-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathSPLT_pysot_new.py
98 lines (93 loc) · 3.95 KB
/
SPLT_pysot_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from SPLT_tracker_new import MobileTracker
import argparse
import os
import cv2
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from toolkit.datasets import DatasetFactory
from common_path import *
parser = argparse.ArgumentParser(description='tracking')
parser.add_argument('--dataset', default= dataset_name_, type=str,
help='eval one special dataset')
parser.add_argument('--video', default= video_name_, type=str,
help='eval one special video')
parser.add_argument('--vis', default=False, help='whether visualzie result')
args = parser.parse_args()
def main():
use_vot = False
display = False
save_results = True
# load config
model_name = 'SPLT36_haojie'
dataset_root = '/media/masterbin-iiau/WIN_SSD/VOT2018_LT35'
# create model
tracker = MobileTracker(vot=use_vot, dis=display)
# create dataset
dataset = DatasetFactory.create_dataset(name=args.dataset,
dataset_root=dataset_root,
load_img=False)
# OPE tracking
for v_idx, video in enumerate(dataset):
print(video.name)
if args.video != '':
# test one special video
if video.name != args.video:
continue
toc = 0
pred_bboxes = []
scores = []
track_times = []
for idx, (img, gt_bbox) in enumerate(video):
tic = cv2.getTickCount()
if idx == 0:
tracker.init_first(img, gt_bbox)
pred_bbox = gt_bbox
scores.append(None)
if 'VOT2018-LT' == args.dataset:
pred_bboxes.append([1])
else:
pred_bboxes.append(pred_bbox)
else:
print('processing %d'%idx)
outputs = tracker.track(img)
pred_bbox = outputs[0]
pred_bboxes.append(pred_bbox)
scores.append(outputs[1])
toc += cv2.getTickCount() - tic
track_times.append((cv2.getTickCount() - tic)/cv2.getTickFrequency())
if idx == 0:
cv2.destroyAllWindows()
if args.vis and idx > 0:
gt_bbox = list(map(int, gt_bbox))
pred_bbox = list(map(int, pred_bbox))
cv2.rectangle(img, (gt_bbox[0], gt_bbox[1]),
(gt_bbox[0]+gt_bbox[2], gt_bbox[1]+gt_bbox[3]), (0, 255, 0), 3)
cv2.rectangle(img, (pred_bbox[0], pred_bbox[1]),
(pred_bbox[0]+pred_bbox[2], pred_bbox[1]+pred_bbox[3]), (0, 255, 255), 3)
cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.imshow(video.name, img)
cv2.waitKey(1)
toc /= cv2.getTickFrequency()
if save_results:
# save results
if 'VOT2018-LT' == args.dataset:
video_path = os.path.join('results', args.dataset, model_name,
'longterm', video.name)
if not os.path.isdir(video_path):
os.makedirs(video_path)
result_path = os.path.join(video_path,
'{}_001.txt'.format(video.name))
with open(result_path, 'w') as f:
for x in pred_bboxes:
f.write(','.join([str(i) for i in x])+'\n')
result_path = os.path.join(video_path,
'{}_001_confidence.value'.format(video.name))
with open(result_path, 'w') as f:
for x in scores:
f.write('\n') if x is None else f.write("{:.6f}\n".format(x))
result_path = os.path.join(video_path,
'{}_time.txt'.format(video.name))
with open(result_path, 'w') as f:
for x in track_times:
f.write("{:.6f}\n".format(x))
if __name__ == '__main__':
main()