-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathtfslice_cpu.hpp
86 lines (75 loc) · 3.26 KB
/
tfslice_cpu.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef _TFSLICE_CPU_H
#define _TFSLICE_CPU_H
#include "tfslice.hpp"
class TfSliceCPU : public TfSlice {
public:
TfSliceCPU(DataType dt, TfSliceParamSpec p) : TfSlice(dt, p)
{}
std::shared_ptr<Operator> clone() override
{
std::shared_ptr<TfSliceCPU> mem =
std::shared_ptr<TfSliceCPU>(new TfSliceCPU(this->dt, this->p));
*mem = *this;
return mem;
}
TfSliceParamSpec get_param(std::vector<TensorDesc> descs)
{
TfSliceParamSpec ps = this->p;
int j = 0, jj = 0;
for (U32 i = 0; i < ps.num_dims; i++) {
if (ps.begin[i] == UNI_RESERVE) {
ps.begin[i] = descs[j].dims[descs[j].nDims + jj];
jj++;
}
}
if (jj != 0) {
j++;
jj = 0;
}
for (U32 i = 0; i < ps.num_dims; i++) {
if (ps.end[i] == UNI_RESERVE) {
ps.end[i] = descs[j].dims[descs[j].nDims + jj];
jj++;
}
}
return ps;
}
void run() override
{
TfSliceParamSpec ps = p;
if (inputTensors.size() > 1) {
std::vector<TensorDesc> descs;
for (U32 i = 1; i < inputTensors.size(); i++) {
descs.push_back(inputTensors[i].get_desc());
}
ps = get_param(descs);
}
Tensor inputTensor = this->inputTensors[0];
Tensor outputTensor = this->outputTensors[0];
CHECK_STATUS(tfslice(inputTensor, ps, this->temp, outputTensor, &this->archInfo));
this->outputTensors[0].set_scale(this->inputTensors[0].get_scale());
}
EE infer_output_tensors_size(
std::vector<Tensor *> inputTensors, std::vector<Tensor *> outputTensors) override
{
TfSliceParamSpec ps = p;
if (inputTensors.size() > 1) {
std::vector<TensorDesc> descs;
for (U32 i = 1; i < inputTensors.size(); i++) {
descs.push_back(inputTensors[i]->get_desc());
}
ps = get_param(descs);
}
return tfslice_infer_output_size(inputTensors[0], ps, outputTensors[0], &this->archInfo);
}
};
#endif // _TFSLICE_CPU_H