-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtaskSequence.m
1087 lines (1015 loc) · 36.2 KB
/
taskSequence.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% ========================================================================
classdef taskSequence < optickaCore & dynamicprops
%> @class taskSequence
%> @brief Block-based variable randomisation manager
%>
%> This class takes one or more variables, each with an array of values
%> and randomly interleves them into a randomised variable list each of
%> which has a unique index number.
%>
%> This example creates an `angle` varible that is randomised over 5
%> different values and will be applied to the first 3 stimuli; in addition,
%> the fourth stimulus will have the value offset by 45°:
%>
%> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.matlab}
%> ts = taskSequence('nBlocks',10);
%> ts.nVar(1).name = 'angle';
%> ts.nVar(1).values = [ -90, -45, 0, 45, 90 ];
%> ts.nVar(1).stimulus = [1, 2, 3];
%> ts.nVar(1).offsetstimulus = 4;
%> ts.nVar(1).offsetvalue = 45
%> ts.randomiseTask;
%> ts.showLog;
%> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%>
%> @todo integrate carryoverCounterbalance() as an alternative to block
%> randomisation...
%>
%> Copyright ©2014-2022 Ian Max Andolina — released: LGPL3, see LICENCE.md
% ========================================================================
properties
%> structure holding each independant stimulus variable name = name
%> of the stimulus variable values = the values as a numerical or
%> cell array stimulus = which stimulus to apply to? offsetstimulus
%> = an offset can be applied to other stimuli offsetvalue = the
%> value offset, e.g. 90 for angle will add 90 to any random angle
%> value e.g. nVar(1) = struct('name','contrast','stimulus',[1
%> 2],'values',[0 0.1 0.2],'offsetstimulus',[3],'offsetvalue',[0.1])
nVar struct
%> independent block level identifying factor, for example
%> blockVar.values={'A','B'} + blockVar.probability = [0.6 0.4];
%> will assign A and B to blocks with a 60:40 probability.
blockVar struct
%> independent trial level identifying factor
%> trialVar.values={'YES','NO'} + trialVar.probability = [0.5 0.5];
%> will assign YES and NO to trials with a 50:50 probability.
trialVar struct
%> number of repeated blocks to present
nBlocks double = 1
% staircase manager, uses Palamedes PAL_AM* functions, pass the
% output of the setupXX function to 'sc'. type = type of staircase:
% UD=up/down RF=QUEST PM=Psi-Method, e.g. PAL_AMUD_updateUD = UD.
% invert = false means correct steps down, we can invert it to
% "step up" on correct.
staircase = struct('sc',[],'type','UD','invert',false);
%> whether to randomise nVar (true) or run sequentially (false)
randomise logical = true
%> insert a blank condition in each block?
addBlank logical = false
%> do we follow real time or just number of ticks to get to a known time
realTime logical = true
%> random seed value, we can use this to set the RNG to a known state
%> default is empty to use the unique current date+time
randomSeed double = []
%> mersenne twister default, see MATLAB docs for other options
randomGenerator char = 'mt19937ar'
%> verbose or not
verbose = false
end
properties (Dependent = true, SetAccess = private)
%> number of independant variables
nVars
%> minimum number of trials within a block, depends on nVar values
minTrials
%> number of runs, blocks x trials
nRuns
%> estimate of the total number of frames this task may occupy,
%> requires accurate fps and assumes a MOC task
nFrames
end
properties (Hidden = true)
%> used for dynamically estimating total number of frames
fps double = 60
%> time stimulus trial is shown
trialTime double = 2
%> inter stimulus trial time
isTime double = 1
%> inter block time
ibTime double = 2
%> original index before any resetRun()s
startIndex
end
properties (SetAccess = private, GetAccess = public)
%> structure of variable values
outValues
%> variable values wrapped in a per-block cell
outVars
%> the unique identifier for each stimulus
outIndex
%> mapping the stimulus to the number as a X Y and Z etc position for display
outMap
%> block level randomised factor
outBlock
%> trial level randomised factor
outTrial
%> variable labels
varLabels
%> variable list
varList
%> log of within block resets
resetLog
%> have we initialised the dynamic task properties?
taskInitialised logical = false
%> has task finished
taskFinished logical = false
%> which seed values were used?
thisSeed = []
usedSeeds = []
%> all indexes converted to a table for presentation
dataTable
end
properties (SetAccess = private, GetAccess = public, Transient = true, Hidden = true)
%> old random number stream
oldStream
%> current random number stream
taskStream
%> current random stream state
currentState
end
properties (Transient = true, SetAccess = private, GetAccess = private)
%> handles from me.showLog
h
end
properties (SetAccess = private, GetAccess = private)
%> cache value for nVars
nVars_
%> cache value for minTrials
minTrials_
%> used in calculatin mintrials
nLevels
%> properties allowed during initial construction
allowedProperties = {'randomise','nVar','blockVar','trialVar','nBlocks',...
'trialTime','isTime','ibTime','realTime','randomSeed','fps',...
'randomGenerator','verbose','addBlank','staircase'}
%> used to handle problems with dependant property nVar: the problem
%> is that set.nVar gets called before static loadobj, and therefore
%> we need to handle this differently. Initially set to empty, set
%> to true when running loadobj() and false when not loading object.
isLoading = []
%> properties used by loadobj when a structure is passed during load.
%> this stops loading old randstreams etc.
loadProperties cell = {'randomise','nVar','nBlocks','trialTime','isTime','ibTime','verbose',...
'realTime','randomSeed','randomGenerator','outValues','outVars','addBlank', ...
'outIndex', 'outMap', 'minTrials','states','nState','name','staircase'}
%> nVar template and default values
varTemplate struct = struct('name','','stimulus',[],'values',[],'offsetstimulus',[],'offsetvalue',[])
%> blockVar template and default values
blockTemplate struct = struct('values',{{'none'}},'probability',[1],'comment','block level factor')
%> blockVar template and default values
trialTemplate struct = struct('values',{{'none'}},'probability',[1],'comment','trial level factor')
%> Set up the task structures needed
tProp cell = {'totalRuns',1,'thisBlock',1,'thisRun',1,'isBlank',false,...
'isTimeNow',1,'ibTimeNow',1,'response',[],'responseInfo',{},'tick',0,'blankTick',0,...
'switched',false,'strobeThisFrame',false,'doUpdate',false,'startTime',0,'switchTime',0,...
'switchTick',0,'timeNow',0,'runTimeList',[],'stimIsDrifting',[],'stimIsMoving',[],...
'stimIsDots',[],'stimIsFlashing',[]}
end
methods
% ===================================================================
function me = taskSequence(varargin)
%> @fn taskSequence
%> @brief Class constructor
%>
%> Initialises the class sending any parameters to parseArgs.
%>
%> @param varargin are passed as a structure of properties which is
%> parsed.
%> @return instance of the class.
% ===================================================================
args = optickaCore.addDefaults(varargin,struct('name','taskSequence'));
me = me@optickaCore(args); %superclass constructor
me.parseArgs(args,me.allowedProperties);
me.nVar = me.varTemplate;
me.blockVar = me.blockTemplate;
me.trialVar = me.trialTemplate;
me.isLoading = false;
initialiseGenerator(me);
end
% ===================================================================
function initialiseGenerator(me)
%> @fn initialiseGenerator()
%> @brief set up the random number generator
%>
%> set up the random number generator
% ===================================================================
if isempty(me.randomSeed)
me.thisSeed=round(rand*sum(clock));
else
me.thisSeed = me.randomSeed;
end
me.usedSeeds(end+1) = me.thisSeed;
if isempty(me.oldStream)
if ~verLessThan('matlab','7.11')
me.oldStream = RandStream.getGlobalStream;
else
me.oldStream = RandStream.getDefaultStream; %#ok<*GETRS>
end
end
me.taskStream = RandStream.create(me.randomGenerator,'Seed',me.thisSeed);
if ~verLessThan('matlab','7.11')
RandStream.setGlobalStream(me.taskStream);
else
RandStream.setDefaultStream(me.taskStream); %#ok<*SETRS>
end
end
% ===================================================================
function resetRandom(me)
%> @fn resetRandom
%> @brief Reset the random number generator
%>
%> reset the random number generator
% ===================================================================
if ~verLessThan('matlab','7.11')
RandStream.setGlobalStream(me.oldStream);
else
RandStream.setDefaultStream(me.oldStream);
end
end
% ===================================================================
function randomiseTask(me)
%> @fn randomiseTask
%> @brief Do the main randomisation
%>
%> This method will take the parameters in nVar, blockVar and
%> trialVar and perform the randomisation and balancing.
% ===================================================================
if me.nVars == 0
me.outIndex = 1; %there is only one stimulus, no variables
me.outValues = [];
me.outVars = {};
me.outMap = [];
me.outBlock = {};
me.varLabels = {};
me.varList = {};
me.taskFinished = false;
return
end
rSTime = tic;
if me.minTrials > 255
warning('WARNING: You are exceeding the number of variable numbers in an 8bit strobed word!')
end
initialiseGenerator(me);
checkBlockTrialVars(me);
% ---- deal with block level factor randomisation
if isempty(me.blockVar.values)
me.outBlock = {};
elseif length(me.blockVar.values) > me.nBlocks
error('Your block factors are greater than the number of blocks!')
else
if sum(me.blockVar.probability) ~= 1 || length(me.blockVar.values) ~= length(me.blockVar.probability)
warning('blockVar probability doesn''t sum to 100!');
prob = [];
else
prob = me.blockVar.probability;
end
[~,b] = sort(me.blockVar.probability);
p = me.blockVar.probability(b);
v = me.blockVar.values(b);
prob = cumsum(p); %cumulative sum
Vals = cell(me.nBlocks, 1);
for i = 1:length(Vals)
thisR = rand();
a = 1;
while isempty(Vals{i}) && a <= length(prob)
if thisR <= prob(a)
Vals{i} = v{a};
end
a = a + 1;
end
end
me.outBlock = Vals;
end
% ---- deal with trial level factor randomisation
tVn = length(me.trialVar.values);
if tVn == 0
me.outTrial = {};
else
if sum(me.trialVar.probability) ~= 1 || tVn ~= length(me.trialVar.probability)
error('blockVar probability doesn''t sum to 1!');
end
[~,b] = sort(me.trialVar.probability);
p = me.trialVar.probability(b);
v = me.trialVar.values(b);
prob = cumsum(p); %cumulative sum
Vals = cell(me.nRuns, 1);
for i = 1:length(Vals)
thisR = rand();
a = 1;
while isempty(Vals{i}) && a <= length(prob)
if thisR <= prob(a)
Vals{i} = v{a};
end
a = a + 1;
end
end
me.outTrial = Vals;
end
% ---- initialize cell array that will hold balanced variables
Vars = cell(me.nBlocks, me.nVars_);
Vals = cell(me.nRuns, me.nVars_);
Indx = [];
% the following initializes and runs the main loop in the function, which
% generates enough repetitions of each factor, ensuring a balanced design,
% and randomizes them
for i = 1:me.nBlocks
if me.randomise == true
[~, index] = sort(rand(me.minTrials, 1));
else
index = (1:me.minTrials)';
end
Indx = [Indx; index];
if me.addBlank
pos1 = me.minTrials - 1;
else
pos1 = me.minTrials;
end
pos2 = 1;
for f = 1:me.nVars_
pos1 = pos1 / me.nLevels(f);
if size(me.nVar(f).values, 1) ~= 1
% ensure that factor levels are arranged in one row
me.nVar(f).values = reshape(me.nVar(f).values, 1, numel(me.nVar(f).values));
end
% this is the critical line: it ensures there are enough repetitions
% of the current factor in the correct order
mb = me.minTrials;
if me.addBlank; mb = mb - 1; end
Vars{i,f} = repmat(reshape(repmat(me.nVar(f).values, pos1, pos2), mb, 1), me.nVars_, 1);
Vars{i,f} = Vars{i,f}(index);
pos2 = pos2 * me.nLevels(f);
if me.addBlank
if iscell(Vars{i,f})
Vars{i,f}{index==max(index)} = NaN;
else
Vars{i,f}(index==max(index)) = NaN;
end
end
end
end
% generate me.outValues
offset = 0;
for i = 1:size(Vars,1)
for j = 1:size(Vars,2)
for k = 1:length(Vars{i,j})
if iscell(Vars{i,j})
Vals{offset+k,j} = Vars{i,j}{k};
else
Vals{offset+k,j} = Vars{i,j}(k);
end
end
end
offset = offset + me.minTrials;
end
% assign to properties
me.outVars = Vars;
me.outValues = Vals;
me.outIndex = Indx;
% generate outMap
me.outMap=zeros(size(me.outValues));
for f = 1:me.nVars_
for g = 1:length(me.nVar(f).values)
for hh = 1:length(me.outValues(:,f))
if iscell(me.nVar(f).values(g))
if (ischar(me.nVar(f).values{g}) && ischar(me.outValues{hh,f})) && strcmpi(me.outValues{hh,f},me.nVar(f).values{g})
me.outMap(hh,f) = g;
elseif (isnumeric(me.nVar(f).values{g}) && isnumeric(me.outValues{hh,f})) && isequal(me.outValues{hh,f}, me.nVar(f).values{g})
me.outMap(hh,f) = g;
%elseif ~ischar(me.nVar(f).values{g}) && isequal(me.outValues{hh,f}, me.nVar(f).values{g})
% me.outMap(hh,f) = g;
end
else
if me.outValues{hh,f} == me.nVar(f).values(g)
me.outMap(hh,f) = g;
end
end
end
end
end
buildTable(me); %for display
me.salutation('randomiseTask', sprintf('Took %.1f ms',toc(rSTime)*1000), true);
end
% ===================================================================
function initialise(me, randomise)
%> @fn initialise
%> @brief Initialise the variables and task together
%>
%> @param randomise [default=false] do we force randomiseTask to be run
% ===================================================================
if ~exist('randomise','var'); randomise = false; end
resetTask(me);
if randomise || isempty(me.outIndex); randomiseTask(me); end
t = me.tProp;
for i = 1:2:length(t)
if isempty(me.findprop(t{i}))
p = me.addprop(t{i}); %add new dynamic property
end
me.(t{i}) = t{i+1}; %#ok<*MCNPR>
end
me.taskInitialised = true;
makeLabels(me);
randomiseTimes(me);
backup(me);
fprintf('---> taskSequence.initialise: Initialised!\n');
end
% ===================================================================
function backup(me)
%> @fn backup
%> @brief Initialise the properties used to track the run
%>
%> Initialise the properties used to track the run. These are dynamic
%> props.
% ===================================================================
me.startIndex = me.outIndex;
end
% ===================================================================
function updateTask(me, thisResponse, runTime, info)
%> @fn updateTask
%> @brief update the task with a response
%>
%> This method allows us to update the task with a response, and
%> will track when the task is finished: setting taskFinished==true
% ===================================================================
if ~me.taskInitialised; warning('--->>> taskSequence not initialised, cannot update!');return; end
if me.totalRuns > me.nRuns
me.taskFinished = true;
fprintf('---> taskSequence.updateTask: Task FINISHED, no more updates allowed\n');
return
end
if ~exist('thisResponse','var') || isempty(thisResponse); thisResponse = NaN; end
if ~exist('runTime','var') || isempty(runTime); runTime = GetSecs; end
if ~exist('info','var') || isempty(info); info = 'none'; end
me.response(me.totalRuns) = thisResponse;
me.responseInfo{me.totalRuns} = info;
me.runTimeList(me.totalRuns) = runTime - me.startTime;
if ~isempty(me.resetLog) && me.resetLog(end).totalRuns == me.totalRuns && me.resetLog(end).success == true
me.responseInfo{me.totalRuns} = {me.resetLog(end).message, me.responseInfo{me.totalRuns}};
end
if me.verbose
me.salutation(sprintf('Trial = %i Response = %.2g @ %.2g secs',...
me.totalRuns, thisResponse, me.runTimeList(me.totalRuns)));
end
if me.totalRuns < me.nRuns
me.totalRuns = me.totalRuns + 1;
[me.thisBlock, me.thisRun] = findRun(me);
randomiseTimes(me);
elseif me.totalRuns >= me.nRuns
me.taskFinished = true;
fprintf('---> taskSequence.updateTask: Task FINISHED, no more updates allowed\n');
end
end
% ===================================================================
function updateStaircase(me, thisResponse, n)
%> @fn updateTask
%> @brief update the task with a response
%>
%> This method allows us to update the task with a response, and
%> will track when the task is finished: setting taskFinished==true
% ===================================================================
if ~exist('thisResponse','var'); warning('taskSequence.updateStaircase() update needs a response value');return; end
if ~exist('n','var'); n = 1; end
if ~isempty(me.staircase) && isstruct(me.staircase) && isfield(me.staircase(n).sc,'xCurrent')
if ~me.staircase(n).invert
res = 1;
else
res = 0;
end
if thisResponse == true || thisResponse == 1
response = res;
else
response = ~res;
end
sc = ['me.staircase(' num2str(n) ').sc'];
ty = me.staircase(n).type;
cmd = [sc ' = PAL_AM' ty '_update' ty '(' sc ', ' num2str(response) ');'];
eval(cmd);
if me.verbose;fprintf('--->>> taskSequence.updateStaircase() Staircase %i - Result %i:\n',n,response);end
if me.staircase(n).sc.stop; fprintf('===>>> taskSequence Staircase %i has stopped...\n',n); end
end
end
% ===================================================================
function [block, run, var, index] = findRun(me, index)
%> @fn [block, run, var] = findRun(me, index)
%> @brief returns block and run from number of runs
%>
%> @param index the number of the trial
%> @return block the block this trial is in
%> @return run the number within the block
%> @return var the variable number
%> @return index the index used
% ===================================================================
if me.nVars == 0
block = 1; run = 1; var = 1;
return
end
if ~exist('index','var') || isempty(index); index = me.totalRuns; end
block = floor( (index - 1) / me.minTrials ) + 1;
run = index - (me.minTrials * (block - 1));
var = me.outIndex(index);
end
% ===================================================================
function rewindTask(me)
%> @fn rewindTask
%> @brief this steps back one run
%>
% ===================================================================
if me.taskInitialised
me.response(me.totalRuns) = [];
me.responseInfo{me.totalRuns} = [];
me.runTimeList(me.totalRuns) = [];
me.totalRuns = me.totalRuns - 1;
[me.thisBlock, me.thisRun] = findRun(me);
fprintf('===!!! REWIND Run to %i:',me.totalRuns);
end
end
% ===================================================================
function [success, message] = resetRun(me)
%> @fn resetRun
%> @brief re-randomise within the current block
%>
%> If the subject got a trial wrong, we want to try to show a
%> different trial within the same block. This adds some
%> randomisation if a run needs to be rerun for a subject and you do
%> not want the same stimulus repeatedly until there is a correct
%> response. Note the limitation is if this is the last trial in a
%> block, the randomisation cannot do anything.
%>
%> @return success did we manage to randomise?
%> @return message details of the swapped trials
% ===================================================================
success = false; message = '';
if me.taskInitialised && me.nVars > 0
[b,r,v,ix] = me.findRun;
message = sprintf('--->>> taskSequence.resetRun() Blk/Run/Var/Idx %i/%i/%i/%i ',b,r,v,ix);
iLow = me.totalRuns; % select from this run...
iHigh = me.thisBlock * me.minTrials; %...to the last run in the current block
iRange = (iHigh - iLow) + 1;
if iRange < 2
return
end
randomChoice = randi(iRange); %random from 0 to range
trialToSwap = me.totalRuns + (randomChoice - 1);
if trialToSwap == me.totalRuns
message = sprintf('%s >>> no change made...',message);
if isempty(me.resetLog); myN = 1; else; myN = length(me.resetLog)+1; end
me.resetLog(myN).success = success;
me.resetLog(myN).totalRuns = me.totalRuns;
me.resetLog(myN).trialToSwap = trialToSwap;
me.resetLog(myN).randomChoice = randomChoice;
me.resetLog(myN).message = message;
if me.verbose; disp(message); end
return;
end
blockOffset = ((me.thisBlock-1) * me.minTrials);
blockSource = me.totalRuns - blockOffset;
blockDestination = trialToSwap - blockOffset;
%outValues
aValue = me.outValues(me.totalRuns,:);
bValue = me.outValues(trialToSwap,:);
me.outValues(me.totalRuns,:) = bValue;
me.outValues(trialToSwap,:) = aValue;
%outTrial
aTrial = me.outTrial(me.totalRuns,:);
bTrial = me.outTrial(trialToSwap,:);
me.outTrial(me.totalRuns,:) = bTrial;
me.outTrial(trialToSwap,:) = aTrial;
%outVars
for i = 1:me.nVars
aVal = me.outVars{me.thisBlock,i}(blockSource);
bVal = me.outVars{me.thisBlock,i}(blockDestination);
me.outVars{me.thisBlock,i}(blockSource) = bVal;
me.outVars{me.thisBlock,i}(blockDestination) = aVal;
end
%outIndex
aIdx = me.outIndex(me.totalRuns,1);
bIdx = me.outIndex(trialToSwap,1);
me.outIndex(me.totalRuns,1) = bIdx;
me.outIndex(trialToSwap,1) = aIdx;
%outMap
aMap = me.outMap(me.totalRuns,:);
bMap = me.outMap(trialToSwap,:);
me.outMap(me.totalRuns,:) = bMap;
me.outMap(trialToSwap,:) = aMap;
%log this change
success = true;
if isempty(me.resetLog); myN = 1; else; myN = length(me.resetLog)+1; end
me.resetLog(myN).success = success;
me.resetLog(myN).totalRuns = me.totalRuns;
me.resetLog(myN).trialToSwap = trialToSwap;
me.resetLog(myN).randomChoice = randomChoice;
me.resetLog(myN).blockSource = blockSource;
me.resetLog(myN).blockDestination = blockDestination;
me.resetLog(myN).aIdx = aIdx;
me.resetLog(myN).bIdx = bIdx;
me.resetLog(myN).aTrial = aTrial;
me.resetLog(myN).bTrial = bTrial;
me.resetLog(myN).newIndex = me.outIndex;
[b,r,v,ix] = me.findRun;
message = sprintf('%s >> %i/%i/%i/%i ',message,b,r,v,ix);
message = sprintf('%s | Run=%i swap trial %i(v=%i) with %i(v=%i) : trialToSwap=%i (random choice trial %i)', ...
message, me.totalRuns, blockSource, aIdx, blockDestination,...
bIdx, trialToSwap, randomChoice);
me.resetLog(myN).message = message;
disp(message);
end
end
% ===================================================================
function set.nVar(me,invalue)
%> @fn set.nVar
%> @brief set method for the nVar structure
%>
%> Check we have a minimal nVar structure and deals new values
%> appropriately.
% ===================================================================
if ~exist('invalue','var')
return
end
if isempty(me.nVar) || isempty(invalue) || length(fieldnames(me.nVar)) ~= length(fieldnames(me.varTemplate))
me.nVar = me.varTemplate;
end
if ~isempty(invalue) && isstruct(invalue)
idx = length(invalue);
fn = fieldnames(invalue);
fnTemplate = fieldnames(me.varTemplate); %#ok<*MCSUP>
fnOut = intersect(fn,fnTemplate);
for ii = 1:idx
for i = 1:length(fnOut)
me.nVar(ii).(fn{i}) = invalue(ii).(fn{i});
end
if isempty(me.nVar(ii).offsetstimulus)
me.nVar(ii).offsetvalue = [];
end
end
end
end
% ===================================================================
function nVars = get.nVars(me)
%> @fn get.nVars
%> @brief Dependent property for how many variables we have
%>
%> Calculates ependent property nVars get method
% ===================================================================
nVars = 0;
if length(me.nVar) > 0 && ~isempty(me.nVar(1).name) %#ok<ISMT>
nVars = length(me.nVar);
end
me.nVars_ = nVars; %cache value
end
% ===================================================================
function minTrials = get.minTrials(me)
%> @fn get.minTrials
%> @brief Dependent property for the minimum number of conditions based
%> on the values in nVar.
%>
% ===================================================================
me.nLevels = zeros(me.nVars, 1);
for f = 1:me.nVars_
me.nLevels(f) = length(me.nVar(f).values);
end
minTrials = prod(me.nLevels);
if isempty(minTrials)
minTrials = 0;
end
if me.addBlank
minTrials = minTrials + 1;
end
me.minTrials_ = minTrials;
end
% ===================================================================
function nRuns = get.nRuns(me)
%> @fn get.nRuns
%> @brief Dependent property nRuns get method
%>
%> Dependent property nruns get method
% ===================================================================
nRuns = me.minTrials * me.nBlocks;
end
% ===================================================================
function nFrames = get.nFrames(me)
%> @fn get.nFrames
%> @brief Dependent property nFrames get method
%>
%> Gives us an approximate number of frames this task may take
% ===================================================================
nSecs = (me.nRuns * me.trialTime) + (me.minTrials-1 * me.isTime) + (me.nBlocks-1 * me.ibTime);
nFrames = ceil(nSecs) * ceil(me.fps); %be a bit generous in defining how many frames the task will take
end
function showLog(me)
showTable(me);
end
% ===================================================================
function showTable(me)
%> @fn showTable
%> @brief showTable
%>
%> Generates a table with the randomised stimulus values
% ===================================================================
me.makeLabels();
me.h = struct();
if me.nRuns > 17
build_gui(0.7);
elseif me.nRuns > 10
build_gui(0.4);
else
build_gui(0.25);
end
buildTable(me);
set(me.h.uitable1,'Data',me.dataTable);
function build_gui(heightin)
fsmall = 12;
if ismac
mfont = 'menlo';
elseif ispc
mfont = 'consolas';
else %linux
mfont = 'Ubuntu Mono';
end
me.h.figure1 = uifigure( ...
'Tag', 'sSLog', ...
'Units', 'normalized', ...
'Position', [0.6 0 0.4 heightin], ...
'Name', ['Table: ' me.fullName], ...
'MenuBar', 'none', ...
'NumberTitle', 'off', ...
'Color', [0.94 0.94 0.94], ...
'Resize', 'on');
me.h.uitable1 = uitable( ...
'Parent', me.h.figure1, ...
'Tag', 'uitable1', ...
'Units', 'normalized', ...
'Position', [0 0 1 1], ...
'FontName', mfont, ...
'FontSize', fsmall, ...
'RowName', 'numbered',...
'BackgroundColor', [1 1 1;0.95 0.95 0.95], ...
'RowStriping','on', ...
'ColumnEditable', [], ...
'ColumnWidth', {'auto'});
end
end
% ===================================================================
function [meta, key] = getMeta(me)
%> @fn getMeta
%> @brief get a meta matrix compatible with VS parsed data,
%> unwrapping cell arrays
%>
%> Generates a table with the randomised stimulus values
% ===================================================================
meta = [];
vals = me.outValues;
idx = me.outMap;
if iscell(vals)
for i = 1:size(vals,2)
cc = [vals{:,i}]';
if iscell(cc)
t = '';
u = unique(idx(:,i));
for j=1:length(u)
f = find(idx(:,i)==u(j));
f = f(1);
t = [t sprintf('')];
end
meta(:,i) = idx(:,i);
else
meta(:,i) = cc;
end
end
else
meta = me.outValues;
end
end
% ===================================================================
function [labels, list] = getLabels(me)
%> @fn getLabels
%> @brief get the labels for the variables
% ===================================================================
labels = [];
list = [];
me.makeLabels()
if ~isempty(me.varLabels); labels = me.varLabels; end
if ~isempty(me.varList); list = me.varList; end
end
% ===================================================================
function validate(me)
%> @fn validate
%> @brief validate the taskSequence is ok
%>
%> Check we have a minimal task structure
% ===================================================================
if me.nVars == 0
me.outIndex = 1; %there is only one stimulus, no variables
me.varLabels = {};
me.varList = {};
else
vin = me.nVar;
vout = vin;
me.nVar = [];
shift = 0;
for i = 1:length(vin)
if isempty(vin(i).name) || isempty(vin(i).values) || isempty(vin(i).stimulus)
vout(i + shift) = [];
shift = shift-1;
end
end
me.nVar = vout;
clear vin vout shift
makeLabels(me);
end
end
end % END METHODS
%=======================================================================
methods ( Access = private ) %------PRIVATE METHODS
%=======================================================================
% ===================================================================
function buildTable(me)
%> @fn buildTable
%> @brief buildTable builds a table of the variable trials + blocks
%>
% ===================================================================
if me.nVars == 0
me.dataTable = table({'No task variables set!'}, 'VariableNames', {'Independent Variable'});
return
end
outvals = me.outValues;
data = cell(size(outvals,1),(size(outvals,2)*2)+3);
a = 1;
for i = 1:size(outvals,1)
for j = 1:me.nVars
if iscell(outvals{i,j})
data{i,j} = num2str(outvals{i,j}{1},'%2.3g ');
elseif length(outvals{i,j}) > 1
data{i,j} = num2str(outvals{i,j},'%2.3g ');
else
data{i,j} = outvals{i,j};
end
end
data{i,me.nVars+1} = me.outIndex(i);
for k = 1:size(me.outMap,2)
data{i,me.nVars+(k+1)} = me.outMap(i,k);
end
data{i,end-1} = me.outTrial{i};
if i > a * me.minTrials
a = a + 1;
end
data{i,end} = me.outBlock{a};
end
cnames = cell(1,me.nVars);
for ii = 1:me.nVars
cnames{ii} = [me.nVar(ii).name num2str(me.nVar(ii).stimulus,'-%i')];
end
cnames{end+1} = 'outIndex';
for ii = 1:size(me.outMap,2)
cnames{end+1} = ['Var' num2str(ii) 'Index'];
end
cnames{end+1} = 'Trial Factors';
cnames{end+1} = 'Block Factors';
me.dataTable = cell2table(data,'VariableNames',cnames);
end
% ===================================================================
function makeLabels(me)
%> @fn makeLabels
%> @brief make labels for variables
%>
%>
% ===================================================================
if isempty(me.outIndex); return; end
varIndex = sort(unique(me.outIndex));
list = cell(length(varIndex),me.nVars+2);
for i = 1:length(varIndex)
st = '';
idx = find(me.outIndex==varIndex(i));
list{i,1} = varIndex(i);
list{i,2} = idx;
idx = idx(1);
for j = 1:me.nVars
if iscell(me.outValues{i,j})
st = [st ' | ' me.nVar(j).name ':' num2str([me.outValues{idx,j}{:}])];
list{i,j+2} = me.outValues{idx,j}{:};
else
st = [st ' | ' me.nVar(j).name ':' num2str(me.outValues{idx,j})];
list{i,j+2} = me.outValues{idx,j};
end
end
st = regexprep(st,'^\s+\|\s+','');
str{i} = [num2str(varIndex(i)) ' = ' st];
end
[~,res] = sort(varIndex);
str = str(res);
if size(str,1) < size(str,2); str = str'; end
me.varLabels = str;
me.varList = list;
end
% ===================================================================
function resetTask(me)
%> @fn resetTask
%> @brief reset dynamic task properties
%>
%>
% ===================================================================
t = me.tProp;
for i = 1:2:length(t)
p = me.findprop(t{i});
if ~isempty(p)
delete(p);
end
end
me.resetLog = [];
me.taskInitialised = false;
me.taskFinished = false;
initialiseGenerator(me);
end
% ===================================================================
function randomiseTimes(me)
%> @fn randomiseTimes
%> @brief randomise the time intervals
%>
%>
% ===================================================================
if ~me.taskInitialised;return;end
me.isTimeNow = me.isTime;
me.ibTimeNow = me.ibTime;
if length(me.isTime) == 2 %randomise isTime within a range
t = me.isTime;
me.isTimeNow = (rand * (t(2)-t(1))) + t(1);
me.isTimeNow = round(me.isTimeNow*100)/100;
end