-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathutils.py
58 lines (42 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
def save_moons_plot(epoch, best_model, dataset):
# generate some examples
best_model.eval()
with torch.no_grad():
x_synth = best_model.sample(500).detach().cpu().numpy()
fig = plt.figure()
ax = fig.add_subplot(121)
ax.plot(dataset.val.x[:, 0], dataset.val.x[:, 1], '.')
ax.set_title('Real data')
ax = fig.add_subplot(122)
ax.plot(x_synth[:, 0], x_synth[:, 1], '.')
ax.set_title('Synth data')
try:
os.makedirs('plots')
except OSError:
pass
plt.savefig('plots/plot_{:03d}.png'.format(epoch))
plt.close()
batch_size = 100
fixed_noise = torch.Tensor(batch_size, 28 * 28).normal_()
y = torch.arange(batch_size).unsqueeze(-1) % 10
y_onehot = torch.FloatTensor(batch_size, 10)
y_onehot.zero_()
y_onehot.scatter_(1, y, 1)
def save_images(epoch, best_model, cond):
best_model.eval()
with torch.no_grad():
if cond:
imgs = best_model.sample(batch_size, noise=fixed_noise, cond_inputs=y_onehot).detach().cpu()
else:
imgs = best_model.sample(batch_size, noise=fixed_noise).detach().cpu()
imgs = torch.sigmoid(imgs.view(batch_size, 1, 28, 28))
try:
os.makedirs('images')
except OSError:
pass
torchvision.utils.save_image(imgs, 'images/img_{:03d}.png'.format(epoch), nrow=10)