forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_generation.py
250 lines (218 loc) · 9.62 KB
/
finetune_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from dataclasses import dataclass, field
from functools import partial
import paddle
from utils import (
DataCollatorForSupervisedDataset,
GPTTrainer,
compute_metrics,
convert_example,
)
from paddlenlp.datasets import load_dataset
from paddlenlp.peft import LoRAConfig, LoRAModel
from paddlenlp.trainer import (
PdArgumentParser,
TrainingArguments,
get_last_checkpoint,
set_seed,
)
from paddlenlp.transformers import (
AutoTokenizer,
GPTConfig,
GPTForCausalLM,
GPTForCausalLMPipe,
)
from paddlenlp.utils.log import logger
MODEL_CLASSES = {
"gpt": (GPTConfig, GPTForCausalLM),
}
@dataclass
class DataArgument:
task_name: str = field(default="squad", metadata={"help": "The name of task."})
src_length: int = field(default=1024, metadata={"help": "The max length of source text."})
tgt_length: int = field(default=142, metadata={"help": "The max length of target text."})
generate_num: int = field(default=0, metadata={"help": "Save first k examples generation result in dev dataset"})
@dataclass
class ModelArgument:
model_type: str = field(
default="gpt-cn", metadata={"help": "Build-in pretrained model from the different model type."}
)
model_name_or_path: str = field(
default="gpt-cpm-large-cn", metadata={"help": "Build-in pretrained model name or the path to local model."}
)
use_flash_attn: bool = field(default=False, metadata={"help": "Whether to use flash attention"})
enable_fuse_transformer: bool = field(
default=False,
metadata={"help": "gpt, enable_fuse_transformer"},
)
fuse_attention_qkv: bool = field(
default=False,
metadata={"help": "gpt, fuse_attention_qkv"},
)
eval_with_do_generation: bool = field(
default=True, metadata={"help": "Evaluate with generation, instead for calc loss."}
)
lr_decay_ratio: float = field(default=0.1, metadata={"help": "The ratio for learning rate decrease"})
# lora
lora: bool = field(default=False, metadata={"help": "Whether to use LoRA technique"})
lora_path: str = field(default=None, metadata={"help": "Initialize lora state dict."})
lora_rank: int = field(default=8, metadata={"help": "Lora attention dimension"})
merge_weights: bool = field(
default=False, metadata={"help": "Merge weights of the original model and the Lora model"}
)
def main():
parser = PdArgumentParser((ModelArgument, DataArgument, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# data_args.always_pad_to_max_length = False
data_args.always_pad_to_max_length = training_args.pipeline_parallel_degree > 1
setattr(training_args, "lr_decay_ratio", model_args.lr_decay_ratio)
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
training_args.tgt_length = data_args.tgt_length
paddle.set_device(training_args.device)
set_seed(seed=training_args.seed)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16 or training_args.bf16}"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 1:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set the dtype for loading model
dtype = "float32"
if training_args.fp16_opt_level == "O2":
if training_args.fp16:
dtype = "float16"
if training_args.bf16:
dtype = "bfloat16"
config_class, model_class = MODEL_CLASSES[model_args.model_type]
if training_args.pipeline_parallel_degree > 1:
model_class = GPTForCausalLMPipe
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
tokenizer.padding_side = "left"
# Load and set the pretrained configuration
config = config_class.from_pretrained(model_args.model_name_or_path)
config.enable_fuse_transformer = model_args.enable_fuse_transformer
config.fuse_attention_qkv = model_args.fuse_attention_qkv
config.use_flash_attn = model_args.use_flash_attn
config.use_recompute = training_args.recompute
config.tensor_parallel_degree = training_args.tensor_parallel_degree
config.tensor_parallel_rank = training_args.tensor_parallel_rank
config.ignore_index = tokenizer.pad_token_id
model = model_class.from_pretrained(
model_args.model_name_or_path,
config=config,
dtype=dtype,
)
if model_args.lora:
if model_args.lora_path is None:
target_modules = [
".*qkv_proj.*",
".*q_proj.*",
".*k_proj.*",
".*v_proj.*",
".*linear1.*",
".*linear2.*",
".*out_proj.*",
]
lora_config = LoRAConfig(
target_modules=target_modules,
r=model_args.lora_rank,
lora_alpha=2 * model_args.lora_rank,
merge_weights=model_args.merge_weights,
tensor_parallel_degree=training_args.tensor_parallel_degree,
dtype=dtype,
)
model = LoRAModel(model, lora_config)
else:
model = LoRAModel.from_pretrained(model=model, lora_path=model_args.lora_path)
model.mark_only_lora_as_trainable()
model.print_trainable_parameters()
# Load the dataset.
if training_args.do_train or training_args.do_eval:
train_ds, dev_ds = load_dataset(data_args.task_name, splits=["train_v1", "dev_v1"])
trans_func = partial(
convert_example,
tokenizer=tokenizer,
max_source_length=data_args.src_length,
max_target_length=data_args.tgt_length,
)
if training_args.do_train:
train_ds = train_ds.map(partial(trans_func))
if training_args.do_eval:
is_test = model_args.eval_with_do_generation
dev_ds = dev_ds.map(partial(trans_func, is_test=is_test))
collate_fn = DataCollatorForSupervisedDataset(
tokenizer, max_length=1024 if data_args.always_pad_to_max_length else 0
)
def compute_metrics_trainer(eval_preds, tokenizer):
all_preds = []
all_labels = []
preds = eval_preds.predictions
preds = [x[x != -100] for x in preds]
all_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=False))
labels = [x[x != -100] for x in eval_preds.label_ids]
all_labels.extend(tokenizer.batch_decode(labels, skip_special_tokens=True, clean_up_tokenization_spaces=False))
all_preds = [pred.strip() for pred in all_preds]
all_labels = [label.strip() for label in all_labels]
all_preds = [pred.strip("question:") for pred in all_preds]
all_labels = [label.strip("question:") for label in all_labels]
eval_result = compute_metrics(all_preds, all_labels)
return eval_result
compute_metrics_func = partial(
compute_metrics_trainer,
tokenizer=tokenizer,
)
trainer = GPTTrainer(
model=model,
args=training_args,
train_dataset=train_ds if training_args.do_train else None,
eval_dataset=dev_ds if training_args.do_eval else None,
tokenizer=tokenizer,
compute_metrics=compute_metrics_func
if (model_args.eval_with_do_generation and training_args.do_eval)
else None,
do_generation=model_args.eval_with_do_generation,
data_collator=collate_fn,
)
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=last_checkpoint)
trainer.save_model(merge_tensor_parallel=training_args.tensor_parallel_degree > 1)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if training_args.do_eval:
eval_result = trainer.evaluate()
trainer.log_metrics("test", eval_result)
if __name__ == "__main__":
main()