-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathbatch_norm_cpu.hpp
81 lines (68 loc) · 3.28 KB
/
batch_norm_cpu.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef _BATCH_NORM_CPU_H
#define _BATCH_NORM_CPU_H
#include "batch_norm.hpp"
class BatchNormCPU : public BatchNorm {
public:
BatchNormCPU(DataType dt, BatchNormParamSpec p) : BatchNorm(dt, p)
{}
std::shared_ptr<Operator> clone() override
{
std::shared_ptr<BatchNormCPU> mem =
std::shared_ptr<BatchNormCPU>(new BatchNormCPU(this->dt, this->p));
*mem = *this;
return mem;
}
void run() override
{
CHECK_STATUS(batch_norm(this->inputTensors[0], this->biasTensors[0], this->weightTensors[0],
this->p, this->outputTensors[0], &this->archInfo));
}
EE infer_output_tensors_size(
std::vector<Tensor *> inTensors, std::vector<Tensor *> outTensors) override
{
outTensors[0]->resize(inTensors[0]->get_desc());
return SUCCESS;
}
int get_channels_num()
{
int ret = 0;
if (0 != this->ws.bytes_of_weight) {
ret = this->ws.bytes_of_weight / UNI_MAX(1, bytesOf(this->ws.mdt));
} else if (0 != this->ws.bytes_of_vec) {
ret = this->ws.bytes_of_vec / UNI_MAX(1, bytesOf(this->ws.mdt));
}
return ret;
}
EE infer_weight_desc() override
{
int num = this->get_channels_num();
this->weightTensors = std::vector<Tensor>(1);
this->weightTensors[0].resize(tensor1d(this->dt, num));
this->biasTensors = std::vector<Tensor>(1);
this->biasTensors[0].resize(tensor1d(this->dt, num));
return SUCCESS;
}
EE transform_filter() override
{
U32 bytes[2];
CHECK_STATUS(batch_norm_transform_filter_bytes(
this->biasTensors[0], this->weightTensors[0], this->p, bytes, &this->archInfo));
Tensor alphaTensor = Tensor::alloc_sized<CPUMem>(tensor1d(DT_U8, bytes[0]));
Tensor betaTensor = Tensor::alloc_sized<CPUMem>(tensor1d(DT_U8, bytes[1]));
CHECK_STATUS(batch_norm_transform_filter(this->biasTensors[0], this->weightTensors[0],
this->p, alphaTensor, betaTensor, &this->archInfo));
this->biasTensors[0] = alphaTensor;
this->weightTensors[0] = betaTensor;
return SUCCESS;
}
};
#endif // _BATCH_NORM_CPU_H