-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore.agda
474 lines (429 loc) · 20.4 KB
/
core.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
open import Nat
open import Prelude
module core where
-- types
data τ̇ : Set where
num : τ̇
⦇-⦈ : τ̇
_==>_ : τ̇ → τ̇ → τ̇
-- expressions, prefixed with a · to distinguish name clashes with agda
-- built-ins
data ė : Set where
_·:_ : ė → τ̇ → ė
X : Nat → ė
·λ : Nat → ė → ė
N : Nat → ė
_·+_ : ė → ė → ė
⦇-⦈ : ė
⦇⌜_⌟⦈ : ė → ė
_∘_ : ė → ė → ė
---- contexts and some operations on them
-- variables are named with naturals in ė. therefore we represent
-- contexts as functions from names for variables (nats) to possible
-- bindings.
·ctx : Set
·ctx = Nat → Maybe τ̇
-- convenient shorthand for the (unique up to fun. ext.) empty context
∅ : ·ctx
∅ _ = None
-- add a new binding to the context, clobbering anything that might have
-- been there before.
_,,_ : ·ctx → (Nat × τ̇) → ·ctx
(Γ ,, (x , t)) y with natEQ x y
(Γ ,, (x , t)) .x | Inl refl = Some t
(Γ ,, (x , t)) y | Inr neq = Γ y
-- membership, or presence, in a context
_∈_ : (p : Nat × τ̇) → (Γ : ·ctx) → Set
(x , t) ∈ Γ = (Γ x) == Some t
-- apartness for contexts, so that we can follow barendregt's convention
_#_ : (n : Nat) → (Γ : ·ctx) → Set
x # Γ = (Γ x) == None
-- without: remove a variable from a context
_/_ : ·ctx → Nat → ·ctx
(Γ / x) y with natEQ x y
(Γ / x) .x | Inl refl = None
(Γ / x) y | Inr neq = Γ y
-- the type consistency judgement
data _~_ : (t1 : τ̇) → (t2 : τ̇) → Set where
TCRefl : {t : τ̇} → t ~ t
TCHole1 : {t : τ̇} → t ~ ⦇-⦈
TCHole2 : {t : τ̇} → ⦇-⦈ ~ t
TCArr : {t1 t2 t1' t2' : τ̇} →
t1 ~ t1' →
t2 ~ t2' →
(t1 ==> t2) ~ (t1' ==> t2')
-- type inconsistency. a judgmental version and associated proofs are in
-- judgemental-inconsistency.agda. each definition implies the other, but
-- the two are isomorphic only if you treat proofs of inconsistency at
-- arrow types as being proof-irrelevant---that is, if you don't
-- distinguish between cases where the inconsistency between a pair of
-- function types stems from the domain, range, or both. we use the form
-- below throughout the rest of the development because we do not care to
-- make that distinction.
_~̸_ : τ̇ → τ̇ → Set
t1 ~̸ t2 = (t1 ~ t2) → ⊥
--- matching for arrows
data _▸arr_ : τ̇ → τ̇ → Set where
MAHole : ⦇-⦈ ▸arr (⦇-⦈ ==> ⦇-⦈)
MAArr : {t1 t2 : τ̇} → (t1 ==> t2) ▸arr (t1 ==> t2)
-- matching produces unique answers
matcharrunicity : ∀{ t t2 t3 } →
t ▸arr t2 →
t ▸arr t3 →
t2 == t3
matcharrunicity MAHole MAHole = refl
matcharrunicity MAArr MAArr = refl
-- if a type matches, then it's consistent with the least restrictive
-- function type
matchconsist : ∀{t t'} →
t ▸arr t' →
t ~ (⦇-⦈ ==> ⦇-⦈)
matchconsist MAHole = TCHole2
matchconsist MAArr = TCArr TCHole1 TCHole1
matchnotnum : ∀{t1 t2} → num ▸arr (t1 ==> t2) → ⊥
matchnotnum ()
-- bidirectional type checking judgements for ė
mutual
-- synthesis
data _⊢_=>_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where
SAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ e <= t →
Γ ⊢ (e ·: t) => t
SVar : {Γ : ·ctx} {t : τ̇} {n : Nat} →
(n , t) ∈ Γ →
Γ ⊢ X n => t
SAp : {Γ : ·ctx} {e1 e2 : ė} {t t' t2 : τ̇} →
Γ ⊢ e1 => t →
t ▸arr (t2 ==> t') →
Γ ⊢ e2 <= t2 →
Γ ⊢ (e1 ∘ e2) => t'
SNum : {Γ : ·ctx} {n : Nat} →
Γ ⊢ N n => num
SPlus : {Γ : ·ctx} {e1 e2 : ė} →
Γ ⊢ e1 <= num →
Γ ⊢ e2 <= num →
Γ ⊢ (e1 ·+ e2) => num
SEHole : {Γ : ·ctx} → Γ ⊢ ⦇-⦈ => ⦇-⦈
SNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ e => t →
Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈
-- analysis
data _⊢_<=_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where
ASubsume : {Γ : ·ctx} {e : ė} {t t' : τ̇} →
Γ ⊢ e => t' →
t ~ t' →
Γ ⊢ e <= t
ALam : {Γ : ·ctx} {e : ė} {t t1 t2 : τ̇} {x : Nat} →
x # Γ →
t ▸arr (t1 ==> t2) →
(Γ ,, (x , t1)) ⊢ e <= t2 →
Γ ⊢ (·λ x e) <= t
----- some theorems about the rules and judgement presented so far.
-- a variable is apart from any context from which it is removed
aar : (Γ : ·ctx) (x : Nat) → x # (Γ / x)
aar Γ x with natEQ x x
aar Γ x | Inl refl = refl
aar Γ x | Inr x≠x = abort (x≠x refl)
-- contexts give at most one binding for each variable
ctxunicity : {Γ : ·ctx} {n : Nat} {t t' : τ̇} →
(n , t) ∈ Γ →
(n , t') ∈ Γ →
t == t'
ctxunicity {n = n} p q with natEQ n n
ctxunicity p q | Inl refl = someinj (! p · q)
ctxunicity _ _ | Inr x≠x = abort (x≠x refl)
-- type consistency is symmetric
~sym : {t1 t2 : τ̇} → t1 ~ t2 → t2 ~ t1
~sym TCRefl = TCRefl
~sym TCHole1 = TCHole2
~sym TCHole2 = TCHole1
~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2)
-- type consistency isn't transitive
not-trans : ((t1 t2 t3 : τ̇) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥
not-trans t with t (num ==> num) ⦇-⦈ num TCHole1 TCHole2
... | ()
-- if the domain or codomain of a pair of arrows isn't consistent, the
-- whole arrow isn't consistent.
lemarr1 : {t1 t2 t3 t4 : τ̇} → (t1 ~ t3 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥
lemarr1 v TCRefl = v TCRefl
lemarr1 v (TCArr p _) = v p
lemarr2 : {t1 t2 t3 t4 : τ̇} → (t2 ~ t4 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥
lemarr2 v TCRefl = v TCRefl
lemarr2 v (TCArr _ p) = v p
-- every pair of types is either consistent or not consistent
~dec : (t1 t2 : τ̇) → ((t1 ~ t2) + (t1 ~̸ t2))
-- this takes care of all hole cases, so we don't consider them below
~dec _ ⦇-⦈ = Inl TCHole1
~dec ⦇-⦈ _ = Inl TCHole2
-- num cases
~dec num num = Inl TCRefl
~dec num (t2 ==> t3) = Inr (λ ())
-- arrow cases
~dec (t1 ==> t2) num = Inr (λ ())
~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4
... | Inl x | Inl y = Inl (TCArr x y)
... | Inl _ | Inr y = Inr (lemarr2 y)
... | Inr x | _ = Inr (lemarr1 x)
-- theorem: no pair of types is both consistent and not consistent. this
-- is immediate from our encoding of the ~̸ judgement in the formalism
-- here; in the exact mathematics presented in the paper, this would
-- require induction to relate the two judgements.
~apart : {t1 t2 : τ̇} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥
~apart v p = v p
-- synthesis only produces equal types. note that there is no need for an
-- analagous theorem for analytic positions because we think of
-- the type as an input
synthunicity : {Γ : ·ctx} {e : ė} {t t' : τ̇} →
(Γ ⊢ e => t)
→ (Γ ⊢ e => t')
→ t == t'
synthunicity (SAsc _) (SAsc _) = refl
synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2
synthunicity (SAp D1 MAHole b) (SAp D2 MAHole y) = refl
synthunicity (SAp D1 MAHole b) (SAp D2 MAArr y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr b) (SAp D2 MAHole y) with synthunicity D1 D2
... | ()
synthunicity (SAp D1 MAArr b) (SAp D2 MAArr y) with synthunicity D1 D2
... | refl = refl
synthunicity SNum SNum = refl
synthunicity (SPlus _ _ ) (SPlus _ _ ) = refl
synthunicity SEHole SEHole = refl
synthunicity (SNEHole _) (SNEHole _) = refl
----- the zippered form of the forms above and the rules for actions on them
-- those types without holes anywhere
tcomplete : τ̇ → Set
tcomplete num = ⊤
tcomplete ⦇-⦈ = ⊥
tcomplete (t1 ==> t2) = (tcomplete t1) × (tcomplete t2)
-- similarly to the complete types, the complete expressions
ecomplete : ė → Set
ecomplete (e1 ·: t) = ecomplete e1 × tcomplete t
ecomplete (X _) = ⊤
ecomplete (·λ _ e1) = ecomplete e1
ecomplete (N x) = ⊤
ecomplete (e1 ·+ e2) = ecomplete e1 × ecomplete e2
ecomplete ⦇-⦈ = ⊥
ecomplete ⦇⌜ e1 ⌟⦈ = ⊥
ecomplete (e1 ∘ e2) = ecomplete e1 × ecomplete e2
-- zippered form of types
data τ̂ : Set where
▹_◃ : τ̇ → τ̂
_==>₁_ : τ̂ → τ̇ → τ̂
_==>₂_ : τ̇ → τ̂ → τ̂
-- zippered form of expressions
data ê : Set where
▹_◃ : ė → ê
_·:₁_ : ê → τ̇ → ê
_·:₂_ : ė → τ̂ → ê
·λ : Nat → ê → ê
_∘₁_ : ê → ė → ê
_∘₂_ : ė → ê → ê
_·+₁_ : ê → ė → ê
_·+₂_ : ė → ê → ê
⦇⌜_⌟⦈ : ê → ê
-- erasure of cursor for types and expressions, judgementally. see
-- jugemental-erase.agda for an argument that this defines an isomorphic
-- object to the direct metafunction provided in the text of the paper
data erase-t : τ̂ → τ̇ → Set where
ETTop : ∀{t} → erase-t (▹ t ◃) t
ETArrL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ==>₁ t2) (t1' ==> t2)
ETArrR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ==>₂ t2) (t1 ==> t2')
data erase-e : ê → ė → Set where
EETop : ∀{x} → erase-e (▹ x ◃) x
EEAscL : ∀{e e' t} → erase-e e e' → erase-e (e ·:₁ t) (e' ·: t)
EEAscR : ∀{e t t'} → erase-t t t' → erase-e (e ·:₂ t) (e ·: t')
EELam : ∀{x e e'} → erase-e e e' → erase-e (·λ x e) (·λ x e')
EEApL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ∘₁ e2) (e1' ∘ e2)
EEApR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ∘₂ e2) (e1 ∘ e2')
EEPlusL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ·+₁ e2) (e1' ·+ e2)
EEPlusR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ·+₂ e2) (e1 ·+ e2')
EENEHole : ∀{e e'} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈ ⦇⌜ e' ⌟⦈
-- the three grammars that define actions
data direction : Set where
child : Nat → direction
parent : direction
data shape : Set where
arrow : shape
num : shape
asc : shape
var : Nat → shape
lam : Nat → shape
ap : shape
numlit : Nat → shape
plus : shape
nehole : shape
data action : Set where
move : direction → action
construct : shape → action
del : action
finish : action
-- type actions
data _+_+>_ : (t : τ̂) → (α : action) → (t' : τ̂) → Set where
TMArrChild1 : {t1 t2 : τ̇} →
▹ t1 ==> t2 ◃ + move (child 1) +> (▹ t1 ◃ ==>₁ t2)
TMArrChild2 : {t1 t2 : τ̇} →
▹ t1 ==> t2 ◃ + move (child 2) +> (t1 ==>₂ ▹ t2 ◃)
TMArrParent1 : {t1 t2 : τ̇} →
(▹ t1 ◃ ==>₁ t2) + move parent +> ▹ t1 ==> t2 ◃
TMArrParent2 : {t1 t2 : τ̇} →
(t1 ==>₂ ▹ t2 ◃) + move parent +> ▹ t1 ==> t2 ◃
TMDel : {t : τ̇} →
(▹ t ◃) + del +> (▹ ⦇-⦈ ◃)
TMConArrow : {t : τ̇} →
(▹ t ◃) + construct arrow +> (t ==>₂ ▹ ⦇-⦈ ◃)
TMConNum : (▹ ⦇-⦈ ◃) + construct num +> (▹ num ◃)
TMArrZip1 : {t1 t1' : τ̂} {t2 : τ̇} {α : action} →
(t1 + α +> t1') →
((t1 ==>₁ t2) + α +> (t1' ==>₁ t2))
TMArrZip2 : {t2 t2' : τ̂} {t1 : τ̇} {α : action} →
(t2 + α +> t2') →
((t1 ==>₂ t2) + α +> (t1 ==>₂ t2'))
-- expression movement
data _+_+>e_ : (e : ê) → (α : action) → (e' : ê) → Set where
-- rules for ascriptions
EMAscChild1 : {e : ė} {t : τ̇} →
(▹ e ·: t ◃) + move (child 1) +>e (▹ e ◃ ·:₁ t)
EMAscChild2 : {e : ė} {t : τ̇} →
(▹ e ·: t ◃) + move (child 2) +>e (e ·:₂ ▹ t ◃)
EMAscParent1 : {e : ė} {t : τ̇} →
(▹ e ◃ ·:₁ t) + move parent +>e (▹ e ·: t ◃)
EMAscParent2 : {e : ė} {t : τ̇} →
(e ·:₂ ▹ t ◃) + move parent +>e (▹ e ·: t ◃)
-- rules for lambdas
EMLamChild1 : {e : ė} {x : Nat} →
▹ (·λ x e) ◃ + move (child 1) +>e ·λ x (▹ e ◃)
EMLamParent : {e : ė} {x : Nat} →
·λ x (▹ e ◃) + move parent +>e ▹ (·λ x e) ◃
-- rules for 2-ary constructors
EMPlusChild1 : {e1 e2 : ė} →
(▹ e1 ·+ e2 ◃) + move (child 1) +>e (▹ e1 ◃ ·+₁ e2)
EMPlusChild2 : {e1 e2 : ė} →
(▹ e1 ·+ e2 ◃) + move (child 2) +>e (e1 ·+₂ ▹ e2 ◃)
EMPlusParent1 : {e1 e2 : ė} →
(▹ e1 ◃ ·+₁ e2) + move parent +>e (▹ e1 ·+ e2 ◃)
EMPlusParent2 : {e1 e2 : ė} →
(e1 ·+₂ ▹ e2 ◃) + move parent +>e (▹ e1 ·+ e2 ◃)
EMApChild1 : {e1 e2 : ė} →
(▹ e1 ∘ e2 ◃) + move (child 1)+>e (▹ e1 ◃ ∘₁ e2)
EMApChild2 : {e1 e2 : ė} →
(▹ e1 ∘ e2 ◃) + move (child 2) +>e (e1 ∘₂ ▹ e2 ◃)
EMApParent1 : {e1 e2 : ė} →
(▹ e1 ◃ ∘₁ e2) + move parent +>e (▹ e1 ∘ e2 ◃)
EMApParent2 : {e1 e2 : ė} →
(e1 ∘₂ ▹ e2 ◃) + move parent +>e (▹ e1 ∘ e2 ◃)
-- rules for non-empty holes
EMNEHoleChild1 : {e : ė} →
(▹ ⦇⌜ e ⌟⦈ ◃) + move (child 1) +>e ⦇⌜ ▹ e ◃ ⌟⦈
EMNEHoleParent : {e : ė} →
⦇⌜ ▹ e ◃ ⌟⦈ + move parent +>e (▹ ⦇⌜ e ⌟⦈ ◃)
mutual
-- synthetic action expressions
data _⊢_=>_~_~>_=>_ : (Γ : ·ctx) → (e1 : ê) → (t1 : τ̇)
→ (α : action) → (e2 : ê) → (t2 : τ̇) → Set where
SAMove : {δ : direction} {e e' : ê} {Γ : ·ctx} {t : τ̇} →
(e + move δ +>e e') →
Γ ⊢ e => t ~ move δ ~> e' => t
SADel : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ del ~> ▹ ⦇-⦈ ◃ => ⦇-⦈
SAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ construct asc ~> (e ·:₂ ▹ t ◃ ) => t
SAConVar : {Γ : ·ctx} {x : Nat} {t : τ̇} →
(p : (x , t) ∈ Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (var x) ~> ▹ X x ◃ => t
SAConLam : {Γ : ·ctx} {x : Nat} →
(x # Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (lam x) ~>
((·λ x ⦇-⦈) ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈)) => (⦇-⦈ ==> ⦇-⦈)
SAConApArr : {Γ : ·ctx} {t t1 t2 : τ̇} {e : ė} →
t ▸arr (t1 ==> t2) →
Γ ⊢ ▹ e ◃ => t ~ construct ap ~> e ∘₂ ▹ ⦇-⦈ ◃ => t2
SAConApOtw : {Γ : ·ctx} {t : τ̇} {e : ė} →
(t ~̸ (⦇-⦈ ==> ⦇-⦈)) →
Γ ⊢ ▹ e ◃ => t ~ construct ap ~> ⦇⌜ e ⌟⦈ ∘₂ ▹ ⦇-⦈ ◃ => ⦇-⦈
SAConNumlit : {Γ : ·ctx} {n : Nat} →
Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (numlit n) ~> ▹ N n ◃ => num
SAConPlus1 : {Γ : ·ctx} {e : ė} {t : τ̇} →
(t ~ num) →
Γ ⊢ ▹ e ◃ => t ~ construct plus ~> e ·+₂ ▹ ⦇-⦈ ◃ => num
SAConPlus2 : {Γ : ·ctx} {e : ė} {t : τ̇} →
(t ~̸ num) →
Γ ⊢ ▹ e ◃ => t ~ construct plus ~> ⦇⌜ e ⌟⦈ ·+₂ ▹ ⦇-⦈ ◃ => num
SAConNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ => t ~ construct nehole ~> ⦇⌜ ▹ e ◃ ⌟⦈ => ⦇-⦈
SAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} →
(Γ ⊢ e => t) →
Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ => ⦇-⦈ ~ finish ~> ▹ e ◃ => t
SAZipAsc1 : {Γ : ·ctx} {e e' : ê} {α : action} {t : τ̇} →
(Γ ⊢ e ~ α ~> e' ⇐ t) →
Γ ⊢ (e ·:₁ t) => t ~ α ~> (e' ·:₁ t) => t
SAZipAsc2 : {Γ : ·ctx} {e : ė} {α : action} {t t' : τ̂} {t◆ t'◆ : τ̇} →
(t + α +> t') →
(erase-t t' t'◆) →
(erase-t t t◆) →
(Γ ⊢ e <= t'◆) →
Γ ⊢ (e ·:₂ t) => t◆ ~ α ~> (e ·:₂ t') => t'◆
SAZipApArr : {Γ : ·ctx} {t t1 t2 t3 t4 : τ̇} {α : action} {eh eh' : ê} {e eh◆ : ė} →
(t ▸arr (t3 ==> t4)) →
(erase-e eh eh◆) →
(Γ ⊢ (eh◆) => t2) →
(Γ ⊢ eh => t2 ~ α ~> eh' => t) →
(Γ ⊢ e <= t3) →
Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => t4
SAZipApAna : {Γ : ·ctx} {t' t2 t : τ̇} {e : ė} {eh eh' : ê} {α : action} →
(t' ▸arr (t2 ==> t)) →
(Γ ⊢ e => t') →
(Γ ⊢ eh ~ α ~> eh' ⇐ t2) →
Γ ⊢ (e ∘₂ eh) => t ~ α ~> (e ∘₂ eh') => t
SAZipPlus1 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} →
(Γ ⊢ eh ~ α ~> eh' ⇐ num) →
Γ ⊢ (eh ·+₁ e) => num ~ α ~> (eh' ·+₁ e) => num
SAZipPlus2 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} →
(Γ ⊢ eh ~ α ~> eh' ⇐ num) →
Γ ⊢ (e ·+₂ eh) => num ~ α ~> (e ·+₂ eh') => num
SAZipHole : {Γ : ·ctx} {e e' : ê} {t t' : τ̇} {α : action} {e◆ : ė} →
(erase-e e e◆) →
(Γ ⊢ e◆ => t) →
(Γ ⊢ e => t ~ α ~> e' => t') →
Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈ ~ α ~> ⦇⌜ e' ⌟⦈ => ⦇-⦈
-- analytic action expressions
data _⊢_~_~>_⇐_ : (Γ : ·ctx) → (e : ê) → (α : action) →
(e' : ê) → (t : τ̇) → Set where
AASubsume : {Γ : ·ctx} {e e' : ê} {t t' t'' : τ̇} {α : action} {e◆ : ė} →
(erase-e e e◆) →
(Γ ⊢ e◆ => t') →
(Γ ⊢ e => t' ~ α ~> e' => t'') →
(t ~ t'') →
Γ ⊢ e ~ α ~> e' ⇐ t
AAMove : {e e' : ê} {δ : direction} {Γ : ·ctx} {t : τ̇} →
(e + move δ +>e e') →
Γ ⊢ e ~ move δ ~> e' ⇐ t
AADel : {e : ė} {Γ : ·ctx} {t : τ̇} →
Γ ⊢ ▹ e ◃ ~ del ~> ▹ ⦇-⦈ ◃ ⇐ t
AAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} →
Γ ⊢ ▹ e ◃ ~ construct asc ~> (e ·:₂ ▹ t ◃) ⇐ t
AAConVar : {Γ : ·ctx} {t t' : τ̇} {x : Nat} →
(t ~̸ t') →
(p : (x , t') ∈ Γ) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (var x) ~> ⦇⌜ ▹ X x ◃ ⌟⦈ ⇐ t
AAConLam1 : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} →
(x # Γ) →
(t ▸arr (t1 ==> t2)) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~>
·λ x (▹ ⦇-⦈ ◃) ⇐ t
AAConLam2 : {Γ : ·ctx} {x : Nat} {t : τ̇} →
(x # Γ) →
(t ~̸ (⦇-⦈ ==> ⦇-⦈)) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~>
⦇⌜ ·λ x ⦇-⦈ ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈) ⌟⦈ ⇐ t
AAConNumlit : {Γ : ·ctx} {t : τ̇} {n : Nat} →
(t ~̸ num) →
Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (numlit n) ~> ⦇⌜ ▹ (N n) ◃ ⌟⦈ ⇐ t
AAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} →
(Γ ⊢ e <= t) →
Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ ~ finish ~> ▹ e ◃ ⇐ t
AAZipLam : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} {e e' : ê} {α : action} →
x # Γ →
(t ▸arr (t1 ==> t2)) →
((Γ ,, (x , t1)) ⊢ e ~ α ~> e' ⇐ t2) →
Γ ⊢ (·λ x e) ~ α ~> (·λ x e') ⇐ t