-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdawson.go
258 lines (240 loc) · 6.3 KB
/
dawson.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
package dawson
import (
"fmt"
"math"
"math/cmplx"
"github.com/chewxy/math32"
)
// ToleranceF64 is a test to see if two float64s, a and b are equal,
// within the specified tolerance e.
// a: actual value
// b: expected value
// e: allowed errors (i.e. the values are within this range)
//
// This function was taken from tthe test files in the Go stdlib package math,
// which has the Go licence.
func ToleranceF64(a, b, e float64) bool {
d := a - b
if d < 0 {
d = -d
}
// note: b is correct (expected) value, a is actual value.
// make error tolerance a fraction of b, not a.
if b != 0 {
e = e * b
if e < 0 {
e = -e
}
}
return d <= e
}
// TolereranceF32 is a test to see if two float64s, a and b are equal,
// within the specified tolerance e.
// a: actual value
// b: expected value
// e: allowed errors (i.e. the values are within this range)
//
// This function was adapted from the test files of the package github.com/chewxy/math32,
// which in turn was adapted from the test files of the Go stdlib package math,
// which has the Go licence.
func ToleranceF32(a, b, e float32) bool {
d := a - b
if d < 0 {
d = -d
}
// note: b is correct (expected) value, a is actual value.
// make error tolerance a fraction of b, not a.
if b != 0 {
e = e * b
if e < 0 {
e = -e
}
}
return d <= e
}
// ToleranceC128 is a test to see if two float64s, a and b are equal,
// within the specified tolerance e.
// a: actual value
// b: expected value
// e: allowed errors (i.e. the values are within this range)
//
// NOTE: e is a float64, which will be used in the individual comparison
// of both real and imaginary components
//
// This function was adapted from the test files in the Go stdlib package math/cmplx,
// which has the Go licence.
func ToleranceC128(a, b complex128, e float64) bool {
d := cmplx.Abs(a - b)
if b != 0 {
e = e * cmplx.Abs(b)
if e < 0 {
e = -e
}
}
return d < e
}
// CloseEnoughF64 checks that a and b are within 1e-8 tolerance.
func CloseEnoughF64(a, b float64) bool { return ToleranceF64(a, b, 1e-8) }
// CloseF64 checks that a and b are within 1e-14 tolerance.
func CloseF64(a, b float64) bool { return ToleranceF64(a, b, 1e-14) }
// VeryCloseF64 checks that a and b are within 4e-16 tolerance.
func VeryCloseF64(a, b float64) bool { return ToleranceF64(a, b, 4e-16) }
// AlikeF64 checks that a and b are alike:
// - NaNs are considered to be equal
// - Both have the same sign bits
func AlikeF64(a, b float64) bool {
switch {
case math.IsNaN(a) && math.IsNaN(b):
return true
case a == b:
return math.Signbit(a) == math.Signbit(b)
}
return false
}
// CloseF32 checks that a and b are within 1e-5 tolerance.
// The tolerance number gotten from the cfloat standard.
// By contrast, Haskell's Linear package uses 1e-6 for floats
func CloseF32(a, b float32) bool { return ToleranceF32(a, b, 1e-5) }
// VeryCloseF32 checks that a and b are within 1e-6 tolerance.
// This number was acquired from Haskell's linear package, as well as wikipedia
func VeryCloseF32(a, b float32) bool { return ToleranceF32(a, b, 1e-6) }
// AlikeF32 checks that a and b are alike:
// - NaNs are considered to be equal
// - Both have the same sign bits
func AlikeF32(a, b float32) bool {
switch {
case math32.IsNaN(a) && math32.IsNaN(b):
return true
case a == b:
return math32.Signbit(a) == math32.Signbit(b)
}
return false
}
// CloseC128 checks that a and b are within 1e-14 tolerance
func CloseC128(a, b complex128) bool { return ToleranceC128(a, b, 1e-14) }
// VeryCloseC128 checks that a and b are within 1e-16 tolerance
func VeryCloseC128(a, b complex128) bool { return ToleranceC128(a, b, 4e-16) }
// AlikeC128 checks that a and b are alike:
// - NaNs are considered to be equal
// - Both have the same sign bits for both the real and imaginary components
func AlikeC128(a, b complex128) bool {
switch {
case cmplx.IsNaN(a) && cmplx.IsNaN(b):
return true
case a == b:
return math.Signbit(real(a)) == math.Signbit(real(b)) &&
math.Signbit(imag(a)) == math.Signbit(imag(b))
}
return false
}
// AllClose checks slices a and b are close together. An optional approximation function is accepted.
// If nothing is passed in, the CloseF64, CloseF32, CloseC128 functions will be used
//
// This is not an exhasutive function. It only recognizes these types:
// []float64
// []float32
// []complex64
// []complex128
//
// This function will panic if other types are passed in, or if a and b do not have matching types.
func AllClose(a, b interface{}, approxFn ...interface{}) bool {
switch at := a.(type) {
case []float64:
closeness := CloseF64
var ok bool
if len(approxFn) > 0 {
if closeness, ok = approxFn[0].(func(a, b float64) bool); !ok {
closeness = CloseF64
}
}
bt := b.([]float64)
for i, v := range at {
if math.IsNaN(v) {
if !math.IsNaN(bt[i]) {
return false
}
continue
}
if math.IsInf(v, 0) {
if !math.IsInf(bt[i], 0) {
return false
}
continue
}
if !closeness(v, bt[i]) {
return false
}
}
return true
case []float32:
closeness := CloseF32
var ok bool
if len(approxFn) > 0 {
if closeness, ok = approxFn[0].(func(a, b float32) bool); !ok {
closeness = CloseF32
}
}
bt := b.([]float32)
for i, v := range at {
if math32.IsNaN(v) {
if !math32.IsNaN(bt[i]) {
return false
}
continue
}
if math32.IsInf(v, 0) {
if !math32.IsInf(bt[i], 0) {
return false
}
continue
}
if !closeness(v, bt[i]) {
return false
}
}
return true
case []complex64:
bt := b.([]complex64)
for i, v := range at {
if cmplx.IsNaN(complex128(v)) {
if !cmplx.IsNaN(complex128(bt[i])) {
return false
}
continue
}
if cmplx.IsInf(complex128(v)) {
if !cmplx.IsInf(complex128(bt[i])) {
return false
}
continue
}
if !ToleranceC128(complex128(v), complex128(bt[i]), 1e-5) {
return false
}
}
return true
case []complex128:
bt := b.([]complex128)
for i, v := range at {
if cmplx.IsNaN(v) {
if !cmplx.IsNaN(bt[i]) {
return false
}
continue
}
if cmplx.IsInf(v) {
if !cmplx.IsInf(bt[i]) {
return false
}
continue
}
if !CloseC128(v, bt[i]) {
return false
}
}
return true
default:
panic(fmt.Sprintf("Unable to perform AllClose on %T and %T", a, b))
// return reflect.DeepEqual(a, b)
}
}