-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinput_data.py
112 lines (91 loc) · 4.76 KB
/
input_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tensorflow as tf
import os
import numpy as np
import random
img_rows = 224
img_cols = 224
fac = 8
def _corrupt_brightness(image, mask, count):
"""Radnomly applies a random brightness change."""
cond_brightness = tf.cast(tf.random_uniform(
[], maxval=2, dtype=tf.int32), tf.bool)
image = tf.cond(cond_brightness, lambda: tf.image.random_hue(
image, 0.1), lambda: tf.identity(image))
return image, mask, count
def _corrupt_contrast(image, mask, count):
"""Randomly applies a random contrast change."""
cond_contrast = tf.cast(tf.random_uniform(
[], maxval=2, dtype=tf.int32), tf.bool)
image = tf.cond(cond_contrast, lambda: tf.image.random_contrast(
image, 0.2, 1.8), lambda: tf.identity(image))
return image, mask, count
def _corrupt_saturation(image, mask, count):
"""Randomly applies a random saturation change."""
cond_saturation = tf.cast(tf.random_uniform(
[], maxval=2, dtype=tf.int32), tf.bool)
image = tf.cond(cond_saturation, lambda: tf.image.random_saturation(
image, 0.2, 1.8), lambda: tf.identity(image))
return image, mask, count
def parse_records(recordfile):
feature = {'train/image': tf.FixedLenFeature([], tf.string),
'train/label': tf.FixedLenFeature([], tf.string),
'train/count': tf.FixedLenFeature([], tf.int64)}
features = tf.parse_single_example(recordfile, feature)
image = tf.reshape(tf.decode_raw(features['train/image'], tf.float32),[224,224,3])
image = image - tf.constant([103.99, 116.779, 123.68])
image = tf.image.resize_images(image, [img_rows, img_cols])
label = tf.reshape(tf.decode_raw(features['train/label'], tf.float32),[224,224,1])
label = tf.image.resize_images(label, [img_rows//fac, img_cols//fac])
count = tf.reshape(tf.cast(features['train/count'], tf.int32), [1])
# count = tf.reshape(tf.decode_raw(features['train/count'], tf.float32),[1]) # shape
return image,label,count
def _flip_left_right(image, mask, count):
"""Randomly flips image and mask left or right in accord."""
seed = random.random()
image = tf.image.random_flip_left_right(image, seed=seed)
mask = tf.image.random_flip_left_right(mask, seed=seed)
return image, mask, count
def _crop_random(image, mask):
"""Randomly crops image and mask in accord."""
seed = random.random()
cond_crop_image = tf.cast(tf.random_uniform(
[], maxval=2, dtype=tf.int32, seed=seed), tf.bool)
cond_crop_mask = tf.cast(tf.random_uniform(
[], maxval=2, dtype=tf.int32, seed=seed), tf.bool)
image = tf.cond(cond_crop_image, lambda: tf.random_crop(
image, [int(img_rows * 0.85), int(img_cols * 0.85), 3], seed=seed), lambda: tf.identity(image))
mask = tf.cond(cond_crop_mask, lambda: tf.random_crop(
mask, [int(img_rows//fac * 0.85), int(img_cols//fac * 0.85), 1], seed=seed), lambda: tf.identity(mask))
image = tf.expand_dims(image, axis=0)
mask = tf.expand_dims(mask, axis=0)
image = tf.image.resize_images(image, [img_rows, img_cols])
mask = tf.image.resize_images(mask, [img_rows//fac, img_cols//fac])
image = tf.squeeze(image, axis=0)
mask = tf.squeeze(mask, axis=0)
return image, mask
# performing operations on the batch of examples of tfrecord file
def input_data(TFRecordfile = '/home/saivinay/Documents/jipmer-crowd-analysis/shanghai_dataset/train.tfrecords',batch_size = 8, augment = True, num_threads=2, prefetch =30):
train_dataset = tf.data.TFRecordDataset(TFRecordfile)
train_dataset = train_dataset.map(parse_records,num_parallel_calls=num_threads)
if augment:
train_dataset = train_dataset.map(_corrupt_brightness,
num_parallel_calls=num_threads).prefetch(prefetch)
train_dataset = train_dataset.map(_corrupt_contrast,
num_parallel_calls=num_threads).prefetch(prefetch)
train_dataset = train_dataset.map(_corrupt_saturation,
num_parallel_calls=num_threads).prefetch(prefetch)
# train_dataset = train_dataset.map(_crop_random,
# num_parallel_calls=num_threads).prefetch(prefetch)
train_dataset = train_dataset.map(_flip_left_right,
num_parallel_calls=num_threads).prefetch(prefetch)
train_dataset = train_dataset.shuffle(prefetch).repeat()
train_dataset = train_dataset.batch(batch_size)
return train_dataset.make_one_shot_iterator()
if __name__ == '__main__':
iterator = input_data()
images = iterator.get_next()
with tf.Session() as sess:
while True:
listi = sess.run(images)
print(listi[0].shape)
print(listi[1].shape)