-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFLUXALL_data.m
820 lines (704 loc) · 39.3 KB
/
FLUXALL_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
classdef FLUXALL_data
% Class to represent UNM annual FLUXALL file data.
%
% this class is meant to unify the Matlab representation of data in the
% (pre-2012) Excel spreadsheet fluxall files and the 2012-present delimited
% ASCII fluxall files. It is a work in progress (As of Aug 2013). The idea is
% to provide storage for all of the data that might be present in a given
% fluxall files and methods to read both fluxall formats (currently performed by
% the file parsing parts of UNM_RemoveBadData). Then RemoveBadData would do
% just that - remove the bad data.
properties
sitecode;
year_arg;
%observed data
obs = struct; % struct to contain observations
ds_soil;
end
properties ( SetAccess = private, GetAccess = private )
% this stuff is internal to the class
datalength;
binary_fluxall_fname;
draw_plots;
process_soil_data;
write_mat_file = true;
end
methods
% --------------------------------------------------
function [ obj ] = FLUXALL_data( sitecode, year_arg, varargin )
% class constructor.
% If year_arg < 2012, loads matlab binary of parsed excel data.
% USAGE:
% FA = FLUXALL_data( sitecode, year_arg );
% FA = FLUXALL_data( sitecode, year_arg, 'load_binary', false );
% FA = FLUXALL_data( sitecode, year_arg, ..., 'draw_plots', false );
% FA = FLUXALL_data( sitecode, year_arg, ..., 'process_soil_data', false );
%
% INPUTS
% sitecode
% year_arg
% KEYWORD ARGUMENTS
% load_binary; logical, default true
% draw_plots; logical, default true
% process_soil_data; logical, default true
%
% author: Timothy W. Hilton, UNM, 2013
args = inputParser;
args.addRequired( 'sitecode', @( x ) isa( x, 'UNM_sites' ) );
args.addRequired( 'year_arg', @isnumeric );
args.addParamValue( 'load_binary', true, @islogical );
args.addParamValue( 'draw_plots', true, @islogical );
args.addParamValue( 'process_soil_data', true, @islogical );
args.parse( sitecode, year_arg, varargin{ : } );
% construct filename for a binary representation of fluxall data
site_str = char( UNM_sites( args.Results.sitecode ) );
binary_fluxall_fname = fullfile( getenv( 'FLUXROOT' ), ...
'SiteData', ...
site_str, ...
sprintf( '%s_flux_all_%d.mat', ...
site_str, ...
args.Results.year_arg ) );
obj.binary_fluxall_fname = binary_fluxall_fname;
if args.Results.load_binary
try
load( binary_fluxall_fname );
obj = FA_data;
obj.binary_fluxall_fname = binary_fluxall_fname;
fprintf( 'loaded %s\n', binary_fluxall_fname );
catch err
fprintf( 'Unable to open %s\n', binary_fluxall_fname );
rethrow( err );
end
else
% construct object from FLUXALL file
obj.sitecode = args.Results.sitecode;
obj.year_arg = args.Results.year_arg;
obj.draw_plots = args.Results.draw_plots;
obj.process_soil_data = args.Results.process_soil_data;
% initialize observations to fields that should becommon to all
% site-years
obj = obj.initialize_FLUXALL_vars();
% parse the data -- Excel FLUXALL files pre-2012, ASCII text files
% for 2012 and later
if obj.year_arg < 2012
obj = obj.FLUXALL_data_intake_pre2012( );
end
% create a timestamp variable
obj.obs.decimal_day = obj.obs.timestamp - ...
datenum( args.Results.year_arg, 1, 0 );
% write FLUXALL data to matlab binary .mat file
if obj.write_mat_file
obj.write_fluxall_binary_file();
end
end % if args.Results.load_binary
end %constructor
% --------------------------------------------------
function success = write_fluxall_binary_file( obj )
% WRITE_FLUXALL_BINARY_FILE - write a binary representation of the fluxall data
% to a .mat file
FA_data = obj;
save( obj.binary_fluxall_fname, 'FA_data' );
fprintf( 'wrote %s\n', obj.binary_fluxall_fname );
end
% --------------------------------------------------
function obj = initialize_FLUXALL_vars( obj )
% INITIALIZE_FLUXALL_VARS - returns a struct with empty variables to populate
obj.obs = struct( 'air_temp_hmp', [], ...
'atm_press', [], ...
'agc_Avg', [], ...
'CNR1TK', [], ...
'CO2_mean', [], ...
'CO2_std', [], ...
'decimal_day', [], ...
'E_heat_term_massman', [], ...
'E_raw', [], ...
'E_raw_massman', [], ...
'E_water_term', [], ...
'E_wpl_massman', [], ...
'fc_heat_term_massman', [], ...
'fc_raw', [], ...
'fc_raw_massman', [], ...
'fc_raw_massman_wpl', [], ...
'fc_water_term', [], ...
'H2O_mean', [], ...
'h2o_hmp', [], ...
'H2O_std', [], ...
'HL_raw', [], ...
'HL_wpl_massman', [], ...
'HSdry', [], ...
'HSdry_massman', [], ...
'iok', [], ...
'lw_incoming', [], ...
'lw_outgoing', [], ...
'NR_tot', [], ...
'Par_Avg', [], ...
'precip', [], ...
'rH', [], ...
'rhoa_dry', [], ...
'rhoa_dry_kg', [], ...
'sw_incoming', [], ...
'sw_outgoing', [], ...
'Tair_TOA5', [], ...
'Tdry', [], ...
'Tsoil', [], ...
't_mean', [], ...
'timestamp', [], ...
'u_mean', [], ...
'u_star', [], ...
'wnd_dir_compass', [], ...
'wnd_spd', [] );
end % initialize_FLUXALL_vars
% --------------------------------------------------
function obj = FLUXALL_data_intake_pre2012( obj )
%FLUXALL_DATA_INTAKE_PRE2012 - obtains the FLUXDATA for site-years prior to
% 2012.
RBDrc = UNM_RBD_config( obj.sitecode, obj.year_arg );
row1=5; %first row of data to process - rows 1 - 4 are header
filename = strcat( char( obj.sitecode ),'_flux_all_',num2str(obj.year_arg));
%filename = strcat(site,'_new_radiation_flux_all_',num2str(year))
filelength = num2str(RBDrc.filelength_n);
%datalength = RBDrc.filelength_n - row1 + 1;
filein = fullfile( getenv( 'FLUXROOT' ), ...
'SiteData', ...
char( obj.sitecode ), ...
filename );
range = strcat('B',num2str(row1),':',RBDrc.lastcolumn,filelength);
headerrange = sprintf( 'A2:%s5',RBDrc.lastcolumn );
time_stamp_range = strcat('A5:A',filelength);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Open file and parse out dates and times
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('reading data...')
[ num, headertext ] = xlsread( filein, headerrange );
headertext = fluxall_extract_column_headers( headertext );
empty_headers = find( cellfun( @isempty, headertext ) );
dummyheaders = arrayfun( @(x) sprintf('Col_%03d', x), ...
empty_headers( : ), ...
'UniformOutput', false );
headertext( empty_headers ) = dummyheaders;
%does not read in first column because it's text!!!!!!!!
[num xls_text] = xlsread(filein,range);
data = num;
ncol = size(data,2)+1;
obj.datalength = size(data,1);
[num xls_text] = xlsread(filein,time_stamp_range);
timestamp = xls_text;
[year month day hour minute second] = datevec(timestamp);
obj.obs.timestamp = datenum(timestamp);
disp('file read');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% some siteyears have periods where the observed radition does not line
% up with sunrise. Fix this here so that the matched time/radiation
% propagates through the rest of the calculations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data = UNM_fix_datalogger_timestamps( obj.sitecode, ...
obj.year_arg, ...
data, ...
headertext, ...
obj.obs.timestamp, ...
'debug', obj.draw_plots );
if ( obj.sitecode == UNM_sites.MCon ) & ...
( obj.year_arg <= 2008 )
data = revise_MCon_duplicated_Rg( data, headertext, obj.obs.timestamp );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% populate obj.obs from the parsed excel data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
obj = obj.fluxall_data_to_matlab_vars_pre2012( data, headertext );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% locate and smooth soil variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if obj.process_soil_data
var_names = genvarname( headertext( 2:end ) );
ds = dataset( { data, var_names{ : } } );
ds.timestamp = obj.obs.timestamp;
obj.ds_soil = UNM_Ameriflux_prepare_soil_met( obj.sitecode, ...
obj.year_arg, ...
ds, ...
obj.obs.precip );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% variables that aren't present in FLUXALL get filled with NaN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
obj = obj.put_nans_in_missing_variables( size( data, 1 ) );
end %function FLUXALL_data_intake_pre2012
%------------------------------------------------------------
function obj = fluxall_data_to_matlab_vars_pre2012( obj, data, headertext )
% FLUXALL_DATA_TO_MATLAB_VARS -
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in Matlab processed ts data (these are in the same columns for all
% sites, so they can be just hard-wired in by column number
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ( obj.sitecode == UNM_sites.TX) & ( obj.year_arg == 2008 )
jday=data(:,8);
obj.obs.iok=data(:,9);
obj.obs.Tdry=data(:,14);
obj.obs.wnd_dir_compass=data(:,15);
obj.obs.wnd_spd=data(:,16);
obj.obs.u_star=data(:,28);
obj.obs.CO2_mean=data(:,32);
obj.obs.CO2_std=data(:,33);
obj.obs.H2O_mean=data(:,37);
obj.obs.H2O_std=data(:,38);
obj.obs.u_mean=data(:,10);
obj.obs.t_mean=data(:,13);
obj.obs.fc_raw = data(:,39);
obj.obs.fc_raw_massman = data(:,40);
obj.obs.fc_water_term = data(:,41);
obj.obs.fc_heat_term_massman = data(:,42);
obj.obs.fc_raw_massman_wpl = data(:,43); % = flux_co2_massman + flux_co2_wpl_water + flux_co2_massman_wpl_heat
obj.obs.E_raw = data(:,44);
obj.obs.E_raw_massman = data(:,45);
obj.obs.E_water_term = data(:,46);
obj.obs.E_heat_term_massman = data(:,47);
obj.obs.E_wpl_massman = data(:,48); % = flux_h20_wpl_water + flux_h20_massman_wpl_heat
obj.obs.HSdry = data(:,50);
obj.obs.HSdry_massman = data(:,53);
obj.obs.HL_raw = data(:,54);
obj.obs.HL_wpl_massman = data(:,56);
HL_wpl_massman_un = repmat( NaN, size( data, 1 ), 1 );
% Half hourly data filler only produces uncorrected obj.obs.HL_wpl_massman, but use
% these where available
%obj.obs.HL_wpl_massman(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un))=HL_wpl_massman_un(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un));
obj.obs.rhoa_dry = data(:,57);
for i=1:numel( headertext );
if strcmp('RH',headertext(i)) == 1 || strcmp('rh_hmp', headertext(i)) == 1 || strcmp('rh_hmp_4_Avg', headertext(i)) == 1
obj.obs.rH = data(:,i-1);
end
end
elseif obj.year_arg < 2009 && obj.sitecode ~= UNM_sites.JSav
if obj.sitecode == UNM_sites.TX && obj.year_arg == 2008 % This is set up for 2009 output
disp('TX 2008 is set up as 2009 output');
%stop
end
jday=data(:,8);
obj.obs.iok=data(:,9);
obj.obs.Tdry=data(:,14);
obj.obs.wnd_dir_compass=data(:,15);
obj.obs.wnd_spd=data(:,16);
obj.obs.u_star=data(:,27);
obj.obs.CO2_mean=data(:,31);
obj.obs.CO2_std=data(:,32);
obj.obs.H2O_mean=data(:,36);
obj.obs.H2O_std=data(:,37);
obj.obs.u_mean=data(:,10);
obj.obs.t_mean=data(:,13);
obj.obs.fc_raw = data(:,40);
obj.obs.fc_raw_massman = data(:,44);
obj.obs.fc_water_term = data(:,42);
obj.obs.fc_heat_term_massman = data(:,45);
obj.obs.fc_raw_massman_wpl = data(:,46); % = flux_co2_massman + flux_co2_wpl_water + flux_co2_massman_wpl_heat
obj.obs.E_raw = data(:,49);
obj.obs.E_raw_massman = data(:,53);
obj.obs.E_water_term = data(:,51);
obj.obs.E_heat_term_massman = data(:,54);
obj.obs.E_wpl_massman = data(:,55); % = flux_h20_wpl_water + flux_h20_massman_wpl_heat
obj.obs.HSdry = data(:,56);
obj.obs.HSdry_massman = data(:,59);
obj.obs.HL_raw = data(:,61);
obj.obs.HL_wpl_massman = data(:,64);
HL_wpl_massman_un = data(:,63);
% Half hourly data filler only produces uncorrected obj.obs.HL_wpl_massman, but use
% these where available
obj.obs.HL_wpl_massman(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un))=HL_wpl_massman_un(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un));
obj.obs.rhoa_dry = data(:,65);
for i=1:numel( headertext );
if strcmp('RH',headertext(i)) == 1 || strcmp('rh_hmp', headertext(i)) == 1 || strcmp('rh_hmp_4_Avg', headertext(i)) == 1
obj.obs.rH = data(:,i-1);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else %JSav pre-2009
jday=data(:,8);
obj.obs.iok=data(:,9);
obj.obs.Tdry=data(:,14);
obj.obs.wnd_dir_compass=data(:,15);
obj.obs.wnd_spd=data(:,16);
obj.obs.u_star=data(:,28);
obj.obs.CO2_mean=data(:,32);
obj.obs.CO2_std=data(:,33);
obj.obs.H2O_mean=data(:,37);
obj.obs.H2O_std=data(:,38);
obj.obs.u_mean=data(:,10);
obj.obs.t_mean=data(:,13);
obj.obs.fc_raw = data(:,39);
obj.obs.fc_raw_massman = data(:,40);
obj.obs.fc_water_term = data(:,41);
obj.obs.fc_heat_term_massman = data(:,42);
obj.obs.fc_raw_massman_wpl = data(:,43); % = flux_co2_massman + flux_co2_wpl_water + flux_co2_massman_wpl_heat
obj.obs.E_raw = data(:,44);
obj.obs.E_raw_massman = data(:,45);
obj.obs.E_water_term = data(:,46);
obj.obs.E_heat_term_massman = data(:,47);
obj.obs.E_wpl_massman = data(:,48);
obj.obs.HSdry = data(:,50);
obj.obs.HSdry_massman = data(:,53);
obj.obs.HL_raw = data(:,54);
obj.obs.HL_wpl_massman = data(:,56);
HL_wpl_massman_un = data(:,55);
% Half hourly data filler only produces uncorrected obj.obs.HL_wpl_massman, but use
% these where available as very similar values
obj.obs.HL_wpl_massman(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un))=HL_wpl_massman_un(isnan(obj.obs.HL_wpl_massman)&~isnan(HL_wpl_massman_un));
obj.obs.rhoa_dry = data(:,57);
end
%initialize RH to NaN
obj.obs.rH = repmat( NaN, size( data, 1), 1 );
% filter out absurd u_star values
obj.obs.u_star( obj.obs.u_star > 50 ) = NaN;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in 30-min data, variable order and names in flux_all files are not
% consistent so match headertext
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:numel( headertext );
if strcmp('agc_Avg',headertext(i)) == 1
obj.obs.agc_Avg = data(:,i-1);
elseif strcmp( 'h2o_hmp_Avg', headertext( i ) )
obj.obs.h2o_hmp = data( :, i-1 );
elseif strcmp('RH',headertext(i)) == 1 || ...
strcmp('rh_hmp', headertext(i)) == 1 || ...
strcmp('rh_hmp_4_Avg', headertext(i)) == 1 || ...
strcmp('RH_Avg', headertext(i)) == 1
obj.obs.rH = data(:,i-1) / 100.0;
elseif strcmp( 'Ts_mean', headertext( i ) )
obj.obs.Tair_TOA5 = data(:,i-1);
elseif strcmp('5point_precip', headertext(i)) == 1 || ...
strcmp('rain_Tot', headertext(i)) == 1 || ...
strcmp('precip', headertext(i)) == 1 || ...
strcmp('precip(in)', headertext(i)) == 1 || ...
strcmp('ppt', headertext(i)) == 1 || ...
strcmp('Precipitation', headertext(i)) == 1
obj.obs.precip = data(:,i-1);
elseif strcmp('press_mean', headertext(i)) == 1 || ...
strcmp('press_Avg', headertext(i)) == 1 || ...
strcmp('press_a', headertext(i)) == 1 || ...
strcmp('press_mean', headertext(i)) == 1
obj.obs.atm_press = data(:,i-1);
elseif strcmp('par_correct_Avg', headertext(i)) == 1 || ...
strcmp('par_Avg(1)', headertext(i)) == 1 || ...
strcmp('par_Avg_1', headertext(i)) == 1 || ...
strcmp('par_Avg', headertext(i)) == 1 || ...
strcmp('par_up_Avg', headertext(i)) == 1 || ...
strcmp('par_face_up_Avg', headertext(i)) == 1 || ...
strcmp('par_incoming_Avg', headertext(i)) == 1 || ...
strcmp('par_lite_Avg', headertext(i)) == 1
obj.obs.Par_Avg = data(:,i-1);
elseif strcmp('t_hmp_mean', headertext(i))==1 || ...
strcmp('AirTC_Avg', headertext(i))==1 || ...
strcmp('t_hmp_3_Avg', headertext(i))==1 || ...
strcmp('pnl_tmp_a', headertext(i))==1 || ...
strcmp('t_hmp_Avg', headertext(i))==1 || ...
strcmp('t_hmp_4_Avg', headertext(i))==1 || ...
strcmp('t_hmp_top_Avg', headertext(i))==1
obj.obs.air_temp_hmp = data(:,i-1);
elseif strcmp('AirTC_2_Avg', headertext(i))==1 && ...
(obj.year_arg == 2009 || ...
obj.year_arg ==2010) && ( obj.sitecode == UNM_sites.MCon)
obj.obs.air_temp_hmp = data(:,i-1);
elseif strcmp('Tsoil',headertext(i)) == 1 || ...
strcmp('Tsoil_avg',headertext(i)) == 1 || ...
strcmp('soilT_Avg(1)',headertext(i)) == 1
obj.obs.Tsoil = data(:,i-1);
elseif strcmp('Rn_correct_Avg',headertext(i))==1 || ...
strcmp('NR_surf_AVG', headertext(i))==1 || ...
strcmp('NetTot_Avg_corrected', headertext(i))==1 || ...
strcmp('NetTot_Avg', headertext(i))==1 || ...
strcmp('Rn_Avg',headertext(i))==1 || ...
strcmp('Rn_total_Avg',headertext(i))==1
obj.obs.NR_tot = data(:,i-1);
elseif strcmp('Rad_short_Up_Avg', headertext(i)) || ...
strcmp('pyrr_incoming_Avg', headertext(i))
obj.obs.sw_incoming = data(:,i-1);
elseif strcmp('Rad_short_Dn_Avg', headertext(i))==1 || ...
strcmp('pyrr_outgoing_Avg', headertext(i))==1
obj.obs.sw_outgoing = data(:,i-1);
elseif strcmp('Rad_long_Up_Avg', headertext(i)) == 1 || ...
strcmp('Rad_long_Up__Avg', headertext(i)) == 1
obj.obs.lw_incoming = data(:,i-1);
elseif strcmp('Rad_long_Dn_Avg', headertext(i))==1 || ...
strcmp('Rad_long_Dn__Avg', headertext(i))==1
obj.obs.lw_outgoing = data(:,i-1);
elseif strcmp('CNR1TC_Avg', headertext(i)) == 1 || ...
strcmp('Temp_C_Avg', headertext(i)) == 1
obj.obs.CNR1TK = data(:,i-1) + 273.15;
elseif strcmp('VW_Avg', headertext(i))==1
obj.obs.VWC = data(:,i-1);
elseif strcmp('shf_Avg(1)', headertext(i))==1 || ...
strcmp('shf_pinon_1_Avg', headertext(i))==1
obj.obs.soil_heat_flux_1 = data(:,i-1);
disp('FOUND shf_pinon_1_Avg');
elseif any( strcmp( headertext(i), ...
{ 'hfp_grass_1_Avg', 'hfp01_grass_Avg' } ) )
obj.obs.soil_heat_flux_1 = data(:,i-1);
disp('FOUND hfp_grass_1_Avg');
elseif any( strcmp( headertext( i ), ...
{ 'hfp_grass_2_Avg', 'hft3_grass_Avg' } ) )
obj.obs.soil_heat_flux_2 = data(:,i-1);
disp('FOUND hfp_grass_2_Avg');
elseif strcmp('shf_Avg(2)', headertext(i))==1 || ...
strcmp('shf_jun_1_Avg', headertext(i))==1
obj.obs.soil_heat_flux_2 = data(:,i-1);
elseif strcmp('hfpopen_1_Avg', headertext(i))==1 % only for TX
obj.obs.soil_heat_flux_open = data(:,i-1);
elseif strcmp('hfpmescan_1_Avg', headertext(i))==1 % only for TX
obj.obs.soil_heat_flux_mescan = data(:,i-1);
elseif strcmp('hfpjuncan_1_Avg', headertext(i))==1 % only for TX
obj.obs.soil_heat_flux_juncan = data(:,i-1);
%Shurbland flux plates 2009 onwards
elseif strcmp('hfp01_1_Avg', headertext(i))==1
obj.obs.soil_heat_flux_1 = data(:,i-1);
elseif strcmp('hfp01_2_Avg', headertext(i))==1
obj.obs.soil_heat_flux_2 = data(:,i-1);
elseif strcmp('hfp01_3_Avg', headertext(i))==1
obj.obs.soil_heat_flux_3 = data(:,i-1);
elseif strcmp('hfp01_4_Avg', headertext(i))==1
obj.obs.soil_heat_flux_4 = data(:,i-1);
elseif strcmp('hfp01_5_Avg', headertext(i))==1
obj.obs.soil_heat_flux_5 = data(:,i-1);
elseif strcmp('hfp01_6_Avg', headertext(i))==1
obj.obs.soil_heat_flux_6 = data(:,i-1);
elseif strcmp('shf_Avg(3)', headertext(i))==1
obj.obs.soil_heat_flux_3 = data(:,i-1);
elseif strcmp('shf_Avg(4)', headertext(i))==1
obj.obs.soil_heat_flux_4 = data(:,i-1);
end
end % headertext loop
if ismember( obj.sitecode, ...
[ UNM_sites.GLand, UNM_sites.SLand ] ) & ...
obj.year_arg == 2009
Par_Avg = combine_PARavg_PARlite( headertext, data );
end
if ismember( obj.sitecode, [ UNM_sites.JSav, UNM_sites.PJ ] )
% use "RH" at JSav, PJ
rh_col = find( strcmp( 'RH', headertext ) ) - 1;
fprintf( 'found RH\n' );
obj.obs.rH = data( :, rh_col ) / 100.0;
elseif ismember( obj.sitecode, [ UNM_sites.PPine, UNM_sites.MCon ] )
% use "RH_2" at PPine, MCon
rh_col = find( strcmp( 'RH_2', headertext ) | ...
strcmp( 'RH_2_Avg', headertext ) ) - 1;
if ~isempty( rh_col )
fprintf( 'found RH_2\n' );
else
error( 'could not locate RH_2' );
end
obj.obs.rH = data( :, rh_col ) / 100.0;
elseif obj.sitecode == UNM_sites.PJ_girdle
% at PJ girdle, calculate relative humidity from hmp obs using helper
% function
obj.obs.rH = ...
thmp_and_h2ohmp_2_rhhmp( obj.obs.air_temp_hmp, ...
obj.obs.h2o_hmp ) / 100.0;
end % if ismember...
end
% --------------------------------------------------
function obj = FLUXALL_soil_data_intake_pre2012( obj, data, headertext )
% FLUXALL_SOIL_DATA_INTAKE_PRE2012 -
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Site-specific steps for soil temperature
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch obj.sitecode
case UNM_sites.GLand %added TWH, 27 Oct 2011
for i=1:numel( headertext );
if strcmp('TCAV_grass_Avg',headertext(i)) == 1
obj.obs.Tsoil = data(:,i-1);
end
end
% find soil heat flux plate measurements
SHF_idx = find( cellfun( @(x) ~isempty(x), ...
regexp( headertext, 'hfp.*[Aa]vg' ) ) );
if numel( SHF_idx ) ~= 2
%error( 'could not find two soil heat flux observations' );
end
soil_heat_flux = data( :, SHF_idx );
SHF_labels = headertext( SHF_idx );
SHF_labels = regexprep( SHF_labels, 'hfp01_(.*)', 'SHF_$1');
case UNM_sites.SLand %added TWH, 4 Nov 2011
for i=1:numel( headertext );
if strcmp( 'shf_sh_1_Avg', headertext( i ) ) == 1
soil_heat_flux_1 = data(:,i-1);
end
if strcmp( 'shf_sh_2_Avg', headertext( i ) ) == 1
soil_heat_flux_2 = data(:,i-1);
end
end
SHF_labels = { 'shf_sh_1_Avg', 'shf_sh_2_Avg' };
soil_heat_flux = [ soil_heat_flux_1, soil_heat_flux_1 ];
case UNM_sites.JSav %added TWH, 7 May 2012
SHF_cols = find( ~cellfun( @isempty, regexp( headertext, 'shf_Avg.*' ) ) );
soil_heat_flux = data( :, SHF_cols - 1 );
if isempty( soil_heat_flux )
soil_heat_flux = repmat( NaN, size( data, 1 ), 4 );
soil_heat_flux_1 = soil_heat_flux( :, 1 );
soil_heat_flux_2 = soil_heat_flux( :, 2 );
soil_heat_flux_3 = soil_heat_flux( :, 3 );
soil_heat_flux_4 = soil_heat_flux( :, 4 );
end
SHF_labels = { 'SHF_1', 'SHF_2', 'SHF_3', 'SHF_4' };
% Juniper S heat flux plates need multiplying by calibration factors
soil_heat_flux_1 = soil_heat_flux_1.*32.27;
soil_heat_flux_2 = soil_heat_flux_2.*33.00;
soil_heat_flux_3 = soil_heat_flux_3.*31.60;
soil_heat_flux_4 = soil_heat_flux_4.*32.20;
case UNM_sites.PJ
for i=1:numel( headertext );
if strcmp('tcav_pinon_1_Avg',headertext(i)) == 1
Tsoil1 = data(:,i-1);
elseif strcmp('tcav_jun_1_Avg',headertext(i)) == 1
Tsoil2 = data(:,i-1);
end
end
if exist( 'Tsoil1' ) == 1 & exist( 'Tsoil2' ) == 1
Tsoil = (Tsoil1 + Tsoil2)/2;
else
Tsoil = repmat( NaN, size( data, 1 ), 1 );
end
soil_heat_flux_1 = repmat( NaN, size( data, 1 ), 1 );
soil_heat_flux_2 = repmat( NaN, size( data, 1 ), 1 );
SHF_labels = { 'soil_heat_flux_1', 'soil_heat_flux_2' };
soil_heat_flux = [ soil_heat_flux_1, soil_heat_flux_2 ];
% related lines 678-682: corrections for site 4 (PJ) soil_heat_flux_1 and soil_heat_flux_2
Tsoil=sw_incoming.*NaN; %MF: note, this converts all values in Tsoil to NaN. Not sure if this was intended.
% Pinon Juniper heat flux plates need multiplying by calibration factors
soil_heat_flux_1 = soil_heat_flux_1.*35.2;
soil_heat_flux_2 = soil_heat_flux_2.*32.1;
case { UNM_sites.PPine, UNM_sites.MCon }
soil_heat_flux_1 = repmat( NaN, size( data, 1 ), 1 );
nsoil_heat_flux_2 = soil_heat_flux_1;
soil_heat_flux_3 = soil_heat_flux_1;
for i=1:numel( headertext );
if strcmp('T107_C_Avg(1)',headertext(i)) == 1
Tsoil_2cm_1 = data(:,i-1);
elseif strcmp('T107_C_Avg(2)',headertext(i)) == 1
Tsoil_2cm_2 = data(:,i-1);
elseif strcmp('T107_C_Avg(3)',headertext(i)) == 1
Tsoil_6cm_1 = data(:,i-1);
elseif strcmp('T107_C_Avg(4)',headertext(i)) == 1
Tsoil_6cm_2 = data(:,i-1);
elseif strcmp('shf_Avg(1)',headertext(i)) == 1
soil_heat_flux_1 = data(:,i-1);
elseif strcmp('shf_Avg(2)',headertext(i)) == 1
soil_heat_flux_2 = data(:,i-1);
elseif strcmp('shf_Avg(3)',headertext(i)) == 1
soil_heat_flux_3 = data(:,i-1);
end
end
Tsoil_2cm = (Tsoil_2cm_1 + Tsoil_2cm_2)/2;
Tsoil_6cm = (Tsoil_6cm_1 + Tsoil_6cm_2)/2;
Tsoil = Tsoil_2cm;
SHF_labels = { 'soil_heat_flux_1', 'soil_heat_flux_2', 'soil_heat_flux_3' };
soil_heat_flux = [ soil_heat_flux_1, soil_heat_flux_2, soil_heat_flux_3 ];
case UNM_sites.TX
for i=1:numel( headertext );
if strcmp('Tsoil_Avg(2)',headertext(i)) == 1
obj.obs.open_5cm = data(:,i-1);
elseif strcmp('Tsoil_Avg(3)',headertext(i)) == 1
obj.obs.open_10cm = data(:,i-1);
elseif strcmp('Tsoil_Avg(5)',headertext(i)) == 1
obj.obs.Mesquite_5cm = data(:,i-1);
elseif strcmp('Tsoil_Avg(6)',headertext(i)) == 1
obj.obs.Mesquite_10cm = data(:,i-1);
elseif strcmp('Tsoil_Avg(8)',headertext(i)) == 1
obj.obs.Juniper_5cm = data(:,i-1);
elseif strcmp('Tsoil_Avg(9)',headertext(i)) == 1
obj.obs.Juniper_10cm = data(:,i-1);
end
end
if args.Results.year == 2005 % juniper probes on-line after 5/19/05
% before 5/19
obj.obs.canopy_5cm = Mesquite_5cm(find(decimal_day < 139.61));
obj.obs.canopy_10cm = Mesquite_10cm(find(decimal_day < 139.61));
% after 5/19
obj.obs.canopy_5cm(find(decimal_day >= 139.61)) = (Mesquite_5cm(find(decimal_day >= 139.61)) + Juniper_5cm(find(decimal_day >= 139.61)))/2;
obj.obs.canopy_10cm(find(decimal_day >= 139.61)) = (Mesquite_10cm(find(decimal_day >= 139.61)) + Juniper_10cm(find(decimal_day >= 139.61)))/2;
% clean strange 0 values
obj.obs.canopy_5cm(find(canopy_5cm == 0)) = NaN;
obj.obs.canopy_10cm(find(canopy_10cm == 0)) = NaN;
obj.obs.Tsoil = (open_5cm + canopy_5cm)./2;
else
obj.obs.canopy_5cm = (Mesquite_5cm + Juniper_5cm)/2;
obj.obs.canopy_10cm = (Mesquite_10cm + Juniper_10cm)/2;
obj.obs.Tsoil = (open_5cm + canopy_5cm)/2;
end
% min/max QC for TX soil heat fluxes
if args.Results.year == 2005
obj.obs.soil_heat_flux_open(find(soil_heat_flux_open > 100 | ...
soil_heat_flux_open < -50)) = NaN;
obj.obs.soil_heat_flux_mescan(find(soil_heat_flux_mescan > 50 | ...
soil_heat_flux_mescan < -40)) = NaN;
obj.obs.soil_heat_flux_juncan(find(soil_heat_flux_juncan > 50 | ...
soil_heat_flux_juncan < -60)) = NaN;
elseif args.Results.year == 2006
obj.obs.soil_heat_flux_open(find(soil_heat_flux_open > 90 | ...
soil_heat_flux_open < -60)) = NaN;
obj.obs.soil_heat_flux_mescan(find(soil_heat_flux_mescan > 50 | ...
soil_heat_flux_mescan < -50)) = NaN;
soil_heat_flux_juncan(find(soil_heat_flux_juncan > 50 | ...
soil_heat_flux_juncan < -60)) = NaN;
elseif args.Results.year == 2007
obj.obs.soil_heat_flux_open(find(soil_heat_flux_open > 110 | ...
soil_heat_flux_open < -50)) = NaN;
obj.obs.soil_heat_flux_mescan(find(soil_heat_flux_mescan > 40 | ...
soil_heat_flux_mescan < -40)) = NaN;
obj.obs.soil_heat_flux_juncan(find(soil_heat_flux_juncan > 20 | ...
soil_heat_flux_juncan < -40)) = NaN;
end
case { UNM_stes.PJ_girdle, UNM_sites.New_GLand }
Tsoil=sw_incoming.*NaN;
soil_heat_flux_1 =sw_incoming.*NaN;
soil_heat_flux_2 =sw_incoming.*NaN;
SHF_labels = { 'soil_heat_flux_1', 'soil_heat_flux_2' };
soil_heat_flux = [ soil_heat_flux_1, soil_heat_flux_2 ];
end %switch obj.sitecode
for i = 1:numel( SHF_labels )
obj.obs.( SHF_labels{ i } ) = soil_heat_flux( :, i );
end
end % function obj = FLUXALL_soil_data_intake_pre2012( obj,
% --------------------------------------------------
function Tsoil = get_avg_Tsoil( obj )
% GET_AVG_TSOIL - returns average soil temperature (C) across all measurement
% depths, cover types
dummy = repmat( NaN, numel( obj.obs.Tdry ), 1 );
if isempty( obj.ds_soil )
Tsoil = dummy;
else
Tsoil_vars = regexp_header_vars( obj.ds_soil, 'Tsoil_[0-9A-Za-z]+_Avg' );
if isempty( Tsoil_vars )
Tsoil = dummy;
else
Tsoil = nanmean( double( obj.ds_soil( :, Tsoil_vars ) ), 2 );
end
end
end % function Tsoil = get_avg_Tsoil( obj )
end % methods
methods( Access = private )
% --------------------------------------------------
function obj = put_nans_in_missing_variables( obj, nrow )
% PUT_NANS_IN_MISSING_VARIABLES - looks at the data fields of obj, filling
% with NaN any variables that were not populated during data intake.
%
dummy = repmat( NaN, nrow, 1 );
flds = fieldnames( obj.obs );
for i = 1:numel( flds )
if isempty( obj.obs.( flds{ i } ) )
fprintf( 'Field %s not found; inserting NaNs\n', flds{ i } );
obj.obs.( flds{ i } ) = dummy;
end
end
end
% --------------------------------------------------
end %private methods
end %classdef
function headertext = fluxall_extract_column_headers( headertext )
% FLUXALL_EXTRACT_COLUMN_HEADERS - locate and return the column headers for a
% fluxall xls file. The headers for the Matlab sections and 30-minute
% sections to not always appear on the same line, so locate them by searching
% for the two "timestamp" headers. Helper function for
% UNM_parse_fluxall_xls_file.
[ row, col ] = find( cellfun( @(x) ~isempty(x), ...
regexpi( headertext, 'timestamp' ) ) );
headertext{ row(end), col(end) } = 'TOA5_timestamp';
headertext = [ headertext( row(1), col(1):col(end)-1 ), ...
headertext( row(end), col(end):end ) ];
end