-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUCTransNet.py
500 lines (435 loc) · 21.9 KB
/
UCTransNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# -*- coding: utf-8 -*-
# @Author : Haonan Wang
# @File : CTrans.py
# @Software: PyCharm
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import logging
import math
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, Conv2d, LayerNorm
from torch.nn.modules.utils import _pair
logger = logging.getLogger(__name__)
class Channel_Embeddings(nn.Module):
"""Construct the embeddings from patch, position embeddings.
"""
def __init__(self, patchsize, img_size, in_channels):
super().__init__()
img_size = _pair(img_size)
patch_size = _pair(patchsize)
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
self.patch_embeddings = Conv2d(in_channels=in_channels,
out_channels=in_channels,
kernel_size=patch_size,
stride=patch_size)
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
self.dropout = Dropout(0.1)
def forward(self, x):
if x is None:
return None
x = self.patch_embeddings(x) # (B, hidden. n_patches^(1/2), n_patches^(1/2))
x = x.flatten(2)
x = x.transpose(-1, -2) # (B, n_patches, hidden)
embeddings = x + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class Reconstruct(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, scale_factor):
super(Reconstruct, self).__init__()
if kernel_size == 3:
padding = 1
else:
padding = 0
self.conv = nn.Conv2d(in_channels, out_channels,kernel_size=kernel_size, padding=padding)
self.norm = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU(inplace=True)
self.scale_factor = scale_factor
def forward(self, x):
if x is None:
return None
B, n_patch, hidden = x.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
h, w = int(np.sqrt(n_patch)), int(np.sqrt(n_patch))
x = x.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, h, w)
x = nn.Upsample(scale_factor=self.scale_factor)(x)
out = self.conv(x)
out = self.norm(out)
out = self.activation(out)
return out
class Attention_org(nn.Module):
def __init__(self, vis,channel_num):
super(Attention_org, self).__init__()
self.vis = vis
self.KV_size = 960
self.channel_num = channel_num
self.num_attention_heads = 4
self.query1 = nn.ModuleList()
self.query2 = nn.ModuleList()
self.query3 = nn.ModuleList()
self.query4 = nn.ModuleList()
self.key = nn.ModuleList()
self.value = nn.ModuleList()
for _ in range(4):
query1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
query2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
query3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
query4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
key = nn.Linear( self.KV_size, self.KV_size, bias=False)
value = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.query1.append(copy.deepcopy(query1))
self.query2.append(copy.deepcopy(query2))
self.query3.append(copy.deepcopy(query3))
self.query4.append(copy.deepcopy(query4))
self.key.append(copy.deepcopy(key))
self.value.append(copy.deepcopy(value))
self.psi = nn.InstanceNorm2d(self.num_attention_heads)
self.softmax = Softmax(dim=3)
self.out1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
self.out2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
self.out3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
self.out4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
self.attn_dropout = Dropout(0.1)
self.proj_dropout = Dropout(0.1)
def forward(self, emb1,emb2,emb3,emb4, emb_all):
multi_head_Q1_list = []
multi_head_Q2_list = []
multi_head_Q3_list = []
multi_head_Q4_list = []
multi_head_K_list = []
multi_head_V_list = []
if emb1 is not None:
for query1 in self.query1:
Q1 = query1(emb1)
multi_head_Q1_list.append(Q1)
if emb2 is not None:
for query2 in self.query2:
Q2 = query2(emb2)
multi_head_Q2_list.append(Q2)
if emb3 is not None:
for query3 in self.query3:
Q3 = query3(emb3)
multi_head_Q3_list.append(Q3)
if emb4 is not None:
for query4 in self.query4:
Q4 = query4(emb4)
multi_head_Q4_list.append(Q4)
for key in self.key:
K = key(emb_all)
multi_head_K_list.append(K)
for value in self.value:
V = value(emb_all)
multi_head_V_list.append(V)
# print(len(multi_head_Q4_list))
multi_head_Q1 = torch.stack(multi_head_Q1_list, dim=1) if emb1 is not None else None
multi_head_Q2 = torch.stack(multi_head_Q2_list, dim=1) if emb2 is not None else None
multi_head_Q3 = torch.stack(multi_head_Q3_list, dim=1) if emb3 is not None else None
multi_head_Q4 = torch.stack(multi_head_Q4_list, dim=1) if emb4 is not None else None
multi_head_K = torch.stack(multi_head_K_list, dim=1)
multi_head_V = torch.stack(multi_head_V_list, dim=1)
multi_head_Q1 = multi_head_Q1.transpose(-1, -2) if emb1 is not None else None
multi_head_Q2 = multi_head_Q2.transpose(-1, -2) if emb2 is not None else None
multi_head_Q3 = multi_head_Q3.transpose(-1, -2) if emb3 is not None else None
multi_head_Q4 = multi_head_Q4.transpose(-1, -2) if emb4 is not None else None
attention_scores1 = torch.matmul(multi_head_Q1, multi_head_K) if emb1 is not None else None
attention_scores2 = torch.matmul(multi_head_Q2, multi_head_K) if emb2 is not None else None
attention_scores3 = torch.matmul(multi_head_Q3, multi_head_K) if emb3 is not None else None
attention_scores4 = torch.matmul(multi_head_Q4, multi_head_K) if emb4 is not None else None
attention_scores1 = attention_scores1 / math.sqrt(self.KV_size) if emb1 is not None else None
attention_scores2 = attention_scores2 / math.sqrt(self.KV_size) if emb2 is not None else None
attention_scores3 = attention_scores3 / math.sqrt(self.KV_size) if emb3 is not None else None
attention_scores4 = attention_scores4 / math.sqrt(self.KV_size) if emb4 is not None else None
attention_probs1 = self.softmax(self.psi(attention_scores1)) if emb1 is not None else None
attention_probs2 = self.softmax(self.psi(attention_scores2)) if emb2 is not None else None
attention_probs3 = self.softmax(self.psi(attention_scores3)) if emb3 is not None else None
attention_probs4 = self.softmax(self.psi(attention_scores4)) if emb4 is not None else None
# print(attention_probs4.size())
if self.vis:
weights = []
weights.append(attention_probs1.mean(1))
weights.append(attention_probs2.mean(1))
weights.append(attention_probs3.mean(1))
weights.append(attention_probs4.mean(1))
else: weights=None
attention_probs1 = self.attn_dropout(attention_probs1) if emb1 is not None else None
attention_probs2 = self.attn_dropout(attention_probs2) if emb2 is not None else None
attention_probs3 = self.attn_dropout(attention_probs3) if emb3 is not None else None
attention_probs4 = self.attn_dropout(attention_probs4) if emb4 is not None else None
multi_head_V = multi_head_V.transpose(-1, -2)
context_layer1 = torch.matmul(attention_probs1, multi_head_V) if emb1 is not None else None
context_layer2 = torch.matmul(attention_probs2, multi_head_V) if emb2 is not None else None
context_layer3 = torch.matmul(attention_probs3, multi_head_V) if emb3 is not None else None
context_layer4 = torch.matmul(attention_probs4, multi_head_V) if emb4 is not None else None
context_layer1 = context_layer1.permute(0, 3, 2, 1).contiguous() if emb1 is not None else None
context_layer2 = context_layer2.permute(0, 3, 2, 1).contiguous() if emb2 is not None else None
context_layer3 = context_layer3.permute(0, 3, 2, 1).contiguous() if emb3 is not None else None
context_layer4 = context_layer4.permute(0, 3, 2, 1).contiguous() if emb4 is not None else None
context_layer1 = context_layer1.mean(dim=3) if emb1 is not None else None
context_layer2 = context_layer2.mean(dim=3) if emb2 is not None else None
context_layer3 = context_layer3.mean(dim=3) if emb3 is not None else None
context_layer4 = context_layer4.mean(dim=3) if emb4 is not None else None
O1 = self.out1(context_layer1) if emb1 is not None else None
O2 = self.out2(context_layer2) if emb2 is not None else None
O3 = self.out3(context_layer3) if emb3 is not None else None
O4 = self.out4(context_layer4) if emb4 is not None else None
O1 = self.proj_dropout(O1) if emb1 is not None else None
O2 = self.proj_dropout(O2) if emb2 is not None else None
O3 = self.proj_dropout(O3) if emb3 is not None else None
O4 = self.proj_dropout(O4) if emb4 is not None else None
return O1,O2,O3,O4, weights
class Mlp(nn.Module):
def __init__(self,in_channel, mlp_channel):
super(Mlp, self).__init__()
self.fc1 = nn.Linear(in_channel, mlp_channel)
self.fc2 = nn.Linear(mlp_channel, in_channel)
self.act_fn = nn.GELU()
self.dropout = Dropout(0.1)
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class Block_ViT(nn.Module):
def __init__(self, vis, channel_num):
super(Block_ViT, self).__init__()
expand_ratio = 4
self.attn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.attn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.attn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.attn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
self.attn_norm = LayerNorm(960, eps=1e-6)
self.channel_attn = Attention_org(vis, channel_num)
self.ffn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.ffn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.ffn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.ffn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
self.ffn1 = Mlp(channel_num[0],channel_num[0]*expand_ratio)
self.ffn2 = Mlp(channel_num[1],channel_num[1]*expand_ratio)
self.ffn3 = Mlp(channel_num[2],channel_num[2]*expand_ratio)
self.ffn4 = Mlp(channel_num[3],channel_num[3]*expand_ratio)
def forward(self, emb1,emb2,emb3,emb4):
embcat = []
org1 = emb1
org2 = emb2
org3 = emb3
org4 = emb4
for i in range(4):
var_name = "emb"+str(i+1)
tmp_var = locals()[var_name]
if tmp_var is not None:
embcat.append(tmp_var)
emb_all = torch.cat(embcat,dim=2)
cx1 = self.attn_norm1(emb1) if emb1 is not None else None
cx2 = self.attn_norm2(emb2) if emb2 is not None else None
cx3 = self.attn_norm3(emb3) if emb3 is not None else None
cx4 = self.attn_norm4(emb4) if emb4 is not None else None
emb_all = self.attn_norm(emb_all)
cx1,cx2,cx3,cx4, weights = self.channel_attn(cx1,cx2,cx3,cx4,emb_all)
cx1 = org1 + cx1 if emb1 is not None else None
cx2 = org2 + cx2 if emb2 is not None else None
cx3 = org3 + cx3 if emb3 is not None else None
cx4 = org4 + cx4 if emb4 is not None else None
org1 = cx1
org2 = cx2
org3 = cx3
org4 = cx4
x1 = self.ffn_norm1(cx1) if emb1 is not None else None
x2 = self.ffn_norm2(cx2) if emb2 is not None else None
x3 = self.ffn_norm3(cx3) if emb3 is not None else None
x4 = self.ffn_norm4(cx4) if emb4 is not None else None
x1 = self.ffn1(x1) if emb1 is not None else None
x2 = self.ffn2(x2) if emb2 is not None else None
x3 = self.ffn3(x3) if emb3 is not None else None
x4 = self.ffn4(x4) if emb4 is not None else None
x1 = x1 + org1 if emb1 is not None else None
x2 = x2 + org2 if emb2 is not None else None
x3 = x3 + org3 if emb3 is not None else None
x4 = x4 + org4 if emb4 is not None else None
return x1, x2, x3, x4, weights
class Encoder(nn.Module):
def __init__(self, vis, channel_num):
super(Encoder, self).__init__()
self.vis = vis
self.layer = nn.ModuleList()
self.encoder_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.encoder_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.encoder_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.encoder_norm4 = LayerNorm(channel_num[3],eps=1e-6)
for _ in range(4):
layer = Block_ViT( vis, channel_num)
self.layer.append(copy.deepcopy(layer))
def forward(self, emb1,emb2,emb3,emb4):
attn_weights = []
for layer_block in self.layer:
emb1,emb2,emb3,emb4, weights = layer_block(emb1,emb2,emb3,emb4)
if self.vis:
attn_weights.append(weights)
emb1 = self.encoder_norm1(emb1) if emb1 is not None else None
emb2 = self.encoder_norm2(emb2) if emb2 is not None else None
emb3 = self.encoder_norm3(emb3) if emb3 is not None else None
emb4 = self.encoder_norm4(emb4) if emb4 is not None else None
return emb1,emb2,emb3,emb4, attn_weights
class ChannelTransformer(nn.Module):
def __init__(self, vis, img_size, channel_num=[64, 128, 256, 512], patchSize=[32, 16, 8, 4]):
super().__init__()
self.patchSize_1 = patchSize[0]
self.patchSize_2 = patchSize[1]
self.patchSize_3 = patchSize[2]
self.patchSize_4 = patchSize[3]
self.embeddings_1 = Channel_Embeddings(self.patchSize_1, img_size=img_size, in_channels=channel_num[0])
self.embeddings_2 = Channel_Embeddings(self.patchSize_2, img_size=img_size//2, in_channels=channel_num[1])
self.embeddings_3 = Channel_Embeddings(self.patchSize_3, img_size=img_size//4, in_channels=channel_num[2])
self.embeddings_4 = Channel_Embeddings(self.patchSize_4, img_size=img_size//8, in_channels=channel_num[3])
self.encoder = Encoder(vis, channel_num)
self.reconstruct_1 = Reconstruct(channel_num[0], channel_num[0], kernel_size=1,scale_factor=(self.patchSize_1,self.patchSize_1))
self.reconstruct_2 = Reconstruct(channel_num[1], channel_num[1], kernel_size=1,scale_factor=(self.patchSize_2,self.patchSize_2))
self.reconstruct_3 = Reconstruct(channel_num[2], channel_num[2], kernel_size=1,scale_factor=(self.patchSize_3,self.patchSize_3))
self.reconstruct_4 = Reconstruct(channel_num[3], channel_num[3], kernel_size=1,scale_factor=(self.patchSize_4,self.patchSize_4))
def forward(self,en1,en2,en3,en4):
emb1 = self.embeddings_1(en1)
emb2 = self.embeddings_2(en2)
emb3 = self.embeddings_3(en3)
emb4 = self.embeddings_4(en4)
encoded1, encoded2, encoded3, encoded4, attn_weights = self.encoder(emb1,emb2,emb3,emb4) # (B, n_patch, hidden)
x1 = self.reconstruct_1(encoded1) if en1 is not None else None
x2 = self.reconstruct_2(encoded2) if en2 is not None else None
x3 = self.reconstruct_3(encoded3) if en3 is not None else None
x4 = self.reconstruct_4(encoded4) if en4 is not None else None
x1 = x1 + en1 if en1 is not None else None
x2 = x2 + en2 if en2 is not None else None
x3 = x3 + en3 if en3 is not None else None
x4 = x4 + en4 if en4 is not None else None
return x1, x2, x3, x4, attn_weights
[11]
# -*- coding: utf-8 -*-
# @Time : 2021/7/8 8:59 上午
# @File : UCTransNet.py
# @Software: PyCharm
import torch.nn as nn
import torch
import torch.nn.functional as F
# from .CTrans import ChannelTransformer
def get_activation(activation_type):
activation_type = activation_type.lower()
if hasattr(nn, activation_type):
return getattr(nn, activation_type)()
else:
return nn.ReLU()
def _make_nConv(in_channels, out_channels, nb_Conv, activation='ReLU'):
layers = []
layers.append(ConvBatchNorm(in_channels, out_channels, activation))
for _ in range(nb_Conv - 1):
layers.append(ConvBatchNorm(out_channels, out_channels, activation))
return nn.Sequential(*layers)
class ConvBatchNorm(nn.Module):
"""(convolution => [BN] => ReLU)"""
def __init__(self, in_channels, out_channels, activation='ReLU'):
super(ConvBatchNorm, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.activation = get_activation(activation)
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
return self.activation(out)
class DownBlock(nn.Module):
"""Downscaling with maxpool convolution"""
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super(DownBlock, self).__init__()
self.maxpool = nn.MaxPool2d(2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x):
out = self.maxpool(x)
return self.nConvs(out)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class CCA(nn.Module):
"""
CCA Block
"""
def __init__(self, F_g, F_x):
super().__init__()
self.mlp_x = nn.Sequential(
Flatten(),
nn.Linear(F_x, F_x))
self.mlp_g = nn.Sequential(
Flatten(),
nn.Linear(F_g, F_x))
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
# channel-wise attention
avg_pool_x = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_x = self.mlp_x(avg_pool_x)
avg_pool_g = F.avg_pool2d( g, (g.size(2), g.size(3)), stride=(g.size(2), g.size(3)))
channel_att_g = self.mlp_g(avg_pool_g)
channel_att_sum = (channel_att_x + channel_att_g)/2.0
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
x_after_channel = x * scale
out = self.relu(x_after_channel)
return out
class UpBlock_attention(nn.Module):
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super().__init__()
self.up = nn.Upsample(scale_factor=2)
self.coatt = CCA(F_g=in_channels//2, F_x=in_channels//2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x, skip_x):
up = self.up(x)
skip_x_att = self.coatt(g=up, x=skip_x)
x = torch.cat([skip_x_att, up], dim=1) # dim 1 is the channel dimension
return self.nConvs(x)
class UCTransNet(nn.Module):
def __init__(self, n_channels=3, n_classes=1,img_size=224,vis=False):
super().__init__()
self.vis = vis
self.n_channels = n_channels
self.n_classes = n_classes
in_channels = 64
self.inc = ConvBatchNorm(n_channels, in_channels)
self.down1 = DownBlock(in_channels, in_channels*2, nb_Conv=2)
self.down2 = DownBlock(in_channels*2, in_channels*4, nb_Conv=2)
self.down3 = DownBlock(in_channels*4, in_channels*8, nb_Conv=2)
self.down4 = DownBlock(in_channels*8, in_channels*8, nb_Conv=2)
self.mtc = ChannelTransformer(vis, img_size,
channel_num=[in_channels, in_channels*2, in_channels*4, in_channels*8],
patchSize=[16,8,4,2])
self.up4 = UpBlock_attention(in_channels*16, in_channels*4, nb_Conv=2)
self.up3 = UpBlock_attention(in_channels*8, in_channels*2, nb_Conv=2)
self.up2 = UpBlock_attention(in_channels*4, in_channels, nb_Conv=2)
self.up1 = UpBlock_attention(in_channels*2, in_channels, nb_Conv=2)
self.outc = nn.Conv2d(in_channels, n_classes, kernel_size=(1,1), stride=(1,1))
self.last_activation = nn.Sigmoid() # if using BCELoss
def forward(self, x):
x = x.float()
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x1,x2,x3,x4,att_weights = self.mtc(x1,x2,x3,x4)
x = self.up4(x5, x4)
x = self.up3(x, x3)
x = self.up2(x, x2)
x = self.up1(x, x1)
if self.n_classes ==1:
logits = self.last_activation(self.outc(x))
else:
logits = self.outc(x) # if nusing BCEWithLogitsLoss or class>1
if self.vis: # visualize the attention maps
return logits, att_weights
else:
return logits