-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_scalar.cpp
185 lines (155 loc) · 4.26 KB
/
sample_scalar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <iostream>
#include <random>
#include <Eigen/Dense> // #include </Users/hyunwoooh/Downloads/eigen-3.3.9/Eigen/Dense>
#include <fstream>
#include <ctime> // Timer
#include <stdio.h>
typedef std::complex<double> dcomp;
const dcomp I(0, 1);
const double PI = std::atan(1.0) * 4;
// Random Number Generator
// std::default_random_engine generator; // for random engine reset
std::random_device generator; // get non-deterministic(truly random) seed
std::mt19937 gen(generator()); // reset RNG
std::uniform_real_distribution<double> dist(-1.0, 1.0); // -1.0 to 1.0 uniform distribution
std::uniform_real_distribution<> rand01(0.0, 1.0); // For Metropolis
int accept = 0; // For acceptance rate, Should not be defined again
// Functions
struct Index
{
int x0, x1;
};
struct params
{
int nt, nx, dof;
double m2, lamda, delta;
int n_decor, n_thermal, n_conf;
};
inline int Idx(int x0, int x1, int nt, int nx)
{
return (x1 % nx) + nx * (x0 % nt);
}
Index Idx_inv(int n, int nx)
{
struct Index idx;
idx.x0 = n / nx;
idx.x1 = n % nx;
return idx;
}
dcomp Log_Det(const Eigen::MatrixXcd &m, Eigen::MatrixXcd *inv = NULL)
{
Eigen::PartialPivLU<Eigen::MatrixXcd> lu(m); // LU decomposition of M
dcomp res = 0;
for (int i = 0; i < m.col(0).size(); ++i)
res += log(lu.matrixLU()(i, i)); // Calculating LogDet
res += (lu.permutationP().determinant() == -1) ? I * PI : 0.0;
res -= I * 2.0 * PI * round(res.imag() / (2.0 * PI));
if (inv != NULL)
*inv = lu.inverse();
return res;
}
// Metropolis
double Action(Eigen::ArrayXd &A)
{
return 0;
}
double Action_Local(Eigen::ArrayXd &A, int n, params &p)
{
struct Index idx;
idx = Idx_inv(n, p.nx);
int idx_mt, idx_mx, idx_pt, idx_px;
double pot, kint, kinx;
idx_mt = Idx((idx.x0 - 1 + p.nt) % p.nt, idx.x1, p.nt, p.nx);
idx_mx = Idx(idx.x0, (idx.x1 - 1 + p.nx) % p.nx, p.nt, p.nx);
idx_pt = Idx((idx.x0 + 1) % p.nt, idx.x1, p.nt, p.nx);
idx_px = Idx(idx.x0, (idx.x1 + 1) % p.nx, p.nt, p.nx);
pot = p.m2 / 2.0 * pow(A[n], 2) + p.lamda / 24. * pow(A[n], 4);
kint = (pow(A[idx_pt] - A[n], 2) + pow(A[idx_mt] - A[n], 2)) / 2.0;
kinx = (pow(A[idx_px] - A[n], 2) + pow(A[idx_mx] - A[n], 2)) / 2.0;
return pot + kint + kinx;
}
Eigen::ArrayXd Metropolis(Eigen::ArrayXd &A, int n, params &p)
{
Eigen::ArrayXd A_new = A;
A_new[n] += p.delta * dist(gen);
double dS = Action_Local(A_new, n, p) - Action_Local(A, n, p);
if (exp(-dS) >= rand01(gen))
{
accept++;
return A_new;
}
else
{
return A;
}
}
Eigen::ArrayXd Sweep(Eigen::ArrayXd &A, params &p)
{
for (int i = 0; i < p.n_conf; i++)
{
for (int j = 0; j < p.n_decor; j++)
{
for (int k = 0; k < p.dof; k++)
{
A = Metropolis(A, k, p);
}
}
std::cout << A << std::endl;
}
return A;
}
Eigen::ArrayXd Thermalization(Eigen::ArrayXd &A, params &p)
{
for (int i = 0; i < p.n_thermal; i++)
{
for (int j = 0; j < p.dof; j++)
{
A = Metropolis(A, j, p);
}
}
return A;
}
Eigen::ArrayXd Calibrate(Eigen::ArrayXd &A, params &p)
{
double ratio = 0;
while (ratio <= 0.3 || ratio >= 0.55)
{
accept = 0;
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < p.dof; j++)
{
A = Metropolis(A, j, p);
}
}
ratio = (double)accept / (p.dof * 10);
if (ratio >= 0.55)
{
p.delta = p.delta * 1.02;
}
else if (ratio <= 0.3)
{
p.delta = p.delta * 0.98;
}
}
return A;
}
int main(int argc, char **argv)
{
struct params p;
p.delta = 1;
p.nt = std::stoi(argv[1]);
p.nx = std::stoi(argv[2]);
p.dof = p.nt * p.nx;
p.m2 = std::stod(argv[3]);
p.lamda = std::stod(argv[4]);
p.n_decor = std::stoi(argv[5]);
p.n_thermal = 10000;
p.n_conf = std::stoi(argv[6]);
Eigen::ArrayXd configuration = Eigen::ArrayXd::Zero(p.dof); // Cold start
Calibrate(configuration, p);
Thermalization(configuration, p);
Calibrate(configuration, p);
Sweep(configuration, p);
return 0;
}