Skip to content

Latest commit

 

History

History
30 lines (22 loc) · 835 Bytes

README.md

File metadata and controls

30 lines (22 loc) · 835 Bytes

ml-math

This is not a Machine Learning framework.

This is an implementation of fundamental mathematics of ML (specifically, Neural Networks) just for fun.

Run

$ python main.py

Contents

  • main.py - training experiment: architecture and hyperparameters
  • activation.py - activation functions and their derivatives
  • algebra.py - vector and matrix operations
  • data.csv - Iris dataset for training/evaluation
  • data.py - data loading, shuffling, normalisation
  • metrics.py - evaluation metrics and loss functions
  • propagation.py - backpropagation algorithm
  • train.py - parameter initialisation and model training

To-do (maybe)

  • Train/evaluation data split
  • Stochastic gradient descent
  • More activation functions
  • Softmax
  • Regularisation
  • Refactor all the things
  • Optimise all the things