-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
256 lines (223 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import utils
import einops
import argparse
import torch
import torch.nn as nn
from tqdm import tqdm
from timm.scheduler.cosine_lr import CosineLRScheduler
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from datasets import augmentations
from datasets.generators import SSLGenerator
from model.losses import InfoNCELoss, SSHNLoss
from model.similarity_network import SimilarityNetwork
from model.feature_extractor import FeatureExtractor
@torch.no_grad()
def extract_features(feat_ext, videos, batch_sz=512):
# Feature extraction process
b, f = videos.shape[:2]
videos = einops.rearrange(videos, 'b f c h w -> (b f) c h w')
features = [feat_ext(batch.cuda()) for batch in utils.batching(videos, batch_sz)]
features = torch.cat(features, 0)
features = einops.rearrange(features, '(b f) r d -> b f r d', b=b)
return features
def main(args):
# Initialization of distributed processing
utils.init_distributed_mode(args)
utils.pprint_args(args)
print('\n> Create augmentations: {}'.format(args.augmentations))
# Instantiation of the objects for weak and strong augmentations
weak_aug = augmentations.WeakAugmentations(**vars(args))
strong_aug = augmentations.StrongAugmentations(**vars(args))
print(*[weak_aug, strong_aug], sep='\n')
# Initialization of data generator and data loader
print('\n> Create generator')
dataset = SSLGenerator(weak_aug=weak_aug, strong_aug=strong_aug, **vars(args))
sampler = DistributedSampler(dataset, shuffle=True)
loader = DataLoader(dataset, num_workers=args.workers, batch_size=args.batch_sz,
collate_fn=dataset.collate_fn, sampler=sampler)
args.epochs = int(args.iter_epochs // len(loader) + 1)
# Initialization of the feature extraction network and similarity network
print('\n> Building network')
feat_extractor = FeatureExtractor[args.backbone.upper()].get_model(args.dims).cuda().eval()
model = SimilarityNetwork[args.similarity_network].get_model(**vars(args))
model = nn.parallel.DistributedDataParallel(model.cuda()) # only similarity network is trainable
print(model)
# Instantiation of our losses
nce_criterion = InfoNCELoss(args.temperature)
sshn_criterion = SSHNLoss()
# Initialization of the optimizer and lr scheduler
params = [v for v in filter(lambda p: p.requires_grad, model.parameters())]
optimizer = torch.optim.AdamW(params, lr=args.learning_rate, weight_decay=args.weight_decay)
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=args.iter_epochs,
lr_min=args.final_lr*args.learning_rate,
warmup_t=args.warmup_iters,
warmup_lr_init=args.warmup_lr_init*args.learning_rate,
t_in_epochs=False,
)
global_step = 0
# Initialization of the FP16 Scaler if used
fp16_scaler = torch.cuda.amp.GradScaler() if args.use_fp16 else None
# Load a saved model
if args.load_model:
global_step = utils.load_model(args, model, optimizer)
# Initialization of the reporting tools
meters = utils.AverageMeterDict()
writer = SummaryWriter(args.experiment_path) if args.gpu == 0 else None
print('\n> Start training for {} epochs'.format(args.epochs))
# Training loop
for epoch in range(global_step // len(loader), args.epochs):
sampler.set_epoch(epoch)
dataset.next_epoch()
meters.reset()
model.train()
global_step = train_one_epoch(
epoch, global_step, feat_extractor, model, loader, optimizer, lr_scheduler, fp16_scaler,
nce_criterion, sshn_criterion, writer, meters, args)
model.eval()
# save model at the end of each epoch
if args.gpu == 0:
utils.save_model(args, model, optimizer, global_step, 'model.pth')
def train_one_epoch(epoch, global_step, extractor, model, loader, optimizer, lr_scheduler, fp16_scaler,
nce_criterion, sshn_criterion, writer, meters, args):
pbar = tqdm(loader, desc='epoch {}'.format(epoch), unit='iter') if args.gpu == 0 else loader
# Loop for the epoch
for idx, (videos, labels) in enumerate(pbar):
optimizer.zero_grad()
# videos = videos.cuda()
labels = labels.cuda()
with torch.cuda.amp.autocast(fp16_scaler is not None):
# Extract features for the video frames
features = extract_features(extractor, videos, args.batch_sz_fe)
# Calculate similarities for each video pair in the batch
similarities, regularization_loss = model(features)
# Calculate losses
infonce_loss = nce_criterion(similarities, labels)
hardneg_loss, self_loss = sshn_criterion(similarities, labels)
# Final loss
loss = infonce_loss + args.lambda_parameter * (hardneg_loss + self_loss) + args.r_parameter * regularization_loss
# Update model weights
lr_scheduler.step_update(global_step)
if fp16_scaler is not None:
fp16_scaler.scale(loss).backward()
fp16_scaler.step(optimizer)
fp16_scaler.update()
else:
loss.backward()
optimizer.step()
global_step += 1
meters.update('total_loss', loss)
meters.update('infonce_loss', infonce_loss)
meters.update('sshn_loss', (hardneg_loss + self_loss))
meters.update('reg_loss', regularization_loss)
# Logging
if args.gpu == 0:
if global_step % 5 == 0:
pbar.set_postfix(**meters.to_str())
if global_step % args.log_step == 0 and len(meters) >= 10:
utils.writer_log(writer, model.module, meters, args.log_step, optimizer.param_groups[0]['lr'],
videos, features, global_step)
return global_step
if __name__ == '__main__':
formatter = lambda prog: argparse.ArgumentDefaultsHelpFormatter(prog, max_help_position=80)
parser = argparse.ArgumentParser(
description='This is the training code of a video similarity network based on self-supervision',
formatter_class=formatter)
# Experiment arguments
parser.add_argument('--dataset_path', type=str, required=True,
help='Path to frame files of the trainset.')
parser.add_argument('--experiment_path', type=str, required=True,
help='Path of the experiment where the weights of the trained network and all logs will be stored.')
parser.add_argument('--workers', default=12, type=int,
help='Number of workers used for the training.')
parser.add_argument('--load_model', type=utils.bool_flag, default=False,
help='Boolean flag indicating that the weights from an existing model will be loaded.')
parser.add_argument('--log_step', type=int, default=100,
help='Number of steps to save logs.')
parser.add_argument('--use_fp16', type=utils.bool_flag, default=False,
help='Boolean flag indicating that fp16 scaling will be used.')
parser.add_argument('--dist_url', default='env://', type=str,
help='url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html.')
# Similarity network options
parser.add_argument('--backbone', type=str, default='resnet', choices=[x.name.lower() for x in FeatureExtractor],
help='Backbone network used for feature extraction.')
parser.add_argument('--similarity_network', type=str, default='ViSiL', choices=[x.name for x in SimilarityNetwork],
help='Similarity network used for similarity calculation.')
parser.add_argument('--dims', type=int, default=512,
help='Dimensionality of the input features.')
parser.add_argument('--attention', type=utils.bool_flag, default=True,
help='Boolean flag indicating whether an Attention layer will be used.')
parser.add_argument('--binarization', type=utils.bool_flag, default=False,
help='Boolean flag indicating whether a Binarization layer will be used.')
parser.add_argument('--binary_bits', type=int, default=512,
help='Number of bits used in the Binarization layer. Applicable only when --binarization flag is true.')
# Training process arguments
parser.add_argument('--augmentations', type=str, default='GT,FT,TT,ViV',
help='Transformations used for the strong augmentations. GT: Global Transformations '
'FT: Frame Transformations TT: Temporal Transformations ViV: Video-in-Video')
parser.add_argument('--batch_sz', type=int, default=64,
help='Number of video pairs in each training batch.')
parser.add_argument('--batch_sz_fe', type=int, default=512,
help='Number of frames in each batch for feature extraction.')
parser.add_argument('--iter_epochs', type=int, default=30000,
help='Number of iterations to train the network.')
parser.add_argument('--percentage', type=float, default=1.,
help='Dataset percentage used for training.')
parser.add_argument('--learning_rate', type=float, default=5e-5,
help='Learning rate used during training.')
parser.add_argument('--final_lr', type=float, default=1e-1,
help='Factor based on the the base lr used for the final learning rate for the lr scheduler.')
parser.add_argument('--warmup_iters', type=int, default=1000,
help='Number of warmup iterations for the lr scheduler.')
parser.add_argument('--warmup_lr_init', type=float, default=1e-2,
help='Factor based on the base lr used for the initial learning rate of warmup for the lr scheduler.')
parser.add_argument('--weight_decay', type=float, default=0.01,
help='Weight decay used during training.')
parser.add_argument('--window_sz', type=int, default=32,
help='Number of frames of the loaded videos during training.')
parser.add_argument('--temperature', type=float, default=0.03,
help='Temperature parameter for the infoNCE loss.')
parser.add_argument('--lambda_parameter', type=float, default=3.,
help='Parameter that determines the impact of SSHN loss.')
parser.add_argument('--r_parameter', type=float, default=1.,
help='Parameter that determines the impact of similarity regularization loss.')
parser.add_argument('--n_raug', type=int, default=2,
help='Number of augmentation transformations in RandAugment. Applicable when \'GT\' is in argument \'--augmentations\'')
parser.add_argument('--m_raug', type=int, default=9,
help='Magnitude for all the transformations in RandAugment. Applicable when \'GT\' is in argument \'--augmentations\'')
parser.add_argument('--p_overlay', type=float, default=.3,
help='Overlay probability in frame transformations. Applicable when \'FT\' is in argument \'--augmentations\'')
parser.add_argument('--p_blur', type=float, default=.5,
help='Blur probability in frame transformations. Applicable when \'FT\' is in argument \'--augmentations\'')
parser.add_argument('--p_tsd', type=float, default=.5,
help='Temporal Shuffle-Dropout probability in temporal transformations. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_ff', type=float, default=.1,
help='Fast Forward probability in temporal transformations. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_sm', type=float, default=.1,
help='Slow Motion probability in temporal transformations. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_rev', type=float, default=.1,
help='Revision probability in temporal transformations. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_pau', type=float, default=.1,
help='Pause probability in temporal transformations. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_shuffle', type=float, default=.5,
help='Shuffle probability in TSD. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_dropout', type=float, default=.3,
help='Dropout probability in TSD. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_content', type=float, default=.5,
help='Content probability in TSD. Applicable when \'TT\' is in argument \'--augmentations\'')
parser.add_argument('--p_viv', type=float, default=.3,
help='Probability of applying video-in-video transformation. Applicable when \'ViV\' is in argument \'--augmentations\'')
parser.add_argument('--lambda_viv', type=lambda x: tuple(map(float, x.split(','))), default=(.3, .7),
help='Resize factor range in video-in-video transformation. Applicable when \'ViV\' is in argument \'--augmentations\'')
args = parser.parse_args()
network_details = '{}_{}_D{}'.format(args.similarity_network.lower(), args.backbone, args.dims)
network_details += '_att' if args.attention else ''
network_details += '_bin_{}'.format(args.binary_bits) if args.binarization else ''
training_details = '/ssl_{}_p{}_it{}K_W{}_t{}_lr{}_wd{}_l{}_r{}_bs{}'.format(
args.augmentations, args.percentage, args.iter_epochs // 1000,
args.window_sz, args.temperature, args.learning_rate, args.weight_decay,
args.lambda_parameter, args.r_parameter, args.batch_sz)
args.experiment_path += network_details + training_details
main(args)