-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathcveval.py
260 lines (185 loc) · 8.21 KB
/
cveval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python
import itertools
import numpy as np
import os
import cvbb
import cvtrack
import cvseq
from scipy.stats import nanmean
def overlap(output,gt):
#Calculate overlap
overlap = cvbb.overlap(output, gt)
gt_defined = ~np.any(np.isnan(gt), axis=1)
output_defined = ~np.any(np.isnan(output), axis=1)
return overlap, output_defined, gt_defined
def compute_average(overlap, output_defined, gt_defined):
#Set all per frame measures to 0 where gt is defined and output is not defined
only_gt_defined = ~output_defined & gt_defined
overlap[only_gt_defined] = 0
#Now compute average only on those sequences
avg = np.nanmean(overlap)
return avg
def compute_recall_precision(overlap, output_defined, gt_defined, theta):
#Set all per frame measures to 0 where gt is defined and output is not defined
only_gt_defined = ~output_defined & gt_defined
overlap[only_gt_defined] = 0 #
#Calculate TP, FP, FN based on threshold
TP = overlap > theta
FP = (overlap < theta) | (~gt_defined & output_defined)
FN = (overlap < theta) | (gt_defined & ~output_defined)
#Compute precision
precision = np.sum(TP, dtype=np.float) / (sum(TP) + sum(FP))
#Compute recall
recall = np.sum(TP, dtype=np.float) / (sum(TP) + sum(FN))
return recall, precision
def compute_success_plot(X):
X_rounded = np.floor(X*100)/100
U = np.sort(X_rounded)
# if U[0] != 0:
# U = np.append(0,U)
if U[-1] != 1:
U = np.append(U,1)
N = len(X)
P = []
lastu = 0
A = N
for u in U:
if not u == lastu:
P.append((u,A*1.0/N))
A = A - 1
lastu = u
P = [(0,P[0][1])] + P
return np.array(P)
def cvpr2013(name, trackers, seqs, outcomes, output_dir):
print 'performing evaluation according to Wu'
m = len(trackers)
n = len(seqs)
for i in xrange(m):
print 'evaluating ' + trackers[i].name
non_missing = np.array([o is not None for o in outcomes[i,:]])
num_missing = n - len(non_missing)
if num_missing > 0:
print 'Warning: ' + str(num_missing) + ' sequences have no result'
seqs_non_missing = itertools.compress(seqs, non_missing)
#Lump everything together
gt = np.vstack([seq.gt for seq in seqs_non_missing])
outcome = np.vstack(outcomes[i,non_missing])
O, output_defined, gt_defined = overlap(outcome, gt)
#Consider only those frames where gt is defined
O = O[gt_defined]
#Set overlap to 0 if algorithmic result is undefined
O[np.isnan(O)] = 0
success_plot = compute_success_plot(O)
np.savetxt(os.path.join(output_dir, name + '_success_plot_cvpr_' + trackers[i].name + '.txt'), success_plot, delimiter=',')
def wacv2014(name, trackers, seqs, outcomes, output_dir):
print 'performing evaluation according to wacv paper'
m = len(trackers)
n = len(seqs)
recalls = np.empty(outcomes.shape)
for theta in [0.25, 0.5, 0.75]:
recalls[:] = np.nan
for i in xrange(m):
for j in xrange(n):
if outcomes[i,j] is None:
print 'Warning: Skipping sequence ' + seqs[j].name
continue
gt = seqs[j].gt
O, output_defined, gt_defined = overlap(outcomes[i,j], gt)
recall, _ = compute_recall_precision(O, output_defined, gt_defined, theta)
recalls[i,j] = recall
#Write successplot
success_plot = compute_success_plot(recalls[i,~np.isnan(recalls[i,:])])
#Add 0,1
success_plot = np.vstack(([0,1], success_plot))
np.savetxt(os.path.join(output_dir, name + '_success_plot_wacv_' + str(theta) + '_' + trackers[i].name + '.txt'), success_plot, delimiter=',')
def table(name, trackers, seqs, outcomes, output_dir):
print 'Creating table'
n = len(trackers)
m = len(seqs)
recalls = np.empty(outcomes.T.shape)
for theta in [0.5]:
recalls[:] = np.nan
for i in xrange(n):
for j in xrange(m):
if outcomes[i,j] is None:
print 'Warning: Skipping sequence ' + seqs[j].name
continue
gt = seqs[j].gt
O, output_defined, gt_defined = overlap(outcomes[i,j], gt)
recall, _ = compute_recall_precision(O, output_defined, gt_defined, theta)
recalls[j,i] = recall
#Add average at the end
avg = nanmean(recalls,axis=0)
recalls = np.vstack((recalls,avg))
with open(os.path.join(output_dir, name + '_recall.txt'), 'w') as f:
f.write(','.join(['Sequence'] + [t.name for t in trackers]) + '\n')
descs = [seq.identifier.replace('_', '\\_') for seq in seqs] + ['avg']
for sequence, recall in zip(descs, recalls):
f.write(sequence + ',')
f.write(','.join(str(r) for r in recall) + '\n')
def compute_timing(name, trackers, seqs, timings, output_dir):
m = len(trackers)
with open(os.path.join(output_dir, name + '_fps.txt'),'w') as f:
for i in xrange(m):
non_missing = ~np.isnan(timings[i,:])
seqs_non_missing = itertools.compress(seqs, non_missing)
num_frames = np.sum([seq.num_frames for seq in seqs_non_missing])
total_time = np.sum(timings[i,non_missing])
fps = num_frames * 1.0 / total_time
f.write(str(fps) + ', ' + trackers[i].name + '\n')
def evaluate(name, selection_file, sequence_file, outcome_dir, output_dir):
trackers = cvtrack.load_selection(selection_file)
seqs = cvseq.load_selection(sequence_file)
output_dir = os.path.join(output_dir, 'plot')
m = len(trackers)
n = len(seqs)
outcomes = np.empty((m, n),dtype=np.object)
timings = np.empty((m, n))
timings[:] = np.nan
for i in xrange(m):
tracker = trackers[i]
tracker_outcome_dir = os.path.join(outcome_dir, tracker.name)
if not os.path.exists(tracker_outcome_dir):
os.mkdir(tracker_outcome_dir)
for j in xrange(n):
print('Sequence ' + str(j) + '/' + str(n))
sequence = seqs[j]
if sequence.identifier in tracker.blacklist:
print(sequence.identifier + ' is in blacklist of ' + tracker.name)
continue
sequence_outcome_dir = os.path.join(tracker_outcome_dir, sequence.identifier)
if not os.path.exists(sequence_outcome_dir):
os.mkdir(sequence_outcome_dir)
#Now: Run tracker on sequence or collect existing result
outcome_file = os.path.join(sequence_outcome_dir, 'output.txt')
timing_file = os.path.join(sequence_outcome_dir, 'timing.txt')
if os.path.exists(outcome_file):
print outcome_file, 'already exists, using cached version.'
outcome = np.genfromtxt(outcome_file, delimiter=',')
timing = np.genfromtxt(timing_file, delimiter=',')
else:
try:
[outcome, timing] = tracker.run(sequence)
#Cache output for next run
np.savetxt(outcome_file, outcome, delimiter=',')
with open(timing_file, 'w') as f:
f.write('{0}\n'.format(timing))
except Exception:
print('Tracker ' + tracker.name + ' failed on sequence ' + sequence.identifier)
outcome = None
timing = None
if outcome is not None:
nPoints = outcome.shape[1] / 2.0
if not nPoints == 2:
#Convert polygon to bounding box
outcome = cvbb.poly2bb(outcome)
outcomes[i,j] = outcome
timings[i,j] = timing
#Then pass result to evaluation function
cvpr2013(name, trackers, seqs, outcomes, output_dir)
wacv2014(name, trackers, seqs, outcomes, output_dir)
table(name, trackers, seqs, outcomes, output_dir)
compute_timing(name, trackers, seqs, timings, output_dir)
with open(os.path.join(output_dir, name + '_list.txt'), 'w') as f:
for tracker in trackers:
f.write(tracker.name + '\n')