-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathasm_vecSub_avx.s
161 lines (130 loc) · 3.76 KB
/
asm_vecSub_avx.s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// +build avx
// +build amd64
/*
Sub subtracts two []float32 with some SIMD optimizations using AVX.
Instead of doing this:
for i := 0; i < len(a); i++ {
a[i] -= b[i]
}
Here, I use the term "pairs" to denote an element of `a` and and element of `b` that will be added together.
a[i], b[i] is a pair.
Using AVX, we can simultaneously add 8 pairs at the same time, which will look something like this:
for i := 0; i < len(a); i+=8{
a[i:i+8] -= b[i:i+8] // this code won't run.
}
These are the registers I use to store the relevant information:
SI - Used to store the top element of slice A (index 0). This register is incremented every loop
DI - used to store the top element of slice B. Incremented every loop
AX - len(a) is stored in here. Volatile register. AX is also used as the "working" count of the length that is decremented.
AX - len(a) is stored in here. AX is also used as the "working" count of the length that is decremented.
Y0, Y1 - YMM registers.
X0, X1 - XMM registers.
With regards to VSUBPS and VSUBSS, it turns out that the description of these instructions are:
VSUBPS ymm1, ymm2, ymm3: Subtract packed double-precision floating-point values in ymm3/mem from ymm2 and stores result in ymm1.[0]
The description is written with intel's syntax (in this form: Dest, Src1, Src2).
When converting to Go's ASM it becomes: (Src2, Src1, Dest)
This pseudocode best explains the rather simple assembly:
lenA := len(a)
i := 0
loop:
for {
a[i:i+8*4] -= b[i:i+8*4]
lenA -= 8
i += 8*4 // 8 elements, 4 bytes each
if lenA < 0{
break
}
}
remainder4head:
lenA += 8
if lenA == 0 {
return
}
remainder4:
for {
a[i:i+4*4] -= b[i:i+4*4]
lenA -=4
i += 4 * 4 // 4 elements, 4 bytes each
if lenA < 0{
break
}
}
remainder1head:
lenA += 4
if lenA == 0 {
return
}
remainder1:
for {
a[i] -= b[i]
i+=4 // each element is 4 bytes
lenA--
}
return
Citation
========
[0]http://www.felixcloutier.com/x86/SUBPS.html
*/
#include "textflag.h"
// func subAsm(a, b []float32)
TEXT ·subAsm(SB), NOSPLIT, $0
MOVQ a_data+0(FP), SI
MOVQ b_data+24(FP), DI // use destination index register for this
MOVQ a_len+8(FP), AX // len(a) into AX
MOVQ b_len+32(FP), BX // len(b) into BX
// each ymm register can take 8 float32s
SUBQ $8, AX
JL remainder
loop:
// a[0] to a[7]
// VMOVUPS (SI), Y0
// VMOVUPS (DI), Y1
// VSUBPS Y1, Y0, Y0
// VMOVUPS Y0, (SI)
BYTE $0xc5; BYTE $0xfc; BYTE $0x10; BYTE $0x06 // vmovups (%rsi),%ymm0
BYTE $0xc5; BYTE $0xfc; BYTE $0x10; BYTE $0x0f // vmovups (%rdi),%ymm1
BYTE $0xc5; BYTE $0xfc; BYTE $0x5c; BYTE $0xc1 // vsubps %ymm1,%ymm0,%ymm0
BYTE $0xc5; BYTE $0xfC; BYTE $0x11; BYTE $0x06 // vmovups %ymm0,(%rsi)
// 8 elements processed. Each element is 4 bytes. So jump 32 bytes ahead
ADDQ $32, SI
ADDQ $32, DI
SUBQ $8, AX
JGE loop
remainder:
ADDQ $8, AX
JE done
SUBQ $4, AX
JL remainder1head
remainder4:
// VMOVUPS (SI), X0
// VMOVUPS (DI), X1
// VSUBPS X1, X0, X0
// VMOVUPS X0, (SI)
BYTE $0xc5; BYTE $0xf8; BYTE $0x10; BYTE $0x06 // vmovups (%rsi),%xmm0
BYTE $0xc5; BYTE $0xf8; BYTE $0x10; BYTE $0x0f // vmovups (%rdi),%xmm1
BYTE $0xc5; BYTE $0xf8; BYTE $0x5c; BYTE $0xc1 // vsubps %xmm1,%xmm0,%xmm0
BYTE $0xc5; BYTE $0xf8; BYTE $0x11; BYTE $0x06 // vmovups %xmm0,(%rsi)
ADDQ $16, SI
ADDQ $16, DI
SUBQ $4, AX
JGE remainder4
remainder1head:
ADDQ $4, AX
JE done
remainder1:
// copy into the appropriate registers
// VMOVSS (SI), X0
// VMOVSS (DI), X1
// VSUBSS X1, X0, X0
// VMOVSS X0, (SI)
BYTE $0xc5; BYTE $0xfa; BYTE $0x10; BYTE $0x06
BYTE $0xc5; BYTE $0xfa; BYTE $0x10; BYTE $0x0f
BYTE $0xc5; BYTE $0xfa; BYTE $0x5c; BYTE $0xc1
BYTE $0xc5; BYTE $0xfa; BYTE $0x11; BYTE $0x06
// update pointer to the top of the data
ADDQ $4, SI
ADDQ $4, DI
DECQ AX
JNE remainder1
done:
RET