-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddrnet.py
252 lines (202 loc) · 9.06 KB
/
ddrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
from torch import nn, Tensor
from torch.nn import functional as F
# Source: https://ieeexplore.ieee.org/abstract/document/9996293
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, c1, c2, s=1, downsample= None, no_relu=False) -> None:
super().__init__()
self.conv1 = nn.Conv2d(c1, c2, 3, s, 1, bias=False)
self.bn1 = nn.BatchNorm2d(c2)
self.conv2 = nn.Conv2d(c2, c2, 3, 1, 1, bias=False)
self.bn2 = nn.BatchNorm2d(c2)
self.downsample = downsample
self.no_relu = no_relu
def forward(self, x: Tensor) -> Tensor:
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
if self.downsample is not None: identity = self.downsample(x)
out += identity
return out if self.no_relu else F.relu(out)
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, c1, c2, s=1, downsample=None, no_relu=False) -> None:
super().__init__()
self.conv1 = nn.Conv2d(c1, c2, 1, bias=False)
self.bn1 = nn.BatchNorm2d(c2)
self.conv2 = nn.Conv2d(c2, c2, 3, s, 1, bias=False)
self.bn2 = nn.BatchNorm2d(c2)
self.conv3 = nn.Conv2d(c2, c2 * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(c2 * self.expansion)
self.downsample = downsample
self.no_relu = no_relu
def forward(self, x: Tensor) -> Tensor:
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.downsample is not None: identity = self.downsample(x)
out += identity
return out if self.no_relu else F.relu(out)
class ConvBN(nn.Sequential):
def __init__(self, c1, c2, k, s=1, p=0):
super().__init__(
nn.Conv2d(c1, c2, k, s, p, bias=False),
nn.BatchNorm2d(c2)
)
class Conv2BN(nn.Sequential):
def __init__(self, c1, ch, c2, k, s=1, p=0):
super().__init__(
nn.Conv2d(c1, ch, k, s, p, bias=False),
nn.BatchNorm2d(ch),
nn.ReLU(True),
nn.Conv2d(ch, c2, k, s, p, bias=False),
nn.BatchNorm2d(c2)
)
class Stem(nn.Sequential):
def __init__(self, c1, c2):
super().__init__(
nn.Conv2d(c1, c2, 3, 2, 1),
nn.BatchNorm2d(c2),
nn.ReLU(True),
nn.Conv2d(c2, c2, 3, 2, 1),
nn.BatchNorm2d(c2),
nn.ReLU(True)
)
class Scale(nn.Sequential):
def __init__(self, c1, c2, k, s=1, p=0):
super().__init__(
nn.AvgPool2d(k, s, p),
nn.BatchNorm2d(c1),
nn.ReLU(True),
nn.Conv2d(c1, c2, 1, bias=False)
)
class ScaleLast(nn.Sequential):
def __init__(self, c1, c2, k):
super().__init__(
nn.AdaptiveAvgPool2d(k),
nn.BatchNorm2d(c1),
nn.ReLU(True),
nn.Conv2d(c1, c2, 1, bias=False)
)
class ConvModule(nn.Sequential):
def __init__(self, c1, c2, k, s=1, p=0):
super().__init__(
nn.BatchNorm2d(c1),
nn.ReLU(True),
nn.Conv2d(c1, c2, k, s, p, bias=False)
)
class DAPPM(nn.Module):
def __init__(self, c1, ch, c2):
super().__init__()
self.scale1 = Scale(c1, ch, 5, 2, 2)
self.scale2 = Scale(c1, ch, 9, 4, 4)
self.scale3 = Scale(c1, ch, 17, 8, 8)
self.scale4 = ScaleLast(c1, ch, 1)
self.scale0 = ConvModule(c1, ch, 1)
self.process1 = ConvModule(ch, ch, 3, 1, 1)
self.process2 = ConvModule(ch, ch, 3, 1, 1)
self.process3 = ConvModule(ch, ch, 3, 1, 1)
self.process4 = ConvModule(ch, ch, 3, 1, 1)
self.compression = ConvModule(ch*5, c2, 1)
self.shortcut = ConvModule(c1, c2, 1)
def forward(self, x: Tensor) -> Tensor:
outs = [self.scale0(x)]
outs.append(self.process1((F.interpolate(self.scale1(x), size=x.shape[-2:], mode='bilinear', align_corners=False) + outs[-1])))
outs.append(self.process2((F.interpolate(self.scale2(x), size=x.shape[-2:], mode='bilinear', align_corners=False) + outs[-1])))
outs.append(self.process3((F.interpolate(self.scale3(x), size=x.shape[-2:], mode='bilinear', align_corners=False) + outs[-1])))
outs.append(self.process4((F.interpolate(self.scale4(x), size=x.shape[-2:], mode='bilinear', align_corners=False) + outs[-1])))
out = self.compression(torch.cat(outs, dim=1)) + self.shortcut(x)
return out
class SegHead(nn.Module):
def __init__(self, c1, ch, c2, scale_factor=None):
super().__init__()
self.bn1 = nn.BatchNorm2d(c1)
self.conv1 = nn.Conv2d(c1, ch, 3, 1, 1, bias=False)
self.bn2 = nn.BatchNorm2d(ch)
self.conv2 = nn.Conv2d(ch, c2, 1)
self.scale_factor = scale_factor
def forward(self, x: Tensor) -> Tensor:
x = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(x)))
if self.scale_factor is not None:
H, W = x.shape[-2] * self.scale_factor, x.shape[-1] * self.scale_factor
out = F.interpolate(out, size=(H, W), mode='bilinear', align_corners=False)
return out
class DDRNet(nn.Module):
def __init__(self, backbone: str = None, num_classes: int = 19) -> None:
super().__init__()
planes, spp_planes, head_planes = [32, 64, 128, 256, 512], 128, 64
self.conv1 = Stem(3, planes[0])
self.layer1 = self._make_layer(BasicBlock, planes[0], planes[0], 2)
self.layer2 = self._make_layer(BasicBlock, planes[0], planes[1], 2, 2)
self.layer3 = self._make_layer(BasicBlock, planes[1], planes[2], 2, 2)
self.layer4 = self._make_layer(BasicBlock, planes[2], planes[3], 2, 2)
self.layer5 = self._make_layer(Bottleneck, planes[3], planes[3], 1)
self.layer3_ = self._make_layer(BasicBlock, planes[1], planes[1], 2)
self.layer4_ = self._make_layer(BasicBlock, planes[1], planes[1], 2)
self.layer5_ = self._make_layer(Bottleneck, planes[1], planes[1], 1)
self.compression3 = ConvBN(planes[2], planes[1], 1)
self.compression4 = ConvBN(planes[3], planes[1], 1)
self.down3 = ConvBN(planes[1], planes[2], 3, 2, 1)
self.down4 = Conv2BN(planes[1], planes[2], planes[3], 3, 2, 1)
self.spp = DAPPM(planes[-1], spp_planes, planes[2])
self.seghead_extra = SegHead(planes[1], head_planes, num_classes, 8)
self.final_layer = SegHead(planes[2], head_planes, num_classes, 8)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def init_pretrained(self, pretrained: str = None) -> None:
if pretrained:
self.load_state_dict(torch.load(pretrained, map_location='cpu')['model'], strict=False)
def _make_layer(self, block, inplanes, planes, depths, s=1) -> nn.Sequential:
downsample = None
if inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion, 1, s, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = [block(inplanes, planes, s, downsample)]
inplanes = planes * block.expansion
for i in range(1, depths):
if i == depths - 1:
layers.append(block(inplanes, planes, no_relu=True))
else:
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x: Tensor) -> Tensor:
H, W = x.shape[-2] // 8, x.shape[-1] // 8
layers = []
x = self.conv1(x)
x = self.layer1(x)
layers.append(x)
x = self.layer2(F.relu(x))
layers.append(x)
x = self.layer3(F.relu(x))
layers.append(x)
x_ = self.layer3_(F.relu(layers[1]))
x = x + self.down3(F.relu(x_))
x_ = x_ + F.interpolate(self.compression3(F.relu(layers[2])), size=(H, W), mode='bilinear', align_corners=False)
if self.training: x_aux = self.seghead_extra(x_)
x = self.layer4(F.relu(x))
layers.append(x)
x_ = self.layer4_(F.relu(x_))
x = x + self.down4(F.relu(x_))
x_ = x_ + F.interpolate(self.compression4(F.relu(layers[3])), size=(H, W), mode='bilinear', align_corners=False)
x_ = self.layer5_(F.relu(x_))
x = F.interpolate(self.spp(self.layer5(F.relu(x))), size=(H, W), mode='bilinear', align_corners=False)
x_ = self.final_layer(x + x_)
return x_
# if __name__ == '__main__':
# model = DDRNet()
# # # model.init_pretrained('checkpoints/backbones/ddrnet/ddrnet_23slim_imagenet.pth')
# # model.load_state_dict(torch.load('checkpoints/pretrained/ddrnet/ddrnet_23slim_city.pth', map_location='cpu'))
# x = torch.zeros(2, 3, 224, 224)
# outs = model(x)
# for y in outs:
# print(y.shape)