL_USE_ADRENO_KERNELS + + return; + } +#endif // GGML_OPENCL_SOA_Q + + ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra; + GGML_ASSERT(extra); + + CL_CHECK(clEnqueueWriteBuffer( + queue, extra->data_device, CL_TRUE, extra->offset + offset, + size, data, 0, NULL, NULL)); + + GGML_UNUSED(buffer); +} + +static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor->extra); + + ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device); + + cl_context context = backend_ctx->context; + cl_command_queue queue = backend_ctx->queue; + + // Make sure all previously submitted commands are finished. + CL_CHECK(clFinish(queue)); + +#ifdef GGML_OPENCL_SOA_Q + // In end-to-end runs, get_tensor is usually used to get back the logits, + // where we can simply do clEnqueueReadBuffer since they are f32. + // However, in test-backend-ops, the GPU graph is copied to the CPU backend, + // which requires reading back quantized weight tensors. + // To properly support this, we need to restore block_q4_0 struct arrays + // from the flattened buffers. + if (tensor->type == GGML_TYPE_Q4_0) { + ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra; + + cl_int err; + cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE, + ggml_nbytes(tensor), NULL, &err); + CL_CHECK(err); + + cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device)); + + size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1}; + size_t local_work_size[] = {1, 1, 1}; + + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, + global_work_size, local_work_size, 0, NULL, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clEnqueueReadBuffer( + queue, data_device, CL_TRUE, offset, + size, data, 0, NULL, NULL)); + CL_CHECK(clReleaseMemObject(data_device)); + return; + } +#endif // GGML_OPENCL_SOA_Q + + ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra; + + CL_CHECK(clEnqueueReadBuffer( + queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset, + size, data, 0, NULL, NULL)); + + GGML_UNUSED(buffer); +} + +static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_dev_t dev = buffer->buft->device; + ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev); + cl_command_queue queue = backend_ctx->queue; + + ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; + for (cl_mem buf : ctx->buffer) { + CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL)); + } + CL_CHECK(clFinish(queue)); +} + +static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) { + ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context; + ctx->reset(); +} + +static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = { + /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer, + /* .get_base = */ ggml_backend_opencl_buffer_get_base, + /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor, + /* .memset_tensor = */ NULL, + /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_opencl_buffer_clear, + /* .reset = */ ggml_backend_opencl_buffer_reset, +}; + +// +// buffer type +// + +static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) { + return "OpenCL"; + + GGML_UNUSED(buffer_type); +} + +static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) { + ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device); + + // clCreateBuffer returns -61 for size 0 + size = std::max(size, (size_t)1); + + cl_int err; + cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err); + if (err != CL_SUCCESS) { + GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0); + return nullptr; + } + + ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem); + + return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size); +} + +static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) { + // FIXME: not thread safe, device may not be initialized yet + static cl_uint alignment = -1; + if (alignment == (cl_uint)-1) { + ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device); + alignment = backend_ctx->alignment; + } + return alignment; +} + +static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) { + static size_t max_size = -1; + if (max_size == (size_t)-1) { + ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device); + max_size = backend_ctx->max_alloc_size; + } + return max_size; +} + +static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return ggml_backend_is_opencl(backend); + + UNUSED(buft); +} + +static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = { + /* .get_name = */ ggml_backend_opencl_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment, + /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size, + /* .get_alloc_size = */ NULL, + /* .is_host = */ NULL, +}; + +ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() { + static ggml_backend_buffer_type buffer_type = { + /* .iface = */ ggml_backend_opencl_buffer_type_interface, + /* .device = */ &g_ggml_backend_opencl_device, + /* .context = */ nullptr, + }; + + return &buffer_type; +} + +// +// backend device +// + +static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) { + return "GPUOpenCL"; + + GGML_UNUSED(dev); +} + +static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) { + ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context; + return dev_ctx->device_name.c_str(); +} + +static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { + *free = 1; + *total = 1; + + GGML_UNUSED(dev); +} + +static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) { + return GGML_BACKEND_DEVICE_TYPE_GPU; + + GGML_UNUSED(dev); +} + +static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { + props->name = ggml_backend_opencl_device_get_name(dev); + props->description = ggml_backend_opencl_device_get_description(dev); + props->type = ggml_backend_opencl_device_get_type(dev); + ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total); + props->caps = ggml_backend_dev_caps { + /* .async = */ false, + /* .host_buffer = */ false, + /* .buffer_from_host_ptr = */ false, + /* .events = */ false, + }; +} + +static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) { + ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev); + + ggml_backend_t backend = new ggml_backend { + /* .guid = */ ggml_backend_opencl_guid(), + /* .interface = */ ggml_backend_opencl_i, + /* .device = */ dev, + /* .context = */ backend_ctx, + }; + + return backend; + + GGML_UNUSED(params); +} + +static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) { + return ggml_backend_opencl_buffer_type(); + + GGML_UNUSED(dev); +} + +static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { + GGML_UNUSED(dev); + GGML_UNUSED(ptr); + GGML_UNUSED(size); + GGML_UNUSED(max_tensor_size); + return nullptr; +} + +static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) { + return ggml_opencl_supports_op(dev, op); +} + +static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { + return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name; + + GGML_UNUSED(dev); +} + +static struct ggml_backend_device_i ggml_backend_opencl_device_i = { + /* .get_name = */ ggml_backend_opencl_device_get_name, + /* .get_description = */ ggml_backend_opencl_device_get_description, + /* .get_memory = */ ggml_backend_opencl_device_get_memory, + /* .get_type = */ ggml_backend_opencl_device_get_type, + /* .get_props = */ ggml_backend_opencl_device_get_props, + /* .init_backend = */ ggml_backend_opencl_device_init, + /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type, + /* .get_host_buffer_type = */ NULL, + /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr, + /* .supports_op = */ ggml_backend_opencl_device_supports_op, + /* .supports_buft = */ ggml_backend_opencl_device_supports_buft, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_synchronize = */ NULL, +}; + +// Backend registry + +static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) { + return "OpenCL"; + + GGML_UNUSED(reg); +} + +static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) { + return ggml_backend_opencl_n_devices; + + GGML_UNUSED(reg); +} + +static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) { + GGML_ASSERT(index == 0); + + return &g_ggml_backend_opencl_device; + + GGML_UNUSED(reg); + GGML_UNUSED(index); +} + +static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = { + /* .get_name = */ ggml_backend_opencl_reg_get_name, + /* .device_count = */ ggml_backend_opencl_reg_device_count, + /* .device_get = */ ggml_backend_opencl_reg_device_get, + /* .get_proc_address = */ NULL, +}; + +ggml_backend_reg_t ggml_backend_opencl_reg(void) { + // TODO: make this thread-safe somehow? + static ggml_backend_reg reg; + static bool initialized = false; + + if (!initialized) { + reg = ggml_backend_reg { + /* .api_version = */ GGML_BACKEND_API_VERSION, + /* .iface = */ ggml_backend_opencl_reg_i, + /* .context = */ NULL, + }; + + g_ggml_backend_opencl_device = ggml_backend_device { + /* .iface = */ ggml_backend_opencl_device_i, + /* .reg = */ ®, + /* .context = */ &g_ggml_ctx_dev_main, + }; + + ggml_cl2_init(&g_ggml_backend_opencl_device); + + initialized = true; + } + + return ® +} + +GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg) + +//------------------------------------------------------------------------------ +// Debugging utils +//------------------------------------------------------------------------------ +#if 0 +#define QK4_0 32 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, + "wrong q4_0 block size/padding"); + +#include +#ifdef __cplusplus +#include "half.hpp" +#endif + +static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) { + void * buf = malloc(ggml_nbytes(tensor)); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; +#ifdef GGML_OPENCL_SOA_Q + void * buf_q; + void * buf_d; +#endif + +#ifdef GGML_USE_OPENCL + // Make sure everything is done. + CL_CHECK(clFinish(queue)); + +#ifdef GGML_OPENCL_SOA_Q + if (tensor->type == GGML_TYPE_Q4_0) { + ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra; + GGML_ASSERT(extra); + + size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2; + size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t); + GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor)); + buf_q = malloc(size_q); + buf_d = malloc(size_d); + + CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL)); + CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL)); + CL_CHECK(clFinish(queue)); + } else { + // Read out the tensor from GPU memory. + ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra; + GGML_ASSERT(extra); + + CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE, + extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL)); + CL_CHECK(clFinish(queue)); + } +#else + // Read out the tensor from GPU memory. + ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra; + GGML_ASSERT(extra); + + CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE, + extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL)); + CL_CHECK(clFinish(queue)); +#endif // GGML_OPENCL_SOA_Q +#endif // GGML_USE_OPENCL + + // Open file and dump. + char fname[512]; + sprintf(fname, "./tensor-dumps/%s.txt", tensor->name); + FILE * f = fopen(fname, "w"); + if (!f) { + printf("Failed to open %s\n", fname); + return; + } + + if (tensor->type == GGML_TYPE_F32) { + float * data = (float *) buf; + for (int i = 0; i < ggml_nelements(tensor); ++i) { + if (isnan(data[i])) { + printf("NaN found: %s\n", tensor->name); + break; + } + fprintf(f, "%f\n", data[i]); + } + } else if (tensor->type == GGML_TYPE_I32) { + int * data = (int *) buf; + for (int i = 0; i < ggml_nelements(tensor); ++i) { + if (isnan(data[i])) { + printf("NaN found: %s\n", tensor->name); + break; + } + fprintf(f, "%d\n", data[i]); + } + } else if (tensor->type == GGML_TYPE_F16) { +#ifdef __cplusplus + half_float::half * data = (half_float::half *) buf; + for (int i = 0; i < ggml_nelements(tensor); ++i) { + if (std::isnan(data[i])) { + printf("NaN found: %s\n", tensor->name); + break; + } + fprintf(f, "%f\n", float(data[i])); + } +#endif + } else if (tensor->type == GGML_TYPE_Q4_0) { +#ifdef GGML_OPENCL_SOA_Q + ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d; + unsigned char * data_q = (unsigned char *)buf_q; + + for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) { + fprintf(f, "%04x, ", data_d[i]); + for (int k = 0; k < QK4_0/2; ++k) { + fprintf(f, "%02x, ", data_q[k]); + } + fprintf(f, "\n"); + data_q += QK4_0/2; + } + free(buf_d); + free(buf_q); +#else + block_q4_0 * data = (block_q4_0 *) buf; + for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) { + fprintf(f, "%04x, ", data[i].d); + for (int k = 0; k < QK4_0/2; ++k) { + fprintf(f, "%02x, ", data[i].qs[k]); + } + fprintf(f, "\n"); + } +#endif // GGML_OPENCL_SOA_Q + } + free(buf); + fflush(f); + fclose(f); +} +#else +#define dump_tensor(tensor) +#endif + +//------------------------------------------------------------------------------ +// Profiling utility +//------------------------------------------------------------------------------ +#ifdef GGML_OPENCL_PROFILING +void populateProfilingInfo( + ProfilingInfo& info, cl_event evt, cl_kernel kernel, + size_t global_size[3], size_t local_size[3], + const ggml_tensor * tensor) { + cl_ulong start; + cl_ulong end; + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clGetEventProfilingInfo( + evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL)); + CL_CHECK(clGetEventProfilingInfo( + evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL)); + + char kernel_name[512]; + CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, + sizeof(kernel_name), kernel_name, NULL)); + + info.duration_ns = end - start; + info.op_name = tensor->name; + info.kernel_name = kernel_name; + info.local_size[0] = local_size[0]; + info.local_size[1] = local_size[1]; + info.local_size[2] = local_size[2]; + info.global_size[0] = global_size[0]; + info.global_size[1] = global_size[1]; + info.global_size[2] = global_size[2]; + info.output_size[0] = tensor->ne[0]; + info.output_size[1] = tensor->ne[1]; + info.output_size[2] = tensor->ne[2]; + info.output_size[3] = tensor->ne[3]; +} +#endif + +//------------------------------------------------------------------------------ +// Ops +//------------------------------------------------------------------------------ + +static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // TODO: find the optimal values for these + return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32); +} + +static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + UNUSED(backend); + UNUSED(src0); + UNUSED(src1); + UNUSED(dst); +} + +static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const int ne00 = src0 ? src0->ne[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + const cl_ulong nb02 = src0 ? src0->nb[2] : 0; + const int ne10 = src1 ? src1->ne[0] : 0; + const cl_ulong nb10 = src1 ? src1->nb[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; + const cl_ulong nb11 = src1 ? src1->nb[1] : 0; + const cl_ulong nb1 = dst ? dst->nb[1] : 0; + const cl_ulong nb2 = dst ? dst->nb[2] : 0; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel; + + switch (src0->type) { + case GGML_TYPE_F32: + kernel = backend_ctx->kernel_get_rows_f32; + break; + case GGML_TYPE_F16: + kernel = backend_ctx->kernel_get_rows_f16; + break; + case GGML_TYPE_Q4_0: + kernel = backend_ctx->kernel_get_rows_q4_0; + break; + default: + GGML_ASSERT(false && "not implemented"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2)); + + size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1}; + size_t local_work_size[] = {1, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + const cl_ulong nb00 = src0 ? src0->nb[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + const cl_ulong nb02 = src0 ? src0->nb[2] : 0; + const cl_ulong nb03 = src0 ? src0->nb[3] : 0; + + const int ne10 = src1 ? src1->ne[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; + const int ne12 = src1 ? src1->ne[2] : 0; + const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + + const cl_ulong nb10 = src1 ? src1->nb[0] : 0; + const cl_ulong nb11 = src1 ? src1->nb[1] : 0; + const cl_ulong nb12 = src1 ? src1->nb[2] : 0; + const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + + const int ne0 = dst ? dst->ne[0] : 0; + const int ne1 = dst ? dst->ne[1] : 0; + const int ne2 = dst ? dst->ne[2] : 0; + const int ne3 = dst ? dst->ne[3] : 0; + + const cl_ulong nb0 = dst ? dst->nb[0] : 0; + const cl_ulong nb1 = dst ? dst->nb[1] : 0; + const cl_ulong nb2 = dst ? dst->nb[2] : 0; + const cl_ulong nb3 = dst ? dst->nb[3] : 0; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + bool bcast_row = false; + cl_kernel kernel; + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + bcast_row = true; + int ne = ne00 / 4; + kernel = backend_ctx->kernel_add_row; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne)); + } else { + kernel = backend_ctx->kernel_add; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2)); + CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3)); + CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3)); + } + + if (bcast_row) { + int n = ggml_nelements(dst)/4; + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + unsigned int nth = MIN(64, ne0); + size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + +static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + const cl_ulong nb00 = src0 ? src0->nb[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + const cl_ulong nb02 = src0 ? src0->nb[2] : 0; + const cl_ulong nb03 = src0 ? src0->nb[3] : 0; + + const int ne10 = src1 ? src1->ne[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; + const int ne12 = src1 ? src1->ne[2] : 0; + const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + + const cl_ulong nb10 = src1 ? src1->nb[0] : 0; + const cl_ulong nb11 = src1 ? src1->nb[1] : 0; + const cl_ulong nb12 = src1 ? src1->nb[2] : 0; + const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + + const int ne0 = dst ? dst->ne[0] : 0; + const int ne1 = dst ? dst->ne[1] : 0; + const int ne2 = dst ? dst->ne[2] : 0; + const int ne3 = dst ? dst->ne[3] : 0; + + const cl_ulong nb0 = dst ? dst->nb[0] : 0; + const cl_ulong nb1 = dst ? dst->nb[1] : 0; + const cl_ulong nb2 = dst ? dst->nb[2] : 0; + const cl_ulong nb3 = dst ? dst->nb[3] : 0; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + bool bcast_row = false; + cl_kernel kernel; + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + bcast_row = true; + int ne = ne00 / 4; + kernel = backend_ctx->kernel_mul_row; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne)); + } else { + kernel = backend_ctx->kernel_mul; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2)); + CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3)); + CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3)); + } + + if (bcast_row) { + int n = ggml_nelements(dst)/4; + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + unsigned int nth = MIN(64, ne0); + size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + +static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel; + + int n = ggml_nelements(dst); + + if (n % 4 == 0) { + kernel = backend_ctx->kernel_gelu_4; + n /= 4; + } else { + kernel = backend_ctx->kernel_gelu; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL); +#endif +} + +static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel; + + int n = ggml_nelements(dst); + + if (n % 4 == 0) { + kernel = backend_ctx->kernel_silu_4; + n /= 4; + } else { + kernel = backend_ctx->kernel_silu; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel = backend_ctx->kernel_relu; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + + const int64_t n = ggml_nelements(dst); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + float min; + float max; + memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float)); + memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float)); + + cl_kernel kernel = backend_ctx->kernel_clamp; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max)); + + const int64_t n = ggml_nelements(dst); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + const int ne00 = src0 ? src0->ne[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + + GGML_ASSERT(ggml_is_contiguous_1(src0)); + + const int nth = MIN(64, ne00); + + cl_kernel kernel = backend_ctx->kernel_norm; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL)); + + const int64_t nrows = ggml_nrows(src0); + + size_t global_work_size[] = {(size_t)nrows*nth, 1, 1}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_backend_opencl_device_context * dev_ctx = + (ggml_backend_opencl_device_context *)backend->device->context; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + const int ne00 = src0 ? src0->ne[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + + GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(ggml_is_contiguous_1(src0)); + + const int nth = MIN(64, ne00); + + const int64_t nrows = ggml_nrows(src0); + + size_t global_work_size[] = {(size_t)nrows*nth, 1, 1}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + + cl_kernel kernel = backend_ctx->kernel_rms_norm; + + // Note, this kernel declares local memory in kernel args and the size + // depends on subgroup size. + // Retrieve subgroup size. + // Note, this requires OpenCL 2.1 and above + size_t sgs; + CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device, + CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE, + sizeof(local_work_size), local_work_size, + sizeof(size_t), &sgs, NULL)); + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps)); + // This is local memory - the size depends on subgroup size. + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL)); + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + +#ifdef GGML_OPENCL_SOA_Q + ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra; +#endif + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + const cl_ulong nb00 = src0 ? src0->nb[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + const cl_ulong nb02 = src0 ? src0->nb[2] : 0; + const cl_ulong nb03 = src0 ? src0->nb[3] : 0; + + const int ne10 = src1 ? src1->ne[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; + const int ne12 = src1 ? src1->ne[2] : 0; + const int ne13 = src1 ? src1->ne[3] : 0; + + const cl_ulong nb10 = src1 ? src1->nb[0] : 0; + const cl_ulong nb11 = src1 ? src1->nb[1] : 0; + const cl_ulong nb12 = src1 ? src1->nb[2] : 0; + const cl_ulong nb13 = src1 ? src1->nb[3] : 0; + + const int ne0 = dst ? dst->ne[0] : 0; + const int ne1 = dst ? dst->ne[1] : 0; + + int r2 = ne12/ne02; + int r3 = ne13/ne03; + + GGML_ASSERT(ne00 == ne10); + + int nth0 = 32; + int nth1 = 1; + int nrows = 1; + // The number of values produced by each subgroup + int ndst = 4; + + cl_kernel kernel; + +#ifdef GGML_OPENCL_USE_ADRENO_KERNELS + cl_context context = backend_ctx->context; + + if (ne01 && ne1 && use_adreno_kernels(src0)) { + + // init CL objects + // <--------------------------------------------> // + cl_int status; + cl_image_format img_fmt_1d; + cl_image_desc img_desc_1d; + cl_buffer_region region; + cl_mem A_image1d = nullptr; + cl_mem B_image1d = nullptr; + cl_mem B_sub_buffer = nullptr; + cl_mem C_d = nullptr; + // for B transpose + cl_mem B_d = nullptr; + cl_mem B_d_input_image = nullptr; + // <--------------------------------------------> // + + // define matrix dimensions + // <--------------------------------------------> // + int M = ne01; + int N = ne1; + int K = ne00; + int padding; + // <--------------------------------------------> // + + // q4_0 x fp32 + if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) { + // TODO: remove duplicate definitions of image description + format -- move to top + + // create an image for A + // <--------------------------------------------> // + if (N == 1) { + img_fmt_1d = { CL_R, CL_UNSIGNED_INT32}; + } else { + img_fmt_1d = { CL_R, CL_FLOAT}; + } + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float + img_desc_1d.buffer = extra0_q4_0->q; + A_image1d = clCreateImage( + context, + CL_MEM_READ_ONLY, + &img_fmt_1d, + &img_desc_1d, + NULL, + &status); + CL_CHECK(status); + // <--------------------------------------------> // + + + // create a sub_buffer for B + // <--------------------------------------------> // + region.origin = (extra1->offset); + region.size = K * N * sizeof(float); + B_sub_buffer = clCreateSubBuffer( + extra1->data_device, + 0, + CL_BUFFER_CREATE_TYPE_REGION, + ®ion, + &status); + CL_CHECK(status); + // <--------------------------------------------> // + + // transpose activation for Skyler's gemm + if (N != 1) { + //how many extra elements beyond multiple of 8 + int extra_elements = N % 8; + + //how much padding to add + padding = 0; + if (extra_elements > 0){ + padding = 8 - extra_elements; + } + + // Specify the starting offset (in bytes) + region.origin = 0; + // Specify the size of the sub-buffer (divide by 2 for FP16) + region.size = K * (N + padding) * sizeof(float)/2; + B_d = clCreateSubBuffer( + backend_ctx->B_d_max, + 0, + CL_BUFFER_CREATE_TYPE_REGION, + ®ion, + &status); + CL_CHECK(status); + + cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT }; + cl_image_desc image_desc_B_d_input = { + CL_MEM_OBJECT_IMAGE1D_BUFFER, + static_cast(K * N / 4), + 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer } + }; + B_d_input_image = clCreateImage( + context, + 0, + &image_format_B_d_input, + &image_desc_B_d_input, + NULL, + &status); + CL_CHECK(status); + + cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16) + cl_image_desc image_desc_B_d_output = { + CL_MEM_OBJECT_IMAGE1D_BUFFER, + static_cast(K * (N + padding)/4), + 0, 0, 0, 0, 0, 0, 0, { B_d } + }; + B_image1d = clCreateImage( + context, + 0, + &image_format_B_d_output, + &image_desc_B_d_output, + NULL, + &status); + CL_CHECK(status); + + int height_B = N/4; + int width_B = K/4; + int padded_height_B = (N + padding)/4; + + kernel = backend_ctx->kernel_transpose_32_16; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B)); + + size_t local_size_t[2] = { 1, 16 }; + //WGS tuning + if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) { + local_size_t[0]=4; + local_size_t[1]=8; + } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) { + local_size_t[0]=2; + local_size_t[1]=8; + } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) { + local_size_t[0]=1; + local_size_t[1]=8; + } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) { + local_size_t[0]=2; + local_size_t[1]=8; + } + + size_t global_size_t[2] = { + static_cast(width_B), + static_cast(padded_height_B) + }; + + #ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst); + #else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL)); + #endif + } else { + // no need to transpose B in other cases + // create an image for B from sub_buffer + // <--------------------------------------------> // + img_fmt_1d = {CL_RGBA, CL_FLOAT}; + + memset(&img_desc_1d, 0, sizeof(img_desc_1d)); + img_desc_1d.image_width = K * N / 4; + img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; + img_desc_1d.buffer = B_sub_buffer; + B_image1d = clCreateImage( + context, + CL_MEM_READ_ONLY, + &img_fmt_1d, + &img_desc_1d, + NULL, + &status); + CL_CHECK(status); + // <--------------------------------------------> // + } + + // choose gemm or gemv kernel + // <--------------------------------------------> // + if (N == 1) { + kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general; + if (M == 4096 && K == 4096) { + kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096; + } else if (M == 4096 && K == 11008) { + kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008; + } else if (M == 11008 && K == 4096) { + kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096; + } else if (M == 32000 && K == 4096) { + kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096; + } + } else { + kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4; + } + // <--------------------------------------------> // + + // set kernel args + // <--------------------------------------------> // + cl_uint k_arg = 0; + + if (N == 1) { + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3)); + } else { + region.origin = extrad->offset; // Specify the starting offset (in bytes) + region.size = M * N * sizeof(float); // Specify the size of the sub-buffer + C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status); + CL_CHECK(status); + + int padded_N = ne1 + padding; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding + } + // <--------------------------------------------> // + + // choose workgroup size + // <--------------------------------------------> // + size_t global_work_size[3] = { + 64, static_cast((M+63)/64), static_cast((N+31)/32)}; + size_t local_work_size[3] = {64, 2, 4}; + + global_work_size[0] = (size_t)(ceil((float)ne1/8)); + global_work_size[1] = (size_t)(ne01/4); + global_work_size[2] = (size_t)(1); + + local_work_size[0] = (size_t)(1); //4x32 for FP32 + local_work_size[1] = (size_t)(128); + local_work_size[2] = (size_t)(1); + + //WGS tuning + if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) { + local_work_size[0] = 1; + local_work_size[1] = 128; + } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) { + local_work_size[0] = 2; + local_work_size[1] = 64; + } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) { + local_work_size[0] = 2; + local_work_size[1] = 64; + } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) { + local_work_size[0] = 2; + local_work_size[1] = 64; + } + + if (N == 1) { + local_work_size[0] = backend_ctx->adreno_wave_size; // localsize + local_work_size[1] = 4; // reduce factor + local_work_size[2] = 1; + + global_work_size[0] = M / 2; + global_work_size[1] = 4; // reduce factor + global_work_size[2] = 1; + } + // <--------------------------------------------> // + + // enqueue kernel with profiling + // <--------------------------------------------> // + #ifdef GGML_OPENCL_PROFILING + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); + // enqueue kernel without profiling + #else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); + #endif + // <--------------------------------------------> // + + // deallocate sub buffers and images + // <--------------------------------------------> // + CL_CHECK(clReleaseMemObject(A_image1d)); + CL_CHECK(clReleaseMemObject(B_sub_buffer)); + CL_CHECK(clReleaseMemObject(B_image1d)); + + if (N != 1) { + CL_CHECK(clReleaseMemObject(B_d)); + CL_CHECK(clReleaseMemObject(B_d_input_image)); + CL_CHECK(clReleaseMemObject(C_d)); + } + // <--------------------------------------------> // + + return; + } + } // if (ne01 && ne1) +#endif // GGML_OPENCL_USE_ADRENO_KERNELS + + if (!ggml_is_transposed(src0) && + !ggml_is_transposed(src1) && + src1t == GGML_TYPE_F32 && + ne00%32 == 0 && + ne11 > 2) { +#ifdef GGML_OPENCL_SOA_Q + // Set up kernel. + switch(src0t) { + case GGML_TYPE_Q4_0: + // This should have been satisfied. + GGML_ASSERT(ne11 == ne1); + GGML_ASSERT(ne01 == ne0); + + if (backend_ctx->gpu_family == INTEL) { + nth0 = 16; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 64; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3)); + break; + default: + break; + } + + // Launch kernel. + if (src0t == GGML_TYPE_Q4_0) { + size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13}; + size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1}; + + if (backend_ctx->gpu_family == INTEL) { + // Set global size for Intel. It uses 16x output values. + global_work_size[0] = (size_t)(ne01 + 15)/16*nth0; + global_work_size[1] = (size_t)ne11*nth1; + global_work_size[2] = (size_t)ne12*ne13; + } + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + return; + } +#else // GGML_OPENCL_SOA_Q + // TODO: add block_q4_0 variant. +#endif // GGML_OPENCL_SOA_Q + } + + // use custom matrix x vector kernel + switch (src0t) { + case GGML_TYPE_F32: + //GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(src1t == GGML_TYPE_F32); + kernel = backend_ctx->kernel_mul_mat_f32_f32; + nrows = 4; + + if (backend_ctx->gpu_family == INTEL) { + nth0 = 32; + nth1 = 1; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 64; + nth1 = 1; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3)); + break; + case GGML_TYPE_F16: + //GGML_ASSERT(ne02 == ne12); + if (backend_ctx->gpu_family == INTEL) { + nth0 = 32; + nth1 = 1; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 64; + nth1 = 1; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + if (src1t == GGML_TYPE_F32) { + if (ne11 * ne12 < 4) { + kernel = backend_ctx->kernel_mul_mat_f16_f32_1row; + } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { + kernel = backend_ctx->kernel_mul_mat_f16_f32_l4; + nrows = ne11; + } else { + kernel = backend_ctx->kernel_mul_mat_f16_f32; + nrows = 4; + } + } else { + kernel = backend_ctx->kernel_mul_mat_f16_f16; + nrows = 4; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3)); + break; + case GGML_TYPE_Q4_0: + // This should have been satisfied. + GGML_ASSERT(ne11 == ne1); + GGML_ASSERT(ne01 == ne0); + +#ifdef GGML_OPENCL_SOA_Q + if (backend_ctx->gpu_family == INTEL) { + nth0 = 16; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat; + ndst = 8; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 64; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat; + ndst =8; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3)); +#else // GGML_OPENCL_SOA_Q + if (backend_ctx->gpu_family == INTEL) { + // Use 1D local size. Each workgroup is a SIMD group. Each SIMD + // group produces N_DST (4 for Q4_0 kernel) values in the result. + // The number of workgroups on dim 0 (the leading dimension) is + // the nearest multiple of 4 that covers ne0 (equals ne01). + nth0 = 16; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32; + ndst = 4; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 64; + nth1 = 1; + + kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v; + ndst = 4; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3)); +#endif // GGML_OPENCL_SOA_Q + break; + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + kernel = backend_ctx->kernel_mul_mv_q6_K_f32; + + if (backend_ctx->gpu_family == INTEL) { + nth0 = 2; + nth1 = 16; + } else if (backend_ctx->gpu_family == ADRENO) { + nth0 = 2; + nth1 = 64; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3)); + break; + default: + GGML_ASSERT(false && "not implemented"); + } + + if (src0t == GGML_TYPE_Q4_0 || + src0t == GGML_TYPE_Q4_1 || + src0t == GGML_TYPE_Q8_0 || + src0t == GGML_TYPE_Q2_K) { + // Each SIMD group produces N_DST values in the result. Assuming each + // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will + // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size + // (number of workgroups) will be a nearest multiple of + // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is + // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul). + size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13}; + size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else if (src0t == GGML_TYPE_Q4_K) { + GGML_ASSERT(false && "not implemented"); + } else if (src0t == GGML_TYPE_Q3_K) { + GGML_ASSERT(false && "not implemented"); + } else if (src0t == GGML_TYPE_Q5_K) { + GGML_ASSERT(false && "not implemented"); + } else if (src0t == GGML_TYPE_Q6_K) { + size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13}; + size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + int64_t ny = (ne11 + nrows - 1)/nrows; + + size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13}; + size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + +static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_UNUSED(src1); + + GGML_ASSERT(ggml_is_contiguous(src0)); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + float scale; + memcpy(&scale, dst->op_params, sizeof(scale)); + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel = backend_ctx->kernel_scale; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale)); + + int n = ggml_nelements(dst)/4; + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + + // GGML_OP_CPY happens between src0 and src1. + // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst. + UNUSED(dst); + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + const cl_ulong nb00 = src0 ? src0->nb[0] : 0; + const cl_ulong nb01 = src0 ? src0->nb[1] : 0; + const cl_ulong nb02 = src0 ? src0->nb[2] : 0; + const cl_ulong nb03 = src0 ? src0->nb[3] : 0; + + const int ne10 = src1 ? src1->ne[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; + const int ne12 = src1 ? src1->ne[2] : 0; + const int ne13 = src1 ? src1->ne[3] : 0; + + const cl_ulong nb10 = src1 ? src1->nb[0] : 0; + const cl_ulong nb11 = src1 ? src1->nb[1] : 0; + const cl_ulong nb12 = src1 ? src1->nb[2] : 0; + const cl_ulong nb13 = src1 ? src1->nb[3] : 0; + + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + + cl_kernel kernel; + + switch (src0t) { + case GGML_TYPE_F32: + switch (src1t) { + case GGML_TYPE_F16: + kernel = backend_ctx->kernel_cpy_f32_f16; + break; + case GGML_TYPE_F32: + kernel = backend_ctx->kernel_cpy_f32_f32; + break; + default: + GGML_ASSERT(false && "not implemented"); + } + break; + case GGML_TYPE_F16: + switch (src1t) { + case GGML_TYPE_F16: + kernel = backend_ctx->kernel_cpy_f16_f16; + break; + case GGML_TYPE_F32: + kernel = backend_ctx->kernel_cpy_f16_f32; + break; + default: + GGML_ASSERT(false && "not implemented"); + } + break; + default: + GGML_ASSERT(false && "not implemented"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13)); + + const int nth = MIN(64, ne00); + + size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cl_cpy(backend, src0, dst, nullptr); + UNUSED(src1); +} + +static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + int n_past = ((int32_t *)(dst->op_params))[0]; + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel; + + if (ne00%8 == 0) { + kernel = backend_ctx->kernel_diag_mask_inf_8; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past)); + + size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + kernel = backend_ctx->kernel_diag_mask_inf; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past)); + + size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + +static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + // Softmax can now fuse KQ mask and KQ scale, which used to be two additional + // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama, + // alibi is not used; however, for some other models, it is used. + // KQ_mask + if (src1) { + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + } + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0; + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + float scale, max_bias; + memcpy(&scale, dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, dst->op_params + 1, sizeof(float)); + + const int nrows_x = ggml_nrows(src0); + const int nrows_y = src0->ne[1]; + + const int n_head = nrows_x/nrows_y; + const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + // Local size must be wave size. Each workgroup is a wave, working on a row, + // where a row corresponds to leading dimension. + int nth = MIN(32, ne00); + + if (backend_ctx->gpu_family == INTEL) { + // This is the same as the initial value. + nth = MIN(32, ne00); + } + else if (backend_ctx->gpu_family == ADRENO) { + nth = 64; + } else { + GGML_ASSERT(false && "TODO: Unknown GPU"); + } + + cl_kernel kernel; + + if (ne00%4 == 0) { + kernel = backend_ctx->kernel_soft_max_4; + } else { + kernel = backend_ctx->kernel_soft_max; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2)); + + size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + ggml_tensor * src2 = dst->src[2]; + ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr; + + cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0; + + const int ne00 = src0 ? src0->ne[0] : 0; + const int ne01 = src0 ? src0->ne[1] : 0; + const int ne02 = src0 ? src0->ne[2] : 0; + const int ne03 = src0 ? src0->ne[3] : 0; + + const int nb00 = src0 ? src0->nb[0] : 0; + const int nb01 = src0 ? src0->nb[1] : 0; + const int nb02 = src0 ? src0->nb[2] : 0; + const int nb03 = src0 ? src0->nb[3] : 0; + + const int ne10 = src1 ? src1->ne[0] : 0; + const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11); + const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12); + const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + + const int ne0 = dst ? dst->ne[0] : 0; + const int ne1 = dst ? dst->ne[1] : 0; + const int ne2 = dst ? dst->ne[2] : 0; + const int ne3 = dst ? dst->ne[3] : 0; + + const int nb0 = dst ? dst->nb[0] : 0; + const int nb1 = dst ? dst->nb[1] : 0; + const int nb2 = dst ? dst->nb[2] : 0; + const int nb3 = dst ? dst->nb[3] : 0; + + GGML_ASSERT(ne10 == ne02); + + int nth = MIN(64, ne00); + + const int n_past = ((int *) dst->op_params)[0]; + const int n_dims = ((int *) dst->op_params)[1]; + const int mode = ((int *) dst->op_params)[2]; + const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; + + float freq_base; + float freq_scale; + float ext_factor; + float attn_factor; + float beta_fast; + float beta_slow; + + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + const bool is_neox = mode & 2; + + cl_kernel kernel; + + if (!is_neox) { + switch (src0->type) { + case GGML_TYPE_F32: + kernel = backend_ctx->kernel_rope_norm_f32; + break; + case GGML_TYPE_F16: + kernel = backend_ctx->kernel_rope_norm_f16; + break; + default: + GGML_ASSERT(false); + }; + } else { + switch (src0->type) { + case GGML_TYPE_F32: + kernel = backend_ctx->kernel_rope_neox_f32; + break; + case GGML_TYPE_F16: + kernel = backend_ctx->kernel_rope_neox_f16; + break; + default: + GGML_ASSERT(false); + }; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3)); + CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past)); + CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims)); + CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig)); + CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base)); + CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale)); + CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor)); + CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor)); + CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast)); + CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow)); + + size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +//------------------------------------------------------------------------------ +// Op offloading +//------------------------------------------------------------------------------ + +typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); + +bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) { + ggml_cl_func_t func = nullptr; + + ggml_tensor * src0 = tensor->src[0]; + ggml_tensor * src1 = tensor->src[1]; + + const bool any_on_device = tensor->extra + || (src0 != nullptr && src0->extra) + || (src1 != nullptr && src1->extra); + + switch (tensor->op) { + case GGML_OP_GET_ROWS: + if (!any_on_device) { + return false; + } + func = ggml_cl_get_rows; + break; + case GGML_OP_CPY: + if (!any_on_device) { + return false; + } + func = ggml_cl_cpy; + break; + case GGML_OP_DUP: + case GGML_OP_CONT: + if (!any_on_device) { + return false; + } + func = ggml_cl_dup; + break; + case GGML_OP_ADD: + if (!any_on_device) { + return false; + } + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + func = ggml_cl_add; + break; + case GGML_OP_MUL: + if (!any_on_device) { + return false; + } + func = ggml_cl_mul; + break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(tensor)) { + case GGML_UNARY_OP_GELU: + if (!any_on_device) { + return false; + } + func = ggml_cl_gelu; + break; + case GGML_UNARY_OP_SILU: + if (!any_on_device) { + return false; + } + func = ggml_cl_silu; + break; + case GGML_UNARY_OP_RELU: + if (!any_on_device) { + return false; + } + func = ggml_cl_relu; + break; + default: + return false; + } break; + case GGML_OP_CLAMP: + if (!any_on_device) { + return false; + } + func = ggml_cl_clamp; + break; + case GGML_OP_NORM: + if (!any_on_device) { + return false; + } + func = ggml_cl_norm; + break; + case GGML_OP_RMS_NORM: + if (!any_on_device) { + return false; + } + func = ggml_cl_rms_norm; + break; + case GGML_OP_MUL_MAT: + if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) { + return false; + } + func = ggml_cl_mul_mat; + break; + case GGML_OP_SCALE: + if (!any_on_device) { + return false; + } + func = ggml_cl_scale; + break; + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + if (!any_on_device) { + return false; + } + func = ggml_cl_nop; + break; + case GGML_OP_DIAG_MASK_INF: + if (!any_on_device) { + return false; + } + func = ggml_cl_diag_mask_inf; + break; + case GGML_OP_SOFT_MAX: + if (!any_on_device) { + return false; + } + func = ggml_cl_soft_max; + break; + case GGML_OP_ROPE: + if (!any_on_device) { + return false; + } + func = ggml_cl_rope; + break; + default: + return false; + } + + func(backend, tensor->src[0], tensor->src[1], tensor); + return true; +} diff --git a/src/ggml-opencl/kernels/embed_kernel.py b/src/ggml-opencl/kernels/embed_kernel.py new file mode 100644 index 000000000..b5d1d7242 --- /dev/null +++ b/src/ggml-opencl/kernels/embed_kernel.py @@ -0,0 +1,26 @@ +# + +import sys +import logging +logger = logging.getLogger("opencl-embed-kernel") + + +def main(): + logging.basicConfig(level=logging.INFO) + + if len(sys.argv) != 3: + logger.info("Usage: python embed_kernel.py ") + sys.exit(1) + + ifile = open(sys.argv[1], "r") + ofile = open(sys.argv[2], "w") + + for i in ifile: + ofile.write('R"({})"\n'.format(i)) + + ifile.close() + ofile.close() + + +if __name__ == "__main__": + main() diff --git a/src/ggml-opencl/kernels/ggml-opencl.cl b/src/ggml-opencl/kernels/ggml-opencl.cl new file mode 100644 index 000000000..d1cdf709b --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl.cl @@ -0,0 +1,2683 @@ +#ifdef cl_khr_fp16 +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#elif defined(cl_amd_fp16) +#pragma OPENCL EXTENSION cl_amd_fp16 : enable +#else +#error "Half precision floating point not supportedby OpenCL implementation on your device." +#endif + +#ifdef cl_khr_subgroups +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#elif defined(cl_intel_subgroups) +#pragma OPENCL EXTENSION cl_intel_subgroups : enable +#else +#error "Subgroup not supported on your device." +#endif + +#ifdef cl_intel_required_subgroup_size +// Always use subgroup size of 32 on Intel. +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +// Always use subgroups size of 64 on Adreno. +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#else +// TODO: do not know how to choose subgroup size on other GPUs. +#error "Selecting subgroup size is not supported on your device." +#endif + +#define QK4_0 32 +#define QR4_0 2 +#define QK4_1 32 +#define QR4_1 2 +#define QK5_0 32 +#define QR5_0 2 +#define QK5_1 32 +#define QR5_1 2 +#define QK8_0 32 +#define QR8_0 1 +#define QK_K 256 +#define K_QUANTS_PER_ITERATION 2 + +typedef char int8_t; +typedef uchar uint8_t; +typedef short int16_t; +typedef ushort uint16_t; +typedef int int32_t; +typedef uint uint32_t; + +//------------------------------------------------------------------------------ +// block_q4_0 +//------------------------------------------------------------------------------ +struct block_q4_0 +{ + half d; + uint8_t qs[QK4_0 / 2]; +}; + +//------------------------------------------------------------------------------ +// block_q4_1 +//------------------------------------------------------------------------------ +struct block_q4_1 +{ + half d; + half m; + uint8_t qs[QK4_1 / 2]; +}; + +//------------------------------------------------------------------------------ +// block_q5_0 +//------------------------------------------------------------------------------ +struct block_q5_0 +{ + half d; + uint32_t qh; + uint8_t qs[QK5_0 / 2]; +}; + +//------------------------------------------------------------------------------ +// block_q5_1 +//------------------------------------------------------------------------------ +struct block_q5_1 +{ + half d; + half m; + uint32_t qh; + uint8_t qs[QK5_1 / 2]; +}; + +//------------------------------------------------------------------------------ +// block_q8_0 +//------------------------------------------------------------------------------ +struct block_q8_0 +{ + half d; + int8_t qs[QK8_0]; +}; + +//------------------------------------------------------------------------------ +// block_q2_K +//------------------------------------------------------------------------------ +struct block_q2_K +{ + uint8_t scales[16]; + uint8_t qs[64]; + half d; + half dmin; +}; + +//------------------------------------------------------------------------------ +// block_q3_K +//------------------------------------------------------------------------------ +struct block_q3_K +{ + uint8_t hmask[32]; + uint8_t qs[64]; + uint8_t scales[12]; + half d; +}; + +//------------------------------------------------------------------------------ +// block_q4_K +//------------------------------------------------------------------------------ +struct block_q4_K +{ + half d; + half dmin; + uint8_t scales[12]; + uint8_t qs[128]; +}; + +//------------------------------------------------------------------------------ +// block_q5_K +//------------------------------------------------------------------------------ +struct block_q5_K +{ + half d; + half dmin; + uint8_t scales[12]; + uint8_t qh[32]; + uint8_t qs[128]; +}; + +//------------------------------------------------------------------------------ +// block_q6_K +//------------------------------------------------------------------------------ +struct block_q6_K +{ + uint8_t ql[128]; + uint8_t qh[64]; + int8_t scales[16]; + half d; +}; + +//------------------------------------------------------------------------------ +// dequantize_q4_0_f32, dequantize_q4_0_f16 +//------------------------------------------------------------------------------ +void dequantize_q4_0_f32(global struct block_q4_0 * xb, short il, float16 * reg) { + global ushort * qs = ((global ushort *)xb + 1); + float d1 = il ? (xb->d / 16.h) : xb->d; + float d2 = d1 / 256.f; + float md = -8.h * xb->d; + ushort mask0 = il ? 0x00F0 : 0x000F; + ushort mask1 = mask0 << 8; + + reg->s0 = d1 * (qs[0] & mask0) + md; + reg->s1 = d2 * (qs[0] & mask1) + md; + + reg->s2 = d1 * (qs[1] & mask0) + md; + reg->s3 = d2 * (qs[1] & mask1) + md; + + reg->s4 = d1 * (qs[2] & mask0) + md; + reg->s5 = d2 * (qs[2] & mask1) + md; + + reg->s6 = d1 * (qs[3] & mask0) + md; + reg->s7 = d2 * (qs[3] & mask1) + md; + + reg->s8 = d1 * (qs[4] & mask0) + md; + reg->s9 = d2 * (qs[4] & mask1) + md; + + reg->sa = d1 * (qs[5] & mask0) + md; + reg->sb = d2 * (qs[5] & mask1) + md; + + reg->sc = d1 * (qs[6] & mask0) + md; + reg->sd = d2 * (qs[6] & mask1) + md; + + reg->se = d1 * (qs[7] & mask0) + md; + reg->sf = d2 * (qs[7] & mask1) + md; +} + +void dequantize_q4_0_f16(global struct block_q4_0 * xb, short il, half16 * reg) { + global ushort * qs = ((global ushort *)xb + 1); + half d1 = il ? (xb->d / 16.h) : xb->d; + half d2 = d1 / 256.h; + half md = -8.h * xb->d; + ushort mask0 = il ? 0x00F0 : 0x000F; + ushort mask1 = mask0 << 8; + + reg->s0 = d1 * (qs[0] & mask0) + md; + reg->s1 = d2 * (qs[0] & mask1) + md; + + reg->s2 = d1 * (qs[1] & mask0) + md; + reg->s3 = d2 * (qs[1] & mask1) + md; + + reg->s4 = d1 * (qs[2] & mask0) + md; + reg->s5 = d2 * (qs[2] & mask1) + md; + + reg->s6 = d1 * (qs[3] & mask0) + md; + reg->s7 = d2 * (qs[3] & mask1) + md; + + reg->s8 = d1 * (qs[4] & mask0) + md; + reg->s9 = d2 * (qs[4] & mask1) + md; + + reg->sa = d1 * (qs[5] & mask0) + md; + reg->sb = d2 * (qs[5] & mask1) + md; + + reg->sc = d1 * (qs[6] & mask0) + md; + reg->sd = d2 * (qs[6] & mask1) + md; + + reg->se = d1 * (qs[7] & mask0) + md; + reg->sf = d2 * (qs[7] & mask1) + md; +} + +//------------------------------------------------------------------------------ +// add +//------------------------------------------------------------------------------ + +// general-purpose kernel for addition of two tensors +// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3 +// cons: not very efficient +kernel void kernel_add( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global char * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + int ne13, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = src0 + offset0; + src1 = src1 + offset1; + dst = dst + offsetd; + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int i13 = i03 % ne13; + int i12 = i02 % ne12; + int i11 = i01 % ne11; + + global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + const int i10 = i0 % ne10; + *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) + *((global float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_add_row( + global float4 * src0, + ulong offset0, + global float4 * src1, + ulong offset1, + global float4 * dst, + ulong offsetd, + int ne +) { + src0 = (global float4*)((global char*)src0 + offset0); + src1 = (global float4*)((global char*)src1 + offset1); + dst = (global float4*)((global char*)dst + offsetd); + + // This performs better than using %. + uint gid = get_global_id(0); + uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne + dst[gid] = src0[gid] + src1[idx1]; +} + +//------------------------------------------------------------------------------ +// mul +//------------------------------------------------------------------------------ +kernel void kernel_mul( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global char * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + int ne13, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = src0 + offset0; + src1 = src1 + offset1; + dst = dst + offsetd; + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int i13 = i03 % ne13; + int i12 = i02 % ne12; + int i11 = i01 % ne11; + + global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + const int i10 = i0 % ne10; + *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) * *((global float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_mul_row( + global float4 * src0, + ulong offset0, + global float4 * src1, + ulong offset1, + global float4 * dst, + ulong offsetd, + int ne +) { + src0 = (global float4*)((global char*)src0 + offset0); + src1 = (global float4*)((global char*)src1 + offset1); + dst = (global float4*)((global char*)dst + offsetd); + + // This performs better than using %. + uint gid = get_global_id(0); + uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne + dst[gid] = src0[gid] * src1[idx1]; +} + +//------------------------------------------------------------------------------ +// scale +//------------------------------------------------------------------------------ +kernel void kernel_scale( + global float4 * src0, + ulong offset0, + global float4 * dst, + ulong offsetd, + float scale +) { + src0 = (global float4*)((global char*)src0 + offset0); + dst = (global float4*)((global char*)dst + offsetd); + dst[get_global_id(0)] = src0[get_global_id(0)] * scale; +} + +//------------------------------------------------------------------------------ +// gelu +//------------------------------------------------------------------------------ +#define GELU_COEF_A 0.044715f +#define SQRT_2_OVER_PI 0.79788456080286535587989211986876f + +kernel void kernel_gelu( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + float x = src0[get_global_id(0)]; + + dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +kernel void kernel_gelu_4( + global float4 * src0, + ulong offset0, + global float4 * dst, + ulong offsetd +) { + src0 = (global float4*)((global char*)src0 + offset0); + dst = (global float4*)((global char*)dst + offsetd); + + float4 x = src0[get_global_id(0)]; + + dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +//------------------------------------------------------------------------------ +// silu +//------------------------------------------------------------------------------ +kernel void kernel_silu( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + float x = src0[get_global_id(0)]; + dst[get_global_id(0)] = x / (1.0f + exp(-x)); +} + +kernel void kernel_silu_4( + global float4 * src0, + ulong offset0, + global float4 * dst, + ulong offsetd +) { + src0 = (global float4*)((global char*)src0 + offset0); + dst = (global float4*)((global char*)dst + offsetd); + + float4 x = src0[get_global_id(0)]; + dst[get_global_id(0)] = x / (1.0f + exp(-x)); +} + +//------------------------------------------------------------------------------ +// relu +//------------------------------------------------------------------------------ +kernel void kernel_relu( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = fmax(0.0f, src0[get_global_id(0)]); +} + +//------------------------------------------------------------------------------ +// clamp +//------------------------------------------------------------------------------ +kernel void kernel_clamp( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + float min, + float max +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = src0[get_global_id(0)] < min ? + min : + (src0[get_global_id(0)] > max ? max : src0[get_global_id(0)]); +} + +//------------------------------------------------------------------------------ +// norm +//------------------------------------------------------------------------------ +kernel void kernel_norm( + global void * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + ulong nb01, + float eps, + local float * sum +) { + src0 = (global void*)((global char*)src0 + offset0); + dst = (global void*)((global char*)dst + offsetd); + + global float * x = (global float *) ((global char *) src0 + get_group_id(0)*nb01); + + // MEAN + // parallel sum + sum[get_local_id(0)] = 0.0f; + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + sum[get_local_id(0)] += x[i00]; + } + // reduce + barrier(CLK_LOCAL_MEM_FENCE); + for (uint i = get_local_size(0)/2; i > 0; i /= 2) { + if (get_local_id(0) < i) { + sum[get_local_id(0)] += sum[get_local_id(0) + i]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + float mean = sum[0] / ne00; + + // recenter and VARIANCE + barrier(CLK_LOCAL_MEM_FENCE); + global float * y = dst + get_group_id(0)*ne00; + sum[get_local_id(0)] = 0.0f; + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + y[i00] = x[i00] - mean; + sum[get_local_id(0)] += y[i00] * y[i00]; + } + + // reduce + barrier(CLK_LOCAL_MEM_FENCE); + for (uint i = get_local_size(0)/2; i > 0; i /= 2) { + if (get_local_id(0) < i) { + sum[get_local_id(0)] += sum[get_local_id(0) + i]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + float variance = sum[0] / ne00; + + float scale = 1.0f/sqrt(variance + eps); + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + y[i00] = y[i00] * scale; + } +} + +//------------------------------------------------------------------------------ +// rms_norm +//------------------------------------------------------------------------------ +// This kernel depends on subgroup size. +kernel void kernel_rms_norm( + global void * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + ulong nb01, + float eps, + local float * sum // Note, the size depends on number of subgroups +) { + src0 = (global void*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + global float4 * x = (global float4 *) ((global char *) src0 + get_group_id(0)*nb01); + global float * x_scalar = (global float *) x; + float4 sumf = 0; + float all_sum = 0; + + // parallel sum + for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) { + sumf += x[i00] * x[i00]; + } + all_sum = sumf.s0 + sumf.s1 + sumf.s2 + sumf.s3; + all_sum = sub_group_reduce_add(all_sum); + if (get_sub_group_local_id() == 0) { + sum[get_sub_group_id()] = all_sum; + } + + barrier(CLK_LOCAL_MEM_FENCE); + // broadcast + for (uint i = get_local_size(0) / get_max_sub_group_size() / 2; i > 0; i /= 2) { + if (get_local_id(0) < i) { + sum[get_local_id(0)] += sum[get_local_id(0) + i]; + } + } + if (get_local_id(0) == 0) { + for (int i = 4 * (ne00 / 4); i < ne00; i++) { + sum[0] += x_scalar[i]; + } + sum[0] /= ne00; + } + + barrier(CLK_LOCAL_MEM_FENCE); + + const float mean = sum[0]; + const float scale = 1.0f/sqrt(mean + eps); + + global float4 * y = (global float4 *) (dst + get_group_id(0)*ne00); + global float * y_scalar = (global float *) y; + for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) { + y[i00] = x[i00] * scale; + } + if (get_local_id(0) == 0) { + for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) { + y_scalar[i00] = x_scalar[i00] * scale; + } + } +} + +//------------------------------------------------------------------------------ +// diag_mask_inf kernels +//------------------------------------------------------------------------------ +kernel void kernel_diag_mask_inf( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int n_past +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + int i02 = get_global_id(2); + int i01 = get_global_id(1); + int i00 = get_global_id(0); + + if (i00 > n_past + i01) { + dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; + } else { + dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; + } +} + +kernel void kernel_diag_mask_inf_8( + global float4 * src0, + ulong offset0, + global float4 * dst, + ulong offsetd, + int ne00, + int ne01, + int n_past +) { + src0 = (global float4*)((global char*)src0 + offset0); + dst = (global float4*)((global char*)dst + offsetd); + + int i = 2*get_global_id(0); + + dst[i+0] = src0[i+0]; + dst[i+1] = src0[i+1]; + int i4 = 4*i; + int i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01; + int i01 = i4/(ne00); i4 -= i01*ne00; + int i00 = i4; + for (int k = 3; k >= 0; --k) { + if (i00 + 4 + k <= n_past + i01) { + break; + } + (&dst[i+1])[k] = -INFINITY; + if (i00 + k > n_past + i01) { + (&dst[i])[k] = -INFINITY; + } + } +} + +//------------------------------------------------------------------------------ +// softmax +//------------------------------------------------------------------------------ +kernel void kernel_soft_max( + global float * src0, + ulong offset0, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + float scale, + float max_bias, + float m0, + float m1, + int n_head_log2 +) { + src0 = (global float*)((global char*)src0 + offset0); + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + global float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + global float * pmask = src1 != src0 ? src1 + i01*ne00 : 0; + global float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + int h = i02; + + float base = h < n_head_log2 ? m0 : m1; + int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float lmax = -INFINITY; + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)); + } + float max = sub_group_reduce_max(lmax); + + // parallel sum + float lsum = 0.0f; + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max); + lsum += exp_psrc0; + // Remember the result of exp here. exp is expensive, so we really do not + // wish to compute it twice. + pdst[i00] = exp_psrc0; + } + + const float sum = sub_group_reduce_add(lsum); + + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + pdst[i00] /= sum; + } +} + +#ifdef ADRENO_GPU +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_soft_max_4( + global float * src0, + ulong offset0, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + float scale, + float max_bias, + float m0, + float m1, + int n_head_log2 +) { + src0 = (global float*)((global char*)src0 + offset0); + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + global float4 * psrc4 = (global float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + global float4 * pmask = src1 != src0 ? (global float4 *)(src1 + i01*ne00) : 0; + global float4 * pdst4 = (global float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + int h = i02; + + float base = h < n_head_log2 ? m0 : m1; + int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float4 lmax4 = -INFINITY; + for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) { + lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)); + } + float lmax = fmax(fmax(lmax4.s0, lmax4.s1), fmax(lmax4.s2, lmax4.s3)); + + const float max = sub_group_reduce_max(lmax); + + // parallel sum + float4 lsum4 = 0.0f; + for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) { + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max); + lsum4 += exp_psrc4; + pdst4[i00] = exp_psrc4; + } + float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3; + + const float sum = sub_group_reduce_add(lsum); + + for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) { + pdst4[i00] /= sum; + } +} + +//------------------------------------------------------------------------------ +// kernel_rope +//------------------------------------------------------------------------------ +float rope_yarn_ramp(float low, float high, int i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +float2 rope_yarn( + float theta_extrap, float freq_scale, float2 corr_dims, int i0, float ext_factor, float mscale +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims.s0, corr_dims.s1, i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * log(1.0f / freq_scale); + } + return (float2)(cos(theta) * mscale, sin(theta) * mscale); +} + +// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get +// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` +float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) { + return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base)); +} + +float2 rope_yarn_corr_dims( + int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow +) { + // start and end correction dims + return (float2)( + max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base))), + min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base))) + ); +} + +kernel void kernel_rope_norm_f32( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * src2, + ulong offset2, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3, + int n_past, + int n_dims, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + src2 = (global float*)((global char*)src2 + offset2); + dst = (global float*)((global char*)dst + offsetd); + + int i3 = get_group_id(2); + int i2 = get_group_id(1); + int i1 = get_group_id(0); + + float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow); + + global int * pos = src1; + + float theta_base = (float) pos[i2]; + float inv_ndims = -1.f/n_dims; + + for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) { + if (i0 < n_dims) { + int ic = i0/2; + + float theta = theta_base * pow(freq_base, inv_ndims*i0); + + float freq_factor = src2 != src0 ? src2[ic] : 1.0f; + + float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor); + + global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + float x0 = src[0]; + float x1 = src[1]; + + dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1; + dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0; + } else { + global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + +kernel void kernel_rope_norm_f16( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * src2, + ulong offset2, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3, + int n_past, + int n_dims, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + src2 = (global float*)((global char*)src2 + offset2); + dst = (global float*)((global char*)dst + offsetd); + + int i3 = get_group_id(2); + int i2 = get_group_id(1); + int i1 = get_group_id(0); + + float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow); + + global int * pos = src1; + + float theta_base = (float) pos[i2]; + float inv_ndims = -1.f/n_dims; + + for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) { + if (i0 < n_dims) { + int ic = i0/2; + + float theta = theta_base * pow(freq_base, inv_ndims*i0); + + float freq_factor = src2 != src0 ? src2[ic] : 1.0f; + + float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor); + + global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + float x0 = src[0]; + float x1 = src[1]; + + dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1; + dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0; + } else { + global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + +kernel void kernel_rope_neox_f32( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * src2, + ulong offset2, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3, + int n_past, + int n_dims, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + src2 = (global float*)((global char*)src2 + offset2); + dst = (global float*)((global char*)dst + offsetd); + + int i3 = get_group_id(2); + int i2 = get_group_id(1); + int i1 = get_group_id(0); + + float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow); + + global int * pos = src1; + + float theta_base = (float) pos[i2]; + float inv_ndims = -1.f/n_dims; + + for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) { + if (i0 < n_dims) { + int ic = i0/2; + + const float theta = theta_base * pow(freq_base, inv_ndims*i0); + + const float freq_factor = src2 != src0 ? src2[ic] : 1.0f; + + float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor); + + global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1; + dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0; + } else { + global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + +kernel void kernel_rope_neox_f16( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * src2, + ulong offset2, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3, + int n_past, + int n_dims, + int n_ctx_orig, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + src2 = (global float*)((global char*)src2 + offset2); + dst = (global float*)((global char*)dst + offsetd); + + int i3 = get_group_id(2); + int i2 = get_group_id(1); + int i1 = get_group_id(0); + + float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow); + + global int * pos = src1; + + float theta_base = (float) pos[i2]; + float inv_ndims = -1.f/n_dims; + + for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) { + if (i0 < n_dims) { + int ic = i0/2; + + const float theta = theta_base * pow(freq_base, inv_ndims*i0); + + const float freq_factor = src2 != src0 ? src2[ic] : 1.0f; + + float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor); + + global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00); + global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1; + dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0; + } else { + global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + +//------------------------------------------------------------------------------ +// cpy +//------------------------------------------------------------------------------ + +kernel void kernel_cpy_f16_f16( + global half * src0, + ulong offset0, + global half * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = (global half*)((global char*)src0 + offset0); + dst = (global half*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + int i3 = n / (ne2*ne1*ne0); + int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + global const half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f16_f32( + global half * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + + src0 = (global half*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + int i3 = n / (ne2*ne1*ne0); + int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + global half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_f16( + global float * src0, + ulong offset0, + global half * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global half*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + int i3 = n / (ne2*ne1*ne0); + int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_f32( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + int ne1, + int ne2, + int ne3, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + int i3 = n / (ne2*ne1*ne0); + int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) { + global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + dst_data[i00] = src[0]; + } +} + +//------------------------------------------------------------------------------ +// get_rows +//------------------------------------------------------------------------------ +kernel void kernel_get_rows_f32( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + ulong nb01, + ulong nb02, + int ne10, + ulong nb10, + ulong nb11, + ulong nb1, + ulong nb2 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int i10 = get_group_id(0); + int i11 = get_group_id(1); + + int r = ((global int *) ((global char *) src1 + i11*nb11 + i10*nb10))[0]; + + int i02 = i11; + + for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) { + ((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] = + ((global float *) ((global char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_f16( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + ulong nb01, + ulong nb02, + int ne10, + ulong nb10, + ulong nb11, + ulong nb1, + ulong nb2 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int i10 = get_group_id(0); + int i11 = get_group_id(1); + + int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0]; + + int i02 = i11; + + for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) { + ((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] = + ((global half *) ((global char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_q4_0( + global void * src0, + ulong offset0, + global int * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + ulong nb01, + ulong nb02, + int ne10, + ulong nb10, + ulong nb11, + ulong nb1, + ulong nb2 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global int*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + const int NL = 2; + + int i10 = get_group_id(0); + int i11 = get_group_id(1); + + int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0]; + + int i02 = i11; + + for (int ind = get_local_id(0); ind < ne00/16; ind += get_local_size(0)) { + float16 temp; + dequantize_q4_0_f32( + ((global struct block_q4_0 *) ((global char *) src0 + r*nb01 + i02*nb02)) + ind/NL, ind%NL, &temp); + *(((global float16 *) ((global char *) dst + i11*nb2 + i10*nb1)) + ind) = temp; + } +} + +//------------------------------------------------------------------------------ +// mul_mat_f32_f32 +//------------------------------------------------------------------------------ +#define N_F32_F32 4 + +kernel void kernel_mul_mat_f32_f32( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global char*)((global char*)src0 + offset0); + src1 = (global char*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int r0 = get_group_id(0); + int rb = get_group_id(1)*N_F32_F32; + int im = get_group_id(2); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03; + + global float * x = (global float *) (src0 + offset_src0); + + if (ne00 < 128) { + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global float * y = (global float *) (src1 + offset_src1); + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + global float4 * x4 = (global float4 *)x; + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global float * y = (global float *) (src1 + offset_src1); + global float4 * y4 = (global float4 *) y; + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) { + sumf += (float) x4[i].s0 * y4[i].s0; + sumf += (float) x4[i].s1 * y4[i].s1; + sumf += (float) x4[i].s2 * y4[i].s2; + sumf += (float) x4[i].s3 * y4[i].s3; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) { + all_sum += (float) x[i] * y[i]; + } + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +//------------------------------------------------------------------------------ +// mul_mat_f16_f16 +//------------------------------------------------------------------------------ +#define N_F16_F16 4 + +kernel void kernel_mul_mat_f16_f16( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int r2, + int r3) +{ + src0 = (global char*)((global char*)src0 + offset0); + src1 = (global char*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int r0 = get_group_id(0); + int rb = get_group_id(1)*N_F16_F16; + int im = get_group_id(2); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03; + + global half * x = (global half *) (src0 + offset_src0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global half * y = (global half *) (src1 + offset_src1); + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) { + sumf += (half) x[i] * (half) y[i]; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + global half4 * x4 = (global half4 *)x; + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global half * y = (global half *) (src1 + offset_src1); + global half4 * y4 = (global half4 *) y; + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) { + sumf += (half) x4[i].s0 * y4[i].s0; + sumf += (half) x4[i].s1 * y4[i].s1; + sumf += (half) x4[i].s2 * y4[i].s2; + sumf += (half) x4[i].s3 * y4[i].s3; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) { + all_sum += (half) x[i] * y[i]; + } + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +//------------------------------------------------------------------------------ +// mul_mat_f16_f32_1row +//------------------------------------------------------------------------------ +kernel void kernel_mul_mat_f16_f32_1row( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global char*)((global char*)src0 + offset0); + src1 = (global char*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03; + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global half * x = (global half *) (src0 + offset_src0); + global float * y = (global float *) (src1 + offset_src1); + + float sumf = 0; + if (ne00 < 128) { + for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) { + sumf += (float) x[i] * (float) y[i]; + } + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } else { + global half4 * x4 = (global half4 *) x; + global float4 * y4 = (global float4 *) y; + for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) { + sumf += (float) x4[i].s0 * y4[i].s0; + sumf += (float) x4[i].s1 * y4[i].s1; + sumf += (float) x4[i].s2 * y4[i].s2; + sumf += (float) x4[i].s3 * y4[i].s3; + } + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) { + all_sum += (float) x[i] * y[i]; + } + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + +} + +//------------------------------------------------------------------------------ +// mul_mat_f16_f32 +//------------------------------------------------------------------------------ +#define N_F16_F32 4 + +#ifdef ADRENO_GPU +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_f16_f32( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global char*)((global char*)src0 + offset0); + src1 = (global char*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int r0 = get_group_id(0); + int rb = get_group_id(1)*N_F16_F32; + int im = get_group_id(2); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03; + + global half * x = (global half *) (src0 + offset_src0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global float * y = (global float *) (src1 + offset_src1); + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) { + sumf += convert_float(x[i]) * y[i]; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + global half4 * x4 = (global half4 *)x; + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global float * y = (global float *) (src1 + offset_src1); + global float4 * y4 = (global float4 *) y; + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) { + sumf += convert_float(x4[i].s0) * y4[i].s0; + sumf += convert_float(x4[i].s1) * y4[i].s1; + sumf += convert_float(x4[i].s2) * y4[i].s2; + sumf += convert_float(x4[i].s3) * y4[i].s3; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) { + all_sum += (float) x[i] * y[i]; + } + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +//------------------------------------------------------------------------------ +// mul_mat_f16_f32_l4 +//------------------------------------------------------------------------------ +// Assumes row size (ne00) is a multiple of 4 +#ifdef ADRENO_GPU +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_f16_f32_l4( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global char*)((global char*)src0 + offset0); + src1 = (global char*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + int nrows = ne11; + int r0 = get_group_id(0); + int im = get_group_id(2); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03; + + global half4 * x4 = (global half4 *) (src0 + offset_src0); + + for (int r1 = 0; r1 < nrows; ++r1) { + ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13; + + global float4 * y4 = (global float4 *) (src1 + offset_src1); + + float sumf = 0; + for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) { + sumf += convert_float(x4[i].s0) * y4[i].s0; + sumf += convert_float(x4[i].s1) * y4[i].s1; + sumf += convert_float(x4[i].s2) * y4[i].s2; + sumf += convert_float(x4[i].s3) * y4[i].s3; + } + + float all_sum = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + +//------------------------------------------------------------------------------ +// mul_vec_q_n_f32 +//------------------------------------------------------------------------------ +// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q4 quants begin (0 or QK4_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_4_0_dot_y( + global struct block_q4_0 * qb_curr, + float sumy, + private float * yl, + int il +) { + float d = qb_curr->d; + float2 acc = 0.f; + global ushort * qs = ((global ushort *)qb_curr + 1 + il/2); + for (int i = 0; i < 8; i+=2) { + acc.s0 += yl[i + 0] * (qs[i / 2] & 0x000F) + + yl[i + 1] * (qs[i / 2] & 0x0F00); + acc.s1 += yl[i + 8] * (qs[i / 2] & 0x00F0) + + yl[i + 9] * (qs[i / 2] & 0xF000); + } + return d * (sumy * -8.f + acc.s0 + acc.s1); +} + +#ifdef INTEL_GPU +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 16 +#elif defined (ADRENO_GPU) +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +inline void mul_vec_q_n_f32( + global void * src0, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + + const ulong nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global + // id of a SIMD group in the grid. + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; // src1 vector cache + float sumf[N_DST]={0.f}; + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix * QK4_0 + il; + + // each thread in a SIMD group deals with half a block. + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0; + for (int i = 0; i < 8; i += 2) { + sumy += yb[i] + yb[i+1]; + yl[i+0] = yb[i+ 0]; + yl[i+1] = yb[i+ 1]/256.f; + sumy += yb[i+16] + yb[i+17]; + yl[i+8] = yb[i+16]/16.f; + yl[i+9] = yb[i+17]/4096.f; + } + + for (int row = 0; row < N_DST; row++) { + sumf[row] += block_q_4_0_dot_y(x+ib+row*nb, sumy, yl, il); + } + + // One thread in a SIMD group (i.e., subgroup) handles a half block, + // hence then entire SIMD group handles SIMDWIDTH/2 blocks. + // y points to the activation matrix (of type float). Therefore for + // one thread, the # of blocks y should advance is SIMDWIDTH/2 (because + // SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of + // floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size. + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + // The above does not work for Adreno - it produces incorrect results for + // row = 1, 2, 3 and only row = 0 gives the correct result. + // If N_DST is changed, the below array must be initialized accordingly. + // This also seems to perform better on Intel. + float tot[N_DST] = { + sub_group_reduce_add(sumf[0]), sub_group_reduce_add(sumf[1]), + sub_group_reduce_add(sumf[2]), sub_group_reduce_add(sumf[3])}; + for (int row = 0; row < N_DST; ++row) { + if (get_sub_group_local_id() == 0 && first_row + row < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot[row]; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32( + global void * src0, + ulong offset0, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_vec_q_n_f32(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} + +// +// This variant unrolls the loops and uses vector types instead of pointers. +// It improves performance on Adreno but not so much on Intel. +// +inline float block_q_4_0_dot_y_v( + global struct block_q4_0 * qb_curr, + float sumy, + float16 yl, + int il +) { + float d = qb_curr->d; + float acc = 0.f; + global ushort * qs = ((global ushort *)qb_curr + 1 + il/2); + + acc += yl.s0 * (qs[0] & 0x000F); + acc += yl.s1 * (qs[0] & 0x0F00); + acc += yl.s8 * (qs[0] & 0x00F0); + acc += yl.s9 * (qs[0] & 0xF000); + + acc += yl.s2 * (qs[1] & 0x000F); + acc += yl.s3 * (qs[1] & 0x0F00); + acc += yl.sa * (qs[1] & 0x00F0); + acc += yl.sb * (qs[1] & 0xF000); + + acc += yl.s4 * (qs[2] & 0x000F); + acc += yl.s5 * (qs[2] & 0x0F00); + acc += yl.sc * (qs[2] & 0x00F0); + acc += yl.sd * (qs[2] & 0xF000); + + acc += yl.s6 * (qs[3] & 0x000F); + acc += yl.s7 * (qs[3] & 0x0F00); + acc += yl.se * (qs[3] & 0x00F0); + acc += yl.sf * (qs[3] & 0xF000); + + return d * (sumy * -8.f + acc); +} + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 16 +#elif defined (ADRENO_GPU) +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +inline void mul_vec_q_n_f32_v( + global void * src0, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + const ulong nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global + // id of a SIMD group in the grid. + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float16 yl; // src1 vector cache + float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f); + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix * QK4_0 + il; + + // each thread in a SIMD group deals with half a block. + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0; + + sumy += yb[0]; + sumy += yb[1]; + sumy += yb[2]; + sumy += yb[3]; + sumy += yb[4]; + sumy += yb[5]; + sumy += yb[6]; + sumy += yb[7]; + + sumy += yb[16]; + sumy += yb[17]; + sumy += yb[18]; + sumy += yb[19]; + sumy += yb[20]; + sumy += yb[21]; + sumy += yb[22]; + sumy += yb[23]; + + + yl.s0 = yb[0]; + yl.s1 = yb[1]/256.f; + + yl.s2 = yb[2]; + yl.s3 = yb[3]/256.f; + + yl.s4 = yb[4]; + yl.s5 = yb[5]/256.f; + + yl.s6 = yb[6]; + yl.s7 = yb[7]/256.f; + + yl.s8 = yb[16]/16.f; + yl.s9 = yb[17]/4096.f; + + yl.sa = yb[18]/16.f; + yl.sb = yb[19]/4096.f; + + yl.sc = yb[20]/16.f; + yl.sd = yb[21]/4096.f; + + yl.se = yb[22]/16.f; + yl.sf = yb[23]/4096.f; + + sumf.s0 += block_q_4_0_dot_y_v(x+ib+0*nb, sumy, yl, il); + sumf.s1 += block_q_4_0_dot_y_v(x+ib+1*nb, sumy, yl, il); + sumf.s2 += block_q_4_0_dot_y_v(x+ib+2*nb, sumy, yl, il); + sumf.s3 += block_q_4_0_dot_y_v(x+ib+3*nb, sumy, yl, il); + + // One thread in a SIMD group (i.e., subgroup) handles a half block, + // hence then entire SIMD group handles SIMDWIDTH/2 blocks. + // y points to the activation matrix (of type float). Therefore for + // one thread, the # of blocks y should advance is SIMDWIDTH/2 (because + // SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of + // floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size. + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + // The above does not work for Adreno - it produces incorrect results for + // row = 1, 2, 3 and only row = 0 gives the correct result. + // If N_DST is changed, the below array must be initialized accordingly. + // This also seems to perform better on Intel. + float4 tot = (float4)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), + sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_v( + global void * src0, + ulong offset0, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_vec_q_n_f32_v(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} + +//------------------------------------------------------------------------------ +// kernel_convert_block_q4_0 +// Convert the block_q4_0 format to 2 separate arrays (AOS -> SOA). +// This kernel does not deshuffle the bits. +//------------------------------------------------------------------------------ +kernel void kernel_convert_block_q4_0( + global struct block_q4_0 * src0, + global uchar * dst_q, + global half * dst_d +) { + global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0); + global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0); + global half * d = (global half *) dst_d + get_global_id(0); + + *d = b->d; + + for (int i = 0; i < QK4_0/2; ++i) { + q[i] = b->qs[i]; + } +} + +kernel void kernel_restore_block_q4_0( + global uchar * src_q, + global half * src_d, + global struct block_q4_0 * dst +) { + global struct block_q4_0 * b = (global struct block_q4_0 *) dst + get_global_id(0); + global uchar * q = (global uchar *) src_q + QK4_0/2*get_global_id(0); + global half * d = (global half *) src_d + get_global_id(0); + + b->d = *d; + for (int i = 0; i < QK4_0/2; ++i) { + b->qs[i] = q[i]; + } +} + +//------------------------------------------------------------------------------ +// mul_vec_q_n_f32_flat +// +// This variation uses flat arrays (struct of arrays, SOA) representation for +// quant tensors. +//------------------------------------------------------------------------------ + +// This function requires the original shuffled weights. +// As a reminder, the original weights are shuffled so that (q[0], q[16]) are +// packed together in a byte, so are (q[1], q[17]) and so on. +inline float block_q_4_0_dot_y_flat( + global uchar * x, + global half * dh, + float sumy, + float16 yl, + int il +) { + float d = *dh; + global ushort * qs = ((global ushort *)x + il/2); + float acc = 0.f; + + acc += yl.s0 * (qs[0] & 0x000F); + acc += yl.s1 * (qs[0] & 0x0F00); + acc += yl.s8 * (qs[0] & 0x00F0); + acc += yl.s9 * (qs[0] & 0xF000); + + acc += yl.s2 * (qs[1] & 0x000F); + acc += yl.s3 * (qs[1] & 0x0F00); + acc += yl.sa * (qs[1] & 0x00F0); + acc += yl.sb * (qs[1] & 0xF000); + + acc += yl.s4 * (qs[2] & 0x000F); + acc += yl.s5 * (qs[2] & 0x0F00); + acc += yl.sc * (qs[2] & 0x00F0); + acc += yl.sd * (qs[2] & 0xF000); + + acc += yl.s6 * (qs[3] & 0x000F); + acc += yl.s7 * (qs[3] & 0x0F00); + acc += yl.se * (qs[3] & 0x00F0); + acc += yl.sf * (qs[3] & 0xF000); + + return d * (sumy * -8.f + acc); +} + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 32 +#elif defined (ADRENO_GPU) +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +inline void mul_vec_q_n_f32_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + const ulong nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of + // a SIMD group in the grid. Each SIMD group produces N_DST values in the + // result, hence uses nb blocks, i.e., the offset becomes first_row*nb. + // Currently with llama2 7B, im is always 0. + // TODO: how to handle im/gqa*(nb*ne0)? + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; + + global uchar * x = (global uchar *) src0_q + offset0_q; + global half * d = (global half *) src0_d + offset0_d; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float16 yl; + float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f); + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix*QK4_0 + il; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0.f; + + sumy += yb[0]; + sumy += yb[1]; + sumy += yb[2]; + sumy += yb[3]; + sumy += yb[4]; + sumy += yb[5]; + sumy += yb[6]; + sumy += yb[7]; + + sumy += yb[16]; + sumy += yb[17]; + sumy += yb[18]; + sumy += yb[19]; + sumy += yb[20]; + sumy += yb[21]; + sumy += yb[22]; + sumy += yb[23]; + + yl.s0 = yb[0]; + yl.s1 = yb[1]/256.f; + + yl.s2 = yb[2]; + yl.s3 = yb[3]/256.f; + + yl.s4 = yb[4]; + yl.s5 = yb[5]/256.f; + + yl.s6 = yb[6]; + yl.s7 = yb[7]/256.f; + + yl.s8 = yb[16]/16.f; + yl.s9 = yb[17]/4096.f; + + yl.sa = yb[18]/16.f; + yl.sb = yb[19]/4096.f; + + yl.sc = yb[20]/16.f; + yl.sd = yb[21]/4096.f; + + yl.se = yb[22]/16.f; + yl.sf = yb[23]/4096.f; + + sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); + sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); + sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); + sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); + + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + float4 tot = (float4)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), + sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_vec_q_n_f32_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} + +// +// This variant outputs 8 values. +// +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 8 // each SIMD group works on 8 rows +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 32 +#elif defined (ADRENO_GPU) +#define N_DST 8 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +inline void mul_vec_q_n_f32_8x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + const ulong nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of + // a SIMD group in the grid. Each SIMD group produces N_DST values in the + // result, hence uses nb blocks, i.e., the offset becomes first_row*nb. + // Currently with llama2 7B, im is always 0. + // TODO: how to handle im/gqa*(nb*ne0)? + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; + + global uchar * x = (global uchar *) src0_q + offset0_q; + global half * d = (global half *) src0_d + offset0_d; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float16 yl; + float8 sumf = 0.f; + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix*QK4_0 + il; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0.f; + + sumy += yb[0]; + sumy += yb[1]; + sumy += yb[2]; + sumy += yb[3]; + sumy += yb[4]; + sumy += yb[5]; + sumy += yb[6]; + sumy += yb[7]; + + sumy += yb[16]; + sumy += yb[17]; + sumy += yb[18]; + sumy += yb[19]; + sumy += yb[20]; + sumy += yb[21]; + sumy += yb[22]; + sumy += yb[23]; + + yl.s0 = yb[0]; + yl.s1 = yb[1]/256.f; + + yl.s2 = yb[2]; + yl.s3 = yb[3]/256.f; + + yl.s4 = yb[4]; + yl.s5 = yb[5]/256.f; + + yl.s6 = yb[6]; + yl.s7 = yb[7]/256.f; + + yl.s8 = yb[16]/16.f; + yl.s9 = yb[17]/4096.f; + + yl.sa = yb[18]/16.f; + yl.sb = yb[19]/4096.f; + + yl.sc = yb[20]/16.f; + yl.sd = yb[21]/4096.f; + + yl.se = yb[22]/16.f; + yl.sf = yb[23]/4096.f; + + sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); + sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); + sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); + sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); + + sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il); + sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il); + sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il); + sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il); + + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + float8 tot = (float8)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), + sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3), + sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5), + sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } + + if (first_row + 4 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; + } + if (first_row + 5 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; + } + if (first_row + 6 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; + } + if (first_row + 7 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_8x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_vec_q_n_f32_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_cvt.cl b/src/ggml-opencl/kernels/ggml-opencl_cvt.cl new file mode 100644 index 000000000..e2024332f --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_cvt.cl @@ -0,0 +1,106 @@ +//------------------------------------------------------------------------------ +// This file is contains additional kernels for data conversion. +// These kernels are used when loading the model, so its performance is less +// important. +//------------------------------------------------------------------------------ +#ifdef cl_khr_fp16 +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#elif defined(cl_amd_fp16) +#pragma OPENCL EXTENSION cl_amd_fp16 : enable +#else +#error "Half precision floating point not supportedby OpenCL implementation on your device." +#endif + +#ifdef cl_khr_subgroups +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#elif defined(cl_intel_subgroups) +#pragma OPENCL EXTENSION cl_intel_subgroups : enable +#else +#error "Subgroup not supported on your device." +#endif + +#ifdef cl_intel_required_subgroup_size +// Always use subgroup size of 32 on Intel. +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +// Always use subgroups size of 64 on Adreno. +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#else +// TODO: do not know how to choose subgroup size on other GPUs. +#error "Selecting subgroup size is not supported on your device." +#endif + +#define QK4_0 32 +#define QR4_0 2 +#define QK4_1 32 +#define QR4_1 2 +#define QK5_0 32 +#define QR5_0 2 +#define QK5_1 32 +#define QR5_1 2 +#define QK8_0 32 +#define QR8_0 1 +#define QK_K 256 +#define K_QUANTS_PER_ITERATION 2 + +typedef char int8_t; +typedef uchar uint8_t; +typedef short int16_t; +typedef ushort uint16_t; +typedef int int32_t; +typedef uint uint32_t; + +//------------------------------------------------------------------------------ +// block_q4_0 +//------------------------------------------------------------------------------ +struct block_q4_0 +{ + half d; + uint8_t qs[QK4_0 / 2]; +}; + +//------------------------------------------------------------------------------ +// mul_vec_q_n_f32_flat_noshuffle +// +// This variation uses flat arrays (struct of arrays, SOA) representation for +// quant tensors. It also uses non shuffled bit order for weights. +// +// The shuffled version is kept in the original file because moving it here +// seems to result in worse performance for adreno. +//------------------------------------------------------------------------------ + +kernel void kernel_convert_block_q4_0_noshuffle( + global struct block_q4_0 * src0, + global uchar * dst_q, + global half * dst_d +) { + global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0); + global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0); + global half * d = (global half *) dst_d + get_global_id(0); + + *d = b->d; + for (int i = 0; i < QK4_0/4; ++i) { + uchar x0 = b->qs[2*i + 0]; + uchar x1 = b->qs[2*i + 1]; + + q[i + 0 ] = convert_uchar(x0 & 0x0F) | convert_uchar((x1 & 0x0F) << 4); + q[i + QK4_0/4] = convert_uchar((x0 & 0xF0) >> 4) | convert_uchar(x1 & 0xF0); + +#ifdef ADRENO_GPU + // Workaround for adreno - must have the following printf statement for + // the kernel to work properly. Otherwise it produces incorrect result. + // convert_uchar above also seems necessary. + // Compare against a large number so that it does not print anything. + // get_sub_group_local_id() also works. + if (get_global_id(0) == 65536*4096) { + printf("%04x - %02x\n", *(global ushort*)d, ((x0 & 0xF0) >> 4) | (x1 & 0xF0)); + } +#endif + } +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle.cl b/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle.cl new file mode 100644 index 000000000..5e195411d --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle.cl @@ -0,0 +1,265 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#pragma OPENCL EXTENSION cl_qcom_subgroup_uniform_load: enable +#pragma OPENCL EXTENSION cl_qcom_subgroup_constant_load: enable +#pragma OPENCL EXTENSION cl_qcom_extra_vector_types : enable +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable + +// assume +#define QK4_0 32 +#define N_SIMDGROUP 4 + +#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \ + float shared_y; \ + shared_y = sub_group_broadcast(y.s0, 0); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 0); \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 0); \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 0); \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 0); \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 0); \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 0); \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 0); \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s0, 1); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 1); \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 1); \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 1); \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 1); \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 1); \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 1); \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 1); \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \ + shared_y = sub_group_broadcast(y.s0, 2); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 2); \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 2); \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 2); \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 2); \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 2); \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 2); \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 2); \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s0, 3); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 3); \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 3); \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 3); \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 3); \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 3); \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 3); \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 3); \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \ + float8 shared_y; \ + shared_y = sub_group_broadcast(y, 0); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + shared_y = sub_group_broadcast(y, 1); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \ + shared_y = sub_group_broadcast(y, 2); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + shared_y = sub_group_broadcast(y, 3); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + + +__attribute__((qcom_reqd_sub_group_size("full"))) +__kernel void kernel_gemv_noshuffle( + __read_only image1d_buffer_t src0_q, // quantized A + global half2 * src0_d, // A scales + __read_only image1d_buffer_t src1, // B + ulong offset1, // offset to B (0) + global float * dst, // C + ulong offsetd, // offset to C (0) + uint K, // K + int ne01, // M + int ne02, // 1 + int ne10, // K + int ne12, // 1 + int ne0, // M + int ne1, // N + int r2, // 1 + int r3) +{ + uint groupId = get_local_id(1); + uint gid = get_global_id(0); + ushort slid = get_sub_group_local_id(); + + __private uint4 regA; + __private half2 regS; + __private float8 regB; + + __private float2 totalSum = (float2)(0.0f); + + // loop along K in block granularity, skip 4 blocks every iter + for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) { + regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows + // first 4 fibers in each wave load 8 B values to its private scope + if (slid < 4) { + regB.s0123 = read_imagef(src1, (slid * 2 + k * 8)); + regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8)); + } + + // load half weights for two blocks in consecutive rows + regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x; + regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x; + regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x; + regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x; +#ifdef VECTOR_SUB_GROUP_BROADCAT + dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB); +#else + dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB); +#endif // VECTOR_SUB_GROUP_BROADCAT + + regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x; + regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x; + regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x; + regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x; +#ifdef VECTOR_SUB_GROUP_BROADCAT + dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB); +#else + dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB); +#endif // VECTOR_SUB_GROUP_BROADCAT + } + + // reduction in local memory, assumes #wave=4 + __local float2 reduceLM[SIMDGROUP_WIDTH * 3]; + if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum; + if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum; + if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum; + barrier(CLK_LOCAL_MEM_FENCE); + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid]; + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid]; + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid]; + + // 2 outputs per fiber in wave 0 + if (groupId == 0) { + dst = (global float*)((global char*)dst + offsetd); + vstore2(totalSum, 0, &(dst[gid * 2])); + } + +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle_general.cl b/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle_general.cl new file mode 100644 index 000000000..5bdd4d067 --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_gemv_noshuffle_general.cl @@ -0,0 +1,271 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#pragma OPENCL EXTENSION cl_qcom_subgroup_uniform_load: enable +#pragma OPENCL EXTENSION cl_qcom_subgroup_constant_load: enable +#pragma OPENCL EXTENSION cl_qcom_extra_vector_types : enable +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable + +// assume +#define QK4_0 32 +#define N_SIMDGROUP 4 + +#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \ + float shared_y; \ + shared_y = sub_group_broadcast(y.s0, 0); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 0); \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 0); \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 0); \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 0); \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 0); \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 0); \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 0); \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s0, 1); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 1); \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 1); \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 1); \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 1); \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 1); \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 1); \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 1); \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \ + shared_y = sub_group_broadcast(y.s0, 2); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 2); \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 2); \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 2); \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 2); \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 2); \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 2); \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 2); \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s0, 3); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s1, 3); \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s2, 3); \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s3, 3); \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s4, 3); \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s5, 3); \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s6, 3); \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \ + shared_y = sub_group_broadcast(y.s7, 3); \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \ + float8 shared_y; \ + shared_y = sub_group_broadcast(y, 0); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + shared_y = sub_group_broadcast(y, 1); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + + +#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \ + shared_y = sub_group_broadcast(y, 2); \ + total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + shared_y = sub_group_broadcast(y, 3); \ + total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \ + total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \ + total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \ + total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \ + total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \ + total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \ + total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \ + total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \ + total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \ + total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \ + total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \ + total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \ + total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \ + total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \ + total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \ + total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \ + + +__attribute__((qcom_reqd_sub_group_size("full"))) +__kernel void kernel_gemv_noshuffle( + __read_only image1d_buffer_t src0_q, // quantized A + global half2 * src0_d, // A scales + __read_only image1d_buffer_t src1, // B + ulong offset1, // offset to B (0) + global float * dst, // C + ulong offsetd, // offset to C (0) + int ne00, // K + int ne01, // M + int ne02, // 1 + int ne10, // K + int ne12, // 1 + int ne0, // M + int ne1, // N + int r2, // 1 + int r3) +{ + uint groupId = get_local_id(1); + uint gid = get_global_id(0); + ushort slid = get_sub_group_local_id(); + + uint K = ne00; + uint M = ne01; + + uint LINE_STRIDE_A = M / 2; + uint BLOCK_STRIDE_A = N_SIMDGROUP * M; + + __private uint4 regA; + __private half2 regS; + __private float8 regB; + + __private float2 totalSum = (float2)(0.0f); + + // loop along K in block granularity, skip 4 blocks every iter + for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) { + regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows + // first 4 fibers in each wave load 8 B values to its private scope + if (slid < 4) { + regB.s0123 = read_imagef(src1, (slid * 2 + k * 8)); + regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8)); + } + + // load half weights for two blocks in consecutive rows + regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x; + regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x; + regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x; + regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x; +#ifdef VECTOR_SUB_GROUP_BROADCAT + dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB); +#else + dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB); +#endif // VECTOR_SUB_GROUP_BROADCAT + + regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x; + regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x; + regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x; + regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x; +#ifdef VECTOR_SUB_GROUP_BROADCAT + dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB); +#else + dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB); +#endif // VECTOR_SUB_GROUP_BROADCAT + } + + // reduction in local memory, assumes #wave=4 + __local float2 reduceLM[SIMDGROUP_WIDTH * 3]; + if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum; + if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum; + if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum; + barrier(CLK_LOCAL_MEM_FENCE); + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid]; + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid]; + if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid]; + + // 2 outputs per fiber in wave 0 + if (groupId == 0) { + dst = (global float*)((global char*)dst + offsetd); + vstore2(totalSum, 0, &(dst[gid * 2])); + } + +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_mm.cl b/src/ggml-opencl/kernels/ggml-opencl_mm.cl new file mode 100644 index 000000000..e19e9a2f4 --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_mm.cl @@ -0,0 +1,1225 @@ +//------------------------------------------------------------------------------ +// This file is contains additional mulmat kernels +// (and potentially other kernels). +//------------------------------------------------------------------------------ +#ifdef cl_khr_fp16 +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#elif defined(cl_amd_fp16) +#pragma OPENCL EXTENSION cl_amd_fp16 : enable +#else +#error "Half precision floating point not supportedby OpenCL implementation on your device." +#endif + +#ifdef cl_khr_subgroups +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#elif defined(cl_intel_subgroups) +#pragma OPENCL EXTENSION cl_intel_subgroups : enable +#else +#error "Subgroup not supported on your device." +#endif + +#ifdef cl_intel_required_subgroup_size +// Always use subgroup size of 32 on Intel. +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +// Always use subgroups size of 64 on Adreno. +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#else +// TODO: do not know how to choose subgroup size on other GPUs. +#error "Selecting subgroup size is not supported on your device." +#endif + +#define QK4_0 32 +#define QR4_0 2 +#define QK4_1 32 +#define QR4_1 2 +#define QK5_0 32 +#define QR5_0 2 +#define QK5_1 32 +#define QR5_1 2 +#define QK8_0 32 +#define QR8_0 1 +#define QK_K 256 +#define K_QUANTS_PER_ITERATION 2 + +typedef char int8_t; +typedef uchar uint8_t; +typedef short int16_t; +typedef ushort uint16_t; +typedef int int32_t; +typedef uint uint32_t; + +//------------------------------------------------------------------------------ +// block_q4_0 +//------------------------------------------------------------------------------ +struct block_q4_0 +{ + half d; + uint8_t qs[QK4_0 / 2]; +}; + +//------------------------------------------------------------------------------ +// block_q6_K +//------------------------------------------------------------------------------ +// 6-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 6.5625 bits per weight +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + half d; // super-block scale +} block_q6_K; + +//------------------------------------------------------------------------------ +// These are the variant for matmatmul, based on the matvecmul kernel with +// flattened block_q4_0. +//------------------------------------------------------------------------------ + +// Common dot prod. +inline float mm_block_q_4_0_dot_y_flat( + global uchar * x, + global half * dh, + float sumy, + float16 yl, + int il +) { + float d = *dh; + global ushort * qs = ((global ushort *)x + il/2); + float acc = 0.f; + + acc += yl.s0 * (qs[0] & 0x000F); + acc += yl.s1 * (qs[0] & 0x0F00); + acc += yl.s8 * (qs[0] & 0x00F0); + acc += yl.s9 * (qs[0] & 0xF000); + + acc += yl.s2 * (qs[1] & 0x000F); + acc += yl.s3 * (qs[1] & 0x0F00); + acc += yl.sa * (qs[1] & 0x00F0); + acc += yl.sb * (qs[1] & 0xF000); + + acc += yl.s4 * (qs[2] & 0x000F); + acc += yl.s5 * (qs[2] & 0x0F00); + acc += yl.sc * (qs[2] & 0x00F0); + acc += yl.sd * (qs[2] & 0xF000); + + acc += yl.s6 * (qs[3] & 0x000F); + acc += yl.s7 * (qs[3] & 0x0F00); + acc += yl.se * (qs[3] & 0x00F0); + acc += yl.sf * (qs[3] & 0xF000); + + return d * (sumy * -8.f + acc); +} + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 8 // each SIMD group works on 8 rows (in weights matrix) +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 16 +#elif defined (ADRENO_GPU) +#define N_DST 8 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif +// +// This variant performs 1d blocking with 8x output. +// Eeach simdgroup outputs 8 values on `n0` dim (row in the output matrix). +// +inline void mul_mat_q_n_f32_1d_8x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + const int nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of + // a SIMD group in the grid. Each SIMD group produces N_DST values in the + // result, hence uses nb blocks, i.e., the offset becomes first_row*nb. + // Currently with llama2 7B, im is always 0. + // TODO: how to handle im/gqa*(nb*ne0)? + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; + + global uchar * x = (global uchar *) src0_q + offset0_q; + global half * d = (global half *) src0_d + offset0_d; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float16 yl; + float8 sumf = (float8)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix*QK4_0 + il; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0.f; + + sumy += yb[0]; + sumy += yb[1]; + sumy += yb[2]; + sumy += yb[3]; + sumy += yb[4]; + sumy += yb[5]; + sumy += yb[6]; + sumy += yb[7]; + + sumy += yb[16]; + sumy += yb[17]; + sumy += yb[18]; + sumy += yb[19]; + sumy += yb[20]; + sumy += yb[21]; + sumy += yb[22]; + sumy += yb[23]; + + yl.s0 = yb[0]; + yl.s1 = yb[1]/256.f; + + yl.s2 = yb[2]; + yl.s3 = yb[3]/256.f; + + yl.s4 = yb[4]; + yl.s5 = yb[5]/256.f; + + yl.s6 = yb[6]; + yl.s7 = yb[7]/256.f; + + yl.s8 = yb[16]/16.f; + yl.s9 = yb[17]/4096.f; + + yl.sa = yb[18]/16.f; + yl.sb = yb[19]/4096.f; + + yl.sc = yb[20]/16.f; + yl.sd = yb[21]/4096.f; + + yl.se = yb[22]/16.f; + yl.sf = yb[23]/4096.f; + + sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); + sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); + sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); + sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); + + sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il); + sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il); + sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il); + sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il); + + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + float8 tot = (float8)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), + sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3), + sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5), + sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } + + if (first_row + 4 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; + } + if (first_row + 5 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; + } + if (first_row + 6 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; + } + if (first_row + 7 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_1d_8x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_mat_q_n_f32_1d_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 16 // each SIMD group works on 8 rows (in weights matrix) +#define N_SIMDGROUP 1 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // assuming SIMD group size is 16 +#elif defined (ADRENO_GPU) +#define N_DST 16 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif +// +// This variant performs 1d blocking with 16x output. +// Eeach simdgroup outputs 16 values on `n0` dim (row in the output matrix). +// +inline void mul_mat_q_n_f32_1d_16x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + global float * dst, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + const int nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of + // a SIMD group in the grid. Each SIMD group produces N_DST values in the + // result, hence uses nb blocks, i.e., the offset becomes first_row*nb. + // Currently with llama2 7B, im is always 0. + // TODO: how to handle im/gqa*(nb*ne0)? + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; + + global uchar * x = (global uchar *) src0_q + offset0_q; + global half * d = (global half *) src0_d + offset0_d; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float16 yl; + float16 sumf = (float16)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, + 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); + + int ix = get_sub_group_local_id()/2; + int il = 8*(get_sub_group_local_id()%2); + + global float * yb = y + ix*QK4_0 + il; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { + float sumy = 0.f; + + sumy += yb[0]; + sumy += yb[1]; + sumy += yb[2]; + sumy += yb[3]; + sumy += yb[4]; + sumy += yb[5]; + sumy += yb[6]; + sumy += yb[7]; + + sumy += yb[16]; + sumy += yb[17]; + sumy += yb[18]; + sumy += yb[19]; + sumy += yb[20]; + sumy += yb[21]; + sumy += yb[22]; + sumy += yb[23]; + + yl.s0 = yb[0]; + yl.s1 = yb[1]/256.f; + + yl.s2 = yb[2]; + yl.s3 = yb[3]/256.f; + + yl.s4 = yb[4]; + yl.s5 = yb[5]/256.f; + + yl.s6 = yb[6]; + yl.s7 = yb[7]/256.f; + + yl.s8 = yb[16]/16.f; + yl.s9 = yb[17]/4096.f; + + yl.sa = yb[18]/16.f; + yl.sb = yb[19]/4096.f; + + yl.sc = yb[20]/16.f; + yl.sd = yb[21]/4096.f; + + yl.se = yb[22]/16.f; + yl.sf = yb[23]/4096.f; + + sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); + sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); + sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); + sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); + + sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il); + sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il); + sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il); + sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il); + + sumf.s8 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 8*nb*QK4_0/2, d + ib + 8*nb, sumy, yl, il); + sumf.s9 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 9*nb*QK4_0/2, d + ib + 9*nb, sumy, yl, il); + sumf.sa += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 10*nb*QK4_0/2, d + ib + 10*nb, sumy, yl, il); + sumf.sb += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 11*nb*QK4_0/2, d + ib + 11*nb, sumy, yl, il); + + sumf.sc += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 12*nb*QK4_0/2, d + ib + 12*nb, sumy, yl, il); + sumf.sd += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 13*nb*QK4_0/2, d + ib + 13*nb, sumy, yl, il); + sumf.se += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 14*nb*QK4_0/2, d + ib + 14*nb, sumy, yl, il); + sumf.sf += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 15*nb*QK4_0/2, d + ib + 15*nb, sumy, yl, il); + + yb += QK4_0 * (N_SIMDWIDTH/2); + } + + float16 tot = (float16)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), + sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3), + sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5), + sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7), + + sub_group_reduce_add(sumf.s8), sub_group_reduce_add(sumf.s9), + sub_group_reduce_add(sumf.sa), sub_group_reduce_add(sumf.sb), + sub_group_reduce_add(sumf.sc), sub_group_reduce_add(sumf.sd), + sub_group_reduce_add(sumf.se), sub_group_reduce_add(sumf.sf) + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } + + if (first_row + 4 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; + } + if (first_row + 5 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; + } + if (first_row + 6 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; + } + if (first_row + 7 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; + } + + if (first_row + 8 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 8] = tot.s8; + } + if (first_row + 9 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 9] = tot.s9; + } + if (first_row + 10 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 10] = tot.sa; + } + if (first_row + 11 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 11] = tot.sb; + } + + if (first_row + 12 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 12] = tot.sc; + } + if (first_row + 13 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 13] = tot.sd; + } + if (first_row + 14 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 14] = tot.se; + } + if (first_row + 15 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 15] = tot.sf; + } + } +} + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_1d_16x_flat( + global uchar * src0_q, + global half * src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + mul_mat_q_n_f32_1d_16x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); +} + +//------------------------------------------------------------------------------ +// kernel_mul_mat_q4_0_f32_flat_v0 +//------------------------------------------------------------------------------ +inline float block_q_4_0_dot_y_flat_v2( + half x, + half d, + float sumy, + float4 yl +) { + uchar2 q = as_uchar2(x); + float acc = 0.0f; + + acc += (q.s0 & 0x0F) * yl.s0; + acc += (q.s1 & 0x0F) * yl.s1; + + acc += (q.s0 & 0xF0) * yl.s2; + acc += (q.s1 & 0xF0) * yl.s3; + + return d * (sumy * -8.f + acc);; +} + +inline float block_q_4_0_dot_y_flat_v4( + float x, + half d, + float sumy, + float8 yl +) { + uchar4 q = as_uchar4(x); + float acc = 0.0f; + + acc += (q.s0 & 0x0F) * yl.s0; + acc += (q.s1 & 0x0F) * yl.s1; + acc += (q.s2 & 0x0F) * yl.s2; + acc += (q.s3 & 0x0F) * yl.s3; + + acc += (q.s0 & 0xF0) * yl.s4; + acc += (q.s1 & 0xF0) * yl.s5; + acc += (q.s2 & 0xF0) * yl.s6; + acc += (q.s3 & 0xF0) * yl.s7; + + return d * (sumy * -8.f + acc);; +} + +inline float block_q_4_0_dot_y_flat_v8( + float2 x, + half d, + float sumy, + float16 yl +) { + uchar8 q = as_uchar8(x); + float acc = 0.0f; + + acc += (q.s0 & 0x0F) * yl.s0; + acc += (q.s1 & 0x0F) * yl.s1; + acc += (q.s2 & 0x0F) * yl.s2; + acc += (q.s3 & 0x0F) * yl.s3; + acc += (q.s4 & 0x0F) * yl.s4; + acc += (q.s5 & 0x0F) * yl.s5; + acc += (q.s6 & 0x0F) * yl.s6; + acc += (q.s7 & 0x0F) * yl.s7; + + acc += (q.s0 & 0xF0) * yl.s8; + acc += (q.s1 & 0xF0) * yl.s9; + acc += (q.s2 & 0xF0) * yl.sa; + acc += (q.s3 & 0xF0) * yl.sb; + acc += (q.s4 & 0xF0) * yl.sc; + acc += (q.s5 & 0xF0) * yl.sd; + acc += (q.s6 & 0xF0) * yl.se; + acc += (q.s7 & 0xF0) * yl.sf; + + return d * (sumy * -8.f + acc);; +} + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define THREADS_PER_BLK 4 // Number of threads per block, or each thread process 1/THREADS_PER_BLK of a block +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 16 +#elif defined (ADRENO_GPU) +#define THREADS_PER_BLK 4 +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +#if THREADS_PER_BLK == 2 // Each thread processes 1/2 block +# define ACT_TY float16 +# define Q_BLK_LD_TY float2 +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v8 +#elif THREADS_PER_BLK == 4 // Each thread processes 1/4 block +# define ACT_TY float8 +# define Q_BLK_LD_TY float +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v4 +#elif THREADS_PER_BLK == 8 // Each thread processes 1/8 block +# define ACT_TY float4 +# define Q_BLK_LD_TY half +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v2 +#endif + +#define BTYES_PER_THREAD_IN_BLK (QK4_0/2/THREADS_PER_BLK) + +#if N_DST == 2 +# define SUM_TY float2 +#elif N_DST == 4 +# define SUM_TY float4 +#elif N_DST == 8 +# define SUM_TY float8 +#elif N_DST == 16 +# define SUM_TY float16 +#endif + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_flat_v0( + global uchar * src0_q, + global half * src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + const int nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; + + global uchar * x = (global uchar *) src0_q + offset0_q; + global half * d = (global half *) src0_d + offset0_d; + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + int ix = get_sub_group_local_id()/THREADS_PER_BLK; + int il = get_sub_group_local_id()%THREADS_PER_BLK; + + global float * yb = y + ix*QK4_0 + BTYES_PER_THREAD_IN_BLK*il; + + // Registers for caching activation + ACT_TY yl = 0.f; + + // Registers for caching quants + Q_BLK_LD_TY q_blk_0 = 0, q_blk_1 = 0; +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + Q_BLK_LD_TY q_blk_2 = 0, q_blk_3 = 0; +#endif +#if N_DST == 8 || N_DST == 16 + Q_BLK_LD_TY q_blk_4 = 0, q_blk_5 = 0, q_blk_6 = 0, q_blk_7 = 0; +#endif + + // Partial sum + SUM_TY sumf = 0.f; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/THREADS_PER_BLK) { + float sumy = 0.f; + + q_blk_0 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 0*nb*QK4_0/2); + q_blk_1 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 1*nb*QK4_0/2); +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + q_blk_2 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 2*nb*QK4_0/2); + q_blk_3 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 3*nb*QK4_0/2); +#endif +#if N_DST == 8 || N_DST == 16 + q_blk_4 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 4*nb*QK4_0/2)); + q_blk_5 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 5*nb*QK4_0/2)); + q_blk_6 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 6*nb*QK4_0/2)); + q_blk_7 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 7*nb*QK4_0/2)); +#endif + + // Load activation +#if THREADS_PER_BLK == 2 // Each thread processes 1/2 block + yl.s01234567 = *(global float8 *)(yb); + yl.s89abcdef = *(global float8 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; + sumy += yl.s3; + sumy += yl.s4; + sumy += yl.s5; + sumy += yl.s6; + sumy += yl.s7; + sumy += yl.s8; yl.s8 /= 16.f; + sumy += yl.s9; yl.s9 /= 16.f; + sumy += yl.sa; yl.sa /= 16.f; + sumy += yl.sb; yl.sb /= 16.f; + sumy += yl.sc; yl.sc /= 16.f; + sumy += yl.sd; yl.sd /= 16.f; + sumy += yl.se; yl.se /= 16.f; + sumy += yl.sf; yl.sf /= 16.f; +#elif THREADS_PER_BLK == 4 // Each thread processes 1/4 block + yl.s0123 = *(global float4 *)(yb); + yl.s4567 = *(global float4 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; + sumy += yl.s3; + sumy += yl.s4; yl.s4 /= 16.f; + sumy += yl.s5; yl.s5 /= 16.f; + sumy += yl.s6; yl.s6 /= 16.f; + sumy += yl.s7; yl.s7 /= 16.f; +#elif THREADS_PER_BLK == 8 // Each thread processes 1/8 block + yl.s01 = *(global float2 *)(yb); + yl.s23 = *(global float2 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; yl.s2 /= 16.f; + sumy += yl.s3; yl.s3 /= 16.f; +#endif + + sumf.s0 += block_q_4_0_dot_y_flat(q_blk_0, *(d + ib + 0*nb), sumy, yl); + sumf.s1 += block_q_4_0_dot_y_flat(q_blk_1, *(d + ib + 1*nb), sumy, yl); +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + sumf.s2 += block_q_4_0_dot_y_flat(q_blk_2, *(d + ib + 2*nb), sumy, yl); + sumf.s3 += block_q_4_0_dot_y_flat(q_blk_3, *(d + ib + 3*nb), sumy, yl); +#endif +#if N_DST == 8 || N_DST == 16 + sumf.s4 += block_q_4_0_dot_y_flat(q_blk_4, *(d + ib + 4*nb), sumy, yl); + sumf.s5 += block_q_4_0_dot_y_flat(q_blk_5, *(d + ib + 5*nb), sumy, yl); + sumf.s6 += block_q_4_0_dot_y_flat(q_blk_6, *(d + ib + 6*nb), sumy, yl); + sumf.s7 += block_q_4_0_dot_y_flat(q_blk_7, *(d + ib + 7*nb), sumy, yl); +#endif + + yb += QK4_0 * (N_SIMDWIDTH/THREADS_PER_BLK); + } + + SUM_TY tot = (SUM_TY)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1) +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + , sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) +#endif +#if N_DST == 8 || N_DST == 16 + , sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5) + , sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) +#endif + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } +#endif +#if N_DST == 8 || N_DST == 16 + if (first_row + 4 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; + } + if (first_row + 5 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; + } + if (first_row + 6 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; + } + if (first_row + 7 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; + } +#endif + } +} + +//------------------------------------------------------------------------------ +// Using image1d_buffer_t + +#if defined(cl_qcom_subgroup_shuffle) +#pragma OPENCL EXTENSION cl_qcom_subgroup_shuffle : enable +float qcom_sub_group_reduce_add(float sum) { + sum += qcom_sub_group_shuffle_down(sum, 32, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + sum += qcom_sub_group_shuffle_down(sum, 16, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + sum += qcom_sub_group_shuffle_down(sum, 8, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + sum += qcom_sub_group_shuffle_down(sum, 4, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + sum += qcom_sub_group_shuffle_down(sum, 2, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + sum += qcom_sub_group_shuffle_down(sum, 1, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); + return sum; +} +#define sub_group_reduce_add qcom_sub_group_reduce_add +#else +#define sub_group_reduce_add sub_group_reduce_add +#endif + +#undef THREADS_PER_BLK +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define THREADS_PER_BLK 4 // Number of threads per block, or each thread process 1/THREADS_PER_BLK of a block +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 16 +#elif defined (ADRENO_GPU) +#define THREADS_PER_BLK 4 +#define N_DST 4 +#define N_SIMDGROUP 1 +#define N_SIMDWIDTH 64 +#endif + +#if THREADS_PER_BLK == 2 // Each thread processes 1/2 block +# define ACT_TY float16 +# define Q_BLK_LD_TY float2 +# define EXTRACT_BLK_DATA(tmp, part) *((float2*)&tmp + part) +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v8 +#elif THREADS_PER_BLK == 4 // Each thread processes 1/4 block +# define ACT_TY float8 +# define Q_BLK_LD_TY float +# define EXTRACT_BLK_DATA(tmp, part) *((float*)&tmp + part) +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v4 +#elif THREADS_PER_BLK == 8 // Each thread processes 1/8 block +# define ACT_TY float4 +# define Q_BLK_LD_TY half +# define EXTRACT_BLK_DATA(tmp, part) *((half*)&tmp + part) +# define block_q_4_0_dot_y_flat block_q_4_0_dot_y_flat_v2 +#endif + +#define BTYES_PER_THREAD_IN_BLK (QK4_0/2/THREADS_PER_BLK) + +#if N_DST == 2 +# define SUM_TY float2 +#elif N_DST == 4 +# define SUM_TY float4 +#elif N_DST == 8 +# define SUM_TY float8 +#elif N_DST == 16 +# define SUM_TY float16 +#endif + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mat_q4_0_f32_flat_img_v0( + read_only image1d_buffer_t src0_q, + read_only image1d_buffer_t src0_d, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + const int nb = ne00/QK4_0; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; + + int i12 = im%ne12; + int i13 = im/ne12; + + // The number of scales is the same as the number of blocks. + ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + // Each block contains QK4_0/2 uchars, hence offset for qs is as follows. + ulong offset0_q = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + int ix = get_sub_group_local_id()/THREADS_PER_BLK; + int il = get_sub_group_local_id()%THREADS_PER_BLK; + + global float * yb = y + ix*QK4_0 + BTYES_PER_THREAD_IN_BLK*il; + + // Registers for caching activation + ACT_TY yl = 0.f; + + // Registers for caching quants + Q_BLK_LD_TY q_blk_0 = 0, q_blk_1 = 0; +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + Q_BLK_LD_TY q_blk_2 = 0, q_blk_3 = 0; +#endif +#if N_DST == 8 || N_DST == 16 + Q_BLK_LD_TY q_blk_4 = 0, q_blk_5 = 0, q_blk_6 = 0, q_blk_7 = 0; +#endif + + // Partial sum + SUM_TY sumf = 0.f; + + for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/THREADS_PER_BLK) { + float sumy = 0.f;; + + float4 tmp; + tmp = read_imagef(src0_q, offset0_q + ib + 0*nb); + q_blk_0 = EXTRACT_BLK_DATA(tmp, il); + tmp = read_imagef(src0_q, offset0_q + ib + 1*nb); + q_blk_1 = EXTRACT_BLK_DATA(tmp, il); +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + tmp = read_imagef(src0_q, offset0_q + ib + 2*nb); + q_blk_2 = EXTRACT_BLK_DATA(tmp, il); + tmp = read_imagef(src0_q, offset0_q + ib + 3*nb); + q_blk_3 = EXTRACT_BLK_DATA(tmp, il); +#endif +#if N_DST == 8 || N_DST == 16 + tmp = read_imagef(src0_q, offset0_q + ib + 4*nb); + q_blk_4 = EXTRACT_BLK_DATA(tmp, il); + tmp = read_imagef(src0_q, offset0_q + ib + 5*nb); + q_blk_5 = EXTRACT_BLK_DATA(tmp, il); + tmp = read_imagef(src0_q, offset0_q + ib + 6*nb); + q_blk_6 = EXTRACT_BLK_DATA(tmp, il); + tmp = read_imagef(src0_q, offset0_q + ib + 7*nb); + q_blk_7 = EXTRACT_BLK_DATA(tmp, il); +#endif + + // Load activation +#if THREADS_PER_BLK == 2 // Each thread processes 1/2 block + yl.s01234567 = *(global float8 *)(yb); + yl.s89abcdef = *(global float8 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; + sumy += yl.s3; + sumy += yl.s4; + sumy += yl.s5; + sumy += yl.s6; + sumy += yl.s7; + sumy += yl.s8; yl.s8 /= 16.f; + sumy += yl.s9; yl.s9 /= 16.f; + sumy += yl.sa; yl.sa /= 16.f; + sumy += yl.sb; yl.sb /= 16.f; + sumy += yl.sc; yl.sc /= 16.f; + sumy += yl.sd; yl.sd /= 16.f; + sumy += yl.se; yl.se /= 16.f; + sumy += yl.sf; yl.sf /= 16.f; +#elif THREADS_PER_BLK == 4 // Each thread processes 1/4 block + yl.s0123 = *(global float4 *)(yb); + yl.s4567 = *(global float4 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; + sumy += yl.s3; + sumy += yl.s4; yl.s4 /= 16.f; + sumy += yl.s5; yl.s5 /= 16.f; + sumy += yl.s6; yl.s6 /= 16.f; + sumy += yl.s7; yl.s7 /= 16.f; +#elif THREADS_PER_BLK == 8 // Each thread processes 1/8 block + yl.s01 = *(global float2 *)(yb); + yl.s23 = *(global float2 *)(yb + 16); + + sumy += yl.s0; + sumy += yl.s1; + sumy += yl.s2; yl.s2 /= 16.f; + sumy += yl.s3; yl.s3 /= 16.f; +#endif + + sumf.s0 += block_q_4_0_dot_y_flat(q_blk_0, read_imageh(src0_d, offset0_d + ib + 0*nb).s0, sumy, yl); + sumf.s1 += block_q_4_0_dot_y_flat(q_blk_1, read_imageh(src0_d, offset0_d + ib + 1*nb).s0, sumy, yl); +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + sumf.s2 += block_q_4_0_dot_y_flat(q_blk_2, read_imageh(src0_d, offset0_d + ib + 2*nb).s0, sumy, yl); + sumf.s3 += block_q_4_0_dot_y_flat(q_blk_3, read_imageh(src0_d, offset0_d + ib + 3*nb).s0, sumy, yl); +#endif +#if N_DST == 8 || N_DST == 16 + sumf.s4 += block_q_4_0_dot_y_flat(q_blk_4, read_imageh(src0_d, offset0_d + ib + 4*nb).s0, sumy, yl); + sumf.s5 += block_q_4_0_dot_y_flat(q_blk_5, read_imageh(src0_d, offset0_d + ib + 5*nb).s0, sumy, yl); + sumf.s6 += block_q_4_0_dot_y_flat(q_blk_6, read_imageh(src0_d, offset0_d + ib + 6*nb).s0, sumy, yl); + sumf.s7 += block_q_4_0_dot_y_flat(q_blk_7, read_imageh(src0_d, offset0_d + ib + 7*nb).s0, sumy, yl); +#endif + + yb += QK4_0 * (N_SIMDWIDTH/THREADS_PER_BLK); + } + + SUM_TY tot = (SUM_TY)( + sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1) +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + , sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) +#endif +#if N_DST == 8 || N_DST == 16 + , sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5) + , sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) +#endif + ); + + if (get_sub_group_local_id() == 0) { + if (first_row + 0 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; + } + if (first_row + 1 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; + } +#if N_DST == 4 || N_DST == 8 || N_DST == 16 + if (first_row + 2 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; + } + if (first_row + 3 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; + } +#endif +#if N_DST == 8 || N_DST == 16 + if (first_row + 4 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; + } + if (first_row + 5 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; + } + if (first_row + 6 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; + } + if (first_row + 7 < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; + } +#endif + } +} + +//------------------------------------------------------------------------------ +// kernel_mul_mv_q6_K_f32 +//------------------------------------------------------------------------------ + +#undef N_DST +#undef N_SIMDGROUP +#undef N_SIMDWIDTH + +#ifdef INTEL_GPU +#define N_DST 1 // number of rows each SIMD group works on +#define N_SIMDGROUP 2 // number of SIMD groups in a thread group +#define N_SIMDWIDTH 16 // SIMD group size +#elif defined (ADRENO_GPU) +#define N_DST 1 +#define N_SIMDGROUP 2 +#define N_SIMDWIDTH 64 +#endif + +#define BLOCK_STRIDE (N_SIMDWIDTH/16) // number of blocks each subgroup processes + +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_16 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_mul_mv_q6_K_f32( + global void * src0, + ulong offset0, + global float * src1, + ulong offset1, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne10, + int ne12, + int ne0, + int ne1, + int r2, + int r3 +) { + src0 = (global void*)((global char*)src0 + offset0); + src1 = (global float*)((global char*)src1 + offset1); + dst = (global float*)((global char*)dst + offsetd); + + uchar kmask1 = 0x03; + uchar kmask2 = 0x0C; + uchar kmask3 = 0x30; + uchar kmask4 = 0xC0; + + int nb = ne00/QK_K; + + int r0 = get_group_id(0); + int r1 = get_group_id(1); + int im = get_group_id(2); + + int row = N_SIMDGROUP * r0 + get_sub_group_id(); + + int i12 = im%ne12; + int i13 = im/ne12; + + ulong offset_src0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + global block_q6_K * x = (global block_q6_K *) src0 + row*nb + offset_src0; + global float * yy = (global float *) src1 + r1*ne10 + im*ne00*ne1; + + float sumf = 0; + + // For Q6_K quantization, 16 values forms a subblock, 16 subblock forms a + // block. Values in a subblock shares a scale that is quantized with 8 bits; + // the entire block shares a single floating point scale. + // For work distribution, each thread processes a subblock (16 weights), hence + // 16 threads process a (super) block -- a subgroup thus handles SIMDWIDTH/16 + // (super) blocks -- this is the block stride. + // The 16 threads that process a (super) block are split into 2 portions, each has + // 8 threads; each portion works on 8 subblocks. + // For subgroup of 16 threads, the entire subgroup works on a single (super) block + // before moving to the next (super) block. Thread0 - thread7 work on the + // first 8 subblocks; thread8 - thread15 works on the last 8 subblocks. + // Thread0 - thread3 work on subblocks 0, 2, 4, 6; thread4 - thread7 work on + // subblocks 1, 3, 5, 7. Each thread does not work on an entire subblock, but + // works on a total of 16 weight values. + int tid = get_sub_group_local_id()/BLOCK_STRIDE; // first block_stride groups have tid=0 + int ix = get_sub_group_local_id()%BLOCK_STRIDE; // first block is 0..block_stride-1 + int ip = tid/8; // first or second half of (super) block (0 or 1) + int il = tid%8; // each half has 8 parts, one per scale + int n = 4; // 4 scales at a time (and 4 sums) + int l0 = n*il; // offset into half-block, 0..28 + int is = 8*ip + l0/16; // 0, 1, 8, 9 + + int y_offset = 128*ip + l0; + int q_offset_l = 64*ip + l0; + int q_offset_h = 32*ip + l0; + + for (int i = ix; i < nb; i += BLOCK_STRIDE) { + + global uint8_t * q1 = x[i].ql + q_offset_l; + global uint8_t * q2 = q1 + QK_K/8; + global uint8_t * qh = x[i].qh + q_offset_h; + global int8_t * sc = x[i].scales + is; + + global float * y = yy + i * QK_K + y_offset; + + float dall = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + + sums.s0 += y[0+ 0] * ((float)((q1[0] & 0xF) | ((qh[0] & kmask1) << 4)) - 32.f); + sums.s1 += y[0+32] * ((float)((q2[0] & 0xF) | ((qh[0] & kmask2) << 2)) - 32.f); + sums.s2 += y[0+64] * ((float)((q1[0] >> 4) | ((qh[0] & kmask3) << 0)) - 32.f); + sums.s3 += y[0+96] * ((float)((q2[0] >> 4) | ((qh[0] & kmask4) >> 2)) - 32.f); + + sums.s0 += y[1+ 0] * ((float)((q1[1] & 0xF) | ((qh[1] & kmask1) << 4)) - 32.f); + sums.s1 += y[1+32] * ((float)((q2[1] & 0xF) | ((qh[1] & kmask2) << 2)) - 32.f); + sums.s2 += y[1+64] * ((float)((q1[1] >> 4) | ((qh[1] & kmask3) << 0)) - 32.f); + sums.s3 += y[1+96] * ((float)((q2[1] >> 4) | ((qh[1] & kmask4) >> 2)) - 32.f); + + sums.s0 += y[2+ 0] * ((float)((q1[2] & 0xF) | ((qh[2] & kmask1) << 4)) - 32.f); + sums.s1 += y[2+32] * ((float)((q2[2] & 0xF) | ((qh[2] & kmask2) << 2)) - 32.f); + sums.s2 += y[2+64] * ((float)((q1[2] >> 4) | ((qh[2] & kmask3) << 0)) - 32.f); + sums.s3 += y[2+96] * ((float)((q2[2] >> 4) | ((qh[2] & kmask4) >> 2)) - 32.f); + + sums.s0 += y[3+ 0] * ((float)((q1[3] & 0xF) | ((qh[3] & kmask1) << 4)) - 32.f); + sums.s1 += y[3+32] * ((float)((q2[3] & 0xF) | ((qh[3] & kmask2) << 2)) - 32.f); + sums.s2 += y[3+64] * ((float)((q1[3] >> 4) | ((qh[3] & kmask3) << 0)) - 32.f); + sums.s3 += y[3+96] * ((float)((q2[3] >> 4) | ((qh[3] & kmask4) >> 2)) - 32.f); + + sumf += dall * (sums.s0 * sc[0] + sums.s1 * sc[2] + sums.s2 * sc[4] + sums.s3 * sc[6]); + } + + float tot = sub_group_reduce_add(sumf); + if (get_sub_group_local_id() == 0) { + dst[r1*ne0 + im*ne0*ne1 + row] = tot; + } +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl b/src/ggml-opencl/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl new file mode 100644 index 000000000..57768c803 --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl @@ -0,0 +1,130 @@ +// src0_q, src0_d, src1 are transposed as a preprocessing step +// 4-bit weights are transposed in groups of 4 (unsigned short int) +// consider weights originally "next to each other", now "on top of each other" +// each fiber computes a 8x4 tile of output elements +// using unshuffled weights + +#pragma OPENCL EXTENSION cl_khr_fp16 : enable +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable + +__attribute__((qcom_reqd_sub_group_size("full"))) +kernel void kernel_mul_mat_Ab_Bi_8x4( + global const ushort * src0_q, // quantized A + global const half * src0_d, // A scales + __read_only image1d_buffer_t src1, // B (1d image) + global float * dst, // C + int m, // M + int n, // N with padding + int k, // K + int n_no_padding // N without padding +) { + + int m_4 = m >> 2; + int n_4 = n >> 2; + + int gy = get_global_id(0); + int gx = get_global_id(1); + int gx_2 = gx << 2; + + half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0; // 8x4 output elements + half8 B; // registers for activations + half4 dequantized_weights; // registers for dequantized weights + __global const ushort* weight_ptr = src0_q + gx_2; // pointer for weights + __global const half* scale_ptr = src0_d + gx_2; // pointer for scales + + for(int i=0; i> 4) - 8) * scale.s0; // dequantize a row of the 16 weights + dequantized_weights.s1 = (((bits4.s1 & (0x00F0)) >> 4) - 8) * scale.s1; + dequantized_weights.s2 = (((bits4.s2 & (0x00F0)) >> 4) - 8) * scale.s2; + dequantized_weights.s3 = (((bits4.s3 & (0x00F0)) >> 4) - 8) * scale.s3; + c0 += B * dequantized_weights.s0; //vector-scalar multiplication to accumulate + c1 += B * dequantized_weights.s1; + c2 += B * dequantized_weights.s2; + c3 += B * dequantized_weights.s3; + + // j=2 + B.s0123 = read_imageh(src1, gy*2 + (i+2)*(n_4)); + B.s4567 = read_imageh(src1, gy*2 + (i+2)*(n_4)+1); + dequantized_weights.s0 = (((bits4.s0 & (0x0F00)) >> 8) - 8) * scale.s0; // dequantize a row of the 16 weights + dequantized_weights.s1 = (((bits4.s1 & (0x0F00)) >> 8) - 8) * scale.s1; + dequantized_weights.s2 = (((bits4.s2 & (0x0F00)) >> 8) - 8) * scale.s2; + dequantized_weights.s3 = (((bits4.s3 & (0x0F00)) >> 8) - 8) * scale.s3; + c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate + c1 += B * dequantized_weights.s1; + c2 += B * dequantized_weights.s2; + c3 += B * dequantized_weights.s3; + + // j=3 + B.s0123 = read_imageh(src1, gy*2 + (i+3)*(n_4)); + B.s4567 = read_imageh(src1, gy*2 + (i+3)*(n_4)+1); + dequantized_weights.s0 = (((bits4.s0 & (0xF000)) >> 12) - 8) * scale.s0; // dequantize a row of the 16 weights + dequantized_weights.s1 = (((bits4.s1 & (0xF000)) >> 12) - 8) * scale.s1; + dequantized_weights.s2 = (((bits4.s2 & (0xF000)) >> 12) - 8) * scale.s2; + dequantized_weights.s3 = (((bits4.s3 & (0xF000)) >> 12) - 8) * scale.s3; + c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate + c1 += B * dequantized_weights.s1; + c2 += B * dequantized_weights.s2; + c3 += B * dequantized_weights.s3; + } + + int idx = (gy<<3)*m + (gx<<2); // vectorized store 16 elements + + // conditional check if store is to a valid location. Required when N is not a multiple of 8 + // if statements allow registers to be reused for each store + // provides a performance boost due to reduced register footprint, which increases number of concurrent waves + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx); + idx += m; + } + if(idx+3 < m*n_no_padding){ + vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx); + } +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_transpose_16.cl b/src/ggml-opencl/kernels/ggml-opencl_transpose_16.cl new file mode 100644 index 000000000..d59a0c05d --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_transpose_16.cl @@ -0,0 +1,32 @@ +// 16-bit transpose, loading/storing an 8x8 tile of elements + +kernel void kernel_transpose_16( + __read_only image1d_buffer_t input, + __write_only image1d_buffer_t output, + const uint rows, + const uint cols +) { + + const int i = get_global_id(0); + const int j = get_global_id(1); + const int i_3 = i<<3; + const int j_3 = j<<3; + + ushort8 temp0 = as_ushort8(read_imagef(input, (j_3+0)*cols+i)); + ushort8 temp1 = as_ushort8(read_imagef(input, (j_3+1)*cols+i)); + ushort8 temp2 = as_ushort8(read_imagef(input, (j_3+2)*cols+i)); + ushort8 temp3 = as_ushort8(read_imagef(input, (j_3+3)*cols+i)); + ushort8 temp4 = as_ushort8(read_imagef(input, (j_3+4)*cols+i)); + ushort8 temp5 = as_ushort8(read_imagef(input, (j_3+5)*cols+i)); + ushort8 temp6 = as_ushort8(read_imagef(input, (j_3+6)*cols+i)); + ushort8 temp7 = as_ushort8(read_imagef(input, (j_3+7)*cols+i)); + + write_imagef(output, (i_3+0)*rows+j, as_float4((ushort8)(temp0.s0, temp1.s0, temp2.s0, temp3.s0, temp4.s0, temp5.s0, temp6.s0, temp7.s0))); + write_imagef(output, (i_3+1)*rows+j, as_float4((ushort8)(temp0.s1, temp1.s1, temp2.s1, temp3.s1, temp4.s1, temp5.s1, temp6.s1, temp7.s1))); + write_imagef(output, (i_3+2)*rows+j, as_float4((ushort8)(temp0.s2, temp1.s2, temp2.s2, temp3.s2, temp4.s2, temp5.s2, temp6.s2, temp7.s2))); + write_imagef(output, (i_3+3)*rows+j, as_float4((ushort8)(temp0.s3, temp1.s3, temp2.s3, temp3.s3, temp4.s3, temp5.s3, temp6.s3, temp7.s3))); + write_imagef(output, (i_3+4)*rows+j, as_float4((ushort8)(temp0.s4, temp1.s4, temp2.s4, temp3.s4, temp4.s4, temp5.s4, temp6.s4, temp7.s4))); + write_imagef(output, (i_3+5)*rows+j, as_float4((ushort8)(temp0.s5, temp1.s5, temp2.s5, temp3.s5, temp4.s5, temp5.s5, temp6.s5, temp7.s5))); + write_imagef(output, (i_3+6)*rows+j, as_float4((ushort8)(temp0.s6, temp1.s6, temp2.s6, temp3.s6, temp4.s6, temp5.s6, temp6.s6, temp7.s6))); + write_imagef(output, (i_3+7)*rows+j, as_float4((ushort8)(temp0.s7, temp1.s7, temp2.s7, temp3.s7, temp4.s7, temp5.s7, temp6.s7, temp7.s7))); +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_transpose_32.cl b/src/ggml-opencl/kernels/ggml-opencl_transpose_32.cl new file mode 100644 index 000000000..914ec0193 --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_transpose_32.cl @@ -0,0 +1,25 @@ +// 32-bit transpose, loading/storing a 4x4 tile of elements + +kernel void kernel_transpose_32( + __read_only image1d_buffer_t input, + __write_only image1d_buffer_t output, + const uint rows, + const uint cols +) { + + const int i = get_global_id(0); + const int j = get_global_id(1); + const int i_2 = i<<2; + const int j_2 = j<<2; + + float4 temp0 = read_imagef(input, (j_2+0)*cols+i); + float4 temp1 = read_imagef(input, (j_2+1)*cols+i); + float4 temp2 = read_imagef(input, (j_2+2)*cols+i); + float4 temp3 = read_imagef(input, (j_2+3)*cols+i); + + write_imagef(output, (i_2+0)*rows+j, (float4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); + write_imagef(output, (i_2+1)*rows+j, (float4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1)); + write_imagef(output, (i_2+2)*rows+j, (float4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2)); + write_imagef(output, (i_2+3)*rows+j, (float4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3)); + +} diff --git a/src/ggml-opencl/kernels/ggml-opencl_transpose_32_16.cl b/src/ggml-opencl/kernels/ggml-opencl_transpose_32_16.cl new file mode 100644 index 000000000..d3bd1fabb --- /dev/null +++ b/src/ggml-opencl/kernels/ggml-opencl_transpose_32_16.cl @@ -0,0 +1,35 @@ +// 32-bit transpose, loading/storing a 4x4 tile of elements +// Only used for activations +// converts to FP16 +// also adds zero padding for non multiple of 8 prompt lengths +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +kernel void kernel_transpose_32_16(__read_only image1d_buffer_t input, __write_only image1d_buffer_t output, const uint rows, const uint cols, const uint padded_rows) { + + const int i = get_global_id(0); + const int j = get_global_id(1); + const int i_2 = i<<2; + const int j_2 = j<<2; + half4 temp0 = {0,0,0,0}; // initialize outputs to 0 + half4 temp1 = {0,0,0,0}; + half4 temp2 = {0,0,0,0}; + half4 temp3 = {0,0,0,0}; + + if((j_2+0)*cols+i*4+3 < rows*cols*16){ // only load from a valid location. Otherwise keep register data as 0 + temp0 = read_imageh(input, (j_2+0)*cols+i); + } + if((j_2+1)*cols+i*4+3 < rows*cols*16){ + temp1 = read_imageh(input, (j_2+1)*cols+i); + } + if((j_2+2)*cols+i*4+3 < rows*cols*16){ + temp2 = read_imageh(input, (j_2+2)*cols+i); + } + if((j_2+3)*cols+i*4+3 < rows*cols*16){ + temp3 = read_imageh(input, (j_2+3)*cols+i); + } + + write_imageh(output, (i_2+0)*padded_rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); // no conditionals for output, includes zero padding + write_imageh(output, (i_2+1)*padded_rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1)); + write_imageh(output, (i_2+2)*padded_rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2)); + write_imageh(output, (i_2+3)*padded_rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3)); +} From 18e8b1089d75ce09228f0c798aaf633515104544 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 14 Jan 2025 09:29:27 +0200 Subject: [PATCH 22/23] scripts : sync gguf --- scripts/sync-llama-am.sh | 5 +++++ scripts/sync-llama.sh | 2 ++ scripts/sync-whisper-am.sh | 6 ++++++ scripts/sync-whisper.sh | 2 ++ 4 files changed, 15 insertions(+) diff --git a/scripts/sync-llama-am.sh b/scripts/sync-llama-am.sh index 60261b13d..155914a9c 100755 --- a/scripts/sync-llama-am.sh +++ b/scripts/sync-llama-am.sh @@ -72,6 +72,7 @@ while read c; do ggml/src/ggml*.h \ ggml/src/ggml*.c \ ggml/src/ggml*.cpp \ + ggml/src/gguf*.cpp \ ggml/src/ggml-blas/* \ ggml/src/ggml-cann/* \ ggml/src/ggml-cpu/* \ @@ -122,6 +123,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then # ggml/src/ggml*.c -> src/ggml*.c # ggml/src/ggml*.cpp -> src/ggml*.cpp # ggml/src/ggml*.h -> src/ggml*.h + # ggml/src/gguf*.cpp -> src/gguf*.h # ggml/src/ggml-blas/* -> src/ggml-blas/* # ggml/src/ggml-cann/* -> src/ggml-cann/* # ggml/src/ggml-cpu/* -> src/ggml-cpu/* @@ -136,6 +138,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then # ggml/src/ggml-vulkan/* -> src/ggml-vulkan/* # # ggml/include/ggml*.h -> include/ggml*.h + # ggml/include/gguf*.h -> include/gguf*.h # # tests/test-opt.cpp -> tests/test-opt.cpp # tests/test-quantize-fns.cpp -> tests/test-quantize-fns.cpp @@ -151,6 +154,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then -e 's/\/ggml\/src\/ggml(.*)\.c/\/src\/ggml\1.c/g' \ -e 's/\/ggml\/src\/ggml(.*)\.cpp/\/src\/ggml\1.cpp/g' \ -e 's/\/ggml\/src\/ggml(.*)\.h/\/src\/ggml\1.h/g' \ + -e 's/\/ggml\/src\/gguf(.*)\.cpp/\/src\/gguf\1.cpp/g' \ -e 's/\/ggml\/src\/ggml-blas\//\/src\/ggml-blas\//g' \ -e 's/\/ggml\/src\/ggml-cann\//\/src\/ggml-cann\//g' \ -e 's/\/ggml\/src\/ggml-cpu\//\/src\/ggml-cpu\//g' \ @@ -164,6 +168,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then -e 's/\/ggml\/src\/ggml-sycl\//\/src\/ggml-sycl\//g' \ -e 's/\/ggml\/src\/ggml-vulkan\//\/src\/ggml-vulkan\//g' \ -e 's/\/ggml\/include\/ggml(.*)\.h/\/include\/ggml\1.h/g' \ + -e 's/\/ggml\/include\/gguf(.*)\.h/\/include\/gguf\1.h/g' \ -e 's/\/tests\/test-opt\.cpp/\/tests\/test-opt.cpp/g' \ -e 's/\/tests\/test-quantize-fns\.cpp/\/tests\/test-quantize-fns.cpp/g' \ -e 's/\/tests\/test-quantize-perf\.cpp/\/tests\/test-quantize-perf.cpp/g' \ diff --git a/scripts/sync-llama.sh b/scripts/sync-llama.sh index 92d094b39..dba29c90b 100755 --- a/scripts/sync-llama.sh +++ b/scripts/sync-llama.sh @@ -7,6 +7,7 @@ cp -rpv ../llama.cpp/ggml/cmake/FindSIMD.cmake cmake/FindSIMD.cmake cp -rpv ../llama.cpp/ggml/src/ggml*.c src/ cp -rpv ../llama.cpp/ggml/src/ggml*.cpp src/ cp -rpv ../llama.cpp/ggml/src/ggml*.h src/ +cp -rpv ../llama.cpp/ggml/src/gguf*.cpp src/ cp -rpv ../llama.cpp/ggml/src/ggml-blas/* src/ggml-blas/ cp -rpv ../llama.cpp/ggml/src/ggml-cann/* src/ggml-cann/ cp -rpv ../llama.cpp/ggml/src/ggml-cpu/* src/ggml-cpu/ @@ -21,6 +22,7 @@ cp -rpv ../llama.cpp/ggml/src/ggml-sycl/* src/ggml-sycl/ cp -rpv ../llama.cpp/ggml/src/ggml-vulkan/* src/ggml-vulkan/ cp -rpv ../llama.cpp/ggml/include/ggml*.h include/ +cp -rpv ../llama.cpp/ggml/include/gguf*.h include/ cp -rpv ../llama.cpp/tests/test-opt.cpp tests/test-opt.cpp cp -rpv ../llama.cpp/tests/test-quantize-fns.cpp tests/test-quantize-fns.cpp diff --git a/scripts/sync-whisper-am.sh b/scripts/sync-whisper-am.sh index 8e21dbebf..a83914e13 100755 --- a/scripts/sync-whisper-am.sh +++ b/scripts/sync-whisper-am.sh @@ -59,6 +59,7 @@ while read c; do ggml/src/ggml*.h \ ggml/src/ggml*.c \ ggml/src/ggml*.cpp \ + ggml/src/gguf*.cpp \ ggml/src/ggml-blas/* \ ggml/src/ggml-cann/* \ ggml/src/ggml-cpu/* \ @@ -72,6 +73,7 @@ while read c; do ggml/src/ggml-sycl/* \ ggml/src/ggml-vulkan/* \ ggml/include/ggml*.h \ + ggml/include/gguf*.h \ examples/common.h \ examples/common.cpp \ examples/common-ggml.h \ @@ -110,6 +112,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then # ggml/src/ggml*.c -> src/ggml*.c # ggml/src/ggml*.cpp -> src/ggml*.cpp # ggml/src/ggml*.h -> src/ggml*.h + # ggml/src/gguf*.cpp -> src/gguf*.cpp # ggml/src/ggml-blas/* -> src/ggml-blas/* # ggml/src/ggml-cann/* -> src/ggml-cann/* # ggml/src/ggml-cpu/* -> src/ggml-cpu/* @@ -124,6 +127,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then # ggml/src/ggml-vulkan/* -> src/ggml-vulkan/* # # ggml/include/ggml*.h -> include/ggml*.h + # ggml/include/gguf*.h -> include/gguf*.h # # examples/common.h -> examples/common.h # examples/common.cpp -> examples/common.cpp @@ -140,6 +144,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then -e 's/\/ggml\/src\/ggml(.*)\.c/\/src\/ggml\1.c/g' \ -e 's/\/ggml\/src\/ggml(.*)\.cpp/\/src\/ggml\1.cpp/g' \ -e 's/\/ggml\/src\/ggml(.*)\.h/\/src\/ggml\1.h/g' \ + -e 's/\/ggml\/src\/gguf(.*)\.cpp/\/src\/gguf\1.cpp/g' \ -e 's/\/ggml\/src\/ggml-blas\//\/src\/ggml-blas\//g' \ -e 's/\/ggml\/src\/ggml-cann\//\/src\/ggml-cann\//g' \ -e 's/\/ggml\/src\/ggml-cpu\//\/src\/ggml-cpu\//g' \ @@ -153,6 +158,7 @@ if [ -f $SRC_GGML/whisper-src.patch ]; then -e 's/\/ggml\/src\/ggml-sycl\//\/src\/ggml-sycl\//g' \ -e 's/\/ggml\/src\/ggml-vulkan\//\/src\/ggml-vulkan\//g' \ -e 's/\/ggml\/include\/ggml(.*)\.h/\/include\/ggml\1.h/g' \ + -e 's/\/ggml\/include\/gguf(.*)\.h/\/include\/gguf\1.h/g' \ -e 's/\/examples\/common\.h/\/examples\/common.h/g' \ -e 's/\/examples\/common\.cpp/\/examples\/common.cpp/g' \ -e 's/\/examples\/common-ggml\.h/\/examples\/common-ggml.h/g' \ diff --git a/scripts/sync-whisper.sh b/scripts/sync-whisper.sh index 57dee2b2b..2f63dfc88 100755 --- a/scripts/sync-whisper.sh +++ b/scripts/sync-whisper.sh @@ -7,6 +7,7 @@ cp -rpv ../whisper.cpp/ggml/cmake/FindSIMD.cmake cmake/FindSIMD.cmake cp -rpv ../whisper.cpp/ggml/src/ggml*.c src/ cp -rpv ../whisper.cpp/ggml/src/ggml*.cpp src/ cp -rpv ../whisper.cpp/ggml/src/ggml*.h src/ +cp -rpv ../whisper.cpp/ggml/src/gguf*.cpp src/ cp -rpv ../whisper.cpp/ggml/src/ggml-blas/* src/ggml-blas/ cp -rpv ../whisper.cpp/ggml/src/ggml-cann/* src/ggml-cann/ cp -rpv ../whisper.cpp/ggml/src/ggml-cpu/* src/ggml-cpu/ @@ -21,6 +22,7 @@ cp -rpv ../whisper.cpp/ggml/src/ggml-sycl/* src/ggml-sycl/ cp -rpv ../whisper.cpp/ggml/src/ggml-vulkan/* src/ggml-vulkan/ cp -rpv ../whisper.cpp/ggml/include/ggml*.h include/ +cp -rpv ../whisper.cpp/ggml/include/gguf*.h include/ cp -rpv ../whisper.cpp/examples/common.h examples/common.h cp -rpv ../whisper.cpp/examples/common.cpp examples/common.cpp From daca9a1c8c2af1d20223b06af77db8cc329c77bf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Tue, 14 Jan 2025 09:31:07 +0200 Subject: [PATCH 23/23] GGUF: C++ refactor, backend support, misc fixes (skip) (llama/11030) ggml-ci --- examples/magika/main.cpp | 1 + examples/mnist/mnist-common.h | 1 + examples/yolo/yolov3-tiny.cpp | 1 + include/gguf.h | 202 +++++ src/gguf.cpp | 1325 +++++++++++++++++++++++++++++++++ 5 files changed, 1530 insertions(+) create mode 100644 include/gguf.h create mode 100644 src/gguf.cpp diff --git a/examples/magika/main.cpp b/examples/magika/main.cpp index f129fe5a3..e8b803185 100644 --- a/examples/magika/main.cpp +++ b/examples/magika/main.cpp @@ -1,4 +1,5 @@ #include "ggml.h" +#include "gguf.h" #include "ggml-cpu.h" #include "ggml-alloc.h" #include "ggml-backend.h" diff --git a/examples/mnist/mnist-common.h b/examples/mnist/mnist-common.h index 090cf3715..0ecca3f6b 100644 --- a/examples/mnist/mnist-common.h +++ b/examples/mnist/mnist-common.h @@ -8,6 +8,7 @@ #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml.h" +#include "gguf.h" #include "ggml-cpu.h" #include "ggml-opt.h" diff --git a/examples/yolo/yolov3-tiny.cpp b/examples/yolo/yolov3-tiny.cpp index 06023c338..b8d149ac8 100644 --- a/examples/yolo/yolov3-tiny.cpp +++ b/examples/yolo/yolov3-tiny.cpp @@ -1,4 +1,5 @@ #include "ggml.h" +#include "gguf.h" #include "ggml-cpu.h" #include "ggml-alloc.h" #include "ggml-backend.h" diff --git a/include/gguf.h b/include/gguf.h new file mode 100644 index 000000000..79ee20206 --- /dev/null +++ b/include/gguf.h @@ -0,0 +1,202 @@ +// This file contains functionality related to "GGUF" files, the binary file format used by ggml. +// GGUF files have the following structure: +// +// 1. File magic "GGUF" (4 bytes). +// 2. File version (uint32_t). +// 3. Number of ggml tensors in file (int64_t). +// 4. Number of key-value-pairs in file (int64_t). +// 5. For each KV pair: +// 1. The key (string). +// 2. The value type (gguf_type). +// 3a. If the value type is GGUF_TYPE_ARRAY: +// 1. The type of the array (gguf_type). +// 2. The number of elements in the array (uint64_t). +// 3. The binary representation of each element in the array. +// 3b. Otherwise: +// 1. The binary representation of the value. +// 6. For each ggml tensor: +// 1. The tensor name (string). +// 2. The number of dimensions of the tensor (uint32_t). +// 3. For each dimension: +// 1. The size of the tensor in the dimension (int64_t). +// 4. The tensor data type (ggml_type). +// 5. The tensor data offset in the tensor data binary blob (uint64_t). +// 7. The tensor data binary blob (optional, aligned). +// +// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator. +// All enums are stored as int32_t. +// All bool values are stored as int8_t. +// If the special key "general.alignment" (uint32_t) is defined it is used for alignment, +// otherwise GGUF_DEFAULT_ALIGNMENT is used. +// +// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de) + +#pragma once + +#include "ggml.h" + +#include +#include + +#define GGUF_MAGIC "GGUF" +#define GGUF_VERSION 3 + +#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment" + +#define GGUF_DEFAULT_ALIGNMENT 32 + +#ifdef __cplusplus +extern "C" { +#endif + + // types that can be stored as GGUF KV data + enum gguf_type { + GGUF_TYPE_UINT8 = 0, + GGUF_TYPE_INT8 = 1, + GGUF_TYPE_UINT16 = 2, + GGUF_TYPE_INT16 = 3, + GGUF_TYPE_UINT32 = 4, + GGUF_TYPE_INT32 = 5, + GGUF_TYPE_FLOAT32 = 6, + GGUF_TYPE_BOOL = 7, + GGUF_TYPE_STRING = 8, + GGUF_TYPE_ARRAY = 9, + GGUF_TYPE_UINT64 = 10, + GGUF_TYPE_INT64 = 11, + GGUF_TYPE_FLOAT64 = 12, + GGUF_TYPE_COUNT, // marks the end of the enum + }; + + struct gguf_context; + + struct gguf_init_params { + bool no_alloc; + + // if not NULL, create a ggml_context and allocate the tensor data in it + struct ggml_context ** ctx; + }; + + GGML_API struct gguf_context * gguf_init_empty(void); + GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params); + //GGML_API struct gguf_context * gguf_init_from_buffer(..); + + GGML_API void gguf_free(struct gguf_context * ctx); + + GGML_API const char * gguf_type_name(enum gguf_type type); + + GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx); + GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx); + GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx); + + GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx); + GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found + GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id); + + GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id); + GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id); + + // will abort if the wrong type is used for the key + GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id); + GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id); + GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id); + GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id); + GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id); + GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id); + + // get raw pointer to the first element of the array with the given key_id + // for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference) + GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id); + + // get ith C string from array with given key_id + GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i); + + GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx); + GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found + GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id); + GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id); + GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id); + GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id); + + // removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist) + GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key); + + // overrides an existing KV pair or adds a new one, the new KV pair is always at the back + GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); + GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val); + GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val); + GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val); + GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val); + GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val); + GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val); + GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val); + GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val); + GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val); + GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val); + GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val); + + // creates a new array with n elements of the given type and copies the corresponding number of bytes from data + GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n); + + // creates a new array with n strings and copies the corresponding strings from data + GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n); + + // set or add KV pairs from another context + GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src); + + // add tensor to GGUF context, tensor name must be unique + GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor); + + // after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated + // in such a way that the tensor data remains as one contiguous block (except for padding) + GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type); + + // assumes that at least gguf_get_tensor_size bytes can be read from data + GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data); + + // writing gguf files can be done in 3 ways: + // + // - write the entire gguf_context to a binary file in a single pass: + // + // gguf_write_to_file(ctx, fname, /*only_meta =*/ false); + // + // - write only the meta data to a file, then re-open the file and append the tensor data: + // + // gguf_write_to_file(ctx, fname, /*only_meta =*/ true); + // FILE * f = fopen(fname, "ab"); + // fwrite(f, ...); // write tensor data + // fclose(f); + // + // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data: + // + // FILE * f = fopen(fname, "wb"); + // const size_t size_meta = gguf_get_meta_size(ctx); + // fseek(f, size_meta, SEEK_SET); + // fwrite(f, ...); // write tensor data + // void * data = malloc(size_meta); + // gguf_get_meta_data(ctx, data); + // rewind(f); + // fwrite(data, 1, data, f); + // free(data); + // fclose(f); + // + + // write the entire context to a binary file + GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta); + + // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding + GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx); + + // writes the meta data to pointer "data" + GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data); + +#ifdef __cplusplus +} +#endif diff --git a/src/gguf.cpp b/src/gguf.cpp new file mode 100644 index 000000000..655ed600a --- /dev/null +++ b/src/gguf.cpp @@ -0,0 +1,1325 @@ +#include "ggml.h" +#include "ggml-backend.h" +#include "ggml-impl.h" +#include "gguf.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +template +struct type_to_gguf_type; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT8; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT8; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT16; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT16; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_BOOL; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_STRING; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_UINT64; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_INT64; +}; + +template <> +struct type_to_gguf_type { + static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; +}; + +static const std::map GGUF_TYPE_SIZE = { + {GGUF_TYPE_UINT8, sizeof(uint8_t)}, + {GGUF_TYPE_INT8, sizeof(int8_t)}, + {GGUF_TYPE_UINT16, sizeof(uint16_t)}, + {GGUF_TYPE_INT16, sizeof(int16_t)}, + {GGUF_TYPE_UINT32, sizeof(uint32_t)}, + {GGUF_TYPE_INT32, sizeof(int32_t)}, + {GGUF_TYPE_FLOAT32, sizeof(float)}, + {GGUF_TYPE_BOOL, sizeof(int8_t)}, + {GGUF_TYPE_STRING, 0}, // undefined + {GGUF_TYPE_ARRAY, 0}, // undefined + {GGUF_TYPE_UINT64, sizeof(uint64_t)}, + {GGUF_TYPE_INT64, sizeof(int64_t)}, + {GGUF_TYPE_FLOAT64, sizeof(double)}, +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +static const std::map GGUF_TYPE_NAME = { + {GGUF_TYPE_UINT8, "u8"}, + {GGUF_TYPE_INT8, "i8"}, + {GGUF_TYPE_UINT16, "u16"}, + {GGUF_TYPE_INT16, "i16"}, + {GGUF_TYPE_UINT32, "u32"}, + {GGUF_TYPE_INT32, "i32"}, + {GGUF_TYPE_FLOAT32, "f32"}, + {GGUF_TYPE_BOOL, "bool"}, + {GGUF_TYPE_STRING, "str"}, + {GGUF_TYPE_ARRAY, "arr"}, + {GGUF_TYPE_UINT64, "u64"}, + {GGUF_TYPE_INT64, "i64"}, + {GGUF_TYPE_FLOAT64, "f64"}, +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +size_t gguf_type_size(enum gguf_type type) { + auto it = GGUF_TYPE_SIZE.find(type); + return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; +} + +struct gguf_kv { + std::string key; + + bool is_array; + enum gguf_type type; + + std::vector data; + std::vector data_string; + + template + gguf_kv(const std::string & key, const T value) + : key(key), is_array(false), type(type_to_gguf_type::value) { + GGML_ASSERT(!key.empty()); + data.resize(sizeof(T)); + memcpy(data.data(), &value, sizeof(T)); + } + + template + gguf_kv(const std::string & key, const std::vector & value) + : key(key), is_array(true), type(type_to_gguf_type::value) { + GGML_ASSERT(!key.empty()); + data.resize(value.size()*sizeof(T)); + for (size_t i = 0; i < value.size(); ++i) { + const T tmp = value[i]; + memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); + } + } + + gguf_kv(const std::string & key, const std::string & value) + : key(key), is_array(false), type(GGUF_TYPE_STRING) { + GGML_ASSERT(!key.empty()); + data_string.push_back(value); + } + + gguf_kv(const std::string & key, const std::vector & value) + : key(key), is_array(true), type(GGUF_TYPE_STRING) { + GGML_ASSERT(!key.empty()); + data_string = value; + } + + const std::string & get_key() const { + return key; + } + + const enum gguf_type & get_type() const { + return type; + } + + size_t get_ne() const { + if (type == GGUF_TYPE_STRING) { + const size_t ne = data_string.size(); + GGML_ASSERT(is_array || ne == 1); + return ne; + } + const size_t type_size = gguf_type_size(type); + GGML_ASSERT(data.size() % type_size == 0); + const size_t ne = data.size() / type_size; + GGML_ASSERT(is_array || ne == 1); + return ne; + } + + template + const T & get_val(const size_t i = 0) const { + GGML_ASSERT(type_to_gguf_type::value == type); + if constexpr (std::is_same::value) { + GGML_ASSERT(data_string.size() >= i+1); + return data_string[i]; + } + const size_t type_size = gguf_type_size(type); + GGML_ASSERT(data.size() % type_size == 0); + GGML_ASSERT(data.size() >= (i+1)*type_size); + return reinterpret_cast(data.data())[i]; + } + + void cast(const enum gguf_type new_type) { + const size_t new_type_size = gguf_type_size(new_type); + GGML_ASSERT(data.size() % new_type_size == 0); + type = new_type; + } +}; + +struct gguf_tensor_info { + struct ggml_tensor t; // for holding the equivalent info + uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` +}; + +struct gguf_context { + uint32_t version = GGUF_VERSION; + + std::vector kv; + std::vector info; + + size_t alignment = GGUF_DEFAULT_ALIGNMENT; + size_t offset = 0; // offset of `data` from beginning of file + size_t size = 0; // size of `data` in bytes + + void * data = nullptr; +}; + +struct gguf_reader { + FILE * file; + + gguf_reader(FILE * file) : file(file) {} + + template + bool read(T & dst) const { + return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); + } + + template + bool read(std::vector & dst, const size_t n) const { + dst.resize(n); + for (size_t i = 0; i < dst.size(); ++i) { + if constexpr (std::is_same::value) { + bool tmp; + if (!read(tmp)) { + return false; + } + dst[i] = tmp; + } else { + if (!read(dst[i])) { + return false; + } + } + } + return true; + } + + bool read(bool & dst) const { + int8_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = tmp != 0; + return true; + } + + bool read(enum ggml_type & dst) const { + int32_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = ggml_type(tmp); + return true; + } + + bool read(enum gguf_type & dst) const { + int32_t tmp = -1; + if (!read(tmp)) { + return false; + } + dst = gguf_type(tmp); + return true; + } + + bool read(std::string & dst) const { + uint64_t size = -1; + if (!read(size)) { + return false; + } + dst.resize(size); + return fread(dst.data(), 1, dst.length(), file) == dst.length(); + } + + bool read(void * dst, const size_t size) const { + return fread(dst, 1, size, file) == size; + } +}; + +struct gguf_context * gguf_init_empty(void) { + return new gguf_context; +} + +template +bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector & kv, const std::string & key, const bool is_array, const size_t n) { + if (is_array) { + std::vector value; + try { + if (!gr.read(value, n)) { + return false; + } + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); + return false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); + return false; + } + kv.emplace_back(key, value); + } else { + T value; + if (!gr.read(value)) { + return false; + } + kv.emplace_back(key, value); + } + return true; +} + +struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { + const struct gguf_reader gr(file); + struct gguf_context * ctx = new gguf_context; + + bool ok = true; + + // file magic + { + std::vector magic; + ok = ok && gr.read(magic, 4); + + if (!ok) { + fprintf(stderr, "%s: failed to read magic\n", __func__); + gguf_free(ctx); + return nullptr; + } + + for (uint32_t i = 0; i < magic.size(); i++) { + if (magic[i] != GGUF_MAGIC[i]) { + fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]); + gguf_free(ctx); + return nullptr; + } + } + } + + // header + int64_t n_kv = 0; + int64_t n_tensors = 0; + + if (ok && gr.read(ctx->version)) { + if (ctx->version == 1) { + fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); + ok = false; + } + if (ctx->version > GGUF_VERSION) { + fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", + __func__, ctx->version, GGUF_VERSION); + ok = false; + } + } else { + ok = false; + } + + if (ok && gr.read(n_tensors)) { + static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); + if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { + fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", + __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); + ok = false; + } + } else { + ok = false; + } + + if (ok && gr.read(n_kv)) { + static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); + if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { + fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", + __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); + ok = false; + } + } else { + ok = false; + } + + if (!ok) { + fprintf(stderr, "%s: failed to read header\n", __func__); + gguf_free(ctx); + return nullptr; + } + + // KV pairs + { + for (int64_t i = 0; ok && i < n_kv; ++i) { + std::string key; + gguf_type type = gguf_type(-1); + bool is_array = false; + uint64_t n = 1; + + try { + ok = ok && gr.read(key); + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); + ok = false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); + ok = false; + } + for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { + if (key == ctx->kv[j].key) { + fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); + ok = false; + } + } + if (!ok) { + break; + } + + ok = ok && gr.read(type); + if (type == GGUF_TYPE_ARRAY) { + is_array = true; + ok = ok && gr.read(type); + ok = ok && gr.read(n); + } + if (!ok) { + break; + } + + switch (type) { + case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper(gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper (gr, ctx->kv, key, is_array, n); break; + case GGUF_TYPE_ARRAY: + default: + { + fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); + ok = false; + } break; + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); + gguf_free(ctx); + return nullptr; + } + GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); + + const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); + ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); + + if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { + fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); + gguf_free(ctx); + return nullptr; + } + } + + // read the tensor info + for (int64_t i = 0; ok && i < n_tensors; ++i) { + struct gguf_tensor_info info; + + // tensor name + { + std::string name; + try { + ok = ok && gr.read(name); + } catch (std::length_error &) { + fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); + ok = false; + } catch (std::bad_alloc &) { + fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); + ok = false; + } + if (name.length() >= GGML_MAX_NAME) { + fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); + ok = false; + break; + } + ggml_set_name(&info.t, name.c_str()); + + // make sure there are no duplicate tensor names + for (int64_t j = 0; ok && j < i; ++j) { + if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { + fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); + ok = false; + break; + } + } + } + if (!ok) { + break; + } + + // tensor shape + { + uint32_t n_dims = -1; + ok = ok && gr.read(n_dims); + if (n_dims > GGML_MAX_DIMS) { + fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", + __func__, info.t.name, n_dims, GGML_MAX_DIMS); + ok = false; + break; + } + for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { + info.t.ne[j] = 1; + if (j < n_dims) { + ok = ok && gr.read(info.t.ne[j]); + } + + // check that all ne are non-negative + if (info.t.ne[j] < 0) { + fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", + __func__, info.t.name, j, info.t.ne[j]); + ok = false; + break; + } + } + + // check that the total number of elements is representable + if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || + (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || + (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { + + fprintf(stderr, "%s: total number of elements in tensor '%s' with shape " + "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", + __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); + ok = false; + break; + } + } + if (!ok) { + break; + } + + // tensor type + { + ok = ok && gr.read(info.t.type); + + // check that tensor type is within defined range + if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { + fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n", + __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); + ok = false; + break; + } + const size_t type_size = ggml_type_size(info.t.type); + const int64_t blck_size = ggml_blck_size(info.t.type); + + // check that row size is divisible by block size + if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { + fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " + "not a multiple of block size (%" PRId64 ")\n", + __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); + ok = false; + break; + } + + // calculate byte offsets given the tensor shape and type + info.t.nb[0] = type_size; + info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); + for (int j = 2; j < GGML_MAX_DIMS; ++j) { + info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; + } + } + if (!ok) { + break; + } + + // tensor data offset within buffer + ok = ok && gr.read(info.offset); + + ctx->info.push_back(info); + } + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor info\n", __func__); + gguf_free(ctx); + return nullptr; + } + GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); + + // we require the data section to be aligned, so take into account any padding + if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { + fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__); + gguf_free(ctx); + return nullptr; + } + + // store the current file offset - this is where the data section starts + ctx->offset = ftell(file); + + // compute the total size of the data section, taking into account the alignment + { + ctx->size = 0; + for (size_t i = 0; i < ctx->info.size(); ++i) { + const gguf_tensor_info & ti = ctx->info[i]; + if (ti.offset != ctx->size) { + fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", + __func__, ti.t.name, ti.offset, ctx->size); + fprintf(stderr, "%s: failed to read tensor data\n", __func__); + gguf_free(ctx); + return nullptr; + } + ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); + } + } + + // load the tensor data only if requested + if (params.ctx != nullptr) { + // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob + // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of + // the ggml_tensor structs to the appropriate locations in the binary blob + + // compute the exact size needed for the new ggml_context + const size_t mem_size = + params.no_alloc ? + (n_tensors )*ggml_tensor_overhead() : + (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; + + struct ggml_init_params pdata = { + /*mem_size =*/ mem_size, + /*mem_buffer =*/ nullptr, + /*no_alloc =*/ params.no_alloc, + }; + + *params.ctx = ggml_init(pdata); + if (*params.ctx == nullptr) { + fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__); + gguf_free(ctx); + return nullptr; + } + + struct ggml_context * ctx_data = *params.ctx; + + struct ggml_tensor * data = nullptr; + + if (!params.no_alloc) { + data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); + + ok = ok && data != nullptr; + + // read the binary blob with the tensor data + ok = ok && gr.read(data->data, ctx->size); + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__); + ggml_free(ctx_data); + *params.ctx = nullptr; + gguf_free(ctx); + return nullptr; + } + + ctx->data = data->data; + } + + ggml_set_no_alloc(ctx_data, true); + + // create the tensors + for (size_t i = 0; i < ctx->info.size(); ++i) { + const struct gguf_tensor_info & info = ctx->info[i]; + + struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); + + ok = ok && cur != nullptr; + + if (!ok) { + break; + } + + ggml_set_name(cur, info.t.name); + + // point the data member to the appropriate location in the binary blob using the tensor info + if (!params.no_alloc) { + cur->data = (char *) data->data + info.offset; + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to create tensors\n", __func__); + ggml_free(ctx_data); + *params.ctx = nullptr; + gguf_free(ctx); + return nullptr; + } + + ggml_set_no_alloc(ctx_data, params.no_alloc); + } + + return ctx; +} + +struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { + FILE * file = ggml_fopen(fname, "rb"); + + if (!file) { + fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname); + return nullptr; + } + + struct gguf_context * result = gguf_init_from_file_impl(file, params); + fclose(file); + return result; +} + +void gguf_free(struct gguf_context * ctx) { + if (ctx == nullptr) { + return; + } + delete ctx; +} + +const char * gguf_type_name(enum gguf_type type) { + auto it = GGUF_TYPE_NAME.find(type); + return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; +} + +uint32_t gguf_get_version(const struct gguf_context * ctx) { + return ctx->version; +} + +size_t gguf_get_alignment(const struct gguf_context * ctx) { + return ctx->alignment; +} + +size_t gguf_get_data_offset(const struct gguf_context * ctx) { + return ctx->offset; +} + +int64_t gguf_get_n_kv(const struct gguf_context * ctx) { + return ctx->kv.size(); +} + +int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { + // return -1 if key not found + int64_t keyfound = -1; + + const int64_t n_kv = gguf_get_n_kv(ctx); + + for (int64_t i = 0; i < n_kv; ++i) { + if (strcmp(key, gguf_get_key(ctx, i)) == 0) { + keyfound = i; + break; + } + } + + return keyfound; +} + +const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].get_key().c_str(); +} + +enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); +} + +enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].is_array); + return ctx->kv[key_id].get_type(); +} + +const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); + return ctx->kv[key_id].data.data(); +} + +const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); + return ctx->kv[key_id].data_string[i].c_str(); +} + +size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + + if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { + return ctx->kv[key_id].data_string.size(); + } + + const size_t type_size = gguf_type_size(ctx->kv[key_id].type); + GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); + return ctx->kv[key_id].data.size() / type_size; +} + +uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val(); +} + +const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + return ctx->kv[key_id].get_val().c_str(); +} + +const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); + GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); + return ctx->kv[key_id].data.data(); +} + +int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { + return ctx->info.size(); +} + +int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { + // return -1 if tensor not found + int64_t tensor_id = -1; + + const int64_t n_tensors = gguf_get_n_tensors(ctx); + + for (int64_t i = 0; i < n_tensors; ++i) { + if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { + tensor_id = i; + break; + } + } + + return tensor_id; +} + +size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].offset; +} + +const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].t.name; +} + +enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ctx->info[tensor_id].t.type; +} + +size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { + GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); + return ggml_nbytes(&ctx->info[tensor_id].t); +} + +int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { + const int64_t key_id = gguf_find_key(ctx, key); + if (key_id >= 0) { + ctx->kv.erase(ctx->kv.begin() + key_id); + } + return key_id; +} + +template +static void gguf_check_reserved_keys(const std::string & key, const T val) { + if (key == GGUF_KEY_GENERAL_ALIGNMENT) { + if constexpr (std::is_same::value) { + GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); + } else { + GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); + } + } +} + +void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, val); +} + +void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { + gguf_check_reserved_keys(key, val); + gguf_remove_key(ctx, key); + ctx->kv.emplace_back(key, std::string(val)); +} + +void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { + gguf_check_reserved_keys(key, data); + gguf_remove_key(ctx, key); + + const size_t nbytes = n*gguf_type_size(type); + std::vector tmp(nbytes); + if (!tmp.empty()) { + memcpy(tmp.data(), data, nbytes); + } + ctx->kv.emplace_back(key, tmp); + ctx->kv.back().cast(type); +} + +void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { + gguf_check_reserved_keys(key, data); + gguf_remove_key(ctx, key); + + std::vector tmp(n); + for (size_t i = 0; i < n; ++i) { + tmp[i] = data[i]; + } + ctx->kv.emplace_back(key, tmp); +} + +// set or add KV pairs from another context +void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { + const int64_t n_kv = gguf_get_n_kv(src); + for (int64_t i = 0; i < n_kv; ++i) { + const struct gguf_kv & kv = src->kv[i]; + + if (!kv.is_array) { + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val()); break; + case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val().c_str()); break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + continue; + } + + const size_t ne = kv.get_ne(); + + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: + case GGUF_TYPE_BOOL: { + gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); + } break; + case GGUF_TYPE_STRING: { + std::vector tmp(ne); + for (size_t j = 0; j < ne; ++j) { + tmp[j] = kv.data_string[j].c_str(); + } + gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + } +} + +void gguf_add_tensor( + struct gguf_context * ctx, + const struct ggml_tensor * tensor) { + GGML_ASSERT(tensor); + if (gguf_find_tensor(ctx, tensor->name) != -1) { + GGML_ABORT("duplicate tensor name: %s", tensor->name); + } + + struct gguf_tensor_info ti; + ti.t = *tensor; + ti.offset = ctx->info.empty() ? 0 : + ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); + ctx->info.push_back(ti); +} + +void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { + const int64_t tensor_id = gguf_find_tensor(ctx, name); + if (tensor_id < 0) { + GGML_ABORT("tensor not found: %s", name); + } + struct ggml_tensor * tensor = &ctx->info[tensor_id].t; + const size_t type_size = ggml_type_size(type); + const int64_t blck_size = ggml_blck_size(type); + + tensor->type = type; + GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); + + tensor->nb[0] = type_size; + tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); + for (int i = 2; i < GGML_MAX_DIMS; i++) { + tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; + } + + // update offsets + const int64_t n_tensors = gguf_get_n_tensors(ctx); + for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { + ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); + } +} + +void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { + const int64_t tensor_id = gguf_find_tensor(ctx, name); + if (tensor_id < 0) { + GGML_ABORT("tensor not found: %s", name); + } + + ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const +} + +struct gguf_writer { + std::vector & buf; + + gguf_writer(std::vector & buf) : buf(buf) {} + + template + void write(const T & val) const { + for (size_t i = 0; i < sizeof(val); ++i) { + buf.push_back(reinterpret_cast(&val)[i]); + } + } + + void write(const std::vector & val) const { + buf.insert(buf.end(), val.begin(), val.end()); + } + + void write(const bool & val) const { + const int8_t val8 = val ? 1 : 0; + write(val8); + } + + void write(const std::string & val) const { + { + const uint64_t n = val.length(); + write(n); + } + for (size_t i = 0; i < val.length(); ++i) { + buf.push_back(reinterpret_cast(val.data())[i]); + } + } + + void write(const char * val) const { + write(std::string(val)); + } + + void write(const enum ggml_type & val) const { + write(int32_t(val)); + } + + void write(const enum gguf_type & val) const { + write(int32_t(val)); + } + + void write(const struct gguf_kv & kv) const { + const uint64_t ne = kv.get_ne(); + + write(kv.get_key()); + + if (kv.is_array) { + write(GGUF_TYPE_ARRAY); + write(kv.get_type()); + write(ne); + } else { + write(kv.get_type()); + } + + switch (kv.get_type()) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: { + write(kv.data); + } break; + case GGUF_TYPE_BOOL: { + for (size_t i = 0; i < ne; ++i) { + write(kv.get_val(i)); + } + } break; + case GGUF_TYPE_STRING: { + for (size_t i = 0; i < ne; ++i) { + write(kv.get_val(i)); + } + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ABORT("invalid type"); + } + } + + void write_tensor_meta(const struct gguf_tensor_info & info) const { + write(info.t.name); + + const uint32_t n_dims = ggml_n_dims(&info.t); + write(n_dims); + + for (uint32_t j = 0; j < n_dims; ++j) { + write(info.t.ne[j]); + } + write(info.t.type); + write(info.offset); + } + + void pad(const size_t alignment) const { + while (buf.size() % alignment != 0) { + const int8_t zero = 0; + write(zero); + } + } + + void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { + GGML_ASSERT(buf.size() - offset_data == info.offset); + + GGML_ASSERT(ggml_is_contiguous(&info.t)); + const size_t offset = buf.size(); + const size_t nbytes = ggml_nbytes(&info.t); + + buf.resize(offset + nbytes); + if (info.t.buffer) { + ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); + } else { + GGML_ASSERT(info.t.data); + memcpy(buf.data() + offset, info.t.data, nbytes); + } + + pad(alignment); + } +}; + +void gguf_write_to_buf(const struct gguf_context * ctx, std::vector & buf, bool only_meta) { + const struct gguf_writer gw(buf); + + const int64_t n_kv = gguf_get_n_kv(ctx); + const int64_t n_tensors = gguf_get_n_tensors(ctx); + + // write header + gw.write(GGUF_MAGIC[0]); + gw.write(GGUF_MAGIC[1]); + gw.write(GGUF_MAGIC[2]); + gw.write(GGUF_MAGIC[3]); + gw.write(ctx->version); + gw.write(n_tensors); + gw.write(n_kv); + + // write key-value pairs + for (int64_t i = 0; i < n_kv; ++i) { + gw.write(ctx->kv[i]); + } + + // write tensor info + for (int64_t i = 0; i < n_tensors; ++i) { + gw.write_tensor_meta(ctx->info[i]); + } + + // we require the data section to be aligned + gw.pad(ctx->alignment); + + if (only_meta) { + return; + } + + const size_t offset_data = gw.buf.size(); + + // write tensor data + for (int64_t i = 0; i < n_tensors; ++i) { + gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); + } +} + +bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { + FILE * file = ggml_fopen(fname, "wb"); + + if (!file) { + fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); + return false; + } + + std::vector buf; + gguf_write_to_buf(ctx, buf, only_meta); + const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); + fclose(file); + return ok; +} + +size_t gguf_get_meta_size(const struct gguf_context * ctx) { + // only return size + std::vector buf; + gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); + return buf.size(); +} + +void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { + std::vector buf; + gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); + memcpy(data, buf.data(), buf.size()); +}