-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathscale_cpu.hpp
74 lines (62 loc) · 3.14 KB
/
scale_cpu.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef _SCALE_CPU_H
#define _SCALE_CPU_H
#include "scale.hpp"
class ScaleCPU : public Scale {
public:
ScaleCPU(DataType dt, ScaleParamSpec p, int numChannels) : Scale(dt, p, numChannels)
{}
std::shared_ptr<Operator> clone() override
{
std::shared_ptr<ScaleCPU> mem =
std::shared_ptr<ScaleCPU>(new ScaleCPU(this->dt, this->p, 0));
*mem = *this;
return mem;
}
void run() override
{
int inputTensorNumber = this->inputTensors.size();
Tensor inputTensor = this->inputTensors[this->dataID];
Tensor outputTensor = this->outputTensors[0];
void *alpha, *beta;
if (inputTensorNumber == 1) {
alpha = ((CpuMemory *)(this->weightTensors[0].get_memory()))->get_ptr();
beta = ((CpuMemory *)(this->biasTensors[0].get_memory()))->get_ptr();
} else {
alpha = ((CpuMemory *)(this->inputTensors[1 - this->dataID].get_memory()))->get_ptr();
beta = nullptr;
}
CHECK_STATUS(scale(inputTensor, alpha, beta, this->p, outputTensor, &this->archInfo));
}
EE infer_output_tensors_size(
std::vector<Tensor *> inTensors, std::vector<Tensor *> outTensors) override
{
if (inTensors.size() > 1 &&
tensorNumElements(inTensors[1]->get_desc()) >
tensorNumElements(inTensors[0]->get_desc())) {
this->dataID = 1;
}
U32 axisLen = find_target_axis_len(inTensors);
return scale_infer_output_size(
inTensors[this->dataID], this->p, axisLen, outTensors[0], &this->archInfo);
}
EE infer_weight_desc() override
{
this->weightTensors = std::vector<Tensor>(1);
this->weightTensors[0].resize(
tensor1d(this->dt, this->ws.bytes_of_weight / UNI_MAX(1, bytesOf(this->ws.mdt))));
this->biasTensors = std::vector<Tensor>(1);
this->biasTensors[0].resize(
tensor1d(this->dt, this->ws.bytes_of_vec / UNI_MAX(1, bytesOf(this->ws.mdt))));
return SUCCESS;
}
};
#endif // _SCALE_CPU_H