-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_homogeneousPlate.m
26 lines (21 loc) · 1.27 KB
/
example_homogeneousPlate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
%% example: homogeneous isotropic layer
% This is the example in section 3.5.1 in
% Gravenkamp, H., Plestenjak, B., & Kiefer, D. A. (2023).
%% input
load('matrices_homogeneousPlate.mat');
ka = 1; % first wavenumber for testing decomposability
kb = 2; % second wavenumber for testing decomposability
kC = linspace(0,40,200); % wavenumbers for computing dispersion curves
thB = 1e-6; % threshold for determining block structure
omB=eigencurves_withRepeatedEV(E0,E1,E2,M,ka,kb,kC,thB); % call routines for blockdiagonalization and computing eigencurves
%% plot dispersion curves
% See Figure 5 in the paper
figure
set(gcf,'defaulttextinterpreter','latex')
h1=plot(kC,real(omB{1}),'Linewidth',2,'Color',[0.004 0.23 0.4],'DisplayName','block 2');
hold on
h2=plot(kC,real(omB{2}),'Linewidth',2,'Color',[0.38 0.65 0.75],'DisplayName','block 1');
xlabel('$k$','FontSize',14)
ylabel('$\omega$','FontSize',14)
legend([h1(1),h2(1)],'Location','southeast','FontSize',12,'Interpreter','latex')
ylim([0 35])