-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_LSTM3.py
executable file
·138 lines (106 loc) · 4.91 KB
/
test_LSTM3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import tensorflow as tf
import numpy as np
import cv2
import glob
def predict(frame, frames_passed, u, v, lstm_state):
batch_size = 1
max_time = 2000
num_size = 128
#test_data creation here (x and input_label)
#test_file_path = './coords/10.txt'
frame_size = frame.shape[:2]
#test_file = open(test_file_path, 'r')
#stop_sequence = []
#test_data_in = np.zeros((0, 2))
test_data_in = np.array(np.array(u,v))
center_coords = []
#test_data_out = np.zeros((0, 2))
#lines = test_file.read().splitlines()
#test_data_in = np.append(test_data_in, np.array([[u,v]]))
#test_data_out = np.append(test_data_out, np.array([[u_prev,v_prev]]))
#u_f, v_f = (u,v)
#u_f1, v_f1 = (u_prev, v_prev)
#for j in range(len(lines) - 1):
# u, v, m, n = lines[j].split(',')
# new_u, new_v, new_m, new_n = lines[j + 1].split(',')
# u_f1 = float(new_u) - float(u);
# v_f1 = float(new_v) - float(v)
# test_data_in = np.append(test_data_in, np.array([[u_f, v_f]]), axis=0)
# center_coords.append( (int(float(u) + float(m)/2), int(float(v) + float(n)/2)) )
# test_data_out = np.append(test_data_out, np.array([[u_f1, v_f1]]), axis=0)
# u_f, v_f = (u_f1, v_f1)
#stop_sequence.append(len(lines))
#for j in range(max_time - len(lines) + 1):
# test_data_in = np.append(test_data_in, np.array([[-1,-1]]), axis = 0)
# test_data_out = np.append(test_data_out, np.array([[0,0]]), axis = 0)
stop_sequence = [1]
x = tf.placeholder(tf.float32, [batch_size, max_time, 2], name='x')
#input_labels = tf.placeholder(tf.float32, [batch_size, max_time, 2], name='input_labels')
seq_length = tf.placeholder(tf.int32, [batch_size], name='seq_length')
W1 = tf.get_variable('W1', [2, num_size], initializer = tf.initializers.random_normal())
b1 = tf.get_variable('b1', [1, num_size], initializer = tf.initializers.zeros(dtype=tf.float32))
x = tf.reshape(x, [max_time, 2])
rnn_input = tf.matmul(x, W1) + b1
rnn_input = tf.reshape(rnn_input, [1, max_time, num_size])
lstm_cells = [tf.nn.rnn_cell.LSTMCell(num_size), tf.nn.rnn_cell.LSTMCell(num_size)]
print('\n')
print(lstm_cells[0].variables)
print('\n')
u_and_v_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)
#init_state = u_and_v_cell.zero_state(batch_size, tf.float32)
if frames_passed == 0:
init_state = u_and_v_cell.zero_state(batch_size, tf.float32)
else:
init_state = lstm_state
rnn_outputs, final_state = tf.nn.dynamic_rnn(u_and_v_cell, rnn_input, initial_state=init_state, sequence_length=seq_length)
W2 = tf.get_variable('W2', [num_size, 2], initializer = tf.initializers.random_normal())
b2 = tf.get_variable('b2', [1, 2], initializer = tf.initializers.zeros(dtype=tf.float32))
rnn_outputs_list = tf.split(rnn_outputs, batch_size)
output_coords = []
for i in range(len(rnn_outputs_list)):
o = rnn_outputs_list[i]
o = tf.reshape(o, [max_time, num_size])
oi = tf.matmul(o, W2) + b2
oix = tf.split(oi, max_time)
oix = [oix[j] for j in range(stop_sequence[i])]
for j in range(max_time - stop_sequence[i]):
oix.append(tf.zeros(dtype = tf.float32, shape = [1,2]))
oix = tf.reshape(tf.stack(oix), shape = [max_time, 2])
output_coords.append(oix)
output_coords = tf.stack(output_coords)
print('graph ', output_coords)
output_coords = tf.reshape(output_coords, [max_time,2])
print('graph2 ', output_coords)
saver = tf.train.Saver()
out_vec = 0
with tf.Session() as sess:
W1.initializer.run()
b1.initializer.run()
for var in u_and_v_cell.variables:
print(var, ' hi')
var.initializer.run()
W2.initializer.run()
b2.initializer.run()
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
print(output_coords)
print('feede_dict')
feed_dict = {x: test_data_in, seq_length: stop_sequence}
#feed_dict = {x: test_data_in}
print(feed_dict)
out_vec = sess.run([output_coords], feed_dict = feed_dict)
out_vec = out_vec[0]
#list_of_imgs = glob.glob('./Tiger1/img/*.jpg')
#list_of_imgs.sort()
#k = 0
#for img in list_of_imgs:
# frame = cv2.imread(img)
# frame = cv2.circle(frame, center_coords[k], 2, (0, 0, 255), -1)
# frame = cv2.circle(frame, center_coords[k+1], 2, (0,255,0), -1)
# frame = cv2.circle(frame, (int(center_coords[k][0] + out_vec[k][0]),int(center_coords[k][1] + out_vec[k][1])), 2, (255, 0, 0), -1)
# frame = cv2.circle(frame, center_coords[k+1], 12, (0,0,0), 1)
# cv2.imshow('frame', frame)
# cv2.waitKey(0)
# k+=1
#cv2.destroyAllWindows()
return out_vec, final_state