-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUNM_30min_TS_averager.m
261 lines (214 loc) · 9.18 KB
/
UNM_30min_TS_averager.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
function [ ds_out ] = UNM_30min_TS_averager( sitecode, timestamp, ...
lag, rotation, data )
% UNM_30MIN_TS_AVERAGER - calculates average values for a 30-minute chunk of
% 10-hz timeseries data.
%
% Mostly calls other functions to do the number crunching. Primarily a helper
% function for process_TOB1_chunk
%
% USAGE:
% [ ds_out ] = UNM_30min_TS_averager( sitecode, timestamp, ...
% lag, rotation, data );
%
% INPUTS:
% sitecode ( integer ): sitecode to process
% timestamp: Matlab serial datenumber vector; timestamps of the data
% lag: 0 | 1; if 0 use UNM_flux_031010 to process 30-minute chunks. If 1
% use flux7500freeman_lag
% rotation: rotation (sonic_rotation object): sonic_rotation.planar or
% sonic_rotation.threeD
% data: dataset array containing the data to be processed.
%
% OUTPUTS
% ds_out: dataset array containing processed data
%
% SEE ALSO
% datenum, dataset, process_TOB1_chunk
%
% modified by Krista Anderson-Teixeira 1/08
% substantially rewritten by Timothy W. Hilton, Jan 2012
Nfields = size( data, 2 );
time1 = data.SECONDS;
uin = data.Ux;
vin = data.Uy;
win = data.Uz;
Tin = data.Ts;
Pin = data.press;
co2in = data.co2;
h2oin = data.h2o;
diagsonin = data.diag_csat;
n_obs = size( data , 1 );
[ year_ts, month_ts, day_ts, ...
hour_ts, min_ts, second_ts ] = datevec( timestamp );
uvwt = [ uin, vin, win, Tin ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALL UNM_dry_air_conversions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[CO2,H2O,PWATER,TD,RHO,IRGADIAG,IRGAP,P,removedco2] = ...
UNM_dry_air_conversions(co2in,h2oin,Pin,Tin,n_obs,sitecode);
removed = removedco2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Call UNM_csat3 for despiking sonic variables, calculating mean winds,
% and calculating theta.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%uvwt is transposed here because fluxcat3freemanKA was written for data in
%rows....
[ uvwt2, SONDIAG, theta, uvwtmean, speed ] = ...
UNM_csat3( uvwt', diagsonin', sitecode);
% uvwt2 is despiked wind and temperature matrix
% SONDIAG is sonic diagnostic variable combining both original diagson and
% despike (1 for good, 0 for bad)
% pare down to just winds
uvw2 = uvwt2(1:3,:);
% pare means down to just winds
uvwmean = uvwtmean(1:3);
%meteorological mean wind angle - it is the compass angle in degrees
%that the wind is blowing FROM (0 = North, 90 = east, etc)
temp2 = uvwt2(4,:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Split path for 3d versus planar rotation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if rotation == sonic_rotation.threeD;
% ROTATE COORDINATES SUCH THAT MEAN U, V, & W = 0
[ UVWROT, uvwmeanrot ] = UNM_coordrot( uvw2, SONDIAG );
%in this case, UVW2 !! is !! rotated
% ROW 1: sonic component rotated into the mean wind direction
% ROW 2: sonic cross-wind component
% ROW 3: sonic w component
UVW2 = UVWROT;
elseif rotation == sonic_rotation.planar
%in this case, UVW2 !! is not !! rotated
UVW2 = uvw2;
uvwmeanrot = NaN * ones( 3, 1 );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CALL UNM_flux
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if lag == 0
[ CO2, H2O, FCO2, FH2O, HSENSIBLE, HLATENT, RHOM, TDRY, ...
IOKNUM, zoL, UVWTVAR, COVUVWT, HBUOYANT, USTAR, TRANSPORT, ...
uvector, wmean ] = UNM_flux_031010( year_ts, month_ts, ...
day_ts, UVW2, uvwmean', ...
SONDIAG, CO2', H2O', ...
TD', RHO', IRGADIAG', ...
rotation, ...
get_site_name( sitecode ), ...
sitecode, n_obs, PWATER, ...
uvwmeanrot, ...
IRGAP, speed, ...
temp2, theta );
elseif lag == 1
%% I think this will fail -- USTAR cannot be defined... TWH Feb 2012
[CO2, H2O, FCO2, FH2O, HSENSIBLE, HLATENT, RHOM, TDRY, ...
IOKNUM, lagCO2, lagH2O, zoL] = flux7500freeman_lag(UVW2, uvwmean, ...
USTAR, SONDIAG, ...
CO2', H2O', TD', ...
RHO', IRGADIAG', ...
rotation, sitecode, ...
n_obs, PWATER, ...
uvwmeanrot, ...
hsout, IRGAP, ...
theta );
end
%------
% create variables for output
% UVW2 = NaN*ones(3,size(uvwt,2));
% UVWTVAR = NaN*ones(4,1);
% COVUVWT = NaN*ones(6,1);
% USTAR = NaN;
% HBUOYANT = NaN;
% TRANSPORT = NaN;
% hsout = NaN;
% done creating output variables
%-----
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ( sitecode == 7 )
error('TX sites no longer configured in this version of code');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create matlab dataset of output variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
names = { 'year', 'month', 'day', ...
'hour', 'min', 'second' };
y_units = repmat( { '-' }, 1, 6 );
y = dataset( { datevec( timestamp ), names{:} } );
y.date = datestr( timestamp, 'YYYYMMDD' );
y.jday = timestamp - datenum( y.year, 1, 1 ) + 1;
y.iok = IOKNUM;
y_units = [ y_units, { '-', '-', '-' } ];
names = { 'u_mean_unrot', 'v_mean_unrot', 'w_mean_unrot', 'temp_mean' };
y_units = [ y_units, { 'm/s', 'm/s', 'm/s', 'C' } ];
y = [ y, dataset( { uvwtmean', names{:} } ) ];
y.tdry = TDRY;
y.wind_direction = theta;
y.speed = speed;
y.rH = NaN; % we are using the RH from the 30-min data now
y_units = [ y_units, { 'K', 'degrees', 'm/s', '%' } ];
names = { 'along_wind_velocity_variance', ...
'cross_wind_velocity_variance', ...
'vertical_wind_velocity_variance',...
'sonic_temperature_variance' } ;
y_units = [ y_units, repmat( { '-' }, size( names ) ) ];
y = [ y, dataset( { UVWTVAR', names{ : } } ) ];
names = { 'uw_covariance', ...
'vw_covariance', ...
'uv_covariance', ...
'ut_covariance', ...
'vt_covariance', ...
'wt_covariance' };
y_units = [ y_units, repmat( { '-' }, 1, 6 ) ];
y = [y, dataset( { COVUVWT', names{ : } } ) ];
y.ustar = USTAR;
y_units = [ y_units, { 'm/s' } ];
names = { 'CO2_min', 'CO2_max','CO2_median', ...
'CO2_mean','CO2_std' };
y_units = [ y_units, repmat( { 'umol/mol dry air' }, 1, 5 ) ];
y = [ y, dataset( { CO2', names{ : } } ) ];
names = { 'H2O_min','H2O_max','H2O_median', ...
'H2O_mean','H2O_std' };
y_units = [ y_units, repmat( { 'umol/mol dry air' }, 1, 5 ) ];
y = [ y, dataset( { H2O', names{ : } } ) ];
names = { 'Fc_raw','Fc_raw_massman','Fc_water_term', ...
'Fc_heat_term_massman','Fc_raw_massman_ourwpl' };
y_units = [ y_units, repmat( { 'umol/m2/s' }, 1, 5 ) ];
y = [ y, dataset( { FCO2', names{ : } } ) ];
names = { 'E_raw','E_raw_massman','E_water_term', ...
'E_heat_term_massman','E_wpl_massman', ...
'E_rhov_massman' };
y_units = [ y_units, repmat( { '-' }, 1, 6 ) ];
y = [ y, dataset( { FH2O', names{ : } } ) ];
names = { 'SensibleHeat_dry','SensibleHeat_wet', ...
'SensibleHeat_wetwet','HSdry_massman' };
y_units = [ y_units, repmat( { 'W/m2' }, 1, 4 ) ];
y = [ y, dataset( { HSENSIBLE', names{ : } } ) ];
names = { 'LatentHeat_raw', ...
'LatentHeat_raw_massman', ...
'LatentHeat_wpl_massman' };
y_units = [ y_units, repmat( { 'W/m2' }, 1, 3 ) ];
y = [ y, dataset( { HLATENT', names{ : } } ) ];
names = { 'rhoa_dry_air_molar_density', ...
'rhov_dry_air_molar_density', ...
'rhoc_dry_air_molar_density' };
y_units = [ y_units, repmat( { 'g/m3 moist air' }, 1, 3 ) ];
y = [ y, dataset( { RHOM', names{ : } } ) ];
y.buoyancy_flux = HBUOYANT;
y.transport = TRANSPORT;
y_units = [ y_units, repmat( { '-' }, 1, 2 ) ];
names = { 'NaNs','Maxs','Mins','Spikes','Bad_variance' };
y_units = [ y_units, repmat( { '-' }, 1, 5 ) ];
y = [ y, dataset( { removed, names{ : } } ) ];
y.zoL = zoL;
y_units = [ y_units, { '-' } ];
% u_vector is rotated according to the rotation specified to
% UNM_process_10hz_main (either planar or 3D). For 3D rotation, u_vector_w
% will be the same as w_mean_rot (next line below). For planar fit, these
% will be different as per eqs 3.18 and 3.19 of Handbook of
% Micrometeorology (p. 62).
names = { 'u_vector_u','u_vector_v','u_vector_w' };
y = [ y, ...
dataset( { uvector', names{ : } } ) ];
y_units = [ y_units, repmat( { 'm/s' }, 1, 3 ) ];
y.w_mean_rot = wmean;
y_units = [ y_units, { 'm/s' } ];
y.Properties.Units = y_units;
ds_out = y;