forked from MeilianLee/IE6520_OL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvi_runner.py
110 lines (100 loc) · 4.19 KB
/
vi_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import itertools
from arguments import arg
from env import Env
class VIRunner:
def __init__(self):
self.landtype = {0: 'Ag', 1: 'Ofr', 2: 'Wl'}
self.landsize = arg.landsize
self.horizon = arg.horizon
self.max_water = 3
self.env = Env(landsize=self.landsize, total_year=self.horizon)
self.state_values = None
self.new_state_values = None
self.policy = None
self.advantage = None
self.diff_values = None
self.step = 0
self.n_episode = 100
self.states = self.init_states()
def init_states(self):
landuse = list(itertools.combinations_with_replacement(self.landtype.keys(), self.landsize))
year = list(range(0, self.horizon+1))
water = list(range(0, self.max_water+1))
states = list(itertools.product(landuse, year, water))
n_states = len(states)
self.state_values = np.zeros(n_states)
self.new_state_values = np.zeros(n_states)
self.policy = np.empty(n_states, dtype=int)
self.advantage = np.empty(n_states)
self.diff_values = np.empty(n_states)
return states
def find_idx(self, state):
idx = self.states.index(state)
return idx
def gen_policy(self):
for state in self.states:
valid_actions = self.env.valid_actions(state)
next_state_values = []
idx = self.find_idx(state)
for action in valid_actions:
next_state, reward, _ = self.env.step(state, action)
next_idx = self.find_idx(next_state)
next_state_value = reward + self.state_values[next_idx]
next_state_values += [next_state_value]
self.policy[idx] = valid_actions[np.argmax(next_state_values)]
# self.advantage[idx] = self.state_values[idx] - np.max(next_state_values)
def eval_policy(self):
idx = 0
all_states = [self.states[idx]]
all_actions = []
all_reward = 0
while True:
action = self.policy[idx]
valid_actions = self.env.valid_actions(all_states[-1])
if action not in valid_actions:
action = 0
state, reward, done = self.env.step(all_states[-1], action, eval=True)
idx = self.find_idx(state)
all_actions += [action]
all_states += [state]
all_reward += reward
if done:
break
print(f"Actions: {all_actions}")
print(f"Reward: {all_reward}")
print(f"Landuse: {self.env.landuse}, {(self.env.landuse > 0).sum() >= self.env.target_habitat}")
print(f"Water: {self.env.water}, {self.env.water >= self.env.target_water}")
print("=====================================")
def run_vi(self):
eps = 0.1
gap = np.inf
t = 0
while gap > eps and t < self.n_episode:
if t % 10 == 0:
self.gen_policy()
self.eval_policy()
for state in self.states:
valid_actions = self.env.valid_actions(state)
next_state_values = []
idx = self.find_idx(state)
for action in valid_actions:
next_state, reward, done = self.env.step(state, action)
next_idx = self.find_idx(next_state)
next_state_value = reward + self.state_values[next_idx]
next_state_values += [next_state_value]
self.new_state_values[idx] = np.max(next_state_values)
self.diff_values = self.new_state_values - self.state_values
self.state_values = self.new_state_values.copy()
t += 1
gap = self.diff_values.max() - self.diff_values.min()
avg_gap = self.diff_values.mean()
avg_value = self.state_values.mean()
print(f"Step {t}: gap = {gap:.6f}, avg_gap = {avg_gap:.6f}, avg_value = {avg_value:.6f}, policy = {self.policy.sum()}")
# print(f"Water: {self.env.water: .4f}")
# print(f"Converged at step {t}")
self.gen_policy()
self.eval_policy()
if __name__ == '__main__':
runner = VIRunner()
runner.run_vi()