-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtest.py
95 lines (82 loc) · 2.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
from muse import MaskGitTransformer, MaskGiTUViT, VQGANModel
# codebook_size = 1024
# num_classes = 1000
# model = MaskGitTransformer(
# vocab_size=codebook_size + num_classes + 1,
# hidden_size=32,
# num_hidden_layers=2,
# num_attention_heads=4,
# intermediate_size=64,
# max_position_embeddings=4 + 1, # +1 for the class token
# num_vq_tokens=4,
# codebook_size=codebook_size,
# num_classes=num_classes,
# )
# input_ids = torch.randint(0, 100, (1, 4))
# output = model(input_ids)
# assert output.shape == (1, 4, model.config.vocab_size)
# class_ids = torch.tensor([1], dtype=torch.long)
# gen_ids = model.generate(class_ids, timesteps=4)
# assert gen_ids.shape == (1, 4)
# print(gen_ids)
# model.enable_gradient_checkpointing()
# output = model(input_ids)
# assert output.shape == (1, 4, model.config.vocab_size)
# model = MaskGitTransformer(
# vocab_size=100,
# hidden_size=32,
# num_hidden_layers=2,
# num_attention_heads=4,
# intermediate_size=64,
# max_position_embeddings=4,
# add_cross_attention=True,
# encoder_hidden_size=64,
# )
# input_ids = torch.randint(0, 100, (1, 4))
# encoder_hidden_states = torch.randn(1, 4, 64)
# output = model(input_ids, encoder_hidden_states=encoder_hidden_states)
# assert output.shape == (1, 4, 100)
# vq = VQGANModel(
# resolution=32,
# num_channels=3,
# hidden_channels=32,
# channel_mult=(1, 2),
# num_res_blocks=2,
# attn_resolutions=tuple(),
# z_channels=64,
# num_embeddings=512,
# quantized_embed_dim=64,
# )
# image = torch.randn(1, 3, 32, 32)
# out = vq(image)[0]
# assert out.shape == (1, 3, 32, 32)
num_vq_tokens = 256
codebook_size = 8192
encoder_hidden_size = 768
batch = 2
model = MaskGiTUViT(
vocab_size=codebook_size + 1,
hidden_size=768,
in_channels=384,
block_out_channels=(384,),
encoder_hidden_size=encoder_hidden_size,
add_cross_attention=True,
num_res_blocks=1,
num_hidden_layers=1,
codebook_size=codebook_size,
num_vq_tokens=num_vq_tokens,
use_codebook_size_for_output=True,
add_micro_cond_embeds=True,
micro_cond_encode_dim=256,
micro_cond_embed_dim=1536,
add_cond_embeds=True,
cond_embed_dim=512,
).eval()
input_ids = torch.randint(0, codebook_size, (batch, num_vq_tokens))
enc = torch.randn(batch, 4, encoder_hidden_size)
micro_conds = list((1024, 1024) + (0, 0) + (1024, 1024))
micro_conds = torch.tensor([micro_conds]).repeat(batch, 1)
cond_embeds = torch.randn(batch, 512)
output = model(input_ids, encoder_hidden_states=enc, micro_conds=micro_conds, cond_embeds=cond_embeds)
assert output.shape == (batch, num_vq_tokens, codebook_size)