-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathprepare_GBM_data.R
226 lines (197 loc) · 10.4 KB
/
prepare_GBM_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Script prepares GBM expression data for use in pipelines
# For GBM array data: convert sample names and remove duplicate individuals
# For GBM seq data: filter all seq data for GBM samples only, convert genes IDs
# Steven Foltz July 2021
option_list <- list(
optparse::make_option("--seq_input",
default = NA_character_,
help = "TCGA sequencing expression input file path"),
optparse::make_option("--array_input",
default = NA_character_,
help = "refine.bio microarray expression input file path"),
optparse::make_option("--metadata_input",
default = NA_character_,
help = "refine.bio aggregated metadata JSON file path"),
optparse::make_option("--array_output",
default = NA_character_,
help = "Processed microarray data output file path"),
optparse::make_option("--seq_output",
default = NA_character_,
help = "Processed sequencing data output file path"),
optparse::make_option("--clinical_input",
default = NA_character_,
help = "Clinical information input file path (Excel file)"),
optparse::make_option("--clinical_output",
default = NA_character_,
help = "Clinical information output file path (.tsv)"),
optparse::make_option("--overwrite",
action = "store_true",
default = FALSE,
help = "Overwrite existing output files [default: %default]")
)
opt <- optparse::parse_args(optparse::OptionParser(option_list=option_list))
source(here::here("util/option_functions.R"))
check_options(opt)
# load libraries
suppressMessages(library(tidyverse))
# set options
tcga_seq_expression_input_filepath <- opt$seq_input
gbm_array_expression_input_filepath <- opt$array_input
metadata_json_input_filepath <- opt$metadata_input
gbm_array_output_filepath <- opt$array_output
gbm_seq_output_filepath <- opt$seq_output
clinical_xlxs_input_filepath <- opt$clinical_input
clinical_tsv_output_filepath <- opt$clinical_output
################################################################################
# Array data
################################################################################
# read in refine.bio GBM array expression data
gbm_array_expression <- read_tsv(gbm_array_expression_input_filepath,
col_types = cols(
.default = col_double(),
Gene = col_character()
))
# load up aggregated metadata json file
metadata_json <- jsonlite::fromJSON(metadata_json_input_filepath,
simplifyVector = FALSE)
# accession IDs present in expression data
available_array_accession_ids <- colnames(gbm_array_expression)[-1]
# All about TCGA barcodes
# TCGA barcodes are defined in this format: TCGA-XX-YYYY-ZZ*
# XX is the two character tissue source site (TSS) (defines a combination of hospital system and cancer type -- so multiple TSSs map to single cancer type)
# YYYY is the four digit participant ID specific to a TSS (so TCGA-XX-YYYY defines an individual patient -- patients from different TSSs may have same participant ID)
# ZZ is the sample type (starts with 0 for tumor samples; specifically 01 for primary solid tumors)
# After ZZ (*) is more specific information not relevant in this context
# Links to more info:
# https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
# https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tissue-source-site-codes
# https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
# starting with flattened metadata, parse out raw TCGA IDs and filter for tumors
all_array_tumor_samples <- tibble(accession = names(metadata_json$samples)) %>%
filter(accession %in% available_array_accession_ids) %>% # check these are ==
rowwise() %>%
mutate(tcga_id_raw = metadata_json$samples[[accession]]$refinebio_annotations[[1]]$characteristics_ch1[[9]] %>%
str_remove("sample: ")) %>%
# tcga_id_raw is the entire TCGA barcode (includes information after ZZ which we need to drop)
mutate(tcga_id = str_sub(tcga_id_raw, 1, 15), # so tcga_id includes TCGA-XX-YYYY-ZZ
sample = str_sub(tcga_id_raw, 14, 15)) %>% # and sample refers to ZZ
filter(sample == "01") %>% # filter for primary solid tumors only
ungroup()
# keep one (first) accession per TCGA ID
array_accession_tcga_id_keep <- all_array_tumor_samples %>%
group_by(tcga_id) %>%
summarize(accession = sort(accession)[1]) %>%
ungroup()
accession_colnames_keep <- colnames(gbm_array_expression)[-1][colnames(gbm_array_expression)[-1] %in% array_accession_tcga_id_keep$accession]
# select columns to keep and rename with TCGA IDs
gbm_array_expression_renamed <- gbm_array_expression %>%
select(c("Gene",
array_accession_tcga_id_keep$accession))
colnames(gbm_array_expression_renamed) <- c("sample",
array_accession_tcga_id_keep$tcga_id)
################################################################################
# Sequencing data
################################################################################
# read in column names of entire TCGA seq expression file
tcga_seq_expression_column_names <- read_tsv(tcga_seq_expression_input_filepath,
col_types = cols(
.default = col_double(),
gene_id = col_character()),
n_max = 0) %>%
names()
# identify sequencing TCGA IDs of samples present in array data
# (a more inclusive approach would be selecting GBM samples based on TSS codes)
gbm_seq_tumor_samples <- tibble(tcga_id_raw = tcga_seq_expression_column_names[-1]) %>%
mutate(tcga_patient = str_sub(tcga_id_raw, 1, 12), # TCGA-XX-YYYY to match with clinical
tcga_id = str_sub(tcga_id_raw, 1, 15), # as with array, tcga_id refers to TCGA-XX-YYYY-ZZ
sample = str_sub(tcga_id_raw, 14, 15)) %>% # and sample is ZZ
filter(sample == "01") %>% # require sample to be primary solid tumor
filter(tcga_id %in% array_accession_tcga_id_keep$tcga_id) %>% # keep array GBMs
group_by(tcga_patient) %>%
summarize(tcga_id_raw = sort(tcga_id_raw)[1], # keep one raw ID per person
tcga_id = str_sub(tcga_id_raw, 1, 15)) %>%
ungroup()
# now read in GBM subset of entire TCGA seq expression file
# this is faster and uses less memory than reading in entire file and then subsetting
# read these GBM columns only
tcga_seq_gbm_tf <- tcga_seq_expression_column_names[-1] %in% gbm_seq_tumor_samples$tcga_id_raw
# use these column types
# first column is 'c' for gene_id, then '-' for non-GBM samples, then 'd' for GBM
# setting column type to '-' skips over that column when reading file
tcga_seq_gbm_col_types <- str_c(c("c", c("-", "d")[tcga_seq_gbm_tf + 1]), collapse = "")
# read in my defined subset of columns with column types
gbm_seq_expression <- read_tsv(tcga_seq_expression_input_filepath,
col_types = tcga_seq_gbm_col_types)
colnames(gbm_seq_expression) <- c("gene_id",
gbm_seq_tumor_samples$tcga_id)
# Detour to make gene ids consistent between array and seq files
# will convert seq format (SYMBOL|ENTREZ) to array format (ENSG)
# separate gene symbols from entrez ids (delimiter = "|")
symbol_entrez_ids <- gbm_seq_expression %>%
select(gene_id) %>%
separate(gene_id,
into = c("SYMBOL", "ENTREZID"),
sep = "\\|",
remove = FALSE)
# map entrez ids to ensembl ids (GENEID)
entrez_ensembl_ids <- ensembldb::select(EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86,
keys= symbol_entrez_ids$ENTREZID,
keytype = "ENTREZID",
columns = "GENEID") %>%
as_tibble() %>%
mutate(ENTREZID = as.character(ENTREZID))
# collate gene name schemes
# filter for those that mapped and exist in array
# filter for ENSGs with a one-to-one mapping with entrez
gene_id_mapping_in_array <- symbol_entrez_ids %>%
left_join(entrez_ensembl_ids,
by = "ENTREZID") %>%
filter(!is.na(GENEID)) %>%
add_count(GENEID) %>%
filter(n == 1) %>%
filter(GENEID %in% gbm_array_expression$Gene) %>%
select(gene_id, GENEID)
# starting with acceptable genes, left join with seq expression and select cols
gbm_seq_expression_renamed <- gene_id_mapping_in_array %>%
left_join(gbm_seq_expression,
by = "gene_id") %>%
select(-gene_id) %>%
rename("sample" = "GENEID")
################################################################################
# subtype information
################################################################################
# read in Table S7 from flagship GBM landscape paper (Brennan et al., Cell 2013)
# select and rename interesting columns
gbm_subtypes <- readxl::read_xlsx(path = clinical_xlxs_input_filepath,
sheet = "Clinical Data",
skip = 1) %>%
right_join(gbm_seq_tumor_samples,
by = c("Case ID" = "tcga_patient")) %>%
select("tcga_id",
"MGMT Status",
"G-CIMP\r\n methylation",
"IDH1\r\n status",
"Expression\r\nSubclass") %>%
rename("Sample" = "tcga_id",
"MGMT_methylation_status" = "MGMT Status",
"G-CIMP_methylation" = "G-CIMP\r\n methylation",
"IDH1_mutation_status" = "IDH1\r\n status",
"subtype" = "Expression\r\nSubclass") %>%
mutate(subtype = na_if(subtype, "NA")) %>%
mutate(subtype = stringr::str_remove(subtype, "-")) %>% # G-CIMP to GCIMP
mutate(Type = "tumor")
missing_clinical <- gbm_subtypes %>%
filter(is.na(subtype)) %>%
pull(Sample)
################################################################################
# Write to file, excluding samples without clinical info
################################################################################
write_tsv(gbm_array_expression_renamed %>%
select(-all_of(missing_clinical)),
gbm_array_output_filepath)
write_tsv(gbm_seq_expression_renamed %>%
select(-all_of(missing_clinical)),
gbm_seq_output_filepath)
write_tsv(gbm_subtypes %>%
filter(!is.na(subtype)),
clinical_tsv_output_filepath)