diff --git a/v0.2.8/404.html b/v0.2.8/404.html new file mode 100644 index 0000000000..4fba71c338 --- /dev/null +++ b/v0.2.8/404.html @@ -0,0 +1,83 @@ + + + + + + + +Page not found (404) • chevron + + + + + + + + + + Skip to contents + + +
+
+
+ +Content not found. Please use links in the navbar. + +
+
+ + + +
+ + + + + + + diff --git a/v0.2.8/CODE_OF_CONDUCT.html b/v0.2.8/CODE_OF_CONDUCT.html new file mode 100644 index 0000000000..4b5b5288d1 --- /dev/null +++ b/v0.2.8/CODE_OF_CONDUCT.html @@ -0,0 +1,126 @@ + +Contributor Covenant Code of Conduct • chevron + Skip to contents + + +
+
+
+ +
+ +
+

Our Pledge

+

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation.

+

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

+
+
+

Our Standards

+

Examples of behavior that contributes to a positive environment for our community include:

+
  • Demonstrating empathy and kindness toward other people
  • +
  • Being respectful of differing opinions, viewpoints, and experiences
  • +
  • Giving and gracefully accepting constructive feedback
  • +
  • Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
  • +
  • Focusing on what is best not just for us as individuals, but for the overall community
  • +

Examples of unacceptable behavior include:

+
  • The use of sexualized language or imagery, and sexual attention or advances of any kind
  • +
  • Trolling, insulting or derogatory comments, and personal or political attacks
  • +
  • Public or private harassment
  • +
  • Publishing others’ private information, such as a physical or email address, without their explicit permission
  • +
  • Other conduct which could reasonably be considered inappropriate in a professional setting
  • +
+
+

Enforcement Responsibilities

+

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

+

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

+
+
+

Scope

+

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

+
+
+

Enforcement

+

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly and fairly.

+

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

+
+
+

Enforcement Guidelines

+

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

+
+

1. Correction

+

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

+

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

+
+
+

2. Warning

+

Community Impact: A violation through a single incident or series of actions.

+

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

+
+
+

3. Temporary Ban

+

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

+

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

+
+
+

4. Permanent Ban

+

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

+

Consequence: A permanent ban from any sort of public interaction within the community.

+
+
+
+

Attribution

+

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

+

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

+

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

+
+
+ +
+ + +
+ + + + + + + diff --git a/v0.2.8/CONTRIBUTING.html b/v0.2.8/CONTRIBUTING.html new file mode 100644 index 0000000000..57f3e1b8f7 --- /dev/null +++ b/v0.2.8/CONTRIBUTING.html @@ -0,0 +1,177 @@ + +Contribution Guidelines • chevron + Skip to contents + + +
+
+
+ +
+ +

🙏 Thank you for taking the time to contribute!

+

Your input is deeply valued, whether an issue, a pull request, or even feedback, regardless of size, content or scope.

+ +
+

Getting started

+

Please refer the project documentation for a brief introduction. Please also see other articles within the project documentation for additional information.

+
+
+

Code of Conduct

+

A Code of Conduct governs this project. Participants and contributors are expected to follow the rules outlined therein.

+
+
+

License

+

All your contributions will be covered by this project’s license.

+
+
+

Issues

+

We use GitHub to track issues, feature requests, and bugs. Before submitting a new issue, please check if the issue has already been reported. If the issue already exists, please upvote the existing issue 👍.

+

For new feature requests, please elaborate on the context and the benefit the feature will have for users, developers, or other relevant personas.

+
+
+

Pull requests

+
+

GitHub Flow

+

This repository uses the GitHub Flow model for collaboration. To submit a pull request:

+
  1. +

    Create a branch

    +

    Please see the branch naming convention below. If you don’t have write access to this repository, please fork it.

    +
  2. +
  3. +

    Make changes

    +

    Make sure your code

    +
    • passes all checks imposed by GitHub Actions
    • +
    • is well documented
    • +
    • is well tested with unit tests sufficiently covering the changes introduced
    • +
  4. +
  5. +

    Create a pull request (PR)

    +

    In the pull request description, please link the relevant issue (if any), provide a detailed description of the change, and include any assumptions.

    +
  6. +
  7. Address review comments, if any

  8. +
  9. +

    Post approval

    +

    Merge your PR if you have write access. Otherwise, the reviewer will merge the PR on your behalf.

    +
  10. +
  11. +

    Pat yourself on the back

    +

    Congratulations! 🎉 You are now an official contributor to this project! We are grateful for your contribution.

    +
  12. +
+
+

Branch naming convention

+

Suppose your changes are related to a current issue in the current project; please name your branch as follows: <issue_id>_<short_description>. Please use underscore (_) as a delimiter for word separation. For example, 420_fix_ui_bug would be a suitable branch name if your change is resolving and UI-related bug reported in issue number 420 in the current project.

+

If your change affects multiple repositories, please name your branches as follows: <issue_id>_<issue_repo>_<short description>. For example, 69_awesomeproject_fix_spelling_error would reference issue 69 reported in project awesomeproject and aims to resolve one or more spelling errors in multiple (likely related) repositories.

+
+
+

+monorepo and staged.dependencies +

+

Sometimes you might need to change upstream dependent package(s) to be able to submit a meaningful change. We are using staged.dependencies functionality to simulate a monorepo behavior. The dependency configuration is already specified in this project’s staged_dependencies.yaml file. You need to name the feature branches appropriately. This is the only exception from the branch naming convention described above.

+

Please refer to the staged.dependencies package documentation for more details.

+
+
+
+

Coding guidelines

+

This repository follows some unified processes and standards adopted by its maintainers to ensure software development is carried out consistently within teams and cohesively across other repositories.

+
+

Style guide

+

This repository follows the standard tidyverse style guide and uses lintr for lint checks. Customized lint configurations are available in this repository’s .lintr file.

+
+
+

Dependency management

+

Lightweight is the right weight. This repository follows tinyverse recommedations of limiting dependencies to minimum.

+
+
+

Dependency version management

+

If the code is not compatible with all (!) historical versions of a given dependenct package, it is required to specify minimal version in the DESCRIPTION file. In particular: if the development version requires (imports) the development version of another package - it is required to put abc (>= 1.2.3.9000).

+
+
+ +
+

R & package versions

+

We continuously test our packages against the newest R version along with the most recent dependencies from CRAN and BioConductor. We recommend that your working environment is also set up in the same way. You can find the details about the R version and packages used in the R CMD check GitHub Action execution log - there is a step that prints out the R sessionInfo().

+

If you discover bugs on older R versions or with an older set of dependencies, please create the relevant bug reports.

+
+
+

pre-commit

+

We highly recommend that you use the pre-commit tool combined with R hooks for pre-commit to execute some of the checks before committing and pushing your changes.

+

Pre-commit hooks are already available in this repository’s .pre-commit-config.yaml file.

+
+
+
+
+

Recognition model

+

As mentioned previously, all contributions are deeply valued and appreciated. While all contribution data is available as part of the repository insights, to recognize a significant contribution and hence add the contributor to the package authors list, the following rules are enforced:

+
  • Minimum 5% of lines of code authored* (determined by git blame query) OR
  • +
  • Being at the top 5 contributors in terms of number of commits OR lines added OR lines removed*
  • +

*Excluding auto-generated code, including but not limited to roxygen comments or renv.lock files.

+

The package maintainer also reserves the right to adjust the criteria to recognize contributions.

+
+
+

Questions

+

If you have further questions regarding the contribution guidelines, please contact the package/repository maintainer.

+ +
+
+ +
+ + +
+ + + + + + + diff --git a/v0.2.8/LICENSE-text.html b/v0.2.8/LICENSE-text.html new file mode 100644 index 0000000000..2f9e7df5a3 --- /dev/null +++ b/v0.2.8/LICENSE-text.html @@ -0,0 +1,72 @@ + +License • chevron + Skip to contents + + +
+
+
+ +
Copyright 2022 F. Hoffmann-La Roche AG
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+ +
+ + +
+ + + + + + + diff --git a/v0.2.8/SECURITY.html b/v0.2.8/SECURITY.html new file mode 100644 index 0000000000..446ebc114a --- /dev/null +++ b/v0.2.8/SECURITY.html @@ -0,0 +1,81 @@ + +Security Policy • chevron + Skip to contents + + +
+
+
+ +
+ +
+

Reporting Security Issues

+

If you believe you have found a security vulnerability in any of the repositories in this organization, please report it to us through coordinated disclosure.

+

Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.

+

Instead, please send an email to vulnerability.management[@]roche.com.

+

Please include as much of the information listed below as you can to help us better understand and resolve the issue:

+
  • The type of issue (e.g., buffer overflow, SQL injection, or cross-site scripting)
  • +
  • Full paths of source file(s) related to the manifestation of the issue
  • +
  • The location of the affected source code (tag/branch/commit or direct URL)
  • +
  • Any special configuration required to reproduce the issue
  • +
  • Step-by-step instructions to reproduce the issue
  • +
  • Proof-of-concept or exploit code (if possible)
  • +
  • Impact of the issue, including how an attacker might exploit the issue
  • +

This information will help us triage your report more quickly.

+
+
+

Data Security Standards (DSS)

+

Please make sure that while reporting issues in the form a bug, feature, or pull request, all sensitive information such as PII, PHI, and PCI is completely removed from any text and attachments, including pictures and videos.

+
+
+ +
+ + +
+ + + + + + + diff --git a/v0.2.8/analytics.js b/v0.2.8/analytics.js new file mode 100644 index 0000000000..9d4ec4d0a8 --- /dev/null +++ b/v0.2.8/analytics.js @@ -0,0 +1 @@ +$(document).cookieWall({id:'UA-125641273-1'}); diff --git a/v0.2.8/articles/chevron.html b/v0.2.8/articles/chevron.html new file mode 100644 index 0000000000..7301a3cd76 --- /dev/null +++ b/v0.2.8/articles/chevron.html @@ -0,0 +1,332 @@ + + + + + + + +Introduction to Chevron • chevron + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +
+

Introduction +

+

The chevron R package provides functions to produce +standard tables, listings and graphs (TLGs) used to analyze and report +clinical trials data. The ensemble of function used to produce a +particular output are stored in an S4 object of virtual +class chevron_tlg. Each type of output are associated with +a specific class: chevron_t for tables, +chevron_l for listings and chevron_g for +graphs.

+

Each standard output is associated with one +chevron_tlg object. They contain the following +objects in separate slots:

+
    +
  • A main function also refereed to as +TLG-function.
  • +
  • A preprocess function.
  • +
  • A postprocess function
  • +
+
+

+TLG-functions +

+

The TLG-functions in chevron use other packages +to produce the final outputs, for example rtables and +tern are used to create tables, ggplot2, +lattice, and grid are used to create graphs, +rlistings to create listings.

+

TLG-functions in chevron such as +dmt01_main, aet02_main, +aet02_main have the following properties:

+
    +
  1. they produce a narrow defined output (currently standards in Roche +GDS). Note, that the naming convention +<gds template id>_main indicates that a Roche +GDS defined standard may have different implementations. +Or, alternatively, a GDS template id can be regarded as a +guideline and the function name in chevron as a +standard.
  2. +
  3. have, if possible, few arguments to modify the standard. Generally, +arguments may change the structure of the table (arm variable, which +variables are summarized) and also parameterize the cell content +(i.e. alpha-level for p-value).
  4. +
  5. have always the first argument adam_db which is the +collection of ADaM datasets (ADSL, +ADAE, ADRS, etc.). Please read the The +adam_db Argument vignette in this package for more +details.
  6. +
+
+
+

+preprocessing +

+

The preprocess functions in chevron use +base, dplyr and dunlin packages +to process input data object and turn them into a suitable input for +TLG-functions.

+

preprocess in chevron such as dmt01_pre, +aet02_pre, aet02_pre have the following +properties:

+
    +
  1. they return a list of data.frame object +amenable to processing by a TLG-functions. message.
  2. +
  3. have very few arguments to modify the standard.
  4. +
  5. have always the first argument adam_db which is the +collection of ADaM datasets (ADSL, +ADAE, ADRS, etc.). Please read the The +adam_db Argument vignette in this package for more +details.
  6. +
+

Please note that the ultimate responsible person of the preprocessing +functions is the end user. The provided preprocessing function is only a +template and users could modify depending on their need/data. This +preprocessing function will be printed to allow modification in script +generated in citril.

+
+
+

+postprocessing +

+

By default, the Postprocessing function returns its input or a null +report if the input has no rows. postprocessing +function of a chevron_tlg object must have at least +tlg as formal arguments.

+
+
+
+

Example AET02 +

+

For example, the GDS template aet02 is +implemented in chevron with the chevropn_tlg +objects that have the name aet02.

+

We first load the data as a list of +data.frame, where each table represents a domain.

+
+library(chevron)
+#> Registered S3 method overwritten by 'tern':
+#>   method   from 
+#>   tidy.glm broom
+data(syn_data, package = "chevron")
+

A the aet02 output is then created as follows:

+
+run(aet02, syn_data)
+#>   MedDRA System Organ Class                                    A: Drug X    B: Placebo   C: Combination
+#>     MedDRA Preferred Term                                        (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one adverse event     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Overall total number of events                                   58           59             99      
+#>   cl B.2                                                                                               
+#>     Total number of patients with at least one adverse event   11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>     Total number of events                                         18           15             20      
+#>     dcd B.2.2.3.1                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     dcd B.2.1.2.1                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl D.1                                                                                               
+#>     Total number of patients with at least one adverse event   9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>     Total number of events                                         13           9              19      
+#>     dcd D.1.1.1.1                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   cl A.1                                                                                               
+#>     Total number of patients with at least one adverse event   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>     Total number of events                                         8            11             16      
+#>     dcd A.1.1.1.2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.1                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B.1                                                                                               
+#>     Total number of patients with at least one adverse event   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     Total number of events                                         6            6              12      
+#>     dcd B.1.1.1.1                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                                               
+#>     Total number of patients with at least one adverse event   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     Total number of events                                         6            4              12      
+#>     dcd C.2.1.2.1                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   cl D.2                                                                                               
+#>     Total number of patients with at least one adverse event   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of events                                         3            5              10      
+#>     dcd D.2.1.5.3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   cl C.1                                                                                               
+#>     Total number of patients with at least one adverse event   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     Total number of events                                         4            9              10      
+#>     dcd C.1.1.1.3                                              4 (26.7%)    4 (26.7%)      5 (33.3%)
+

The function associated with a particular slot can be retrieved with +the corresponding method: main, lyt, +preprocess postprocess and +datasets.

+
+main(aet02)
+#> function (adam_db, arm_var = "ACTARM", row_split_var = "AEBODSYS", 
+#>     lbl_overall = NULL, summary_labels = list(all = aet02_label, 
+#>         TOTAL = c(nonunique = "Overall total number of events")), 
+#>     ...) 
+#> {
+#>     assert_all_tablenames(adam_db, "adsl", "adae")
+#>     assert_string(arm_var)
+#>     assert_character(row_split_var, null.ok = TRUE)
+#>     assert_string(lbl_overall, null.ok = TRUE)
+#>     assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), 
+#>         types = list(c("character", "factor")))
+#>     assert_valid_variable(adam_db$adae, c(arm_var, row_split_var, 
+#>         "AEDECOD"), types = list(c("character", "factor")))
+#>     assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, 
+#>         types = list(c("character", "factor")))
+#>     assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var)
+#>     assert_list(summary_labels, null.ok = TRUE)
+#>     assert_subset(names(summary_labels), c("all", "TOTAL", row_split_var))
+#>     assert_subset(unique(unlist(lapply(summary_labels, names))), 
+#>         c("unique", "nonunique", "unique_count"))
+#>     summary_labels <- expand_list(summary_labels, c("TOTAL", 
+#>         row_split_var))
+#>     lbl_overall <- render_safe(lbl_overall)
+#>     lbl_row_split <- var_labels_for(adam_db$adae, row_split_var)
+#>     lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD")
+#>     lyt <- occurrence_lyt(arm_var = arm_var, lbl_overall = lbl_overall, 
+#>         row_split_var = row_split_var, lbl_row_split = lbl_row_split, 
+#>         medname_var = "AEDECOD", lbl_medname_var = lbl_aedecod, 
+#>         summary_labels = summary_labels, count_by = NULL)
+#>     tbl <- build_table(lyt, adam_db$adae, alt_counts_df = adam_db$adsl)
+#>     tbl
+#> }
+#> <bytecode: 0x557118440740>
+#> <environment: namespace:chevron>
+

These are standard functions that can be used on their own.

+
+res <- preprocess(aet02)(syn_data)
+
+# or
+foo <- aet02@preprocess
+res <- foo(syn_data)
+
+str(res, max.level = 0)
+#> List of 13
+
+
+

+chevron_tlg object customization +

+

In some instances it is useful to customize the +chevron_tlg object, for example by changing the pre +processing functions in script generated. Please modify the code +directly inside the pre_fun, and make sure the function +returns a named list of data frames. Please be careful about the +argument names. The default argument of pre functions will +be override by the argument in spec.

+
+
+

Custom chevron_tlg object creation +

+

In some cases, you may want to create a new chevron_tlg +template. To create a chevron_tlg object from scratch, use +the provided constructors corresponding to the desired output:

+ +
+library(rtables)
+library(tern)
+my_template <- chevron_t(
+  main = "<your main function to build the table>",
+  preprocess = "<your pre function to process the data>",
+  postprocess = "<your post function to add custom sorting>"
+)
+
+run(my_template, syn_data)
+

Note that to ensure the correct execution of the run +function, the name of the first argument of the main +function must be adam_db; the input list of +data.frame object to pre-process. The name of the first +argument of the preprocess function must be +adam_db; the input list object to create +TLG output and finally, the name of the first argument of +the postprocess function must be tlg, the +input TableTree object to post-process. Validation criteria +enforce these rules upon creation of a chevron_tlg +object.

+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.2.8/articles/chevron_catalog.html b/v0.2.8/articles/chevron_catalog.html new file mode 100644 index 0000000000..7ca3ee3e01 --- /dev/null +++ b/v0.2.8/articles/chevron_catalog.html @@ -0,0 +1,5366 @@ + + + + + + + +Chevron Catalog • chevron + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +
+

+GENERAL +

+
+

+General Concepts +

+

chevron is a collection of functions to creates tables, +listings, and graphs following Roche standards for clinical trials +reporting. After loading the R packages and the trial data, the output +is to be created by the main function run(...) . Two +arguments object= and adam_db= are always +expected in the function. object= specifies which Roche +Standard Template ID to use. adam_db= specifies the input +dataset. Other mandatory and optional arguments within the +run function vary depending on which template ID is called. +To access which arguments are required and what functions are used in +each template, simply try ?template +(e.g. ?aet01) to see more detailed descriptions and +instructions.

+
+

+1. Input dataset and dataset names +

+

The input dataset expected by the argument adam_db= in +the run(...) function is a collection of ADaM +datasets as a list object. Each ADaM dataset is expected to +be an object of data frame. If the ADaM datasets are read +in individually, user will need to combine them into a list object and +provide the name of the list to adam_db=. Also, each +element in the list are expected to have corresponding ADaM +dataset names. Conventional ADaM dataset names, including +adsl,adex, adae, +adlb,advs,adeg,adcm,admh,adrs, +and adtte, can be picked up by chevron with +one exception.

+
+std_data <- list(adsl = adsl, adae = adae)
+run(object = aet01_nollt, adam_db = std_data)
+
+
+

+2. Expected variables in input analysis +dataset +

+

By default, chevron does not pull any subject-level +information from either adsl or adsub and +merge into the analysis dataset in the underlying preprocessing steps. +The analysis dataset fed into adam_db= is expected to have +all variables required for analysis available.

+
+
+

+3. Character vs Factor +

+

In the output generation, we often need to specify a particular +sorting order of a variable at the time of display. In +chevron, a character variable needs to be factorized with +pre-specified levels to display in order. When encountering cases, for +instance, "ARM A" has an Asian group only while +"ARM B" has both Asian and White groups, it is not able to +produce outputs like the demographic table unless "RACE" is +factorized to provide access to the same level attribute of the variable +"RACE" after the arm split. It is noted that the feature +comes from rtables instead of chevron.

+
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+  mutate(RACE = case_when(
+    ARMCD == "ARM A" ~ "ASIAN",
+    ARMCD == "ARM B" & !.data$RACE %in% c("WHITE", "ASIAN") ~ "ASIAN",
+    TRUE ~ RACE
+  ))
+

Having "RACE" as a character variable rather than a +factor leads to error message showing up as “Error: Error applying +analysis function (var - RACE): Number of rows generated by analysis +function do not match across all columns,” and it is recommended to +convert analysis variable "RACE" to a factor.

+
+run(dmt01, proc_data)
+

To resolve this issue, simply try factorizing the variable +"RACE":

+
+proc_data$adsl$RACE <- as.factor(proc_data$adsl$RACE)
+run(dmt01, proc_data)
+#>                                        A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                          (N=15)       (N=15)         (N=15)          (N=45)   
+#>   ————————————————————————————————————————————————————————————————————————————————————————————
+#>   Age (yr)                                                                                    
+#>     n                                      15           15             15              45     
+#>     Mean (SD)                          31.3 (5.3)   35.1 (9.0)     36.6 (6.4)      34.3 (7.3) 
+#>     Median                                31.0         35.0           35.0            34.0    
+#>     Min - Max                           24 - 40      24 - 57        24 - 49         24 - 57   
+#>   Age Group                                                                                   
+#>     n                                      15           15             15              45     
+#>     <65                                15 (100%)    15 (100%)      15 (100%)       45 (100%)  
+#>   Sex                                                                                         
+#>     n                                      15           15             15              45     
+#>     Male                               3 (20.0%)    7 (46.7%)      5 (33.3%)       15 (33.3%) 
+#>     Female                             12 (80.0%)   8 (53.3%)      10 (66.7%)      30 (66.7%) 
+#>   Ethnicity                                                                                   
+#>     n                                      15           15             15              45     
+#>     HISPANIC OR LATINO                 2 (13.3%)        0              0            2 (4.4%)  
+#>     NOT HISPANIC OR LATINO             13 (86.7%)   15 (100%)      13 (86.7%)      41 (91.1%) 
+#>     NOT REPORTED                           0            0          2 (13.3%)        2 (4.4%)  
+#>   RACE                                                                                        
+#>     n                                      15           15             15              45     
+#>     AMERICAN INDIAN OR ALASKA NATIVE       0            0           1 (6.7%)        1 (2.2%)  
+#>     ASIAN                              15 (100%)    13 (86.7%)     8 (53.3%)       36 (80.0%) 
+#>     BLACK OR AFRICAN AMERICAN              0            0          4 (26.7%)        4 (8.9%)  
+#>     WHITE                                  0        2 (13.3%)      2 (13.3%)        4 (8.9%)
+
+
+

+4. Testing the codes for plot generation +

+

The run function when calling a Graphics Template ID +returns a gTree object which will be used in the downstream +workflow for output generation. There are two alternative approaches to +rendering the plot: (1) having draw = TRUE in the +run function to enable the generated plot to be +automatically created and viewed via the Plots tab, and (2) +calling the function grid.draw from the package +grid which can be utilized to render the plot for viewing +and testing purpose. See example below:

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+
+# method 1
+run(kmg01, proc_data, dataset = "adtte", draw = TRUE)
+
+# method 2
+res <- run(kmg01, proc_data, dataset = "adtte")
+grid::grid.newpage()
+grid::grid.draw(res)
+
+
+
+

+General Control Arguments +

+
+

+1. lbl_overall: Column of Total +

+

The generic argument lbl_overall controls whether the +column of total will be produced or not. lbl_overall = NULL +suppresses the total, lbl_overall = "All Patients" produces +the total.

+
+
+

+2. Column counts: N=xxx +

+

Column counts are displayed by default. There is no generic argument +controlling whether the count of unique number of subjects (N=xxx) will +be displayed in the column header or not. Users are allowed to customize +the display of N=xxx by forcing +display_columncounts = FALSE to wipe column counts away +during the postprocessing (with precautions and it is not +recommended).

+
+tbl <- run(dmt01, syn_data) # table with column counts
+tbl@col_info@display_columncounts <- FALSE
+tbl # no column counts now
+#>                                        A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                          (N=15)       (N=15)         (N=15)          (N=45)   
+#>   ————————————————————————————————————————————————————————————————————————————————————————————
+#>   Age (yr)                                                                                    
+#>     n                                      15           15             15              45     
+#>     Mean (SD)                          31.3 (5.3)   35.1 (9.0)     36.6 (6.4)      34.3 (7.3) 
+#>     Median                                31.0         35.0           35.0            34.0    
+#>     Min - Max                           24 - 40      24 - 57        24 - 49         24 - 57   
+#>   Age Group                                                                                   
+#>     n                                      15           15             15              45     
+#>     <65                                15 (100%)    15 (100%)      15 (100%)       45 (100%)  
+#>   Sex                                                                                         
+#>     n                                      15           15             15              45     
+#>     Male                               3 (20.0%)    7 (46.7%)      5 (33.3%)       15 (33.3%) 
+#>     Female                             12 (80.0%)   8 (53.3%)      10 (66.7%)      30 (66.7%) 
+#>   Ethnicity                                                                                   
+#>     n                                      15           15             15              45     
+#>     HISPANIC OR LATINO                 2 (13.3%)        0              0            2 (4.4%)  
+#>     NOT HISPANIC OR LATINO             13 (86.7%)   15 (100%)      13 (86.7%)      41 (91.1%) 
+#>     NOT REPORTED                           0            0          2 (13.3%)        2 (4.4%)  
+#>   RACE                                                                                        
+#>     n                                      15           15             15              45     
+#>     AMERICAN INDIAN OR ALASKA NATIVE       0        2 (13.3%)       1 (6.7%)        3 (6.7%)  
+#>     ASIAN                              8 (53.3%)    10 (66.7%)     8 (53.3%)       26 (57.8%) 
+#>     BLACK OR AFRICAN AMERICAN          4 (26.7%)     1 (6.7%)      4 (26.7%)       9 (20.0%)  
+#>     WHITE                              3 (20.0%)    2 (13.3%)      2 (13.3%)       7 (15.6%)
+
+
+
+
+

+TABLES +

+
+

+Safety Summary (AET01) +

+
+

+1. Safety Summary +

+

The aet01 template produces the +standard safety summary.

+
+run(aet01, syn_data, arm_var = "ARM")
+#>                                                                A: Drug X    B: Placebo   C: Combination
+#>                                                                  (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one AE                13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of AEs                                              58           59             99      
+#>   Total number of deaths                                       2 (13.3%)    4 (26.7%)      3 (20.0%)   
+#>   Total number of patients withdrawn from study due to an AE       0            0           1 (6.7%)   
+#>   Total number of patients with at least one                                                           
+#>     AE with fatal outcome                                      8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>     Serious AE                                                 12 (80.0%)   12 (80.0%)     11 (73.3%)  
+#>     Serious AE leading to withdrawal from treatment                0            0          2 (13.3%)   
+#>     Serious AE leading to dose modification/interruption       4 (26.7%)    3 (20.0%)      4 (26.7%)   
+#>     Related Serious AE                                         8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>     AE leading to withdrawal from treatment                    2 (13.3%)    3 (20.0%)      3 (20.0%)   
+#>     AE leading to dose modification/interruption               6 (40.0%)    9 (60.0%)      11 (73.3%)  
+#>     Related AE                                                 11 (73.3%)   10 (66.7%)     13 (86.7%)  
+#>     Related AE leading to withdrawal from treatment                0        3 (20.0%)          0       
+#>     Related AE leading to dose modification/interruption        1 (6.7%)    4 (26.7%)      9 (60.0%)   
+#>     Severe AE (at greatest intensity)                          11 (73.3%)   10 (66.7%)     12 (80.0%)
+
+
+

+2. Safety Summary with Modified Rows +

+

Analyses under “Total number of patients with at least one” can be +removed, added, or modified by editing the parameter +anl_vars. An analysis here is an abbreviated name of the +analysis of interest, and supported by a variable in ADAE +derived under the condition of interest. The defined analyses currently +include "FATAL", "SER", "SERWD", +"SERDSM", "RELSER", "WD", +"DSM", "REL", "RELWD", +"RELDSM", and "SEV". When modification is +made, analyses must all be listed in the argument anl_vars. +The example below shows adding the customized analysis +"RELCTC35".

+
+proc_data <- syn_data
+proc_data$adae <- proc_data$adae %>%
+  filter(.data$ANL01FL == "Y") %>%
+  mutate(
+    FATAL = with_label(.data$AESDTH == "Y", "AE with fatal outcome"),
+    SER = with_label(.data$AESER == "Y", "Serious AE"),
+    SEV = with_label(.data$ASEV == "SEVERE", "Severe AE (at greatest intensity)"),
+    REL = with_label(.data$AREL == "Y", "Related AE"),
+    WD = with_label(.data$AEACN == "DRUG WITHDRAWN", "AE leading to withdrawal from treatment"),
+    DSM = with_label(
+      .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
+      "AE leading to dose modification/interruption"
+    ),
+    SERWD = with_label(.data$SER & .data$WD, "Serious AE leading to withdrawal from treatment"),
+    SERDSM = with_label(.data$SER & .data$DSM, "Serious AE leading to dose modification/interruption"),
+    RELSER = with_label(.data$SER & .data$REL, "Related Serious AE"),
+    RELWD = with_label(.data$REL & .data$WD, "Related AE leading to withdrawal from treatment"),
+    RELDSM = with_label(.data$REL & .data$DSM, "Related AE leading to dose modification/interruption"),
+    CTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5"), "Grade 3-5 AE"),
+    CTC45 = with_label(.data$ATOXGR %in% c("4", "5"), "Grade 4/5 AE"),
+    RELCTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5") & .data$AEREL == "Y", "Related Grade 3-5")
+  )
+
+proc_data$adsl <- proc_data$adsl %>%
+  mutate(DCSREAS = reformat(.data$DCSREAS, missing_rule))
+
+run(aet01, proc_data, anl_vars = list(safety_var = c("FATAL", "SER", "RELSER", "RELCTC35")), auto_pre = FALSE)
+#>                                                                A: Drug X    B: Placebo   C: Combination
+#>                                                                  (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one AE                13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of AEs                                              58           59             99      
+#>   Total number of deaths                                       2 (13.3%)    4 (26.7%)      3 (20.0%)   
+#>   Total number of patients withdrawn from study due to an AE       0            0           1 (6.7%)   
+#>   Total number of patients with at least one                                                           
+#>     AE with fatal outcome                                      8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>     Serious AE                                                 12 (80.0%)   12 (80.0%)     11 (73.3%)  
+#>     Related Serious AE                                         8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>     Related Grade 3-5                                          11 (73.3%)   10 (66.7%)     12 (80.0%)
+
+
+
+

+Safety Summary (Adverse Events of Special Interest) +(AET01_AESI) +

+
+

+1. Safety Summary (Adverse Events of Special +Interest) +

+

The aet01_aesi template produces the +standard safety summary for adverse events of special interest.

+
+run(aet01_aesi, syn_data)
+#>                                                                                   A: Drug X    B: Placebo   C: Combination
+#>                                                                                     (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one AE                                   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of AEs                                                                 58           59             99      
+#>   Total number of patients with at least one AE by worst grade                                                            
+#>     Grade 1                                                                           0         1 (6.7%)       1 (6.7%)   
+#>     Grade 2                                                                        1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>     Grade 3                                                                        1 (6.7%)    2 (13.3%)       1 (6.7%)   
+#>     Grade 4                                                                       3 (20.0%)    2 (13.3%)      2 (13.3%)   
+#>     Grade 5 (fatal outcome)                                                       8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>   Total number of patients with study drug withdrawn due to AE                    2 (13.3%)    3 (20.0%)      3 (20.0%)   
+#>   Total number of patients with dose modified/interrupted due to AE               6 (40.0%)    9 (60.0%)      11 (73.3%)  
+#>   Total number of patients with treatment received for AE                         10 (66.7%)   10 (66.7%)     14 (93.3%)  
+#>   Total number of patients with all non-fatal AEs resolved                        9 (60.0%)    10 (66.7%)     12 (80.0%)  
+#>   Total number of patients with at least one unresolved or ongoing non-fatal AE   10 (66.7%)   9 (60.0%)      14 (93.3%)  
+#>   Total number of patients with at least one serious AE                           12 (80.0%)   12 (80.0%)     11 (73.3%)  
+#>   Total number of patients with at least one related AE                           11 (73.3%)   10 (66.7%)     13 (86.7%)
+
+
+

+2. Safety Summary (Adverse Events of Special Interest) +(optional lines) +

+

Additional analyses can be added with the argument +aesi_vars, please type ?aet01_aesi in console +to find out the list of all pre-defined optional analyses in the +HELP.

+
+run(aet01_aesi, syn_data, aesi_vars = c("RESLWD", "RELSER"))
+#>                                                                                   A: Drug X    B: Placebo   C: Combination
+#>                                                                                     (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one AE                                   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of AEs                                                                 58           59             99      
+#>   Total number of patients with at least one AE by worst grade                                                            
+#>     Grade 1                                                                           0         1 (6.7%)       1 (6.7%)   
+#>     Grade 2                                                                        1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>     Grade 3                                                                        1 (6.7%)    2 (13.3%)       1 (6.7%)   
+#>     Grade 4                                                                       3 (20.0%)    2 (13.3%)      2 (13.3%)   
+#>     Grade 5 (fatal outcome)                                                       8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>   Total number of patients with study drug withdrawn due to AE                    2 (13.3%)    3 (20.0%)      3 (20.0%)   
+#>   Total number of patients with dose modified/interrupted due to AE               6 (40.0%)    9 (60.0%)      11 (73.3%)  
+#>   Total number of patients with treatment received for AE                         10 (66.7%)   10 (66.7%)     14 (93.3%)  
+#>   Total number of patients with all non-fatal AEs resolved                        9 (60.0%)    10 (66.7%)     12 (80.0%)  
+#>   Total number of patients with at least one unresolved or ongoing non-fatal AE   10 (66.7%)   9 (60.0%)      14 (93.3%)  
+#>   Total number of patients with at least one serious AE                           12 (80.0%)   12 (80.0%)     11 (73.3%)  
+#>   Total number of patients with at least one related AE                           11 (73.3%)   10 (66.7%)     13 (86.7%)  
+#>     No. of patients with serious, related AE                                      8 (53.3%)    8 (53.3%)      10 (66.7%)
+
+
+

+3. Safety Summary (Adverse Events of Special Interest) (for +studies with multiple drugs) +

+

For studies with more than one study drug, users need to define the +analyses in adae and add to the argument +aesi_vars following the example above. No pre-defined +analysis is available at this moment.

+
+
+
+

+Adverse Events (AET02) +

+
+

+1. Adverse Events +

+
    +
  1. The template aet02 produces the standard adverse event +summary by MedDRA system organ class and preferred term.
  2. +
  3. The template does not include the column of total as default. The +‘All Patients’ column can be added with the argument +lbl_overall = "All Patients".
  4. +
  5. Missing values in "AEBODSYS", and +"AEDECOD" are labeled as +No Coding Available.
  6. +
+
+run(aet02, syn_data)
+#>   MedDRA System Organ Class                                    A: Drug X    B: Placebo   C: Combination
+#>     MedDRA Preferred Term                                        (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one adverse event     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Overall total number of events                                   58           59             99      
+#>   cl B.2                                                                                               
+#>     Total number of patients with at least one adverse event   11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>     Total number of events                                         18           15             20      
+#>     dcd B.2.2.3.1                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     dcd B.2.1.2.1                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl D.1                                                                                               
+#>     Total number of patients with at least one adverse event   9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>     Total number of events                                         13           9              19      
+#>     dcd D.1.1.1.1                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   cl A.1                                                                                               
+#>     Total number of patients with at least one adverse event   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>     Total number of events                                         8            11             16      
+#>     dcd A.1.1.1.2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.1                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B.1                                                                                               
+#>     Total number of patients with at least one adverse event   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     Total number of events                                         6            6              12      
+#>     dcd B.1.1.1.1                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                                               
+#>     Total number of patients with at least one adverse event   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     Total number of events                                         6            4              12      
+#>     dcd C.2.1.2.1                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   cl D.2                                                                                               
+#>     Total number of patients with at least one adverse event   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of events                                         3            5              10      
+#>     dcd D.2.1.5.3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   cl C.1                                                                                               
+#>     Total number of patients with at least one adverse event   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     Total number of events                                         4            9              10      
+#>     dcd C.1.1.1.3                                              4 (26.7%)    4 (26.7%)      5 (33.3%)
+
+
+

+2. Adverse Events (with High-level Term) +

+

The syntax below displays adverse events by MedDRA system organ +class, high-level term and preferred term.

+
+run(aet02, syn_data, row_split_var = c("AEBODSYS", "AEHLT"))
+#>   MedDRA System Organ Class                                                                              
+#>     High Level Term                                              A: Drug X    B: Placebo   C: Combination
+#>       MedDRA Preferred Term                                        (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one adverse event       13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Overall total number of events                                     58           59             99      
+#>   cl B.2                                                                                                 
+#>     Total number of patients with at least one adverse event     11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>     Total number of events                                           18           15             20      
+#>     hlt B.2.2.3                                                                                          
+#>       Total number of patients with at least one adverse event   8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>       Total number of events                                         9            7              13      
+#>       dcd B.2.2.3.1                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     hlt B.2.1.2                                                                                          
+#>       Total number of patients with at least one adverse event   5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>       Total number of events                                         9            8              7       
+#>       dcd B.2.1.2.1                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl D.1                                                                                                 
+#>     Total number of patients with at least one adverse event     9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>     Total number of events                                           13           9              19      
+#>     hlt D.1.1.1                                                                                          
+#>       Total number of patients with at least one adverse event   4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>       Total number of events                                         5            7              11      
+#>       dcd D.1.1.1.1                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     hlt D.1.1.4                                                                                          
+#>       Total number of patients with at least one adverse event   6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>       Total number of events                                         8            2              8       
+#>       dcd D.1.1.4.2                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   cl A.1                                                                                                 
+#>     Total number of patients with at least one adverse event     7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>     Total number of events                                           8            11             16      
+#>     hlt A.1.1.1                                                                                          
+#>       Total number of patients with at least one adverse event   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>       Total number of events                                         8            11             16      
+#>       dcd A.1.1.1.2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>       dcd A.1.1.1.1                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B.1                                                                                                 
+#>     Total number of patients with at least one adverse event     5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     Total number of events                                           6            6              12      
+#>     hlt B.1.1.1                                                                                          
+#>       Total number of patients with at least one adverse event   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>       Total number of events                                         6            6              12      
+#>       dcd B.1.1.1.1                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                                                 
+#>     Total number of patients with at least one adverse event     6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     Total number of events                                           6            4              12      
+#>     hlt C.2.1.2                                                                                          
+#>       Total number of patients with at least one adverse event   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>       Total number of events                                         6            4              12      
+#>       dcd C.2.1.2.1                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   cl D.2                                                                                                 
+#>     Total number of patients with at least one adverse event     2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of events                                           3            5              10      
+#>     hlt D.2.1.5                                                                                          
+#>       Total number of patients with at least one adverse event   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>       Total number of events                                         3            5              10      
+#>       dcd D.2.1.5.3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   cl C.1                                                                                                 
+#>     Total number of patients with at least one adverse event     4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     Total number of events                                           4            9              10      
+#>     hlt C.1.1.1                                                                                          
+#>       Total number of patients with at least one adverse event   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>       Total number of events                                         4            9              10      
+#>       dcd C.1.1.1.3                                              4 (26.7%)    4 (26.7%)      5 (33.3%)
+
+
+

+3. Adverse Events (Preferred Terms only) +

+

The syntax below displays adverse events by preferred term only.

+
+run(aet02, syn_data, row_split_var = NULL)
+#>                                                              A: Drug X    B: Placebo   C: Combination
+#>   MedDRA Preferred Term                                        (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one adverse event   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Overall total number of events                                 58           59             99      
+#>   dcd B.2.2.3.1                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>   dcd B.1.1.1.1                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   dcd C.2.1.2.1                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   dcd A.1.1.1.2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>   dcd B.2.1.2.1                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   dcd D.1.1.1.1                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>   dcd D.1.1.4.2                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   dcd D.2.1.5.3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   dcd C.1.1.1.3                                              4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>   dcd A.1.1.1.1                                              3 (20.0%)     1 (6.7%)      6 (40.0%)
+
+
+
+

+Adverse Events by Greatest +Intensity(AET03) +

+
+

+1. Adverse Events by Greatest Intensity +

+

This aet03 template produces the +standard adverse event by greatest intensity summary

+
+run(aet03, syn_data)
+#>   MedDRA System Organ Class   A: Drug X    B: Placebo   C: Combination
+#>     MedDRA Preferred Term       (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————
+#>   - Any Intensity -           13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   MILD                            0         1 (6.7%)       1 (6.7%)   
+#>   MODERATE                    2 (13.3%)    3 (20.0%)      2 (13.3%)   
+#>   SEVERE                      11 (73.3%)   10 (66.7%)     12 (80.0%)  
+#>   cl B.2                                                              
+#>     - Any Intensity -         11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>     MILD                      6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>     MODERATE                  5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>     dcd B.2.2.3.1                                                     
+#>       - Any Intensity -       8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>       MILD                    8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     dcd B.2.1.2.1                                                     
+#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>       MODERATE                5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl D.1                                                              
+#>     - Any Intensity -         9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>     MODERATE                  5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>     SEVERE                    4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.1.1                                                     
+#>       - Any Intensity -       4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>       SEVERE                  4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                                     
+#>       - Any Intensity -       6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>       MODERATE                6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   cl A.1                                                              
+#>     - Any Intensity -         7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>     MILD                      2 (13.3%)        0          4 (26.7%)   
+#>     MODERATE                  5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.2                                                     
+#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>       MODERATE                5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.1                                                     
+#>       - Any Intensity -       3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>       MILD                    3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B.1                                                              
+#>     - Any Intensity -         5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     SEVERE                    5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     dcd B.1.1.1.1                                                     
+#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>       SEVERE                  5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                              
+#>     - Any Intensity -         6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     MODERATE                  6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     dcd C.2.1.2.1                                                     
+#>       - Any Intensity -       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>       MODERATE                6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   cl D.2                                                              
+#>     - Any Intensity -         2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     MILD                      2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     dcd D.2.1.5.3                                                     
+#>       - Any Intensity -       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>       MILD                    2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   cl C.1                                                              
+#>     - Any Intensity -         4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     SEVERE                    4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     dcd C.1.1.1.3                                                     
+#>       - Any Intensity -       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>       SEVERE                  4 (26.7%)    4 (26.7%)      5 (33.3%)
+
+
+
+

+Adverse Events by Highest NCI CTCAE Grade +(AET04) +

+
+

+1. Adverse Events by Highest NCI CTCAE +Grade +

+
    +
  1. The aet04 template produces the +standard adverse event by highest NCI CTCAE grade +summary.
  2. +
  3. By default, this template includes the grouped grades of ‘Grade 1-2’ +and ‘Grade 3-4’.
  4. +
  5. By default this template removes the rows with 0 count.
  6. +
  7. If a treatment group does not have any adverse event, the treatment +group is automatically displayed providing that it is defined in +ADSL.
  8. +
+
+run(aet04, syn_data)
+#>   MedDRA System Organ Class                                                           
+#>     MedDRA Preferred Term                     A: Drug X    B: Placebo   C: Combination
+#>                               Grade             (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   - Any adverse events -                                                              
+#>                               - Any Grade -   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>                               Grade 1-2        1 (6.7%)    2 (13.3%)      2 (13.3%)   
+#>                               1                   0         1 (6.7%)       1 (6.7%)   
+#>                               2                1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      3 (20.0%)   
+#>                               3                1 (6.7%)    2 (13.3%)       1 (6.7%)   
+#>                               4               3 (20.0%)    2 (13.3%)      2 (13.3%)   
+#>                               Grade 5         8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>   cl B.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>                               Grade 1-2       6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               1               6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               Grade 3-4       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>     dcd B.2.2.3.1                                                                     
+#>                               - Any Grade -   8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               Grade 1-2       8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               1               8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     dcd B.2.1.2.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               Grade 3-4       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl D.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>                               Grade 3-4       5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>                               3               5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>                               Grade 5         4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.1.1                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>                               Grade 5         4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                                                     
+#>                               - Any Grade -   6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               Grade 3-4       6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               3               6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>   cl A.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               Grade 1-2       7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               1               2 (13.3%)        0          4 (26.7%)   
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.2                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 1-2       5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     dcd A.1.1.1.1                                                                     
+#>                               - Any Grade -   3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               Grade 1-2       3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               1               3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 5         5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     dcd B.1.1.1.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 5         5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     dcd C.2.1.2.1                                                                     
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>   cl D.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>     dcd D.2.1.5.3                                                                     
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>   cl C.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>     dcd C.1.1.1.3                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)
+
+
+

+2. Adverse Events by Highest NCI CTCAE Grade +(Fill in of Grades) +

+

If, for some preferred terms, not all grades occur but all grades +should be displayed, this can be achieved by specifying the argument +prune_0 = FALSE.

+
+run(aet04, syn_data, prune_0 = FALSE)
+#>   MedDRA System Organ Class                                                           
+#>     MedDRA Preferred Term                     A: Drug X    B: Placebo   C: Combination
+#>                               Grade             (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   - Any adverse events -                                                              
+#>                               - Any Grade -   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>                               Grade 1-2        1 (6.7%)    2 (13.3%)      2 (13.3%)   
+#>                               1                   0         1 (6.7%)       1 (6.7%)   
+#>                               2                1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      3 (20.0%)   
+#>                               3                1 (6.7%)    2 (13.3%)       1 (6.7%)   
+#>                               4               3 (20.0%)    2 (13.3%)      2 (13.3%)   
+#>                               Grade 5         8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>   cl B.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>                               Grade 1-2       6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               1               6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-4       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd B.2.2.3.1                                                                     
+#>                               - Any Grade -   8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               Grade 1-2       8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               1               8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd B.2.1.2.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>   cl D.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4       5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>                               3               5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>                               4                   0            0              0       
+#>                               Grade 5         4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.1.1                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5         4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                                                     
+#>                               - Any Grade -   6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4       6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               3               6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>   cl A.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               Grade 1-2       7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               1               2 (13.3%)        0          4 (26.7%)   
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd A.1.1.1.2                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 1-2       5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               1                   0            0              0       
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd A.1.1.1.1                                                                     
+#>                               - Any Grade -   3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               Grade 1-2       3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               1               3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>   cl B.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5         5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     dcd B.1.1.1.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5         5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               1                   0            0              0       
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd C.2.1.2.1                                                                     
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               1                   0            0              0       
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>   cl D.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>     dcd D.2.1.5.3                                                                     
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-4           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               Grade 5             0            0              0       
+#>   cl C.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               3                   0            0              0       
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 5             0            0              0       
+#>     dcd C.1.1.1.3                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-4       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               3                   0            0              0       
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 5             0            0              0
+
+
+

+3. Adverse Events by Highest NCI CTCAE Grade +with modified grouping of grade +

+

Collapsing grade 3-4 with grade 5, can be achieved by modifying the +definition of grade groups in the argument +grade_groups.

+
+grade_groups <- list(
+  "Grade 1-2" = c("1", "2"),
+  "Grade 3-5" = c("3", "4", "5")
+)
+
+run(aet04, syn_data, grade_groups = grade_groups, prune_0 = FALSE)
+#>   MedDRA System Organ Class                                                           
+#>     MedDRA Preferred Term                     A: Drug X    B: Placebo   C: Combination
+#>                               Grade             (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   - Any adverse events -                                                              
+#>                               - Any Grade -   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>                               Grade 1-2        1 (6.7%)    2 (13.3%)      2 (13.3%)   
+#>                               1                   0         1 (6.7%)       1 (6.7%)   
+#>                               2                1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>                               Grade 3-5       12 (80.0%)   12 (80.0%)     13 (86.7%)  
+#>                               3                1 (6.7%)    2 (13.3%)       1 (6.7%)   
+#>                               4               3 (20.0%)    2 (13.3%)      2 (13.3%)   
+#>                               5               8 (53.3%)    8 (53.3%)      10 (66.7%)  
+#>   cl B.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   11 (73.3%)   8 (53.3%)      10 (66.7%)  
+#>                               Grade 1-2       6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               1               6 (40.0%)    2 (13.3%)      5 (33.3%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-5       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd B.2.2.3.1                                                                     
+#>                               - Any Grade -   8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               Grade 1-2       8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               1               8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd B.2.1.2.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               3               5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>   cl D.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       9 (60.0%)    5 (33.3%)      11 (73.3%)  
+#>                               3               5 (33.3%)     1 (6.7%)      4 (26.7%)   
+#>                               4                   0            0              0       
+#>                               5               4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.1.1                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5               4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     dcd D.1.1.4.2                                                                     
+#>                               - Any Grade -   6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               3               6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>   cl A.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               Grade 1-2       7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>                               1               2 (13.3%)        0          4 (26.7%)   
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd A.1.1.1.2                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 1-2       5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               1                   0            0              0       
+#>                               2               5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd A.1.1.1.1                                                                     
+#>                               - Any Grade -   3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               Grade 1-2       3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               1               3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>   cl B.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5               5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     dcd B.1.1.1.1                                                                     
+#>                               - Any Grade -   5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5               5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>   cl C.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               1                   0            0              0       
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd C.2.1.2.1                                                                     
+#>                               - Any Grade -   6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 1-2       6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               1                   0            0              0       
+#>                               2               6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>   cl D.2                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>     dcd D.2.1.5.3                                                                     
+#>                               - Any Grade -   2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               Grade 1-2       2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               1               2 (13.3%)    5 (33.3%)      7 (46.7%)   
+#>                               2                   0            0              0       
+#>                               Grade 3-5           0            0              0       
+#>                               3                   0            0              0       
+#>                               4                   0            0              0       
+#>                               5                   0            0              0       
+#>   cl C.1                                                                              
+#>     - Overall -                                                                       
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               3                   0            0              0       
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               5                   0            0              0       
+#>     dcd C.1.1.1.3                                                                     
+#>                               - Any Grade -   4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               Grade 1-2           0            0              0       
+#>                               1                   0            0              0       
+#>                               2                   0            0              0       
+#>                               Grade 3-5       4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               3                   0            0              0       
+#>                               4               4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>                               5                   0            0              0
+
+
+
+

+Adverse Event Rate Adjusted for Patient-Years at Risk - +First Occurrence (AET05) +

+
+

+1. Adverse Event Rate Adjusted for Patient-Years at Risk - +First Occurrence +

+
    +
  1. The aet05 template produces the +standard adverse event rate adjusted for patient-years at risk summary +considering first occurrence only.
  2. +
  3. By default, all adsaftte parameter codes containing the +string "TTE" are included in the output. Users are expected +to filter the parameter(s) of interest from input safety time-to-event +dataset in pre-processing if needed.
  4. +
  5. In the input safety time-to-event dataset, in the censoring variable +CNSR, 0 indicates the occurrence of an event +of interest and 1 denotes censoring.
  6. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "AETTE1", "adsaftte")
+
+run(aet05, proc_data)
+#>                                                     A: Drug X       B: Placebo      C: Combination
+#>                                                      (N=15)           (N=15)            (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Time to first occurrence of any adverse event                                                   
+#>     Total patient-years at risk                       31.0              9.0              22.0     
+#>     Number of adverse events observed                   5               13                8       
+#>     AE rate per 100 patient-years                     16.13           143.75            36.30     
+#>     95% CI                                        (1.99, 30.27)   (65.61, 221.89)   (11.15, 61.45)
+
+
+

+2. Adverse Event Rate Adjusted for Patient-Years at Risk - +First Occurrence (setting type of confidence interval) +

+
    +
  1. The type of the confidence interval for rate can be specified by the +argument conf_type. Options include normal +(default), normal_log and exact.
  2. +
  3. The confidence interval can be adjusted by the argument +conf_level.
  4. +
+
+run(aet05, syn_data, conf_level = 0.90, conf_type = "exact")
+#>                                                              A: Drug X         B: Placebo      C: Combination 
+#>                                                               (N=15)             (N=15)            (N=15)     
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Time to first occurrence of a grade 3-5 adverse event                                                       
+#>     Total patient-years at risk                                10.3               6.3                8.3      
+#>     Number of adverse events observed                           12                 14                13       
+#>     AE rate per 100 patient-years                             116.36             223.74            156.98     
+#>     90% CI                                                (67.14, 188.53)   (135.27, 349.78)   (92.86, 249.59)
+#>   Time to first occurrence of any adverse event                                                               
+#>     Total patient-years at risk                                31.0               9.0               22.0      
+#>     Number of adverse events observed                            5                 13                 8       
+#>     AE rate per 100 patient-years                              16.13             143.75             36.30     
+#>     90% CI                                                 (6.36, 33.91)    (85.03, 228.55)    (18.06, 65.50) 
+#>   Time to first occurrence of any serious adverse event                                                       
+#>     Total patient-years at risk                                32.9               7.6                9.4      
+#>     Number of adverse events observed                            4                 14                13       
+#>     AE rate per 100 patient-years                              12.15             183.83            137.79     
+#>     90% CI                                                 (4.15, 27.80)    (111.14, 287.38)   (81.50, 219.06)
+
+
+
+

+Adverse Event Rate Adjusted for Patient-Years at Risk - All +Occurrences (AET05_ALL) +

+
+

+1. Adverse Event Rate Adjusted for Patient-Years at Risk - +All Occurrences +

+
    +
  1. The aet05_all template produces the +standard adverse event rate adjusted for patient-years at risk summary +considering all occurrences.
  2. +
  3. By default, all adsaftte parameter codes containing the +string "TOT" and the parameter code "AEREPTTE" +are required. "TOT" parameters store the number of +occurrences of adverse event of interests. Parameter code +"AEREPTTE" stores the time to end of adverse event +reporting period in years that contribute to the summary of “total +patient-years at risk” in the output. Users are expected to filter +parameters of interest from input analysis dataset in pre-processing, if +needed.
  4. +
  5. In the input safety time-to-event dataset, in the censoring variable +CNSR, 0 indicates the occurrence of an event +of interest and 1 denotes censoring.
  6. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "AETOT1" | PARAMCD == "AEREPTTE", "adsaftte")
+
+run(aet05_all, proc_data)
+#>                                                  A: Drug X        B: Placebo      C: Combination 
+#>                                                    (N=15)           (N=15)            (N=15)     
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————
+#>   Number of occurrences of any adverse event                                                     
+#>     Total patient-years at risk                     44.4             44.2              44.4      
+#>     Number of adverse events observed                29               49                56       
+#>     AE rate per 100 patient-years                  65.32            110.76            126.15     
+#>     95% CI                                     (41.54, 89.09)   (79.75, 141.77)   (93.11, 159.19)
+
+
+

+2. Adverse Event Rate Adjusted for Patient-Years at Risk - +All Occurrences (setting type of confidence interval) +

+
    +
  1. The type of the confidence interval for rate can be specified by the +argument conf_type. Options include normal +(default), normal_log, exact, and +byar.
  2. +
  3. The confidence interval can be adjusted by the argument +conf_level.
  4. +
+
+run(aet05_all, syn_data, conf_level = 0.90, conf_type = "exact")
+#>                                                           A: Drug X         B: Placebo       C: Combination 
+#>                                                             (N=15)            (N=15)             (N=15)     
+#>   ——————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Number of occurrences of a grade 3-5 adverse event                                                        
+#>     Total patient-years at risk                              44.4              44.2               44.4      
+#>     Number of adverse events observed                         65                54                 95       
+#>     AE rate per 100 patient-years                           146.40            122.06             214.00     
+#>     90% CI                                             (117.86, 179.97)   (96.08, 153.12)   (179.22, 253.80)
+#>   Number of occurrences of any adverse event                                                                
+#>     Total patient-years at risk                              44.4              44.2               44.4      
+#>     Number of adverse events observed                         29                49                 56       
+#>     AE rate per 100 patient-years                           65.32             110.76             126.15     
+#>     90% CI                                              (46.73, 89.06)    (86.08, 140.53)   (99.76, 157.60) 
+#>   Number of occurrences of any serious adverse event                                                        
+#>     Total patient-years at risk                              44.4              44.2               44.4      
+#>     Number of adverse events observed                         9                 36                 60       
+#>     AE rate per 100 patient-years                           20.27              81.37             135.16     
+#>     90% CI                                              (10.57, 35.37)    (60.42, 107.46)   (107.80, 167.58)
+
+
+
+

+Most Common (>=5%) Adverse Events +(AET10) +

+
+

+1. Most Common (>=5%) Adverse Events +

+
    +
  1. The aet10 template produces the +standard most common adverse events occurring with relative frequency +>=5% output.
  2. +
+
+run(aet10, syn_data)
+#>                           A: Drug X   B: Placebo   C: Combination
+#>   MedDRA Preferred Term    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————
+#>   dcd B.2.2.3.1           8 (53.3%)   6 (40.0%)      7 (46.7%)   
+#>   dcd B.1.1.1.1           5 (33.3%)   6 (40.0%)      8 (53.3%)   
+#>   dcd C.2.1.2.1           6 (40.0%)   4 (26.7%)      8 (53.3%)   
+#>   dcd A.1.1.1.2           5 (33.3%)   6 (40.0%)      6 (40.0%)   
+#>   dcd B.2.1.2.1           5 (33.3%)   6 (40.0%)      5 (33.3%)   
+#>   dcd D.1.1.1.1           4 (26.7%)   4 (26.7%)      7 (46.7%)   
+#>   dcd D.1.1.4.2           6 (40.0%)   2 (13.3%)      7 (46.7%)   
+#>   dcd D.2.1.5.3           2 (13.3%)   5 (33.3%)      7 (46.7%)   
+#>   dcd C.1.1.1.3           4 (26.7%)   4 (26.7%)      5 (33.3%)   
+#>   dcd A.1.1.1.1           3 (20.0%)    1 (6.7%)      6 (40.0%)
+
+
+

+2. Most Common (>=8%) Adverse Events (setting +threshold) +

+

To modify the threshold for displaying preferred terms, this can be +achieved by providing the threshold to the argument +atleast.

+
+run(aet10, syn_data, atleast = 0.08)
+#>                           A: Drug X   B: Placebo   C: Combination
+#>   MedDRA Preferred Term    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————
+#>   dcd B.2.2.3.1           8 (53.3%)   6 (40.0%)      7 (46.7%)   
+#>   dcd B.1.1.1.1           5 (33.3%)   6 (40.0%)      8 (53.3%)   
+#>   dcd C.2.1.2.1           6 (40.0%)   4 (26.7%)      8 (53.3%)   
+#>   dcd A.1.1.1.2           5 (33.3%)   6 (40.0%)      6 (40.0%)   
+#>   dcd B.2.1.2.1           5 (33.3%)   6 (40.0%)      5 (33.3%)   
+#>   dcd D.1.1.1.1           4 (26.7%)   4 (26.7%)      7 (46.7%)   
+#>   dcd D.1.1.4.2           6 (40.0%)   2 (13.3%)      7 (46.7%)   
+#>   dcd D.2.1.5.3           2 (13.3%)   5 (33.3%)      7 (46.7%)   
+#>   dcd C.1.1.1.3           4 (26.7%)   4 (26.7%)      5 (33.3%)   
+#>   dcd A.1.1.1.1           3 (20.0%)    1 (6.7%)      6 (40.0%)
+
+
+
+

+Absolute Value and Change from Baseline by Visit +(CFBT01) +

+
+

+1. Absolute Value and Change from Baseline by +Visit +

+
    +
  1. By default, the cfbt01 template displays analysis value +(AVAL) and absolute change from baseline (CHG) +for each visit.
  2. +
  3. The template does not include the column of total by default.
  4. +
  5. Each parameter is presented on a separate page.
  6. +
  7. The absolute change from baseline at baseline value is not +displayed.
  8. +
+
+proc_data <- log_filter(
+  syn_data,
+  PARAMCD %in% c("DIABP", "SYSBP"), "advs"
+)
+run(cfbt01, proc_data, dataset = "advs")
+#>                                          A: Drug X                            B: Placebo                          C: Combination           
+#>                                                   Change from                          Change from                           Change from   
+#>                               Value at Visit       Baseline        Value at Visit        Baseline        Value at Visit        Baseline    
+#>   Analysis Visit                  (N=15)            (N=15)             (N=15)             (N=15)             (N=15)             (N=15)     
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                                                                                                 
+#>     SCREENING                                                                                                                              
+#>       n                             15                 0                 15                 0                  15                 0        
+#>       Mean (SD)              94.385 (17.067)        NE (NE)       106.381 (20.586)       NE (NE)        106.468 (12.628)       NE (NE)     
+#>       Median                      94.933              NE              111.133               NE              108.359               NE       
+#>       Min - Max               55.71 - 122.00        NE - NE        60.21 - 131.91        NE - NE         83.29 - 127.17        NE - NE     
+#>     BASELINE                                                                                                                               
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              96.133 (22.458)                      108.111 (15.074)                      103.149 (19.752)                   
+#>       Median                      93.328                              108.951                               102.849                        
+#>       Min - Max               60.58 - 136.59                       83.44 - 131.62                        66.05 - 136.55                    
+#>     WEEK 1 DAY 8                                                                                                                           
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              98.977 (21.359)    2.844 (28.106)    104.110 (16.172)   -4.001 (21.867)    100.826 (19.027)   -2.323 (25.018) 
+#>       Median                      92.447            -4.066            107.703             3.227             103.058             -2.476     
+#>       Min - Max               67.55 - 130.37    -32.82 - 47.68     70.91 - 132.89     -52.94 - 28.63     70.04 - 128.68     -55.15 - 41.81 
+#>     WEEK 2 DAY 15                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              99.758 (14.477)    3.626 (21.189)    97.473 (17.296)    -10.638 (20.831)   94.272 (16.961)    -8.877 (27.229) 
+#>       Median                     101.498             1.731             99.501             -9.727             96.789            -10.155     
+#>       Min - Max               71.98 - 122.81    -39.50 - 47.57     53.80 - 125.81     -55.15 - 25.26     63.45 - 117.47     -73.10 - 46.54 
+#>     WEEK 3 DAY 22                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              99.101 (26.109)    2.968 (34.327)    91.984 (16.925)    -16.127 (21.881)   94.586 (13.560)    -8.563 (21.713) 
+#>       Median                     101.146            -0.271             91.244            -14.384             98.398            -16.075     
+#>       Min - Max               47.68 - 162.22    -47.87 - 76.64     67.80 - 119.72     -53.06 - 22.52     73.50 - 115.43     -37.90 - 32.66 
+#>     WEEK 4 DAY 29                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              103.400 (22.273)   7.267 (30.740)    96.467 (19.451)    -11.644 (25.922)   108.338 (18.417)    5.189 (21.881) 
+#>       Median                      98.168             2.510             97.385            -16.793            107.555             7.966      
+#>       Min - Max               63.09 - 148.25    -38.43 - 61.90     63.35 - 131.57     -57.11 - 48.13     68.78 - 132.52     -33.96 - 41.50 
+#>     WEEK 5 DAY 36                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              93.222 (18.536)    -2.911 (28.873)   97.890 (20.701)    -10.221 (27.593)   95.317 (16.401)    -7.832 (19.827) 
+#>       Median                      90.799            -3.385             99.049            -11.319             93.876             -4.665     
+#>       Min - Max               63.55 - 139.11    -48.63 - 47.35     69.47 - 137.64     -54.38 - 37.85     71.91 - 138.54     -44.47 - 29.11 
+#>   Systolic Blood Pressure                                                                                                                  
+#>     SCREENING                                                                                                                              
+#>       n                             15                 0                 15                 0                  15                 0        
+#>       Mean (SD)              154.073 (33.511)       NE (NE)       157.840 (34.393)       NE (NE)        152.407 (22.311)       NE (NE)     
+#>       Median                     156.169              NE              161.670               NE              149.556               NE       
+#>       Min - Max               78.31 - 210.70        NE - NE        79.76 - 210.40        NE - NE        108.21 - 184.88        NE - NE     
+#>     BASELINE                                                                                                                               
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              145.925 (28.231)                     152.007 (28.664)                      154.173 (26.317)                   
+#>       Median                     142.705                              157.698                               155.282                        
+#>       Min - Max               85.21 - 195.68                       98.90 - 194.62                        86.65 - 192.68                    
+#>     WEEK 1 DAY 8                                                                                                                           
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              156.509 (21.097)   10.584 (34.598)   147.480 (33.473)   -4.527 (48.895)    143.319 (30.759)   -10.854 (34.553)
+#>       Median                     160.711             5.802            155.030             2.758             145.548             -5.636     
+#>       Min - Max              126.84 - 185.53    -53.28 - 91.52     85.22 - 189.88     -77.34 - 90.98     90.37 - 191.58     -65.71 - 49.04 
+#>     WEEK 2 DAY 15                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              144.202 (33.676)   -1.723 (27.067)   136.892 (30.178)   -15.115 (37.794)   148.622 (27.088)   -5.551 (44.670) 
+#>       Median                     144.253             5.325            142.679            -14.083            147.102            -11.512     
+#>       Min - Max               62.56 - 203.66    -53.89 - 44.16     70.34 - 174.27     -83.07 - 62.39    108.82 - 200.23    -69.54 - 113.59 
+#>     WEEK 3 DAY 22                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              154.887 (35.374)   8.962 (38.455)    149.761 (28.944)   -2.247 (44.835)    150.460 (21.352)   -3.712 (37.984) 
+#>       Median                     158.938            17.191            155.044             -1.796            156.505             -7.606     
+#>       Min - Max              112.32 - 218.83    -47.28 - 96.18     84.42 - 192.92    -110.20 - 94.02     94.70 - 180.41     -74.91 - 72.74 
+#>     WEEK 4 DAY 29                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              150.159 (32.249)   4.234 (32.965)    156.043 (22.863)    4.036 (42.494)    145.714 (22.980)   -8.458 (33.175) 
+#>       Median                     145.506             3.754            149.094            -10.000            150.797            -14.432     
+#>       Min - Max               69.37 - 210.43    -89.16 - 54.32    113.57 - 195.10     -71.44 - 77.75    106.91 - 188.09     -41.95 - 65.16 
+#>     WEEK 5 DAY 36                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              155.964 (30.945)   10.039 (42.252)   156.387 (35.274)    4.380 (51.782)    143.592 (33.170)   -10.581 (44.799)
+#>       Median                     158.142             1.448            164.552             7.060             148.501             -2.385     
+#>       Min - Max              110.61 - 212.47    -53.91 - 90.45     63.28 - 198.79    -131.34 - 86.84     92.18 - 191.05     -78.77 - 64.35
+
+
+

+2. Absolute Value and Change from Baseline by Visit without +Screening +

+

The skip arguments controls which visit values should +not be displayed. For instance, to mask the changes from baseline during +the “SCREENING” and “BASELINE” visits.

+
+run(cfbt01, proc_data, dataset = "advs", skip = list(CHG = c("SCREENING", "BASELINE")))
+#>                                          A: Drug X                            B: Placebo                          C: Combination           
+#>                                                   Change from                          Change from                           Change from   
+#>                               Value at Visit       Baseline        Value at Visit        Baseline        Value at Visit        Baseline    
+#>   Analysis Visit                  (N=15)            (N=15)             (N=15)             (N=15)             (N=15)             (N=15)     
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                                                                                                 
+#>     SCREENING                                                                                                                              
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              94.385 (17.067)                      106.381 (20.586)                      106.468 (12.628)                   
+#>       Median                      94.933                              111.133                               108.359                        
+#>       Min - Max               55.71 - 122.00                       60.21 - 131.91                        83.29 - 127.17                    
+#>     BASELINE                                                                                                                               
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              96.133 (22.458)                      108.111 (15.074)                      103.149 (19.752)                   
+#>       Median                      93.328                              108.951                               102.849                        
+#>       Min - Max               60.58 - 136.59                       83.44 - 131.62                        66.05 - 136.55                    
+#>     WEEK 1 DAY 8                                                                                                                           
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              98.977 (21.359)    2.844 (28.106)    104.110 (16.172)   -4.001 (21.867)    100.826 (19.027)   -2.323 (25.018) 
+#>       Median                      92.447            -4.066            107.703             3.227             103.058             -2.476     
+#>       Min - Max               67.55 - 130.37    -32.82 - 47.68     70.91 - 132.89     -52.94 - 28.63     70.04 - 128.68     -55.15 - 41.81 
+#>     WEEK 2 DAY 15                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              99.758 (14.477)    3.626 (21.189)    97.473 (17.296)    -10.638 (20.831)   94.272 (16.961)    -8.877 (27.229) 
+#>       Median                     101.498             1.731             99.501             -9.727             96.789            -10.155     
+#>       Min - Max               71.98 - 122.81    -39.50 - 47.57     53.80 - 125.81     -55.15 - 25.26     63.45 - 117.47     -73.10 - 46.54 
+#>     WEEK 3 DAY 22                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              99.101 (26.109)    2.968 (34.327)    91.984 (16.925)    -16.127 (21.881)   94.586 (13.560)    -8.563 (21.713) 
+#>       Median                     101.146            -0.271             91.244            -14.384             98.398            -16.075     
+#>       Min - Max               47.68 - 162.22    -47.87 - 76.64     67.80 - 119.72     -53.06 - 22.52     73.50 - 115.43     -37.90 - 32.66 
+#>     WEEK 4 DAY 29                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              103.400 (22.273)   7.267 (30.740)    96.467 (19.451)    -11.644 (25.922)   108.338 (18.417)    5.189 (21.881) 
+#>       Median                      98.168             2.510             97.385            -16.793            107.555             7.966      
+#>       Min - Max               63.09 - 148.25    -38.43 - 61.90     63.35 - 131.57     -57.11 - 48.13     68.78 - 132.52     -33.96 - 41.50 
+#>     WEEK 5 DAY 36                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              93.222 (18.536)    -2.911 (28.873)   97.890 (20.701)    -10.221 (27.593)   95.317 (16.401)    -7.832 (19.827) 
+#>       Median                      90.799            -3.385             99.049            -11.319             93.876             -4.665     
+#>       Min - Max               63.55 - 139.11    -48.63 - 47.35     69.47 - 137.64     -54.38 - 37.85     71.91 - 138.54     -44.47 - 29.11 
+#>   Systolic Blood Pressure                                                                                                                  
+#>     SCREENING                                                                                                                              
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              154.073 (33.511)                     157.840 (34.393)                      152.407 (22.311)                   
+#>       Median                     156.169                              161.670                               149.556                        
+#>       Min - Max               78.31 - 210.70                       79.76 - 210.40                       108.21 - 184.88                    
+#>     BASELINE                                                                                                                               
+#>       n                             15                                   15                                    15                          
+#>       Mean (SD)              145.925 (28.231)                     152.007 (28.664)                      154.173 (26.317)                   
+#>       Median                     142.705                              157.698                               155.282                        
+#>       Min - Max               85.21 - 195.68                       98.90 - 194.62                        86.65 - 192.68                    
+#>     WEEK 1 DAY 8                                                                                                                           
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              156.509 (21.097)   10.584 (34.598)   147.480 (33.473)   -4.527 (48.895)    143.319 (30.759)   -10.854 (34.553)
+#>       Median                     160.711             5.802            155.030             2.758             145.548             -5.636     
+#>       Min - Max              126.84 - 185.53    -53.28 - 91.52     85.22 - 189.88     -77.34 - 90.98     90.37 - 191.58     -65.71 - 49.04 
+#>     WEEK 2 DAY 15                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              144.202 (33.676)   -1.723 (27.067)   136.892 (30.178)   -15.115 (37.794)   148.622 (27.088)   -5.551 (44.670) 
+#>       Median                     144.253             5.325            142.679            -14.083            147.102            -11.512     
+#>       Min - Max               62.56 - 203.66    -53.89 - 44.16     70.34 - 174.27     -83.07 - 62.39    108.82 - 200.23    -69.54 - 113.59 
+#>     WEEK 3 DAY 22                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              154.887 (35.374)   8.962 (38.455)    149.761 (28.944)   -2.247 (44.835)    150.460 (21.352)   -3.712 (37.984) 
+#>       Median                     158.938            17.191            155.044             -1.796            156.505             -7.606     
+#>       Min - Max              112.32 - 218.83    -47.28 - 96.18     84.42 - 192.92    -110.20 - 94.02     94.70 - 180.41     -74.91 - 72.74 
+#>     WEEK 4 DAY 29                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              150.159 (32.249)   4.234 (32.965)    156.043 (22.863)    4.036 (42.494)    145.714 (22.980)   -8.458 (33.175) 
+#>       Median                     145.506             3.754            149.094            -10.000            150.797            -14.432     
+#>       Min - Max               69.37 - 210.43    -89.16 - 54.32    113.57 - 195.10     -71.44 - 77.75    106.91 - 188.09     -41.95 - 65.16 
+#>     WEEK 5 DAY 36                                                                                                                          
+#>       n                             15                15                 15                 15                 15                 15       
+#>       Mean (SD)              155.964 (30.945)   10.039 (42.252)   156.387 (35.274)    4.380 (51.782)    143.592 (33.170)   -10.581 (44.799)
+#>       Median                     158.142             1.448            164.552             7.060             148.501             -2.385     
+#>       Min - Max              110.61 - 212.47    -53.91 - 90.45     63.28 - 198.79    -131.34 - 86.84     92.18 - 191.05     -78.77 - 64.35
+
+
+
+

+3. Absolute Value by Visit +

+

To display only the absolute value, specify +summaryvars = "AVAL".

+
+run(cfbt01, proc_data, dataset = "advs", summaryvars = "AVAL")
+#>                                 A: Drug X          B: Placebo       C: Combination 
+#>                               Value at Visit     Value at Visit     Value at Visit 
+#>   Analysis Visit                  (N=15)             (N=15)             (N=15)     
+#>   —————————————————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                                         
+#>     SCREENING                                                                      
+#>       n                             15                 15                 15       
+#>       Mean (SD)              94.385 (17.067)    106.381 (20.586)   106.468 (12.628)
+#>       Median                      94.933            111.133            108.359     
+#>       Min - Max               55.71 - 122.00     60.21 - 131.91     83.29 - 127.17 
+#>     BASELINE                                                                       
+#>       n                             15                 15                 15       
+#>       Mean (SD)              96.133 (22.458)    108.111 (15.074)   103.149 (19.752)
+#>       Median                      93.328            108.951            102.849     
+#>       Min - Max               60.58 - 136.59     83.44 - 131.62     66.05 - 136.55 
+#>     WEEK 1 DAY 8                                                                   
+#>       n                             15                 15                 15       
+#>       Mean (SD)              98.977 (21.359)    104.110 (16.172)   100.826 (19.027)
+#>       Median                      92.447            107.703            103.058     
+#>       Min - Max               67.55 - 130.37     70.91 - 132.89     70.04 - 128.68 
+#>     WEEK 2 DAY 15                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              99.758 (14.477)    97.473 (17.296)    94.272 (16.961) 
+#>       Median                     101.498             99.501             96.789     
+#>       Min - Max               71.98 - 122.81     53.80 - 125.81     63.45 - 117.47 
+#>     WEEK 3 DAY 22                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              99.101 (26.109)    91.984 (16.925)    94.586 (13.560) 
+#>       Median                     101.146             91.244             98.398     
+#>       Min - Max               47.68 - 162.22     67.80 - 119.72     73.50 - 115.43 
+#>     WEEK 4 DAY 29                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              103.400 (22.273)   96.467 (19.451)    108.338 (18.417)
+#>       Median                      98.168             97.385            107.555     
+#>       Min - Max               63.09 - 148.25     63.35 - 131.57     68.78 - 132.52 
+#>     WEEK 5 DAY 36                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              93.222 (18.536)    97.890 (20.701)    95.317 (16.401) 
+#>       Median                      90.799             99.049             93.876     
+#>       Min - Max               63.55 - 139.11     69.47 - 137.64     71.91 - 138.54 
+#>   Systolic Blood Pressure                                                          
+#>     SCREENING                                                                      
+#>       n                             15                 15                 15       
+#>       Mean (SD)              154.073 (33.511)   157.840 (34.393)   152.407 (22.311)
+#>       Median                     156.169            161.670            149.556     
+#>       Min - Max               78.31 - 210.70     79.76 - 210.40    108.21 - 184.88 
+#>     BASELINE                                                                       
+#>       n                             15                 15                 15       
+#>       Mean (SD)              145.925 (28.231)   152.007 (28.664)   154.173 (26.317)
+#>       Median                     142.705            157.698            155.282     
+#>       Min - Max               85.21 - 195.68     98.90 - 194.62     86.65 - 192.68 
+#>     WEEK 1 DAY 8                                                                   
+#>       n                             15                 15                 15       
+#>       Mean (SD)              156.509 (21.097)   147.480 (33.473)   143.319 (30.759)
+#>       Median                     160.711            155.030            145.548     
+#>       Min - Max              126.84 - 185.53     85.22 - 189.88     90.37 - 191.58 
+#>     WEEK 2 DAY 15                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              144.202 (33.676)   136.892 (30.178)   148.622 (27.088)
+#>       Median                     144.253            142.679            147.102     
+#>       Min - Max               62.56 - 203.66     70.34 - 174.27    108.82 - 200.23 
+#>     WEEK 3 DAY 22                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              154.887 (35.374)   149.761 (28.944)   150.460 (21.352)
+#>       Median                     158.938            155.044            156.505     
+#>       Min - Max              112.32 - 218.83     84.42 - 192.92     94.70 - 180.41 
+#>     WEEK 4 DAY 29                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              150.159 (32.249)   156.043 (22.863)   145.714 (22.980)
+#>       Median                     145.506            149.094            150.797     
+#>       Min - Max               69.37 - 210.43    113.57 - 195.10    106.91 - 188.09 
+#>     WEEK 5 DAY 36                                                                  
+#>       n                             15                 15                 15       
+#>       Mean (SD)              155.964 (30.945)   156.387 (35.274)   143.592 (33.170)
+#>       Median                     158.142            164.552            148.501     
+#>       Min - Max              110.61 - 212.47     63.28 - 198.79     92.18 - 191.05
+
+
+

+Concomitant Medications by Medication Class and Preferred +Name (CMT01A) +

+
+

+1. Concomitant Medications by Medication Class and Preferred +Name +

+
    +
  1. The cmt01a template displays +concomitant medications by ATC Level 2 and Preferred Name +by default.
  2. +
  3. The template does not include the column of total by default.
  4. +
  5. The template sort medication class and preferred name by +alphabetical order by default.
  6. +
+
+run(cmt01a, syn_data)
+#>   ATC Level 2 Text                                         A: Drug X    B: Placebo   C: Combination
+#>     Other Treatment                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one treatment     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of treatments                                   58           59             99      
+#>   ATCCLAS2 A                                                                                       
+#>     Total number of patients with at least one treatment   10 (66.7%)   11 (73.3%)     12 (80.0%)  
+#>     Total number of treatments                                 15           21             28      
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
+#>     medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
+#>   ATCCLAS2 A p2                                                                                    
+#>     Total number of patients with at least one treatment   5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     Total number of treatments                                 6            8              8       
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>   ATCCLAS2 B                                                                                       
+#>     Total number of patients with at least one treatment   12 (80.0%)   10 (66.7%)     14 (93.3%)  
+#>     Total number of treatments                                 30           30             52      
+#>     medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>     medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
+#>   ATCCLAS2 B p2                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 B p3                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 C                                                                                       
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p2                                                                                    
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p3                                                                                    
+#>     Total number of patients with at least one treatment   4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of treatments                                 5            5              12      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)
+
+
+

+2. Concomitant Medications by Medication Class and Preferred +Name (changing ATC class level) +

+
+run(cmt01a, syn_data, row_split_var = "ATC1")
+#>   ATC Level 1 Text                                         A: Drug X    B: Placebo   C: Combination
+#>     Other Treatment                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one treatment     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of treatments                                   58           59             99      
+#>   ATCCLAS1 A                                                                                       
+#>     Total number of patients with at least one treatment   10 (66.7%)   11 (73.3%)     12 (80.0%)  
+#>     Total number of treatments                                 15           21             28      
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
+#>     medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
+#>   ATCCLAS1 A p2                                                                                    
+#>     Total number of patients with at least one treatment   5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     Total number of treatments                                 6            8              8       
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>   ATCCLAS1 B                                                                                       
+#>     Total number of patients with at least one treatment   12 (80.0%)   10 (66.7%)     14 (93.3%)  
+#>     Total number of treatments                                 30           30             52      
+#>     medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>     medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
+#>   ATCCLAS1 B p2                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS1 B p3                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS1 C                                                                                       
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS1 C p2                                                                                    
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS1 C p3                                                                                    
+#>     Total number of patients with at least one treatment   4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of treatments                                 5            5              12      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)
+
+
+

+3. Concomitant Medications by Medication Class and Preferred +Name (classes sorted by frequency) +

+

The argument sort_by_freq = TRUE sort medication class +by frequency.

+
+run(cmt01a, syn_data, sort_by_freq = TRUE)
+#>   ATC Level 2 Text                                         A: Drug X    B: Placebo   C: Combination
+#>     Other Treatment                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one treatment     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of treatments                                   58           59             99      
+#>   ATCCLAS2 B                                                                                       
+#>     Total number of patients with at least one treatment   12 (80.0%)   10 (66.7%)     14 (93.3%)  
+#>     Total number of treatments                                 30           30             52      
+#>     medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>     medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
+#>   ATCCLAS2 A                                                                                       
+#>     Total number of patients with at least one treatment   10 (66.7%)   11 (73.3%)     12 (80.0%)  
+#>     Total number of treatments                                 15           21             28      
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
+#>     medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
+#>   ATCCLAS2 B p2                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 B p3                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     Total number of treatments                                 18           17             25      
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 C                                                                                       
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p2                                                                                    
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     Total number of treatments                                 13           8              19      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 A p2                                                                                    
+#>     Total number of patients with at least one treatment   5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     Total number of treatments                                 6            8              8       
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p3                                                                                    
+#>     Total number of patients with at least one treatment   4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     Total number of treatments                                 5            5              12      
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)
+
+
+

+4. Concomitant Medications by Medication Class and Preferred +Name (total number of treatments per medication class +suppressed) +

+

The cmt01a template includes the +analysis of ‘total number of treatments’ by default, modify the argument +summary_labels to change it.

+
+run(cmt01a, syn_data, summary_labels = list(TOTAL = cmt01_label, ATC2 = cmt01_label[1]))
+#>   ATC Level 2 Text                                         A: Drug X    B: Placebo   C: Combination
+#>     Other Treatment                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one treatment     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of treatments                                   58           59             99      
+#>   ATCCLAS2 A                                                                                       
+#>     Total number of patients with at least one treatment   10 (66.7%)   11 (73.3%)     12 (80.0%)  
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
+#>     medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
+#>   ATCCLAS2 A p2                                                                                    
+#>     Total number of patients with at least one treatment   5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>   ATCCLAS2 B                                                                                       
+#>     Total number of patients with at least one treatment   12 (80.0%)   10 (66.7%)     14 (93.3%)  
+#>     medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>     medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
+#>   ATCCLAS2 B p2                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 B p3                                                                                    
+#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      12 (80.0%)  
+#>     medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   ATCCLAS2 C                                                                                       
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p2                                                                                    
+#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
+#>   ATCCLAS2 C p3                                                                                    
+#>     Total number of patients with at least one treatment   4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)
+
+
+
+

+Concomitant Medications by Preferred Name +(CMT02_PT) +

+
+

+1. Concomitant Medications by Preferred Name +

+
    +
  1. The cmt02_pt template displays +concomitant medications by Preferred Name by default.
  2. +
  3. The template does not include the column of total by default.
  4. +
  5. The template sorts preferred name by alphabetical order by default. +Set the argument sort_by_freq = TRUE to sort preferred +names by frequency.
  6. +
+
+run(cmt02_pt, syn_data)
+#>                                                          A: Drug X    B: Placebo   C: Combination
+#>   Other Treatment                                          (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one treatment   13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of treatments                                 58           59             99      
+#>   medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
+#>   medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
+#>   medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
+#>   medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
+#>   medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
+#>   medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
+#>   medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
+#>   medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
+#>   medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)
+
+
+
+

+Cox Regression (COXT01) +

+
+

+1. Cox Regression +

+
    +
  1. The coxt01 template produces the +standard Cox regression output.
  2. +
  3. Users are expected to pre-process the input analysis data by +selecting a time-to-event parameter to be analyzed. The example below is +based on the time-to-event parameter “Duration of Confirmed Response by +Investigator”.
  4. +
  5. The time variable in the model is specified through the +time_var argument. By default, time_var is set +to "AVAL", which comes from ADTTE.AVAL.
  6. +
  7. The event variable in the model is specified through the +event_var argument. By default, event_var is +set to "EVENT", which is derived based on the censoring +indicator ADTTE.CNSR in the pre-processing function +coxt01_pre.
  8. +
  9. If there are more than two treatment groups present in the input +analysis data, users are also expected to select only two treatment +groups. The example below is based on treatment groups +"Arm A" and "Arm B".
  10. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+proc_data <- log_filter(proc_data, ARMCD != "ARM C", "adsl")
+run(coxt01, proc_data, time_var = "AVAL", event_var = "EVENT")
+#>                                                Treatment Effect Adjusted for Covariate     
+#>   Effect/Covariate Included in the Model    n      Hazard Ratio       95% CI       p-value 
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                               
+#>     B: Placebo vs control (A: Drug X)       30         2.71        (0.93, 7.88)     0.0666 
+#>   Covariate:                                                                               
+#>     Sex                                     30         2.91        (0.97, 8.73)     0.0567 
+#>     RACE                                    30         3.09        (1.01, 9.50)     0.0487 
+#>     Age (yr)                                30         2.89        (0.97, 8.59)     0.0566
+
+
+

+2. Cox Regression (with interaction term) +

+

To add the interaction term to the model, +interaction = TRUE, which is passed to +tern::control_coxreg(), needs to be specified.

+
+run(coxt01, proc_data, covariates = "AAGE", interaction = TRUE)
+#>                                                        Treatment Effect Adjusted for Covariate             
+#>   Effect/Covariate Included in the Model   n    Hazard Ratio      95% CI      p-value   Interaction p-value
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                                               
+#>     B: Placebo vs control (A: Drug X)      30       2.71       (0.93, 7.88)   0.0666                       
+#>   Covariate:                                                                                               
+#>     Age (yr)                               30                                                 0.3666       
+#>       32                                            2.87       (0.98, 8.41)
+
+
+

+3. Cox Regression (specifying covariates) +

+
    +
  1. By default, "SEX", "RACE" and +"AAGE" are used as the covariates for the model.
  2. +
  3. Users can specify a different set of covariates through the +covariates argument. In the example below, +"RACE" and "AAGE" are used as covariates.
  4. +
+
+run(coxt01, proc_data, covariates = c("RACE", "AAGE"))
+#>                                                Treatment Effect Adjusted for Covariate     
+#>   Effect/Covariate Included in the Model    n      Hazard Ratio       95% CI       p-value 
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                               
+#>     B: Placebo vs control (A: Drug X)       30         2.71        (0.93, 7.88)     0.0666 
+#>   Covariate:                                                                               
+#>     RACE                                    30         3.09        (1.01, 9.50)     0.0487 
+#>     Age (yr)                                30         2.89        (0.97, 8.59)     0.0566
+
+
+

+4. Cox Regression (setting strata, ties, and alpha +level) +

+
    +
  1. By default, strata = NULL (no stratification), +ties = "exact" (equivalent to DISCRETE in +SAS), and conf_level = 0.95 are applied.
  2. +
  3. Users can specify one or more stratification variables via the +strata argument.
  4. +
  5. Other tie handling methods, i.e., "efron" or +"breslow", can be specified in the tie +argument, which is passed to tern::control_coxreg().
  6. +
  7. Users can also customize the alpha level for the confidence +intervals through the conf_level argument, which is passed +to tern::control_coxreg().
  8. +
+
+run(coxt01, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90)
+#>                                                Treatment Effect Adjusted for Covariate     
+#>   Effect/Covariate Included in the Model    n      Hazard Ratio       90% CI       p-value 
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                               
+#>     B: Placebo vs control (A: Drug X)       30         2.69        (1.07, 6.76)     0.0785 
+#>   Covariate:                                                                               
+#>     Sex                                     30         2.90        (1.12, 7.54)     0.0668 
+#>     Age (yr)                                30         2.72        (1.08, 6.85)     0.0755
+
+
+
+

+Multi-variable Cox Regression +(COXT02) +

+
+

+1. Multi-variable Cox Regression +

+
    +
  1. The coxt02 template produces the +standard multi-variable cox regression output.
  2. +
  3. Users are expected to pre-process the input analysis data by +selecting a time-to-event parameter to be analyzed. The example below is +based on the time-to-event parameter “Duration of Confirmed Response by +Investigator”.
  4. +
  5. The time variable in the model is specified through the +time_var argument. By default, time_var is set +to "AVAL", which comes from ADTTE.AVAL.
  6. +
  7. The event variable in the model is specified through the +event_var argument. By default, event_var is +set to "EVENT", which is derived based on the censoring +indicator ADTTE.CNSR in the pre-processing function +coxt01_pre.
  8. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(coxt02, proc_data, time_var = "AVAL", event_var = "EVENT")
+#>   Effect/Covariate Included in the Model                  Hazard Ratio      95% CI      p-value
+#>   —————————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                                   
+#>     Description of Planned Arm (reference = A: Drug X)                                  0.1630 
+#>       B: Placebo                                              2.92       (0.93, 9.17)   0.0672 
+#>       C: Combination                                          1.56       (0.47, 5.10)   0.4659 
+#>   Covariate:                                                                                   
+#>     Sex (reference = F)                                                                        
+#>       M                                                       1.03       (0.41, 2.55)   0.9549 
+#>     RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE)                                 0.8498 
+#>       ASIAN                                                   1.22       (0.27, 5.55)   0.7967 
+#>       BLACK OR AFRICAN AMERICAN                               0.81       (0.12, 5.70)   0.8340 
+#>       WHITE                                                   1.57       (0.26, 9.67)   0.6258 
+#>     Age (yr)                                                                                   
+#>       All                                                     0.99       (0.93, 1.05)   0.6650
+
+
+

+2. Multi-variable Cox Regression (specifying +covariates) +

+
    +
  1. By default, "SEX", "RACE" and +"AAGE" are used as the covariates for the model.
  2. +
  3. Users can specify a different set of covariates through the +covariates argument. In the example below, +"RACE" and "AAGE" are used as covariates.
  4. +
+
+run(coxt02, proc_data, covariates = c("RACE", "AAGE"))
+#>   Effect/Covariate Included in the Model                  Hazard Ratio      95% CI      p-value
+#>   —————————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                                   
+#>     Description of Planned Arm (reference = A: Drug X)                                  0.1390 
+#>       B: Placebo                                              2.94       (0.97, 8.92)   0.0570 
+#>       C: Combination                                          1.56       (0.48, 5.09)   0.4605 
+#>   Covariate:                                                                                   
+#>     RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE)                                 0.8504 
+#>       ASIAN                                                   1.22       (0.27, 5.54)   0.7972 
+#>       BLACK OR AFRICAN AMERICAN                               0.81       (0.12, 5.65)   0.8306 
+#>       WHITE                                                   1.56       (0.26, 9.53)   0.6279 
+#>     Age (yr)                                                                                   
+#>       All                                                     0.99       (0.93, 1.05)   0.6633
+
+
+

+3. Multi-variable Cox Regression (setting strata, ties, and +alpha level) +

+
    +
  1. By default, strata = NULL (no stratification), +ties = "exact" (equivalent to DISCRETE in +SAS), and conf_level = 0.95 are applied.
  2. +
  3. Users can specify one or more stratification variables via the +strata argument.
  4. +
  5. Other tie handling methods, i.e., "efron" or +"breslow", can be specified in the tie +argument, which is passed to tern::control_coxreg().
  6. +
  7. Users can also customize the alpha level for the confidence +intervals through the conf_level argument, which is passed +to tern::control_coxreg().
  8. +
+
+run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90, ties = "efron")
+#>   Effect/Covariate Included in the Model                 Hazard Ratio      90% CI      p-value
+#>   ————————————————————————————————————————————————————————————————————————————————————————————
+#>   Treatment:                                                                                  
+#>     Description of Planned Arm (reference = A: Drug X)                                 0.1680 
+#>       B: Placebo                                             2.85       (1.09, 7.46)   0.0743 
+#>       C: Combination                                         1.47       (0.54, 4.02)   0.5254 
+#>   Covariate:                                                                                  
+#>     Sex (reference = F)                                                                       
+#>       M                                                      0.98       (0.45, 2.13)   0.9700 
+#>     Age (yr)                                                                                  
+#>       All                                                    0.99       (0.94, 1.04)   0.6571
+
+
+
+

+Demographics and Baseline Characteristics +(DMT01) +

+
+

+1. Demographics and Baseline Characteristics with All +Patients +

+
    +
  1. The dmt01 template produces the +standard demographics and baseline characteristics summary.
  2. +
  3. This template includes the column of total by default.
  4. +
+
+run(dmt01, syn_data)
+#>                                        A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                          (N=15)       (N=15)         (N=15)          (N=45)   
+#>   ————————————————————————————————————————————————————————————————————————————————————————————
+#>   Age (yr)                                                                                    
+#>     n                                      15           15             15              45     
+#>     Mean (SD)                          31.3 (5.3)   35.1 (9.0)     36.6 (6.4)      34.3 (7.3) 
+#>     Median                                31.0         35.0           35.0            34.0    
+#>     Min - Max                           24 - 40      24 - 57        24 - 49         24 - 57   
+#>   Age Group                                                                                   
+#>     n                                      15           15             15              45     
+#>     <65                                15 (100%)    15 (100%)      15 (100%)       45 (100%)  
+#>   Sex                                                                                         
+#>     n                                      15           15             15              45     
+#>     Male                               3 (20.0%)    7 (46.7%)      5 (33.3%)       15 (33.3%) 
+#>     Female                             12 (80.0%)   8 (53.3%)      10 (66.7%)      30 (66.7%) 
+#>   Ethnicity                                                                                   
+#>     n                                      15           15             15              45     
+#>     HISPANIC OR LATINO                 2 (13.3%)        0              0            2 (4.4%)  
+#>     NOT HISPANIC OR LATINO             13 (86.7%)   15 (100%)      13 (86.7%)      41 (91.1%) 
+#>     NOT REPORTED                           0            0          2 (13.3%)        2 (4.4%)  
+#>   RACE                                                                                        
+#>     n                                      15           15             15              45     
+#>     AMERICAN INDIAN OR ALASKA NATIVE       0        2 (13.3%)       1 (6.7%)        3 (6.7%)  
+#>     ASIAN                              8 (53.3%)    10 (66.7%)     8 (53.3%)       26 (57.8%) 
+#>     BLACK OR AFRICAN AMERICAN          4 (26.7%)     1 (6.7%)      4 (26.7%)       9 (20.0%)  
+#>     WHITE                              3 (20.0%)    2 (13.3%)      2 (13.3%)       7 (15.6%)
+
+
+

+2. Demographics and Baseline Characteristics without All +Patients +

+

To remove the column of total, set the argument +lbl_overall to NULL.

+
+run(dmt01, syn_data, lbl_overall = NULL)
+#>                                        A: Drug X    B: Placebo   C: Combination
+#>                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————
+#>   Age (yr)                                                                     
+#>     n                                      15           15             15      
+#>     Mean (SD)                          31.3 (5.3)   35.1 (9.0)     36.6 (6.4)  
+#>     Median                                31.0         35.0           35.0     
+#>     Min - Max                           24 - 40      24 - 57        24 - 49    
+#>   Age Group                                                                    
+#>     n                                      15           15             15      
+#>     <65                                15 (100%)    15 (100%)      15 (100%)   
+#>   Sex                                                                          
+#>     n                                      15           15             15      
+#>     Male                               3 (20.0%)    7 (46.7%)      5 (33.3%)   
+#>     Female                             12 (80.0%)   8 (53.3%)      10 (66.7%)  
+#>   Ethnicity                                                                    
+#>     n                                      15           15             15      
+#>     HISPANIC OR LATINO                 2 (13.3%)        0              0       
+#>     NOT HISPANIC OR LATINO             13 (86.7%)   15 (100%)      13 (86.7%)  
+#>     NOT REPORTED                           0            0          2 (13.3%)   
+#>   RACE                                                                         
+#>     n                                      15           15             15      
+#>     AMERICAN INDIAN OR ALASKA NATIVE       0        2 (13.3%)       1 (6.7%)   
+#>     ASIAN                              8 (53.3%)    10 (66.7%)     8 (53.3%)   
+#>     BLACK OR AFRICAN AMERICAN          4 (26.7%)     1 (6.7%)      4 (26.7%)   
+#>     WHITE                              3 (20.0%)    2 (13.3%)      2 (13.3%)
+
+
+

+3. Demographics and Baseline Characteristics with an +additional study specific continuous variable +

+
    +
  1. Study specific continuous variables can be added to the standard +demographics and baseline characteristics summary by editing the +argument summaryvars. To add or remove analyses, you need +to pass all variables you would like to include to the argument.
  2. +
  3. CHEVRON performs the analysis based on the type of variable as +defined in the input data.
  4. +
+
+run(dmt01, syn_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "BBMISI"), lbl_overall = NULL)
+#>                                          A: Drug X      B: Placebo     C: Combination
+#>                                           (N=15)          (N=15)           (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#>   Age                                                                                
+#>     n                                       15              15               15      
+#>     Mean (SD)                           31.3 (5.3)      35.1 (9.0)       36.6 (6.4)  
+#>     Median                                 31.0            35.0             35.0     
+#>     Min - Max                             24 - 40         24 - 57         24 - 49    
+#>   Age Group                                                                          
+#>     n                                       15              15               15      
+#>     <65                                  15 (100%)       15 (100%)       15 (100%)   
+#>   Sex                                                                                
+#>     n                                       15              15               15      
+#>     Male                                 3 (20.0%)       7 (46.7%)       5 (33.3%)   
+#>     Female                              12 (80.0%)       8 (53.3%)       10 (66.7%)  
+#>   Ethnicity                                                                          
+#>     n                                       15              15               15      
+#>     HISPANIC OR LATINO                   2 (13.3%)           0               0       
+#>     NOT HISPANIC OR LATINO              13 (86.7%)       15 (100%)       13 (86.7%)  
+#>     NOT REPORTED                             0               0           2 (13.3%)   
+#>   RACE                                                                               
+#>     n                                       15              15               15      
+#>     AMERICAN INDIAN OR ALASKA NATIVE         0           2 (13.3%)        1 (6.7%)   
+#>     ASIAN                                8 (53.3%)      10 (66.7%)       8 (53.3%)   
+#>     BLACK OR AFRICAN AMERICAN            4 (26.7%)       1 (6.7%)        4 (26.7%)   
+#>     WHITE                                3 (20.0%)       2 (13.3%)       2 (13.3%)   
+#>   Baseline BMI                                                                       
+#>     n                                       15              15               15      
+#>     Mean (SD)                          29.75 (15.10)   41.08 (26.65)   33.90 (15.39) 
+#>     Median                                 37.00           33.70           37.80     
+#>     Min - Max                           6.4 - 47.9      5.3 - 117.9     -3.5 - 59.0
+
+
+

+4. Demographics and Baseline Characteristics with an +additional study specific categorical variable +

+
    +
  1. Study specific categorical variables can be added to the standard +demographics and baseline characteristics summary by editing the +argument summaryvars.
  2. +
  3. To display the values within a categorical variable in pre-specified +order, the categorical variable need to be factorized with pre-specified +order provided as levels.
  4. +
+
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+  mutate(
+    SEX = reformat(.data$SEX, rule(Male = "M", Female = "F")),
+    BBMIGR1 = factor(case_when(
+      BBMISI < 15 ~ "Very severely underweight",
+      BBMISI >= 15 & BBMISI < 16 ~ "Severely underweight",
+      BBMISI >= 16 & BBMISI < 18.5 ~ "Underweight",
+      BBMISI >= 18.5 & BBMISI < 25 ~ "Normal (healthy weight)",
+      BBMISI >= 25 & BBMISI < 30 ~ "Overweight",
+      BBMISI >= 30 & BBMISI < 35 ~ "Obese Class I (Moderately obese)",
+      BBMISI >= 35 & BBMISI < 40 ~ "Obese Class II (Severely obese)",
+      BBMISI >= 40 ~ "Obese Class III (Very severely obese)"
+    ), levels = c(
+      "Very severely underweight",
+      "Severely underweight",
+      "Underweight",
+      "Normal (healthy weight)",
+      "Overweight",
+      "Obese Class I (Moderately obese)",
+      "Obese Class II (Severely obese)",
+      "Obese Class III (Very severely obese)"
+    ))
+  )
+
+run(dmt01, proc_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "BBMIGR1"), auto_pre = FALSE)
+#>                                             A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                               (N=15)       (N=15)         (N=15)          (N=45)   
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Age                                                                                              
+#>     n                                           15           15             15              45     
+#>     Mean (SD)                               31.3 (5.3)   35.1 (9.0)     36.6 (6.4)      34.3 (7.3) 
+#>     Median                                     31.0         35.0           35.0            34.0    
+#>     Min - Max                                24 - 40      24 - 57        24 - 49         24 - 57   
+#>   Age Group                                                                                        
+#>     n                                           15           15             15              45     
+#>     <65                                     15 (100%)    15 (100%)      15 (100%)       45 (100%)  
+#>   Sex                                                                                              
+#>     n                                           15           15             15              45     
+#>     Male                                    3 (20.0%)    7 (46.7%)      5 (33.3%)       15 (33.3%) 
+#>     Female                                  12 (80.0%)   8 (53.3%)      10 (66.7%)      30 (66.7%) 
+#>   Ethnicity                                                                                        
+#>     n                                           15           15             15              45     
+#>     HISPANIC OR LATINO                      2 (13.3%)        0              0            2 (4.4%)  
+#>     NOT HISPANIC OR LATINO                  13 (86.7%)   15 (100%)      13 (86.7%)      41 (91.1%) 
+#>     NOT REPORTED                                0            0          2 (13.3%)        2 (4.4%)  
+#>   RACE                                                                                             
+#>     n                                           15           15             15              45     
+#>     AMERICAN INDIAN OR ALASKA NATIVE            0        2 (13.3%)       1 (6.7%)        3 (6.7%)  
+#>     ASIAN                                   8 (53.3%)    10 (66.7%)     8 (53.3%)       26 (57.8%) 
+#>     BLACK OR AFRICAN AMERICAN               4 (26.7%)     1 (6.7%)      4 (26.7%)       9 (20.0%)  
+#>     WHITE                                   3 (20.0%)    2 (13.3%)      2 (13.3%)       7 (15.6%)  
+#>   BBMIGR1                                                                                          
+#>     n                                           15           15             15              45     
+#>     Very severely underweight               4 (26.7%)     1 (6.7%)       1 (6.7%)       6 (13.3%)  
+#>     Underweight                              1 (6.7%)        0              0            1 (2.2%)  
+#>     Normal (healthy weight)                  1 (6.7%)    3 (20.0%)      4 (26.7%)       8 (17.8%)  
+#>     Overweight                                  0         1 (6.7%)       1 (6.7%)        2 (4.4%)  
+#>     Obese Class I (Moderately obese)            0        3 (20.0%)          0            3 (6.7%)  
+#>     Obese Class II (Severely obese)         4 (26.7%)     1 (6.7%)      3 (20.0%)       8 (17.8%)  
+#>     Obese Class III (Very severely obese)   5 (33.3%)    6 (40.0%)      6 (40.0%)       17 (37.8%)
+
+
+

+5. Demographics and Baseline Characteristics with additional +vital signs baseline values from ADVS or +ADSUB +

+

To add baseline vital signs or other baseline characteristics to the +demographics and baseline characteristics summary, manual preprocess of +input adsl dataset is expected and merge the vital signs +baseline values from advs (where +ADVS.ABLFL == "Y") or adsub with +adsl by unique subject identifier.

+
+proc_data <- syn_data
+diabpbl <- proc_data$advs %>%
+  filter(ABLFL == "Y" & PARAMCD == "DIABP") %>%
+  mutate(DIABPBL = AVAL) %>%
+  select("STUDYID", "USUBJID", "DIABPBL")
+
+proc_data$adsl <- proc_data$adsl %>%
+  mutate(SEX = reformat(.data$SEX, rule(Male = "M", Female = "F"))) %>%
+  left_join(diabpbl, by = c("STUDYID", "USUBJID"))
+
+run(dmt01, proc_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "DIABPBL"), auto_pre = FALSE)
+#>                                              A: Drug X               B: Placebo             C: Combination            All Patients     
+#>                                               (N=15)                   (N=15)                   (N=15)                   (N=45)        
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Age                                                                                                                                  
+#>     n                                           15                       15                       15                       45          
+#>     Mean (SD)                               31.3 (5.3)               35.1 (9.0)               36.6 (6.4)               34.3 (7.3)      
+#>     Median                                     31.0                     35.0                     35.0                     34.0         
+#>     Min - Max                                 24 - 40                 24 - 57                  24 - 49                  24 - 57        
+#>   Age Group                                                                                                                            
+#>     n                                           15                       15                       15                       45          
+#>     <65                                      15 (100%)               15 (100%)                15 (100%)                45 (100%)       
+#>   Sex                                                                                                                                  
+#>     n                                           15                       15                       15                       45          
+#>     Male                                     3 (20.0%)               7 (46.7%)                5 (33.3%)                15 (33.3%)      
+#>     Female                                  12 (80.0%)               8 (53.3%)                10 (66.7%)               30 (66.7%)      
+#>   Ethnicity                                                                                                                            
+#>     n                                           15                       15                       15                       45          
+#>     HISPANIC OR LATINO                       2 (13.3%)                   0                        0                     2 (4.4%)       
+#>     NOT HISPANIC OR LATINO                  13 (86.7%)               15 (100%)                13 (86.7%)               41 (91.1%)      
+#>     NOT REPORTED                                 0                       0                    2 (13.3%)                 2 (4.4%)       
+#>   RACE                                                                                                                                 
+#>     n                                           15                       15                       15                       45          
+#>     AMERICAN INDIAN OR ALASKA NATIVE             0                   2 (13.3%)                 1 (6.7%)                 3 (6.7%)       
+#>     ASIAN                                    8 (53.3%)               10 (66.7%)               8 (53.3%)                26 (57.8%)      
+#>     BLACK OR AFRICAN AMERICAN                4 (26.7%)                1 (6.7%)                4 (26.7%)                9 (20.0%)       
+#>     WHITE                                    3 (20.0%)               2 (13.3%)                2 (13.3%)                7 (15.6%)       
+#>   Analysis Value                                                                                                                       
+#>     n                                           15                       15                       15                       45          
+#>     Mean (SD)                          96.132511 (22.458204)   108.110944 (15.074451)   103.148818 (19.751687)   102.464091 (19.534945)
+#>     Median                                   93.328321               108.951358               102.849019               102.396129      
+#>     Min - Max                          60.58490 - 136.59343     83.44277 - 131.61501     66.05223 - 136.55256     60.58490 - 136.59343
+
+
+
+

+Patient Disposition (DST01) +

+
+

+1. Patient Disposition +

+
    +
  1. The dst01 template produces the +standard patient disposition summary.
  2. +
  3. The template includes the column of total by default. Use +lbl_overall = NULL to suppress the default.
  4. +
+
+run(dst01, syn_data, lbl_overall = NULL)
+#>                                     A: Drug X    B: Placebo   C: Combination
+#>                                       (N=15)       (N=15)         (N=15)    
+#>   ——————————————————————————————————————————————————————————————————————————
+#>   Completed                         10 (66.7%)   10 (66.7%)     10 (66.7%)  
+#>   Discontinued                      5 (33.3%)    5 (33.3%)      5 (33.3%)   
+#>     ADVERSE EVENT                       0            0           1 (6.7%)   
+#>     DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)   
+#>     LACK OF EFFICACY                2 (13.3%)        0              0       
+#>     PHYSICIAN DECISION                  0            0           1 (6.7%)   
+#>     PROTOCOL VIOLATION                  0         1 (6.7%)          0       
+#>     WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0
+
+
+

+2. Patient Disposition (with grouping of +reasons) +

+
    +
  1. The syntax below produces the standard patient disposition summary +with grouping of the discontinuation reasons.
  2. +
  3. The variable [ADSL.DCSREASGP] that groups the +discontinuation reasons needs to be derived manually and provided in the +input adsl dataset.
  4. +
+
+run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS")), lbl_overall = NULL)
+#>                                       A: Drug X    B: Placebo   C: Combination
+#>                                         (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————
+#>   Completed                           10 (66.7%)   10 (66.7%)     10 (66.7%)  
+#>   Discontinued                        5 (33.3%)    5 (33.3%)      5 (33.3%)   
+#>     Safety                                                                    
+#>       ADVERSE EVENT                       0            0           1 (6.7%)   
+#>       DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)   
+#>     Non-Safety                                                                
+#>       LACK OF EFFICACY                2 (13.3%)        0              0       
+#>       PHYSICIAN DECISION                  0            0           1 (6.7%)   
+#>       PROTOCOL VIOLATION                  0         1 (6.7%)          0       
+#>       WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0
+
+
+

+3. Patient Disposition (adding end of treatment +status) +

+

The syntax below adds the end of treatment status to the standard +patient disposition summary by providing the end of treatment status +variable to the argument trt_status_var.

+
+run(dst01, syn_data, trt_status_var = "EOTSTT", lbl_overall = NULL)
+#>                                     A: Drug X    B: Placebo   C: Combination
+#>                                       (N=15)       (N=15)         (N=15)    
+#>   ——————————————————————————————————————————————————————————————————————————
+#>   Completed                         10 (66.7%)   10 (66.7%)     10 (66.7%)  
+#>   Discontinued                      5 (33.3%)    5 (33.3%)      5 (33.3%)   
+#>     ADVERSE EVENT                       0            0           1 (6.7%)   
+#>     DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)   
+#>     LACK OF EFFICACY                2 (13.3%)        0              0       
+#>     PHYSICIAN DECISION                  0            0           1 (6.7%)   
+#>     PROTOCOL VIOLATION                  0         1 (6.7%)          0       
+#>     WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0       
+#>   Completed Treatment               8 (53.3%)    4 (26.7%)      5 (33.3%)   
+#>   Ongoing Treatment                 4 (26.7%)    6 (40.0%)      4 (26.7%)   
+#>   Discontinued Treatment            3 (20.0%)    5 (33.3%)      6 (40.0%)
+
+
+

+4. Patient Disposition (adding details of study ongoing +status) +

+

The syntax adds the details of study ongoing/alive status to the +standard patient disposition summary by modifying the argument +detail_vars.

+
+run(dst01, syn_data, detail_vars = list(Discontinued = "DCSREAS", Ongoing = "STDONS"))
+#>                                     A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                       (N=15)       (N=15)         (N=15)          (N=45)   
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Completed                         10 (66.7%)   10 (66.7%)     10 (66.7%)      30 (66.7%) 
+#>   Discontinued                      5 (33.3%)    5 (33.3%)      5 (33.3%)       15 (33.3%) 
+#>     ADVERSE EVENT                       0            0           1 (6.7%)        1 (2.2%)  
+#>     DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)       9 (20.0%)  
+#>     LACK OF EFFICACY                2 (13.3%)        0              0            2 (4.4%)  
+#>     PHYSICIAN DECISION                  0            0           1 (6.7%)        1 (2.2%)  
+#>     PROTOCOL VIOLATION                  0         1 (6.7%)          0            1 (2.2%)  
+#>     WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0            1 (2.2%)
+
+
+
+

+Deaths (DTHT01) +

+
+

+1. Deaths +

+

The dtht01 template produces the +standard deaths output.

+
+run(dst01, syn_data)
+#>                                     A: Drug X    B: Placebo   C: Combination   All Patients
+#>                                       (N=15)       (N=15)         (N=15)          (N=45)   
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Completed                         10 (66.7%)   10 (66.7%)     10 (66.7%)      30 (66.7%) 
+#>   Discontinued                      5 (33.3%)    5 (33.3%)      5 (33.3%)       15 (33.3%) 
+#>     ADVERSE EVENT                       0            0           1 (6.7%)        1 (2.2%)  
+#>     DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)       9 (20.0%)  
+#>     LACK OF EFFICACY                2 (13.3%)        0              0            2 (4.4%)  
+#>     PHYSICIAN DECISION                  0            0           1 (6.7%)        1 (2.2%)  
+#>     PROTOCOL VIOLATION                  0         1 (6.7%)          0            1 (2.2%)  
+#>     WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0            1 (2.2%)
+
+
+

+2. Deaths (adding “Primary Cause of Death” details for +‘Other’ category) +

+
+run(dtht01, syn_data, other_category = TRUE)
+#>                            A: Drug X   B: Placebo   C: Combination
+#>                             (N=15)       (N=15)         (N=15)    
+#>   ————————————————————————————————————————————————————————————————
+#>   Total number of deaths   2 (13.3%)   4 (26.7%)      3 (20.0%)   
+#>   Primary Cause of Death                                          
+#>     n                          2           4              3       
+#>     Adverse Event          1 (50.0%)   2 (50.0%)      1 (33.3%)   
+#>     Progressive Disease    1 (50.0%)       0          2 (66.7%)   
+#>     Other                      0       2 (50.0%)          0       
+#>       LOST TO FOLLOW UP        0        1 (50%)           0       
+#>       SUICIDE                  0        1 (50%)           0
+

NOTE: In order to avoid the warning above and display ‘Other’ as the +last category under “Primary Cause of Death” right above the detailed +reasons for “Other”, the user is expected to manually provide levels to +ADSL.DTHCAT based on categories available in the +dataset.

+
+
+

+3. Deaths (adding summary by days from last study drug +administration) +

+

Setting time_since_last_dose to TRUE, the +syntax produces the count of deaths by days from last study drug +administration as well as the count of deaths by primary cause and days +from last study drug administration.

+
+run(dtht01, syn_data, time_since_last_dose = TRUE)
+#>                                                               A: Drug X   B: Placebo   C: Combination
+#>                                                                (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of deaths                                      2 (13.3%)   4 (26.7%)      3 (20.0%)   
+#>   Days from last drug administration                                                                 
+#>     n                                                             2           4              3       
+#>     <=30                                                      2 (100%)    1 (25.0%)      2 (66.7%)   
+#>     >30                                                           0       3 (75.0%)      1 (33.3%)   
+#>   Primary cause by days from last study drug administration                                          
+#>     <=30                                                                                             
+#>       n                                                           2           1              2       
+#>       Adverse Event                                           1 (50.0%)       0          1 (50.0%)   
+#>       Progressive Disease                                     1 (50.0%)       0          1 (50.0%)   
+#>       Other                                                       0        1 (100%)          0       
+#>     >30                                                                                              
+#>       n                                                           0           3              1       
+#>       Adverse Event                                               0       2 (66.7%)          0       
+#>       Progressive Disease                                         0           0           1 (100%)   
+#>       Other                                                       0       1 (33.3%)          0
+
+
+
+

+ECG Results and Change from Baseline by Visit +(EGT01) +

+
+

+1. ECG Results and Change from Baseline by +Visit +

+

The egt01 template produces the +standard ECG results and change from baseline by visit summary.

+
+run(egt01, syn_data)
+#>                                    A: Drug X                                B: Placebo                             C: Combination             
+#>                                             Change from                               Change from                              Change from    
+#>                       Value at Visit          Baseline          Value at Visit         Baseline          Value at Visit          Baseline     
+#>   Analysis Visit          (N=15)               (N=15)               (N=15)              (N=15)               (N=15)               (N=15)      
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Heart Rate                                                                                                                                  
+#>     BASELINE                                                                                                                                  
+#>       n                     15                                        15                                       15                             
+#>       Mean (SD)      76.594 (17.889)                           69.899 (18.788)                          70.492 (18.175)                       
+#>       Median              77.531                                    77.174                                   74.111                           
+#>       Min - Max       46.50 - 106.68                            26.42 - 97.69                            45.37 - 115.49                       
+#>     WEEK 1 DAY 8                                                                                                                              
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      71.140 (23.441)      -5.454 (25.128)      70.958 (14.877)      1.059 (23.345)      67.450 (18.932)      -3.043 (23.753)  
+#>       Median              77.210               -2.152               70.033              -8.403               68.471               0.181       
+#>       Min - Max       8.53 - 102.63        -50.97 - 36.54       44.85 - 93.79       -25.34 - 60.50       38.90 - 100.05       -52.20 - 33.13  
+#>     WEEK 2 DAY 15                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      69.350 (16.083)      -7.244 (28.960)      76.096 (14.958)      6.198 (29.319)      63.694 (12.920)      -6.799 (23.949)  
+#>       Median              65.746              -11.369               75.323               0.255               61.076               -4.954      
+#>       Min - Max       47.22 - 101.44       -49.59 - 42.91       47.50 - 111.40      -37.51 - 69.34       43.25 - 86.13        -52.70 - 40.76  
+#>     WEEK 3 DAY 22                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      73.894 (24.576)      -2.700 (32.079)      67.635 (19.114)      -2.263 (29.989)     72.054 (19.308)       1.562 (27.494)  
+#>       Median              69.296               5.492                68.468              -2.093               68.686               -5.848      
+#>       Min - Max       44.15 - 131.73       -62.53 - 38.19       31.89 - 108.87      -52.26 - 66.81       32.16 - 109.86       -49.61 - 35.23  
+#>     WEEK 4 DAY 29                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      73.241 (19.256)      -3.353 (29.170)      66.524 (25.487)      -3.374 (36.024)     66.600 (22.839)      -3.892 (24.140)  
+#>       Median              68.689               0.232                66.397              -11.730              64.969               -6.827      
+#>       Min - Max       33.71 - 111.54       -55.14 - 65.04       19.66 - 111.29      -60.39 - 61.00       10.35 - 100.88       -50.72 - 26.77  
+#>     WEEK 5 DAY 36                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      61.690 (22.182)      -14.904 (30.330)     60.712 (20.025)      -9.187 (24.587)     72.683 (23.495)       2.191 (26.654)  
+#>       Median              57.925              -12.660               60.454              -16.100              77.585               14.635      
+#>       Min - Max       23.89 - 103.74       -60.00 - 57.24       32.53 - 102.02      -52.56 - 50.96       31.21 - 105.05       -42.90 - 34.64  
+#>   QT Duration                                                                                                                                 
+#>     BASELINE                                                                                                                                  
+#>       n                     15                                        15                                       15                             
+#>       Mean (SD)     335.294 (123.231)                          363.104 (68.160)                         347.311 (86.236)                      
+#>       Median             372.731                                   386.316                                  348.254                           
+#>       Min - Max      121.28 - 554.97                           214.65 - 445.53                          170.80 - 508.54                       
+#>     WEEK 1 DAY 8                                                                                                                              
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      357.361 (85.688)     22.067 (144.166)    415.225 (105.425)    52.121 (144.259)    321.078 (107.553)    -26.233 (129.135) 
+#>       Median             344.797               49.432              421.950              62.762              307.962              -17.006      
+#>       Min - Max      241.22 - 517.39      -207.23 - 245.36     234.11 - 604.72     -190.70 - 364.94     118.36 - 480.29      -363.11 - 163.67 
+#>     WEEK 2 DAY 15                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     344.883 (106.793)     9.589 (174.797)      370.548 (80.862)     7.444 (91.301)      354.129 (95.133)     6.818 (142.397)  
+#>       Median             312.236               -9.264              388.515              -9.429              365.292               39.930      
+#>       Min - Max      187.77 - 501.87      -278.91 - 372.71     204.55 - 514.43     -190.58 - 173.87     200.19 - 493.40      -279.46 - 265.56 
+#>     WEEK 3 DAY 22                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      342.062 (92.568)     6.768 (151.505)     326.684 (116.421)    -36.420 (145.415)    366.245 (99.106)     18.935 (168.417) 
+#>       Median             352.930              -22.771              298.353              -78.409             329.688              -21.584      
+#>       Min - Max      199.40 - 476.04      -230.25 - 303.00     151.05 - 561.23     -205.30 - 293.76     249.42 - 580.81      -252.73 - 410.01 
+#>     WEEK 4 DAY 29                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)      371.650 (44.805)     36.356 (139.308)    333.697 (110.377)    -29.407 (125.592)    333.181 (96.466)    -14.130 (107.622) 
+#>       Median             375.412               58.958              308.020              -40.987             330.911              -25.820      
+#>       Min - Max      302.32 - 451.62      -214.07 - 258.04     183.09 - 531.08     -241.72 - 134.12     126.95 - 488.57      -234.92 - 152.49 
+#>     WEEK 5 DAY 36                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     345.504 (130.543)     10.210 (198.224)     309.919 (84.624)    -53.185 (105.730)    322.931 (67.801)    -24.380 (117.331) 
+#>       Median             355.730              -23.213              306.219              -12.373             341.988              -26.952      
+#>       Min - Max       88.38 - 661.12      -271.06 - 539.84     189.01 - 448.58      -256.52 - 91.57     217.51 - 427.16      -291.03 - 171.19 
+#>   RR Duration                                                                                                                                 
+#>     BASELINE                                                                                                                                  
+#>       n                     15                                        15                                       15                             
+#>       Mean (SD)     1086.908 (363.811)                        1050.034 (390.444)                       1102.659 (310.359)                     
+#>       Median             1116.849                                  1089.193                                 1250.037                          
+#>       Min - Max      626.19 - 1653.12                          414.61 - 1721.89                         385.51 - 1430.81                      
+#>     WEEK 1 DAY 8                                                                                                                              
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     968.499 (287.811)    -118.409 (546.796)   1041.186 (211.201)   -8.848 (435.281)    948.491 (213.746)    -154.168 (442.882)
+#>       Median             961.296              -147.460             1013.786             24.754              965.429              -224.054     
+#>       Min - Max      358.92 - 1593.51    -1014.82 - 911.82     714.44 - 1417.52    -618.80 - 847.31     513.35 - 1229.09     -736.69 - 843.58 
+#>     WEEK 2 DAY 15                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     932.717 (259.634)    -154.191 (331.884)   1139.332 (454.231)   89.298 (582.750)    1021.283 (233.529)   -81.376 (415.781) 
+#>       Median             950.533              -205.949             1068.007             -5.449              964.616              -142.180     
+#>       Min - Max      409.68 - 1269.35     -649.69 - 473.09     486.51 - 2048.73    -846.72 - 1148.61    667.36 - 1367.25     -647.47 - 616.15 
+#>     WEEK 3 DAY 22                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     1068.865 (319.540)   -18.043 (513.412)    1110.882 (259.523)   60.848 (432.700)    1105.918 (306.185)    3.259 (516.734)  
+#>       Median             1201.998             -65.085              1163.690             51.200              1187.130              30.318      
+#>       Min - Max      380.49 - 1551.65     -832.86 - 703.74     621.41 - 1453.29    -887.06 - 822.18     446.02 - 1648.32     -984.79 - 816.30 
+#>     WEEK 4 DAY 29                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     1087.915 (205.940)    1.008 (403.039)     1161.681 (293.257)   111.647 (460.979)   992.134 (283.177)    -110.525 (334.932)
+#>       Median             1084.658             146.611              1055.223             191.008             1028.997             -112.599     
+#>       Min - Max      697.59 - 1499.17     -801.16 - 402.97     722.35 - 1762.04    -528.27 - 1191.83    497.14 - 1382.12     -597.95 - 757.99 
+#>     WEEK 5 DAY 36                                                                                                                             
+#>       n                     15                   15                   15                  15                   15                   15        
+#>       Mean (SD)     1016.880 (424.428)   -70.027 (505.078)    1135.131 (224.684)   85.097 (497.679)    1089.527 (238.909)   -13.132 (362.606) 
+#>       Median             962.584              -142.925             1158.815             -9.553              1081.015              16.706      
+#>       Min - Max      352.97 - 1843.86    -894.83 - 1162.79     714.34 - 1436.68    -843.41 - 992.34     699.72 - 1611.38     -696.03 - 561.53
+
+
+
+

+ECG Abnormalities (Regardless of Abnormality at Baseline) +(EGT02_1) +

+
+

+1. ECG Abnormalities (Regardless of Abnormality at +Baseline) +

+

The egt02_1 template produces the +standard ECG abnormalities summary where the abnormalities are +summarized regardless of the abnormality at baseline.

+
+run(egt02_1, syn_data)
+#>   Assessment      A: Drug X      B: Placebo    C: Combination
+#>    Abnormality      (N=15)         (N=15)          (N=15)    
+#>   ———————————————————————————————————————————————————————————
+#>   Heart Rate                                                 
+#>     Low          4/15 (26.7%)   4/15 (26.7%)    4/15 (26.7%) 
+#>     High         4/15 (26.7%)    3/15 (20%)      3/15 (20%)  
+#>   QT Duration                                                
+#>     Low          2/15 (13.3%)   5/15 (33.3%)     3/15 (20%)  
+#>     High          3/15 (20%)     6/15 (40%)     2/15 (13.3%) 
+#>   RR Duration                                                
+#>     Low           6/15 (40%)    2/15 (13.3%)    4/15 (26.7%) 
+#>     High         4/15 (26.7%)   5/15 (33.3%)    2/15 (13.3%)
+
+
+
+

+ECG Abnormalities (Among Subject Without Abnormality at +Baseline) (EGT02_2) +

+
+

+1. ECG Abnormalities (Among Subject Without Abnormality at +Baseline) +

+

The egt02_2 template produces the +standard ECG abnormalities summary where the abnormalities are +summarized among subject without abnormality at baseline.

+
+run(egt02_2, syn_data)
+#>   Assessment      A: Drug X      B: Placebo    C: Combination
+#>    Abnormality      (N=15)         (N=15)          (N=15)    
+#>   ———————————————————————————————————————————————————————————
+#>   Heart Rate                                                 
+#>     Low          4/15 (26.7%)   4/14 (28.6%)    4/15 (26.7%) 
+#>     High         3/13 (23.1%)    3/15 (20%)     2/14 (14.3%) 
+#>   QT Duration                                                
+#>     Low          2/12 (16.7%)   5/15 (33.3%)    3/14 (21.4%) 
+#>     High         3/14 (21.4%)    6/15 (40%)     2/14 (14.3%) 
+#>   RR Duration                                                
+#>     Low           6/15 (40%)    2/13 (15.4%)    4/14 (28.6%) 
+#>     High         4/13 (30.8%)   5/13 (38.5%)    2/15 (13.3%)
+
+
+
+

+Shift Table of ECG Interval Data - Baseline versus +Minimum/Maximum Post-Baseline (EGT03) +

+
+

+1. Shift Table of ECG Interval Data - Baseline versus +Minimum Post-Baseline +

+

The egt03 template produces the +standard shift table of ECG interval data - baseline versus minimum +post-baseline summary.

+
+proc_data <- log_filter(syn_data, PARAMCD == "HR", "adeg")
+run(egt03, proc_data)
+#>   Actual Arm Code                            Minimum Post-Baseline Assessment     
+#>     Baseline Reference Range Indicator      LOW         NORMAL      HIGH   Missing
+#>   ————————————————————————————————————————————————————————————————————————————————
+#>   Heart Rate                                                                      
+#>     ARM A (N=15)                                                                  
+#>       LOW                                    0             0         0        0   
+#>       NORMAL                             4 (26.7%)     9 (60.0%)     0        0   
+#>       HIGH                                   0         2 (13.3%)     0        0   
+#>       Missing                                0             0         0        0   
+#>     ARM B (N=15)                                                                  
+#>       LOW                                    0         1 (6.7%)      0        0   
+#>       NORMAL                             4 (26.7%)    10 (66.7%)     0        0   
+#>       HIGH                                   0             0         0        0   
+#>       Missing                                0             0         0        0   
+#>     ARM C (N=15)                                                                  
+#>       LOW                                    0             0         0        0   
+#>       NORMAL                             4 (26.7%)    10 (66.7%)     0        0   
+#>       HIGH                                   0         1 (6.7%)      0        0   
+#>       Missing                                0             0         0        0
+
+
+

+2. Shift Table of ECG Interval Data - Baseline versus +Maximum Post-Baseline +

+

To produce the standard shift table of ECG interval data - baseline +versus maximum post-baseline summary….TBA

+
+
+
+

+ECG Actual Values and Changes from Baseline by Visit +(EGT05_QTCAT) +

+
+

+1. ECG Actual Values and Changes from Baseline by +Visit +

+

The egt05_qtcat template produces the +standard ECG actual values and changes from baseline by visit +summary.

+
+run(egt05_qtcat, syn_data)
+#>   Parameter                                                          
+#>     Analysis Visit           A: Drug X    B: Placebo   C: Combination
+#>       Category                 (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————
+#>   QT Duration                                                        
+#>     BASELINE                                                         
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           13 (86.7%)   15 (100%)      13 (86.7%)  
+#>         >450 to <=480 msec    1 (6.7%)        0              0       
+#>         >480 to <=500 msec       0            0           1 (6.7%)   
+#>         >500 msec             1 (6.7%)        0           1 (6.7%)   
+#>     WEEK 1 DAY 8                                                     
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           12 (80.0%)   9 (60.0%)      13 (86.7%)  
+#>         >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>         >480 to <=500 msec    1 (6.7%)    3 (20.0%)       1 (6.7%)   
+#>         >500 msec             1 (6.7%)    2 (13.3%)          0       
+#>       Change from Baseline                                           
+#>         n                        15           15             15      
+#>         <=30 msec            7 (46.7%)    6 (40.0%)      9 (60.0%)   
+#>         >30 to <=60 msec     2 (13.3%)     1 (6.7%)       1 (6.7%)   
+#>         >60 msec             6 (40.0%)    8 (53.3%)      5 (33.3%)   
+#>     WEEK 2 DAY 15                                                    
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           11 (73.3%)   14 (93.3%)     12 (80.0%)  
+#>         >450 to <=480 msec   2 (13.3%)        0          2 (13.3%)   
+#>         >480 to <=500 msec    1 (6.7%)        0           1 (6.7%)   
+#>         >500 msec             1 (6.7%)     1 (6.7%)          0       
+#>       Change from Baseline                                           
+#>         n                        15           15             15      
+#>         <=30 msec            9 (60.0%)    12 (80.0%)     7 (46.7%)   
+#>         >30 to <=60 msec     2 (13.3%)        0          3 (20.0%)   
+#>         >60 msec             4 (26.7%)    3 (20.0%)      5 (33.3%)   
+#>     WEEK 3 DAY 22                                                    
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           12 (80.0%)   12 (80.0%)     12 (80.0%)  
+#>         >450 to <=480 msec   3 (20.0%)     1 (6.7%)       1 (6.7%)   
+#>         >500 msec                0        2 (13.3%)      2 (13.3%)   
+#>       Change from Baseline                                           
+#>         n                        15           15             15      
+#>         <=30 msec            9 (60.0%)    11 (73.3%)     9 (60.0%)   
+#>         >30 to <=60 msec      1 (6.7%)     1 (6.7%)          0       
+#>         >60 msec             5 (33.3%)    3 (20.0%)      6 (40.0%)   
+#>     WEEK 4 DAY 29                                                    
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           14 (93.3%)   12 (80.0%)     13 (86.7%)  
+#>         >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>         >480 to <=500 msec       0            0           1 (6.7%)   
+#>         >500 msec                0        2 (13.3%)          0       
+#>       Change from Baseline                                           
+#>         n                        15           15             15      
+#>         <=30 msec            6 (40.0%)    9 (60.0%)      9 (60.0%)   
+#>         >30 to <=60 msec     2 (13.3%)     1 (6.7%)      2 (13.3%)   
+#>         >60 msec             7 (46.7%)    5 (33.3%)      4 (26.7%)   
+#>     WEEK 5 DAY 36                                                    
+#>       Value at Visit                                                 
+#>         n                        15           15             15      
+#>         <=450 msec           12 (80.0%)   15 (100%)      15 (100%)   
+#>         >450 to <=480 msec   2 (13.3%)        0              0       
+#>         >500 msec             1 (6.7%)        0              0       
+#>       Change from Baseline                                           
+#>         n                        15           15             15      
+#>         <=30 msec            9 (60.0%)    11 (73.3%)     9 (60.0%)   
+#>         >30 to <=60 msec         0        3 (20.0%)      2 (13.3%)   
+#>         >60 msec             6 (40.0%)     1 (6.7%)      4 (26.7%)
+
+
+

+2. ECG Actual Values and Changes from Baseline by Visit +(removing default analyses) +

+

The template have two default analyses of ADEG.AVALCAT1 +and ADEG.CHGCAT1. To keep only the analyses needed, this +can be achieved by modifying the parameter summaryvars.

+
+run(egt05_qtcat, syn_data, summaryvars = c("AVALCAT1"))
+#>   Parameter                                                        
+#>     Analysis Visit         A: Drug X    B: Placebo   C: Combination
+#>       Category               (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————
+#>   QT Duration                                                      
+#>     BASELINE                                                       
+#>       n                        15           15             15      
+#>       <=450 msec           13 (86.7%)   15 (100%)      13 (86.7%)  
+#>       >450 to <=480 msec    1 (6.7%)        0              0       
+#>       >480 to <=500 msec       0            0           1 (6.7%)   
+#>       >500 msec             1 (6.7%)        0           1 (6.7%)   
+#>     WEEK 1 DAY 8                                                   
+#>       n                        15           15             15      
+#>       <=450 msec           12 (80.0%)   9 (60.0%)      13 (86.7%)  
+#>       >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>       >480 to <=500 msec    1 (6.7%)    3 (20.0%)       1 (6.7%)   
+#>       >500 msec             1 (6.7%)    2 (13.3%)          0       
+#>     WEEK 2 DAY 15                                                  
+#>       n                        15           15             15      
+#>       <=450 msec           11 (73.3%)   14 (93.3%)     12 (80.0%)  
+#>       >450 to <=480 msec   2 (13.3%)        0          2 (13.3%)   
+#>       >480 to <=500 msec    1 (6.7%)        0           1 (6.7%)   
+#>       >500 msec             1 (6.7%)     1 (6.7%)          0       
+#>     WEEK 3 DAY 22                                                  
+#>       n                        15           15             15      
+#>       <=450 msec           12 (80.0%)   12 (80.0%)     12 (80.0%)  
+#>       >450 to <=480 msec   3 (20.0%)     1 (6.7%)       1 (6.7%)   
+#>       >500 msec                0        2 (13.3%)      2 (13.3%)   
+#>     WEEK 4 DAY 29                                                  
+#>       n                        15           15             15      
+#>       <=450 msec           14 (93.3%)   12 (80.0%)     13 (86.7%)  
+#>       >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
+#>       >480 to <=500 msec       0            0           1 (6.7%)   
+#>       >500 msec                0        2 (13.3%)          0       
+#>     WEEK 5 DAY 36                                                  
+#>       n                        15           15             15      
+#>       <=450 msec           12 (80.0%)   15 (100%)      15 (100%)   
+#>       >450 to <=480 msec   2 (13.3%)        0              0       
+#>       >500 msec             1 (6.7%)        0              0
+
+
+
+

+Study Drug Exposure (EXT01) +

+
+

+1. Study Drug Exposure +

+
    +
  1. The ext01 template displays total +number of doses administered and total dose administered by default
  2. +
  3. The template does not include the column of total by default
  4. +
+
+run(ext01, syn_data)
+#>                                  A: Drug X        B: Placebo      C: Combination 
+#>   PARCAT2                         (N=15)            (N=15)            (N=15)     
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Drug A                                                                         
+#>     Overall duration (days)                                                      
+#>       n                             11                 7                 7       
+#>       Mean (SD)                157.5 (67.4)      115.4 (62.8)       98.6 (68.8)  
+#>       Median                       174.0             119.0             89.0      
+#>       Min - Max                53.0 - 239.0      22.0 - 219.0       1.0 - 182.0  
+#>     Total dose administered                                                      
+#>       n                             11                 7                 7       
+#>       Mean (SD)               6567.3 (1127.1)   7028.6 (1626.1)   6377.1 (863.7) 
+#>       Median                      6720.0            7200.0            6480.0     
+#>       Min - Max               4800.0 - 8400.0   5280.0 - 9360.0   5280.0 - 7440.0
+#>   Drug B                                                                         
+#>     Overall duration (days)                                                      
+#>       n                              4                 8                 8       
+#>       Mean (SD)                142.2 (100.3)     105.9 (60.0)      158.2 (96.2)  
+#>       Median                       160.0             95.0              203.0     
+#>       Min - Max                17.0 - 232.0      37.0 - 211.0      27.0 - 249.0  
+#>     Total dose administered                                                      
+#>       n                              4                 8                 8       
+#>       Mean (SD)               7020.0 (1148.9)   5250.0 (864.7)    5940.0 (1187.9)
+#>       Median                      6960.0            5160.0            5880.0     
+#>       Min - Max               5760.0 - 8400.0   4080.0 - 6480.0   4320.0 - 7680.0
+
+
+
+

+Laboratory Test Results and Change from Baseline by Visit +(LBT01) +

+
+

+1. Laboratory Test Results and Change from Baseline by +Visit +

+
    +
  1. The lbt01 template produces the +standard laboratory test results and change from baseline by visit.
  2. +
  3. To select the SI/CV/LS results and the panel +(chemistry/hematology/urinalysis/coagulation etc.) to display, user +defines individual filters and apply to input datasets prior to running +CHEVRON.
  4. +
+
+t_lb_chg <- run(lbt01, syn_data)
+head(t_lb_chg, 20)
+#>                                                      A: Drug X                          B: Placebo                       C: Combination          
+#>                                                              Change from                        Change from                        Change from   
+#>                                          Value at Visit       Baseline       Value at Visit       Baseline      Value at Visit       Baseline    
+#>                                              (N=15)            (N=15)            (N=15)            (N=15)           (N=15)            (N=15)     
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                                                                                           
+#>     BASELINE                                                                                                                                     
+#>       n                                        15                                  15                                 15                         
+#>       Mean (SD)                          18.655 (12.455)                     16.835 (11.080)                    22.385 (9.452)                   
+#>       Median                                 16.040                              17.453                             25.250                       
+#>       Min - Max                           2.43 - 44.06                        1.48 - 31.99                       0.57 - 37.23                    
+#>     WEEK 1 DAY 8                                                                                                                                 
+#>       n                                        15                15                15                15               15                15       
+#>       Mean (SD)                          16.308 (10.850)   -2.348 (17.558)   22.055 (7.537)    5.220 (16.359)   19.574 (9.876)   -2.811 (10.902) 
+#>       Median                                 14.664            -5.369            22.476            7.252            19.425            -0.995     
+#>       Min - Max                           0.10 - 36.30     -30.18 - 22.66     9.72 - 33.81     -16.82 - 32.33    1.03 - 36.28     -19.61 - 18.45 
+#>     WEEK 2 DAY 15                                                                                                                                
+#>       n                                        15                15                15                15               15                15       
+#>       Mean (SD)                          16.646 (10.528)   -2.010 (15.773)   20.758 (9.578)    3.923 (14.084)   10.911 (7.721)   -11.474 (11.002)
+#>       Median                                 15.470            -6.427            18.499            6.248            9.850             -8.657     
+#>       Min - Max                           0.40 - 35.29     -29.99 - 32.86     1.56 - 42.84     -24.92 - 29.85    0.35 - 25.01     -27.38 - 2.52  
+#>     WEEK 3 DAY 22                                                                                                                                
+#>       n                                        15                15                15                15               15                15       
+#>       Mean (SD)                          17.488 (10.679)   -1.167 (15.759)   20.055 (8.086)    3.219 (16.285)   18.413 (9.513)    -3.973 (9.966) 
+#>       Median                                 14.224             1.355            21.852            5.345            19.529            -7.194
+
+
+

+2. Laboratory Test Results and Change from Baseline by Visit +(customized precision) +

+

TBA

+
+
+
+

+Laboratory Abnormalities (LBT04) +

+
+

+1. Laboratory Abnormalities +

+
    +
  1. The lbt04 template produces the +standard laboratory abnormalities summary.
  2. +
  3. The template subsets to SI results by default.
  4. +
  5. The laboratory tests and directions of abnormality in this template +is data-driven. Table entries provide the number of patients with a +during treatment laboratory value abnormality in the direction specified +among patients without this abnormality at baseline.
  6. +
+
+run(lbt04, syn_data)
+#>   Laboratory Test                           A: Drug X    B: Placebo    C: Combination
+#>       Direction of Abnormality               (N=15)        (N=15)          (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#>   CHEMISTRY                                                                          
+#>     Alanine Aminotransferase Measurement                                             
+#>       Low                                      0/7           0/2        1/7 (14.3%)  
+#>       High                                     0/7           0/3            0/8      
+#>     C-Reactive Protein Measurement                                                   
+#>       Low                                      0/8       1/2 (50.0%)        0/6      
+#>       High                                 3/8 (37.5%)       0/2            0/7      
+#>     Immunoglobulin A Measurement                                                     
+#>       Low                                      0/5           0/8            0/7      
+#>       High                                 1/3 (33.3%)   1/8 (12.5%)        0/6      
+#>   COAGULATION                                                                        
+#>     Alanine Aminotransferase Measurement                                             
+#>       Low                                      0/3           0/6            0/4      
+#>       High                                     0/5           0/7            0/4      
+#>     C-Reactive Protein Measurement                                                   
+#>       Low                                      0/5           0/5        1/3 (33.3%)  
+#>       High                                     0/5       1/6 (16.7%)    1/4 (25.0%)  
+#>     Immunoglobulin A Measurement                                                     
+#>       Low                                      0/8           0/9            0/6      
+#>       High                                     0/8           0/9        1/6 (16.7%)  
+#>   HEMATOLOGY                                                                         
+#>     Alanine Aminotransferase Measurement                                             
+#>       Low                                      0/4           0/5            0/4      
+#>       High                                     0/6           0/5            0/4      
+#>     C-Reactive Protein Measurement                                                   
+#>       Low                                      0/5           0/4            0/3      
+#>       High                                     0/5           0/4            0/5      
+#>     Immunoglobulin A Measurement                                                     
+#>       Low                                      0/3           0/4            0/8      
+#>       High                                     0/3           0/4            0/7
+
+
+
+

+Laboratory Abnormalities with Single and Replicated Marked +(LBT05) +

+
+

+1. Laboratory Abnormalities with Single and Replicated +Marked +

+
    +
  1. The lbt05 template produces the +standard laboratory abnormalities summary for marked abnormalities.
  2. +
  3. The laboratory tests and directions of abnormality in this template +is currently data-driven. The standard metadata for Safety Lab +Standardization will be incorporated in future release.
  4. +
+
+run(lbt05, syn_data)
+#>   Laboratory Test                            A: Drug X   B: Placebo   C: Combination
+#>       Direction of Abnormality                (N=15)       (N=15)         (N=15)    
+#>   ——————————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement (n)      15           14             14      
+#>     Low                                                                             
+#>       Single, not last                       1 (6.7%)        0          4 (28.6%)   
+#>       Last or replicated                     5 (33.3%)   4 (28.6%)      4 (28.6%)   
+#>       Any Abnormality                        6 (40.0%)   4 (28.6%)      8 (57.1%)   
+#>     High                                                                            
+#>       Single, not last                           0           0              0       
+#>       Last or replicated                         0           0              0       
+#>       Any Abnormality                            0           0              0       
+#>   C-Reactive Protein Measurement (n)            15           15             15      
+#>     Low                                                                             
+#>       Single, not last                       4 (26.7%)       0          3 (20.0%)   
+#>       Last or replicated                     3 (20.0%)   5 (33.3%)      6 (40.0%)   
+#>       Any Abnormality                        7 (46.7%)   5 (33.3%)      9 (60.0%)   
+#>     High                                                                            
+#>       Single, not last                       1 (6.7%)    3 (20.0%)          0       
+#>       Last or replicated                     4 (26.7%)   3 (20.0%)      6 (40.0%)   
+#>       Any Abnormality                        5 (33.3%)   6 (40.0%)      6 (40.0%)   
+#>   Immunoglobulin A Measurement (n)              13           14             14      
+#>     Low                                                                             
+#>       Single, not last                           0           0              0       
+#>       Last or replicated                         0           0              0       
+#>       Any Abnormality                            0           0              0       
+#>     High                                                                            
+#>       Single, not last                       6 (46.2%)    1 (7.1%)      2 (14.3%)   
+#>       Last or replicated                     3 (23.1%)   4 (28.6%)      3 (21.4%)   
+#>       Any Abnormality                        9 (69.2%)   5 (35.7%)      5 (35.7%)
+
+
+

+2. Laboratory Abnormalities with Single and Replicated +Marked showing all categories +

+
+
+

+3. Laboratory Abnormalities with Single and Replicated +Marked with study specific MLAs +

+
+
+
+

+Laboratory Abnormalities by Visit and Baseline Status +(LBT06) +

+
+

+1. Laboratory Abnormalities by Visit and Baseline +Status +

+
    +
  1. The lbt06 template produces the +standard laboratory abnormalities by visit and baseline status +summary.
  2. +
+
+run(lbt06, syn_data)
+#>   Visit                                                                            
+#>     Abnormality at Visit                  A: Drug X    B: Placebo    C: Combination
+#>               Baseline Status              (N=15)        (N=15)          (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                             
+#>     WEEK 1 DAY 8                                                                   
+#>       Low                                                                          
+#>                 Not low                      0/1           0/6            0/1      
+#>                 Low                          0/1           0/1            0/1      
+#>                 Total                        0/2           0/7            0/2      
+#>       High                                                                         
+#>                 Not high                     0/2           0/7            0/2      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/2           0/7            0/2      
+#>     WEEK 2 DAY 15                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/3           0/2            0/2      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/3           0/2            0/2      
+#>       High                                                                         
+#>                 Not high                     0/3           0/2            0/2      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/3           0/2            0/2      
+#>     WEEK 3 DAY 22                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/5           0/3        1/6 (16.7%)  
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/5           0/3        1/6 (16.7%)  
+#>       High                                                                         
+#>                 Not high                     0/5           0/3            0/6      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/5           0/3            0/6      
+#>     WEEK 4 DAY 29                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/3           0/1            0/1      
+#>                 Low                          0/3           0/2            0/0      
+#>                 Total                        0/6           0/3            0/1      
+#>       High                                                                         
+#>                 Not high                     0/6           0/3            0/1      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/6           0/3            0/1      
+#>     WEEK 5 DAY 36                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/2           0/2            0/5      
+#>                 Low                          0/1           0/1            0/0      
+#>                 Total                        0/3           0/3            0/5      
+#>       High                                                                         
+#>                 Not high                     0/3           0/3            0/5      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/3           0/3            0/5      
+#>   C-Reactive Protein Measurement                                                   
+#>     WEEK 1 DAY 8                                                                   
+#>       Low                                                                          
+#>                 Not low                      0/5           0/3            0/3      
+#>                 Low                          0/0           0/1            0/0      
+#>                 Total                        0/5           0/4            0/3      
+#>       High                                                                         
+#>                 Not high                     0/5           0/3        1/3 (33.3%)  
+#>                 High                         0/0           0/1            0/0      
+#>                 Total                        0/5           0/4        1/3 (33.3%)  
+#>     WEEK 2 DAY 15                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/8           0/2            0/0      
+#>                 Low                          0/0           0/0            0/1      
+#>                 Total                        0/8           0/2            0/1      
+#>       High                                                                         
+#>                 Not high                 1/8 (12.5%)       0/1            0/1      
+#>                 High                         0/0           0/1            0/0      
+#>                 Total                    1/8 (12.5%)       0/2            0/1      
+#>     WEEK 3 DAY 22                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/5           0/4            0/4      
+#>                 Low                          0/0       1/1 (100%)         0/2      
+#>                 Total                        0/5        1/5 (20%)         0/6      
+#>       High                                                                         
+#>                 Not high                  1/5 (20%)     1/5 (20%)         0/6      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                     1/5 (20%)     1/5 (20%)         0/6      
+#>     WEEK 4 DAY 29                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/2        1/2 (50%)     1/3 (33.3%)  
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/2        1/2 (50%)     1/3 (33.3%)  
+#>       High                                                                         
+#>                 Not high                     0/2           0/2            0/3      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/2           0/2            0/3      
+#>     WEEK 5 DAY 36                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/2           0/2            0/5      
+#>                 Low                          0/0       1/1 (100%)         0/1      
+#>                 Total                        0/2       1/3 (33.3%)        0/6      
+#>       High                                                                         
+#>                 Not high                  1/2 (50%)        0/3            0/6      
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                     1/2 (50%)        0/3            0/6      
+#>   Immunoglobulin A Measurement                                                     
+#>     WEEK 1 DAY 8                                                                   
+#>       Low                                                                          
+#>                 Not low                      0/6           0/6            0/2      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/6           0/6            0/2      
+#>       High                                                                         
+#>                 Not high                     0/5       1/6 (16.7%)        0/2      
+#>                 High                         0/1           0/0            0/0      
+#>                 Total                        0/6       1/6 (16.7%)        0/2      
+#>     WEEK 2 DAY 15                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/3           0/7            0/4      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/3           0/7            0/4      
+#>       High                                                                         
+#>                 Not high                     0/3           0/7         1/4 (25%)   
+#>                 High                         0/0           0/0            0/0      
+#>                 Total                        0/3           0/7         1/4 (25%)   
+#>     WEEK 3 DAY 22                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/4           0/5            0/9      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/4           0/5            0/9      
+#>       High                                                                         
+#>                 Not high                     0/3           0/5            0/8      
+#>                 High                         0/1           0/0            0/1      
+#>                 Total                        0/4           0/5            0/9      
+#>     WEEK 4 DAY 29                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/2           0/6            0/4      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/2           0/6            0/4      
+#>       High                                                                         
+#>                 Not high                 1/1 (100%)        0/6            0/3      
+#>                 High                         0/1           0/0            0/1      
+#>                 Total                     1/2 (50%)        0/6            0/4      
+#>     WEEK 5 DAY 36                                                                  
+#>       Low                                                                          
+#>                 Not low                      0/6           0/5            0/5      
+#>                 Low                          0/0           0/0            0/0      
+#>                 Total                        0/6           0/5            0/5      
+#>       High                                                                         
+#>                 Not high                     0/5           0/5            0/5      
+#>                 High                         0/1           0/0            0/0      
+#>                 Total                        0/6           0/5            0/5
+
+
+
+

+Laboratory Test Results with Highest NCI CTCAE +Grade Post-Baseline (LBT07) +

+
+

+1. Laboratory Test Results with Highest +NCI CTCAE Grade Post-Baseline +

+
    +
  1. The lbt07 template produces the +standard laboratory test results with highest NCI CTCAE +grade post-baseline summary.
  2. +
  3. The laboratory tests and grades in this template is currently +data-driven. The standard metadata for possible lab tests and +corresponding NCI CTCAE grade will be incorporated in +future release.
  4. +
+
+run(lbt07, syn_data)
+#>   Parameter                                                                          
+#>     Direction of Abnormality                 A: Drug X    B: Placebo   C: Combination
+#>               Highest NCI CTCAE Grade          (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement (n)       15           15             15      
+#>     LOW                                                                              
+#>               1                              3 (20.0%)        0              0       
+#>               2                              2 (13.3%)     1 (6.7%)       1 (6.7%)   
+#>               3                               1 (6.7%)     1 (6.7%)      6 (40.0%)   
+#>               4                              3 (20.0%)    2 (13.3%)      3 (20.0%)   
+#>               Any                            9 (60.0%)    4 (26.7%)      10 (66.7%)  
+#>   C-Reactive Protein Measurement (n)             15           15             15      
+#>     LOW                                                                              
+#>               1                              2 (13.3%)     1 (6.7%)      2 (13.3%)   
+#>               2                              5 (33.3%)    2 (13.3%)      5 (33.3%)   
+#>               3                              3 (20.0%)    4 (26.7%)      3 (20.0%)   
+#>               4                                  0         1 (6.7%)          0       
+#>               Any                            10 (66.7%)   8 (53.3%)      10 (66.7%)  
+#>     HIGH                                                                             
+#>               1                              3 (20.0%)     1 (6.7%)       1 (6.7%)   
+#>               2                              4 (26.7%)    4 (26.7%)      2 (13.3%)   
+#>               3                               1 (6.7%)    2 (13.3%)      4 (26.7%)   
+#>               4                                  0         1 (6.7%)          0       
+#>               Any                            8 (53.3%)    8 (53.3%)      7 (46.7%)   
+#>   Immunoglobulin A Measurement (n)               15           15             15      
+#>     HIGH                                                                             
+#>               1                              3 (20.0%)     1 (6.7%)       1 (6.7%)   
+#>               2                              5 (33.3%)    4 (26.7%)      2 (13.3%)   
+#>               3                              3 (20.0%)    3 (20.0%)      2 (13.3%)   
+#>               4                                  0            0           1 (6.7%)   
+#>               Any                            11 (73.3%)   8 (53.3%)      6 (40.0%)
+
+
+
+

+Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (LBT14) +

+
+

+1. Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (High) +

+

To produce the standard laboratory test results shift table - highest +NCI-CTCAE grade post-baseline by baseline +NCI-CTCAE grade summary for high abnormalities, use the +lbt14 template and set the parameter +direction to high.

+
+run(lbt14, syn_data, direction = "high")
+#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
+#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                           
+#>     Not High                                 15           15             15      
+#>             Not High                      15 (100%)   15 (100%)      15 (100%)   
+#>   C-Reactive Protein Measurement                                                 
+#>     Not High                                 15           13             14      
+#>             Not High                      7 (46.7%)   7 (53.8%)      8 (57.1%)   
+#>             1                             3 (20.0%)    1 (7.7%)       1 (7.1%)   
+#>             2                             4 (26.7%)   3 (23.1%)       1 (7.1%)   
+#>             3                             1 (6.7%)     1 (7.7%)      4 (28.6%)   
+#>             4                                 0        1 (7.7%)          0       
+#>     1                                         0           0              1       
+#>             2                                 0           0           1 (100%)   
+#>     3                                         0           1              0       
+#>             2                                 0        1 (100%)          0       
+#>     4                                         0           1              0       
+#>             3                                 0        1 (100%)          0       
+#>   Immunoglobulin A Measurement                                                   
+#>     Not High                                 12           14             13      
+#>             Not High                      3 (25.0%)   7 (50.0%)      8 (61.5%)   
+#>             1                             3 (25.0%)    1 (7.1%)       1 (7.7%)   
+#>             2                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>             3                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>     1                                         2           0              1       
+#>             Not High                      1 (50.0%)       0           1 (100%)   
+#>             2                             1 (50.0%)       0              0       
+#>     3                                         0           0              1       
+#>             4                                 0           0           1 (100%)   
+#>     4                                         1           1              0       
+#>             2                             1 (100%)     1 (100%)          0
+
+
+

+2. Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (Low) +

+

To produce the standard laboratory test results shift table - highest +NCI-CTCAE grade post-baseline by baseline +NCI-CTCAE grade summary for high abnormalities, use the +lbt14 template and the argument +direction is low by default.

+
+run(lbt14, syn_data)
+#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
+#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                           
+#>     Not Low                                  12           12             14      
+#>             Not Low                       5 (41.7%)   8 (66.7%)      5 (35.7%)   
+#>             1                             3 (25.0%)       0              0       
+#>             2                             2 (16.7%)    1 (8.3%)       1 (7.1%)   
+#>             3                                 0        1 (8.3%)      5 (35.7%)   
+#>             4                             2 (16.7%)   2 (16.7%)      3 (21.4%)   
+#>     1                                         1           2              0       
+#>             Not Low                       1 (100%)     2 (100%)          0       
+#>     2                                         1           1              0       
+#>             Not Low                           0        1 (100%)          0       
+#>             4                             1 (100%)        0              0       
+#>     3                                         1           0              1       
+#>             3                             1 (100%)        0           1 (100%)   
+#>   C-Reactive Protein Measurement                                                 
+#>     Not Low                                  14           13             12      
+#>             Not Low                       5 (35.7%)   7 (53.8%)      4 (33.3%)   
+#>             1                             2 (14.3%)       0          2 (16.7%)   
+#>             2                             5 (35.7%)   2 (15.4%)      4 (33.3%)   
+#>             3                             2 (14.3%)   3 (23.1%)      2 (16.7%)   
+#>             4                                 0        1 (7.7%)          0       
+#>     1                                         0           0              2       
+#>             Not Low                           0           0          1 (50.0%)   
+#>             2                                 0           0          1 (50.0%)   
+#>     2                                         0           1              0       
+#>             1                                 0        1 (100%)          0       
+#>     3                                         1           1              1       
+#>             3                             1 (100%)     1 (100%)       1 (100%)   
+#>   Immunoglobulin A Measurement                                                   
+#>     Not Low                                  15           15             15      
+#>             Not Low                       15 (100%)   15 (100%)      15 (100%)
+
+
+

+3. Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (High) Without Patients with Missing +Baseline +

+

To exclude patients with missing baseline grade, set the argument +gr_missing to excl.

+
+run(lbt14, syn_data, direction = "high", gr_missing = "excl")
+#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
+#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                           
+#>     Not High                                 15           15             15      
+#>             Not High                      15 (100%)   15 (100%)      15 (100%)   
+#>   C-Reactive Protein Measurement                                                 
+#>     Not High                                 15           13             14      
+#>             Not High                      7 (46.7%)   7 (53.8%)      8 (57.1%)   
+#>             1                             3 (20.0%)    1 (7.7%)       1 (7.1%)   
+#>             2                             4 (26.7%)   3 (23.1%)       1 (7.1%)   
+#>             3                             1 (6.7%)     1 (7.7%)      4 (28.6%)   
+#>             4                                 0        1 (7.7%)          0       
+#>     1                                         0           0              1       
+#>             2                                 0           0           1 (100%)   
+#>     3                                         0           1              0       
+#>             2                                 0        1 (100%)          0       
+#>     4                                         0           1              0       
+#>             3                                 0        1 (100%)          0       
+#>   Immunoglobulin A Measurement                                                   
+#>     Not High                                 12           14             13      
+#>             Not High                      3 (25.0%)   7 (50.0%)      8 (61.5%)   
+#>             1                             3 (25.0%)    1 (7.1%)       1 (7.7%)   
+#>             2                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>             3                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>     1                                         2           0              1       
+#>             Not High                      1 (50.0%)       0           1 (100%)   
+#>             2                             1 (50.0%)       0              0       
+#>     3                                         0           0              1       
+#>             4                                 0           0           1 (100%)   
+#>     4                                         1           1              0       
+#>             2                             1 (100%)     1 (100%)          0
+
+
+

+4. Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (Low) with Missing Baseline Considered as +Grade 0 +

+

To count patients with missing baseline grade as grade 0, set the +argument gr_missing to gr_0.

+
+run(lbt14, syn_data, gr_missing = "gr_0")
+#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
+#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                           
+#>     1                                         1           2              0       
+#>             Not Low                       1 (100%)     2 (100%)          0       
+#>     2                                         1           1              0       
+#>             Not Low                           0        1 (100%)          0       
+#>             4                             1 (100%)        0              0       
+#>     3                                         1           0              1       
+#>             3                             1 (100%)        0           1 (100%)   
+#>     Not Low                                  12           12             14      
+#>             Not Low                       5 (41.7%)   8 (66.7%)      5 (35.7%)   
+#>             1                             3 (25.0%)       0              0       
+#>             2                             2 (16.7%)    1 (8.3%)       1 (7.1%)   
+#>             3                                 0        1 (8.3%)      5 (35.7%)   
+#>             4                             2 (16.7%)   2 (16.7%)      3 (21.4%)   
+#>   C-Reactive Protein Measurement                                                 
+#>     1                                         0           0              2       
+#>             1                                 0           0          1 (50.0%)   
+#>             3                                 0           0          1 (50.0%)   
+#>     2                                         0           1              0       
+#>             2                                 0        1 (100%)          0       
+#>     3                                         1           1              1       
+#>             3                             1 (100%)     1 (100%)       1 (100%)   
+#>     Not Low                                  14           13             12      
+#>             Not Low                       5 (35.7%)   7 (53.8%)      4 (33.3%)   
+#>             1                             2 (14.3%)       0          2 (16.7%)   
+#>             2                             5 (35.7%)   2 (15.4%)      4 (33.3%)   
+#>             3                             2 (14.3%)   3 (23.1%)      2 (16.7%)   
+#>             4                                 0        1 (7.7%)          0       
+#>   Immunoglobulin A Measurement                                                   
+#>     Not Low                                  15           15             15      
+#>             Not Low                       15 (100%)   15 (100%)      15 (100%)
+
+
+

+4. Laboratory Test Results Shift Table - Highest +NCI-CTCAE Grade Post-Baseline by Baseline +NCI-CTCAE Grade (with fill in of grades) +

+

To display all possible grades even if they do not occur in the data, +set the argument prune_0 to FALSE.

+
+run(lbt14, syn_data, direction = "high", prune_0 = FALSE)
+#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
+#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————
+#>   Alanine Aminotransferase Measurement                                           
+#>     Not High                                 15           15             15      
+#>             Not High                      15 (100%)   15 (100%)      15 (100%)   
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     1                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     2                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     3                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     4                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     Missing                                   0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>   C-Reactive Protein Measurement                                                 
+#>     Not High                                 15           13             14      
+#>             Not High                      7 (46.7%)   7 (53.8%)      8 (57.1%)   
+#>             1                             3 (20.0%)    1 (7.7%)       1 (7.1%)   
+#>             2                             4 (26.7%)   3 (23.1%)       1 (7.1%)   
+#>             3                             1 (6.7%)     1 (7.7%)      4 (28.6%)   
+#>             4                                 0        1 (7.7%)          0       
+#>             Missing                           0           0              0       
+#>     1                                         0           0              1       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0           1 (100%)   
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     2                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     3                                         0           1              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0        1 (100%)          0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     4                                         0           1              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0        1 (100%)          0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     Missing                                   0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>   Immunoglobulin A Measurement                                                   
+#>     Not High                                 12           14             13      
+#>             Not High                      3 (25.0%)   7 (50.0%)      8 (61.5%)   
+#>             1                             3 (25.0%)    1 (7.1%)       1 (7.7%)   
+#>             2                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>             3                             3 (25.0%)   3 (21.4%)      2 (15.4%)   
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     1                                         2           0              1       
+#>             Not High                      1 (50.0%)       0           1 (100%)   
+#>             1                                 0           0              0       
+#>             2                             1 (50.0%)       0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     2                                         0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     3                                         0           0              1       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0           1 (100%)   
+#>             Missing                           0           0              0       
+#>     4                                         1           1              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                             1 (100%)     1 (100%)          0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0       
+#>     Missing                                   0           0              0       
+#>             Not High                          0           0              0       
+#>             1                                 0           0              0       
+#>             2                                 0           0              0       
+#>             3                                 0           0              0       
+#>             4                                 0           0              0       
+#>             Missing                           0           0              0
+
+
+
+

+Medical History (MHT01) +

+
+

+1. Medical History +

+
    +
  1. The mht01 template displays medical +conditions by MedDRA system organ class and Preferred Name by +default.
  2. +
  3. The default treatment variable is "ADSL.ARM".
  4. +
  5. The user is expected to use filter to subset medical conditions +prior to or on entering study.
  6. +
  7. By default, the template produces the overall ‘total number of +conditions’ as well as the ‘total number of conditions’ per body system +after the summary of patients. 5)This template currently does not +support sorting MedDRA system organ class and preferred names by order +of frequency.
  8. +
+
+run(mht01, syn_data)
+#>   MedDRA System Organ Class                                A: Drug X    B: Placebo   C: Combination
+#>     MedDRA Preferred Term                                    (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one condition     13 (86.7%)   14 (93.3%)     15 (100%)   
+#>   Total number of conditions                                   58           59             99      
+#>   cl A                                                                                             
+#>     Total number of patients with at least one condition   7 (46.7%)    6 (40.0%)      10 (66.7%)  
+#>     Total number of conditions                                 8            11             16      
+#>     trm A_2/2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
+#>     trm A_1/2                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
+#>   cl B                                                                                             
+#>     Total number of patients with at least one condition   12 (80.0%)   11 (73.3%)     12 (80.0%)  
+#>     Total number of conditions                                 24           21             32      
+#>     trm B_3/3                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
+#>     trm B_1/3                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
+#>     trm B_2/3                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
+#>   cl C                                                                                             
+#>     Total number of patients with at least one condition   8 (53.3%)    6 (40.0%)      11 (73.3%)  
+#>     Total number of conditions                                 10           13             22      
+#>     trm C_2/2                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
+#>     trm C_1/2                                              4 (26.7%)    4 (26.7%)      5 (33.3%)   
+#>   cl D                                                                                             
+#>     Total number of patients with at least one condition   10 (66.7%)   7 (46.7%)      13 (86.7%)  
+#>     Total number of conditions                                 16           14             29      
+#>     trm D_1/3                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
+#>     trm D_2/3                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
+#>     trm D_3/3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)
+
+
+

+2. Medical History showing additional column ‘All +Patients’ +

+
+run(mht01, syn_data, lbl_overall = "All Patients")
+#>   MedDRA System Organ Class                                A: Drug X    B: Placebo   C: Combination   All Patients
+#>     MedDRA Preferred Term                                    (N=15)       (N=15)         (N=15)          (N=45)   
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one condition     13 (86.7%)   14 (93.3%)     15 (100%)       42 (93.3%) 
+#>   Total number of conditions                                   58           59             99             216     
+#>   cl A                                                                                                            
+#>     Total number of patients with at least one condition   7 (46.7%)    6 (40.0%)      10 (66.7%)      23 (51.1%) 
+#>     Total number of conditions                                 8            11             16              35     
+#>     trm A_2/2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)       17 (37.8%) 
+#>     trm A_1/2                                              3 (20.0%)     1 (6.7%)      6 (40.0%)       10 (22.2%) 
+#>   cl B                                                                                                            
+#>     Total number of patients with at least one condition   12 (80.0%)   11 (73.3%)     12 (80.0%)      35 (77.8%) 
+#>     Total number of conditions                                 24           21             32              77     
+#>     trm B_3/3                                              8 (53.3%)    6 (40.0%)      7 (46.7%)       21 (46.7%) 
+#>     trm B_1/3                                              5 (33.3%)    6 (40.0%)      8 (53.3%)       19 (42.2%) 
+#>     trm B_2/3                                              5 (33.3%)    6 (40.0%)      5 (33.3%)       16 (35.6%) 
+#>   cl C                                                                                                            
+#>     Total number of patients with at least one condition   8 (53.3%)    6 (40.0%)      11 (73.3%)      25 (55.6%) 
+#>     Total number of conditions                                 10           13             22              45     
+#>     trm C_2/2                                              6 (40.0%)    4 (26.7%)      8 (53.3%)       18 (40.0%) 
+#>     trm C_1/2                                              4 (26.7%)    4 (26.7%)      5 (33.3%)       13 (28.9%) 
+#>   cl D                                                                                                            
+#>     Total number of patients with at least one condition   10 (66.7%)   7 (46.7%)      13 (86.7%)      30 (66.7%) 
+#>     Total number of conditions                                 16           14             29              59     
+#>     trm D_1/3                                              4 (26.7%)    4 (26.7%)      7 (46.7%)       15 (33.3%) 
+#>     trm D_2/3                                              6 (40.0%)    2 (13.3%)      7 (46.7%)       15 (33.3%) 
+#>     trm D_3/3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)       14 (31.1%)
+
+
+
+

+Major Protocol Deviations (PDT01) +

+
+

+1. Major Protocol Deviations +

+
    +
  1. The pdt01 template produces the +standard major protocol deviations output.
  2. +
  3. Users are expected to filter addv to only include +records where DVCAT == "MAJOR" in pre-processing.
  4. +
+
+proc_data <- syn_data
+proc_data$addv <- proc_data$addv %>%
+  filter(DVCAT == "MAJOR")
+
+run(pdt01, proc_data)
+#>   Category                                                              A: Drug X   B: Placebo   C: Combination
+#>     Description                                                          (N=15)       (N=15)         (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one major protocol deviation   2 (13.3%)   4 (26.7%)          0       
+#>   Total number of major protocol deviations                                 2           5              0       
+#>   EXCLUSION CRITERIA                                                                                           
+#>     Active or untreated or other excluded cns metastases                    0        1 (6.7%)          0       
+#>     Pregnancy criteria                                                      0        1 (6.7%)          0       
+#>   INCLUSION CRITERIA                                                                                           
+#>     Ineligible cancer type or current cancer stage                      1 (6.7%)        0              0       
+#>   MEDICATION                                                                                                   
+#>     Discontinued study drug for unspecified reason                          0        1 (6.7%)          0       
+#>     Received prohibited concomitant medication                              0        1 (6.7%)          0       
+#>   PROCEDURAL                                                                                                   
+#>     Eligibility-related test not done/out of window                         0        1 (6.7%)          0       
+#>     Failure to sign updated ICF within two visits                       1 (6.7%)        0              0
+
+
+
+ +
+ +
    +
  1. The pdt02 template produces the +reasons for major protocol deviations related to epidemic/pandemic +summary.
  2. +
  3. By default, ADDV.DVREAS provides the reason and +ADDV.DVTERM provides the description.
  4. +
  5. By default, addv has been filtered to include only +records that meet the condition +AEPRELFL == "Y" & DVCAT == "MAJOR".
  6. +
+
+run(pdt02, syn_data)
+#>   Primary Reason                                                                                     A: Drug X   B: Placebo   C: Combination
+#>     Description                                                                                       (N=15)       (N=15)         (N=15)    
+#>   ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Total number of patients with at least one major protocol deviation related to epidemic/pandemic   1 (6.7%)        0              0       
+#>   Total number of major protocol deviations related to epidemic/pandemic                                 1           0              0       
+#>   Site action due to epidemic/pandemic                                                               1 (6.7%)        0              0       
+#>     Failure to sign updated ICF within two visits                                                    1 (6.7%)        0              0
+
+
+
+

+Duration of Exposure for Risk Management Plan +(RMPT01) +

+
+

+1. Duration of Exposure for Risk Management +Plan +

+

The rmpt01 template produces the +standard duration of exposure output for the Risk Management Plan +(RMP).

+

Person time is the sum of exposure across all patients in days.

+
+run(rmpt01, syn_data)
+#>                                        Patients     Person time
+#>   Duration of exposure                  (N=45)        (N=45)   
+#>   —————————————————————————————————————————————————————————————
+#>   < 1 month                            4 (8.9%)         67     
+#>   1 to <3 months                      13 (28.9%)        837    
+#>   3 to <6 months                      13 (28.9%)       1728    
+#>   >=6 months                          15 (33.3%)       3281    
+#>   Total patients number/person time   45 (100.0%)      5913
+
+
+
+

+Extent of Exposure by Age Group and Gender for Risk +Management Plan (RMPT03) +

+
+

+1. Extent of Exposure by Age Group and Gender for Risk +Management Plan +

+

The rmpt03 template produces the +standard extent of exposure by age group and gender output for the Risk +Management Plan (RMP).

+

By default, the AGEGR1 variable is used as the age +group. If AGEGR1 is available in ADSL only but +not in ADEX, it needs to be added to ADEX +first.

+
+proc_data <- syn_data
+proc_data <- propagate(proc_data, "adsl", "AGEGR1", "USUBJID")
+#> 
+#> Updating: adae with: AGEGR1
+#> Updating: adsaftte with: AGEGR1
+#> Updating: adcm with: AGEGR1
+#> Updating: addv with: AGEGR1
+#> Updating: adeg with: AGEGR1
+#> Updating: adex with: AGEGR1
+#> Updating: adlb with: AGEGR1
+#> Updating: admh with: AGEGR1
+#> Skipping: adrs
+#> Updating: adsub with: AGEGR1
+#> Skipping: adtte
+#> Updating: advs with: AGEGR1
+run(rmpt03, proc_data)
+#>                                                   F                           M                      All Genders       
+#>                                        Patients     Person time    Patients     Person time    Patients     Person time
+#>   Age Group                             (N=30)        (N=30)        (N=15)        (N=15)        (N=45)        (N=45)   
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   <65                                 30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913    
+#>   Total patients number/person time   30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913
+

Any other study specific age group can be used by editing the +parameter summaryvars. For all RMP tables, if +the variable specified per summaryvars is unavailable in +ADEX, it needs to be added to ADEX first.

+
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+  mutate(
+    AGEGR2 = with_label(
+      factor(case_when(
+        AAGE < 18 ~ "<18",
+        AAGE >= 18 & AAGE <= 65 ~ "18 - 65",
+        AAGE > 65 ~ ">65",
+      ), levels = c("<18", "18 - 65", ">65")),
+      "Age Group 2"
+    )
+  )
+proc_data <- propagate(proc_data, "adsl", "AGEGR2", "USUBJID")
+#> 
+#> Updating: adae with: AGEGR2
+#> Updating: adsaftte with: AGEGR2
+#> Updating: adcm with: AGEGR2
+#> Updating: addv with: AGEGR2
+#> Updating: adeg with: AGEGR2
+#> Updating: adex with: AGEGR2
+#> Updating: adlb with: AGEGR2
+#> Updating: admh with: AGEGR2
+#> Updating: adrs with: AGEGR2
+#> Updating: adsub with: AGEGR2
+#> Updating: adtte with: AGEGR2
+#> Updating: advs with: AGEGR2
+run(rmpt03, proc_data, summaryvars = "AGEGR2")
+#>                                                   F                           M                      All Genders       
+#>                                        Patients     Person time    Patients     Person time    Patients     Person time
+#>   Age Group 2                           (N=30)        (N=30)        (N=15)        (N=15)        (N=45)        (N=45)   
+#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   18 - 65                             30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913    
+#>   Total patients number/person time   30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913
+
+
+
+

+Extent of Exposure by Ethnic Origin for Risk Management Plan +(RMPT04) +

+
+

+1. Extent of Exposure by Ethnic Origin for Risk Management +Plan +

+

The rmpt04 template produces the +standard extent of exposure by ethnic origin output for the Risk +Management Plan (RMP).

+
+run(rmpt04, syn_data)
+#>                                        Patients     Person time
+#>   ETHNIC                                (N=45)        (N=45)   
+#>   —————————————————————————————————————————————————————————————
+#>   HISPANIC OR LATINO                   2 (4.4%)         309    
+#>   NOT HISPANIC OR LATINO              41 (91.1%)       5555    
+#>   NOT REPORTED                         2 (4.4%)         49     
+#>   Total patients number/person time   45 (100.0%)      5913
+
+
+
+

+Extent of Exposure by Race for Risk Management Plan +(RMPT05) +

+
+

+1. Extent of Exposure by Race for Risk Management +Plan +

+

The rmpt05 template produces the +standard extent of exposure by race output for the Risk Management Plan +(RMP).

+
+run(rmpt05, syn_data)
+#>                                        Patients     Person time
+#>   RACE                                  (N=45)        (N=45)   
+#>   —————————————————————————————————————————————————————————————
+#>   ASIAN                               26 (57.8%)       3309    
+#>   BLACK OR AFRICAN AMERICAN            9 (20.0%)       1139    
+#>   WHITE                                7 (15.6%)       1231    
+#>   AMERICAN INDIAN OR ALASKA NATIVE     3 (6.7%)         234    
+#>   Total patients number/person time   45 (100.0%)      5913
+
+
+
+

+Best Overall Response (RSPT01) +

+
+

+1. Best Overall Response +

+
    +
  1. The rspt01 template produces the +standard best overall response output.
  2. +
  3. The template syntax is built based on RECIST 1.1. By +default, the subjects with response results of "CR" or +"PR" are considered as responders.
  4. +
  5. Users are expected to pre-process the input analysis data and select +the parameter to be analyzed, i.e., best overall response by +investigator or best overall response by BICR.
  6. +
  7. Unstratified analysis is provided by default.
  8. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, ref_group = NULL, perform_analysis = "unstrat", strata = NULL)
+#> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation
+#> may be incorrect
+#>                                          A: Drug X          B: Placebo         C: Combination  
+#>                                            (N=15)             (N=15)               (N=15)      
+#>   —————————————————————————————————————————————————————————————————————————————————————————————
+#>   Responders                             10 (66.7%)         9 (60.0%)            11 (73.3%)    
+#>   95% CI (Wald, with correction)        (39.5, 93.9)       (31.9, 88.1)         (47.6, 99.0)   
+#>   Unstratified Analysis                                                                        
+#>     Difference in Response rate (%)                            -6.7                 6.7        
+#>       95% CI (Wald, with correction)                      (-47.7, 34.4)        (-32.7, 46.0)   
+#>     p-value (Chi-Squared Test)                                0.7048               0.6903      
+#>   Odds Ratio (95% CI)                                   0.75 (0.17 - 3.33)   1.37 (0.29 - 6.60)
+#>   Complete Response (CR)                 4 (26.7%)          4 (26.7%)            7 (46.7%)     
+#>     95% CI (Wald, with correction)     (0.95, 52.38)      (0.95, 52.38)        (18.09, 75.25)  
+#>   Partial Response (PR)                  6 (40.0%)          5 (33.3%)            4 (26.7%)     
+#>     95% CI (Wald, with correction)     (11.87, 68.13)     (6.14, 60.52)        (0.95, 52.38)   
+#>   Stable Disease (SD)                    5 (33.3%)          6 (40.0%)            4 (26.7%)     
+#>     95% CI (Wald, with correction)     (6.14, 60.52)      (11.87, 68.13)       (0.95, 52.38)
+
+
+

+2. Best Overall Response (Ordering of treatment +groups) +

+
    +
  1. By default, the first level or value of arm_var +(default to "ADSL.ARM" unless specified) is treated as the +reference group without specification.
  2. +
  3. To apply user-defined reference group, please provide the value from +the treatment variable to the argument ref_group, e.g., +ref_group = "PLACEBO".
  4. +
  5. Since rtables displays the reference group at the very +left column, the order of displayed treatment groups may not be exactly +the same as the order factorized, depending on which group is selected +as the reference group. See below for examples:
  6. +
+ ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + +
Factorized trt orderref_groupDisplayed trt orderReference group used in analysis
ARM C, ARM B, ARM ANULLARM C, ARM B, ARM AARM C
NULLARM BARM B, ARM A, ARM CARM B
ARM C, ARM B, ARM AARM BARM B, ARM C, ARM AARM B
+
+
+

+3. Best Overall Response (selecting sections to +display) +

+
    +
  1. The section of Odds Ratio can be suppressed with the +argument odds_ratio = FALSE.
  2. +
  3. The section of Difference in response rate can be +suppressed with the argument perform_analysis = NULL.
  4. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, odds_ratio = FALSE, perform_analysis = NULL)
+#>                                        A: Drug X        B: Placebo     C: Combination
+#>                                          (N=15)           (N=15)           (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#>   Responders                           10 (66.7%)       9 (60.0%)        11 (73.3%)  
+#>   95% CI (Wald, with correction)      (39.5, 93.9)     (31.9, 88.1)     (47.6, 99.0) 
+#>   Complete Response (CR)               4 (26.7%)        4 (26.7%)        7 (46.7%)   
+#>     95% CI (Wald, with correction)   (0.95, 52.38)    (0.95, 52.38)    (18.09, 75.25)
+#>   Partial Response (PR)                6 (40.0%)        5 (33.3%)        4 (26.7%)   
+#>     95% CI (Wald, with correction)   (11.87, 68.13)   (6.14, 60.52)    (0.95, 52.38) 
+#>   Stable Disease (SD)                  5 (33.3%)        6 (40.0%)        4 (26.7%)   
+#>     95% CI (Wald, with correction)   (6.14, 60.52)    (11.87, 68.13)   (0.95, 52.38)
+
+
+

+4. Best Overall Response (with stratified +analysis) +

+
    +
  1. A stratified analysis can be added by specifying the argument +perform_analysis = "strat" and providing the stratification +variable to the argument strata . The argument +strata is expected if perform_analysis is set +to include stratified analysis.
  2. +
  3. The stratification variables are expected to be available in +adrs.
  4. +
  5. If both unstratified and stratified analysis are required, use +perform_analysis = c("unstrat", "strat") +
  6. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, perform_analysis = "strat", strata = c("STRATA1", "STRATA2"))
+#> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5
+#> observations in some strata.
+#> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5
+#> observations in some strata.
+#> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be
+#> incorrect.
+#> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be
+#> incorrect.
+#>                                                A: Drug X          B: Placebo         C: Combination  
+#>                                                  (N=15)             (N=15)               (N=15)      
+#>   ———————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Responders                                   10 (66.7%)         9 (60.0%)            11 (73.3%)    
+#>   95% CI (Wald, with correction)              (39.5, 93.9)       (31.9, 88.1)         (47.6, 99.0)   
+#>   Stratified Analysis                                                                                
+#>     Difference in Response rate (%)                                 -11.0                 22.5       
+#>       95% CI (CMH, without correction)                          (-42.7, 20.7)         (-3.5, 48.5)   
+#>     p-value (Cochran-Mantel-Haenszel Test)                          0.5731               0.3088      
+#>   Odds Ratio (95% CI)                                         0.75 (0.17 - 3.33)   1.37 (0.29 - 6.60)
+#>   Complete Response (CR)                       4 (26.7%)          4 (26.7%)            7 (46.7%)     
+#>     95% CI (Wald, with correction)           (0.95, 52.38)      (0.95, 52.38)        (18.09, 75.25)  
+#>   Partial Response (PR)                        6 (40.0%)          5 (33.3%)            4 (26.7%)     
+#>     95% CI (Wald, with correction)           (11.87, 68.13)     (6.14, 60.52)        (0.95, 52.38)   
+#>   Stable Disease (SD)                          5 (33.3%)          6 (40.0%)            4 (26.7%)     
+#>     95% CI (Wald, with correction)           (6.14, 60.52)      (11.87, 68.13)       (0.95, 52.38)
+
+
+

+5. Best Overall Response (modifying analysis details like +type of confidence interval, alpha level, test for +p-value) +

+
    +
  1. The level of the confidence intervals is defined by the argument +conf_level.
  2. +
  3. The methods to construct confidence interval and p-value are +controlled by the argument methods. It is a named list with +five optional sub-arguments. For example, +methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten") +
  4. +
+

See table below for what each argument controls and the available +method options:

+ +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ArgumentsMethods ControlledMethods Options
prop_conf_methodproportion confidence interval +"waldcc" (default), "wald", +etc.
diff_conf_methodunstratified difference confidence interval +"waldcc" (default), "wald", +etc.
diff_pval_methodunstratified p-value for odds ratio +"chisq" (default), +"fisher" +
strat_diff_conf_methodstratified difference confidence interval +"cmh" (default), "ha" +
strat_diff_pval_methodstratified p-value for odds ratio +"cmh" (default), +"schouten" +
+

See in the table below the method options for estimates of +proportions and the associated statistical methods:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Method OptionsStatistical Methods
"clopper-pearson"Clopper-Pearson
"wald"Wald, without correction
"waldcc"Wald, with correction
"wilson"Wilson, without correction
"strat_wilson"Stratified Wilson, without correction
"wilsonc"Wilson, with correction
"strat_wilsonc"Stratified Wilson, with correction
"agresti-coull"Agresti-Coull
"jeffreys"Jeffreys
+

See in the table below the method options for estimates of proportion +difference and the associated statistical methods:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Method OptionsStatistical Methods
"cmh" +CMH, without correction
"wald"Wald, with correction
"waldcc"Wald, without correction
"ha"Anderson-Hauck
"newcombe"Newcombe, without correction
"newcombecc"Newcombe, with correction
"strat_wilsonc"Stratified Wilson, with correction
"strat_newcombe"Stratified Newcombe, without correction
"strat_newcombecc"Stratified Newcombe, with correction
+

See in the table below the method options for testing proportion +difference and the associated statistical methods:

+ + + + + + + + + + + + + + + + + + + + + + + +
Method OptionsStatistical Methods
"chisq"Chi-Squared test
"fisher"the Fisher’s exact test
"cmh"stratified Cochran-Mantel-Haenszel test
"shouten"Chi-Squared test with Schouten correction
+

An example:

+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data,
+  conf_level = 0.90,
+  methods = list(
+    prop_conf_method = "wald",
+    diff_conf_method = "wald",
+    diff_pval_method = "fisher"
+  )
+)
+#>                                             A: Drug X          B: Placebo         C: Combination  
+#>                                               (N=15)             (N=15)               (N=15)      
+#>   ————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Responders                                10 (66.7%)         9 (60.0%)            11 (73.3%)    
+#>   90% CI (Wald, without correction)        (46.6, 86.7)       (39.2, 80.8)         (54.6, 92.1)   
+#>   Unstratified Analysis                                                                           
+#>     Difference in Response rate (%)                               -6.7                 6.7        
+#>       90% CI (Wald, without correction)                      (-35.5, 22.2)        (-20.8, 34.1)   
+#>     p-value (Fisher's Exact Test)                                1.0000               1.0000      
+#>   Odds Ratio (95% CI)                                      0.75 (0.17 - 3.33)   1.37 (0.29 - 6.60)
+#>   Complete Response (CR)                    4 (26.7%)          4 (26.7%)            7 (46.7%)     
+#>     90% CI (Wald, without correction)     (7.89, 45.45)      (7.89, 45.45)        (25.48, 67.85)  
+#>   Partial Response (PR)                     6 (40.0%)          5 (33.3%)            4 (26.7%)     
+#>     90% CI (Wald, without correction)     (19.19, 60.81)     (13.31, 53.35)       (7.89, 45.45)   
+#>   Stable Disease (SD)                       5 (33.3%)          6 (40.0%)            4 (26.7%)     
+#>     90% CI (Wald, without correction)     (13.31, 53.35)     (19.19, 60.81)       (7.89, 45.45)
+
+
+

+6. Best Overall Response (modifying the definition of +overall response) +

+

The following example shows how to customize the definition of +responder, e.g, consider only complete response as response.

+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+preprocess(rspt01) <- function(adam_db, ...) {
+  adam_db$adrs <- adam_db$adrs %>%
+    mutate(RSP_LAB = tern::d_onco_rsp_label(.data$AVALC)) %>%
+    mutate(IS_RSP = .data$AVALC %in% c("CR"))
+  adam_db
+}
+
+run(rspt01, proc_data)
+#> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation
+#> may be incorrect
+#>                                          A: Drug X          B: Placebo         C: Combination   
+#>                                            (N=15)             (N=15)               (N=15)       
+#>   ——————————————————————————————————————————————————————————————————————————————————————————————
+#>   Responders                             4 (26.7%)          4 (26.7%)             7 (46.7%)     
+#>   95% CI (Wald, with correction)        (1.0, 52.4)        (1.0, 52.4)          (18.1, 75.2)    
+#>   Unstratified Analysis                                                                         
+#>     Difference in Response rate (%)                            0.0                  20.0        
+#>       95% CI (Wald, with correction)                      (-38.3, 38.3)         (-20.4, 60.4)   
+#>     p-value (Chi-Squared Test)                                1.0000               0.2557       
+#>   Odds Ratio (95% CI)                                   1.00 (0.20 - 5.04)   2.41 (0.52 - 11.10)
+#>   Complete Response (CR)                 4 (26.7%)          4 (26.7%)             7 (46.7%)     
+#>     95% CI (Wald, with correction)     (0.95, 52.38)      (0.95, 52.38)        (18.09, 75.25)   
+#>   Partial Response (PR)                  6 (40.0%)          5 (33.3%)             4 (26.7%)     
+#>     95% CI (Wald, with correction)     (11.87, 68.13)     (6.14, 60.52)         (0.95, 52.38)   
+#>   Stable Disease (SD)                    5 (33.3%)          6 (40.0%)             4 (26.7%)     
+#>     95% CI (Wald, with correction)     (6.14, 60.52)      (11.87, 68.13)        (0.95, 52.38)
+
+
+
+

+Time-to-event Summary (TTET01) +

+
+

+1. Time-to-event Summary +

+
    +
  1. The ttet01 template produces the +standard time-to-event summary.
  2. +
  3. Users are expected to subset the parameter of interest +(e.g. PARAMCD == "PFS") in pre-processing.
  4. +
  5. Please see the section of Best Overall Response +(Ordering of treatment groups) to find out more about the ordering +of treatment groups and reference group.
  6. +
  7. Unstratified analysis is provided by default.
  8. +
  9. Survival estimations and difference in survival are both provided by +default.
  10. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data)
+#>                                       A: Drug X        B: Placebo      C: Combination 
+#>                                         (N=15)           (N=15)            (N=15)     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)             7 (46.7%)         12 (80%)          8 (53.3%)   
+#>     Earliest contributing event                                                       
+#>       Death                               5                11                 7       
+#>       Disease Progression                 2                 1                 1       
+#>   Patients without event (%)          8 (53.3%)          3 (20%)          7 (46.7%)   
+#>   Time to Event (MONTHS)                                                              
+#>     Median                               8.6               6.2               8.4      
+#>       95% CI                          (7.3, NE)        (4.8, 7.6)         (7.0, NE)   
+#>     25% and 75%-ile                    3.8, NE          4.7, 8.4           5.8, NE    
+#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1      0.9 to 9.5 {1} 
+#>   Unstratified Analysis                                                               
+#>     p-value (log-rank)                                   0.0973            0.9111     
+#>     Hazard Ratio                                          2.18              1.06      
+#>     95% CI                                            (0.85, 5.60)      (0.38, 2.94)  
+#>   6 MONTHS                                                                            
+#>     Patients remaining at risk            11                8                11       
+#>     Event Free Rate (%)                 73.33             53.33             73.33     
+#>     95% CI                          (50.95, 95.71)   (28.09, 78.58)    (50.95, 95.71) 
+#>     Difference in Event Free Rate                        -20.00             0.00      
+#>       95% CI                                         (-53.74, 13.74)   (-31.65, 31.65)
+#>       p-value (Z-test)                                   0.2453            1.0000     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ————————————————————————————————————————————————————————————————————————————————————
+
+
+

+2. Time-to-event Summary (selecting sections to +display) +

+

To suspend the section of earliest contributing events, use +summarize_event = FALSE.

+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, summarize_event = FALSE)
+#>                                       A: Drug X        B: Placebo      C: Combination 
+#>                                         (N=15)           (N=15)            (N=15)     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)             7 (46.7%)         12 (80%)          8 (53.3%)   
+#>   Patients without event (%)          8 (53.3%)          3 (20%)          7 (46.7%)   
+#>   Time to Event (MONTHS)                                                              
+#>     Median                               8.6               6.2               8.4      
+#>       95% CI                          (7.3, NE)        (4.8, 7.6)         (7.0, NE)   
+#>     25% and 75%-ile                    3.8, NE          4.7, 8.4           5.8, NE    
+#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1      0.9 to 9.5 {1} 
+#>   Unstratified Analysis                                                               
+#>     p-value (log-rank)                                   0.0973            0.9111     
+#>     Hazard Ratio                                          2.18              1.06      
+#>     95% CI                                            (0.85, 5.60)      (0.38, 2.94)  
+#>   6 MONTHS                                                                            
+#>     Patients remaining at risk            11                8                11       
+#>     Event Free Rate (%)                 73.33             53.33             73.33     
+#>     95% CI                          (50.95, 95.71)   (28.09, 78.58)    (50.95, 95.71) 
+#>     Difference in Event Free Rate                        -20.00             0.00      
+#>       95% CI                                         (-53.74, 13.74)   (-31.65, 31.65)
+#>       p-value (Z-test)                                   0.2453            1.0000     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ————————————————————————————————————————————————————————————————————————————————————
+

To select either survival estimations or difference in survival or +both, please specify in the argument method. - +surv calls out the analysis of patients remaining at risk, +event free rate and corresponding 95% confidence interval of the rates. +- surv_diff calls out the analysis of difference in event +free rate, the 95% confidence interval of the difference and its +corresponding p-value. - both calls out both.

+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, method = "surv")
+#>                                     A: Drug X        B: Placebo     C: Combination
+#>                                       (N=15)           (N=15)           (N=15)    
+#>   ————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)           7 (46.7%)         12 (80%)        8 (53.3%)   
+#>     Earliest contributing event                                                   
+#>       Death                             5                11               7       
+#>       Disease Progression               2                1                1       
+#>   Patients without event (%)        8 (53.3%)         3 (20%)         7 (46.7%)   
+#>   Time to Event (MONTHS)                                                          
+#>     Median                             8.6              6.2              8.4      
+#>       95% CI                        (7.3, NE)        (4.8, 7.6)       (7.0, NE)   
+#>     25% and 75%-ile                  3.8, NE          4.7, 8.4         5.8, NE    
+#>     Range                         1.2 to 9.5 {1}     0.9 to 9.1     0.9 to 9.5 {1}
+#>   Unstratified Analysis                                                           
+#>     p-value (log-rank)                                 0.0973           0.9111    
+#>     Hazard Ratio                                        2.18             1.06     
+#>     95% CI                                          (0.85, 5.60)     (0.38, 2.94) 
+#>   6 MONTHS                                                                        
+#>     Patients remaining at risk          11               8                11      
+#>     Event Free Rate (%)               73.33            53.33            73.33     
+#>     95% CI                        (50.95, 95.71)   (28.09, 78.58)   (50.95, 95.71)
+#>   ————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ————————————————————————————————————————————————————————————————————————————————
+
+
+

+3. Time-to-event Summary (modifying analysis details like +confidence interval type, ties, and alpha level) +

+
    +
  1. The level of the confidence intervals is defined by the argument +conf_level.
  2. +
  3. The type of confidence interval is defined in the argument +conf_type. Options are "plain" (default), +"log" and "log-log".
  4. +
  5. Handling of ties is specified in the argument ties. +Options are "efron" (default),"breslow" or +"exact".
  6. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, conf_level = 0.90, conf_type = "log-log", ties = "efron")
+#>                                       A: Drug X        B: Placebo     C: Combination 
+#>                                         (N=15)           (N=15)           (N=15)     
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)             7 (46.7%)         12 (80%)         8 (53.3%)   
+#>     Earliest contributing event                                                      
+#>       Death                               5                11                7       
+#>       Disease Progression                 2                1                 1       
+#>   Patients without event (%)          8 (53.3%)         3 (20%)          7 (46.7%)   
+#>   Time to Event (MONTHS)                                                             
+#>     Median                               8.6              6.2               8.4      
+#>       90% CI                          (3.8, NE)        (4.7, 7.6)        (5.8, NE)   
+#>     25% and 75%-ile                    3.8, NE          4.7, 8.4          5.8, NE    
+#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1     0.9 to 9.5 {1} 
+#>   Unstratified Analysis                                                              
+#>     p-value (log-rank)                                   0.0973           0.9111     
+#>     Hazard Ratio                                          2.18             1.06      
+#>     90% CI                                            (0.99, 4.81)     (0.45, 2.50)  
+#>   6 MONTHS                                                                           
+#>     Patients remaining at risk            11               8                11       
+#>     Event Free Rate (%)                 73.33            53.33             73.33     
+#>     90% CI                          (49.25, 87.30)   (30.65, 71.60)   (49.25, 87.30) 
+#>     Difference in Event Free Rate                        -20.00            0.00      
+#>       90% CI                                         (-48.31, 8.31)   (-26.56, 26.56)
+#>       p-value (Z-test)                                   0.2453           1.0000     
+#>   ———————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ———————————————————————————————————————————————————————————————————————————————————
+
+
+

+4. Time-to-event Summary (with stratified +analysis) +

+
    +
  1. A stratified analysis can be added by specifying the argument +perform_analysis = "strat" and providing the stratification +variable to the argument strata . The argument +strata is expected if perform_analysis is set +to include stratified analysis.
  2. +
  3. The stratification variables are expected to be available in +adrs.
  4. +
  5. If unstratified and stratified analysis are both required, users can +use perform_analysis = c("unstrat", "strat").
  6. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, perform_analysis = "strat", strata = "STRATA1")
+#>                                       A: Drug X        B: Placebo      C: Combination 
+#>                                         (N=15)           (N=15)            (N=15)     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)             7 (46.7%)         12 (80%)          8 (53.3%)   
+#>     Earliest contributing event                                                       
+#>       Death                               5                11                 7       
+#>       Disease Progression                 2                 1                 1       
+#>   Patients without event (%)          8 (53.3%)          3 (20%)          7 (46.7%)   
+#>   Time to Event (MONTHS)                                                              
+#>     Median                               8.6               6.2               8.4      
+#>       95% CI                          (7.3, NE)        (4.8, 7.6)         (7.0, NE)   
+#>     25% and 75%-ile                    3.8, NE          4.7, 8.4           5.8, NE    
+#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1      0.9 to 9.5 {1} 
+#>   Stratified Analysis                                                                 
+#>     p-value (log-rank)                                   0.0649            0.8901     
+#>     Hazard Ratio                                          2.52              1.08      
+#>     95% CI                                            (0.92, 6.93)      (0.36, 3.22)  
+#>   6 MONTHS                                                                            
+#>     Patients remaining at risk            11                8                11       
+#>     Event Free Rate (%)                 73.33             53.33             73.33     
+#>     95% CI                          (50.95, 95.71)   (28.09, 78.58)    (50.95, 95.71) 
+#>     Difference in Event Free Rate                        -20.00             0.00      
+#>       95% CI                                         (-53.74, 13.74)   (-31.65, 31.65)
+#>       p-value (Z-test)                                   0.2453            1.0000     
+#>   ————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ————————————————————————————————————————————————————————————————————————————————————
+
+
+

+5. Time-to-event Summary (modifying time point for the +“survival at xx months” analysis) +

+

The time point for the “survival at xx months” analysis can be +modified by specifying the argument time_point. By default, +the function takes AVAL from adtte in days and +converts it to months. The survival estimates are then summarized in +month, and the numeric values should be provided in months to +time_point.

+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, perform_analysis = "unstrat", time_point = c(3, 6))
+#>                                        A: Drug X        B: Placebo      C: Combination 
+#>                                         (N=15)            (N=15)            (N=15)     
+#>   —————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)              7 (46.7%)         12 (80%)          8 (53.3%)   
+#>     Earliest contributing event                                                        
+#>       Death                                5                11                 7       
+#>       Disease Progression                  2                 1                 1       
+#>   Patients without event (%)           8 (53.3%)          3 (20%)          7 (46.7%)   
+#>   Time to Event (MONTHS)                                                               
+#>     Median                                8.6               6.2               8.4      
+#>       95% CI                           (7.3, NE)        (4.8, 7.6)         (7.0, NE)   
+#>     25% and 75%-ile                     3.8, NE          4.7, 8.4           5.8, NE    
+#>     Range                           1.2 to 9.5 {1}      0.9 to 9.1      0.9 to 9.5 {1} 
+#>   Unstratified Analysis                                                                
+#>     p-value (log-rank)                                    0.0973            0.9111     
+#>     Hazard Ratio                                           2.18              1.06      
+#>     95% CI                                             (0.85, 5.60)      (0.38, 2.94)  
+#>   3 MONTHS                                                                             
+#>     Patients remaining at risk            12                12                13       
+#>     Event Free Rate (%)                  80.00             80.00             86.67     
+#>     95% CI                          (59.76, 100.00)   (59.76, 100.00)   (69.46, 100.00)
+#>     Difference in Event Free Rate                          0.00              6.67      
+#>       95% CI                                          (-28.63, 28.63)   (-19.90, 33.23)
+#>       p-value (Z-test)                                    1.0000            0.6228     
+#>   6 MONTHS                                                                             
+#>     Patients remaining at risk            11                 8                11       
+#>     Event Free Rate (%)                  73.33             53.33             73.33     
+#>     95% CI                          (50.95, 95.71)    (28.09, 78.58)    (50.95, 95.71) 
+#>     Difference in Event Free Rate                         -20.00             0.00      
+#>       95% CI                                          (-53.74, 13.74)   (-31.65, 31.65)
+#>       p-value (Z-test)                                    0.2453            1.0000     
+#>   —————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   —————————————————————————————————————————————————————————————————————————————————————
+

The following example shows how to specify the time point in +user-defined unit.

+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+preprocess(ttet01) <- function(adam_db, dataset = "adtte",
+                               ...) {
+  adam_db[[dataset]] <- adam_db[[dataset]] %>%
+    mutate(
+      AVALU = "DAYS",
+      IS_EVENT = .data$CNSR == 0,
+      IS_NOT_EVENT = .data$CNSR == 1,
+      EVNT1 = factor(
+        case_when(
+          IS_EVENT == TRUE ~ render_safe("{Patient_label} with event (%)"),
+          IS_EVENT == FALSE ~ render_safe("{Patient_label} without event (%)")
+        ),
+        levels = render_safe(c("{Patient_label} with event (%)", "{Patient_label} without event (%)"))
+      ),
+      EVNTDESC = factor(.data$EVNTDESC)
+    )
+
+  adam_db
+}
+
+run(ttet01, proc_data, perform_analysis = "unstrat", time_point = c(91, 183))
+#>                                         A: Drug X         B: Placebo       C: Combination  
+#>                                          (N=15)             (N=15)             (N=15)      
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)               7 (46.7%)          12 (80%)           8 (53.3%)    
+#>     Earliest contributing event                                                            
+#>       Death                                 5                 11                  7        
+#>       Disease Progression                   2                  1                  1        
+#>   Patients without event (%)            8 (53.3%)           3 (20%)           7 (46.7%)    
+#>   Time to Event (DAYS)                                                                     
+#>     Median                                261.9              187.7              256.3      
+#>       95% CI                           (221.9, NE)      (144.7, 232.2)       (212.0, NE)   
+#>     25% and 75%-ile                     114.9, NE        141.9, 254.4         175.0, NE    
+#>     Range                           37.2 to 288.3 {1}    28.0 to 276.6    26.4 to 288.1 {1}
+#>   Unstratified Analysis                                                                    
+#>     p-value (log-rank)                                      0.0973             0.9111      
+#>     Hazard Ratio                                             2.18               1.06       
+#>     95% CI                                               (0.85, 5.60)       (0.38, 2.94)   
+#>   91 DAYS                                                                                  
+#>     Patients remaining at risk             12                 12                 13        
+#>     Event Free Rate (%)                   80.00              80.00              86.67      
+#>     95% CI                           (59.76, 100.00)    (59.76, 100.00)    (69.46, 100.00) 
+#>     Difference in Event Free Rate                            0.00               6.67       
+#>       95% CI                                            (-28.63, 28.63)    (-19.90, 33.23) 
+#>       p-value (Z-test)                                      1.0000             0.6228      
+#>   183 DAYS                                                                                 
+#>     Patients remaining at risk             11                  8                 11        
+#>     Event Free Rate (%)                   73.33              53.33              73.33      
+#>     95% CI                           (50.95, 95.71)     (28.09, 78.58)     (50.95, 95.71)  
+#>     Difference in Event Free Rate                           -20.00              0.00       
+#>       95% CI                                            (-53.74, 13.74)    (-31.65, 31.65) 
+#>       p-value (Z-test)                                      0.2453             1.0000      
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   —————————————————————————————————————————————————————————————————————————————————————————
+
+
+

+6. Time-to-event Summary (modifying the p-value method for +testing hazard ratio) +

+

The default p-value method for testing hazard ratio is “log-rank”. +Alternative methods can be requested by specifying the argument +pval_method and options include, log-rank +(default), wald or likelihood. The syntax +currently does not allow requesting more than one p-value.

+

Note that ttet01 has been modified in the previous +example (i.e., preprocess(ttet01) has been overridden); to +access the default template, try chevron::ttet01.

+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, pval_method = "wald")
+#>                                       A: Drug X          B: Placebo       C: Combination  
+#>                                        (N=15)              (N=15)             (N=15)      
+#>   ————————————————————————————————————————————————————————————————————————————————————————
+#>   Patients with event (%)             7 (46.7%)           12 (80%)           8 (53.3%)    
+#>     Earliest contributing event                                                           
+#>       Death                               5                  11                  7        
+#>       Disease Progression                 2                  1                   1        
+#>   Patients without event (%)          8 (53.3%)           3 (20%)            7 (46.7%)    
+#>   Time to Event (DAYS)                                                                    
+#>     Median                              261.9              187.7               256.3      
+#>       95% CI                         (221.9, NE)       (144.7, 232.2)       (212.0, NE)   
+#>     25% and 75%-ile                   114.9, NE         141.9, 254.4         175.0, NE    
+#>     Range                         37.2 to 288.3 {1}    28.0 to 276.6     26.4 to 288.1 {1}
+#>   Unstratified Analysis                                                                   
+#>     p-value (wald)                                         0.1053             0.9111      
+#>     Hazard Ratio                                            2.18               1.06       
+#>     95% CI                                              (0.85, 5.60)       (0.38, 2.94)   
+#>   6 DAYS                                                                                  
+#>     Patients remaining at risk           15                  15                 15        
+#>     Event Free Rate (%)                100.00              100.00             100.00      
+#>     95% CI                        (100.00, 100.00)    (100.00, 100.00)   (100.00, 100.00) 
+#>   12 DAYS                                                                                 
+#>     Patients remaining at risk           15                  15                 15        
+#>     Event Free Rate (%)                100.00              100.00             100.00      
+#>     95% CI                        (100.00, 100.00)    (100.00, 100.00)   (100.00, 100.00) 
+#>   ————————————————————————————————————————————————————————————————————————————————————————
+#> 
+#>   {1} - Censored observation: range maximum
+#>   ————————————————————————————————————————————————————————————————————————————————————————
+
+
+
+

+Vital Signs (VST01) +

+
+

+1. Vital Sign Results and Change from Baseline by +Visit +

+
+t_vs_chg <- run(vst01, syn_data)
+head(t_vs_chg, 20)
+#>                                         A: Drug X                           B: Placebo                          C: Combination          
+#>                                                 Change from                          Change from                           Change from  
+#>                              Value at Visit       Baseline       Value at Visit        Baseline        Value at Visit       Baseline    
+#>                                  (N=15)            (N=15)            (N=15)             (N=15)             (N=15)            (N=15)     
+#>   ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                                                                                              
+#>     SCREENING                                                                                                                           
+#>       n                            15                0                 15                 0                  15                 0       
+#>       Mean (SD)              94.385 (17.067)      NE (NE)       106.381 (20.586)       NE (NE)        106.468 (12.628)       NE (NE)    
+#>       Median                     94.933              NE             111.133               NE              108.359              NE       
+#>       Min - Max              55.71 - 122.00       NE - NE        60.21 - 131.91        NE - NE         83.29 - 127.17        NE - NE    
+#>     BASELINE                                                                                                                            
+#>       n                            15                                  15                                    15                         
+#>       Mean (SD)              96.133 (22.458)                    108.111 (15.074)                      103.149 (19.752)                  
+#>       Median                     93.328                             108.951                               102.849                       
+#>       Min - Max              60.58 - 136.59                      83.44 - 131.62                        66.05 - 136.55                   
+#>     WEEK 1 DAY 8                                                                                                                        
+#>       n                            15                15                15                 15                 15                15       
+#>       Mean (SD)              98.977 (21.359)   2.844 (28.106)   104.110 (16.172)   -4.001 (21.867)    100.826 (19.027)   -2.323 (25.018)
+#>       Median                     92.447            -4.066           107.703             3.227             103.058            -2.476     
+#>       Min - Max              67.55 - 130.37    -32.82 - 47.68    70.91 - 132.89     -52.94 - 28.63     70.04 - 128.68    -55.15 - 41.81 
+#>     WEEK 2 DAY 15                                                                                                                       
+#>       n                            15                15                15                 15                 15                15       
+#>       Mean (SD)              99.758 (14.477)   3.626 (21.189)   97.473 (17.296)    -10.638 (20.831)   94.272 (16.961)    -8.877 (27.229)
+#>       Median                     101.498           1.731             99.501             -9.727             96.789            -10.155
+
+
+
+

+Vital Signs Abnormalities (Regardless of Abnormality at +Baseline) (VST02_1) +

+
+

+1. Vital Sign Abnormalities (Regardless of Abnormality at +Baseline) +

+
+run(vst02_1, syn_data)
+#>   Assessment                   A: Drug X      B: Placebo     C: Combination
+#>    Abnormality                  (N=15)          (N=15)           (N=15)    
+#>   —————————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                                 
+#>     Low                      8/15 (53.3%)     9/15 (60%)      8/15 (53.3%) 
+#>     High                     10/15 (66.7%)   5/15 (33.3%)     8/15 (53.3%) 
+#>   Pulse Rate                                                               
+#>     Low                       9/15 (60%)      3/15 (20%)      5/15 (33.3%) 
+#>     High                     2/15 (13.3%)     6/15 (40%)      5/15 (33.3%) 
+#>   Respiratory Rate                                                         
+#>     Low                      13/15 (86.7%)   10/15 (66.7%)   13/15 (86.7%) 
+#>     High                     7/15 (46.7%)    10/15 (66.7%)   11/15 (73.3%) 
+#>   Systolic Blood Pressure                                                  
+#>     Low                      7/15 (46.7%)     9/15 (60%)     11/15 (73.3%) 
+#>     High                     10/15 (66.7%)    9/15 (60%)       9/15 (60%)  
+#>   Temperature                                                              
+#>     Low                       12/15 (80%)    13/15 (86.7%)   11/15 (73.3%) 
+#>     High                     14/15 (93.3%)    12/15 (80%)    14/15 (93.3%) 
+#>   Weight                                                                   
+#>     Low                       3/15 (20%)      3/15 (20%)      4/15 (26.7%) 
+#>     High                     4/15 (26.7%)    4/15 (26.7%)     5/15 (33.3%)
+
+
+
+

+Vital Signs Abnormalities (Among Subject Without Abnormality +at Baseline) (VST02_2) +

+
+

+1. Vital Sign Abnormalities (Among Subject Without +Abnormality at Baseline) +

+
+run(vst02_2, syn_data)
+#>   Assessment                  A: Drug X      B: Placebo    C: Combination
+#>    Abnormality                  (N=15)         (N=15)          (N=15)    
+#>   ———————————————————————————————————————————————————————————————————————
+#>   Diastolic Blood Pressure                                               
+#>     Low                      6/11 (54.5%)    9/15 (60%)      6/12 (50%)  
+#>     High                     8/12 (66.7%)   4/11 (36.4%)    7/13 (53.8%) 
+#>   Pulse Rate                                                             
+#>     Low                       9/15 (60%)     3/15 (20%)     5/13 (38.5%) 
+#>     High                     2/14 (14.3%)   4/12 (33.3%)    5/15 (33.3%) 
+#>   Respiratory Rate                                                       
+#>     Low                      7/9 (77.8%)    7/11 (63.6%)   11/12 (91.7%) 
+#>     High                     6/14 (42.9%)   7/11 (63.6%)    9/13 (69.2%) 
+#>   Systolic Blood Pressure                                                
+#>     Low                      5/13 (38.5%)   8/12 (66.7%)   10/14 (71.4%) 
+#>     High                     8/13 (61.5%)   8/13 (61.5%)    8/13 (61.5%) 
+#>   Temperature                                                            
+#>     Low                       8/10 (80%)    7/9 (77.8%)      8/10 (80%)  
+#>     High                      8/8 (100%)    7/8 (87.5%)    12/13 (92.3%) 
+#>   Weight                                                                 
+#>     Low                       3/15 (20%)     3/15 (20%)     3/14 (21.4%) 
+#>     High                     4/14 (28.6%)   4/15 (26.7%)    5/14 (35.7%)
+
+
+
+
+

+LISTINGS +

+
+

+Glossary of Adverse Event Preferred Terms and +Investigator-Specified Terms (AEL01_NOLLT) +

+
+

+1. Glossary of Adverse Event Preferred Terms and +Investigator-Specified Terms +

+
    +
  1. The ael01_nollt template produces the +standard glossary of adverse event preferred terms and +investigator-specified terms.
  2. +
  3. The example below uses head function to print only the +first 10 lines of the output.
  4. +
+
+l_ae_nollt <- run(ael01_nollt, syn_data)
+head(l_ae_nollt, 10)
+#> MedDRA System Organ Class   MedDRA Preferred Term   Reported Term for the Adverse Event
+#> ———————————————————————————————————————————————————————————————————————————————————————
+#> cl A.1                      dcd A.1.1.1.1           trm A.1.1.1.1                      
+#>                             dcd A.1.1.1.2           trm A.1.1.1.2                      
+#> cl B.1                      dcd B.1.1.1.1           trm B.1.1.1.1                      
+#> cl B.2                      dcd B.2.1.2.1           trm B.2.1.2.1                      
+#>                             dcd B.2.2.3.1           trm B.2.2.3.1                      
+#> cl C.1                      dcd C.1.1.1.3           trm C.1.1.1.3                      
+#> cl C.2                      dcd C.2.1.2.1           trm C.2.1.2.1                      
+#> cl D.1                      dcd D.1.1.1.1           trm D.1.1.1.1                      
+#>                             dcd D.1.1.4.2           trm D.1.1.4.2                      
+#> cl D.2                      dcd D.2.1.5.3           trm D.2.1.5.3
+
+
+
+
+

+Graphics +

+
+

+Forest Plot for Odds Ratio +(FSTG01) +

+
+

+1. Forest Plot for Odds Ratio (with subgroup +analysis) +

+
    +
  1. The fstg01 template produces the +standard forest plot for odds ratio.
  2. +
  3. Users are expected to subset the parameter of interest +(e.g. PARAMCD == "BESRSPI") in pre-processing.
  4. +
  5. Users are expected to subset the arm variable to keep only the two +arms to compare +(e.g. ARM %in% c("A: Drug X", "B: Placebo")).
  6. +
  7. By default, the plots displays a subgroup analysis for +"SEX", "AGEGR1" and "RACE".
  8. +
  9. Unstratified analysis is provided by default.
  10. +
  11. The plots displays by default the Total number of subjects, the odd +ratio and the 95% confidence interval, and, for each arm, the number of +subject, the number of responders and the proportion of responders.
  12. +
+
+proc_data <- log_filter(
+  syn_data,
+  PARAMCD == "BESRSPI" & ARM %in% c("A: Drug X", "B: Placebo"), "adrs"
+)
+run(fstg01, proc_data)
+

+
+
+

+2. Forest Plot for Odds Ratio (with a user-defined +confidence level) +

+

The confidence level of the confidence interval can be adjusted by +the conf_level argument.

+
+run(fstg01, proc_data, conf_level = 0.90)
+

+
+
+

+3. Forest Plot for Odds Ratio (with p-values and/or +different statistics) +

+

The interaction p-values and a different set of statistics can be +displayed using the stat_var argument. Note that the users +are expected to select a method for p-value computation. see +[tern::prop_diff_test].

+
+run(fstg01, proc_data, method = "fisher", stat_var = c("n_tot", "n", "ci", "or", "pval"))
+

+
+
+

+4. Forest Plot for Odds Ratio (with user-defined subgroup +analysis) +

+

The subgroups arguments controls which variables are +used for subgroup analysis. If NULLthe subgroup analysis is +removed.

+
+run(fstg01, proc_data, subgroups = NULL)
+

+
+
+

+5. Forest Plot for Odds Ratio (with stratified +analysis) +

+

The strata_var argument is used to pass the columns used +for stratified analysis.

+
+run(fstg01, proc_data, strata_var = "STRATA1")
+#> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights,
+#> : Ran out of iterations and did not converge
+#> Warning in s_odds_ratio(df = l_df[[2]], .var = "rsp", .ref_group = l_df[[1]], :
+#> Unable to compute the odds ratio estimate. Please try re-running the function
+#> with parameter `method` set to "approximate".
+#> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights,
+#> : Ran out of iterations and did not converge
+

+
+
+

+6. Forest Plot for Odds Ratio (without proportional sizing +of the odds ratio symbol) +

+

The col_symbol_size argument controls the size of the +odds ratio symbols which are by default proportional in size to the +sample size of the subgroup. If NULL the same symbol size +is used for all subgroups.

+
+run(fstg01, proc_data, col_symbol_size = NULL)
+

+
+
+
+

+Forest Plot for Hazard Ratio +(FSTG02) +

+
+

+1. Forest Plot for Hazard Ratio (with subgroup +analysis) +

+
    +
  1. The fstg02 template produces the +standard forest plot for hazard ratio.
  2. +
  3. Users are expected to subset the parameter of interest +(e.g. PARAMCD == "OS") in pre-processing.
  4. +
  5. Users are expected to subset the arm variable to keep only the two +arms to compare +(e.g. ARM %in% c("A: Drug X", "B: Placebo")).
  6. +
  7. By default, the plots displays a subgroup analysis for +"SEX", "AGEGR1" and "RACE".
  8. +
  9. Unstratified analysis is provided by default.
  10. +
  11. The plots displays by default the Total number of events, the hazard +ratio and the 95% confidence interval, and, for each arm, the number of +events and the median time to event in month.
  12. +
+
+proc_data <- log_filter(
+  syn_data,
+  PARAMCD == "OS" & ARM %in% c("A: Drug X", "B: Placebo"), "adtte"
+)
+run(fstg02, proc_data)
+

+
+
+

+2. Forest Plot for Hazard Ratio (with p-values and/or +different statistics) +

+

The interaction p-values and a different set of statistics can be +displayed using the control argument. More details about +the control options are available in +[tern::extract_survival_subgroups]

+
+run(
+  fstg02,
+  proc_data,
+  stat_var = c("n_tot", "n", "ci", "hr", "pval"),
+  control = list(conf_level = 0.9, pval_method = "likelihood")
+)
+

+
+
+

+3. Forest Plot for Hazard Ratio (with user-defined subgroup +analysis) +

+

The subgroups arguments controls which variables are +used for subgroup analysis. If NULLthe subgroup analysis is +removed.

+
+run(fstg02, proc_data, subgroups = NULL)
+

+
+
+

+4. Forest Plot for Hazard Ratio (with stratified +analysis) +

+

The strata_var argument is used to pass the columns used +for stratified analysis.

+
+run(fstg02, proc_data, strata_var = "STRATA1")
+#> Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
+#> Loglik converged before variable 1 ; coefficient may be infinite.
+

+
+
+

+5. Forest Plot for Hazard Ratio (without proportional sizing +of the hazard ratio symbol) +

+

The col_symbol_size argument controls the size of the +hazard ratio symbols which are by default proportional in size to the +number of events in the subgroup. If NULL the same symbol +size is used for all subgroups.

+
+run(fstg02, proc_data, col_symbol_size = NULL)
+

+
+
+
+

+Kaplan-Meier Plot (KMG01) +

+
+

+1. Kaplan-Meier Plot (without comparative +statistics) +

+
    +
  1. The kmg01 template produces the +standard Kaplan-Meier Plot.
  2. +
  3. Users are expected to select a particular parameter for +analysis.
  4. +
  5. Users are expected to select the treatment groups to compare, +otherwise, all treatment groups available in the input datasets will be +plotted.
  6. +
  7. The comparative statistics are not included by default.
  8. +
  9. The estimation of median survival time per treatment group by +default.
  10. +
  11. More arguments in the g_km and +control_coxph functions can be passed through, please use +the Help to find out more information.
  12. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte")
+

+
+
+

+2. Kaplan-Meier Plot (with comparative +statistics) +

+

To enable the comparative statistics (hazard ratio and p-value), the +argument annot_coxph needs to be set to TRUE. The compare +group is determined by the levels in the factorized variable of +treatment group and the first level is used as reference group in the +statistics.

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(
+  kmg01,
+  proc_data,
+  dataset = "adtte",
+  annot_coxph = TRUE,
+  control_annot_coxph = tern::control_coxph_annot(x = 0.33, y = 0.42)
+)
+

+
+
+

+3. Kaplan-Meier Plot (without censoring marks) +

+

To suppress the censoring marks, set the argument +cencor_show to FALSE.

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", censor_show = FALSE)
+

+
+
+

+4. Kaplan-Meier Plot (without estimation of median survival +time) +

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_surv_med = FALSE)
+

+
+
+

+5. Kaplan-Meier Plot (with statistical annotation of either +median or min of survival time) +

+

To add the statistics annotation, use the function +annot_stats. Options are min or +median.

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_stats = "median")
+

+
+run(kmg01, proc_data, dataset = "adtte", annot_stats = c("min", "median"))
+

+
+
+

+6. Kaplan-Meier Plot (without the table of patients at +risk) +

+
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_at_risk = FALSE)
+

+
+
+
+

+Mean Plot (MNG01) +

+
+

+1. Plot of Mean and Confidence Interval (with Table +Section) +

+
    +
  1. The mng01 template produces the +standard mean plot.
  2. +
  3. Note that the template mng01 is quite general. The +users are expected to specify the analysis dataset and the visit +variable in the run function, and select the parameters +prior to the run function.
  4. +
  5. The table of summary statistics is included by default.
  6. +
  7. The variable Analysis Value AVAL is used for plotting +by default.
  8. +
  9. If the input dataset contains results of the same analyses in +multiple units,(e.g. SI/CV units in ADLB), please make sure +that the parameters in appropriate units are selected in advance.
  10. +
+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"))
+#> $`Diastolic Blood Pressure`
+

+
+
+

+2. Plot of Mean and Confidence Interval of Change from +Baseline of Vital Signs +

+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), y_var = "CHG")
+#> `geom_line()`: Each group consists of only one observation.
+#>  Do you need to adjust the group aesthetic?
+#> $`Diastolic Blood Pressure`
+

+
+
+

+3. Plot of Mean (+/-SD) (Changing the +Statistics) +

+

To change the statistics, use the argument interval_fun. +Options are mean_ci, mean_sei, +mean_sdi, median_ci, +quantiles,range.

+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), interval_fun = "mean_sdi")
+#> $`Diastolic Blood Pressure`
+

+
+
+

+4. Plot of Mean and Confidence Interval (Modify Alpha +Level) +

+

To change the alpha level of the confidence interval, use the +argument +control = control_analyze_vars(conf_level = <0.xx>). +Note that this is only in effect when interval_fun is set +to mean_ci.

+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(
+  mng01, proc_data,
+  dataset = "advs", x_var = c("AVISIT", "AVISITN"),
+  interval_fun = "mean_ci", control = tern::control_analyze_vars(conf_level = 0.80)
+)
+#> $`Diastolic Blood Pressure`
+

+
+
+

+5. Plot of Mean and Confidence Interval (With Number of +Patients Only) +

+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), table = "n")
+#> $`Diastolic Blood Pressure`
+

+
+
+

+6. Plot of Mean and Confidence Interval (without Table +Section) +

+
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), table = NULL)
+#> $`Diastolic Blood Pressure`
+

+

A new argument has been added to control the theme (e.g. setting the +angle of the axis); see an example below:

+
+ggtheme <- ggplot2::theme(
+  panel.grid = ggplot2::element_line(colour = "black", linetype = 3),
+  panel.background = ggplot2::element_rect(fill = "white"),
+  legend.position = "top",
+  axis.text.x = ggplot2::element_text(angle = 22, hjust = 1, vjust = 1)
+)
+run(mng01, syn_data, dataset = "adlb", ggtheme = ggtheme)
+#> $`Alanine Aminotransferase Measurement`
+

+
#> 
+#> $`C-Reactive Protein Measurement`
+

+
#> 
+#> $`Immunoglobulin A Measurement`
+

+
+
+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-100-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-100-1.png new file mode 100644 index 0000000000..83590b47c1 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-100-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-101-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-101-1.png new file mode 100644 index 0000000000..5115ad2d10 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-101-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-102-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-102-1.png new file mode 100644 index 0000000000..990eb83a2b Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-102-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-103-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-103-1.png new file mode 100644 index 0000000000..c54968049a Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-103-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-104-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-104-1.png new file mode 100644 index 0000000000..6074c3e2fe Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-104-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-105-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-105-1.png new file mode 100644 index 0000000000..9a7c00fe87 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-105-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-106-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-106-1.png new file mode 100644 index 0000000000..5367c1639f Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-106-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-107-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-107-1.png new file mode 100644 index 0000000000..19d4296081 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-107-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-108-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-108-1.png new file mode 100644 index 0000000000..c3d133e541 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-108-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-109-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-109-1.png new file mode 100644 index 0000000000..8401232abd Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-109-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-1.png new file mode 100644 index 0000000000..e8531fe47b Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-2.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-2.png new file mode 100644 index 0000000000..1f68077f57 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-2.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-111-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-111-1.png new file mode 100644 index 0000000000..394083419c Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-111-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-112-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-112-1.png new file mode 100644 index 0000000000..1f67a44acf Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-112-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-113-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-113-1.png new file mode 100644 index 0000000000..f84ad09736 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-113-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-114-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-114-1.png new file mode 100644 index 0000000000..7e71f3f832 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-114-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-115-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-115-1.png new file mode 100644 index 0000000000..000e43eba2 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-115-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-116-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-116-1.png new file mode 100644 index 0000000000..15457dbaef Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-116-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-117-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-117-1.png new file mode 100644 index 0000000000..8300fecba7 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-117-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-1.png new file mode 100644 index 0000000000..ae29b2da35 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-2.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-2.png new file mode 100644 index 0000000000..1aa5f0cceb Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-2.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-3.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-3.png new file mode 100644 index 0000000000..fc2d093499 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-3.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-95-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-95-1.png new file mode 100644 index 0000000000..f645f9a7f0 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-95-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-96-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-96-1.png new file mode 100644 index 0000000000..7d44af5a51 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-96-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-97-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-97-1.png new file mode 100644 index 0000000000..8e4f9d2a7e Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-97-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-98-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-98-1.png new file mode 100644 index 0000000000..c9649be265 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-98-1.png differ diff --git a/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-99-1.png b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-99-1.png new file mode 100644 index 0000000000..97bbef58e1 Binary files /dev/null and b/v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-99-1.png differ diff --git a/v0.2.8/articles/index.html b/v0.2.8/articles/index.html new file mode 100644 index 0000000000..9c574a4a82 --- /dev/null +++ b/v0.2.8/articles/index.html @@ -0,0 +1,67 @@ + +Articles • chevron + Skip to contents + + +
+
+
+ +
+

All vignettes

+
+ +
Introduction to Chevron
+
+
Script_Generator
+
+
Chevron Catalog
+
+
+
+ + +
+ + + + + + + diff --git a/v0.2.8/articles/script_generator.html b/v0.2.8/articles/script_generator.html new file mode 100644 index 0000000000..ab2d3d9f52 --- /dev/null +++ b/v0.2.8/articles/script_generator.html @@ -0,0 +1,168 @@ + + + + + + + +Script_Generator • chevron + + + + + + + + + + Skip to contents + + +
+ + + + +
+
+ + + +
+

Introduction +

+

In addition of the embedded run() method to create a +tlg, chevron offers a script-based approach that allows the +user to quickly edit a chevron workflow without the need for modifying a +chevron_tlg object. The script is generated from +script_funs method which by default only output the script +corresponding to the preprocessing function in the generated script.

+
+
+

Using a chevron-defined object +

+

The object returned by the script methods are vectors of +character with one element per line of the script, that can be easily +rendered.

+
+res <- script_funs(aet01, adam_db = "syn_data", args = "args_list")
+writeLines(res)
+#> # Edit Preprocessing Function.
+#> preprocess(aet01) <- 
+#> function (adam_db, ...) 
+#> {
+#>     adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == 
+#>         "Y") %>% mutate(FATAL = with_label(.data$AESDTH == "Y", 
+#>         "AE with fatal outcome"), SER = with_label(.data$AESER == 
+#>         "Y", "Serious AE"), SEV = with_label(.data$ASEV == "SEVERE", 
+#>         "Severe AE (at greatest intensity)"), REL = with_label(.data$AREL == 
+#>         "Y", "Related AE"), WD = with_label(.data$AEACN == "DRUG WITHDRAWN", 
+#>         "AE leading to withdrawal from treatment"), DSM = with_label(.data$AEACN %in% 
+#>         c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), 
+#>         "AE leading to dose modification/interruption"), SERWD = with_label(.data$SER & 
+#>         .data$WD, "Serious AE leading to withdrawal from treatment"), 
+#>         SERDSM = with_label(.data$SER & .data$DSM, "Serious AE leading to dose modification/interruption"), 
+#>         RELSER = with_label(.data$SER & .data$REL, "Related Serious AE"), 
+#>         RELWD = with_label(.data$REL & .data$WD, "Related AE leading to withdrawal from treatment"), 
+#>         RELDSM = with_label(.data$REL & .data$DSM, "Related AE leading to dose modification/interruption"), 
+#>         CTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5"), 
+#>             "Grade 3-5 AE"), CTC45 = with_label(.data$ATOXGR %in% 
+#>             c("4", "5"), "Grade 4/5 AE"))
+#>     adam_db$adsl <- adam_db$adsl %>% mutate(DCSREAS = reformat(.data$DCSREAS, 
+#>         missing_rule))
+#>     adam_db
+#> }
+#> 
+#> # Create TLG
+#> tlg_output <- run(object = aet01, adam_db = syn_data, verbose = TRUE, user_args = args_list)
+
+
+

With a modified chevron object +

+

The script generator depends on the functions actually stored in the +object. Modifying the chevron_tlg object can lead to a +different script.

+
+aet01_custom <- aet01
+preprocess(aet01_custom) <- function(adam_db, new_format, ...) {
+  reformat(adam_db, new_format)
+}
+
+res_funs <- script_funs(aet01_custom, adam_db = "syn_data", args = "args_list")
+

Print the generated scripts. Note that a new argument +new_format has been added and the pre processing function +has been modified.

+
+writeLines(res_funs)
+#> # Edit Preprocessing Function.
+#> preprocess(aet01_custom) <- 
+#> function (adam_db, new_format, ...) 
+#> {
+#>     reformat(adam_db, new_format)
+#> }
+#> 
+#> # Create TLG
+#> tlg_output <- run(object = aet01_custom, adam_db = syn_data, verbose = TRUE, user_args = args_list)
+
+
+
+ + + + +
+ + + + + + + diff --git a/v0.2.8/authors.html b/v0.2.8/authors.html new file mode 100644 index 0000000000..5471a0896f --- /dev/null +++ b/v0.2.8/authors.html @@ -0,0 +1,117 @@ + +Authors and Citation • chevron + Skip to contents + + +
+
+
+ +
+

Authors

+ +
  • +

    Liming Li. Author, maintainer. +

    +
  • +
  • +

    Benoit Falquet. Author. +

    +
  • +
  • +

    Xiaoli Duan. Author. +

    +
  • +
  • +

    Adrian Waddell. Contributor. +

    +
  • +
  • +

    Chenkai Lv. Contributor. +

    +
  • +
  • +

    Pawel Rucki. Contributor. +

    +
  • +
  • +

    Tim Barnett. Contributor. +

    +
  • +
  • +

    Tian Fang. Contributor. +

    +
  • +
  • +

    F. Hoffmann-La Roche AG. Copyright holder, funder. +

    +
  • +
+ +
+

Citation

+

Source: DESCRIPTION

+ +

Li L, Falquet B, Duan X (2024). +chevron: Standard TLGs for Clinical Trials Reporting. +R package version 0.2.8, +https://github.com/insightsengineering/chevron/, https://insightsengineering.github.io/chevron/. +

+
@Manual{,
+  title = {chevron: Standard TLGs for Clinical Trials Reporting},
+  author = {Liming Li and Benoit Falquet and Xiaoli Duan},
+  year = {2024},
+  note = {R package version 0.2.8,
+    https://github.com/insightsengineering/chevron/},
+  url = {https://insightsengineering.github.io/chevron/},
+}
+
+ +
+ + +
+ + + + + + + diff --git a/v0.2.8/consent.css b/v0.2.8/consent.css new file mode 100644 index 0000000000..e1396f6c15 --- /dev/null +++ b/v0.2.8/consent.css @@ -0,0 +1,28 @@ +.cookie-consent { + position: fixed; + bottom: 8px; + left: 20px; + width: 260px; + color: #fff; + line-height: 20px; + padding-block: 7px; + padding-left: 10px; + padding-right: 10px; + font-size: 14px; + background: #292929; + z-index: 120; + cursor: pointer; + border-radius: 3px; +} + +.cookie-button { + height: 20px; + width: 104px; + color: #fff; + font-size: 12px; + line-height: 10px; + border-radius: 3px; + border: 1px solid grey; + background-color: grey; + margin-inline: auto; +} diff --git a/v0.2.8/consent.js b/v0.2.8/consent.js new file mode 100644 index 0000000000..4b8b9e1960 --- /dev/null +++ b/v0.2.8/consent.js @@ -0,0 +1,95 @@ +(function ($) { + "use strict"; + $.fn.cookieWall = function (options) { + const params = $.extend({ + id: '', + cookie: { + name: 'nest-documentation', + days: 15, + path: '/' + }, + tag: { + cookiePrefix: '', + cookieDomain: '', + cookieExpires: '', + cookieUpdate: '' + } + }, options); + const tag_params = {} + for (const property in params.tag) { + if (params.tag[property] != '') { + tag_params[property.replace(/([A-Z])/g, "-$1").toLowerCase()] = params.tag[property]; + } + } + const tag = '' + + ''; + + const cookieNotification = ` + `; + + function init() { + if (params.id != '') { + let c = getCookie(); + if (c == null || (c != 0 && c != 1)) { + displayCookieNotification(); + } else if (c == 1) { + addTag(); + } + } else { + console.log('No ID defined in the cookieWall params.'); + } + } + + function displayCookieNotification() { + $('body').prepend(cookieNotification); + $('body').on('mousedown', '.cookie-consent .cookie-button', setChoice); + } + + function removeCookieNotification() { + $('body .cookie-consent').remove(); + } + + function setChoice(e) { + e.preventDefault(); + if (this.id == 'cookie_accept') { + setCookie(1); + addTag(); + } else { + setCookie(0); + } + removeCookieNotification(); + } + + function addTag() { + $('body').append(tag); + } + + function getCookie() { + let t = document.cookie.split('; '); + let f = t.find(row => row.startsWith(params.cookie.name + '=')); + if (typeof f != 'undefined') { + return f.split('=')[1]; + } + return null; + } + + function setCookie(value) { + let a = params.cookie.days * 86400; + document.cookie = params.cookie.name + '=' + value + ';max-age=' + a + ';path=' + params.cookie.path + ';SameSite=None;Secure'; + } + init(); + return this; + }; +})(jQuery); diff --git a/v0.2.8/cookie_policy.txt b/v0.2.8/cookie_policy.txt new file mode 100644 index 0000000000..96f6f26292 --- /dev/null +++ b/v0.2.8/cookie_policy.txt @@ -0,0 +1,11 @@ +Cookie files are used to analyze website traffic by Google Analytics service. + +Information about your browsing and use of the website is transmitted and will be analyzed anonymously to improve services. The data will be transmitted to the United States and are subject to the Google privacy policy (https://policies.google.com/privacy?hl=en-US). + +List of cookies: + +- "_ga": Used to distinguish users (expires after 2 years) +- "_gid": Used to distinguish users (expires after 24 hours) +- "_gat": Used to limit request rate (expires after 1 minute) + +Your consent is kept for 15 days. You can reset your consent by deleting the nest-documentation cookie from your browser data. diff --git a/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js b/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js new file mode 100644 index 0000000000..e8f21f703f --- /dev/null +++ b/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js @@ -0,0 +1,7 @@ +/*! + * Bootstrap v5.3.1 (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ +!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t=new Map,e={set(e,i,n){t.has(e)||t.set(e,new Map);const s=t.get(e);s.has(i)||0===s.size?s.set(i,n):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(s.keys())[0]}.`)},get:(e,i)=>t.has(e)&&t.get(e).get(i)||null,remove(e,i){if(!t.has(e))return;const n=t.get(e);n.delete(i),0===n.size&&t.delete(e)}},i="transitionend",n=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),s=t=>{t.dispatchEvent(new Event(i))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(n(t)):null,a=t=>{if(!o(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},l=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),c=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?c(t.parentNode):null},h=()=>{},d=t=>{t.offsetHeight},u=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,f=[],p=()=>"rtl"===document.documentElement.dir,m=t=>{var e;e=()=>{const e=u();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(f.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of f)t()})),f.push(e)):e()},g=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,_=(t,e,n=!0)=>{if(!n)return void g(t);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let r=!1;const a=({target:n})=>{n===e&&(r=!0,e.removeEventListener(i,a),g(t))};e.addEventListener(i,a),setTimeout((()=>{r||s(e)}),o)},b=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},v=/[^.]*(?=\..*)\.|.*/,y=/\..*/,w=/::\d+$/,A={};let E=1;const T={mouseenter:"mouseover",mouseleave:"mouseout"},C=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function O(t,e){return e&&`${e}::${E++}`||t.uidEvent||E++}function x(t){const e=O(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function k(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function L(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=I(t);return C.has(o)||(o=t),[n,s,o]}function S(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=L(e,i,n);if(e in T){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=x(t),c=l[a]||(l[a]={}),h=k(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=O(r,e.replace(v,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return P(s,{delegateTarget:r}),n.oneOff&&N.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return P(n,{delegateTarget:t}),i.oneOff&&N.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function D(t,e,i,n,s){const o=k(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function $(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&D(t,e,i,r.callable,r.delegationSelector)}function I(t){return t=t.replace(y,""),T[t]||t}const N={on(t,e,i,n){S(t,e,i,n,!1)},one(t,e,i,n){S(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=L(e,i,n),a=r!==e,l=x(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))$(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(w,"");a&&!e.includes(s)||D(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;D(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=u();let s=null,o=!0,r=!0,a=!1;e!==I(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=P(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function P(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function M(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function j(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const F={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${j(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${j(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=M(t.dataset[n])}return e},getDataAttribute:(t,e)=>M(t.getAttribute(`data-bs-${j(e)}`))};class H{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=o(e)?F.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...o(e)?F.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],r=o(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(r))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${r}" but expected type "${s}".`)}var i}}class W extends H{constructor(t,i){super(),(t=r(t))&&(this._element=t,this._config=this._getConfig(i),e.set(this._element,this.constructor.DATA_KEY,this))}dispose(){e.remove(this._element,this.constructor.DATA_KEY),N.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){_(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return e.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.1"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const B=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return n(e)},z={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!l(t)&&a(t)))},getSelectorFromElement(t){const e=B(t);return e&&z.findOne(e)?e:null},getElementFromSelector(t){const e=B(t);return e?z.findOne(e):null},getMultipleElementsFromSelector(t){const e=B(t);return e?z.find(e):[]}},R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;N.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),l(this))return;const s=z.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},q=".bs.alert",V=`close${q}`,K=`closed${q}`;class Q extends W{static get NAME(){return"alert"}close(){if(N.trigger(this._element,V).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),N.trigger(this._element,K),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Q.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(Q,"close"),m(Q);const X='[data-bs-toggle="button"]';class Y extends W{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=Y.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}N.on(document,"click.bs.button.data-api",X,(t=>{t.preventDefault();const e=t.target.closest(X);Y.getOrCreateInstance(e).toggle()})),m(Y);const U=".bs.swipe",G=`touchstart${U}`,J=`touchmove${U}`,Z=`touchend${U}`,tt=`pointerdown${U}`,et=`pointerup${U}`,it={endCallback:null,leftCallback:null,rightCallback:null},nt={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class st extends H{constructor(t,e){super(),this._element=t,t&&st.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return it}static get DefaultType(){return nt}static get NAME(){return"swipe"}dispose(){N.off(this._element,U)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),g(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&g(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(N.on(this._element,tt,(t=>this._start(t))),N.on(this._element,et,(t=>this._end(t))),this._element.classList.add("pointer-event")):(N.on(this._element,G,(t=>this._start(t))),N.on(this._element,J,(t=>this._move(t))),N.on(this._element,Z,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const ot=".bs.carousel",rt=".data-api",at="next",lt="prev",ct="left",ht="right",dt=`slide${ot}`,ut=`slid${ot}`,ft=`keydown${ot}`,pt=`mouseenter${ot}`,mt=`mouseleave${ot}`,gt=`dragstart${ot}`,_t=`load${ot}${rt}`,bt=`click${ot}${rt}`,vt="carousel",yt="active",wt=".active",At=".carousel-item",Et=wt+At,Tt={ArrowLeft:ht,ArrowRight:ct},Ct={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},Ot={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class xt extends W{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=z.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===vt&&this.cycle()}static get Default(){return Ct}static get DefaultType(){return Ot}static get NAME(){return"carousel"}next(){this._slide(at)}nextWhenVisible(){!document.hidden&&a(this._element)&&this.next()}prev(){this._slide(lt)}pause(){this._isSliding&&s(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?N.one(this._element,ut,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void N.one(this._element,ut,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?at:lt;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&N.on(this._element,ft,(t=>this._keydown(t))),"hover"===this._config.pause&&(N.on(this._element,pt,(()=>this.pause())),N.on(this._element,mt,(()=>this._maybeEnableCycle()))),this._config.touch&&st.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of z.find(".carousel-item img",this._element))N.on(t,gt,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ct)),rightCallback:()=>this._slide(this._directionToOrder(ht)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new st(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=Tt[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=z.findOne(wt,this._indicatorsElement);e.classList.remove(yt),e.removeAttribute("aria-current");const i=z.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(yt),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===at,s=e||b(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>N.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(dt).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),d(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(yt),i.classList.remove(yt,c,l),this._isSliding=!1,r(ut)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return z.findOne(Et,this._element)}_getItems(){return z.find(At,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return p()?t===ct?lt:at:t===ct?at:lt}_orderToDirection(t){return p()?t===lt?ct:ht:t===lt?ht:ct}static jQueryInterface(t){return this.each((function(){const e=xt.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}N.on(document,bt,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=z.getElementFromSelector(this);if(!e||!e.classList.contains(vt))return;t.preventDefault();const i=xt.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===F.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),N.on(window,_t,(()=>{const t=z.find('[data-bs-ride="carousel"]');for(const e of t)xt.getOrCreateInstance(e)})),m(xt);const kt=".bs.collapse",Lt=`show${kt}`,St=`shown${kt}`,Dt=`hide${kt}`,$t=`hidden${kt}`,It=`click${kt}.data-api`,Nt="show",Pt="collapse",Mt="collapsing",jt=`:scope .${Pt} .${Pt}`,Ft='[data-bs-toggle="collapse"]',Ht={parent:null,toggle:!0},Wt={parent:"(null|element)",toggle:"boolean"};class Bt extends W{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=z.find(Ft);for(const t of i){const e=z.getSelectorFromElement(t),i=z.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return Ht}static get DefaultType(){return Wt}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Bt.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(N.trigger(this._element,Lt).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(Pt),this._element.classList.add(Mt),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt,Nt),this._element.style[e]="",N.trigger(this._element,St)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(N.trigger(this._element,Dt).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,d(this._element),this._element.classList.add(Mt),this._element.classList.remove(Pt,Nt);for(const t of this._triggerArray){const e=z.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt),N.trigger(this._element,$t)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(Nt)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=r(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(Ft);for(const e of t){const t=z.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=z.find(jt,this._config.parent);return z.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Bt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}N.on(document,It,Ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of z.getMultipleElementsFromSelector(this))Bt.getOrCreateInstance(t,{toggle:!1}).toggle()})),m(Bt);var zt="top",Rt="bottom",qt="right",Vt="left",Kt="auto",Qt=[zt,Rt,qt,Vt],Xt="start",Yt="end",Ut="clippingParents",Gt="viewport",Jt="popper",Zt="reference",te=Qt.reduce((function(t,e){return t.concat([e+"-"+Xt,e+"-"+Yt])}),[]),ee=[].concat(Qt,[Kt]).reduce((function(t,e){return t.concat([e,e+"-"+Xt,e+"-"+Yt])}),[]),ie="beforeRead",ne="read",se="afterRead",oe="beforeMain",re="main",ae="afterMain",le="beforeWrite",ce="write",he="afterWrite",de=[ie,ne,se,oe,re,ae,le,ce,he];function ue(t){return t?(t.nodeName||"").toLowerCase():null}function fe(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function pe(t){return t instanceof fe(t).Element||t instanceof Element}function me(t){return t instanceof fe(t).HTMLElement||t instanceof HTMLElement}function ge(t){return"undefined"!=typeof ShadowRoot&&(t instanceof fe(t).ShadowRoot||t instanceof ShadowRoot)}const _e={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];me(s)&&ue(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});me(n)&&ue(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function be(t){return t.split("-")[0]}var ve=Math.max,ye=Math.min,we=Math.round;function Ae(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function Ee(){return!/^((?!chrome|android).)*safari/i.test(Ae())}function Te(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&me(t)&&(s=t.offsetWidth>0&&we(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&we(n.height)/t.offsetHeight||1);var r=(pe(t)?fe(t):window).visualViewport,a=!Ee()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function Ce(t){var e=Te(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Oe(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&ge(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function xe(t){return fe(t).getComputedStyle(t)}function ke(t){return["table","td","th"].indexOf(ue(t))>=0}function Le(t){return((pe(t)?t.ownerDocument:t.document)||window.document).documentElement}function Se(t){return"html"===ue(t)?t:t.assignedSlot||t.parentNode||(ge(t)?t.host:null)||Le(t)}function De(t){return me(t)&&"fixed"!==xe(t).position?t.offsetParent:null}function $e(t){for(var e=fe(t),i=De(t);i&&ke(i)&&"static"===xe(i).position;)i=De(i);return i&&("html"===ue(i)||"body"===ue(i)&&"static"===xe(i).position)?e:i||function(t){var e=/firefox/i.test(Ae());if(/Trident/i.test(Ae())&&me(t)&&"fixed"===xe(t).position)return null;var i=Se(t);for(ge(i)&&(i=i.host);me(i)&&["html","body"].indexOf(ue(i))<0;){var n=xe(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Ie(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function Ne(t,e,i){return ve(t,ye(e,i))}function Pe(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function Me(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const je={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=be(i.placement),l=Ie(a),c=[Vt,qt].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return Pe("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:Me(t,Qt))}(s.padding,i),d=Ce(o),u="y"===l?zt:Vt,f="y"===l?Rt:qt,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=$e(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,A=Ne(v,w,y),E=l;i.modifiersData[n]=((e={})[E]=A,e.centerOffset=A-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Oe(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Fe(t){return t.split("-")[1]}var He={top:"auto",right:"auto",bottom:"auto",left:"auto"};function We(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=t.isFixed,u=r.x,f=void 0===u?0:u,p=r.y,m=void 0===p?0:p,g="function"==typeof h?h({x:f,y:m}):{x:f,y:m};f=g.x,m=g.y;var _=r.hasOwnProperty("x"),b=r.hasOwnProperty("y"),v=Vt,y=zt,w=window;if(c){var A=$e(i),E="clientHeight",T="clientWidth";A===fe(i)&&"static"!==xe(A=Le(i)).position&&"absolute"===a&&(E="scrollHeight",T="scrollWidth"),(s===zt||(s===Vt||s===qt)&&o===Yt)&&(y=Rt,m-=(d&&A===w&&w.visualViewport?w.visualViewport.height:A[E])-n.height,m*=l?1:-1),s!==Vt&&(s!==zt&&s!==Rt||o!==Yt)||(v=qt,f-=(d&&A===w&&w.visualViewport?w.visualViewport.width:A[T])-n.width,f*=l?1:-1)}var C,O=Object.assign({position:a},c&&He),x=!0===h?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:we(i*s)/s||0,y:we(n*s)/s||0}}({x:f,y:m},fe(i)):{x:f,y:m};return f=x.x,m=x.y,l?Object.assign({},O,((C={})[y]=b?"0":"",C[v]=_?"0":"",C.transform=(w.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",C)):Object.assign({},O,((e={})[y]=b?m+"px":"",e[v]=_?f+"px":"",e.transform="",e))}const Be={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:be(e.placement),variation:Fe(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,We(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,We(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var ze={passive:!0};const Re={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=fe(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,ze)})),a&&l.addEventListener("resize",i.update,ze),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,ze)})),a&&l.removeEventListener("resize",i.update,ze)}},data:{}};var qe={left:"right",right:"left",bottom:"top",top:"bottom"};function Ve(t){return t.replace(/left|right|bottom|top/g,(function(t){return qe[t]}))}var Ke={start:"end",end:"start"};function Qe(t){return t.replace(/start|end/g,(function(t){return Ke[t]}))}function Xe(t){var e=fe(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function Ye(t){return Te(Le(t)).left+Xe(t).scrollLeft}function Ue(t){var e=xe(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ge(t){return["html","body","#document"].indexOf(ue(t))>=0?t.ownerDocument.body:me(t)&&Ue(t)?t:Ge(Se(t))}function Je(t,e){var i;void 0===e&&(e=[]);var n=Ge(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=fe(n),r=s?[o].concat(o.visualViewport||[],Ue(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Je(Se(r)))}function Ze(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function ti(t,e,i){return e===Gt?Ze(function(t,e){var i=fe(t),n=Le(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=Ee();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+Ye(t),y:l}}(t,i)):pe(e)?function(t,e){var i=Te(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):Ze(function(t){var e,i=Le(t),n=Xe(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ve(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ve(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+Ye(t),l=-n.scrollTop;return"rtl"===xe(s||i).direction&&(a+=ve(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Le(t)))}function ei(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?be(s):null,r=s?Fe(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case zt:e={x:a,y:i.y-n.height};break;case Rt:e={x:a,y:i.y+i.height};break;case qt:e={x:i.x+i.width,y:l};break;case Vt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?Ie(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case Xt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Yt:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ii(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.strategy,r=void 0===o?t.strategy:o,a=i.boundary,l=void 0===a?Ut:a,c=i.rootBoundary,h=void 0===c?Gt:c,d=i.elementContext,u=void 0===d?Jt:d,f=i.altBoundary,p=void 0!==f&&f,m=i.padding,g=void 0===m?0:m,_=Pe("number"!=typeof g?g:Me(g,Qt)),b=u===Jt?Zt:Jt,v=t.rects.popper,y=t.elements[p?b:u],w=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=Je(Se(t)),i=["absolute","fixed"].indexOf(xe(t).position)>=0&&me(t)?$e(t):t;return pe(i)?e.filter((function(t){return pe(t)&&Oe(t,i)&&"body"!==ue(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=ti(t,i,n);return e.top=ve(s.top,e.top),e.right=ye(s.right,e.right),e.bottom=ye(s.bottom,e.bottom),e.left=ve(s.left,e.left),e}),ti(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(pe(y)?y:y.contextElement||Le(t.elements.popper),l,h,r),A=Te(t.elements.reference),E=ei({reference:A,element:v,strategy:"absolute",placement:s}),T=Ze(Object.assign({},v,E)),C=u===Jt?T:A,O={top:w.top-C.top+_.top,bottom:C.bottom-w.bottom+_.bottom,left:w.left-C.left+_.left,right:C.right-w.right+_.right},x=t.modifiersData.offset;if(u===Jt&&x){var k=x[s];Object.keys(O).forEach((function(t){var e=[qt,Rt].indexOf(t)>=0?1:-1,i=[zt,Rt].indexOf(t)>=0?"y":"x";O[t]+=k[i]*e}))}return O}function ni(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?ee:l,h=Fe(n),d=h?a?te:te.filter((function(t){return Fe(t)===h})):Qt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ii(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[be(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const si={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=be(g),b=l||(_!==g&&p?function(t){if(be(t)===Kt)return[];var e=Ve(t);return[Qe(t),e,Qe(e)]}(g):[Ve(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(be(i)===Kt?ni(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,A=new Map,E=!0,T=v[0],C=0;C=0,S=L?"width":"height",D=ii(e,{placement:O,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),$=L?k?qt:Vt:k?Rt:zt;y[S]>w[S]&&($=Ve($));var I=Ve($),N=[];if(o&&N.push(D[x]<=0),a&&N.push(D[$]<=0,D[I]<=0),N.every((function(t){return t}))){T=O,E=!1;break}A.set(O,N)}if(E)for(var P=function(t){var e=v.find((function(e){var i=A.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==P(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function oi(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function ri(t){return[zt,qt,Rt,Vt].some((function(e){return t[e]>=0}))}const ai={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ii(e,{elementContext:"reference"}),a=ii(e,{altBoundary:!0}),l=oi(r,n),c=oi(a,s,o),h=ri(l),d=ri(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},li={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=ee.reduce((function(t,i){return t[i]=function(t,e,i){var n=be(t),s=[Vt,zt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[Vt,qt].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},ci={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=ei({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},hi={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ii(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=be(e.placement),b=Fe(e.placement),v=!b,y=Ie(_),w="x"===y?"y":"x",A=e.modifiersData.popperOffsets,E=e.rects.reference,T=e.rects.popper,C="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,O="number"==typeof C?{mainAxis:C,altAxis:C}:Object.assign({mainAxis:0,altAxis:0},C),x=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,k={x:0,y:0};if(A){if(o){var L,S="y"===y?zt:Vt,D="y"===y?Rt:qt,$="y"===y?"height":"width",I=A[y],N=I+g[S],P=I-g[D],M=f?-T[$]/2:0,j=b===Xt?E[$]:T[$],F=b===Xt?-T[$]:-E[$],H=e.elements.arrow,W=f&&H?Ce(H):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},z=B[S],R=B[D],q=Ne(0,E[$],W[$]),V=v?E[$]/2-M-q-z-O.mainAxis:j-q-z-O.mainAxis,K=v?-E[$]/2+M+q+R+O.mainAxis:F+q+R+O.mainAxis,Q=e.elements.arrow&&$e(e.elements.arrow),X=Q?"y"===y?Q.clientTop||0:Q.clientLeft||0:0,Y=null!=(L=null==x?void 0:x[y])?L:0,U=I+K-Y,G=Ne(f?ye(N,I+V-Y-X):N,I,f?ve(P,U):P);A[y]=G,k[y]=G-I}if(a){var J,Z="x"===y?zt:Vt,tt="x"===y?Rt:qt,et=A[w],it="y"===w?"height":"width",nt=et+g[Z],st=et-g[tt],ot=-1!==[zt,Vt].indexOf(_),rt=null!=(J=null==x?void 0:x[w])?J:0,at=ot?nt:et-E[it]-T[it]-rt+O.altAxis,lt=ot?et+E[it]+T[it]-rt-O.altAxis:st,ct=f&&ot?function(t,e,i){var n=Ne(t,e,i);return n>i?i:n}(at,et,lt):Ne(f?at:nt,et,f?lt:st);A[w]=ct,k[w]=ct-et}e.modifiersData[n]=k}},requiresIfExists:["offset"]};function di(t,e,i){void 0===i&&(i=!1);var n,s,o=me(e),r=me(e)&&function(t){var e=t.getBoundingClientRect(),i=we(e.width)/t.offsetWidth||1,n=we(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=Le(e),l=Te(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==ue(e)||Ue(a))&&(c=(n=e)!==fe(n)&&me(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:Xe(n)),me(e)?((h=Te(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=Ye(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function ui(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var fi={placement:"bottom",modifiers:[],strategy:"absolute"};function pi(){for(var t=arguments.length,e=new Array(t),i=0;iNumber.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(F.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...g(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=z.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>a(t)));i.length&&b(i,e,t===Ti,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=qi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=z.find(Ni);for(const i of e){const e=qi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ei,Ti].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ii)?this:z.prev(this,Ii)[0]||z.next(this,Ii)[0]||z.findOne(Ii,t.delegateTarget.parentNode),o=qi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}N.on(document,Si,Ii,qi.dataApiKeydownHandler),N.on(document,Si,Pi,qi.dataApiKeydownHandler),N.on(document,Li,qi.clearMenus),N.on(document,Di,qi.clearMenus),N.on(document,Li,Ii,(function(t){t.preventDefault(),qi.getOrCreateInstance(this).toggle()})),m(qi);const Vi="backdrop",Ki="show",Qi=`mousedown.bs.${Vi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Yi={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Ui extends H{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Yi}static get NAME(){return Vi}show(t){if(!this._config.isVisible)return void g(t);this._append();const e=this._getElement();this._config.isAnimated&&d(e),e.classList.add(Ki),this._emulateAnimation((()=>{g(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),g(t)}))):g(t)}dispose(){this._isAppended&&(N.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=r(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),N.on(t,Qi,(()=>{g(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){_(t,this._getElement(),this._config.isAnimated)}}const Gi=".bs.focustrap",Ji=`focusin${Gi}`,Zi=`keydown.tab${Gi}`,tn="backward",en={autofocus:!0,trapElement:null},nn={autofocus:"boolean",trapElement:"element"};class sn extends H{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return en}static get DefaultType(){return nn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),N.off(document,Gi),N.on(document,Ji,(t=>this._handleFocusin(t))),N.on(document,Zi,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,N.off(document,Gi))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=z.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===tn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?tn:"forward")}}const on=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",rn=".sticky-top",an="padding-right",ln="margin-right";class cn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,an,(e=>e+t)),this._setElementAttributes(on,an,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,an),this._resetElementAttributes(on,an),this._resetElementAttributes(rn,ln)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&F.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=F.getDataAttribute(t,e);null!==i?(F.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(o(t))e(t);else for(const i of z.find(t,this._element))e(i)}}const hn=".bs.modal",dn=`hide${hn}`,un=`hidePrevented${hn}`,fn=`hidden${hn}`,pn=`show${hn}`,mn=`shown${hn}`,gn=`resize${hn}`,_n=`click.dismiss${hn}`,bn=`mousedown.dismiss${hn}`,vn=`keydown.dismiss${hn}`,yn=`click${hn}.data-api`,wn="modal-open",An="show",En="modal-static",Tn={backdrop:!0,focus:!0,keyboard:!0},Cn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class On extends W{constructor(t,e){super(t,e),this._dialog=z.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new cn,this._addEventListeners()}static get Default(){return Tn}static get DefaultType(){return Cn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||N.trigger(this._element,pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(wn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(N.trigger(this._element,dn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){N.off(window,hn),N.off(this._dialog,hn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Ui({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=z.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),d(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,N.trigger(this._element,mn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){N.on(this._element,vn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),N.on(window,gn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),N.on(this._element,bn,(t=>{N.one(this._element,_n,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(wn),this._resetAdjustments(),this._scrollBar.reset(),N.trigger(this._element,fn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(N.trigger(this._element,un).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(En)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(En),this._queueCallback((()=>{this._element.classList.remove(En),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=p()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=p()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=On.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}N.on(document,yn,'[data-bs-toggle="modal"]',(function(t){const e=z.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),N.one(e,pn,(t=>{t.defaultPrevented||N.one(e,fn,(()=>{a(this)&&this.focus()}))}));const i=z.findOne(".modal.show");i&&On.getInstance(i).hide(),On.getOrCreateInstance(e).toggle(this)})),R(On),m(On);const xn=".bs.offcanvas",kn=".data-api",Ln=`load${xn}${kn}`,Sn="show",Dn="showing",$n="hiding",In=".offcanvas.show",Nn=`show${xn}`,Pn=`shown${xn}`,Mn=`hide${xn}`,jn=`hidePrevented${xn}`,Fn=`hidden${xn}`,Hn=`resize${xn}`,Wn=`click${xn}${kn}`,Bn=`keydown.dismiss${xn}`,zn={backdrop:!0,keyboard:!0,scroll:!1},Rn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class qn extends W{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return zn}static get DefaultType(){return Rn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||N.trigger(this._element,Nn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new cn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Dn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Sn),this._element.classList.remove(Dn),N.trigger(this._element,Pn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(N.trigger(this._element,Mn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add($n),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Sn,$n),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new cn).reset(),N.trigger(this._element,Fn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Ui({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():N.trigger(this._element,jn)}:null})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_addEventListeners(){N.on(this._element,Bn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():N.trigger(this._element,jn))}))}static jQueryInterface(t){return this.each((function(){const e=qn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}N.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=z.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this))return;N.one(e,Fn,(()=>{a(this)&&this.focus()}));const i=z.findOne(In);i&&i!==e&&qn.getInstance(i).hide(),qn.getOrCreateInstance(e).toggle(this)})),N.on(window,Ln,(()=>{for(const t of z.find(In))qn.getOrCreateInstance(t).show()})),N.on(window,Hn,(()=>{for(const t of z.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&qn.getOrCreateInstance(t).hide()})),R(qn),m(qn);const Vn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Yn={allowList:Vn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Un={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Gn={entry:"(string|element|function|null)",selector:"(string|element)"};class Jn extends H{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Yn}static get DefaultType(){return Un}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Gn)}_setContent(t,e,i){const n=z.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?o(e)?this._putElementInTemplate(r(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return g(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const Zn=new Set(["sanitize","allowList","sanitizeFn"]),ts="fade",es="show",is=".modal",ns="hide.bs.modal",ss="hover",os="focus",rs={AUTO:"auto",TOP:"top",RIGHT:p()?"left":"right",BOTTOM:"bottom",LEFT:p()?"right":"left"},as={allowList:Vn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},ls={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class cs extends W{constructor(t,e){if(void 0===vi)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,e),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return as}static get DefaultType(){return ls}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),N.off(this._element.closest(is),ns,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=N.trigger(this._element,this.constructor.eventName("show")),e=(c(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),N.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._queueCallback((()=>{N.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!N.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._activeTrigger.click=!1,this._activeTrigger[os]=!1,this._activeTrigger[ss]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),N.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ts,es),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ts),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Jn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ts)}_isShown(){return this.tip&&this.tip.classList.contains(es)}_createPopper(t){const e=g(this._config.placement,[this,t,this._element]),i=rs[e.toUpperCase()];return bi(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return g(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...g(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)N.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ss?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ss?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");N.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?os:ss]=!0,e._enter()})),N.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?os:ss]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},N.on(this._element.closest(is),ns,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=F.getDataAttributes(this._element);for(const t of Object.keys(e))Zn.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=cs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(cs);const hs={...cs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},ds={...cs.DefaultType,content:"(null|string|element|function)"};class us extends cs{static get Default(){return hs}static get DefaultType(){return ds}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=us.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(us);const fs=".bs.scrollspy",ps=`activate${fs}`,ms=`click${fs}`,gs=`load${fs}.data-api`,_s="active",bs="[href]",vs=".nav-link",ys=`${vs}, .nav-item > ${vs}, .list-group-item`,ws={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Es extends W{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return ws}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=r(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(N.off(this._config.target,ms),N.on(this._config.target,ms,bs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=z.find(bs,this._config.target);for(const e of t){if(!e.hash||l(e))continue;const t=z.findOne(decodeURI(e.hash),this._element);a(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(_s),this._activateParents(t),N.trigger(this._element,ps,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))z.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(_s);else for(const e of z.parents(t,".nav, .list-group"))for(const t of z.prev(e,ys))t.classList.add(_s)}_clearActiveClass(t){t.classList.remove(_s);const e=z.find(`${bs}.${_s}`,t);for(const t of e)t.classList.remove(_s)}static jQueryInterface(t){return this.each((function(){const e=Es.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(window,gs,(()=>{for(const t of z.find('[data-bs-spy="scroll"]'))Es.getOrCreateInstance(t)})),m(Es);const Ts=".bs.tab",Cs=`hide${Ts}`,Os=`hidden${Ts}`,xs=`show${Ts}`,ks=`shown${Ts}`,Ls=`click${Ts}`,Ss=`keydown${Ts}`,Ds=`load${Ts}`,$s="ArrowLeft",Is="ArrowRight",Ns="ArrowUp",Ps="ArrowDown",Ms="Home",js="End",Fs="active",Hs="fade",Ws="show",Bs=":not(.dropdown-toggle)",zs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Rs=`.nav-link${Bs}, .list-group-item${Bs}, [role="tab"]${Bs}, ${zs}`,qs=`.${Fs}[data-bs-toggle="tab"], .${Fs}[data-bs-toggle="pill"], .${Fs}[data-bs-toggle="list"]`;class Vs extends W{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),N.on(this._element,Ss,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?N.trigger(e,Cs,{relatedTarget:t}):null;N.trigger(t,xs,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Fs),this._activate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),N.trigger(t,ks,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Hs)))}_deactivate(t,e){t&&(t.classList.remove(Fs),t.blur(),this._deactivate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),N.trigger(t,Os,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Hs)))}_keydown(t){if(![$s,Is,Ns,Ps,Ms,js].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!l(t)));let i;if([Ms,js].includes(t.key))i=e[t.key===Ms?0:e.length-1];else{const n=[Is,Ps].includes(t.key);i=b(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Vs.getOrCreateInstance(i).show())}_getChildren(){return z.find(Rs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=z.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=z.findOne(t,i);s&&s.classList.toggle(n,e)};n(".dropdown-toggle",Fs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Fs)}_getInnerElement(t){return t.matches(Rs)?t:z.findOne(Rs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Vs.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(document,Ls,zs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this)||Vs.getOrCreateInstance(this).show()})),N.on(window,Ds,(()=>{for(const t of z.find(qs))Vs.getOrCreateInstance(t)})),m(Vs);const Ks=".bs.toast",Qs=`mouseover${Ks}`,Xs=`mouseout${Ks}`,Ys=`focusin${Ks}`,Us=`focusout${Ks}`,Gs=`hide${Ks}`,Js=`hidden${Ks}`,Zs=`show${Ks}`,to=`shown${Ks}`,eo="hide",io="show",no="showing",so={animation:"boolean",autohide:"boolean",delay:"number"},oo={animation:!0,autohide:!0,delay:5e3};class ro extends W{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return oo}static get DefaultType(){return so}static get NAME(){return"toast"}show(){N.trigger(this._element,Zs).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(eo),d(this._element),this._element.classList.add(io,no),this._queueCallback((()=>{this._element.classList.remove(no),N.trigger(this._element,to),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(N.trigger(this._element,Gs).defaultPrevented||(this._element.classList.add(no),this._queueCallback((()=>{this._element.classList.add(eo),this._element.classList.remove(no,io),N.trigger(this._element,Js)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(io),super.dispose()}isShown(){return this._element.classList.contains(io)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){N.on(this._element,Qs,(t=>this._onInteraction(t,!0))),N.on(this._element,Xs,(t=>this._onInteraction(t,!1))),N.on(this._element,Ys,(t=>this._onInteraction(t,!0))),N.on(this._element,Us,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=ro.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(ro),m(ro),{Alert:Q,Button:Y,Carousel:xt,Collapse:Bt,Dropdown:qi,Modal:On,Offcanvas:qn,Popover:us,ScrollSpy:Es,Tab:Vs,Toast:ro,Tooltip:cs}})); +//# sourceMappingURL=bootstrap.bundle.min.js.map \ No newline at end of file diff --git a/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js.map b/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js.map new file mode 100644 index 0000000000..3863da8b7f --- /dev/null +++ b/v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js.map @@ -0,0 +1 @@ +{"version":3,"names":["elementMap","Map","Data","set","element","key","instance","has","instanceMap","get","size","console","error","Array","from","keys","remove","delete","TRANSITION_END","parseSelector","selector","window","CSS","escape","replace","match","id","triggerTransitionEnd","dispatchEvent","Event","isElement","object","jquery","nodeType","getElement","length","document","querySelector","isVisible","getClientRects","elementIsVisible","getComputedStyle","getPropertyValue","closedDetails","closest","summary","parentNode","isDisabled","Node","ELEMENT_NODE","classList","contains","disabled","hasAttribute","getAttribute","findShadowRoot","documentElement","attachShadow","getRootNode","root","ShadowRoot","noop","reflow","offsetHeight","getjQuery","jQuery","body","DOMContentLoadedCallbacks","isRTL","dir","defineJQueryPlugin","plugin","callback","$","name","NAME","JQUERY_NO_CONFLICT","fn","jQueryInterface","Constructor","noConflict","readyState","addEventListener","push","execute","possibleCallback","args","defaultValue","executeAfterTransition","transitionElement","waitForTransition","emulatedDuration","transitionDuration","transitionDelay","floatTransitionDuration","Number","parseFloat","floatTransitionDelay","split","getTransitionDurationFromElement","called","handler","target","removeEventListener","setTimeout","getNextActiveElement","list","activeElement","shouldGetNext","isCycleAllowed","listLength","index","indexOf","Math","max","min","namespaceRegex","stripNameRegex","stripUidRegex","eventRegistry","uidEvent","customEvents","mouseenter","mouseleave","nativeEvents","Set","makeEventUid","uid","getElementEvents","findHandler","events","callable","delegationSelector","Object","values","find","event","normalizeParameters","originalTypeEvent","delegationFunction","isDelegated","typeEvent","getTypeEvent","addHandler","oneOff","wrapFunction","relatedTarget","delegateTarget","call","this","handlers","previousFunction","domElements","querySelectorAll","domElement","hydrateObj","EventHandler","off","type","apply","bootstrapDelegationHandler","bootstrapHandler","removeHandler","Boolean","removeNamespacedHandlers","namespace","storeElementEvent","handlerKey","entries","includes","on","one","inNamespace","isNamespace","startsWith","elementEvent","slice","keyHandlers","trigger","jQueryEvent","bubbles","nativeDispatch","defaultPrevented","isPropagationStopped","isImmediatePropagationStopped","isDefaultPrevented","evt","cancelable","preventDefault","obj","meta","value","_unused","defineProperty","configurable","normalizeData","toString","JSON","parse","decodeURIComponent","normalizeDataKey","chr","toLowerCase","Manipulator","setDataAttribute","setAttribute","removeDataAttribute","removeAttribute","getDataAttributes","attributes","bsKeys","dataset","filter","pureKey","charAt","getDataAttribute","Config","Default","DefaultType","Error","_getConfig","config","_mergeConfigObj","_configAfterMerge","_typeCheckConfig","jsonConfig","constructor","configTypes","property","expectedTypes","valueType","prototype","RegExp","test","TypeError","toUpperCase","BaseComponent","super","_element","_config","DATA_KEY","dispose","EVENT_KEY","propertyName","getOwnPropertyNames","_queueCallback","isAnimated","getInstance","getOrCreateInstance","VERSION","eventName","getSelector","hrefAttribute","trim","SelectorEngine","concat","Element","findOne","children","child","matches","parents","ancestor","prev","previous","previousElementSibling","next","nextElementSibling","focusableChildren","focusables","map","join","el","getSelectorFromElement","getElementFromSelector","getMultipleElementsFromSelector","enableDismissTrigger","component","method","clickEvent","tagName","EVENT_CLOSE","EVENT_CLOSED","Alert","close","_destroyElement","each","data","undefined","SELECTOR_DATA_TOGGLE","Button","toggle","button","EVENT_TOUCHSTART","EVENT_TOUCHMOVE","EVENT_TOUCHEND","EVENT_POINTERDOWN","EVENT_POINTERUP","endCallback","leftCallback","rightCallback","Swipe","isSupported","_deltaX","_supportPointerEvents","PointerEvent","_initEvents","_start","_eventIsPointerPenTouch","clientX","touches","_end","_handleSwipe","_move","absDeltaX","abs","direction","add","pointerType","navigator","maxTouchPoints","DATA_API_KEY","ORDER_NEXT","ORDER_PREV","DIRECTION_LEFT","DIRECTION_RIGHT","EVENT_SLIDE","EVENT_SLID","EVENT_KEYDOWN","EVENT_MOUSEENTER","EVENT_MOUSELEAVE","EVENT_DRAG_START","EVENT_LOAD_DATA_API","EVENT_CLICK_DATA_API","CLASS_NAME_CAROUSEL","CLASS_NAME_ACTIVE","SELECTOR_ACTIVE","SELECTOR_ITEM","SELECTOR_ACTIVE_ITEM","KEY_TO_DIRECTION","ArrowLeft","ArrowRight","interval","keyboard","pause","ride","touch","wrap","Carousel","_interval","_activeElement","_isSliding","touchTimeout","_swipeHelper","_indicatorsElement","_addEventListeners","cycle","_slide","nextWhenVisible","hidden","_clearInterval","_updateInterval","setInterval","_maybeEnableCycle","to","items","_getItems","activeIndex","_getItemIndex","_getActive","order","defaultInterval","_keydown","_addTouchEventListeners","img","swipeConfig","_directionToOrder","endCallBack","clearTimeout","_setActiveIndicatorElement","activeIndicator","newActiveIndicator","elementInterval","parseInt","isNext","nextElement","nextElementIndex","triggerEvent","_orderToDirection","isCycling","directionalClassName","orderClassName","completeCallBack","_isAnimated","clearInterval","carousel","slideIndex","carousels","EVENT_SHOW","EVENT_SHOWN","EVENT_HIDE","EVENT_HIDDEN","CLASS_NAME_SHOW","CLASS_NAME_COLLAPSE","CLASS_NAME_COLLAPSING","CLASS_NAME_DEEPER_CHILDREN","parent","Collapse","_isTransitioning","_triggerArray","toggleList","elem","filterElement","foundElement","_initializeChildren","_addAriaAndCollapsedClass","_isShown","hide","show","activeChildren","_getFirstLevelChildren","activeInstance","dimension","_getDimension","style","scrollSize","complete","getBoundingClientRect","selected","triggerArray","isOpen","top","bottom","right","left","auto","basePlacements","start","end","clippingParents","viewport","popper","reference","variationPlacements","reduce","acc","placement","placements","beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite","modifierPhases","getNodeName","nodeName","getWindow","node","ownerDocument","defaultView","isHTMLElement","HTMLElement","isShadowRoot","applyStyles$1","enabled","phase","_ref","state","elements","forEach","styles","assign","effect","_ref2","initialStyles","position","options","strategy","margin","arrow","hasOwnProperty","attribute","requires","getBasePlacement","round","getUAString","uaData","userAgentData","brands","isArray","item","brand","version","userAgent","isLayoutViewport","includeScale","isFixedStrategy","clientRect","scaleX","scaleY","offsetWidth","width","height","visualViewport","addVisualOffsets","x","offsetLeft","y","offsetTop","getLayoutRect","rootNode","isSameNode","host","isTableElement","getDocumentElement","getParentNode","assignedSlot","getTrueOffsetParent","offsetParent","getOffsetParent","isFirefox","currentNode","css","transform","perspective","contain","willChange","getContainingBlock","getMainAxisFromPlacement","within","mathMax","mathMin","mergePaddingObject","paddingObject","expandToHashMap","hashMap","arrow$1","_state$modifiersData$","arrowElement","popperOffsets","modifiersData","basePlacement","axis","len","padding","rects","toPaddingObject","arrowRect","minProp","maxProp","endDiff","startDiff","arrowOffsetParent","clientSize","clientHeight","clientWidth","centerToReference","center","offset","axisProp","centerOffset","_options$element","requiresIfExists","getVariation","unsetSides","mapToStyles","_Object$assign2","popperRect","variation","offsets","gpuAcceleration","adaptive","roundOffsets","isFixed","_offsets$x","_offsets$y","_ref3","hasX","hasY","sideX","sideY","win","heightProp","widthProp","_Object$assign","commonStyles","_ref4","dpr","devicePixelRatio","roundOffsetsByDPR","computeStyles$1","_ref5","_options$gpuAccelerat","_options$adaptive","_options$roundOffsets","passive","eventListeners","_options$scroll","scroll","_options$resize","resize","scrollParents","scrollParent","update","hash","getOppositePlacement","matched","getOppositeVariationPlacement","getWindowScroll","scrollLeft","pageXOffset","scrollTop","pageYOffset","getWindowScrollBarX","isScrollParent","_getComputedStyle","overflow","overflowX","overflowY","getScrollParent","listScrollParents","_element$ownerDocumen","isBody","updatedList","rectToClientRect","rect","getClientRectFromMixedType","clippingParent","html","layoutViewport","getViewportRect","clientTop","clientLeft","getInnerBoundingClientRect","winScroll","scrollWidth","scrollHeight","getDocumentRect","computeOffsets","commonX","commonY","mainAxis","detectOverflow","_options","_options$placement","_options$strategy","_options$boundary","boundary","_options$rootBoundary","rootBoundary","_options$elementConte","elementContext","_options$altBoundary","altBoundary","_options$padding","altContext","clippingClientRect","mainClippingParents","clipperElement","getClippingParents","firstClippingParent","clippingRect","accRect","getClippingRect","contextElement","referenceClientRect","popperClientRect","elementClientRect","overflowOffsets","offsetData","multiply","computeAutoPlacement","flipVariations","_options$allowedAutoP","allowedAutoPlacements","allPlacements","allowedPlacements","overflows","sort","a","b","flip$1","_skip","_options$mainAxis","checkMainAxis","_options$altAxis","altAxis","checkAltAxis","specifiedFallbackPlacements","fallbackPlacements","_options$flipVariatio","preferredPlacement","oppositePlacement","getExpandedFallbackPlacements","referenceRect","checksMap","makeFallbackChecks","firstFittingPlacement","i","_basePlacement","isStartVariation","isVertical","mainVariationSide","altVariationSide","checks","every","check","_loop","_i","fittingPlacement","reset","getSideOffsets","preventedOffsets","isAnySideFullyClipped","some","side","hide$1","preventOverflow","referenceOverflow","popperAltOverflow","referenceClippingOffsets","popperEscapeOffsets","isReferenceHidden","hasPopperEscaped","offset$1","_options$offset","invertDistance","skidding","distance","distanceAndSkiddingToXY","_data$state$placement","popperOffsets$1","preventOverflow$1","_options$tether","tether","_options$tetherOffset","tetherOffset","isBasePlacement","tetherOffsetValue","normalizedTetherOffsetValue","offsetModifierState","_offsetModifierState$","mainSide","altSide","additive","minLen","maxLen","arrowPaddingObject","arrowPaddingMin","arrowPaddingMax","arrowLen","minOffset","maxOffset","clientOffset","offsetModifierValue","tetherMax","preventedOffset","_offsetModifierState$2","_mainSide","_altSide","_offset","_len","_min","_max","isOriginSide","_offsetModifierValue","_tetherMin","_tetherMax","_preventedOffset","v","withinMaxClamp","getCompositeRect","elementOrVirtualElement","isOffsetParentAnElement","offsetParentIsScaled","isElementScaled","modifiers","visited","result","modifier","dep","depModifier","DEFAULT_OPTIONS","areValidElements","arguments","_key","popperGenerator","generatorOptions","_generatorOptions","_generatorOptions$def","defaultModifiers","_generatorOptions$def2","defaultOptions","pending","orderedModifiers","effectCleanupFns","isDestroyed","setOptions","setOptionsAction","cleanupModifierEffects","merged","orderModifiers","current","existing","m","_ref$options","cleanupFn","forceUpdate","_state$elements","_state$orderedModifie","_state$orderedModifie2","Promise","resolve","then","destroy","onFirstUpdate","createPopper","computeStyles","applyStyles","flip","ARROW_UP_KEY","ARROW_DOWN_KEY","EVENT_KEYDOWN_DATA_API","EVENT_KEYUP_DATA_API","SELECTOR_DATA_TOGGLE_SHOWN","SELECTOR_MENU","PLACEMENT_TOP","PLACEMENT_TOPEND","PLACEMENT_BOTTOM","PLACEMENT_BOTTOMEND","PLACEMENT_RIGHT","PLACEMENT_LEFT","autoClose","display","popperConfig","Dropdown","_popper","_parent","_menu","_inNavbar","_detectNavbar","_createPopper","focus","_completeHide","Popper","referenceElement","_getPopperConfig","_getPlacement","parentDropdown","isEnd","_getOffset","popperData","defaultBsPopperConfig","_selectMenuItem","clearMenus","openToggles","context","composedPath","isMenuTarget","dataApiKeydownHandler","isInput","isEscapeEvent","isUpOrDownEvent","getToggleButton","stopPropagation","EVENT_MOUSEDOWN","className","clickCallback","rootElement","Backdrop","_isAppended","_append","_getElement","_emulateAnimation","backdrop","createElement","append","EVENT_FOCUSIN","EVENT_KEYDOWN_TAB","TAB_NAV_BACKWARD","autofocus","trapElement","FocusTrap","_isActive","_lastTabNavDirection","activate","_handleFocusin","_handleKeydown","deactivate","shiftKey","SELECTOR_FIXED_CONTENT","SELECTOR_STICKY_CONTENT","PROPERTY_PADDING","PROPERTY_MARGIN","ScrollBarHelper","getWidth","documentWidth","innerWidth","_disableOverFlow","_setElementAttributes","calculatedValue","_resetElementAttributes","isOverflowing","_saveInitialAttribute","styleProperty","scrollbarWidth","_applyManipulationCallback","setProperty","actualValue","removeProperty","callBack","sel","EVENT_HIDE_PREVENTED","EVENT_RESIZE","EVENT_CLICK_DISMISS","EVENT_MOUSEDOWN_DISMISS","EVENT_KEYDOWN_DISMISS","CLASS_NAME_OPEN","CLASS_NAME_STATIC","Modal","_dialog","_backdrop","_initializeBackDrop","_focustrap","_initializeFocusTrap","_scrollBar","_adjustDialog","_showElement","_hideModal","handleUpdate","modalBody","transitionComplete","_triggerBackdropTransition","event2","_resetAdjustments","isModalOverflowing","initialOverflowY","isBodyOverflowing","paddingLeft","paddingRight","showEvent","alreadyOpen","CLASS_NAME_SHOWING","CLASS_NAME_HIDING","OPEN_SELECTOR","Offcanvas","blur","completeCallback","DefaultAllowlist","area","br","col","code","div","em","hr","h1","h2","h3","h4","h5","h6","li","ol","p","pre","s","small","span","sub","sup","strong","u","ul","uriAttributes","SAFE_URL_PATTERN","allowedAttribute","allowedAttributeList","attributeName","nodeValue","attributeRegex","regex","allowList","content","extraClass","sanitize","sanitizeFn","template","DefaultContentType","entry","TemplateFactory","getContent","_resolvePossibleFunction","hasContent","changeContent","_checkContent","toHtml","templateWrapper","innerHTML","_maybeSanitize","text","_setContent","arg","templateElement","_putElementInTemplate","textContent","unsafeHtml","sanitizeFunction","createdDocument","DOMParser","parseFromString","elementName","attributeList","allowedAttributes","sanitizeHtml","DISALLOWED_ATTRIBUTES","CLASS_NAME_FADE","SELECTOR_MODAL","EVENT_MODAL_HIDE","TRIGGER_HOVER","TRIGGER_FOCUS","AttachmentMap","AUTO","TOP","RIGHT","BOTTOM","LEFT","animation","container","customClass","delay","title","Tooltip","_isEnabled","_timeout","_isHovered","_activeTrigger","_templateFactory","_newContent","tip","_setListeners","_fixTitle","enable","disable","toggleEnabled","click","_leave","_enter","_hideModalHandler","_disposePopper","_isWithContent","isInTheDom","_getTipElement","_isWithActiveTrigger","_getTitle","_createTipElement","_getContentForTemplate","_getTemplateFactory","tipId","prefix","floor","random","getElementById","getUID","setContent","_initializeOnDelegatedTarget","_getDelegateConfig","attachment","triggers","eventIn","eventOut","_setTimeout","timeout","dataAttributes","dataAttribute","Popover","_getContent","EVENT_ACTIVATE","EVENT_CLICK","SELECTOR_TARGET_LINKS","SELECTOR_NAV_LINKS","SELECTOR_LINK_ITEMS","rootMargin","smoothScroll","threshold","ScrollSpy","_targetLinks","_observableSections","_rootElement","_activeTarget","_observer","_previousScrollData","visibleEntryTop","parentScrollTop","refresh","_initializeTargetsAndObservables","_maybeEnableSmoothScroll","disconnect","_getNewObserver","section","observe","observableSection","scrollTo","behavior","IntersectionObserver","_observerCallback","targetElement","_process","userScrollsDown","isIntersecting","_clearActiveClass","entryIsLowerThanPrevious","targetLinks","anchor","decodeURI","_activateParents","listGroup","activeNodes","spy","ARROW_LEFT_KEY","ARROW_RIGHT_KEY","HOME_KEY","END_KEY","NOT_SELECTOR_DROPDOWN_TOGGLE","SELECTOR_INNER_ELEM","SELECTOR_DATA_TOGGLE_ACTIVE","Tab","_setInitialAttributes","_getChildren","innerElem","_elemIsActive","active","_getActiveElem","hideEvent","_deactivate","_activate","relatedElem","_toggleDropDown","nextActiveElement","preventScroll","_setAttributeIfNotExists","_setInitialAttributesOnChild","_getInnerElement","isActive","outerElem","_getOuterElement","_setInitialAttributesOnTargetPanel","open","EVENT_MOUSEOVER","EVENT_MOUSEOUT","EVENT_FOCUSOUT","CLASS_NAME_HIDE","autohide","Toast","_hasMouseInteraction","_hasKeyboardInteraction","_clearTimeout","_maybeScheduleHide","isShown","_onInteraction","isInteracting"],"sources":["../../js/src/dom/data.js","../../js/src/util/index.js","../../js/src/dom/event-handler.js","../../js/src/dom/manipulator.js","../../js/src/util/config.js","../../js/src/base-component.js","../../js/src/dom/selector-engine.js","../../js/src/util/component-functions.js","../../js/src/alert.js","../../js/src/button.js","../../js/src/util/swipe.js","../../js/src/carousel.js","../../js/src/collapse.js","../../node_modules/@popperjs/core/lib/enums.js","../../node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","../../node_modules/@popperjs/core/lib/dom-utils/getWindow.js","../../node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","../../node_modules/@popperjs/core/lib/modifiers/applyStyles.js","../../node_modules/@popperjs/core/lib/utils/getBasePlacement.js","../../node_modules/@popperjs/core/lib/utils/math.js","../../node_modules/@popperjs/core/lib/utils/userAgent.js","../../node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","../../node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","../../node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","../../node_modules/@popperjs/core/lib/dom-utils/contains.js","../../node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","../../node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","../../node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","../../node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","../../node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","../../node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","../../node_modules/@popperjs/core/lib/utils/within.js","../../node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","../../node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","../../node_modules/@popperjs/core/lib/utils/expandToHashMap.js","../../node_modules/@popperjs/core/lib/modifiers/arrow.js","../../node_modules/@popperjs/core/lib/utils/getVariation.js","../../node_modules/@popperjs/core/lib/modifiers/computeStyles.js","../../node_modules/@popperjs/core/lib/modifiers/eventListeners.js","../../node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","../../node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","../../node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","../../node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","../../node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","../../node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","../../node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","../../node_modules/@popperjs/core/lib/utils/rectToClientRect.js","../../node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","../../node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","../../node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","../../node_modules/@popperjs/core/lib/utils/computeOffsets.js","../../node_modules/@popperjs/core/lib/utils/detectOverflow.js","../../node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","../../node_modules/@popperjs/core/lib/modifiers/flip.js","../../node_modules/@popperjs/core/lib/modifiers/hide.js","../../node_modules/@popperjs/core/lib/modifiers/offset.js","../../node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","../../node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","../../node_modules/@popperjs/core/lib/utils/getAltAxis.js","../../node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","../../node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","../../node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","../../node_modules/@popperjs/core/lib/utils/orderModifiers.js","../../node_modules/@popperjs/core/lib/createPopper.js","../../node_modules/@popperjs/core/lib/utils/debounce.js","../../node_modules/@popperjs/core/lib/utils/mergeByName.js","../../node_modules/@popperjs/core/lib/popper-lite.js","../../node_modules/@popperjs/core/lib/popper.js","../../js/src/dropdown.js","../../js/src/util/backdrop.js","../../js/src/util/focustrap.js","../../js/src/util/scrollbar.js","../../js/src/modal.js","../../js/src/offcanvas.js","../../js/src/util/sanitizer.js","../../js/src/util/template-factory.js","../../js/src/tooltip.js","../../js/src/popover.js","../../js/src/scrollspy.js","../../js/src/tab.js","../../js/src/toast.js","../../js/index.umd.js"],"sourcesContent":["/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map()\n\nexport default {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map())\n }\n\n const instanceMap = elementMap.get(element)\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`)\n return\n }\n\n instanceMap.set(key, instance)\n },\n\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null\n }\n\n return null\n },\n\n remove(element, key) {\n if (!elementMap.has(element)) {\n return\n }\n\n const instanceMap = elementMap.get(element)\n\n instanceMap.delete(key)\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element)\n }\n }\n}\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1_000_000\nconst MILLISECONDS_MULTIPLIER = 1000\nconst TRANSITION_END = 'transitionend'\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`)\n }\n\n return selector\n}\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`\n }\n\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase()\n}\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID)\n } while (document.getElementById(prefix))\n\n return prefix\n}\n\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0\n }\n\n // Get transition-duration of the element\n let { transitionDuration, transitionDelay } = window.getComputedStyle(element)\n\n const floatTransitionDuration = Number.parseFloat(transitionDuration)\n const floatTransitionDelay = Number.parseFloat(transitionDelay)\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0]\n transitionDelay = transitionDelay.split(',')[0]\n\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER\n}\n\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END))\n}\n\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false\n }\n\n if (typeof object.jquery !== 'undefined') {\n object = object[0]\n }\n\n return typeof object.nodeType !== 'undefined'\n}\n\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object\n }\n\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object))\n }\n\n return null\n}\n\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false\n }\n\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible'\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])')\n\n if (!closedDetails) {\n return elementIsVisible\n }\n\n if (closedDetails !== element) {\n const summary = element.closest('summary')\n if (summary && summary.parentNode !== closedDetails) {\n return false\n }\n\n if (summary === null) {\n return false\n }\n }\n\n return elementIsVisible\n}\n\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true\n }\n\n if (element.classList.contains('disabled')) {\n return true\n }\n\n if (typeof element.disabled !== 'undefined') {\n return element.disabled\n }\n\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false'\n}\n\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode()\n return root instanceof ShadowRoot ? root : null\n }\n\n if (element instanceof ShadowRoot) {\n return element\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null\n }\n\n return findShadowRoot(element.parentNode)\n}\n\nconst noop = () => {}\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight // eslint-disable-line no-unused-expressions\n}\n\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery\n }\n\n return null\n}\n\nconst DOMContentLoadedCallbacks = []\n\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback()\n }\n })\n }\n\n DOMContentLoadedCallbacks.push(callback)\n } else {\n callback()\n }\n}\n\nconst isRTL = () => document.documentElement.dir === 'rtl'\n\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery()\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME\n const JQUERY_NO_CONFLICT = $.fn[name]\n $.fn[name] = plugin.jQueryInterface\n $.fn[name].Constructor = plugin\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT\n return plugin.jQueryInterface\n }\n }\n })\n}\n\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue\n}\n\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback)\n return\n }\n\n const durationPadding = 5\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding\n\n let called = false\n\n const handler = ({ target }) => {\n if (target !== transitionElement) {\n return\n }\n\n called = true\n transitionElement.removeEventListener(TRANSITION_END, handler)\n execute(callback)\n }\n\n transitionElement.addEventListener(TRANSITION_END, handler)\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement)\n }\n }, emulatedDuration)\n}\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length\n let index = list.indexOf(activeElement)\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0]\n }\n\n index += shouldGetNext ? 1 : -1\n\n if (isCycleAllowed) {\n index = (index + listLength) % listLength\n }\n\n return list[Math.max(0, Math.min(index, listLength - 1))]\n}\n\nexport {\n defineJQueryPlugin,\n execute,\n executeAfterTransition,\n findShadowRoot,\n getElement,\n getjQuery,\n getNextActiveElement,\n getTransitionDurationFromElement,\n getUID,\n isDisabled,\n isElement,\n isRTL,\n isVisible,\n noop,\n onDOMContentLoaded,\n parseSelector,\n reflow,\n triggerTransitionEnd,\n toType\n}\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport { getjQuery } from '../util/index.js'\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/\nconst stripNameRegex = /\\..*/\nconst stripUidRegex = /::\\d+$/\nconst eventRegistry = {} // Events storage\nlet uidEvent = 1\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n}\n\nconst nativeEvents = new Set([\n 'click',\n 'dblclick',\n 'mouseup',\n 'mousedown',\n 'contextmenu',\n 'mousewheel',\n 'DOMMouseScroll',\n 'mouseover',\n 'mouseout',\n 'mousemove',\n 'selectstart',\n 'selectend',\n 'keydown',\n 'keypress',\n 'keyup',\n 'orientationchange',\n 'touchstart',\n 'touchmove',\n 'touchend',\n 'touchcancel',\n 'pointerdown',\n 'pointermove',\n 'pointerup',\n 'pointerleave',\n 'pointercancel',\n 'gesturestart',\n 'gesturechange',\n 'gestureend',\n 'focus',\n 'blur',\n 'change',\n 'reset',\n 'select',\n 'submit',\n 'focusin',\n 'focusout',\n 'load',\n 'unload',\n 'beforeunload',\n 'resize',\n 'move',\n 'DOMContentLoaded',\n 'readystatechange',\n 'error',\n 'abort',\n 'scroll'\n])\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return (uid && `${uid}::${uidEvent++}`) || element.uidEvent || uidEvent++\n}\n\nfunction getElementEvents(element) {\n const uid = makeEventUid(element)\n\n element.uidEvent = uid\n eventRegistry[uid] = eventRegistry[uid] || {}\n\n return eventRegistry[uid]\n}\n\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, { delegateTarget: element })\n\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn)\n }\n\n return fn.apply(element, [event])\n }\n}\n\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector)\n\n for (let { target } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue\n }\n\n hydrateObj(event, { delegateTarget: target })\n\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn)\n }\n\n return fn.apply(target, [event])\n }\n }\n }\n}\n\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events)\n .find(event => event.callable === callable && event.delegationSelector === delegationSelector)\n}\n\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string'\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : (handler || delegationFunction)\n let typeEvent = getTypeEvent(originalTypeEvent)\n\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent\n }\n\n return [isDelegated, callable, typeEvent]\n}\n\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return\n }\n\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction)\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || (event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget))) {\n return fn.call(this, event)\n }\n }\n }\n\n callable = wrapFunction(callable)\n }\n\n const events = getElementEvents(element)\n const handlers = events[typeEvent] || (events[typeEvent] = {})\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null)\n\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff\n\n return\n }\n\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''))\n const fn = isDelegated ?\n bootstrapDelegationHandler(element, handler, callable) :\n bootstrapHandler(element, callable)\n\n fn.delegationSelector = isDelegated ? handler : null\n fn.callable = callable\n fn.oneOff = oneOff\n fn.uidEvent = uid\n handlers[uid] = fn\n\n element.addEventListener(typeEvent, fn, isDelegated)\n}\n\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector)\n\n if (!fn) {\n return\n }\n\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector))\n delete events[typeEvent][fn.uidEvent]\n}\n\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {}\n\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector)\n }\n }\n}\n\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '')\n return customEvents[event] || event\n}\n\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false)\n },\n\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true)\n },\n\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return\n }\n\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction)\n const inNamespace = typeEvent !== originalTypeEvent\n const events = getElementEvents(element)\n const storeElementEvent = events[typeEvent] || {}\n const isNamespace = originalTypeEvent.startsWith('.')\n\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return\n }\n\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null)\n return\n }\n\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1))\n }\n }\n\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '')\n\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector)\n }\n }\n },\n\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null\n }\n\n const $ = getjQuery()\n const typeEvent = getTypeEvent(event)\n const inNamespace = event !== typeEvent\n\n let jQueryEvent = null\n let bubbles = true\n let nativeDispatch = true\n let defaultPrevented = false\n\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args)\n\n $(element).trigger(jQueryEvent)\n bubbles = !jQueryEvent.isPropagationStopped()\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped()\n defaultPrevented = jQueryEvent.isDefaultPrevented()\n }\n\n const evt = hydrateObj(new Event(event, { bubbles, cancelable: true }), args)\n\n if (defaultPrevented) {\n evt.preventDefault()\n }\n\n if (nativeDispatch) {\n element.dispatchEvent(evt)\n }\n\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault()\n }\n\n return evt\n }\n}\n\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value\n } catch {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value\n }\n })\n }\n }\n\n return obj\n}\n\nexport default EventHandler\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true\n }\n\n if (value === 'false') {\n return false\n }\n\n if (value === Number(value).toString()) {\n return Number(value)\n }\n\n if (value === '' || value === 'null') {\n return null\n }\n\n if (typeof value !== 'string') {\n return value\n }\n\n try {\n return JSON.parse(decodeURIComponent(value))\n } catch {\n return value\n }\n}\n\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`)\n}\n\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value)\n },\n\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`)\n },\n\n getDataAttributes(element) {\n if (!element) {\n return {}\n }\n\n const attributes = {}\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'))\n\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '')\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length)\n attributes[pureKey] = normalizeData(element.dataset[key])\n }\n\n return attributes\n },\n\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`))\n }\n}\n\nexport default Manipulator\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport Manipulator from '../dom/manipulator.js'\nimport { isElement, toType } from './index.js'\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {}\n }\n\n static get DefaultType() {\n return {}\n }\n\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!')\n }\n\n _getConfig(config) {\n config = this._mergeConfigObj(config)\n config = this._configAfterMerge(config)\n this._typeCheckConfig(config)\n return config\n }\n\n _configAfterMerge(config) {\n return config\n }\n\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {} // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n }\n }\n\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property]\n const valueType = isElement(value) ? 'element' : toType(value)\n\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(\n `${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`\n )\n }\n }\n }\n}\n\nexport default Config\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport Data from './dom/data.js'\nimport EventHandler from './dom/event-handler.js'\nimport Config from './util/config.js'\nimport { executeAfterTransition, getElement } from './util/index.js'\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.1'\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super()\n\n element = getElement(element)\n if (!element) {\n return\n }\n\n this._element = element\n this._config = this._getConfig(config)\n\n Data.set(this._element, this.constructor.DATA_KEY, this)\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY)\n EventHandler.off(this._element, this.constructor.EVENT_KEY)\n\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null\n }\n }\n\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated)\n }\n\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element)\n config = this._configAfterMerge(config)\n this._typeCheckConfig(config)\n return config\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY)\n }\n\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null)\n }\n\n static get VERSION() {\n return VERSION\n }\n\n static get DATA_KEY() {\n return `bs.${this.NAME}`\n }\n\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`\n }\n\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`\n }\n}\n\nexport default BaseComponent\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport { isDisabled, isVisible, parseSelector } from '../util/index.js'\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target')\n\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href')\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || (!hrefAttribute.includes('#') && !hrefAttribute.startsWith('.'))) {\n return null\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`\n }\n\n selector = hrefAttribute && hrefAttribute !== '#' ? hrefAttribute.trim() : null\n }\n\n return parseSelector(selector)\n}\n\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector))\n },\n\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector)\n },\n\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector))\n },\n\n parents(element, selector) {\n const parents = []\n let ancestor = element.parentNode.closest(selector)\n\n while (ancestor) {\n parents.push(ancestor)\n ancestor = ancestor.parentNode.closest(selector)\n }\n\n return parents\n },\n\n prev(element, selector) {\n let previous = element.previousElementSibling\n\n while (previous) {\n if (previous.matches(selector)) {\n return [previous]\n }\n\n previous = previous.previousElementSibling\n }\n\n return []\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling\n\n while (next) {\n if (next.matches(selector)) {\n return [next]\n }\n\n next = next.nextElementSibling\n }\n\n return []\n },\n\n focusableChildren(element) {\n const focusables = [\n 'a',\n 'button',\n 'input',\n 'textarea',\n 'select',\n 'details',\n '[tabindex]',\n '[contenteditable=\"true\"]'\n ].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',')\n\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el))\n },\n\n getSelectorFromElement(element) {\n const selector = getSelector(element)\n\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null\n }\n\n return null\n },\n\n getElementFromSelector(element) {\n const selector = getSelector(element)\n\n return selector ? SelectorEngine.findOne(selector) : null\n },\n\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element)\n\n return selector ? SelectorEngine.find(selector) : []\n }\n}\n\nexport default SelectorEngine\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport EventHandler from '../dom/event-handler.js'\nimport SelectorEngine from '../dom/selector-engine.js'\nimport { isDisabled } from './index.js'\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`\n const name = component.NAME\n\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault()\n }\n\n if (isDisabled(this)) {\n return\n }\n\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`)\n const instance = component.getOrCreateInstance(target)\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]()\n })\n}\n\nexport {\n enableDismissTrigger\n}\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport { enableDismissTrigger } from './util/component-functions.js'\nimport { defineJQueryPlugin } from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'alert'\nconst DATA_KEY = 'bs.alert'\nconst EVENT_KEY = `.${DATA_KEY}`\n\nconst EVENT_CLOSE = `close${EVENT_KEY}`\nconst EVENT_CLOSED = `closed${EVENT_KEY}`\nconst CLASS_NAME_FADE = 'fade'\nconst CLASS_NAME_SHOW = 'show'\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE)\n\n if (closeEvent.defaultPrevented) {\n return\n }\n\n this._element.classList.remove(CLASS_NAME_SHOW)\n\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE)\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated)\n }\n\n // Private\n _destroyElement() {\n this._element.remove()\n EventHandler.trigger(this._element, EVENT_CLOSED)\n this.dispose()\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config](this)\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close')\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert)\n\nexport default Alert\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport { defineJQueryPlugin } from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'button'\nconst DATA_KEY = 'bs.button'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\n\nconst CLASS_NAME_ACTIVE = 'active'\nconst SELECTOR_DATA_TOGGLE = '[data-bs-toggle=\"button\"]'\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE))\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this)\n\n if (config === 'toggle') {\n data[config]()\n }\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_TOGGLE, event => {\n event.preventDefault()\n\n const button = event.target.closest(SELECTOR_DATA_TOGGLE)\n const data = Button.getOrCreateInstance(button)\n\n data.toggle()\n})\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button)\n\nexport default Button\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport EventHandler from '../dom/event-handler.js'\nimport Config from './config.js'\nimport { execute } from './index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'swipe'\nconst EVENT_KEY = '.bs.swipe'\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY}`\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY}`\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY}`\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY}`\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY}`\nconst POINTER_TYPE_TOUCH = 'touch'\nconst POINTER_TYPE_PEN = 'pen'\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event'\nconst SWIPE_THRESHOLD = 40\n\nconst Default = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n}\n\nconst DefaultType = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n}\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super()\n this._element = element\n\n if (!element || !Swipe.isSupported()) {\n return\n }\n\n this._config = this._getConfig(config)\n this._deltaX = 0\n this._supportPointerEvents = Boolean(window.PointerEvent)\n this._initEvents()\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY)\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX\n\n return\n }\n\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX\n }\n }\n\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX\n }\n\n this._handleSwipe()\n execute(this._config.endCallback)\n }\n\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ?\n 0 :\n event.touches[0].clientX - this._deltaX\n }\n\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX)\n\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return\n }\n\n const direction = absDeltaX / this._deltaX\n\n this._deltaX = 0\n\n if (!direction) {\n return\n }\n\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback)\n }\n\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event))\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event))\n\n this._element.classList.add(CLASS_NAME_POINTER_EVENT)\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event))\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event))\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event))\n }\n }\n\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH)\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0\n }\n}\n\nexport default Swipe\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport Manipulator from './dom/manipulator.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport {\n defineJQueryPlugin,\n getNextActiveElement,\n isRTL,\n isVisible,\n reflow,\n triggerTransitionEnd\n} from './util/index.js'\nimport Swipe from './util/swipe.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'carousel'\nconst DATA_KEY = 'bs.carousel'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\n\nconst ARROW_LEFT_KEY = 'ArrowLeft'\nconst ARROW_RIGHT_KEY = 'ArrowRight'\nconst TOUCHEVENT_COMPAT_WAIT = 500 // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next'\nconst ORDER_PREV = 'prev'\nconst DIRECTION_LEFT = 'left'\nconst DIRECTION_RIGHT = 'right'\n\nconst EVENT_SLIDE = `slide${EVENT_KEY}`\nconst EVENT_SLID = `slid${EVENT_KEY}`\nconst EVENT_KEYDOWN = `keydown${EVENT_KEY}`\nconst EVENT_MOUSEENTER = `mouseenter${EVENT_KEY}`\nconst EVENT_MOUSELEAVE = `mouseleave${EVENT_KEY}`\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY}`\nconst EVENT_LOAD_DATA_API = `load${EVENT_KEY}${DATA_API_KEY}`\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\n\nconst CLASS_NAME_CAROUSEL = 'carousel'\nconst CLASS_NAME_ACTIVE = 'active'\nconst CLASS_NAME_SLIDE = 'slide'\nconst CLASS_NAME_END = 'carousel-item-end'\nconst CLASS_NAME_START = 'carousel-item-start'\nconst CLASS_NAME_NEXT = 'carousel-item-next'\nconst CLASS_NAME_PREV = 'carousel-item-prev'\n\nconst SELECTOR_ACTIVE = '.active'\nconst SELECTOR_ITEM = '.carousel-item'\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM\nconst SELECTOR_ITEM_IMG = '.carousel-item img'\nconst SELECTOR_INDICATORS = '.carousel-indicators'\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]'\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]'\n\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY]: DIRECTION_LEFT\n}\n\nconst Default = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n}\n\nconst DefaultType = {\n interval: '(number|boolean)', // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n}\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n this._interval = null\n this._activeElement = null\n this._isSliding = false\n this.touchTimeout = null\n this._swipeHelper = null\n\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element)\n this._addEventListeners()\n\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle()\n }\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT)\n }\n\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next()\n }\n }\n\n prev() {\n this._slide(ORDER_PREV)\n }\n\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element)\n }\n\n this._clearInterval()\n }\n\n cycle() {\n this._clearInterval()\n this._updateInterval()\n\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval)\n }\n\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return\n }\n\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle())\n return\n }\n\n this.cycle()\n }\n\n to(index) {\n const items = this._getItems()\n if (index > items.length - 1 || index < 0) {\n return\n }\n\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index))\n return\n }\n\n const activeIndex = this._getItemIndex(this._getActive())\n if (activeIndex === index) {\n return\n }\n\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV\n\n this._slide(order, items[index])\n }\n\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose()\n }\n\n super.dispose()\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval\n return config\n }\n\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN, event => this._keydown(event))\n }\n\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER, () => this.pause())\n EventHandler.on(this._element, EVENT_MOUSELEAVE, () => this._maybeEnableCycle())\n }\n\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners()\n }\n }\n\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault())\n }\n\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause()\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout)\n }\n\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval)\n }\n\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n }\n\n this._swipeHelper = new Swipe(this._element, swipeConfig)\n }\n\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return\n }\n\n const direction = KEY_TO_DIRECTION[event.key]\n if (direction) {\n event.preventDefault()\n this._slide(this._directionToOrder(direction))\n }\n }\n\n _getItemIndex(element) {\n return this._getItems().indexOf(element)\n }\n\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return\n }\n\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement)\n\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE)\n activeIndicator.removeAttribute('aria-current')\n\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement)\n\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE)\n newActiveIndicator.setAttribute('aria-current', 'true')\n }\n }\n\n _updateInterval() {\n const element = this._activeElement || this._getActive()\n\n if (!element) {\n return\n }\n\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10)\n\n this._config.interval = elementInterval || this._config.defaultInterval\n }\n\n _slide(order, element = null) {\n if (this._isSliding) {\n return\n }\n\n const activeElement = this._getActive()\n const isNext = order === ORDER_NEXT\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap)\n\n if (nextElement === activeElement) {\n return\n }\n\n const nextElementIndex = this._getItemIndex(nextElement)\n\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n })\n }\n\n const slideEvent = triggerEvent(EVENT_SLIDE)\n\n if (slideEvent.defaultPrevented) {\n return\n }\n\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return\n }\n\n const isCycling = Boolean(this._interval)\n this.pause()\n\n this._isSliding = true\n\n this._setActiveIndicatorElement(nextElementIndex)\n this._activeElement = nextElement\n\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV\n\n nextElement.classList.add(orderClassName)\n\n reflow(nextElement)\n\n activeElement.classList.add(directionalClassName)\n nextElement.classList.add(directionalClassName)\n\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName)\n nextElement.classList.add(CLASS_NAME_ACTIVE)\n\n activeElement.classList.remove(CLASS_NAME_ACTIVE, orderClassName, directionalClassName)\n\n this._isSliding = false\n\n triggerEvent(EVENT_SLID)\n }\n\n this._queueCallback(completeCallBack, activeElement, this._isAnimated())\n\n if (isCycling) {\n this.cycle()\n }\n }\n\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE)\n }\n\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element)\n }\n\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element)\n }\n\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval)\n this._interval = null\n }\n }\n\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT\n }\n\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV\n }\n\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT\n }\n\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config)\n\n if (typeof config === 'number') {\n data.to(config)\n return\n }\n\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config]()\n }\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this)\n\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return\n }\n\n event.preventDefault()\n\n const carousel = Carousel.getOrCreateInstance(target)\n const slideIndex = this.getAttribute('data-bs-slide-to')\n\n if (slideIndex) {\n carousel.to(slideIndex)\n carousel._maybeEnableCycle()\n return\n }\n\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next()\n carousel._maybeEnableCycle()\n return\n }\n\n carousel.prev()\n carousel._maybeEnableCycle()\n})\n\nEventHandler.on(window, EVENT_LOAD_DATA_API, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE)\n\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel)\n }\n})\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel)\n\nexport default Carousel\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport {\n defineJQueryPlugin,\n getElement,\n reflow\n} from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'collapse'\nconst DATA_KEY = 'bs.collapse'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\n\nconst EVENT_SHOW = `show${EVENT_KEY}`\nconst EVENT_SHOWN = `shown${EVENT_KEY}`\nconst EVENT_HIDE = `hide${EVENT_KEY}`\nconst EVENT_HIDDEN = `hidden${EVENT_KEY}`\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\n\nconst CLASS_NAME_SHOW = 'show'\nconst CLASS_NAME_COLLAPSE = 'collapse'\nconst CLASS_NAME_COLLAPSING = 'collapsing'\nconst CLASS_NAME_COLLAPSED = 'collapsed'\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal'\n\nconst WIDTH = 'width'\nconst HEIGHT = 'height'\n\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing'\nconst SELECTOR_DATA_TOGGLE = '[data-bs-toggle=\"collapse\"]'\n\nconst Default = {\n parent: null,\n toggle: true\n}\n\nconst DefaultType = {\n parent: '(null|element)',\n toggle: 'boolean'\n}\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n this._isTransitioning = false\n this._triggerArray = []\n\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE)\n\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem)\n const filterElement = SelectorEngine.find(selector)\n .filter(foundElement => foundElement === this._element)\n\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem)\n }\n }\n\n this._initializeChildren()\n\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown())\n }\n\n if (this._config.toggle) {\n this.toggle()\n }\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide()\n } else {\n this.show()\n }\n }\n\n show() {\n if (this._isTransitioning || this._isShown()) {\n return\n }\n\n let activeChildren = []\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES)\n .filter(element => element !== this._element)\n .map(element => Collapse.getOrCreateInstance(element, { toggle: false }))\n }\n\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return\n }\n\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW)\n if (startEvent.defaultPrevented) {\n return\n }\n\n for (const activeInstance of activeChildren) {\n activeInstance.hide()\n }\n\n const dimension = this._getDimension()\n\n this._element.classList.remove(CLASS_NAME_COLLAPSE)\n this._element.classList.add(CLASS_NAME_COLLAPSING)\n\n this._element.style[dimension] = 0\n\n this._addAriaAndCollapsedClass(this._triggerArray, true)\n this._isTransitioning = true\n\n const complete = () => {\n this._isTransitioning = false\n\n this._element.classList.remove(CLASS_NAME_COLLAPSING)\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW)\n\n this._element.style[dimension] = ''\n\n EventHandler.trigger(this._element, EVENT_SHOWN)\n }\n\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1)\n const scrollSize = `scroll${capitalizedDimension}`\n\n this._queueCallback(complete, this._element, true)\n this._element.style[dimension] = `${this._element[scrollSize]}px`\n }\n\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return\n }\n\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE)\n if (startEvent.defaultPrevented) {\n return\n }\n\n const dimension = this._getDimension()\n\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`\n\n reflow(this._element)\n\n this._element.classList.add(CLASS_NAME_COLLAPSING)\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW)\n\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger)\n\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false)\n }\n }\n\n this._isTransitioning = true\n\n const complete = () => {\n this._isTransitioning = false\n this._element.classList.remove(CLASS_NAME_COLLAPSING)\n this._element.classList.add(CLASS_NAME_COLLAPSE)\n EventHandler.trigger(this._element, EVENT_HIDDEN)\n }\n\n this._element.style[dimension] = ''\n\n this._queueCallback(complete, this._element, true)\n }\n\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW)\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle) // Coerce string values\n config.parent = getElement(config.parent)\n return config\n }\n\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT\n }\n\n _initializeChildren() {\n if (!this._config.parent) {\n return\n }\n\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE)\n\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element)\n\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected))\n }\n }\n }\n\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent)\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element))\n }\n\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return\n }\n\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen)\n element.setAttribute('aria-expanded', isOpen)\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {}\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false\n }\n\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config)\n\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config]()\n }\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_TOGGLE, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || (event.delegateTarget && event.delegateTarget.tagName === 'A')) {\n event.preventDefault()\n }\n\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, { toggle: false }).toggle()\n }\n})\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse)\n\nexport default Collapse\n","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport * as Popper from '@popperjs/core'\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport Manipulator from './dom/manipulator.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport {\n defineJQueryPlugin,\n execute,\n getElement,\n getNextActiveElement,\n isDisabled,\n isElement,\n isRTL,\n isVisible,\n noop\n} from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'dropdown'\nconst DATA_KEY = 'bs.dropdown'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\n\nconst ESCAPE_KEY = 'Escape'\nconst TAB_KEY = 'Tab'\nconst ARROW_UP_KEY = 'ArrowUp'\nconst ARROW_DOWN_KEY = 'ArrowDown'\nconst RIGHT_MOUSE_BUTTON = 2 // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE = `hide${EVENT_KEY}`\nconst EVENT_HIDDEN = `hidden${EVENT_KEY}`\nconst EVENT_SHOW = `show${EVENT_KEY}`\nconst EVENT_SHOWN = `shown${EVENT_KEY}`\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY}${DATA_API_KEY}`\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY}${DATA_API_KEY}`\n\nconst CLASS_NAME_SHOW = 'show'\nconst CLASS_NAME_DROPUP = 'dropup'\nconst CLASS_NAME_DROPEND = 'dropend'\nconst CLASS_NAME_DROPSTART = 'dropstart'\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center'\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center'\n\nconst SELECTOR_DATA_TOGGLE = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)'\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE}.${CLASS_NAME_SHOW}`\nconst SELECTOR_MENU = '.dropdown-menu'\nconst SELECTOR_NAVBAR = '.navbar'\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav'\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)'\n\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start'\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end'\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start'\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end'\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start'\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start'\nconst PLACEMENT_TOPCENTER = 'top'\nconst PLACEMENT_BOTTOMCENTER = 'bottom'\n\nconst Default = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n}\n\nconst DefaultType = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n}\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n this._popper = null\n this._parent = this._element.parentNode // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] ||\n SelectorEngine.prev(this._element, SELECTOR_MENU)[0] ||\n SelectorEngine.findOne(SELECTOR_MENU, this._parent)\n this._inNavbar = this._detectNavbar()\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show()\n }\n\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return\n }\n\n const relatedTarget = {\n relatedTarget: this._element\n }\n\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW, relatedTarget)\n\n if (showEvent.defaultPrevented) {\n return\n }\n\n this._createPopper()\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop)\n }\n }\n\n this._element.focus()\n this._element.setAttribute('aria-expanded', true)\n\n this._menu.classList.add(CLASS_NAME_SHOW)\n this._element.classList.add(CLASS_NAME_SHOW)\n EventHandler.trigger(this._element, EVENT_SHOWN, relatedTarget)\n }\n\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return\n }\n\n const relatedTarget = {\n relatedTarget: this._element\n }\n\n this._completeHide(relatedTarget)\n }\n\n dispose() {\n if (this._popper) {\n this._popper.destroy()\n }\n\n super.dispose()\n }\n\n update() {\n this._inNavbar = this._detectNavbar()\n if (this._popper) {\n this._popper.update()\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE, relatedTarget)\n if (hideEvent.defaultPrevented) {\n return\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop)\n }\n }\n\n if (this._popper) {\n this._popper.destroy()\n }\n\n this._menu.classList.remove(CLASS_NAME_SHOW)\n this._element.classList.remove(CLASS_NAME_SHOW)\n this._element.setAttribute('aria-expanded', 'false')\n Manipulator.removeDataAttribute(this._menu, 'popper')\n EventHandler.trigger(this._element, EVENT_HIDDEN, relatedTarget)\n }\n\n _getConfig(config) {\n config = super._getConfig(config)\n\n if (typeof config.reference === 'object' && !isElement(config.reference) &&\n typeof config.reference.getBoundingClientRect !== 'function'\n ) {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`)\n }\n\n return config\n }\n\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)')\n }\n\n let referenceElement = this._element\n\n if (this._config.reference === 'parent') {\n referenceElement = this._parent\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference)\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference\n }\n\n const popperConfig = this._getPopperConfig()\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig)\n }\n\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW)\n }\n\n _getPlacement() {\n const parentDropdown = this._parent\n\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT\n }\n\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT\n }\n\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER\n }\n\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end'\n\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP\n }\n\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM\n }\n\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null\n }\n\n _getOffset() {\n const { offset } = this._config\n\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10))\n }\n\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element)\n }\n\n return offset\n }\n\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n },\n {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n }\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static') // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }]\n }\n\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n }\n }\n\n _selectMenuItem({ key, target }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element))\n\n if (!items.length) {\n return\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY, !items.includes(target)).focus()\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config]()\n })\n }\n\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || (event.type === 'keyup' && event.key !== TAB_KEY)) {\n return\n }\n\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN)\n\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle)\n if (!context || context._config.autoClose === false) {\n continue\n }\n\n const composedPath = event.composedPath()\n const isMenuTarget = composedPath.includes(context._menu)\n if (\n composedPath.includes(context._element) ||\n (context._config.autoClose === 'inside' && !isMenuTarget) ||\n (context._config.autoClose === 'outside' && isMenuTarget)\n ) {\n continue\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && ((event.type === 'keyup' && event.key === TAB_KEY) || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue\n }\n\n const relatedTarget = { relatedTarget: context._element }\n\n if (event.type === 'click') {\n relatedTarget.clickEvent = event\n }\n\n context._completeHide(relatedTarget)\n }\n }\n\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName)\n const isEscapeEvent = event.key === ESCAPE_KEY\n const isUpOrDownEvent = [ARROW_UP_KEY, ARROW_DOWN_KEY].includes(event.key)\n\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return\n }\n\n if (isInput && !isEscapeEvent) {\n return\n }\n\n event.preventDefault()\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE) ?\n this :\n (SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE)[0] ||\n SelectorEngine.next(this, SELECTOR_DATA_TOGGLE)[0] ||\n SelectorEngine.findOne(SELECTOR_DATA_TOGGLE, event.delegateTarget.parentNode))\n\n const instance = Dropdown.getOrCreateInstance(getToggleButton)\n\n if (isUpOrDownEvent) {\n event.stopPropagation()\n instance.show()\n instance._selectMenuItem(event)\n return\n }\n\n if (instance._isShown()) { // else is escape and we check if it is shown\n event.stopPropagation()\n instance.hide()\n getToggleButton.focus()\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE, Dropdown.dataApiKeydownHandler)\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler)\nEventHandler.on(document, EVENT_CLICK_DATA_API, Dropdown.clearMenus)\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus)\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_TOGGLE, function (event) {\n event.preventDefault()\n Dropdown.getOrCreateInstance(this).toggle()\n})\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown)\n\nexport default Dropdown\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport EventHandler from '../dom/event-handler.js'\nimport Config from './config.js'\nimport { execute, executeAfterTransition, getElement, reflow } from './index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'backdrop'\nconst CLASS_NAME_FADE = 'fade'\nconst CLASS_NAME_SHOW = 'show'\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME}`\n\nconst Default = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true, // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n}\n\nconst DefaultType = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n}\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super()\n this._config = this._getConfig(config)\n this._isAppended = false\n this._element = null\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback)\n return\n }\n\n this._append()\n\n const element = this._getElement()\n if (this._config.isAnimated) {\n reflow(element)\n }\n\n element.classList.add(CLASS_NAME_SHOW)\n\n this._emulateAnimation(() => {\n execute(callback)\n })\n }\n\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback)\n return\n }\n\n this._getElement().classList.remove(CLASS_NAME_SHOW)\n\n this._emulateAnimation(() => {\n this.dispose()\n execute(callback)\n })\n }\n\n dispose() {\n if (!this._isAppended) {\n return\n }\n\n EventHandler.off(this._element, EVENT_MOUSEDOWN)\n\n this._element.remove()\n this._isAppended = false\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div')\n backdrop.className = this._config.className\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE)\n }\n\n this._element = backdrop\n }\n\n return this._element\n }\n\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement)\n return config\n }\n\n _append() {\n if (this._isAppended) {\n return\n }\n\n const element = this._getElement()\n this._config.rootElement.append(element)\n\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback)\n })\n\n this._isAppended = true\n }\n\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated)\n }\n}\n\nexport default Backdrop\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport EventHandler from '../dom/event-handler.js'\nimport SelectorEngine from '../dom/selector-engine.js'\nimport Config from './config.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'focustrap'\nconst DATA_KEY = 'bs.focustrap'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst EVENT_FOCUSIN = `focusin${EVENT_KEY}`\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY}`\n\nconst TAB_KEY = 'Tab'\nconst TAB_NAV_FORWARD = 'forward'\nconst TAB_NAV_BACKWARD = 'backward'\n\nconst Default = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n}\n\nconst DefaultType = {\n autofocus: 'boolean',\n trapElement: 'element'\n}\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super()\n this._config = this._getConfig(config)\n this._isActive = false\n this._lastTabNavDirection = null\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return\n }\n\n if (this._config.autofocus) {\n this._config.trapElement.focus()\n }\n\n EventHandler.off(document, EVENT_KEY) // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN, event => this._handleFocusin(event))\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event))\n\n this._isActive = true\n }\n\n deactivate() {\n if (!this._isActive) {\n return\n }\n\n this._isActive = false\n EventHandler.off(document, EVENT_KEY)\n }\n\n // Private\n _handleFocusin(event) {\n const { trapElement } = this._config\n\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return\n }\n\n const elements = SelectorEngine.focusableChildren(trapElement)\n\n if (elements.length === 0) {\n trapElement.focus()\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus()\n } else {\n elements[0].focus()\n }\n }\n\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return\n }\n\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD\n }\n}\n\nexport default FocusTrap\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport Manipulator from '../dom/manipulator.js'\nimport SelectorEngine from '../dom/selector-engine.js'\nimport { isElement } from './index.js'\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top'\nconst SELECTOR_STICKY_CONTENT = '.sticky-top'\nconst PROPERTY_PADDING = 'padding-right'\nconst PROPERTY_MARGIN = 'margin-right'\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth\n return Math.abs(window.innerWidth - documentWidth)\n }\n\n hide() {\n const width = this.getWidth()\n this._disableOverFlow()\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width)\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width)\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width)\n }\n\n reset() {\n this._resetElementAttributes(this._element, 'overflow')\n this._resetElementAttributes(this._element, PROPERTY_PADDING)\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING)\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN)\n }\n\n isOverflowing() {\n return this.getWidth() > 0\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow')\n this._element.style.overflow = 'hidden'\n }\n\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth()\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return\n }\n\n this._saveInitialAttribute(element, styleProperty)\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty)\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`)\n }\n\n this._applyManipulationCallback(selector, manipulationCallBack)\n }\n\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty)\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue)\n }\n }\n\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty)\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty)\n return\n }\n\n Manipulator.removeDataAttribute(element, styleProperty)\n element.style.setProperty(styleProperty, value)\n }\n\n this._applyManipulationCallback(selector, manipulationCallBack)\n }\n\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector)\n return\n }\n\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel)\n }\n }\n}\n\nexport default ScrollBarHelper\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport Backdrop from './util/backdrop.js'\nimport { enableDismissTrigger } from './util/component-functions.js'\nimport FocusTrap from './util/focustrap.js'\nimport { defineJQueryPlugin, isRTL, isVisible, reflow } from './util/index.js'\nimport ScrollBarHelper from './util/scrollbar.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'modal'\nconst DATA_KEY = 'bs.modal'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\nconst ESCAPE_KEY = 'Escape'\n\nconst EVENT_HIDE = `hide${EVENT_KEY}`\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY}`\nconst EVENT_HIDDEN = `hidden${EVENT_KEY}`\nconst EVENT_SHOW = `show${EVENT_KEY}`\nconst EVENT_SHOWN = `shown${EVENT_KEY}`\nconst EVENT_RESIZE = `resize${EVENT_KEY}`\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY}`\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY}`\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY}`\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\n\nconst CLASS_NAME_OPEN = 'modal-open'\nconst CLASS_NAME_FADE = 'fade'\nconst CLASS_NAME_SHOW = 'show'\nconst CLASS_NAME_STATIC = 'modal-static'\n\nconst OPEN_SELECTOR = '.modal.show'\nconst SELECTOR_DIALOG = '.modal-dialog'\nconst SELECTOR_MODAL_BODY = '.modal-body'\nconst SELECTOR_DATA_TOGGLE = '[data-bs-toggle=\"modal\"]'\n\nconst Default = {\n backdrop: true,\n focus: true,\n keyboard: true\n}\n\nconst DefaultType = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n}\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element)\n this._backdrop = this._initializeBackDrop()\n this._focustrap = this._initializeFocusTrap()\n this._isShown = false\n this._isTransitioning = false\n this._scrollBar = new ScrollBarHelper()\n\n this._addEventListeners()\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget)\n }\n\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return\n }\n\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW, {\n relatedTarget\n })\n\n if (showEvent.defaultPrevented) {\n return\n }\n\n this._isShown = true\n this._isTransitioning = true\n\n this._scrollBar.hide()\n\n document.body.classList.add(CLASS_NAME_OPEN)\n\n this._adjustDialog()\n\n this._backdrop.show(() => this._showElement(relatedTarget))\n }\n\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return\n }\n\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE)\n\n if (hideEvent.defaultPrevented) {\n return\n }\n\n this._isShown = false\n this._isTransitioning = true\n this._focustrap.deactivate()\n\n this._element.classList.remove(CLASS_NAME_SHOW)\n\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated())\n }\n\n dispose() {\n EventHandler.off(window, EVENT_KEY)\n EventHandler.off(this._dialog, EVENT_KEY)\n\n this._backdrop.dispose()\n this._focustrap.deactivate()\n\n super.dispose()\n }\n\n handleUpdate() {\n this._adjustDialog()\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop), // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n })\n }\n\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n })\n }\n\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element)\n }\n\n this._element.style.display = 'block'\n this._element.removeAttribute('aria-hidden')\n this._element.setAttribute('aria-modal', true)\n this._element.setAttribute('role', 'dialog')\n this._element.scrollTop = 0\n\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog)\n if (modalBody) {\n modalBody.scrollTop = 0\n }\n\n reflow(this._element)\n\n this._element.classList.add(CLASS_NAME_SHOW)\n\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate()\n }\n\n this._isTransitioning = false\n EventHandler.trigger(this._element, EVENT_SHOWN, {\n relatedTarget\n })\n }\n\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated())\n }\n\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return\n }\n\n if (this._config.keyboard) {\n this.hide()\n return\n }\n\n this._triggerBackdropTransition()\n })\n\n EventHandler.on(window, EVENT_RESIZE, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog()\n }\n })\n\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return\n }\n\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition()\n return\n }\n\n if (this._config.backdrop) {\n this.hide()\n }\n })\n })\n }\n\n _hideModal() {\n this._element.style.display = 'none'\n this._element.setAttribute('aria-hidden', true)\n this._element.removeAttribute('aria-modal')\n this._element.removeAttribute('role')\n this._isTransitioning = false\n\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN)\n this._resetAdjustments()\n this._scrollBar.reset()\n EventHandler.trigger(this._element, EVENT_HIDDEN)\n })\n }\n\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE)\n }\n\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED)\n if (hideEvent.defaultPrevented) {\n return\n }\n\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight\n const initialOverflowY = this._element.style.overflowY\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return\n }\n\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden'\n }\n\n this._element.classList.add(CLASS_NAME_STATIC)\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC)\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY\n }, this._dialog)\n }, this._dialog)\n\n this._element.focus()\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight\n const scrollbarWidth = this._scrollBar.getWidth()\n const isBodyOverflowing = scrollbarWidth > 0\n\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight'\n this._element.style[property] = `${scrollbarWidth}px`\n }\n\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft'\n this._element.style[property] = `${scrollbarWidth}px`\n }\n }\n\n _resetAdjustments() {\n this._element.style.paddingLeft = ''\n this._element.style.paddingRight = ''\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config](relatedTarget)\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_TOGGLE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this)\n\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault()\n }\n\n EventHandler.one(target, EVENT_SHOW, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return\n }\n\n EventHandler.one(target, EVENT_HIDDEN, () => {\n if (isVisible(this)) {\n this.focus()\n }\n })\n })\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR)\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide()\n }\n\n const data = Modal.getOrCreateInstance(target)\n\n data.toggle(this)\n})\n\nenableDismissTrigger(Modal)\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal)\n\nexport default Modal\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport Backdrop from './util/backdrop.js'\nimport { enableDismissTrigger } from './util/component-functions.js'\nimport FocusTrap from './util/focustrap.js'\nimport {\n defineJQueryPlugin,\n isDisabled,\n isVisible\n} from './util/index.js'\nimport ScrollBarHelper from './util/scrollbar.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'offcanvas'\nconst DATA_KEY = 'bs.offcanvas'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\nconst EVENT_LOAD_DATA_API = `load${EVENT_KEY}${DATA_API_KEY}`\nconst ESCAPE_KEY = 'Escape'\n\nconst CLASS_NAME_SHOW = 'show'\nconst CLASS_NAME_SHOWING = 'showing'\nconst CLASS_NAME_HIDING = 'hiding'\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop'\nconst OPEN_SELECTOR = '.offcanvas.show'\n\nconst EVENT_SHOW = `show${EVENT_KEY}`\nconst EVENT_SHOWN = `shown${EVENT_KEY}`\nconst EVENT_HIDE = `hide${EVENT_KEY}`\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY}`\nconst EVENT_HIDDEN = `hidden${EVENT_KEY}`\nconst EVENT_RESIZE = `resize${EVENT_KEY}`\nconst EVENT_CLICK_DATA_API = `click${EVENT_KEY}${DATA_API_KEY}`\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY}`\n\nconst SELECTOR_DATA_TOGGLE = '[data-bs-toggle=\"offcanvas\"]'\n\nconst Default = {\n backdrop: true,\n keyboard: true,\n scroll: false\n}\n\nconst DefaultType = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n}\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n this._isShown = false\n this._backdrop = this._initializeBackDrop()\n this._focustrap = this._initializeFocusTrap()\n this._addEventListeners()\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget)\n }\n\n show(relatedTarget) {\n if (this._isShown) {\n return\n }\n\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW, { relatedTarget })\n\n if (showEvent.defaultPrevented) {\n return\n }\n\n this._isShown = true\n this._backdrop.show()\n\n if (!this._config.scroll) {\n new ScrollBarHelper().hide()\n }\n\n this._element.setAttribute('aria-modal', true)\n this._element.setAttribute('role', 'dialog')\n this._element.classList.add(CLASS_NAME_SHOWING)\n\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate()\n }\n\n this._element.classList.add(CLASS_NAME_SHOW)\n this._element.classList.remove(CLASS_NAME_SHOWING)\n EventHandler.trigger(this._element, EVENT_SHOWN, { relatedTarget })\n }\n\n this._queueCallback(completeCallBack, this._element, true)\n }\n\n hide() {\n if (!this._isShown) {\n return\n }\n\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE)\n\n if (hideEvent.defaultPrevented) {\n return\n }\n\n this._focustrap.deactivate()\n this._element.blur()\n this._isShown = false\n this._element.classList.add(CLASS_NAME_HIDING)\n this._backdrop.hide()\n\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW, CLASS_NAME_HIDING)\n this._element.removeAttribute('aria-modal')\n this._element.removeAttribute('role')\n\n if (!this._config.scroll) {\n new ScrollBarHelper().reset()\n }\n\n EventHandler.trigger(this._element, EVENT_HIDDEN)\n }\n\n this._queueCallback(completeCallback, this._element, true)\n }\n\n dispose() {\n this._backdrop.dispose()\n this._focustrap.deactivate()\n super.dispose()\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED)\n return\n }\n\n this.hide()\n }\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop)\n\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n })\n }\n\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n })\n }\n\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return\n }\n\n if (this._config.keyboard) {\n this.hide()\n return\n }\n\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED)\n })\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config](this)\n })\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API, SELECTOR_DATA_TOGGLE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this)\n\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault()\n }\n\n if (isDisabled(this)) {\n return\n }\n\n EventHandler.one(target, EVENT_HIDDEN, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus()\n }\n })\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR)\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide()\n }\n\n const data = Offcanvas.getOrCreateInstance(target)\n data.toggle(this)\n})\n\nEventHandler.on(window, EVENT_LOAD_DATA_API, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show()\n }\n})\n\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide()\n }\n }\n})\n\nenableDismissTrigger(Offcanvas)\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas)\n\nexport default Offcanvas\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i\n\nexport const DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n div: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n}\n// js-docs-end allow-list\n\nconst uriAttributes = new Set([\n 'background',\n 'cite',\n 'href',\n 'itemtype',\n 'longdesc',\n 'poster',\n 'src',\n 'xlink:href'\n])\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i\n\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase()\n\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue))\n }\n\n return true\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp)\n .some(regex => regex.test(attributeName))\n}\n\nexport function sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml\n }\n\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml)\n }\n\n const domParser = new window.DOMParser()\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html')\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'))\n\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase()\n\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove()\n continue\n }\n\n const attributeList = [].concat(...element.attributes)\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || [])\n\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName)\n }\n }\n }\n\n return createdDocument.body.innerHTML\n}\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport SelectorEngine from '../dom/selector-engine.js'\nimport Config from './config.js'\nimport { DefaultAllowlist, sanitizeHtml } from './sanitizer.js'\nimport { execute, getElement, isElement } from './index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'TemplateFactory'\n\nconst Default = {\n allowList: DefaultAllowlist,\n content: {}, // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n}\n\nconst DefaultType = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n}\n\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n}\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super()\n this._config = this._getConfig(config)\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content)\n .map(config => this._resolvePossibleFunction(config))\n .filter(Boolean)\n }\n\n hasContent() {\n return this.getContent().length > 0\n }\n\n changeContent(content) {\n this._checkContent(content)\n this._config.content = { ...this._config.content, ...content }\n return this\n }\n\n toHtml() {\n const templateWrapper = document.createElement('div')\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template)\n\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector)\n }\n\n const template = templateWrapper.children[0]\n const extraClass = this._resolvePossibleFunction(this._config.extraClass)\n\n if (extraClass) {\n template.classList.add(...extraClass.split(' '))\n }\n\n return template\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config)\n this._checkContent(config.content)\n }\n\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({ selector, entry: content }, DefaultContentType)\n }\n }\n\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template)\n\n if (!templateElement) {\n return\n }\n\n content = this._resolvePossibleFunction(content)\n\n if (!content) {\n templateElement.remove()\n return\n }\n\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement)\n return\n }\n\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content)\n return\n }\n\n templateElement.textContent = content\n }\n\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg\n }\n\n _resolvePossibleFunction(arg) {\n return execute(arg, [this])\n }\n\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = ''\n templateElement.append(element)\n return\n }\n\n templateElement.textContent = element.textContent\n }\n}\n\nexport default TemplateFactory\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport * as Popper from '@popperjs/core'\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport Manipulator from './dom/manipulator.js'\nimport { defineJQueryPlugin, execute, findShadowRoot, getElement, getUID, isRTL, noop } from './util/index.js'\nimport { DefaultAllowlist } from './util/sanitizer.js'\nimport TemplateFactory from './util/template-factory.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'tooltip'\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn'])\n\nconst CLASS_NAME_FADE = 'fade'\nconst CLASS_NAME_MODAL = 'modal'\nconst CLASS_NAME_SHOW = 'show'\n\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner'\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`\n\nconst EVENT_MODAL_HIDE = 'hide.bs.modal'\n\nconst TRIGGER_HOVER = 'hover'\nconst TRIGGER_FOCUS = 'focus'\nconst TRIGGER_CLICK = 'click'\nconst TRIGGER_MANUAL = 'manual'\n\nconst EVENT_HIDE = 'hide'\nconst EVENT_HIDDEN = 'hidden'\nconst EVENT_SHOW = 'show'\nconst EVENT_SHOWN = 'shown'\nconst EVENT_INSERTED = 'inserted'\nconst EVENT_CLICK = 'click'\nconst EVENT_FOCUSIN = 'focusin'\nconst EVENT_FOCUSOUT = 'focusout'\nconst EVENT_MOUSEENTER = 'mouseenter'\nconst EVENT_MOUSELEAVE = 'mouseleave'\n\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n}\n\nconst Default = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' +\n '
' +\n '
' +\n '
',\n title: '',\n trigger: 'hover focus'\n}\n\nconst DefaultType = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n}\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)')\n }\n\n super(element, config)\n\n // Private\n this._isEnabled = true\n this._timeout = 0\n this._isHovered = null\n this._activeTrigger = {}\n this._popper = null\n this._templateFactory = null\n this._newContent = null\n\n // Protected\n this.tip = null\n\n this._setListeners()\n\n if (!this._config.selector) {\n this._fixTitle()\n }\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n enable() {\n this._isEnabled = true\n }\n\n disable() {\n this._isEnabled = false\n }\n\n toggleEnabled() {\n this._isEnabled = !this._isEnabled\n }\n\n toggle() {\n if (!this._isEnabled) {\n return\n }\n\n this._activeTrigger.click = !this._activeTrigger.click\n if (this._isShown()) {\n this._leave()\n return\n }\n\n this._enter()\n }\n\n dispose() {\n clearTimeout(this._timeout)\n\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler)\n\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'))\n }\n\n this._disposePopper()\n super.dispose()\n }\n\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements')\n }\n\n if (!(this._isWithContent() && this._isEnabled)) {\n return\n }\n\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW))\n const shadowRoot = findShadowRoot(this._element)\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element)\n\n if (showEvent.defaultPrevented || !isInTheDom) {\n return\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper()\n\n const tip = this._getTipElement()\n\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'))\n\n const { container } = this._config\n\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip)\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED))\n }\n\n this._popper = this._createPopper(tip)\n\n tip.classList.add(CLASS_NAME_SHOW)\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop)\n }\n }\n\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN))\n\n if (this._isHovered === false) {\n this._leave()\n }\n\n this._isHovered = false\n }\n\n this._queueCallback(complete, this.tip, this._isAnimated())\n }\n\n hide() {\n if (!this._isShown()) {\n return\n }\n\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE))\n if (hideEvent.defaultPrevented) {\n return\n }\n\n const tip = this._getTipElement()\n tip.classList.remove(CLASS_NAME_SHOW)\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop)\n }\n }\n\n this._activeTrigger[TRIGGER_CLICK] = false\n this._activeTrigger[TRIGGER_FOCUS] = false\n this._activeTrigger[TRIGGER_HOVER] = false\n this._isHovered = null // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return\n }\n\n if (!this._isHovered) {\n this._disposePopper()\n }\n\n this._element.removeAttribute('aria-describedby')\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN))\n }\n\n this._queueCallback(complete, this.tip, this._isAnimated())\n }\n\n update() {\n if (this._popper) {\n this._popper.update()\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle())\n }\n\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate())\n }\n\n return this.tip\n }\n\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml()\n\n // TODO: remove this check in v6\n if (!tip) {\n return null\n }\n\n tip.classList.remove(CLASS_NAME_FADE, CLASS_NAME_SHOW)\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`)\n\n const tipId = getUID(this.constructor.NAME).toString()\n\n tip.setAttribute('id', tipId)\n\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE)\n }\n\n return tip\n }\n\n setContent(content) {\n this._newContent = content\n if (this._isShown()) {\n this._disposePopper()\n this.show()\n }\n }\n\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content)\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n })\n }\n\n return this._templateFactory\n }\n\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n }\n }\n\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title')\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig())\n }\n\n _isAnimated() {\n return this._config.animation || (this.tip && this.tip.classList.contains(CLASS_NAME_FADE))\n }\n\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW)\n }\n\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element])\n const attachment = AttachmentMap[placement.toUpperCase()]\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment))\n }\n\n _getOffset() {\n const { offset } = this._config\n\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10))\n }\n\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element)\n }\n\n return offset\n }\n\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element])\n }\n\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [\n {\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n },\n {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n },\n {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n },\n {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n },\n {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement)\n }\n }\n ]\n }\n\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n }\n }\n\n _setListeners() {\n const triggers = this._config.trigger.split(' ')\n\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event)\n context.toggle()\n })\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ?\n this.constructor.eventName(EVENT_MOUSEENTER) :\n this.constructor.eventName(EVENT_FOCUSIN)\n const eventOut = trigger === TRIGGER_HOVER ?\n this.constructor.eventName(EVENT_MOUSELEAVE) :\n this.constructor.eventName(EVENT_FOCUSOUT)\n\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event)\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true\n context._enter()\n })\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event)\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] =\n context._element.contains(event.relatedTarget)\n\n context._leave()\n })\n }\n }\n\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide()\n }\n }\n\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler)\n }\n\n _fixTitle() {\n const title = this._element.getAttribute('title')\n\n if (!title) {\n return\n }\n\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title)\n }\n\n this._element.setAttribute('data-bs-original-title', title) // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title')\n }\n\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true\n return\n }\n\n this._isHovered = true\n\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show()\n }\n }, this._config.delay.show)\n }\n\n _leave() {\n if (this._isWithActiveTrigger()) {\n return\n }\n\n this._isHovered = false\n\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide()\n }\n }, this._config.delay.hide)\n }\n\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout)\n this._timeout = setTimeout(handler, timeout)\n }\n\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true)\n }\n\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element)\n\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute]\n }\n }\n\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n }\n config = this._mergeConfigObj(config)\n config = this._configAfterMerge(config)\n this._typeCheckConfig(config)\n return config\n }\n\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container)\n\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n }\n }\n\n if (typeof config.title === 'number') {\n config.title = config.title.toString()\n }\n\n if (typeof config.content === 'number') {\n config.content = config.content.toString()\n }\n\n return config\n }\n\n _getDelegateConfig() {\n const config = {}\n\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value\n }\n }\n\n config.selector = false\n config.trigger = 'manual'\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config\n }\n\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy()\n this._popper = null\n }\n\n if (this.tip) {\n this.tip.remove()\n this.tip = null\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config]()\n })\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip)\n\nexport default Tooltip\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport Tooltip from './tooltip.js'\nimport { defineJQueryPlugin } from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'popover'\n\nconst SELECTOR_TITLE = '.popover-header'\nconst SELECTOR_CONTENT = '.popover-body'\n\nconst Default = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' +\n '
' +\n '

' +\n '
' +\n '
',\n trigger: 'click'\n}\n\nconst DefaultType = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n}\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent()\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n }\n }\n\n _getContent() {\n return this._resolvePossibleFunction(this._config.content)\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config)\n\n if (typeof config !== 'string') {\n return\n }\n\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`)\n }\n\n data[config]()\n })\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover)\n\nexport default Popover\n","/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nimport BaseComponent from './base-component.js'\nimport EventHandler from './dom/event-handler.js'\nimport SelectorEngine from './dom/selector-engine.js'\nimport { defineJQueryPlugin, getElement, isDisabled, isVisible } from './util/index.js'\n\n/**\n * Constants\n */\n\nconst NAME = 'scrollspy'\nconst DATA_KEY = 'bs.scrollspy'\nconst EVENT_KEY = `.${DATA_KEY}`\nconst DATA_API_KEY = '.data-api'\n\nconst EVENT_ACTIVATE = `activate${EVENT_KEY}`\nconst EVENT_CLICK = `click${EVENT_KEY}`\nconst EVENT_LOAD_DATA_API = `load${EVENT_KEY}${DATA_API_KEY}`\n\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item'\nconst CLASS_NAME_ACTIVE = 'active'\n\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]'\nconst SELECTOR_TARGET_LINKS = '[href]'\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group'\nconst SELECTOR_NAV_LINKS = '.nav-link'\nconst SELECTOR_NAV_ITEMS = '.nav-item'\nconst SELECTOR_LIST_ITEMS = '.list-group-item'\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`\nconst SELECTOR_DROPDOWN = '.dropdown'\nconst SELECTOR_DROPDOWN_TOGGLE = '.dropdown-toggle'\n\nconst Default = {\n offset: null, // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n}\n\nconst DefaultType = {\n offset: '(number|null)', // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n}\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config)\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map()\n this._observableSections = new Map()\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element\n this._activeTarget = null\n this._observer = null\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n }\n this.refresh() // initialize\n }\n\n // Getters\n static get Default() {\n return Default\n }\n\n static get DefaultType() {\n return DefaultType\n }\n\n static get NAME() {\n return NAME\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables()\n this._maybeEnableSmoothScroll()\n\n if (this._observer) {\n this._observer.disconnect()\n } else {\n this._observer = this._getNewObserver()\n }\n\n for (const section of this._observableSections.values()) {\n this._observer.observe(section)\n }\n }\n\n dispose() {\n this._observer.disconnect()\n super.dispose()\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin\n\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value))\n }\n\n return config\n }\n\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK)\n\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash)\n if (observableSection) {\n event.preventDefault()\n const root = this._rootElement || window\n const height = observableSection.offsetTop - this._element.offsetTop\n if (root.scrollTo) {\n root.scrollTo({ top: height, behavior: 'smooth' })\n return\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height\n }\n })\n }\n\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n }\n\n return new IntersectionObserver(entries => this._observerCallback(entries), options)\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`)\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop\n this._process(targetElement(entry))\n }\n\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop\n this._previousScrollData.parentScrollTop = parentScrollTop\n\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null\n this._clearActiveClass(targetElement(entry))\n\n continue\n }\n\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry)\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return\n }\n\n continue\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry)\n }\n }\n }\n\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map()\n this._observableSections = new Map()\n\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target)\n\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue\n }\n\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element)\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor)\n this._observableSections.set(anchor.hash, observableSection)\n }\n }\n }\n\n _process(target) {\n if (this._activeTarget === target) {\n return\n }\n\n this._clearActiveClass(this._config.target)\n this._activeTarget = target\n target.classList.add(CLASS_NAME_ACTIVE)\n this._activateParents(target)\n\n EventHandler.trigger(this._element, EVENT_ACTIVATE, { relatedTarget: target })\n }\n\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE, target.closest(SELECTOR_DROPDOWN))\n .classList.add(CLASS_NAME_ACTIVE)\n return\n }\n\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both
    and
')},createChildNavList:function(e){var t=this.createNavList();return e.append(t),t},generateNavEl:function(e,t){var n=a('
');n.attr("href","#"+e),n.text(t);var r=a("
  • ");return r.append(n),r},generateNavItem:function(e){var t=this.generateAnchor(e),n=a(e),r=n.data("toc-text")||n.text();return this.generateNavEl(t,r)},getTopLevel:function(e){for(var t=1;t<=6;t++){if(1 + + + + + + + + + + + + diff --git a/v0.2.8/deps/font-awesome-6.4.2/css/all.css b/v0.2.8/deps/font-awesome-6.4.2/css/all.css new file mode 100644 index 0000000000..bdb6e3ae8a --- /dev/null +++ b/v0.2.8/deps/font-awesome-6.4.2/css/all.css @@ -0,0 +1,7968 @@ +/*! + * Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com + * License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) + * Copyright 2023 Fonticons, Inc. + */ +.fa { + font-family: var(--fa-style-family, "Font Awesome 6 Free"); + font-weight: var(--fa-style, 900); } + +.fa, +.fa-classic, +.fa-sharp, +.fas, +.fa-solid, +.far, +.fa-regular, +.fab, +.fa-brands { + -moz-osx-font-smoothing: grayscale; + -webkit-font-smoothing: antialiased; + display: var(--fa-display, inline-block); + font-style: normal; + font-variant: normal; + line-height: 1; + text-rendering: auto; } + +.fas, +.fa-classic, +.fa-solid, +.far, +.fa-regular { + font-family: 'Font Awesome 6 Free'; } + +.fab, +.fa-brands { + font-family: 'Font Awesome 6 Brands'; } + +.fa-1x { + font-size: 1em; } + +.fa-2x { + font-size: 2em; } + +.fa-3x { + font-size: 3em; } + +.fa-4x { + font-size: 4em; } + +.fa-5x { + font-size: 5em; } + +.fa-6x { + font-size: 6em; } + +.fa-7x { + font-size: 7em; } + +.fa-8x { + font-size: 8em; } + +.fa-9x { + font-size: 9em; } + +.fa-10x { + font-size: 10em; } + +.fa-2xs { + font-size: 0.625em; + line-height: 0.1em; + vertical-align: 0.225em; } + +.fa-xs { + font-size: 0.75em; + line-height: 0.08333em; + vertical-align: 0.125em; } + +.fa-sm { + font-size: 0.875em; + line-height: 0.07143em; + vertical-align: 0.05357em; } + +.fa-lg { + font-size: 1.25em; + line-height: 0.05em; + vertical-align: -0.075em; } + +.fa-xl { + font-size: 1.5em; + line-height: 0.04167em; + vertical-align: -0.125em; } + +.fa-2xl { + font-size: 2em; + line-height: 0.03125em; + vertical-align: -0.1875em; } + +.fa-fw { + text-align: center; + width: 1.25em; } + +.fa-ul { + list-style-type: none; + margin-left: var(--fa-li-margin, 2.5em); + padding-left: 0; } + .fa-ul > li { + position: relative; } + +.fa-li { + left: calc(var(--fa-li-width, 2em) * -1); + position: absolute; + text-align: center; + width: var(--fa-li-width, 2em); + line-height: inherit; } + +.fa-border { + border-color: var(--fa-border-color, #eee); + border-radius: var(--fa-border-radius, 0.1em); + border-style: var(--fa-border-style, solid); + border-width: var(--fa-border-width, 0.08em); + padding: var(--fa-border-padding, 0.2em 0.25em 0.15em); } + +.fa-pull-left { + float: left; + margin-right: var(--fa-pull-margin, 0.3em); } + +.fa-pull-right { + float: right; + margin-left: var(--fa-pull-margin, 0.3em); } + +.fa-beat { + -webkit-animation-name: fa-beat; + animation-name: fa-beat; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, ease-in-out); + animation-timing-function: var(--fa-animation-timing, ease-in-out); } + +.fa-bounce { + -webkit-animation-name: fa-bounce; + animation-name: fa-bounce; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.28, 0.84, 0.42, 1)); + animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.28, 0.84, 0.42, 1)); } + +.fa-fade { + -webkit-animation-name: fa-fade; + animation-name: fa-fade; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.4, 0, 0.6, 1)); + animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.4, 0, 0.6, 1)); } + +.fa-beat-fade { + -webkit-animation-name: fa-beat-fade; + animation-name: fa-beat-fade; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.4, 0, 0.6, 1)); + animation-timing-function: var(--fa-animation-timing, cubic-bezier(0.4, 0, 0.6, 1)); } + +.fa-flip { + -webkit-animation-name: fa-flip; + animation-name: fa-flip; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, ease-in-out); + animation-timing-function: var(--fa-animation-timing, ease-in-out); } + +.fa-shake { + -webkit-animation-name: fa-shake; + animation-name: fa-shake; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, linear); + animation-timing-function: var(--fa-animation-timing, linear); } + +.fa-spin { + -webkit-animation-name: fa-spin; + animation-name: fa-spin; + -webkit-animation-delay: var(--fa-animation-delay, 0s); + animation-delay: var(--fa-animation-delay, 0s); + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 2s); + animation-duration: var(--fa-animation-duration, 2s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, linear); + animation-timing-function: var(--fa-animation-timing, linear); } + +.fa-spin-reverse { + --fa-animation-direction: reverse; } + +.fa-pulse, +.fa-spin-pulse { + -webkit-animation-name: fa-spin; + animation-name: fa-spin; + -webkit-animation-direction: var(--fa-animation-direction, normal); + animation-direction: var(--fa-animation-direction, normal); + -webkit-animation-duration: var(--fa-animation-duration, 1s); + animation-duration: var(--fa-animation-duration, 1s); + -webkit-animation-iteration-count: var(--fa-animation-iteration-count, infinite); + animation-iteration-count: var(--fa-animation-iteration-count, infinite); + -webkit-animation-timing-function: var(--fa-animation-timing, steps(8)); + animation-timing-function: var(--fa-animation-timing, steps(8)); } + +@media (prefers-reduced-motion: reduce) { + .fa-beat, + .fa-bounce, + .fa-fade, + .fa-beat-fade, + .fa-flip, + .fa-pulse, + .fa-shake, + .fa-spin, + .fa-spin-pulse { + -webkit-animation-delay: -1ms; + animation-delay: -1ms; + -webkit-animation-duration: 1ms; + animation-duration: 1ms; + -webkit-animation-iteration-count: 1; + animation-iteration-count: 1; + -webkit-transition-delay: 0s; + transition-delay: 0s; + -webkit-transition-duration: 0s; + transition-duration: 0s; } } + +@-webkit-keyframes fa-beat { + 0%, 90% { + -webkit-transform: scale(1); + transform: scale(1); } + 45% { + -webkit-transform: scale(var(--fa-beat-scale, 1.25)); + transform: scale(var(--fa-beat-scale, 1.25)); } } + +@keyframes fa-beat { + 0%, 90% { + -webkit-transform: scale(1); + transform: scale(1); } + 45% { + -webkit-transform: scale(var(--fa-beat-scale, 1.25)); + transform: scale(var(--fa-beat-scale, 1.25)); } } + +@-webkit-keyframes fa-bounce { + 0% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } + 10% { + -webkit-transform: scale(var(--fa-bounce-start-scale-x, 1.1), var(--fa-bounce-start-scale-y, 0.9)) translateY(0); + transform: scale(var(--fa-bounce-start-scale-x, 1.1), var(--fa-bounce-start-scale-y, 0.9)) translateY(0); } + 30% { + -webkit-transform: scale(var(--fa-bounce-jump-scale-x, 0.9), var(--fa-bounce-jump-scale-y, 1.1)) translateY(var(--fa-bounce-height, -0.5em)); + transform: scale(var(--fa-bounce-jump-scale-x, 0.9), var(--fa-bounce-jump-scale-y, 1.1)) translateY(var(--fa-bounce-height, -0.5em)); } + 50% { + -webkit-transform: scale(var(--fa-bounce-land-scale-x, 1.05), var(--fa-bounce-land-scale-y, 0.95)) translateY(0); + transform: scale(var(--fa-bounce-land-scale-x, 1.05), var(--fa-bounce-land-scale-y, 0.95)) translateY(0); } + 57% { + -webkit-transform: scale(1, 1) translateY(var(--fa-bounce-rebound, -0.125em)); + transform: scale(1, 1) translateY(var(--fa-bounce-rebound, -0.125em)); } + 64% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } + 100% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } } + +@keyframes fa-bounce { + 0% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } + 10% { + -webkit-transform: scale(var(--fa-bounce-start-scale-x, 1.1), var(--fa-bounce-start-scale-y, 0.9)) translateY(0); + transform: scale(var(--fa-bounce-start-scale-x, 1.1), var(--fa-bounce-start-scale-y, 0.9)) translateY(0); } + 30% { + -webkit-transform: scale(var(--fa-bounce-jump-scale-x, 0.9), var(--fa-bounce-jump-scale-y, 1.1)) translateY(var(--fa-bounce-height, -0.5em)); + transform: scale(var(--fa-bounce-jump-scale-x, 0.9), var(--fa-bounce-jump-scale-y, 1.1)) translateY(var(--fa-bounce-height, -0.5em)); } + 50% { + -webkit-transform: scale(var(--fa-bounce-land-scale-x, 1.05), var(--fa-bounce-land-scale-y, 0.95)) translateY(0); + transform: scale(var(--fa-bounce-land-scale-x, 1.05), var(--fa-bounce-land-scale-y, 0.95)) translateY(0); } + 57% { + -webkit-transform: scale(1, 1) translateY(var(--fa-bounce-rebound, -0.125em)); + transform: scale(1, 1) translateY(var(--fa-bounce-rebound, -0.125em)); } + 64% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } + 100% { + -webkit-transform: scale(1, 1) translateY(0); + transform: scale(1, 1) translateY(0); } } + +@-webkit-keyframes fa-fade { + 50% { + opacity: var(--fa-fade-opacity, 0.4); } } + +@keyframes fa-fade { + 50% { + opacity: var(--fa-fade-opacity, 0.4); } } + +@-webkit-keyframes fa-beat-fade { + 0%, 100% { + opacity: var(--fa-beat-fade-opacity, 0.4); + -webkit-transform: scale(1); + transform: scale(1); } + 50% { + opacity: 1; + -webkit-transform: scale(var(--fa-beat-fade-scale, 1.125)); + transform: scale(var(--fa-beat-fade-scale, 1.125)); } } + +@keyframes fa-beat-fade { + 0%, 100% { + opacity: var(--fa-beat-fade-opacity, 0.4); + -webkit-transform: scale(1); + transform: scale(1); } + 50% { + opacity: 1; + -webkit-transform: scale(var(--fa-beat-fade-scale, 1.125)); + transform: scale(var(--fa-beat-fade-scale, 1.125)); } } + +@-webkit-keyframes fa-flip { + 50% { + -webkit-transform: rotate3d(var(--fa-flip-x, 0), var(--fa-flip-y, 1), var(--fa-flip-z, 0), var(--fa-flip-angle, -180deg)); + transform: rotate3d(var(--fa-flip-x, 0), var(--fa-flip-y, 1), var(--fa-flip-z, 0), var(--fa-flip-angle, -180deg)); } } + +@keyframes fa-flip { + 50% { + -webkit-transform: rotate3d(var(--fa-flip-x, 0), var(--fa-flip-y, 1), var(--fa-flip-z, 0), var(--fa-flip-angle, -180deg)); + transform: rotate3d(var(--fa-flip-x, 0), var(--fa-flip-y, 1), var(--fa-flip-z, 0), var(--fa-flip-angle, -180deg)); } } + +@-webkit-keyframes fa-shake { + 0% { + -webkit-transform: rotate(-15deg); + transform: rotate(-15deg); } + 4% { + -webkit-transform: rotate(15deg); + transform: rotate(15deg); } + 8%, 24% { + -webkit-transform: rotate(-18deg); + transform: rotate(-18deg); } + 12%, 28% { + -webkit-transform: rotate(18deg); + transform: rotate(18deg); } + 16% { + -webkit-transform: rotate(-22deg); + transform: rotate(-22deg); } + 20% { + -webkit-transform: rotate(22deg); + transform: rotate(22deg); } + 32% { + -webkit-transform: rotate(-12deg); + transform: rotate(-12deg); } + 36% { + -webkit-transform: rotate(12deg); + transform: rotate(12deg); } + 40%, 100% { + -webkit-transform: rotate(0deg); + transform: rotate(0deg); } } + +@keyframes fa-shake { + 0% { + -webkit-transform: rotate(-15deg); + transform: rotate(-15deg); } + 4% { + -webkit-transform: rotate(15deg); + transform: rotate(15deg); } + 8%, 24% { + -webkit-transform: rotate(-18deg); + transform: rotate(-18deg); } + 12%, 28% { + -webkit-transform: rotate(18deg); + transform: rotate(18deg); } + 16% { + -webkit-transform: rotate(-22deg); + transform: rotate(-22deg); } + 20% { + -webkit-transform: rotate(22deg); + transform: rotate(22deg); } + 32% { + -webkit-transform: rotate(-12deg); + transform: rotate(-12deg); } + 36% { + -webkit-transform: rotate(12deg); + transform: rotate(12deg); } + 40%, 100% { + -webkit-transform: rotate(0deg); + transform: rotate(0deg); } } + +@-webkit-keyframes fa-spin { + 0% { + -webkit-transform: rotate(0deg); + transform: rotate(0deg); } + 100% { + -webkit-transform: rotate(360deg); + transform: rotate(360deg); } } + +@keyframes fa-spin { + 0% { + -webkit-transform: rotate(0deg); + transform: rotate(0deg); } + 100% { + -webkit-transform: rotate(360deg); + transform: rotate(360deg); } } + +.fa-rotate-90 { + -webkit-transform: rotate(90deg); + transform: rotate(90deg); } + +.fa-rotate-180 { + -webkit-transform: rotate(180deg); + transform: rotate(180deg); } + +.fa-rotate-270 { + -webkit-transform: rotate(270deg); + transform: rotate(270deg); } + +.fa-flip-horizontal { + -webkit-transform: scale(-1, 1); + transform: scale(-1, 1); } + +.fa-flip-vertical { + -webkit-transform: scale(1, -1); + transform: scale(1, -1); } + +.fa-flip-both, +.fa-flip-horizontal.fa-flip-vertical { + -webkit-transform: scale(-1, -1); + transform: scale(-1, -1); } + +.fa-rotate-by { + -webkit-transform: rotate(var(--fa-rotate-angle, none)); + transform: rotate(var(--fa-rotate-angle, none)); } + +.fa-stack { + display: inline-block; + height: 2em; + line-height: 2em; + position: relative; + vertical-align: middle; + width: 2.5em; } + +.fa-stack-1x, +.fa-stack-2x { + left: 0; + position: absolute; + text-align: center; + width: 100%; + z-index: var(--fa-stack-z-index, auto); } + +.fa-stack-1x { + line-height: inherit; } + +.fa-stack-2x { + font-size: 2em; } + +.fa-inverse { + color: var(--fa-inverse, #fff); } + +/* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen +readers do not read off random characters that represent icons */ + +.fa-0::before { + content: "\30"; } + +.fa-1::before { + content: "\31"; } + +.fa-2::before { + content: "\32"; } + +.fa-3::before { + content: "\33"; } + +.fa-4::before { + content: "\34"; } + +.fa-5::before { + content: "\35"; } + +.fa-6::before { + content: "\36"; } + +.fa-7::before { + content: "\37"; } + +.fa-8::before { + content: "\38"; } + +.fa-9::before { + content: "\39"; } + +.fa-fill-drip::before { + content: "\f576"; } + +.fa-arrows-to-circle::before { + content: "\e4bd"; } + +.fa-circle-chevron-right::before { + content: "\f138"; } + +.fa-chevron-circle-right::before { + content: "\f138"; } + +.fa-at::before { + content: "\40"; } + +.fa-trash-can::before { + content: "\f2ed"; } + +.fa-trash-alt::before { + content: "\f2ed"; } + +.fa-text-height::before { + content: "\f034"; } + +.fa-user-xmark::before { + content: "\f235"; } + +.fa-user-times::before { + content: "\f235"; } + +.fa-stethoscope::before { + content: "\f0f1"; } + +.fa-message::before { + content: "\f27a"; } + +.fa-comment-alt::before { + content: "\f27a"; } + +.fa-info::before { + content: "\f129"; } + +.fa-down-left-and-up-right-to-center::before { + content: "\f422"; } + +.fa-compress-alt::before { + content: "\f422"; } + +.fa-explosion::before { + content: "\e4e9"; } + +.fa-file-lines::before { + content: "\f15c"; } + +.fa-file-alt::before { + content: "\f15c"; } + +.fa-file-text::before { + content: "\f15c"; } + +.fa-wave-square::before { + content: "\f83e"; } + +.fa-ring::before { + content: "\f70b"; } + +.fa-building-un::before { + content: "\e4d9"; } + +.fa-dice-three::before { + content: "\f527"; } + +.fa-calendar-days::before { + content: "\f073"; } + +.fa-calendar-alt::before { + content: "\f073"; } + +.fa-anchor-circle-check::before { + content: "\e4aa"; } + +.fa-building-circle-arrow-right::before { + content: "\e4d1"; } + +.fa-volleyball::before { + content: "\f45f"; } + +.fa-volleyball-ball::before { + content: "\f45f"; } + +.fa-arrows-up-to-line::before { + content: "\e4c2"; } + +.fa-sort-down::before { + content: "\f0dd"; } + +.fa-sort-desc::before { + content: "\f0dd"; } + +.fa-circle-minus::before { + content: "\f056"; } + +.fa-minus-circle::before { + content: "\f056"; } + +.fa-door-open::before { + content: "\f52b"; } + +.fa-right-from-bracket::before { + content: "\f2f5"; } + +.fa-sign-out-alt::before { + content: "\f2f5"; } + +.fa-atom::before { + content: "\f5d2"; } + +.fa-soap::before { + content: "\e06e"; } + +.fa-icons::before { + content: "\f86d"; } + +.fa-heart-music-camera-bolt::before { + content: "\f86d"; } + +.fa-microphone-lines-slash::before { + content: "\f539"; } + +.fa-microphone-alt-slash::before { + content: "\f539"; } + +.fa-bridge-circle-check::before { + content: "\e4c9"; } + +.fa-pump-medical::before { + content: "\e06a"; } + +.fa-fingerprint::before { + content: "\f577"; } + +.fa-hand-point-right::before { + content: "\f0a4"; } + +.fa-magnifying-glass-location::before { + content: "\f689"; } + +.fa-search-location::before { + content: "\f689"; } + +.fa-forward-step::before { + content: "\f051"; } + +.fa-step-forward::before { + content: "\f051"; } + +.fa-face-smile-beam::before { + content: "\f5b8"; } + +.fa-smile-beam::before { + content: "\f5b8"; } + +.fa-flag-checkered::before { + content: "\f11e"; } + +.fa-football::before { + content: "\f44e"; } + +.fa-football-ball::before { + content: "\f44e"; } + +.fa-school-circle-exclamation::before { + content: "\e56c"; } + +.fa-crop::before { + content: "\f125"; } + +.fa-angles-down::before { + content: "\f103"; } + +.fa-angle-double-down::before { + content: "\f103"; } + +.fa-users-rectangle::before { + content: "\e594"; } + +.fa-people-roof::before { + content: "\e537"; } + +.fa-people-line::before { + content: "\e534"; } + +.fa-beer-mug-empty::before { + content: "\f0fc"; } + +.fa-beer::before { + content: "\f0fc"; } + +.fa-diagram-predecessor::before { + content: "\e477"; } + +.fa-arrow-up-long::before { + content: "\f176"; } + +.fa-long-arrow-up::before { + content: "\f176"; } + +.fa-fire-flame-simple::before { + content: "\f46a"; } + +.fa-burn::before { + content: "\f46a"; } + +.fa-person::before { + content: "\f183"; } + +.fa-male::before { + content: "\f183"; } + +.fa-laptop::before { + content: "\f109"; } + +.fa-file-csv::before { + content: "\f6dd"; } + +.fa-menorah::before { + content: "\f676"; } + +.fa-truck-plane::before { + content: "\e58f"; } + +.fa-record-vinyl::before { + content: "\f8d9"; } + +.fa-face-grin-stars::before { + content: "\f587"; } + +.fa-grin-stars::before { + content: "\f587"; } + +.fa-bong::before { + content: "\f55c"; } + +.fa-spaghetti-monster-flying::before { + content: "\f67b"; } + +.fa-pastafarianism::before { + content: "\f67b"; } + +.fa-arrow-down-up-across-line::before { + content: "\e4af"; } + +.fa-spoon::before { + content: "\f2e5"; } + +.fa-utensil-spoon::before { + content: "\f2e5"; } + +.fa-jar-wheat::before { + content: "\e517"; } + +.fa-envelopes-bulk::before { + content: "\f674"; } + +.fa-mail-bulk::before { + content: "\f674"; } + +.fa-file-circle-exclamation::before { + content: "\e4eb"; } + +.fa-circle-h::before { + content: "\f47e"; } + +.fa-hospital-symbol::before { + content: "\f47e"; } + +.fa-pager::before { + content: "\f815"; } + +.fa-address-book::before { + content: "\f2b9"; } + +.fa-contact-book::before { + content: "\f2b9"; } + +.fa-strikethrough::before { + content: "\f0cc"; } + +.fa-k::before { + content: "\4b"; } + +.fa-landmark-flag::before { + content: "\e51c"; } + +.fa-pencil::before { + content: "\f303"; } + +.fa-pencil-alt::before { + content: "\f303"; } + +.fa-backward::before { + content: "\f04a"; } + +.fa-caret-right::before { + content: "\f0da"; } + +.fa-comments::before { + content: "\f086"; } + +.fa-paste::before { + content: "\f0ea"; } + +.fa-file-clipboard::before { + content: "\f0ea"; } + +.fa-code-pull-request::before { + content: "\e13c"; } + +.fa-clipboard-list::before { + content: "\f46d"; } + +.fa-truck-ramp-box::before { + content: "\f4de"; } + +.fa-truck-loading::before { + content: "\f4de"; } + +.fa-user-check::before { + content: "\f4fc"; } + +.fa-vial-virus::before { + content: "\e597"; } + +.fa-sheet-plastic::before { + content: "\e571"; } + +.fa-blog::before { + content: "\f781"; } + +.fa-user-ninja::before { + content: "\f504"; } + +.fa-person-arrow-up-from-line::before { + content: "\e539"; } + +.fa-scroll-torah::before { + content: "\f6a0"; } + +.fa-torah::before { + content: "\f6a0"; } + +.fa-broom-ball::before { + content: "\f458"; } + +.fa-quidditch::before { + content: "\f458"; } + +.fa-quidditch-broom-ball::before { + content: "\f458"; } + +.fa-toggle-off::before { + content: "\f204"; } + +.fa-box-archive::before { + content: "\f187"; } + +.fa-archive::before { + content: "\f187"; } + +.fa-person-drowning::before { + content: "\e545"; } + +.fa-arrow-down-9-1::before { + content: "\f886"; } + +.fa-sort-numeric-desc::before { + content: "\f886"; } + +.fa-sort-numeric-down-alt::before { + content: "\f886"; } + +.fa-face-grin-tongue-squint::before { + content: "\f58a"; } + +.fa-grin-tongue-squint::before { + content: "\f58a"; } + +.fa-spray-can::before { + content: "\f5bd"; } + +.fa-truck-monster::before { + content: "\f63b"; } + +.fa-w::before { + content: "\57"; } + +.fa-earth-africa::before { + content: "\f57c"; } + +.fa-globe-africa::before { + content: "\f57c"; } + +.fa-rainbow::before { + content: "\f75b"; } + +.fa-circle-notch::before { + content: "\f1ce"; } + +.fa-tablet-screen-button::before { + content: "\f3fa"; } + +.fa-tablet-alt::before { + content: "\f3fa"; } + +.fa-paw::before { + content: "\f1b0"; } + +.fa-cloud::before { + content: "\f0c2"; } + +.fa-trowel-bricks::before { + content: "\e58a"; } + +.fa-face-flushed::before { + content: "\f579"; } + +.fa-flushed::before { + content: "\f579"; } + +.fa-hospital-user::before { + content: "\f80d"; } + +.fa-tent-arrow-left-right::before { + content: "\e57f"; } + +.fa-gavel::before { + content: "\f0e3"; } + +.fa-legal::before { + content: "\f0e3"; } + +.fa-binoculars::before { + content: "\f1e5"; } + +.fa-microphone-slash::before { + content: "\f131"; } + +.fa-box-tissue::before { + content: "\e05b"; } + +.fa-motorcycle::before { + content: "\f21c"; } + +.fa-bell-concierge::before { + content: "\f562"; } + +.fa-concierge-bell::before { + content: "\f562"; } + +.fa-pen-ruler::before { + content: "\f5ae"; } + +.fa-pencil-ruler::before { + content: "\f5ae"; } + +.fa-people-arrows::before { + content: "\e068"; } + +.fa-people-arrows-left-right::before { + content: "\e068"; } + +.fa-mars-and-venus-burst::before { + content: "\e523"; } + +.fa-square-caret-right::before { + content: "\f152"; } + +.fa-caret-square-right::before { + content: "\f152"; } + +.fa-scissors::before { + content: "\f0c4"; } + +.fa-cut::before { + content: "\f0c4"; } + +.fa-sun-plant-wilt::before { + content: "\e57a"; } + +.fa-toilets-portable::before { + content: "\e584"; } + +.fa-hockey-puck::before { + content: "\f453"; } + +.fa-table::before { + content: "\f0ce"; } + +.fa-magnifying-glass-arrow-right::before { + content: "\e521"; } + +.fa-tachograph-digital::before { + content: "\f566"; } + +.fa-digital-tachograph::before { + content: "\f566"; } + +.fa-users-slash::before { + content: "\e073"; } + +.fa-clover::before { + content: "\e139"; } + +.fa-reply::before { + content: "\f3e5"; } + +.fa-mail-reply::before { + content: "\f3e5"; } + +.fa-star-and-crescent::before { + content: "\f699"; } + +.fa-house-fire::before { + content: "\e50c"; } + +.fa-square-minus::before { + content: "\f146"; } + +.fa-minus-square::before { + content: "\f146"; } + +.fa-helicopter::before { + content: "\f533"; } + +.fa-compass::before { + content: "\f14e"; } + +.fa-square-caret-down::before { + content: "\f150"; } + +.fa-caret-square-down::before { + content: "\f150"; } + +.fa-file-circle-question::before { + content: "\e4ef"; } + +.fa-laptop-code::before { + content: "\f5fc"; } + +.fa-swatchbook::before { + content: "\f5c3"; } + +.fa-prescription-bottle::before { + content: "\f485"; } + +.fa-bars::before { + content: "\f0c9"; } + +.fa-navicon::before { + content: "\f0c9"; } + +.fa-people-group::before { + content: "\e533"; } + +.fa-hourglass-end::before { + content: "\f253"; } + +.fa-hourglass-3::before { + content: "\f253"; } + +.fa-heart-crack::before { + content: "\f7a9"; } + +.fa-heart-broken::before { + content: "\f7a9"; } + +.fa-square-up-right::before { + content: "\f360"; } + +.fa-external-link-square-alt::before { + content: "\f360"; } + +.fa-face-kiss-beam::before { + content: "\f597"; } + +.fa-kiss-beam::before { + content: "\f597"; } + +.fa-film::before { + content: "\f008"; } + +.fa-ruler-horizontal::before { + content: "\f547"; } + +.fa-people-robbery::before { + content: "\e536"; } + +.fa-lightbulb::before { + content: "\f0eb"; } + +.fa-caret-left::before { + content: "\f0d9"; } + +.fa-circle-exclamation::before { + content: "\f06a"; } + +.fa-exclamation-circle::before { + content: "\f06a"; } + +.fa-school-circle-xmark::before { + content: "\e56d"; } + +.fa-arrow-right-from-bracket::before { + content: "\f08b"; } + +.fa-sign-out::before { + content: "\f08b"; } + +.fa-circle-chevron-down::before { + content: "\f13a"; } + +.fa-chevron-circle-down::before { + content: "\f13a"; } + +.fa-unlock-keyhole::before { + content: "\f13e"; } + +.fa-unlock-alt::before { + content: "\f13e"; } + +.fa-cloud-showers-heavy::before { + content: "\f740"; } + +.fa-headphones-simple::before { + content: "\f58f"; } + +.fa-headphones-alt::before { + content: "\f58f"; } + +.fa-sitemap::before { + content: "\f0e8"; } + +.fa-circle-dollar-to-slot::before { + content: "\f4b9"; } + +.fa-donate::before { + content: "\f4b9"; } + +.fa-memory::before { + content: "\f538"; } + +.fa-road-spikes::before { + content: "\e568"; } + +.fa-fire-burner::before { + content: "\e4f1"; } + +.fa-flag::before { + content: "\f024"; } + +.fa-hanukiah::before { + content: "\f6e6"; } + +.fa-feather::before { + content: "\f52d"; } + +.fa-volume-low::before { + content: "\f027"; } + +.fa-volume-down::before { + content: "\f027"; } + +.fa-comment-slash::before { + content: "\f4b3"; } + +.fa-cloud-sun-rain::before { + content: "\f743"; } + +.fa-compress::before { + content: "\f066"; } + +.fa-wheat-awn::before { + content: "\e2cd"; } + +.fa-wheat-alt::before { + content: "\e2cd"; } + +.fa-ankh::before { + content: "\f644"; } + +.fa-hands-holding-child::before { + content: "\e4fa"; } + +.fa-asterisk::before { + content: "\2a"; } + +.fa-square-check::before { + content: "\f14a"; } + +.fa-check-square::before { + content: "\f14a"; } + +.fa-peseta-sign::before { + content: "\e221"; } + +.fa-heading::before { + content: "\f1dc"; } + +.fa-header::before { + content: "\f1dc"; } + +.fa-ghost::before { + content: "\f6e2"; } + +.fa-list::before { + content: "\f03a"; } + +.fa-list-squares::before { + content: "\f03a"; } + +.fa-square-phone-flip::before { + content: "\f87b"; } + +.fa-phone-square-alt::before { + content: "\f87b"; } + +.fa-cart-plus::before { + content: "\f217"; } + +.fa-gamepad::before { + content: "\f11b"; } + +.fa-circle-dot::before { + content: "\f192"; } + +.fa-dot-circle::before { + content: "\f192"; } + +.fa-face-dizzy::before { + content: "\f567"; } + +.fa-dizzy::before { + content: "\f567"; } + +.fa-egg::before { + content: "\f7fb"; } + +.fa-house-medical-circle-xmark::before { + content: "\e513"; } + +.fa-campground::before { + content: "\f6bb"; } + +.fa-folder-plus::before { + content: "\f65e"; } + +.fa-futbol::before { + content: "\f1e3"; } + +.fa-futbol-ball::before { + content: "\f1e3"; } + +.fa-soccer-ball::before { + content: "\f1e3"; } + +.fa-paintbrush::before { + content: "\f1fc"; } + +.fa-paint-brush::before { + content: "\f1fc"; } + +.fa-lock::before { + content: "\f023"; } + +.fa-gas-pump::before { + content: "\f52f"; } + +.fa-hot-tub-person::before { + content: "\f593"; } + +.fa-hot-tub::before { + content: "\f593"; } + +.fa-map-location::before { + content: "\f59f"; } + +.fa-map-marked::before { + content: "\f59f"; } + +.fa-house-flood-water::before { + content: "\e50e"; } + +.fa-tree::before { + content: "\f1bb"; } + +.fa-bridge-lock::before { + content: "\e4cc"; } + +.fa-sack-dollar::before { + content: "\f81d"; } + +.fa-pen-to-square::before { + content: "\f044"; } + +.fa-edit::before { + content: "\f044"; } + +.fa-car-side::before { + content: "\f5e4"; } + +.fa-share-nodes::before { + content: "\f1e0"; } + +.fa-share-alt::before { + content: "\f1e0"; } + +.fa-heart-circle-minus::before { + content: "\e4ff"; } + +.fa-hourglass-half::before { + content: "\f252"; } + +.fa-hourglass-2::before { + content: "\f252"; } + +.fa-microscope::before { + content: "\f610"; } + +.fa-sink::before { + content: "\e06d"; } + +.fa-bag-shopping::before { + content: "\f290"; } + +.fa-shopping-bag::before { + content: "\f290"; } + +.fa-arrow-down-z-a::before { + content: "\f881"; } + +.fa-sort-alpha-desc::before { + content: "\f881"; } + +.fa-sort-alpha-down-alt::before { + content: "\f881"; } + +.fa-mitten::before { + content: "\f7b5"; } + +.fa-person-rays::before { + content: "\e54d"; } + +.fa-users::before { + content: "\f0c0"; } + +.fa-eye-slash::before { + content: "\f070"; } + +.fa-flask-vial::before { + content: "\e4f3"; } + +.fa-hand::before { + content: "\f256"; } + +.fa-hand-paper::before { + content: "\f256"; } + +.fa-om::before { + content: "\f679"; } + +.fa-worm::before { + content: "\e599"; } + +.fa-house-circle-xmark::before { + content: "\e50b"; } + +.fa-plug::before { + content: "\f1e6"; } + +.fa-chevron-up::before { + content: "\f077"; } + +.fa-hand-spock::before { + content: "\f259"; } + +.fa-stopwatch::before { + content: "\f2f2"; } + +.fa-face-kiss::before { + content: "\f596"; } + +.fa-kiss::before { + content: "\f596"; } + +.fa-bridge-circle-xmark::before { + content: "\e4cb"; } + +.fa-face-grin-tongue::before { + content: "\f589"; } + +.fa-grin-tongue::before { + content: "\f589"; } + +.fa-chess-bishop::before { + content: "\f43a"; } + +.fa-face-grin-wink::before { + content: "\f58c"; } + +.fa-grin-wink::before { + content: "\f58c"; } + +.fa-ear-deaf::before { + content: "\f2a4"; } + +.fa-deaf::before { + content: "\f2a4"; } + +.fa-deafness::before { + content: "\f2a4"; } + +.fa-hard-of-hearing::before { + content: "\f2a4"; } + +.fa-road-circle-check::before { + content: "\e564"; } + +.fa-dice-five::before { + content: "\f523"; } + +.fa-square-rss::before { + content: "\f143"; } + +.fa-rss-square::before { + content: "\f143"; } + +.fa-land-mine-on::before { + content: "\e51b"; } + +.fa-i-cursor::before { + content: "\f246"; } + +.fa-stamp::before { + content: "\f5bf"; } + +.fa-stairs::before { + content: "\e289"; } + +.fa-i::before { + content: "\49"; } + +.fa-hryvnia-sign::before { + content: "\f6f2"; } + +.fa-hryvnia::before { + content: "\f6f2"; } + +.fa-pills::before { + content: "\f484"; } + +.fa-face-grin-wide::before { + content: "\f581"; } + +.fa-grin-alt::before { + content: "\f581"; } + +.fa-tooth::before { + content: "\f5c9"; } + +.fa-v::before { + content: "\56"; } + +.fa-bangladeshi-taka-sign::before { + content: "\e2e6"; } + +.fa-bicycle::before { + content: "\f206"; } + +.fa-staff-snake::before { + content: "\e579"; } + +.fa-rod-asclepius::before { + content: "\e579"; } + +.fa-rod-snake::before { + content: "\e579"; } + +.fa-staff-aesculapius::before { + content: "\e579"; } + +.fa-head-side-cough-slash::before { + content: "\e062"; } + +.fa-truck-medical::before { + content: "\f0f9"; } + +.fa-ambulance::before { + content: "\f0f9"; } + +.fa-wheat-awn-circle-exclamation::before { + content: "\e598"; } + +.fa-snowman::before { + content: "\f7d0"; } + +.fa-mortar-pestle::before { + content: "\f5a7"; } + +.fa-road-barrier::before { + content: "\e562"; } + +.fa-school::before { + content: "\f549"; } + +.fa-igloo::before { + content: "\f7ae"; } + +.fa-joint::before { + content: "\f595"; } + +.fa-angle-right::before { + content: "\f105"; } + +.fa-horse::before { + content: "\f6f0"; } + +.fa-q::before { + content: "\51"; } + +.fa-g::before { + content: "\47"; } + +.fa-notes-medical::before { + content: "\f481"; } + +.fa-temperature-half::before { + content: "\f2c9"; } + +.fa-temperature-2::before { + content: "\f2c9"; } + +.fa-thermometer-2::before { + content: "\f2c9"; } + +.fa-thermometer-half::before { + content: "\f2c9"; } + +.fa-dong-sign::before { + content: "\e169"; } + +.fa-capsules::before { + content: "\f46b"; } + +.fa-poo-storm::before { + content: "\f75a"; } + +.fa-poo-bolt::before { + content: "\f75a"; } + +.fa-face-frown-open::before { + content: "\f57a"; } + +.fa-frown-open::before { + content: "\f57a"; } + +.fa-hand-point-up::before { + content: "\f0a6"; } + +.fa-money-bill::before { + content: "\f0d6"; } + +.fa-bookmark::before { + content: "\f02e"; } + +.fa-align-justify::before { + content: "\f039"; } + +.fa-umbrella-beach::before { + content: "\f5ca"; } + +.fa-helmet-un::before { + content: "\e503"; } + +.fa-bullseye::before { + content: "\f140"; } + +.fa-bacon::before { + content: "\f7e5"; } + +.fa-hand-point-down::before { + content: "\f0a7"; } + +.fa-arrow-up-from-bracket::before { + content: "\e09a"; } + +.fa-folder::before { + content: "\f07b"; } + +.fa-folder-blank::before { + content: "\f07b"; } + +.fa-file-waveform::before { + content: "\f478"; } + +.fa-file-medical-alt::before { + content: "\f478"; } + +.fa-radiation::before { + content: "\f7b9"; } + +.fa-chart-simple::before { + content: "\e473"; } + +.fa-mars-stroke::before { + content: "\f229"; } + +.fa-vial::before { + content: "\f492"; } + +.fa-gauge::before { + content: "\f624"; } + +.fa-dashboard::before { + content: "\f624"; } + +.fa-gauge-med::before { + content: "\f624"; } + +.fa-tachometer-alt-average::before { + content: "\f624"; } + +.fa-wand-magic-sparkles::before { + content: "\e2ca"; } + +.fa-magic-wand-sparkles::before { + content: "\e2ca"; } + +.fa-e::before { + content: "\45"; } + +.fa-pen-clip::before { + content: "\f305"; } + +.fa-pen-alt::before { + content: "\f305"; } + +.fa-bridge-circle-exclamation::before { + content: "\e4ca"; } + +.fa-user::before { + content: "\f007"; } + +.fa-school-circle-check::before { + content: "\e56b"; } + +.fa-dumpster::before { + content: "\f793"; } + +.fa-van-shuttle::before { + content: "\f5b6"; } + +.fa-shuttle-van::before { + content: "\f5b6"; } + +.fa-building-user::before { + content: "\e4da"; } + +.fa-square-caret-left::before { + content: "\f191"; } + +.fa-caret-square-left::before { + content: "\f191"; } + +.fa-highlighter::before { + content: "\f591"; } + +.fa-key::before { + content: "\f084"; } + +.fa-bullhorn::before { + content: "\f0a1"; } + +.fa-globe::before { + content: "\f0ac"; } + +.fa-synagogue::before { + content: "\f69b"; } + +.fa-person-half-dress::before { + content: "\e548"; } + +.fa-road-bridge::before { + content: "\e563"; } + +.fa-location-arrow::before { + content: "\f124"; } + +.fa-c::before { + content: "\43"; } + +.fa-tablet-button::before { + content: "\f10a"; } + +.fa-building-lock::before { + content: "\e4d6"; } + +.fa-pizza-slice::before { + content: "\f818"; } + +.fa-money-bill-wave::before { + content: "\f53a"; } + +.fa-chart-area::before { + content: "\f1fe"; } + +.fa-area-chart::before { + content: "\f1fe"; } + +.fa-house-flag::before { + content: "\e50d"; } + +.fa-person-circle-minus::before { + content: "\e540"; } + +.fa-ban::before { + content: "\f05e"; } + +.fa-cancel::before { + content: "\f05e"; } + +.fa-camera-rotate::before { + content: "\e0d8"; } + +.fa-spray-can-sparkles::before { + content: "\f5d0"; } + +.fa-air-freshener::before { + content: "\f5d0"; } + +.fa-star::before { + content: "\f005"; } + +.fa-repeat::before { + content: "\f363"; } + +.fa-cross::before { + content: "\f654"; } + +.fa-box::before { + content: "\f466"; } + +.fa-venus-mars::before { + content: "\f228"; } + +.fa-arrow-pointer::before { + content: "\f245"; } + +.fa-mouse-pointer::before { + content: "\f245"; } + +.fa-maximize::before { + content: "\f31e"; } + +.fa-expand-arrows-alt::before { + content: "\f31e"; } + +.fa-charging-station::before { + content: "\f5e7"; } + +.fa-shapes::before { + content: "\f61f"; } + +.fa-triangle-circle-square::before { + content: "\f61f"; } + +.fa-shuffle::before { + content: "\f074"; } + +.fa-random::before { + content: "\f074"; } + +.fa-person-running::before { + content: "\f70c"; } + +.fa-running::before { + content: "\f70c"; } + +.fa-mobile-retro::before { + content: "\e527"; } + +.fa-grip-lines-vertical::before { + content: "\f7a5"; } + +.fa-spider::before { + content: "\f717"; } + +.fa-hands-bound::before { + content: "\e4f9"; } + +.fa-file-invoice-dollar::before { + content: "\f571"; } + +.fa-plane-circle-exclamation::before { + content: "\e556"; } + +.fa-x-ray::before { + content: "\f497"; } + +.fa-spell-check::before { + content: "\f891"; } + +.fa-slash::before { + content: "\f715"; } + +.fa-computer-mouse::before { + content: "\f8cc"; } + +.fa-mouse::before { + content: "\f8cc"; } + +.fa-arrow-right-to-bracket::before { + content: "\f090"; } + +.fa-sign-in::before { + content: "\f090"; } + +.fa-shop-slash::before { + content: "\e070"; } + +.fa-store-alt-slash::before { + content: "\e070"; } + +.fa-server::before { + content: "\f233"; } + +.fa-virus-covid-slash::before { + content: "\e4a9"; } + +.fa-shop-lock::before { + content: "\e4a5"; } + +.fa-hourglass-start::before { + content: "\f251"; } + +.fa-hourglass-1::before { + content: "\f251"; } + +.fa-blender-phone::before { + content: "\f6b6"; } + +.fa-building-wheat::before { + content: "\e4db"; } + +.fa-person-breastfeeding::before { + content: "\e53a"; } + +.fa-right-to-bracket::before { + content: "\f2f6"; } + +.fa-sign-in-alt::before { + content: "\f2f6"; } + +.fa-venus::before { + content: "\f221"; } + +.fa-passport::before { + content: "\f5ab"; } + +.fa-heart-pulse::before { + content: "\f21e"; } + +.fa-heartbeat::before { + content: "\f21e"; } + +.fa-people-carry-box::before { + content: "\f4ce"; } + +.fa-people-carry::before { + content: "\f4ce"; } + +.fa-temperature-high::before { + content: "\f769"; } + +.fa-microchip::before { + content: "\f2db"; } + +.fa-crown::before { + content: "\f521"; } + +.fa-weight-hanging::before { + content: "\f5cd"; } + +.fa-xmarks-lines::before { + content: "\e59a"; } + +.fa-file-prescription::before { + content: "\f572"; } + +.fa-weight-scale::before { + content: "\f496"; } + +.fa-weight::before { + content: "\f496"; } + +.fa-user-group::before { + content: "\f500"; } + +.fa-user-friends::before { + content: "\f500"; } + +.fa-arrow-up-a-z::before { + content: "\f15e"; } + +.fa-sort-alpha-up::before { + content: "\f15e"; } + +.fa-chess-knight::before { + content: "\f441"; } + +.fa-face-laugh-squint::before { + content: "\f59b"; } + +.fa-laugh-squint::before { + content: "\f59b"; } + +.fa-wheelchair::before { + content: "\f193"; } + +.fa-circle-arrow-up::before { + content: "\f0aa"; } + +.fa-arrow-circle-up::before { + content: "\f0aa"; } + +.fa-toggle-on::before { + content: "\f205"; } + +.fa-person-walking::before { + content: "\f554"; } + +.fa-walking::before { + content: "\f554"; } + +.fa-l::before { + content: "\4c"; } + +.fa-fire::before { + content: "\f06d"; } + +.fa-bed-pulse::before { + content: "\f487"; } + +.fa-procedures::before { + content: "\f487"; } + +.fa-shuttle-space::before { + content: "\f197"; } + +.fa-space-shuttle::before { + content: "\f197"; } + +.fa-face-laugh::before { + content: "\f599"; } + +.fa-laugh::before { + content: "\f599"; } + +.fa-folder-open::before { + content: "\f07c"; } + +.fa-heart-circle-plus::before { + content: "\e500"; } + +.fa-code-fork::before { + content: "\e13b"; } + +.fa-city::before { + content: "\f64f"; } + +.fa-microphone-lines::before { + content: "\f3c9"; } + +.fa-microphone-alt::before { + content: "\f3c9"; } + +.fa-pepper-hot::before { + content: "\f816"; } + +.fa-unlock::before { + content: "\f09c"; } + +.fa-colon-sign::before { + content: "\e140"; } + +.fa-headset::before { + content: "\f590"; } + +.fa-store-slash::before { + content: "\e071"; } + +.fa-road-circle-xmark::before { + content: "\e566"; } + +.fa-user-minus::before { + content: "\f503"; } + +.fa-mars-stroke-up::before { + content: "\f22a"; } + +.fa-mars-stroke-v::before { + content: "\f22a"; } + +.fa-champagne-glasses::before { + content: "\f79f"; } + +.fa-glass-cheers::before { + content: "\f79f"; } + +.fa-clipboard::before { + content: "\f328"; } + +.fa-house-circle-exclamation::before { + content: "\e50a"; } + +.fa-file-arrow-up::before { + content: "\f574"; } + +.fa-file-upload::before { + content: "\f574"; } + +.fa-wifi::before { + content: "\f1eb"; } + +.fa-wifi-3::before { + content: "\f1eb"; } + +.fa-wifi-strong::before { + content: "\f1eb"; } + +.fa-bath::before { + content: "\f2cd"; } + +.fa-bathtub::before { + content: "\f2cd"; } + +.fa-underline::before { + content: "\f0cd"; } + +.fa-user-pen::before { + content: "\f4ff"; } + +.fa-user-edit::before { + content: "\f4ff"; } + +.fa-signature::before { + content: "\f5b7"; } + +.fa-stroopwafel::before { + content: "\f551"; } + +.fa-bold::before { + content: "\f032"; } + +.fa-anchor-lock::before { + content: "\e4ad"; } + +.fa-building-ngo::before { + content: "\e4d7"; } + +.fa-manat-sign::before { + content: "\e1d5"; } + +.fa-not-equal::before { + content: "\f53e"; } + +.fa-border-top-left::before { + content: "\f853"; } + +.fa-border-style::before { + content: "\f853"; } + +.fa-map-location-dot::before { + content: "\f5a0"; } + +.fa-map-marked-alt::before { + content: "\f5a0"; } + +.fa-jedi::before { + content: "\f669"; } + +.fa-square-poll-vertical::before { + content: "\f681"; } + +.fa-poll::before { + content: "\f681"; } + +.fa-mug-hot::before { + content: "\f7b6"; } + +.fa-car-battery::before { + content: "\f5df"; } + +.fa-battery-car::before { + content: "\f5df"; } + +.fa-gift::before { + content: "\f06b"; } + +.fa-dice-two::before { + content: "\f528"; } + +.fa-chess-queen::before { + content: "\f445"; } + +.fa-glasses::before { + content: "\f530"; } + +.fa-chess-board::before { + content: "\f43c"; } + +.fa-building-circle-check::before { + content: "\e4d2"; } + +.fa-person-chalkboard::before { + content: "\e53d"; } + +.fa-mars-stroke-right::before { + content: "\f22b"; } + +.fa-mars-stroke-h::before { + content: "\f22b"; } + +.fa-hand-back-fist::before { + content: "\f255"; } + +.fa-hand-rock::before { + content: "\f255"; } + +.fa-square-caret-up::before { + content: "\f151"; } + +.fa-caret-square-up::before { + content: "\f151"; } + +.fa-cloud-showers-water::before { + content: "\e4e4"; } + +.fa-chart-bar::before { + content: "\f080"; } + +.fa-bar-chart::before { + content: "\f080"; } + +.fa-hands-bubbles::before { + content: "\e05e"; } + +.fa-hands-wash::before { + content: "\e05e"; } + +.fa-less-than-equal::before { + content: "\f537"; } + +.fa-train::before { + content: "\f238"; } + +.fa-eye-low-vision::before { + content: "\f2a8"; } + +.fa-low-vision::before { + content: "\f2a8"; } + +.fa-crow::before { + content: "\f520"; } + +.fa-sailboat::before { + content: "\e445"; } + +.fa-window-restore::before { + content: "\f2d2"; } + +.fa-square-plus::before { + content: "\f0fe"; } + +.fa-plus-square::before { + content: "\f0fe"; } + +.fa-torii-gate::before { + content: "\f6a1"; } + +.fa-frog::before { + content: "\f52e"; } + +.fa-bucket::before { + content: "\e4cf"; } + +.fa-image::before { + content: "\f03e"; } + +.fa-microphone::before { + content: "\f130"; } + +.fa-cow::before { + content: "\f6c8"; } + +.fa-caret-up::before { + content: "\f0d8"; } + +.fa-screwdriver::before { + content: "\f54a"; } + +.fa-folder-closed::before { + content: "\e185"; } + +.fa-house-tsunami::before { + content: "\e515"; } + +.fa-square-nfi::before { + content: "\e576"; } + +.fa-arrow-up-from-ground-water::before { + content: "\e4b5"; } + +.fa-martini-glass::before { + content: "\f57b"; } + +.fa-glass-martini-alt::before { + content: "\f57b"; } + +.fa-rotate-left::before { + content: "\f2ea"; } + +.fa-rotate-back::before { + content: "\f2ea"; } + +.fa-rotate-backward::before { + content: "\f2ea"; } + +.fa-undo-alt::before { + content: "\f2ea"; } + +.fa-table-columns::before { + content: "\f0db"; } + +.fa-columns::before { + content: "\f0db"; } + +.fa-lemon::before { + content: "\f094"; } + +.fa-head-side-mask::before { + content: "\e063"; } + +.fa-handshake::before { + content: "\f2b5"; } + +.fa-gem::before { + content: "\f3a5"; } + +.fa-dolly::before { + content: "\f472"; } + +.fa-dolly-box::before { + content: "\f472"; } + +.fa-smoking::before { + content: "\f48d"; } + +.fa-minimize::before { + content: "\f78c"; } + +.fa-compress-arrows-alt::before { + content: "\f78c"; } + +.fa-monument::before { + content: "\f5a6"; } + +.fa-snowplow::before { + content: "\f7d2"; } + +.fa-angles-right::before { + content: "\f101"; } + +.fa-angle-double-right::before { + content: "\f101"; } + +.fa-cannabis::before { + content: "\f55f"; } + +.fa-circle-play::before { + content: "\f144"; } + +.fa-play-circle::before { + content: "\f144"; } + +.fa-tablets::before { + content: "\f490"; } + +.fa-ethernet::before { + content: "\f796"; } + +.fa-euro-sign::before { + content: "\f153"; } + +.fa-eur::before { + content: "\f153"; } + +.fa-euro::before { + content: "\f153"; } + +.fa-chair::before { + content: "\f6c0"; } + +.fa-circle-check::before { + content: "\f058"; } + +.fa-check-circle::before { + content: "\f058"; } + +.fa-circle-stop::before { + content: "\f28d"; } + +.fa-stop-circle::before { + content: "\f28d"; } + +.fa-compass-drafting::before { + content: "\f568"; } + +.fa-drafting-compass::before { + content: "\f568"; } + +.fa-plate-wheat::before { + content: "\e55a"; } + +.fa-icicles::before { + content: "\f7ad"; } + +.fa-person-shelter::before { + content: "\e54f"; } + +.fa-neuter::before { + content: "\f22c"; } + +.fa-id-badge::before { + content: "\f2c1"; } + +.fa-marker::before { + content: "\f5a1"; } + +.fa-face-laugh-beam::before { + content: "\f59a"; } + +.fa-laugh-beam::before { + content: "\f59a"; } + +.fa-helicopter-symbol::before { + content: "\e502"; } + +.fa-universal-access::before { + content: "\f29a"; } + +.fa-circle-chevron-up::before { + content: "\f139"; } + +.fa-chevron-circle-up::before { + content: "\f139"; } + +.fa-lari-sign::before { + content: "\e1c8"; } + +.fa-volcano::before { + content: "\f770"; } + +.fa-person-walking-dashed-line-arrow-right::before { + content: "\e553"; } + +.fa-sterling-sign::before { + content: "\f154"; } + +.fa-gbp::before { + content: "\f154"; } + +.fa-pound-sign::before { + content: "\f154"; } + +.fa-viruses::before { + content: "\e076"; } + +.fa-square-person-confined::before { + content: "\e577"; } + +.fa-user-tie::before { + content: "\f508"; } + +.fa-arrow-down-long::before { + content: "\f175"; } + +.fa-long-arrow-down::before { + content: "\f175"; } + +.fa-tent-arrow-down-to-line::before { + content: "\e57e"; } + +.fa-certificate::before { + content: "\f0a3"; } + +.fa-reply-all::before { + content: "\f122"; } + +.fa-mail-reply-all::before { + content: "\f122"; } + +.fa-suitcase::before { + content: "\f0f2"; } + +.fa-person-skating::before { + content: "\f7c5"; } + +.fa-skating::before { + content: "\f7c5"; } + +.fa-filter-circle-dollar::before { + content: "\f662"; } + +.fa-funnel-dollar::before { + content: "\f662"; } + +.fa-camera-retro::before { + content: "\f083"; } + +.fa-circle-arrow-down::before { + content: "\f0ab"; } + +.fa-arrow-circle-down::before { + content: "\f0ab"; } + +.fa-file-import::before { + content: "\f56f"; } + +.fa-arrow-right-to-file::before { + content: "\f56f"; } + +.fa-square-arrow-up-right::before { + content: "\f14c"; } + +.fa-external-link-square::before { + content: "\f14c"; } + +.fa-box-open::before { + content: "\f49e"; } + +.fa-scroll::before { + content: "\f70e"; } + +.fa-spa::before { + content: "\f5bb"; } + +.fa-location-pin-lock::before { + content: "\e51f"; } + +.fa-pause::before { + content: "\f04c"; } + +.fa-hill-avalanche::before { + content: "\e507"; } + +.fa-temperature-empty::before { + content: "\f2cb"; } + +.fa-temperature-0::before { + content: "\f2cb"; } + +.fa-thermometer-0::before { + content: "\f2cb"; } + +.fa-thermometer-empty::before { + content: "\f2cb"; } + +.fa-bomb::before { + content: "\f1e2"; } + +.fa-registered::before { + content: "\f25d"; } + +.fa-address-card::before { + content: "\f2bb"; } + +.fa-contact-card::before { + content: "\f2bb"; } + +.fa-vcard::before { + content: "\f2bb"; } + +.fa-scale-unbalanced-flip::before { + content: "\f516"; } + +.fa-balance-scale-right::before { + content: "\f516"; } + +.fa-subscript::before { + content: "\f12c"; } + +.fa-diamond-turn-right::before { + content: "\f5eb"; } + +.fa-directions::before { + content: "\f5eb"; } + +.fa-burst::before { + content: "\e4dc"; } + +.fa-house-laptop::before { + content: "\e066"; } + +.fa-laptop-house::before { + content: "\e066"; } + +.fa-face-tired::before { + content: "\f5c8"; } + +.fa-tired::before { + content: "\f5c8"; } + +.fa-money-bills::before { + content: "\e1f3"; } + +.fa-smog::before { + content: "\f75f"; } + +.fa-crutch::before { + content: "\f7f7"; } + +.fa-cloud-arrow-up::before { + content: "\f0ee"; } + +.fa-cloud-upload::before { + content: "\f0ee"; } + +.fa-cloud-upload-alt::before { + content: "\f0ee"; } + +.fa-palette::before { + content: "\f53f"; } + +.fa-arrows-turn-right::before { + content: "\e4c0"; } + +.fa-vest::before { + content: "\e085"; } + +.fa-ferry::before { + content: "\e4ea"; } + +.fa-arrows-down-to-people::before { + content: "\e4b9"; } + +.fa-seedling::before { + content: "\f4d8"; } + +.fa-sprout::before { + content: "\f4d8"; } + +.fa-left-right::before { + content: "\f337"; } + +.fa-arrows-alt-h::before { + content: "\f337"; } + +.fa-boxes-packing::before { + content: "\e4c7"; } + +.fa-circle-arrow-left::before { + content: "\f0a8"; } + +.fa-arrow-circle-left::before { + content: "\f0a8"; } + +.fa-group-arrows-rotate::before { + content: "\e4f6"; } + +.fa-bowl-food::before { + content: "\e4c6"; } + +.fa-candy-cane::before { + content: "\f786"; } + +.fa-arrow-down-wide-short::before { + content: "\f160"; } + +.fa-sort-amount-asc::before { + content: "\f160"; } + +.fa-sort-amount-down::before { + content: "\f160"; } + +.fa-cloud-bolt::before { + content: "\f76c"; } + +.fa-thunderstorm::before { + content: "\f76c"; } + +.fa-text-slash::before { + content: "\f87d"; } + +.fa-remove-format::before { + content: "\f87d"; } + +.fa-face-smile-wink::before { + content: "\f4da"; } + +.fa-smile-wink::before { + content: "\f4da"; } + +.fa-file-word::before { + content: "\f1c2"; } + +.fa-file-powerpoint::before { + content: "\f1c4"; } + +.fa-arrows-left-right::before { + content: "\f07e"; } + +.fa-arrows-h::before { + content: "\f07e"; } + +.fa-house-lock::before { + content: "\e510"; } + +.fa-cloud-arrow-down::before { + content: "\f0ed"; } + +.fa-cloud-download::before { + content: "\f0ed"; } + +.fa-cloud-download-alt::before { + content: "\f0ed"; } + +.fa-children::before { + content: "\e4e1"; } + +.fa-chalkboard::before { + content: "\f51b"; } + +.fa-blackboard::before { + content: "\f51b"; } + +.fa-user-large-slash::before { + content: "\f4fa"; } + +.fa-user-alt-slash::before { + content: "\f4fa"; } + +.fa-envelope-open::before { + content: "\f2b6"; } + +.fa-handshake-simple-slash::before { + content: "\e05f"; } + +.fa-handshake-alt-slash::before { + content: "\e05f"; } + +.fa-mattress-pillow::before { + content: "\e525"; } + +.fa-guarani-sign::before { + content: "\e19a"; } + +.fa-arrows-rotate::before { + content: "\f021"; } + +.fa-refresh::before { + content: "\f021"; } + +.fa-sync::before { + content: "\f021"; } + +.fa-fire-extinguisher::before { + content: "\f134"; } + +.fa-cruzeiro-sign::before { + content: "\e152"; } + +.fa-greater-than-equal::before { + content: "\f532"; } + +.fa-shield-halved::before { + content: "\f3ed"; } + +.fa-shield-alt::before { + content: "\f3ed"; } + +.fa-book-atlas::before { + content: "\f558"; } + +.fa-atlas::before { + content: "\f558"; } + +.fa-virus::before { + content: "\e074"; } + +.fa-envelope-circle-check::before { + content: "\e4e8"; } + +.fa-layer-group::before { + content: "\f5fd"; } + +.fa-arrows-to-dot::before { + content: "\e4be"; } + +.fa-archway::before { + content: "\f557"; } + +.fa-heart-circle-check::before { + content: "\e4fd"; } + +.fa-house-chimney-crack::before { + content: "\f6f1"; } + +.fa-house-damage::before { + content: "\f6f1"; } + +.fa-file-zipper::before { + content: "\f1c6"; } + +.fa-file-archive::before { + content: "\f1c6"; } + +.fa-square::before { + content: "\f0c8"; } + +.fa-martini-glass-empty::before { + content: "\f000"; } + +.fa-glass-martini::before { + content: "\f000"; } + +.fa-couch::before { + content: "\f4b8"; } + +.fa-cedi-sign::before { + content: "\e0df"; } + +.fa-italic::before { + content: "\f033"; } + +.fa-church::before { + content: "\f51d"; } + +.fa-comments-dollar::before { + content: "\f653"; } + +.fa-democrat::before { + content: "\f747"; } + +.fa-z::before { + content: "\5a"; } + +.fa-person-skiing::before { + content: "\f7c9"; } + +.fa-skiing::before { + content: "\f7c9"; } + +.fa-road-lock::before { + content: "\e567"; } + +.fa-a::before { + content: "\41"; } + +.fa-temperature-arrow-down::before { + content: "\e03f"; } + +.fa-temperature-down::before { + content: "\e03f"; } + +.fa-feather-pointed::before { + content: "\f56b"; } + +.fa-feather-alt::before { + content: "\f56b"; } + +.fa-p::before { + content: "\50"; } + +.fa-snowflake::before { + content: "\f2dc"; } + +.fa-newspaper::before { + content: "\f1ea"; } + +.fa-rectangle-ad::before { + content: "\f641"; } + +.fa-ad::before { + content: "\f641"; } + +.fa-circle-arrow-right::before { + content: "\f0a9"; } + +.fa-arrow-circle-right::before { + content: "\f0a9"; } + +.fa-filter-circle-xmark::before { + content: "\e17b"; } + +.fa-locust::before { + content: "\e520"; } + +.fa-sort::before { + content: "\f0dc"; } + +.fa-unsorted::before { + content: "\f0dc"; } + +.fa-list-ol::before { + content: "\f0cb"; } + +.fa-list-1-2::before { + content: "\f0cb"; } + +.fa-list-numeric::before { + content: "\f0cb"; } + +.fa-person-dress-burst::before { + content: "\e544"; } + +.fa-money-check-dollar::before { + content: "\f53d"; } + +.fa-money-check-alt::before { + content: "\f53d"; } + +.fa-vector-square::before { + content: "\f5cb"; } + +.fa-bread-slice::before { + content: "\f7ec"; } + +.fa-language::before { + content: "\f1ab"; } + +.fa-face-kiss-wink-heart::before { + content: "\f598"; } + +.fa-kiss-wink-heart::before { + content: "\f598"; } + +.fa-filter::before { + content: "\f0b0"; } + +.fa-question::before { + content: "\3f"; } + +.fa-file-signature::before { + content: "\f573"; } + +.fa-up-down-left-right::before { + content: "\f0b2"; } + +.fa-arrows-alt::before { + content: "\f0b2"; } + +.fa-house-chimney-user::before { + content: "\e065"; } + +.fa-hand-holding-heart::before { + content: "\f4be"; } + +.fa-puzzle-piece::before { + content: "\f12e"; } + +.fa-money-check::before { + content: "\f53c"; } + +.fa-star-half-stroke::before { + content: "\f5c0"; } + +.fa-star-half-alt::before { + content: "\f5c0"; } + +.fa-code::before { + content: "\f121"; } + +.fa-whiskey-glass::before { + content: "\f7a0"; } + +.fa-glass-whiskey::before { + content: "\f7a0"; } + +.fa-building-circle-exclamation::before { + content: "\e4d3"; } + +.fa-magnifying-glass-chart::before { + content: "\e522"; } + +.fa-arrow-up-right-from-square::before { + content: "\f08e"; } + +.fa-external-link::before { + content: "\f08e"; } + +.fa-cubes-stacked::before { + content: "\e4e6"; } + +.fa-won-sign::before { + content: "\f159"; } + +.fa-krw::before { + content: "\f159"; } + +.fa-won::before { + content: "\f159"; } + +.fa-virus-covid::before { + content: "\e4a8"; } + +.fa-austral-sign::before { + content: "\e0a9"; } + +.fa-f::before { + content: "\46"; } + +.fa-leaf::before { + content: "\f06c"; } + +.fa-road::before { + content: "\f018"; } + +.fa-taxi::before { + content: "\f1ba"; } + +.fa-cab::before { + content: "\f1ba"; } + +.fa-person-circle-plus::before { + content: "\e541"; } + +.fa-chart-pie::before { + content: "\f200"; } + +.fa-pie-chart::before { + content: "\f200"; } + +.fa-bolt-lightning::before { + content: "\e0b7"; } + +.fa-sack-xmark::before { + content: "\e56a"; } + +.fa-file-excel::before { + content: "\f1c3"; } + +.fa-file-contract::before { + content: "\f56c"; } + +.fa-fish-fins::before { + content: "\e4f2"; } + +.fa-building-flag::before { + content: "\e4d5"; } + +.fa-face-grin-beam::before { + content: "\f582"; } + +.fa-grin-beam::before { + content: "\f582"; } + +.fa-object-ungroup::before { + content: "\f248"; } + +.fa-poop::before { + content: "\f619"; } + +.fa-location-pin::before { + content: "\f041"; } + +.fa-map-marker::before { + content: "\f041"; } + +.fa-kaaba::before { + content: "\f66b"; } + +.fa-toilet-paper::before { + content: "\f71e"; } + +.fa-helmet-safety::before { + content: "\f807"; } + +.fa-hard-hat::before { + content: "\f807"; } + +.fa-hat-hard::before { + content: "\f807"; } + +.fa-eject::before { + content: "\f052"; } + +.fa-circle-right::before { + content: "\f35a"; } + +.fa-arrow-alt-circle-right::before { + content: "\f35a"; } + +.fa-plane-circle-check::before { + content: "\e555"; } + +.fa-face-rolling-eyes::before { + content: "\f5a5"; } + +.fa-meh-rolling-eyes::before { + content: "\f5a5"; } + +.fa-object-group::before { + content: "\f247"; } + +.fa-chart-line::before { + content: "\f201"; } + +.fa-line-chart::before { + content: "\f201"; } + +.fa-mask-ventilator::before { + content: "\e524"; } + +.fa-arrow-right::before { + content: "\f061"; } + +.fa-signs-post::before { + content: "\f277"; } + +.fa-map-signs::before { + content: "\f277"; } + +.fa-cash-register::before { + content: "\f788"; } + +.fa-person-circle-question::before { + content: "\e542"; } + +.fa-h::before { + content: "\48"; } + +.fa-tarp::before { + content: "\e57b"; } + +.fa-screwdriver-wrench::before { + content: "\f7d9"; } + +.fa-tools::before { + content: "\f7d9"; } + +.fa-arrows-to-eye::before { + content: "\e4bf"; } + +.fa-plug-circle-bolt::before { + content: "\e55b"; } + +.fa-heart::before { + content: "\f004"; } + +.fa-mars-and-venus::before { + content: "\f224"; } + +.fa-house-user::before { + content: "\e1b0"; } + +.fa-home-user::before { + content: "\e1b0"; } + +.fa-dumpster-fire::before { + content: "\f794"; } + +.fa-house-crack::before { + content: "\e3b1"; } + +.fa-martini-glass-citrus::before { + content: "\f561"; } + +.fa-cocktail::before { + content: "\f561"; } + +.fa-face-surprise::before { + content: "\f5c2"; } + +.fa-surprise::before { + content: "\f5c2"; } + +.fa-bottle-water::before { + content: "\e4c5"; } + +.fa-circle-pause::before { + content: "\f28b"; } + +.fa-pause-circle::before { + content: "\f28b"; } + +.fa-toilet-paper-slash::before { + content: "\e072"; } + +.fa-apple-whole::before { + content: "\f5d1"; } + +.fa-apple-alt::before { + content: "\f5d1"; } + +.fa-kitchen-set::before { + content: "\e51a"; } + +.fa-r::before { + content: "\52"; } + +.fa-temperature-quarter::before { + content: "\f2ca"; } + +.fa-temperature-1::before { + content: "\f2ca"; } + +.fa-thermometer-1::before { + content: "\f2ca"; } + +.fa-thermometer-quarter::before { + content: "\f2ca"; } + +.fa-cube::before { + content: "\f1b2"; } + +.fa-bitcoin-sign::before { + content: "\e0b4"; } + +.fa-shield-dog::before { + content: "\e573"; } + +.fa-solar-panel::before { + content: "\f5ba"; } + +.fa-lock-open::before { + content: "\f3c1"; } + +.fa-elevator::before { + content: "\e16d"; } + +.fa-money-bill-transfer::before { + content: "\e528"; } + +.fa-money-bill-trend-up::before { + content: "\e529"; } + +.fa-house-flood-water-circle-arrow-right::before { + content: "\e50f"; } + +.fa-square-poll-horizontal::before { + content: "\f682"; } + +.fa-poll-h::before { + content: "\f682"; } + +.fa-circle::before { + content: "\f111"; } + +.fa-backward-fast::before { + content: "\f049"; } + +.fa-fast-backward::before { + content: "\f049"; } + +.fa-recycle::before { + content: "\f1b8"; } + +.fa-user-astronaut::before { + content: "\f4fb"; } + +.fa-plane-slash::before { + content: "\e069"; } + +.fa-trademark::before { + content: "\f25c"; } + +.fa-basketball::before { + content: "\f434"; } + +.fa-basketball-ball::before { + content: "\f434"; } + +.fa-satellite-dish::before { + content: "\f7c0"; } + +.fa-circle-up::before { + content: "\f35b"; } + +.fa-arrow-alt-circle-up::before { + content: "\f35b"; } + +.fa-mobile-screen-button::before { + content: "\f3cd"; } + +.fa-mobile-alt::before { + content: "\f3cd"; } + +.fa-volume-high::before { + content: "\f028"; } + +.fa-volume-up::before { + content: "\f028"; } + +.fa-users-rays::before { + content: "\e593"; } + +.fa-wallet::before { + content: "\f555"; } + +.fa-clipboard-check::before { + content: "\f46c"; } + +.fa-file-audio::before { + content: "\f1c7"; } + +.fa-burger::before { + content: "\f805"; } + +.fa-hamburger::before { + content: "\f805"; } + +.fa-wrench::before { + content: "\f0ad"; } + +.fa-bugs::before { + content: "\e4d0"; } + +.fa-rupee-sign::before { + content: "\f156"; } + +.fa-rupee::before { + content: "\f156"; } + +.fa-file-image::before { + content: "\f1c5"; } + +.fa-circle-question::before { + content: "\f059"; } + +.fa-question-circle::before { + content: "\f059"; } + +.fa-plane-departure::before { + content: "\f5b0"; } + +.fa-handshake-slash::before { + content: "\e060"; } + +.fa-book-bookmark::before { + content: "\e0bb"; } + +.fa-code-branch::before { + content: "\f126"; } + +.fa-hat-cowboy::before { + content: "\f8c0"; } + +.fa-bridge::before { + content: "\e4c8"; } + +.fa-phone-flip::before { + content: "\f879"; } + +.fa-phone-alt::before { + content: "\f879"; } + +.fa-truck-front::before { + content: "\e2b7"; } + +.fa-cat::before { + content: "\f6be"; } + +.fa-anchor-circle-exclamation::before { + content: "\e4ab"; } + +.fa-truck-field::before { + content: "\e58d"; } + +.fa-route::before { + content: "\f4d7"; } + +.fa-clipboard-question::before { + content: "\e4e3"; } + +.fa-panorama::before { + content: "\e209"; } + +.fa-comment-medical::before { + content: "\f7f5"; } + +.fa-teeth-open::before { + content: "\f62f"; } + +.fa-file-circle-minus::before { + content: "\e4ed"; } + +.fa-tags::before { + content: "\f02c"; } + +.fa-wine-glass::before { + content: "\f4e3"; } + +.fa-forward-fast::before { + content: "\f050"; } + +.fa-fast-forward::before { + content: "\f050"; } + +.fa-face-meh-blank::before { + content: "\f5a4"; } + +.fa-meh-blank::before { + content: "\f5a4"; } + +.fa-square-parking::before { + content: "\f540"; } + +.fa-parking::before { + content: "\f540"; } + +.fa-house-signal::before { + content: "\e012"; } + +.fa-bars-progress::before { + content: "\f828"; } + +.fa-tasks-alt::before { + content: "\f828"; } + +.fa-faucet-drip::before { + content: "\e006"; } + +.fa-cart-flatbed::before { + content: "\f474"; } + +.fa-dolly-flatbed::before { + content: "\f474"; } + +.fa-ban-smoking::before { + content: "\f54d"; } + +.fa-smoking-ban::before { + content: "\f54d"; } + +.fa-terminal::before { + content: "\f120"; } + +.fa-mobile-button::before { + content: "\f10b"; } + +.fa-house-medical-flag::before { + content: "\e514"; } + +.fa-basket-shopping::before { + content: "\f291"; } + +.fa-shopping-basket::before { + content: "\f291"; } + +.fa-tape::before { + content: "\f4db"; } + +.fa-bus-simple::before { + content: "\f55e"; } + +.fa-bus-alt::before { + content: "\f55e"; } + +.fa-eye::before { + content: "\f06e"; } + +.fa-face-sad-cry::before { + content: "\f5b3"; } + +.fa-sad-cry::before { + content: "\f5b3"; } + +.fa-audio-description::before { + content: "\f29e"; } + +.fa-person-military-to-person::before { + content: "\e54c"; } + +.fa-file-shield::before { + content: "\e4f0"; } + +.fa-user-slash::before { + content: "\f506"; } + +.fa-pen::before { + content: "\f304"; } + +.fa-tower-observation::before { + content: "\e586"; } + +.fa-file-code::before { + content: "\f1c9"; } + +.fa-signal::before { + content: "\f012"; } + +.fa-signal-5::before { + content: "\f012"; } + +.fa-signal-perfect::before { + content: "\f012"; } + +.fa-bus::before { + content: "\f207"; } + +.fa-heart-circle-xmark::before { + content: "\e501"; } + +.fa-house-chimney::before { + content: "\e3af"; } + +.fa-home-lg::before { + content: "\e3af"; } + +.fa-window-maximize::before { + content: "\f2d0"; } + +.fa-face-frown::before { + content: "\f119"; } + +.fa-frown::before { + content: "\f119"; } + +.fa-prescription::before { + content: "\f5b1"; } + +.fa-shop::before { + content: "\f54f"; } + +.fa-store-alt::before { + content: "\f54f"; } + +.fa-floppy-disk::before { + content: "\f0c7"; } + +.fa-save::before { + content: "\f0c7"; } + +.fa-vihara::before { + content: "\f6a7"; } + +.fa-scale-unbalanced::before { + content: "\f515"; } + +.fa-balance-scale-left::before { + content: "\f515"; } + +.fa-sort-up::before { + content: "\f0de"; } + +.fa-sort-asc::before { + content: "\f0de"; } + +.fa-comment-dots::before { + content: "\f4ad"; } + +.fa-commenting::before { + content: "\f4ad"; } + +.fa-plant-wilt::before { + content: "\e5aa"; } + +.fa-diamond::before { + content: "\f219"; } + +.fa-face-grin-squint::before { + content: "\f585"; } + +.fa-grin-squint::before { + content: "\f585"; } + +.fa-hand-holding-dollar::before { + content: "\f4c0"; } + +.fa-hand-holding-usd::before { + content: "\f4c0"; } + +.fa-bacterium::before { + content: "\e05a"; } + +.fa-hand-pointer::before { + content: "\f25a"; } + +.fa-drum-steelpan::before { + content: "\f56a"; } + +.fa-hand-scissors::before { + content: "\f257"; } + +.fa-hands-praying::before { + content: "\f684"; } + +.fa-praying-hands::before { + content: "\f684"; } + +.fa-arrow-rotate-right::before { + content: "\f01e"; } + +.fa-arrow-right-rotate::before { + content: "\f01e"; } + +.fa-arrow-rotate-forward::before { + content: "\f01e"; } + +.fa-redo::before { + content: "\f01e"; } + +.fa-biohazard::before { + content: "\f780"; } + +.fa-location-crosshairs::before { + content: "\f601"; } + +.fa-location::before { + content: "\f601"; } + +.fa-mars-double::before { + content: "\f227"; } + +.fa-child-dress::before { + content: "\e59c"; } + +.fa-users-between-lines::before { + content: "\e591"; } + +.fa-lungs-virus::before { + content: "\e067"; } + +.fa-face-grin-tears::before { + content: "\f588"; } + +.fa-grin-tears::before { + content: "\f588"; } + +.fa-phone::before { + content: "\f095"; } + +.fa-calendar-xmark::before { + content: "\f273"; } + +.fa-calendar-times::before { + content: "\f273"; } + +.fa-child-reaching::before { + content: "\e59d"; } + +.fa-head-side-virus::before { + content: "\e064"; } + +.fa-user-gear::before { + content: "\f4fe"; } + +.fa-user-cog::before { + content: "\f4fe"; } + +.fa-arrow-up-1-9::before { + content: "\f163"; } + +.fa-sort-numeric-up::before { + content: "\f163"; } + +.fa-door-closed::before { + content: "\f52a"; } + +.fa-shield-virus::before { + content: "\e06c"; } + +.fa-dice-six::before { + content: "\f526"; } + +.fa-mosquito-net::before { + content: "\e52c"; } + +.fa-bridge-water::before { + content: "\e4ce"; } + +.fa-person-booth::before { + content: "\f756"; } + +.fa-text-width::before { + content: "\f035"; } + +.fa-hat-wizard::before { + content: "\f6e8"; } + +.fa-pen-fancy::before { + content: "\f5ac"; } + +.fa-person-digging::before { + content: "\f85e"; } + +.fa-digging::before { + content: "\f85e"; } + +.fa-trash::before { + content: "\f1f8"; } + +.fa-gauge-simple::before { + content: "\f629"; } + +.fa-gauge-simple-med::before { + content: "\f629"; } + +.fa-tachometer-average::before { + content: "\f629"; } + +.fa-book-medical::before { + content: "\f7e6"; } + +.fa-poo::before { + content: "\f2fe"; } + +.fa-quote-right::before { + content: "\f10e"; } + +.fa-quote-right-alt::before { + content: "\f10e"; } + +.fa-shirt::before { + content: "\f553"; } + +.fa-t-shirt::before { + content: "\f553"; } + +.fa-tshirt::before { + content: "\f553"; } + +.fa-cubes::before { + content: "\f1b3"; } + +.fa-divide::before { + content: "\f529"; } + +.fa-tenge-sign::before { + content: "\f7d7"; } + +.fa-tenge::before { + content: "\f7d7"; } + +.fa-headphones::before { + content: "\f025"; } + +.fa-hands-holding::before { + content: "\f4c2"; } + +.fa-hands-clapping::before { + content: "\e1a8"; } + +.fa-republican::before { + content: "\f75e"; } + +.fa-arrow-left::before { + content: "\f060"; } + +.fa-person-circle-xmark::before { + content: "\e543"; } + +.fa-ruler::before { + content: "\f545"; } + +.fa-align-left::before { + content: "\f036"; } + +.fa-dice-d6::before { + content: "\f6d1"; } + +.fa-restroom::before { + content: "\f7bd"; } + +.fa-j::before { + content: "\4a"; } + +.fa-users-viewfinder::before { + content: "\e595"; } + +.fa-file-video::before { + content: "\f1c8"; } + +.fa-up-right-from-square::before { + content: "\f35d"; } + +.fa-external-link-alt::before { + content: "\f35d"; } + +.fa-table-cells::before { + content: "\f00a"; } + +.fa-th::before { + content: "\f00a"; } + +.fa-file-pdf::before { + content: "\f1c1"; } + +.fa-book-bible::before { + content: "\f647"; } + +.fa-bible::before { + content: "\f647"; } + +.fa-o::before { + content: "\4f"; } + +.fa-suitcase-medical::before { + content: "\f0fa"; } + +.fa-medkit::before { + content: "\f0fa"; } + +.fa-user-secret::before { + content: "\f21b"; } + +.fa-otter::before { + content: "\f700"; } + +.fa-person-dress::before { + content: "\f182"; } + +.fa-female::before { + content: "\f182"; } + +.fa-comment-dollar::before { + content: "\f651"; } + +.fa-business-time::before { + content: "\f64a"; } + +.fa-briefcase-clock::before { + content: "\f64a"; } + +.fa-table-cells-large::before { + content: "\f009"; } + +.fa-th-large::before { + content: "\f009"; } + +.fa-book-tanakh::before { + content: "\f827"; } + +.fa-tanakh::before { + content: "\f827"; } + +.fa-phone-volume::before { + content: "\f2a0"; } + +.fa-volume-control-phone::before { + content: "\f2a0"; } + +.fa-hat-cowboy-side::before { + content: "\f8c1"; } + +.fa-clipboard-user::before { + content: "\f7f3"; } + +.fa-child::before { + content: "\f1ae"; } + +.fa-lira-sign::before { + content: "\f195"; } + +.fa-satellite::before { + content: "\f7bf"; } + +.fa-plane-lock::before { + content: "\e558"; } + +.fa-tag::before { + content: "\f02b"; } + +.fa-comment::before { + content: "\f075"; } + +.fa-cake-candles::before { + content: "\f1fd"; } + +.fa-birthday-cake::before { + content: "\f1fd"; } + +.fa-cake::before { + content: "\f1fd"; } + +.fa-envelope::before { + content: "\f0e0"; } + +.fa-angles-up::before { + content: "\f102"; } + +.fa-angle-double-up::before { + content: "\f102"; } + +.fa-paperclip::before { + content: "\f0c6"; } + +.fa-arrow-right-to-city::before { + content: "\e4b3"; } + +.fa-ribbon::before { + content: "\f4d6"; } + +.fa-lungs::before { + content: "\f604"; } + +.fa-arrow-up-9-1::before { + content: "\f887"; } + +.fa-sort-numeric-up-alt::before { + content: "\f887"; } + +.fa-litecoin-sign::before { + content: "\e1d3"; } + +.fa-border-none::before { + content: "\f850"; } + +.fa-circle-nodes::before { + content: "\e4e2"; } + +.fa-parachute-box::before { + content: "\f4cd"; } + +.fa-indent::before { + content: "\f03c"; } + +.fa-truck-field-un::before { + content: "\e58e"; } + +.fa-hourglass::before { + content: "\f254"; } + +.fa-hourglass-empty::before { + content: "\f254"; } + +.fa-mountain::before { + content: "\f6fc"; } + +.fa-user-doctor::before { + content: "\f0f0"; } + +.fa-user-md::before { + content: "\f0f0"; } + +.fa-circle-info::before { + content: "\f05a"; } + +.fa-info-circle::before { + content: "\f05a"; } + +.fa-cloud-meatball::before { + content: "\f73b"; } + +.fa-camera::before { + content: "\f030"; } + +.fa-camera-alt::before { + content: "\f030"; } + +.fa-square-virus::before { + content: "\e578"; } + +.fa-meteor::before { + content: "\f753"; } + +.fa-car-on::before { + content: "\e4dd"; } + +.fa-sleigh::before { + content: "\f7cc"; } + +.fa-arrow-down-1-9::before { + content: "\f162"; } + +.fa-sort-numeric-asc::before { + content: "\f162"; } + +.fa-sort-numeric-down::before { + content: "\f162"; } + +.fa-hand-holding-droplet::before { + content: "\f4c1"; } + +.fa-hand-holding-water::before { + content: "\f4c1"; } + +.fa-water::before { + content: "\f773"; } + +.fa-calendar-check::before { + content: "\f274"; } + +.fa-braille::before { + content: "\f2a1"; } + +.fa-prescription-bottle-medical::before { + content: "\f486"; } + +.fa-prescription-bottle-alt::before { + content: "\f486"; } + +.fa-landmark::before { + content: "\f66f"; } + +.fa-truck::before { + content: "\f0d1"; } + +.fa-crosshairs::before { + content: "\f05b"; } + +.fa-person-cane::before { + content: "\e53c"; } + +.fa-tent::before { + content: "\e57d"; } + +.fa-vest-patches::before { + content: "\e086"; } + +.fa-check-double::before { + content: "\f560"; } + +.fa-arrow-down-a-z::before { + content: "\f15d"; } + +.fa-sort-alpha-asc::before { + content: "\f15d"; } + +.fa-sort-alpha-down::before { + content: "\f15d"; } + +.fa-money-bill-wheat::before { + content: "\e52a"; } + +.fa-cookie::before { + content: "\f563"; } + +.fa-arrow-rotate-left::before { + content: "\f0e2"; } + +.fa-arrow-left-rotate::before { + content: "\f0e2"; } + +.fa-arrow-rotate-back::before { + content: "\f0e2"; } + +.fa-arrow-rotate-backward::before { + content: "\f0e2"; } + +.fa-undo::before { + content: "\f0e2"; } + +.fa-hard-drive::before { + content: "\f0a0"; } + +.fa-hdd::before { + content: "\f0a0"; } + +.fa-face-grin-squint-tears::before { + content: "\f586"; } + +.fa-grin-squint-tears::before { + content: "\f586"; } + +.fa-dumbbell::before { + content: "\f44b"; } + +.fa-rectangle-list::before { + content: "\f022"; } + +.fa-list-alt::before { + content: "\f022"; } + +.fa-tarp-droplet::before { + content: "\e57c"; } + +.fa-house-medical-circle-check::before { + content: "\e511"; } + +.fa-person-skiing-nordic::before { + content: "\f7ca"; } + +.fa-skiing-nordic::before { + content: "\f7ca"; } + +.fa-calendar-plus::before { + content: "\f271"; } + +.fa-plane-arrival::before { + content: "\f5af"; } + +.fa-circle-left::before { + content: "\f359"; } + +.fa-arrow-alt-circle-left::before { + content: "\f359"; } + +.fa-train-subway::before { + content: "\f239"; } + +.fa-subway::before { + content: "\f239"; } + +.fa-chart-gantt::before { + content: "\e0e4"; } + +.fa-indian-rupee-sign::before { + content: "\e1bc"; } + +.fa-indian-rupee::before { + content: "\e1bc"; } + +.fa-inr::before { + content: "\e1bc"; } + +.fa-crop-simple::before { + content: "\f565"; } + +.fa-crop-alt::before { + content: "\f565"; } + +.fa-money-bill-1::before { + content: "\f3d1"; } + +.fa-money-bill-alt::before { + content: "\f3d1"; } + +.fa-left-long::before { + content: "\f30a"; } + +.fa-long-arrow-alt-left::before { + content: "\f30a"; } + +.fa-dna::before { + content: "\f471"; } + +.fa-virus-slash::before { + content: "\e075"; } + +.fa-minus::before { + content: "\f068"; } + +.fa-subtract::before { + content: "\f068"; } + +.fa-chess::before { + content: "\f439"; } + +.fa-arrow-left-long::before { + content: "\f177"; } + +.fa-long-arrow-left::before { + content: "\f177"; } + +.fa-plug-circle-check::before { + content: "\e55c"; } + +.fa-street-view::before { + content: "\f21d"; } + +.fa-franc-sign::before { + content: "\e18f"; } + +.fa-volume-off::before { + content: "\f026"; } + +.fa-hands-asl-interpreting::before { + content: "\f2a3"; } + +.fa-american-sign-language-interpreting::before { + content: "\f2a3"; } + +.fa-asl-interpreting::before { + content: "\f2a3"; } + +.fa-hands-american-sign-language-interpreting::before { + content: "\f2a3"; } + +.fa-gear::before { + content: "\f013"; } + +.fa-cog::before { + content: "\f013"; } + +.fa-droplet-slash::before { + content: "\f5c7"; } + +.fa-tint-slash::before { + content: "\f5c7"; } + +.fa-mosque::before { + content: "\f678"; } + +.fa-mosquito::before { + content: "\e52b"; } + +.fa-star-of-david::before { + content: "\f69a"; } + +.fa-person-military-rifle::before { + content: "\e54b"; } + +.fa-cart-shopping::before { + content: "\f07a"; } + +.fa-shopping-cart::before { + content: "\f07a"; } + +.fa-vials::before { + content: "\f493"; } + +.fa-plug-circle-plus::before { + content: "\e55f"; } + +.fa-place-of-worship::before { + content: "\f67f"; } + +.fa-grip-vertical::before { + content: "\f58e"; } + +.fa-arrow-turn-up::before { + content: "\f148"; } + +.fa-level-up::before { + content: "\f148"; } + +.fa-u::before { + content: "\55"; } + +.fa-square-root-variable::before { + content: "\f698"; } + +.fa-square-root-alt::before { + content: "\f698"; } + +.fa-clock::before { + content: "\f017"; } + +.fa-clock-four::before { + content: "\f017"; } + +.fa-backward-step::before { + content: "\f048"; } + +.fa-step-backward::before { + content: "\f048"; } + +.fa-pallet::before { + content: "\f482"; } + +.fa-faucet::before { + content: "\e005"; } + +.fa-baseball-bat-ball::before { + content: "\f432"; } + +.fa-s::before { + content: "\53"; } + +.fa-timeline::before { + content: "\e29c"; } + +.fa-keyboard::before { + content: "\f11c"; } + +.fa-caret-down::before { + content: "\f0d7"; } + +.fa-house-chimney-medical::before { + content: "\f7f2"; } + +.fa-clinic-medical::before { + content: "\f7f2"; } + +.fa-temperature-three-quarters::before { + content: "\f2c8"; } + +.fa-temperature-3::before { + content: "\f2c8"; } + +.fa-thermometer-3::before { + content: "\f2c8"; } + +.fa-thermometer-three-quarters::before { + content: "\f2c8"; } + +.fa-mobile-screen::before { + content: "\f3cf"; } + +.fa-mobile-android-alt::before { + content: "\f3cf"; } + +.fa-plane-up::before { + content: "\e22d"; } + +.fa-piggy-bank::before { + content: "\f4d3"; } + +.fa-battery-half::before { + content: "\f242"; } + +.fa-battery-3::before { + content: "\f242"; } + +.fa-mountain-city::before { + content: "\e52e"; } + +.fa-coins::before { + content: "\f51e"; } + +.fa-khanda::before { + content: "\f66d"; } + +.fa-sliders::before { + content: "\f1de"; } + +.fa-sliders-h::before { + content: "\f1de"; } + +.fa-folder-tree::before { + content: "\f802"; } + +.fa-network-wired::before { + content: "\f6ff"; } + +.fa-map-pin::before { + content: "\f276"; } + +.fa-hamsa::before { + content: "\f665"; } + +.fa-cent-sign::before { + content: "\e3f5"; } + +.fa-flask::before { + content: "\f0c3"; } + +.fa-person-pregnant::before { + content: "\e31e"; } + +.fa-wand-sparkles::before { + content: "\f72b"; } + +.fa-ellipsis-vertical::before { + content: "\f142"; } + +.fa-ellipsis-v::before { + content: "\f142"; } + +.fa-ticket::before { + content: "\f145"; } + +.fa-power-off::before { + content: "\f011"; } + +.fa-right-long::before { + content: "\f30b"; } + +.fa-long-arrow-alt-right::before { + content: "\f30b"; } + +.fa-flag-usa::before { + content: "\f74d"; } + +.fa-laptop-file::before { + content: "\e51d"; } + +.fa-tty::before { + content: "\f1e4"; } + +.fa-teletype::before { + content: "\f1e4"; } + +.fa-diagram-next::before { + content: "\e476"; } + +.fa-person-rifle::before { + content: "\e54e"; } + +.fa-house-medical-circle-exclamation::before { + content: "\e512"; } + +.fa-closed-captioning::before { + content: "\f20a"; } + +.fa-person-hiking::before { + content: "\f6ec"; } + +.fa-hiking::before { + content: "\f6ec"; } + +.fa-venus-double::before { + content: "\f226"; } + +.fa-images::before { + content: "\f302"; } + +.fa-calculator::before { + content: "\f1ec"; } + +.fa-people-pulling::before { + content: "\e535"; } + +.fa-n::before { + content: "\4e"; } + +.fa-cable-car::before { + content: "\f7da"; } + +.fa-tram::before { + content: "\f7da"; } + +.fa-cloud-rain::before { + content: "\f73d"; } + +.fa-building-circle-xmark::before { + content: "\e4d4"; } + +.fa-ship::before { + content: "\f21a"; } + +.fa-arrows-down-to-line::before { + content: "\e4b8"; } + +.fa-download::before { + content: "\f019"; } + +.fa-face-grin::before { + content: "\f580"; } + +.fa-grin::before { + content: "\f580"; } + +.fa-delete-left::before { + content: "\f55a"; } + +.fa-backspace::before { + content: "\f55a"; } + +.fa-eye-dropper::before { + content: "\f1fb"; } + +.fa-eye-dropper-empty::before { + content: "\f1fb"; } + +.fa-eyedropper::before { + content: "\f1fb"; } + +.fa-file-circle-check::before { + content: "\e5a0"; } + +.fa-forward::before { + content: "\f04e"; } + +.fa-mobile::before { + content: "\f3ce"; } + +.fa-mobile-android::before { + content: "\f3ce"; } + +.fa-mobile-phone::before { + content: "\f3ce"; } + +.fa-face-meh::before { + content: "\f11a"; } + +.fa-meh::before { + content: "\f11a"; } + +.fa-align-center::before { + content: "\f037"; } + +.fa-book-skull::before { + content: "\f6b7"; } + +.fa-book-dead::before { + content: "\f6b7"; } + +.fa-id-card::before { + content: "\f2c2"; } + +.fa-drivers-license::before { + content: "\f2c2"; } + +.fa-outdent::before { + content: "\f03b"; } + +.fa-dedent::before { + content: "\f03b"; } + +.fa-heart-circle-exclamation::before { + content: "\e4fe"; } + +.fa-house::before { + content: "\f015"; } + +.fa-home::before { + content: "\f015"; } + +.fa-home-alt::before { + content: "\f015"; } + +.fa-home-lg-alt::before { + content: "\f015"; } + +.fa-calendar-week::before { + content: "\f784"; } + +.fa-laptop-medical::before { + content: "\f812"; } + +.fa-b::before { + content: "\42"; } + +.fa-file-medical::before { + content: "\f477"; } + +.fa-dice-one::before { + content: "\f525"; } + +.fa-kiwi-bird::before { + content: "\f535"; } + +.fa-arrow-right-arrow-left::before { + content: "\f0ec"; } + +.fa-exchange::before { + content: "\f0ec"; } + +.fa-rotate-right::before { + content: "\f2f9"; } + +.fa-redo-alt::before { + content: "\f2f9"; } + +.fa-rotate-forward::before { + content: "\f2f9"; } + +.fa-utensils::before { + content: "\f2e7"; } + +.fa-cutlery::before { + content: "\f2e7"; } + +.fa-arrow-up-wide-short::before { + content: "\f161"; } + +.fa-sort-amount-up::before { + content: "\f161"; } + +.fa-mill-sign::before { + content: "\e1ed"; } + +.fa-bowl-rice::before { + content: "\e2eb"; } + +.fa-skull::before { + content: "\f54c"; } + +.fa-tower-broadcast::before { + content: "\f519"; } + +.fa-broadcast-tower::before { + content: "\f519"; } + +.fa-truck-pickup::before { + content: "\f63c"; } + +.fa-up-long::before { + content: "\f30c"; } + +.fa-long-arrow-alt-up::before { + content: "\f30c"; } + +.fa-stop::before { + content: "\f04d"; } + +.fa-code-merge::before { + content: "\f387"; } + +.fa-upload::before { + content: "\f093"; } + +.fa-hurricane::before { + content: "\f751"; } + +.fa-mound::before { + content: "\e52d"; } + +.fa-toilet-portable::before { + content: "\e583"; } + +.fa-compact-disc::before { + content: "\f51f"; } + +.fa-file-arrow-down::before { + content: "\f56d"; } + +.fa-file-download::before { + content: "\f56d"; } + +.fa-caravan::before { + content: "\f8ff"; } + +.fa-shield-cat::before { + content: "\e572"; } + +.fa-bolt::before { + content: "\f0e7"; } + +.fa-zap::before { + content: "\f0e7"; } + +.fa-glass-water::before { + content: "\e4f4"; } + +.fa-oil-well::before { + content: "\e532"; } + +.fa-vault::before { + content: "\e2c5"; } + +.fa-mars::before { + content: "\f222"; } + +.fa-toilet::before { + content: "\f7d8"; } + +.fa-plane-circle-xmark::before { + content: "\e557"; } + +.fa-yen-sign::before { + content: "\f157"; } + +.fa-cny::before { + content: "\f157"; } + +.fa-jpy::before { + content: "\f157"; } + +.fa-rmb::before { + content: "\f157"; } + +.fa-yen::before { + content: "\f157"; } + +.fa-ruble-sign::before { + content: "\f158"; } + +.fa-rouble::before { + content: "\f158"; } + +.fa-rub::before { + content: "\f158"; } + +.fa-ruble::before { + content: "\f158"; } + +.fa-sun::before { + content: "\f185"; } + +.fa-guitar::before { + content: "\f7a6"; } + +.fa-face-laugh-wink::before { + content: "\f59c"; } + +.fa-laugh-wink::before { + content: "\f59c"; } + +.fa-horse-head::before { + content: "\f7ab"; } + +.fa-bore-hole::before { + content: "\e4c3"; } + +.fa-industry::before { + content: "\f275"; } + +.fa-circle-down::before { + content: "\f358"; } + +.fa-arrow-alt-circle-down::before { + content: "\f358"; } + +.fa-arrows-turn-to-dots::before { + content: "\e4c1"; } + +.fa-florin-sign::before { + content: "\e184"; } + +.fa-arrow-down-short-wide::before { + content: "\f884"; } + +.fa-sort-amount-desc::before { + content: "\f884"; } + +.fa-sort-amount-down-alt::before { + content: "\f884"; } + +.fa-less-than::before { + content: "\3c"; } + +.fa-angle-down::before { + content: "\f107"; } + +.fa-car-tunnel::before { + content: "\e4de"; } + +.fa-head-side-cough::before { + content: "\e061"; } + +.fa-grip-lines::before { + content: "\f7a4"; } + +.fa-thumbs-down::before { + content: "\f165"; } + +.fa-user-lock::before { + content: "\f502"; } + +.fa-arrow-right-long::before { + content: "\f178"; } + +.fa-long-arrow-right::before { + content: "\f178"; } + +.fa-anchor-circle-xmark::before { + content: "\e4ac"; } + +.fa-ellipsis::before { + content: "\f141"; } + +.fa-ellipsis-h::before { + content: "\f141"; } + +.fa-chess-pawn::before { + content: "\f443"; } + +.fa-kit-medical::before { + content: "\f479"; } + +.fa-first-aid::before { + content: "\f479"; } + +.fa-person-through-window::before { + content: "\e5a9"; } + +.fa-toolbox::before { + content: "\f552"; } + +.fa-hands-holding-circle::before { + content: "\e4fb"; } + +.fa-bug::before { + content: "\f188"; } + +.fa-credit-card::before { + content: "\f09d"; } + +.fa-credit-card-alt::before { + content: "\f09d"; } + +.fa-car::before { + content: "\f1b9"; } + +.fa-automobile::before { + content: "\f1b9"; } + +.fa-hand-holding-hand::before { + content: "\e4f7"; } + +.fa-book-open-reader::before { + content: "\f5da"; } + +.fa-book-reader::before { + content: "\f5da"; } + +.fa-mountain-sun::before { + content: "\e52f"; } + +.fa-arrows-left-right-to-line::before { + content: "\e4ba"; } + +.fa-dice-d20::before { + content: "\f6cf"; } + +.fa-truck-droplet::before { + content: "\e58c"; } + +.fa-file-circle-xmark::before { + content: "\e5a1"; } + +.fa-temperature-arrow-up::before { + content: "\e040"; } + +.fa-temperature-up::before { + content: "\e040"; } + +.fa-medal::before { + content: "\f5a2"; } + +.fa-bed::before { + content: "\f236"; } + +.fa-square-h::before { + content: "\f0fd"; } + +.fa-h-square::before { + content: "\f0fd"; } + +.fa-podcast::before { + content: "\f2ce"; } + +.fa-temperature-full::before { + content: "\f2c7"; } + +.fa-temperature-4::before { + content: "\f2c7"; } + +.fa-thermometer-4::before { + content: "\f2c7"; } + +.fa-thermometer-full::before { + content: "\f2c7"; } + +.fa-bell::before { + content: "\f0f3"; } + +.fa-superscript::before { + content: "\f12b"; } + +.fa-plug-circle-xmark::before { + content: "\e560"; } + +.fa-star-of-life::before { + content: "\f621"; } + +.fa-phone-slash::before { + content: "\f3dd"; } + +.fa-paint-roller::before { + content: "\f5aa"; } + +.fa-handshake-angle::before { + content: "\f4c4"; } + +.fa-hands-helping::before { + content: "\f4c4"; } + +.fa-location-dot::before { + content: "\f3c5"; } + +.fa-map-marker-alt::before { + content: "\f3c5"; } + +.fa-file::before { + content: "\f15b"; } + +.fa-greater-than::before { + content: "\3e"; } + +.fa-person-swimming::before { + content: "\f5c4"; } + +.fa-swimmer::before { + content: "\f5c4"; } + +.fa-arrow-down::before { + content: "\f063"; } + +.fa-droplet::before { + content: "\f043"; } + +.fa-tint::before { + content: "\f043"; } + +.fa-eraser::before { + content: "\f12d"; } + +.fa-earth-americas::before { + content: "\f57d"; } + +.fa-earth::before { + content: "\f57d"; } + +.fa-earth-america::before { + content: "\f57d"; } + +.fa-globe-americas::before { + content: "\f57d"; } + +.fa-person-burst::before { + content: "\e53b"; } + +.fa-dove::before { + content: "\f4ba"; } + +.fa-battery-empty::before { + content: "\f244"; } + +.fa-battery-0::before { + content: "\f244"; } + +.fa-socks::before { + content: "\f696"; } + +.fa-inbox::before { + content: "\f01c"; } + +.fa-section::before { + content: "\e447"; } + +.fa-gauge-high::before { + content: "\f625"; } + +.fa-tachometer-alt::before { + content: "\f625"; } + +.fa-tachometer-alt-fast::before { + content: "\f625"; } + +.fa-envelope-open-text::before { + content: "\f658"; } + +.fa-hospital::before { + content: "\f0f8"; } + +.fa-hospital-alt::before { + content: "\f0f8"; } + +.fa-hospital-wide::before { + content: "\f0f8"; } + +.fa-wine-bottle::before { + content: "\f72f"; } + +.fa-chess-rook::before { + content: "\f447"; } + +.fa-bars-staggered::before { + content: "\f550"; } + +.fa-reorder::before { + content: "\f550"; } + +.fa-stream::before { + content: "\f550"; } + +.fa-dharmachakra::before { + content: "\f655"; } + +.fa-hotdog::before { + content: "\f80f"; } + +.fa-person-walking-with-cane::before { + content: "\f29d"; } + +.fa-blind::before { + content: "\f29d"; } + +.fa-drum::before { + content: "\f569"; } + +.fa-ice-cream::before { + content: "\f810"; } + +.fa-heart-circle-bolt::before { + content: "\e4fc"; } + +.fa-fax::before { + content: "\f1ac"; } + +.fa-paragraph::before { + content: "\f1dd"; } + +.fa-check-to-slot::before { + content: "\f772"; } + +.fa-vote-yea::before { + content: "\f772"; } + +.fa-star-half::before { + content: "\f089"; } + +.fa-boxes-stacked::before { + content: "\f468"; } + +.fa-boxes::before { + content: "\f468"; } + +.fa-boxes-alt::before { + content: "\f468"; } + +.fa-link::before { + content: "\f0c1"; } + +.fa-chain::before { + content: "\f0c1"; } + +.fa-ear-listen::before { + content: "\f2a2"; } + +.fa-assistive-listening-systems::before { + content: "\f2a2"; } + +.fa-tree-city::before { + content: "\e587"; } + +.fa-play::before { + content: "\f04b"; } + +.fa-font::before { + content: "\f031"; } + +.fa-rupiah-sign::before { + content: "\e23d"; } + +.fa-magnifying-glass::before { + content: "\f002"; } + +.fa-search::before { + content: "\f002"; } + +.fa-table-tennis-paddle-ball::before { + content: "\f45d"; } + +.fa-ping-pong-paddle-ball::before { + content: "\f45d"; } + +.fa-table-tennis::before { + content: "\f45d"; } + +.fa-person-dots-from-line::before { + content: "\f470"; } + +.fa-diagnoses::before { + content: "\f470"; } + +.fa-trash-can-arrow-up::before { + content: "\f82a"; } + +.fa-trash-restore-alt::before { + content: "\f82a"; } + +.fa-naira-sign::before { + content: "\e1f6"; } + +.fa-cart-arrow-down::before { + content: "\f218"; } + +.fa-walkie-talkie::before { + content: "\f8ef"; } + +.fa-file-pen::before { + content: "\f31c"; } + +.fa-file-edit::before { + content: "\f31c"; } + +.fa-receipt::before { + content: "\f543"; } + +.fa-square-pen::before { + content: "\f14b"; } + +.fa-pen-square::before { + content: "\f14b"; } + +.fa-pencil-square::before { + content: "\f14b"; } + +.fa-suitcase-rolling::before { + content: "\f5c1"; } + +.fa-person-circle-exclamation::before { + content: "\e53f"; } + +.fa-chevron-down::before { + content: "\f078"; } + +.fa-battery-full::before { + content: "\f240"; } + +.fa-battery::before { + content: "\f240"; } + +.fa-battery-5::before { + content: "\f240"; } + +.fa-skull-crossbones::before { + content: "\f714"; } + +.fa-code-compare::before { + content: "\e13a"; } + +.fa-list-ul::before { + content: "\f0ca"; } + +.fa-list-dots::before { + content: "\f0ca"; } + +.fa-school-lock::before { + content: "\e56f"; } + +.fa-tower-cell::before { + content: "\e585"; } + +.fa-down-long::before { + content: "\f309"; } + +.fa-long-arrow-alt-down::before { + content: "\f309"; } + +.fa-ranking-star::before { + content: "\e561"; } + +.fa-chess-king::before { + content: "\f43f"; } + +.fa-person-harassing::before { + content: "\e549"; } + +.fa-brazilian-real-sign::before { + content: "\e46c"; } + +.fa-landmark-dome::before { + content: "\f752"; } + +.fa-landmark-alt::before { + content: "\f752"; } + +.fa-arrow-up::before { + content: "\f062"; } + +.fa-tv::before { + content: "\f26c"; } + +.fa-television::before { + content: "\f26c"; } + +.fa-tv-alt::before { + content: "\f26c"; } + +.fa-shrimp::before { + content: "\e448"; } + +.fa-list-check::before { + content: "\f0ae"; } + +.fa-tasks::before { + content: "\f0ae"; } + +.fa-jug-detergent::before { + content: "\e519"; } + +.fa-circle-user::before { + content: "\f2bd"; } + +.fa-user-circle::before { + content: "\f2bd"; } + +.fa-user-shield::before { + content: "\f505"; } + +.fa-wind::before { + content: "\f72e"; } + +.fa-car-burst::before { + content: "\f5e1"; } + +.fa-car-crash::before { + content: "\f5e1"; } + +.fa-y::before { + content: "\59"; } + +.fa-person-snowboarding::before { + content: "\f7ce"; } + +.fa-snowboarding::before { + content: "\f7ce"; } + +.fa-truck-fast::before { + content: "\f48b"; } + +.fa-shipping-fast::before { + content: "\f48b"; } + +.fa-fish::before { + content: "\f578"; } + +.fa-user-graduate::before { + content: "\f501"; } + +.fa-circle-half-stroke::before { + content: "\f042"; } + +.fa-adjust::before { + content: "\f042"; } + +.fa-clapperboard::before { + content: "\e131"; } + +.fa-circle-radiation::before { + content: "\f7ba"; } + +.fa-radiation-alt::before { + content: "\f7ba"; } + +.fa-baseball::before { + content: "\f433"; } + +.fa-baseball-ball::before { + content: "\f433"; } + +.fa-jet-fighter-up::before { + content: "\e518"; } + +.fa-diagram-project::before { + content: "\f542"; } + +.fa-project-diagram::before { + content: "\f542"; } + +.fa-copy::before { + content: "\f0c5"; } + +.fa-volume-xmark::before { + content: "\f6a9"; } + +.fa-volume-mute::before { + content: "\f6a9"; } + +.fa-volume-times::before { + content: "\f6a9"; } + +.fa-hand-sparkles::before { + content: "\e05d"; } + +.fa-grip::before { + content: "\f58d"; } + +.fa-grip-horizontal::before { + content: "\f58d"; } + +.fa-share-from-square::before { + content: "\f14d"; } + +.fa-share-square::before { + content: "\f14d"; } + +.fa-child-combatant::before { + content: "\e4e0"; } + +.fa-child-rifle::before { + content: "\e4e0"; } + +.fa-gun::before { + content: "\e19b"; } + +.fa-square-phone::before { + content: "\f098"; } + +.fa-phone-square::before { + content: "\f098"; } + +.fa-plus::before { + content: "\2b"; } + +.fa-add::before { + content: "\2b"; } + +.fa-expand::before { + content: "\f065"; } + +.fa-computer::before { + content: "\e4e5"; } + +.fa-xmark::before { + content: "\f00d"; } + +.fa-close::before { + content: "\f00d"; } + +.fa-multiply::before { + content: "\f00d"; } + +.fa-remove::before { + content: "\f00d"; } + +.fa-times::before { + content: "\f00d"; } + +.fa-arrows-up-down-left-right::before { + content: "\f047"; } + +.fa-arrows::before { + content: "\f047"; } + +.fa-chalkboard-user::before { + content: "\f51c"; } + +.fa-chalkboard-teacher::before { + content: "\f51c"; } + +.fa-peso-sign::before { + content: "\e222"; } + +.fa-building-shield::before { + content: "\e4d8"; } + +.fa-baby::before { + content: "\f77c"; } + +.fa-users-line::before { + content: "\e592"; } + +.fa-quote-left::before { + content: "\f10d"; } + +.fa-quote-left-alt::before { + content: "\f10d"; } + +.fa-tractor::before { + content: "\f722"; } + +.fa-trash-arrow-up::before { + content: "\f829"; } + +.fa-trash-restore::before { + content: "\f829"; } + +.fa-arrow-down-up-lock::before { + content: "\e4b0"; } + +.fa-lines-leaning::before { + content: "\e51e"; } + +.fa-ruler-combined::before { + content: "\f546"; } + +.fa-copyright::before { + content: "\f1f9"; } + +.fa-equals::before { + content: "\3d"; } + +.fa-blender::before { + content: "\f517"; } + +.fa-teeth::before { + content: "\f62e"; } + +.fa-shekel-sign::before { + content: "\f20b"; } + +.fa-ils::before { + content: "\f20b"; } + +.fa-shekel::before { + content: "\f20b"; } + +.fa-sheqel::before { + content: "\f20b"; } + +.fa-sheqel-sign::before { + content: "\f20b"; } + +.fa-map::before { + content: "\f279"; } + +.fa-rocket::before { + content: "\f135"; } + +.fa-photo-film::before { + content: "\f87c"; } + +.fa-photo-video::before { + content: "\f87c"; } + +.fa-folder-minus::before { + content: "\f65d"; } + +.fa-store::before { + content: "\f54e"; } + +.fa-arrow-trend-up::before { + content: "\e098"; } + +.fa-plug-circle-minus::before { + content: "\e55e"; } + +.fa-sign-hanging::before { + content: "\f4d9"; } + +.fa-sign::before { + content: "\f4d9"; } + +.fa-bezier-curve::before { + content: "\f55b"; } + +.fa-bell-slash::before { + content: "\f1f6"; } + +.fa-tablet::before { + content: "\f3fb"; } + +.fa-tablet-android::before { + content: "\f3fb"; } + +.fa-school-flag::before { + content: "\e56e"; } + +.fa-fill::before { + content: "\f575"; } + +.fa-angle-up::before { + content: "\f106"; } + +.fa-drumstick-bite::before { + content: "\f6d7"; } + +.fa-holly-berry::before { + content: "\f7aa"; } + +.fa-chevron-left::before { + content: "\f053"; } + +.fa-bacteria::before { + content: "\e059"; } + +.fa-hand-lizard::before { + content: "\f258"; } + +.fa-notdef::before { + content: "\e1fe"; } + +.fa-disease::before { + content: "\f7fa"; } + +.fa-briefcase-medical::before { + content: "\f469"; } + +.fa-genderless::before { + content: "\f22d"; } + +.fa-chevron-right::before { + content: "\f054"; } + +.fa-retweet::before { + content: "\f079"; } + +.fa-car-rear::before { + content: "\f5de"; } + +.fa-car-alt::before { + content: "\f5de"; } + +.fa-pump-soap::before { + content: "\e06b"; } + +.fa-video-slash::before { + content: "\f4e2"; } + +.fa-battery-quarter::before { + content: "\f243"; } + +.fa-battery-2::before { + content: "\f243"; } + +.fa-radio::before { + content: "\f8d7"; } + +.fa-baby-carriage::before { + content: "\f77d"; } + +.fa-carriage-baby::before { + content: "\f77d"; } + +.fa-traffic-light::before { + content: "\f637"; } + +.fa-thermometer::before { + content: "\f491"; } + +.fa-vr-cardboard::before { + content: "\f729"; } + +.fa-hand-middle-finger::before { + content: "\f806"; } + +.fa-percent::before { + content: "\25"; } + +.fa-percentage::before { + content: "\25"; } + +.fa-truck-moving::before { + content: "\f4df"; } + +.fa-glass-water-droplet::before { + content: "\e4f5"; } + +.fa-display::before { + content: "\e163"; } + +.fa-face-smile::before { + content: "\f118"; } + +.fa-smile::before { + content: "\f118"; } + +.fa-thumbtack::before { + content: "\f08d"; } + +.fa-thumb-tack::before { + content: "\f08d"; } + +.fa-trophy::before { + content: "\f091"; } + +.fa-person-praying::before { + content: "\f683"; } + +.fa-pray::before { + content: "\f683"; } + +.fa-hammer::before { + content: "\f6e3"; } + +.fa-hand-peace::before { + content: "\f25b"; } + +.fa-rotate::before { + content: "\f2f1"; } + +.fa-sync-alt::before { + content: "\f2f1"; } + +.fa-spinner::before { + content: "\f110"; } + +.fa-robot::before { + content: "\f544"; } + +.fa-peace::before { + content: "\f67c"; } + +.fa-gears::before { + content: "\f085"; } + +.fa-cogs::before { + content: "\f085"; } + +.fa-warehouse::before { + content: "\f494"; } + +.fa-arrow-up-right-dots::before { + content: "\e4b7"; } + +.fa-splotch::before { + content: "\f5bc"; } + +.fa-face-grin-hearts::before { + content: "\f584"; } + +.fa-grin-hearts::before { + content: "\f584"; } + +.fa-dice-four::before { + content: "\f524"; } + +.fa-sim-card::before { + content: "\f7c4"; } + +.fa-transgender::before { + content: "\f225"; } + +.fa-transgender-alt::before { + content: "\f225"; } + +.fa-mercury::before { + content: "\f223"; } + +.fa-arrow-turn-down::before { + content: "\f149"; } + +.fa-level-down::before { + content: "\f149"; } + +.fa-person-falling-burst::before { + content: "\e547"; } + +.fa-award::before { + content: "\f559"; } + +.fa-ticket-simple::before { + content: "\f3ff"; } + +.fa-ticket-alt::before { + content: "\f3ff"; } + +.fa-building::before { + content: "\f1ad"; } + +.fa-angles-left::before { + content: "\f100"; } + +.fa-angle-double-left::before { + content: "\f100"; } + +.fa-qrcode::before { + content: "\f029"; } + +.fa-clock-rotate-left::before { + content: "\f1da"; } + +.fa-history::before { + content: "\f1da"; } + +.fa-face-grin-beam-sweat::before { + content: "\f583"; } + +.fa-grin-beam-sweat::before { + content: "\f583"; } + +.fa-file-export::before { + content: "\f56e"; } + +.fa-arrow-right-from-file::before { + content: "\f56e"; } + +.fa-shield::before { + content: "\f132"; } + +.fa-shield-blank::before { + content: "\f132"; } + +.fa-arrow-up-short-wide::before { + content: "\f885"; } + +.fa-sort-amount-up-alt::before { + content: "\f885"; } + +.fa-house-medical::before { + content: "\e3b2"; } + +.fa-golf-ball-tee::before { + content: "\f450"; } + +.fa-golf-ball::before { + content: "\f450"; } + +.fa-circle-chevron-left::before { + content: "\f137"; } + +.fa-chevron-circle-left::before { + content: "\f137"; } + +.fa-house-chimney-window::before { + content: "\e00d"; } + +.fa-pen-nib::before { + content: "\f5ad"; } + +.fa-tent-arrow-turn-left::before { + content: "\e580"; } + +.fa-tents::before { + content: "\e582"; } + +.fa-wand-magic::before { + content: "\f0d0"; } + +.fa-magic::before { + content: "\f0d0"; } + +.fa-dog::before { + content: "\f6d3"; } + +.fa-carrot::before { + content: "\f787"; } + +.fa-moon::before { + content: "\f186"; } + +.fa-wine-glass-empty::before { + content: "\f5ce"; } + +.fa-wine-glass-alt::before { + content: "\f5ce"; } + +.fa-cheese::before { + content: "\f7ef"; } + +.fa-yin-yang::before { + content: "\f6ad"; } + +.fa-music::before { + content: "\f001"; } + +.fa-code-commit::before { + content: "\f386"; } + +.fa-temperature-low::before { + content: "\f76b"; } + +.fa-person-biking::before { + content: "\f84a"; } + +.fa-biking::before { + content: "\f84a"; } + +.fa-broom::before { + content: "\f51a"; } + +.fa-shield-heart::before { + content: "\e574"; } + +.fa-gopuram::before { + content: "\f664"; } + +.fa-earth-oceania::before { + content: "\e47b"; } + +.fa-globe-oceania::before { + content: "\e47b"; } + +.fa-square-xmark::before { + content: "\f2d3"; } + +.fa-times-square::before { + content: "\f2d3"; } + +.fa-xmark-square::before { + content: "\f2d3"; } + +.fa-hashtag::before { + content: "\23"; } + +.fa-up-right-and-down-left-from-center::before { + content: "\f424"; } + +.fa-expand-alt::before { + content: "\f424"; } + +.fa-oil-can::before { + content: "\f613"; } + +.fa-t::before { + content: "\54"; } + +.fa-hippo::before { + content: "\f6ed"; } + +.fa-chart-column::before { + content: "\e0e3"; } + +.fa-infinity::before { + content: "\f534"; } + +.fa-vial-circle-check::before { + content: "\e596"; } + +.fa-person-arrow-down-to-line::before { + content: "\e538"; } + +.fa-voicemail::before { + content: "\f897"; } + +.fa-fan::before { + content: "\f863"; } + +.fa-person-walking-luggage::before { + content: "\e554"; } + +.fa-up-down::before { + content: "\f338"; } + +.fa-arrows-alt-v::before { + content: "\f338"; } + +.fa-cloud-moon-rain::before { + content: "\f73c"; } + +.fa-calendar::before { + content: "\f133"; } + +.fa-trailer::before { + content: "\e041"; } + +.fa-bahai::before { + content: "\f666"; } + +.fa-haykal::before { + content: "\f666"; } + +.fa-sd-card::before { + content: "\f7c2"; } + +.fa-dragon::before { + content: "\f6d5"; } + +.fa-shoe-prints::before { + content: "\f54b"; } + +.fa-circle-plus::before { + content: "\f055"; } + +.fa-plus-circle::before { + content: "\f055"; } + +.fa-face-grin-tongue-wink::before { + content: "\f58b"; } + +.fa-grin-tongue-wink::before { + content: "\f58b"; } + +.fa-hand-holding::before { + content: "\f4bd"; } + +.fa-plug-circle-exclamation::before { + content: "\e55d"; } + +.fa-link-slash::before { + content: "\f127"; } + +.fa-chain-broken::before { + content: "\f127"; } + +.fa-chain-slash::before { + content: "\f127"; } + +.fa-unlink::before { + content: "\f127"; } + +.fa-clone::before { + content: "\f24d"; } + +.fa-person-walking-arrow-loop-left::before { + content: "\e551"; } + +.fa-arrow-up-z-a::before { + content: "\f882"; } + +.fa-sort-alpha-up-alt::before { + content: "\f882"; } + +.fa-fire-flame-curved::before { + content: "\f7e4"; } + +.fa-fire-alt::before { + content: "\f7e4"; } + +.fa-tornado::before { + content: "\f76f"; } + +.fa-file-circle-plus::before { + content: "\e494"; } + +.fa-book-quran::before { + content: "\f687"; } + +.fa-quran::before { + content: "\f687"; } + +.fa-anchor::before { + content: "\f13d"; } + +.fa-border-all::before { + content: "\f84c"; } + +.fa-face-angry::before { + content: "\f556"; } + +.fa-angry::before { + content: "\f556"; } + +.fa-cookie-bite::before { + content: "\f564"; } + +.fa-arrow-trend-down::before { + content: "\e097"; } + +.fa-rss::before { + content: "\f09e"; } + +.fa-feed::before { + content: "\f09e"; } + +.fa-draw-polygon::before { + content: "\f5ee"; } + +.fa-scale-balanced::before { + content: "\f24e"; } + +.fa-balance-scale::before { + content: "\f24e"; } + +.fa-gauge-simple-high::before { + content: "\f62a"; } + +.fa-tachometer::before { + content: "\f62a"; } + +.fa-tachometer-fast::before { + content: "\f62a"; } + +.fa-shower::before { + content: "\f2cc"; } + +.fa-desktop::before { + content: "\f390"; } + +.fa-desktop-alt::before { + content: "\f390"; } + +.fa-m::before { + content: "\4d"; } + +.fa-table-list::before { + content: "\f00b"; } + +.fa-th-list::before { + content: "\f00b"; } + +.fa-comment-sms::before { + content: "\f7cd"; } + +.fa-sms::before { + content: "\f7cd"; } + +.fa-book::before { + content: "\f02d"; } + +.fa-user-plus::before { + content: "\f234"; } + +.fa-check::before { + content: "\f00c"; } + +.fa-battery-three-quarters::before { + content: "\f241"; } + +.fa-battery-4::before { + content: "\f241"; } + +.fa-house-circle-check::before { + content: "\e509"; } + +.fa-angle-left::before { + content: "\f104"; } + +.fa-diagram-successor::before { + content: "\e47a"; } + +.fa-truck-arrow-right::before { + content: "\e58b"; } + +.fa-arrows-split-up-and-left::before { + content: "\e4bc"; } + +.fa-hand-fist::before { + content: "\f6de"; } + +.fa-fist-raised::before { + content: "\f6de"; } + +.fa-cloud-moon::before { + content: "\f6c3"; } + +.fa-briefcase::before { + content: "\f0b1"; } + +.fa-person-falling::before { + content: "\e546"; } + +.fa-image-portrait::before { + content: "\f3e0"; } + +.fa-portrait::before { + content: "\f3e0"; } + +.fa-user-tag::before { + content: "\f507"; } + +.fa-rug::before { + content: "\e569"; } + +.fa-earth-europe::before { + content: "\f7a2"; } + +.fa-globe-europe::before { + content: "\f7a2"; } + +.fa-cart-flatbed-suitcase::before { + content: "\f59d"; } + +.fa-luggage-cart::before { + content: "\f59d"; } + +.fa-rectangle-xmark::before { + content: "\f410"; } + +.fa-rectangle-times::before { + content: "\f410"; } + +.fa-times-rectangle::before { + content: "\f410"; } + +.fa-window-close::before { + content: "\f410"; } + +.fa-baht-sign::before { + content: "\e0ac"; } + +.fa-book-open::before { + content: "\f518"; } + +.fa-book-journal-whills::before { + content: "\f66a"; } + +.fa-journal-whills::before { + content: "\f66a"; } + +.fa-handcuffs::before { + content: "\e4f8"; } + +.fa-triangle-exclamation::before { + content: "\f071"; } + +.fa-exclamation-triangle::before { + content: "\f071"; } + +.fa-warning::before { + content: "\f071"; } + +.fa-database::before { + content: "\f1c0"; } + +.fa-share::before { + content: "\f064"; } + +.fa-arrow-turn-right::before { + content: "\f064"; } + +.fa-mail-forward::before { + content: "\f064"; } + +.fa-bottle-droplet::before { + content: "\e4c4"; } + +.fa-mask-face::before { + content: "\e1d7"; } + +.fa-hill-rockslide::before { + content: "\e508"; } + +.fa-right-left::before { + content: "\f362"; } + +.fa-exchange-alt::before { + content: "\f362"; } + +.fa-paper-plane::before { + content: "\f1d8"; } + +.fa-road-circle-exclamation::before { + content: "\e565"; } + +.fa-dungeon::before { + content: "\f6d9"; } + +.fa-align-right::before { + content: "\f038"; } + +.fa-money-bill-1-wave::before { + content: "\f53b"; } + +.fa-money-bill-wave-alt::before { + content: "\f53b"; } + +.fa-life-ring::before { + content: "\f1cd"; } + +.fa-hands::before { + content: "\f2a7"; } + +.fa-sign-language::before { + content: "\f2a7"; } + +.fa-signing::before { + content: "\f2a7"; } + +.fa-calendar-day::before { + content: "\f783"; } + +.fa-water-ladder::before { + content: "\f5c5"; } + +.fa-ladder-water::before { + content: "\f5c5"; } + +.fa-swimming-pool::before { + content: "\f5c5"; } + +.fa-arrows-up-down::before { + content: "\f07d"; } + +.fa-arrows-v::before { + content: "\f07d"; } + +.fa-face-grimace::before { + content: "\f57f"; } + +.fa-grimace::before { + content: "\f57f"; } + +.fa-wheelchair-move::before { + content: "\e2ce"; } + +.fa-wheelchair-alt::before { + content: "\e2ce"; } + +.fa-turn-down::before { + content: "\f3be"; } + +.fa-level-down-alt::before { + content: "\f3be"; } + +.fa-person-walking-arrow-right::before { + content: "\e552"; } + +.fa-square-envelope::before { + content: "\f199"; } + +.fa-envelope-square::before { + content: "\f199"; } + +.fa-dice::before { + content: "\f522"; } + +.fa-bowling-ball::before { + content: "\f436"; } + +.fa-brain::before { + content: "\f5dc"; } + +.fa-bandage::before { + content: "\f462"; } + +.fa-band-aid::before { + content: "\f462"; } + +.fa-calendar-minus::before { + content: "\f272"; } + +.fa-circle-xmark::before { + content: "\f057"; } + +.fa-times-circle::before { + content: "\f057"; } + +.fa-xmark-circle::before { + content: "\f057"; } + +.fa-gifts::before { + content: "\f79c"; } + +.fa-hotel::before { + content: "\f594"; } + +.fa-earth-asia::before { + content: "\f57e"; } + +.fa-globe-asia::before { + content: "\f57e"; } + +.fa-id-card-clip::before { + content: "\f47f"; } + +.fa-id-card-alt::before { + content: "\f47f"; } + +.fa-magnifying-glass-plus::before { + content: "\f00e"; } + +.fa-search-plus::before { + content: "\f00e"; } + +.fa-thumbs-up::before { + content: "\f164"; } + +.fa-user-clock::before { + content: "\f4fd"; } + +.fa-hand-dots::before { + content: "\f461"; } + +.fa-allergies::before { + content: "\f461"; } + +.fa-file-invoice::before { + content: "\f570"; } + +.fa-window-minimize::before { + content: "\f2d1"; } + +.fa-mug-saucer::before { + content: "\f0f4"; } + +.fa-coffee::before { + content: "\f0f4"; } + +.fa-brush::before { + content: "\f55d"; } + +.fa-mask::before { + content: "\f6fa"; } + +.fa-magnifying-glass-minus::before { + content: "\f010"; } + +.fa-search-minus::before { + content: "\f010"; } + +.fa-ruler-vertical::before { + content: "\f548"; } + +.fa-user-large::before { + content: "\f406"; } + +.fa-user-alt::before { + content: "\f406"; } + +.fa-train-tram::before { + content: "\e5b4"; } + +.fa-user-nurse::before { + content: "\f82f"; } + +.fa-syringe::before { + content: "\f48e"; } + +.fa-cloud-sun::before { + content: "\f6c4"; } + +.fa-stopwatch-20::before { + content: "\e06f"; } + +.fa-square-full::before { + content: "\f45c"; } + +.fa-magnet::before { + content: "\f076"; } + +.fa-jar::before { + content: "\e516"; } + +.fa-note-sticky::before { + content: "\f249"; } + +.fa-sticky-note::before { + content: "\f249"; } + +.fa-bug-slash::before { + content: "\e490"; } + +.fa-arrow-up-from-water-pump::before { + content: "\e4b6"; } + +.fa-bone::before { + content: "\f5d7"; } + +.fa-user-injured::before { + content: "\f728"; } + +.fa-face-sad-tear::before { + content: "\f5b4"; } + +.fa-sad-tear::before { + content: "\f5b4"; } + +.fa-plane::before { + content: "\f072"; } + +.fa-tent-arrows-down::before { + content: "\e581"; } + +.fa-exclamation::before { + content: "\21"; } + +.fa-arrows-spin::before { + content: "\e4bb"; } + +.fa-print::before { + content: "\f02f"; } + +.fa-turkish-lira-sign::before { + content: "\e2bb"; } + +.fa-try::before { + content: "\e2bb"; } + +.fa-turkish-lira::before { + content: "\e2bb"; } + +.fa-dollar-sign::before { + content: "\24"; } + +.fa-dollar::before { + content: "\24"; } + +.fa-usd::before { + content: "\24"; } + +.fa-x::before { + content: "\58"; } + +.fa-magnifying-glass-dollar::before { + content: "\f688"; } + +.fa-search-dollar::before { + content: "\f688"; } + +.fa-users-gear::before { + content: "\f509"; } + +.fa-users-cog::before { + content: "\f509"; } + +.fa-person-military-pointing::before { + content: "\e54a"; } + +.fa-building-columns::before { + content: "\f19c"; } + +.fa-bank::before { + content: "\f19c"; } + +.fa-institution::before { + content: "\f19c"; } + +.fa-museum::before { + content: "\f19c"; } + +.fa-university::before { + content: "\f19c"; } + +.fa-umbrella::before { + content: "\f0e9"; } + +.fa-trowel::before { + content: "\e589"; } + +.fa-d::before { + content: "\44"; } + +.fa-stapler::before { + content: "\e5af"; } + +.fa-masks-theater::before { + content: "\f630"; } + +.fa-theater-masks::before { + content: "\f630"; } + +.fa-kip-sign::before { + content: "\e1c4"; } + +.fa-hand-point-left::before { + content: "\f0a5"; } + +.fa-handshake-simple::before { + content: "\f4c6"; } + +.fa-handshake-alt::before { + content: "\f4c6"; } + +.fa-jet-fighter::before { + content: "\f0fb"; } + +.fa-fighter-jet::before { + content: "\f0fb"; } + +.fa-square-share-nodes::before { + content: "\f1e1"; } + +.fa-share-alt-square::before { + content: "\f1e1"; } + +.fa-barcode::before { + content: "\f02a"; } + +.fa-plus-minus::before { + content: "\e43c"; } + +.fa-video::before { + content: "\f03d"; } + +.fa-video-camera::before { + content: "\f03d"; } + +.fa-graduation-cap::before { + content: "\f19d"; } + +.fa-mortar-board::before { + content: "\f19d"; } + +.fa-hand-holding-medical::before { + content: "\e05c"; } + +.fa-person-circle-check::before { + content: "\e53e"; } + +.fa-turn-up::before { + content: "\f3bf"; } + +.fa-level-up-alt::before { + content: "\f3bf"; } + +.sr-only, +.fa-sr-only { + position: absolute; + width: 1px; + height: 1px; + padding: 0; + margin: -1px; + overflow: hidden; + clip: rect(0, 0, 0, 0); + white-space: nowrap; + border-width: 0; } + +.sr-only-focusable:not(:focus), +.fa-sr-only-focusable:not(:focus) { + position: absolute; + width: 1px; + height: 1px; + padding: 0; + margin: -1px; + overflow: hidden; + clip: rect(0, 0, 0, 0); + white-space: nowrap; + border-width: 0; } +:root, :host { + --fa-style-family-brands: 'Font Awesome 6 Brands'; + --fa-font-brands: normal 400 1em/1 'Font Awesome 6 Brands'; } + +@font-face { + font-family: 'Font Awesome 6 Brands'; + font-style: normal; + font-weight: 400; + font-display: block; + src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); } + +.fab, +.fa-brands { + font-weight: 400; } + +.fa-monero:before { + content: "\f3d0"; } + +.fa-hooli:before { + content: "\f427"; } + +.fa-yelp:before { + content: "\f1e9"; } + +.fa-cc-visa:before { + content: "\f1f0"; } + +.fa-lastfm:before { + content: "\f202"; } + +.fa-shopware:before { + content: "\f5b5"; } + +.fa-creative-commons-nc:before { + content: "\f4e8"; } + +.fa-aws:before { + content: "\f375"; } + +.fa-redhat:before { + content: "\f7bc"; } + +.fa-yoast:before { + content: "\f2b1"; } + +.fa-cloudflare:before { + content: "\e07d"; } + +.fa-ups:before { + content: "\f7e0"; } + +.fa-wpexplorer:before { + content: "\f2de"; } + +.fa-dyalog:before { + content: "\f399"; } + +.fa-bity:before { + content: "\f37a"; } + +.fa-stackpath:before { + content: "\f842"; } + +.fa-buysellads:before { + content: "\f20d"; } + +.fa-first-order:before { + content: "\f2b0"; } + +.fa-modx:before { + content: "\f285"; } + +.fa-guilded:before { + content: "\e07e"; } + +.fa-vnv:before { + content: "\f40b"; } + +.fa-square-js:before { + content: "\f3b9"; } + +.fa-js-square:before { + content: "\f3b9"; } + +.fa-microsoft:before { + content: "\f3ca"; } + +.fa-qq:before { + content: "\f1d6"; } + +.fa-orcid:before { + content: "\f8d2"; } + +.fa-java:before { + content: "\f4e4"; } + +.fa-invision:before { + content: "\f7b0"; } + +.fa-creative-commons-pd-alt:before { + content: "\f4ed"; } + +.fa-centercode:before { + content: "\f380"; } + +.fa-glide-g:before { + content: "\f2a6"; } + +.fa-drupal:before { + content: "\f1a9"; } + +.fa-hire-a-helper:before { + content: "\f3b0"; } + +.fa-creative-commons-by:before { + content: "\f4e7"; } + +.fa-unity:before { + content: "\e049"; } + +.fa-whmcs:before { + content: "\f40d"; } + +.fa-rocketchat:before { + content: "\f3e8"; } + +.fa-vk:before { + content: "\f189"; } + +.fa-untappd:before { + content: "\f405"; } + +.fa-mailchimp:before { + content: "\f59e"; } + +.fa-css3-alt:before { + content: "\f38b"; } + +.fa-square-reddit:before { + content: "\f1a2"; } + +.fa-reddit-square:before { + content: "\f1a2"; } + +.fa-vimeo-v:before { + content: "\f27d"; } + +.fa-contao:before { + content: "\f26d"; } + +.fa-square-font-awesome:before { + content: "\e5ad"; } + +.fa-deskpro:before { + content: "\f38f"; } + +.fa-sistrix:before { + content: "\f3ee"; } + +.fa-square-instagram:before { + content: "\e055"; } + +.fa-instagram-square:before { + content: "\e055"; } + +.fa-battle-net:before { + content: "\f835"; } + +.fa-the-red-yeti:before { + content: "\f69d"; } + +.fa-square-hacker-news:before { + content: "\f3af"; } + +.fa-hacker-news-square:before { + content: "\f3af"; } + +.fa-edge:before { + content: "\f282"; } + +.fa-threads:before { + content: "\e618"; } + +.fa-napster:before { + content: "\f3d2"; } + +.fa-square-snapchat:before { + content: "\f2ad"; } + +.fa-snapchat-square:before { + content: "\f2ad"; } + +.fa-google-plus-g:before { + content: "\f0d5"; } + +.fa-artstation:before { + content: "\f77a"; } + +.fa-markdown:before { + content: "\f60f"; } + +.fa-sourcetree:before { + content: "\f7d3"; } + +.fa-google-plus:before { + content: "\f2b3"; } + +.fa-diaspora:before { + content: "\f791"; } + +.fa-foursquare:before { + content: "\f180"; } + +.fa-stack-overflow:before { + content: "\f16c"; } + +.fa-github-alt:before { + content: "\f113"; } + +.fa-phoenix-squadron:before { + content: "\f511"; } + +.fa-pagelines:before { + content: "\f18c"; } + +.fa-algolia:before { + content: "\f36c"; } + +.fa-red-river:before { + content: "\f3e3"; } + +.fa-creative-commons-sa:before { + content: "\f4ef"; } + +.fa-safari:before { + content: "\f267"; } + +.fa-google:before { + content: "\f1a0"; } + +.fa-square-font-awesome-stroke:before { + content: "\f35c"; } + +.fa-font-awesome-alt:before { + content: "\f35c"; } + +.fa-atlassian:before { + content: "\f77b"; } + +.fa-linkedin-in:before { + content: "\f0e1"; } + +.fa-digital-ocean:before { + content: "\f391"; } + +.fa-nimblr:before { + content: "\f5a8"; } + +.fa-chromecast:before { + content: "\f838"; } + +.fa-evernote:before { + content: "\f839"; } + +.fa-hacker-news:before { + content: "\f1d4"; } + +.fa-creative-commons-sampling:before { + content: "\f4f0"; } + +.fa-adversal:before { + content: "\f36a"; } + +.fa-creative-commons:before { + content: "\f25e"; } + +.fa-watchman-monitoring:before { + content: "\e087"; } + +.fa-fonticons:before { + content: "\f280"; } + +.fa-weixin:before { + content: "\f1d7"; } + +.fa-shirtsinbulk:before { + content: "\f214"; } + +.fa-codepen:before { + content: "\f1cb"; } + +.fa-git-alt:before { + content: "\f841"; } + +.fa-lyft:before { + content: "\f3c3"; } + +.fa-rev:before { + content: "\f5b2"; } + +.fa-windows:before { + content: "\f17a"; } + +.fa-wizards-of-the-coast:before { + content: "\f730"; } + +.fa-square-viadeo:before { + content: "\f2aa"; } + +.fa-viadeo-square:before { + content: "\f2aa"; } + +.fa-meetup:before { + content: "\f2e0"; } + +.fa-centos:before { + content: "\f789"; } + +.fa-adn:before { + content: "\f170"; } + +.fa-cloudsmith:before { + content: "\f384"; } + +.fa-pied-piper-alt:before { + content: "\f1a8"; } + +.fa-square-dribbble:before { + content: "\f397"; } + +.fa-dribbble-square:before { + content: "\f397"; } + +.fa-codiepie:before { + content: "\f284"; } + +.fa-node:before { + content: "\f419"; } + +.fa-mix:before { + content: "\f3cb"; } + +.fa-steam:before { + content: "\f1b6"; } + +.fa-cc-apple-pay:before { + content: "\f416"; } + +.fa-scribd:before { + content: "\f28a"; } + +.fa-debian:before { + content: "\e60b"; } + +.fa-openid:before { + content: "\f19b"; } + +.fa-instalod:before { + content: "\e081"; } + +.fa-expeditedssl:before { + content: "\f23e"; } + +.fa-sellcast:before { + content: "\f2da"; } + +.fa-square-twitter:before { + content: "\f081"; } + +.fa-twitter-square:before { + content: "\f081"; } + +.fa-r-project:before { + content: "\f4f7"; } + +.fa-delicious:before { + content: "\f1a5"; } + +.fa-freebsd:before { + content: "\f3a4"; } + +.fa-vuejs:before { + content: "\f41f"; } + +.fa-accusoft:before { + content: "\f369"; } + +.fa-ioxhost:before { + content: "\f208"; } + +.fa-fonticons-fi:before { + content: "\f3a2"; } + +.fa-app-store:before { + content: "\f36f"; } + +.fa-cc-mastercard:before { + content: "\f1f1"; } + +.fa-itunes-note:before { + content: "\f3b5"; } + +.fa-golang:before { + content: "\e40f"; } + +.fa-kickstarter:before { + content: "\f3bb"; } + +.fa-grav:before { + content: "\f2d6"; } + +.fa-weibo:before { + content: "\f18a"; } + +.fa-uncharted:before { + content: "\e084"; } + +.fa-firstdraft:before { + content: "\f3a1"; } + +.fa-square-youtube:before { + content: "\f431"; } + +.fa-youtube-square:before { + content: "\f431"; } + +.fa-wikipedia-w:before { + content: "\f266"; } + +.fa-wpressr:before { + content: "\f3e4"; } + +.fa-rendact:before { + content: "\f3e4"; } + +.fa-angellist:before { + content: "\f209"; } + +.fa-galactic-republic:before { + content: "\f50c"; } + +.fa-nfc-directional:before { + content: "\e530"; } + +.fa-skype:before { + content: "\f17e"; } + +.fa-joget:before { + content: "\f3b7"; } + +.fa-fedora:before { + content: "\f798"; } + +.fa-stripe-s:before { + content: "\f42a"; } + +.fa-meta:before { + content: "\e49b"; } + +.fa-laravel:before { + content: "\f3bd"; } + +.fa-hotjar:before { + content: "\f3b1"; } + +.fa-bluetooth-b:before { + content: "\f294"; } + +.fa-sticker-mule:before { + content: "\f3f7"; } + +.fa-creative-commons-zero:before { + content: "\f4f3"; } + +.fa-hips:before { + content: "\f452"; } + +.fa-behance:before { + content: "\f1b4"; } + +.fa-reddit:before { + content: "\f1a1"; } + +.fa-discord:before { + content: "\f392"; } + +.fa-chrome:before { + content: "\f268"; } + +.fa-app-store-ios:before { + content: "\f370"; } + +.fa-cc-discover:before { + content: "\f1f2"; } + +.fa-wpbeginner:before { + content: "\f297"; } + +.fa-confluence:before { + content: "\f78d"; } + +.fa-mdb:before { + content: "\f8ca"; } + +.fa-dochub:before { + content: "\f394"; } + +.fa-accessible-icon:before { + content: "\f368"; } + +.fa-ebay:before { + content: "\f4f4"; } + +.fa-amazon:before { + content: "\f270"; } + +.fa-unsplash:before { + content: "\e07c"; } + +.fa-yarn:before { + content: "\f7e3"; } + +.fa-square-steam:before { + content: "\f1b7"; } + +.fa-steam-square:before { + content: "\f1b7"; } + +.fa-500px:before { + content: "\f26e"; } + +.fa-square-vimeo:before { + content: "\f194"; } + +.fa-vimeo-square:before { + content: "\f194"; } + +.fa-asymmetrik:before { + content: "\f372"; } + +.fa-font-awesome:before { + content: "\f2b4"; } + +.fa-font-awesome-flag:before { + content: "\f2b4"; } + +.fa-font-awesome-logo-full:before { + content: "\f2b4"; } + +.fa-gratipay:before { + content: "\f184"; } + +.fa-apple:before { + content: "\f179"; } + +.fa-hive:before { + content: "\e07f"; } + +.fa-gitkraken:before { + content: "\f3a6"; } + +.fa-keybase:before { + content: "\f4f5"; } + +.fa-apple-pay:before { + content: "\f415"; } + +.fa-padlet:before { + content: "\e4a0"; } + +.fa-amazon-pay:before { + content: "\f42c"; } + +.fa-square-github:before { + content: "\f092"; } + +.fa-github-square:before { + content: "\f092"; } + +.fa-stumbleupon:before { + content: "\f1a4"; } + +.fa-fedex:before { + content: "\f797"; } + +.fa-phoenix-framework:before { + content: "\f3dc"; } + +.fa-shopify:before { + content: "\e057"; } + +.fa-neos:before { + content: "\f612"; } + +.fa-square-threads:before { + content: "\e619"; } + +.fa-hackerrank:before { + content: "\f5f7"; } + +.fa-researchgate:before { + content: "\f4f8"; } + +.fa-swift:before { + content: "\f8e1"; } + +.fa-angular:before { + content: "\f420"; } + +.fa-speakap:before { + content: "\f3f3"; } + +.fa-angrycreative:before { + content: "\f36e"; } + +.fa-y-combinator:before { + content: "\f23b"; } + +.fa-empire:before { + content: "\f1d1"; } + +.fa-envira:before { + content: "\f299"; } + +.fa-square-gitlab:before { + content: "\e5ae"; } + +.fa-gitlab-square:before { + content: "\e5ae"; } + +.fa-studiovinari:before { + content: "\f3f8"; } + +.fa-pied-piper:before { + content: "\f2ae"; } + +.fa-wordpress:before { + content: "\f19a"; } + +.fa-product-hunt:before { + content: "\f288"; } + +.fa-firefox:before { + content: "\f269"; } + +.fa-linode:before { + content: "\f2b8"; } + +.fa-goodreads:before { + content: "\f3a8"; } + +.fa-square-odnoklassniki:before { + content: "\f264"; } + +.fa-odnoklassniki-square:before { + content: "\f264"; } + +.fa-jsfiddle:before { + content: "\f1cc"; } + +.fa-sith:before { + content: "\f512"; } + +.fa-themeisle:before { + content: "\f2b2"; } + +.fa-page4:before { + content: "\f3d7"; } + +.fa-hashnode:before { + content: "\e499"; } + +.fa-react:before { + content: "\f41b"; } + +.fa-cc-paypal:before { + content: "\f1f4"; } + +.fa-squarespace:before { + content: "\f5be"; } + +.fa-cc-stripe:before { + content: "\f1f5"; } + +.fa-creative-commons-share:before { + content: "\f4f2"; } + +.fa-bitcoin:before { + content: "\f379"; } + +.fa-keycdn:before { + content: "\f3ba"; } + +.fa-opera:before { + content: "\f26a"; } + +.fa-itch-io:before { + content: "\f83a"; } + +.fa-umbraco:before { + content: "\f8e8"; } + +.fa-galactic-senate:before { + content: "\f50d"; } + +.fa-ubuntu:before { + content: "\f7df"; } + +.fa-draft2digital:before { + content: "\f396"; } + +.fa-stripe:before { + content: "\f429"; } + +.fa-houzz:before { + content: "\f27c"; } + +.fa-gg:before { + content: "\f260"; } + +.fa-dhl:before { + content: "\f790"; } + +.fa-square-pinterest:before { + content: "\f0d3"; } + +.fa-pinterest-square:before { + content: "\f0d3"; } + +.fa-xing:before { + content: "\f168"; } + +.fa-blackberry:before { + content: "\f37b"; } + +.fa-creative-commons-pd:before { + content: "\f4ec"; } + +.fa-playstation:before { + content: "\f3df"; } + +.fa-quinscape:before { + content: "\f459"; } + +.fa-less:before { + content: "\f41d"; } + +.fa-blogger-b:before { + content: "\f37d"; } + +.fa-opencart:before { + content: "\f23d"; } + +.fa-vine:before { + content: "\f1ca"; } + +.fa-paypal:before { + content: "\f1ed"; } + +.fa-gitlab:before { + content: "\f296"; } + +.fa-typo3:before { + content: "\f42b"; } + +.fa-reddit-alien:before { + content: "\f281"; } + +.fa-yahoo:before { + content: "\f19e"; } + +.fa-dailymotion:before { + content: "\e052"; } + +.fa-affiliatetheme:before { + content: "\f36b"; } + +.fa-pied-piper-pp:before { + content: "\f1a7"; } + +.fa-bootstrap:before { + content: "\f836"; } + +.fa-odnoklassniki:before { + content: "\f263"; } + +.fa-nfc-symbol:before { + content: "\e531"; } + +.fa-ethereum:before { + content: "\f42e"; } + +.fa-speaker-deck:before { + content: "\f83c"; } + +.fa-creative-commons-nc-eu:before { + content: "\f4e9"; } + +.fa-patreon:before { + content: "\f3d9"; } + +.fa-avianex:before { + content: "\f374"; } + +.fa-ello:before { + content: "\f5f1"; } + +.fa-gofore:before { + content: "\f3a7"; } + +.fa-bimobject:before { + content: "\f378"; } + +.fa-facebook-f:before { + content: "\f39e"; } + +.fa-square-google-plus:before { + content: "\f0d4"; } + +.fa-google-plus-square:before { + content: "\f0d4"; } + +.fa-mandalorian:before { + content: "\f50f"; } + +.fa-first-order-alt:before { + content: "\f50a"; } + +.fa-osi:before { + content: "\f41a"; } + +.fa-google-wallet:before { + content: "\f1ee"; } + +.fa-d-and-d-beyond:before { + content: "\f6ca"; } + +.fa-periscope:before { + content: "\f3da"; } + +.fa-fulcrum:before { + content: "\f50b"; } + +.fa-cloudscale:before { + content: "\f383"; } + +.fa-forumbee:before { + content: "\f211"; } + +.fa-mizuni:before { + content: "\f3cc"; } + +.fa-schlix:before { + content: "\f3ea"; } + +.fa-square-xing:before { + content: "\f169"; } + +.fa-xing-square:before { + content: "\f169"; } + +.fa-bandcamp:before { + content: "\f2d5"; } + +.fa-wpforms:before { + content: "\f298"; } + +.fa-cloudversify:before { + content: "\f385"; } + +.fa-usps:before { + content: "\f7e1"; } + +.fa-megaport:before { + content: "\f5a3"; } + +.fa-magento:before { + content: "\f3c4"; } + +.fa-spotify:before { + content: "\f1bc"; } + +.fa-optin-monster:before { + content: "\f23c"; } + +.fa-fly:before { + content: "\f417"; } + +.fa-aviato:before { + content: "\f421"; } + +.fa-itunes:before { + content: "\f3b4"; } + +.fa-cuttlefish:before { + content: "\f38c"; } + +.fa-blogger:before { + content: "\f37c"; } + +.fa-flickr:before { + content: "\f16e"; } + +.fa-viber:before { + content: "\f409"; } + +.fa-soundcloud:before { + content: "\f1be"; } + +.fa-digg:before { + content: "\f1a6"; } + +.fa-tencent-weibo:before { + content: "\f1d5"; } + +.fa-symfony:before { + content: "\f83d"; } + +.fa-maxcdn:before { + content: "\f136"; } + +.fa-etsy:before { + content: "\f2d7"; } + +.fa-facebook-messenger:before { + content: "\f39f"; } + +.fa-audible:before { + content: "\f373"; } + +.fa-think-peaks:before { + content: "\f731"; } + +.fa-bilibili:before { + content: "\e3d9"; } + +.fa-erlang:before { + content: "\f39d"; } + +.fa-x-twitter:before { + content: "\e61b"; } + +.fa-cotton-bureau:before { + content: "\f89e"; } + +.fa-dashcube:before { + content: "\f210"; } + +.fa-42-group:before { + content: "\e080"; } + +.fa-innosoft:before { + content: "\e080"; } + +.fa-stack-exchange:before { + content: "\f18d"; } + +.fa-elementor:before { + content: "\f430"; } + +.fa-square-pied-piper:before { + content: "\e01e"; } + +.fa-pied-piper-square:before { + content: "\e01e"; } + +.fa-creative-commons-nd:before { + content: "\f4eb"; } + +.fa-palfed:before { + content: "\f3d8"; } + +.fa-superpowers:before { + content: "\f2dd"; } + +.fa-resolving:before { + content: "\f3e7"; } + +.fa-xbox:before { + content: "\f412"; } + +.fa-searchengin:before { + content: "\f3eb"; } + +.fa-tiktok:before { + content: "\e07b"; } + +.fa-square-facebook:before { + content: "\f082"; } + +.fa-facebook-square:before { + content: "\f082"; } + +.fa-renren:before { + content: "\f18b"; } + +.fa-linux:before { + content: "\f17c"; } + +.fa-glide:before { + content: "\f2a5"; } + +.fa-linkedin:before { + content: "\f08c"; } + +.fa-hubspot:before { + content: "\f3b2"; } + +.fa-deploydog:before { + content: "\f38e"; } + +.fa-twitch:before { + content: "\f1e8"; } + +.fa-ravelry:before { + content: "\f2d9"; } + +.fa-mixer:before { + content: "\e056"; } + +.fa-square-lastfm:before { + content: "\f203"; } + +.fa-lastfm-square:before { + content: "\f203"; } + +.fa-vimeo:before { + content: "\f40a"; } + +.fa-mendeley:before { + content: "\f7b3"; } + +.fa-uniregistry:before { + content: "\f404"; } + +.fa-figma:before { + content: "\f799"; } + +.fa-creative-commons-remix:before { + content: "\f4ee"; } + +.fa-cc-amazon-pay:before { + content: "\f42d"; } + +.fa-dropbox:before { + content: "\f16b"; } + +.fa-instagram:before { + content: "\f16d"; } + +.fa-cmplid:before { + content: "\e360"; } + +.fa-facebook:before { + content: "\f09a"; } + +.fa-gripfire:before { + content: "\f3ac"; } + +.fa-jedi-order:before { + content: "\f50e"; } + +.fa-uikit:before { + content: "\f403"; } + +.fa-fort-awesome-alt:before { + content: "\f3a3"; } + +.fa-phabricator:before { + content: "\f3db"; } + +.fa-ussunnah:before { + content: "\f407"; } + +.fa-earlybirds:before { + content: "\f39a"; } + +.fa-trade-federation:before { + content: "\f513"; } + +.fa-autoprefixer:before { + content: "\f41c"; } + +.fa-whatsapp:before { + content: "\f232"; } + +.fa-slideshare:before { + content: "\f1e7"; } + +.fa-google-play:before { + content: "\f3ab"; } + +.fa-viadeo:before { + content: "\f2a9"; } + +.fa-line:before { + content: "\f3c0"; } + +.fa-google-drive:before { + content: "\f3aa"; } + +.fa-servicestack:before { + content: "\f3ec"; } + +.fa-simplybuilt:before { + content: "\f215"; } + +.fa-bitbucket:before { + content: "\f171"; } + +.fa-imdb:before { + content: "\f2d8"; } + +.fa-deezer:before { + content: "\e077"; } + +.fa-raspberry-pi:before { + content: "\f7bb"; } + +.fa-jira:before { + content: "\f7b1"; } + +.fa-docker:before { + content: "\f395"; } + +.fa-screenpal:before { + content: "\e570"; } + +.fa-bluetooth:before { + content: "\f293"; } + +.fa-gitter:before { + content: "\f426"; } + +.fa-d-and-d:before { + content: "\f38d"; } + +.fa-microblog:before { + content: "\e01a"; } + +.fa-cc-diners-club:before { + content: "\f24c"; } + +.fa-gg-circle:before { + content: "\f261"; } + +.fa-pied-piper-hat:before { + content: "\f4e5"; } + +.fa-kickstarter-k:before { + content: "\f3bc"; } + +.fa-yandex:before { + content: "\f413"; } + +.fa-readme:before { + content: "\f4d5"; } + +.fa-html5:before { + content: "\f13b"; } + +.fa-sellsy:before { + content: "\f213"; } + +.fa-sass:before { + content: "\f41e"; } + +.fa-wirsindhandwerk:before { + content: "\e2d0"; } + +.fa-wsh:before { + content: "\e2d0"; } + +.fa-buromobelexperte:before { + content: "\f37f"; } + +.fa-salesforce:before { + content: "\f83b"; } + +.fa-octopus-deploy:before { + content: "\e082"; } + +.fa-medapps:before { + content: "\f3c6"; } + +.fa-ns8:before { + content: "\f3d5"; } + +.fa-pinterest-p:before { + content: "\f231"; } + +.fa-apper:before { + content: "\f371"; } + +.fa-fort-awesome:before { + content: "\f286"; } + +.fa-waze:before { + content: "\f83f"; } + +.fa-cc-jcb:before { + content: "\f24b"; } + +.fa-snapchat:before { + content: "\f2ab"; } + +.fa-snapchat-ghost:before { + content: "\f2ab"; } + +.fa-fantasy-flight-games:before { + content: "\f6dc"; } + +.fa-rust:before { + content: "\e07a"; } + +.fa-wix:before { + content: "\f5cf"; } + +.fa-square-behance:before { + content: "\f1b5"; } + +.fa-behance-square:before { + content: "\f1b5"; } + +.fa-supple:before { + content: "\f3f9"; } + +.fa-rebel:before { + content: "\f1d0"; } + +.fa-css3:before { + content: "\f13c"; } + +.fa-staylinked:before { + content: "\f3f5"; } + +.fa-kaggle:before { + content: "\f5fa"; } + +.fa-space-awesome:before { + content: "\e5ac"; } + +.fa-deviantart:before { + content: "\f1bd"; } + +.fa-cpanel:before { + content: "\f388"; } + +.fa-goodreads-g:before { + content: "\f3a9"; } + +.fa-square-git:before { + content: "\f1d2"; } + +.fa-git-square:before { + content: "\f1d2"; } + +.fa-square-tumblr:before { + content: "\f174"; } + +.fa-tumblr-square:before { + content: "\f174"; } + +.fa-trello:before { + content: "\f181"; } + +.fa-creative-commons-nc-jp:before { + content: "\f4ea"; } + +.fa-get-pocket:before { + content: "\f265"; } + +.fa-perbyte:before { + content: "\e083"; } + +.fa-grunt:before { + content: "\f3ad"; } + +.fa-weebly:before { + content: "\f5cc"; } + +.fa-connectdevelop:before { + content: "\f20e"; } + +.fa-leanpub:before { + content: "\f212"; } + +.fa-black-tie:before { + content: "\f27e"; } + +.fa-themeco:before { + content: "\f5c6"; } + +.fa-python:before { + content: "\f3e2"; } + +.fa-android:before { + content: "\f17b"; } + +.fa-bots:before { + content: "\e340"; } + +.fa-free-code-camp:before { + content: "\f2c5"; } + +.fa-hornbill:before { + content: "\f592"; } + +.fa-js:before { + content: "\f3b8"; } + +.fa-ideal:before { + content: "\e013"; } + +.fa-git:before { + content: "\f1d3"; } + +.fa-dev:before { + content: "\f6cc"; } + +.fa-sketch:before { + content: "\f7c6"; } + +.fa-yandex-international:before { + content: "\f414"; } + +.fa-cc-amex:before { + content: "\f1f3"; } + +.fa-uber:before { + content: "\f402"; } + +.fa-github:before { + content: "\f09b"; } + +.fa-php:before { + content: "\f457"; } + +.fa-alipay:before { + content: "\f642"; } + +.fa-youtube:before { + content: "\f167"; } + +.fa-skyatlas:before { + content: "\f216"; } + +.fa-firefox-browser:before { + content: "\e007"; } + +.fa-replyd:before { + content: "\f3e6"; } + +.fa-suse:before { + content: "\f7d6"; } + +.fa-jenkins:before { + content: "\f3b6"; } + +.fa-twitter:before { + content: "\f099"; } + +.fa-rockrms:before { + content: "\f3e9"; } + +.fa-pinterest:before { + content: "\f0d2"; } + +.fa-buffer:before { + content: "\f837"; } + +.fa-npm:before { + content: "\f3d4"; } + +.fa-yammer:before { + content: "\f840"; } + +.fa-btc:before { + content: "\f15a"; } + +.fa-dribbble:before { + content: "\f17d"; } + +.fa-stumbleupon-circle:before { + content: "\f1a3"; } + +.fa-internet-explorer:before { + content: "\f26b"; } + +.fa-stubber:before { + content: "\e5c7"; } + +.fa-telegram:before { + content: "\f2c6"; } + +.fa-telegram-plane:before { + content: "\f2c6"; } + +.fa-old-republic:before { + content: "\f510"; } + +.fa-odysee:before { + content: "\e5c6"; } + +.fa-square-whatsapp:before { + content: "\f40c"; } + +.fa-whatsapp-square:before { + content: "\f40c"; } + +.fa-node-js:before { + content: "\f3d3"; } + +.fa-edge-legacy:before { + content: "\e078"; } + +.fa-slack:before { + content: "\f198"; } + +.fa-slack-hash:before { + content: "\f198"; } + +.fa-medrt:before { + content: "\f3c8"; } + +.fa-usb:before { + content: "\f287"; } + +.fa-tumblr:before { + content: "\f173"; } + +.fa-vaadin:before { + content: "\f408"; } + +.fa-quora:before { + content: "\f2c4"; } + +.fa-square-x-twitter:before { + content: "\e61a"; } + +.fa-reacteurope:before { + content: "\f75d"; } + +.fa-medium:before { + content: "\f23a"; } + +.fa-medium-m:before { + content: "\f23a"; } + +.fa-amilia:before { + content: "\f36d"; } + +.fa-mixcloud:before { + content: "\f289"; } + +.fa-flipboard:before { + content: "\f44d"; } + +.fa-viacoin:before { + content: "\f237"; } + +.fa-critical-role:before { + content: "\f6c9"; } + +.fa-sitrox:before { + content: "\e44a"; } + +.fa-discourse:before { + content: "\f393"; } + +.fa-joomla:before { + content: "\f1aa"; } + +.fa-mastodon:before { + content: "\f4f6"; } + +.fa-airbnb:before { + content: "\f834"; } + +.fa-wolf-pack-battalion:before { + content: "\f514"; } + +.fa-buy-n-large:before { + content: "\f8a6"; } + +.fa-gulp:before { + content: "\f3ae"; } + +.fa-creative-commons-sampling-plus:before { + content: "\f4f1"; } + +.fa-strava:before { + content: "\f428"; } + +.fa-ember:before { + content: "\f423"; } + +.fa-canadian-maple-leaf:before { + content: "\f785"; } + +.fa-teamspeak:before { + content: "\f4f9"; } + +.fa-pushed:before { + content: "\f3e1"; } + +.fa-wordpress-simple:before { + content: "\f411"; } + +.fa-nutritionix:before { + content: "\f3d6"; } + +.fa-wodu:before { + content: "\e088"; } + +.fa-google-pay:before { + content: "\e079"; } + +.fa-intercom:before { + content: "\f7af"; } + +.fa-zhihu:before { + content: "\f63f"; } + +.fa-korvue:before { + content: "\f42f"; } + +.fa-pix:before { + content: "\e43a"; } + +.fa-steam-symbol:before { + content: "\f3f6"; } +:root, :host { + --fa-style-family-classic: 'Font Awesome 6 Free'; + --fa-font-regular: normal 400 1em/1 'Font Awesome 6 Free'; } + +@font-face { + font-family: 'Font Awesome 6 Free'; + font-style: normal; + font-weight: 400; + font-display: block; + src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); } + +.far, +.fa-regular { + font-weight: 400; } +:root, :host { + --fa-style-family-classic: 'Font Awesome 6 Free'; + --fa-font-solid: normal 900 1em/1 'Font Awesome 6 Free'; } + +@font-face { + font-family: 'Font Awesome 6 Free'; + font-style: normal; + font-weight: 900; + font-display: block; + src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); } + +.fas, +.fa-solid { + font-weight: 900; } +@font-face { + font-family: 'Font Awesome 5 Brands'; + font-display: block; + font-weight: 400; + src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); } + +@font-face { + font-family: 'Font Awesome 5 Free'; + font-display: block; + font-weight: 900; + src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); } + +@font-face { + font-family: 'Font Awesome 5 Free'; + font-display: block; + font-weight: 400; + src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); } +@font-face { + font-family: 'FontAwesome'; + font-display: block; + src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); } + +@font-face { + font-family: 'FontAwesome'; + font-display: block; + src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); } + +@font-face { + font-family: 'FontAwesome'; + font-display: block; + src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); } + +@font-face { + font-family: 'FontAwesome'; + font-display: block; + src: url("../webfonts/fa-v4compatibility.woff2") format("woff2"), url("../webfonts/fa-v4compatibility.ttf") format("truetype"); } diff --git a/v0.2.8/deps/font-awesome-6.4.2/css/all.min.css b/v0.2.8/deps/font-awesome-6.4.2/css/all.min.css new file mode 100644 index 0000000000..6604a0677c --- /dev/null +++ b/v0.2.8/deps/font-awesome-6.4.2/css/all.min.css @@ -0,0 +1,9 @@ +/*! + * Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com + * License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) + * Copyright 2023 Fonticons, Inc. + */ +.fa{font-family:var(--fa-style-family,"Font Awesome 6 Free");font-weight:var(--fa-style,900)}.fa,.fa-brands,.fa-classic,.fa-regular,.fa-sharp,.fa-solid,.fab,.far,.fas{-moz-osx-font-smoothing:grayscale;-webkit-font-smoothing:antialiased;display:var(--fa-display,inline-block);font-style:normal;font-variant:normal;line-height:1;text-rendering:auto}.fa-classic,.fa-regular,.fa-solid,.far,.fas{font-family:"Font Awesome 6 Free"}.fa-brands,.fab{font-family:"Font Awesome 6 Brands"}.fa-1x{font-size:1em}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-6x{font-size:6em}.fa-7x{font-size:7em}.fa-8x{font-size:8em}.fa-9x{font-size:9em}.fa-10x{font-size:10em}.fa-2xs{font-size:.625em;line-height:.1em;vertical-align:.225em}.fa-xs{font-size:.75em;line-height:.08333em;vertical-align:.125em}.fa-sm{font-size:.875em;line-height:.07143em;vertical-align:.05357em}.fa-lg{font-size:1.25em;line-height:.05em;vertical-align:-.075em}.fa-xl{font-size:1.5em;line-height:.04167em;vertical-align:-.125em}.fa-2xl{font-size:2em;line-height:.03125em;vertical-align:-.1875em}.fa-fw{text-align:center;width:1.25em}.fa-ul{list-style-type:none;margin-left:var(--fa-li-margin,2.5em);padding-left:0}.fa-ul>li{position:relative}.fa-li{left:calc(var(--fa-li-width, 2em)*-1);position:absolute;text-align:center;width:var(--fa-li-width,2em);line-height:inherit}.fa-border{border-radius:var(--fa-border-radius,.1em);border:var(--fa-border-width,.08em) var(--fa-border-style,solid) var(--fa-border-color,#eee);padding:var(--fa-border-padding,.2em .25em .15em)}.fa-pull-left{float:left;margin-right:var(--fa-pull-margin,.3em)}.fa-pull-right{float:right;margin-left:var(--fa-pull-margin,.3em)}.fa-beat{-webkit-animation-name:fa-beat;animation-name:fa-beat;-webkit-animation-delay:var(--fa-animation-delay,0s);animation-delay:var(--fa-animation-delay,0s);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,ease-in-out);animation-timing-function:var(--fa-animation-timing,ease-in-out)}.fa-bounce{-webkit-animation-name:fa-bounce;animation-name:fa-bounce;-webkit-animation-delay:var(--fa-animation-delay,0s);animation-delay:var(--fa-animation-delay,0s);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.28,.84,.42,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.28,.84,.42,1))}.fa-fade{-webkit-animation-name:fa-fade;animation-name:fa-fade;-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1))}.fa-beat-fade,.fa-fade{-webkit-animation-delay:var(--fa-animation-delay,0s);animation-delay:var(--fa-animation-delay,0s);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s)}.fa-beat-fade{-webkit-animation-name:fa-beat-fade;animation-name:fa-beat-fade;-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1))}.fa-flip{-webkit-animation-name:fa-flip;animation-name:fa-flip;-webkit-animation-delay:var(--fa-animation-delay,0s);animation-delay:var(--fa-animation-delay,0s);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,ease-in-out);animation-timing-function:var(--fa-animation-timing,ease-in-out)}.fa-shake{-webkit-animation-name:fa-shake;animation-name:fa-shake;-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,linear);animation-timing-function:var(--fa-animation-timing,linear)}.fa-shake,.fa-spin{-webkit-animation-delay:var(--fa-animation-delay,0s);animation-delay:var(--fa-animation-delay,0s);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal)}.fa-spin{-webkit-animation-name:fa-spin;animation-name:fa-spin;-webkit-animation-duration:var(--fa-animation-duration,2s);animation-duration:var(--fa-animation-duration,2s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,linear);animation-timing-function:var(--fa-animation-timing,linear)}.fa-spin-reverse{--fa-animation-direction:reverse}.fa-pulse,.fa-spin-pulse{-webkit-animation-name:fa-spin;animation-name:fa-spin;-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,steps(8));animation-timing-function:var(--fa-animation-timing,steps(8))}@media (prefers-reduced-motion:reduce){.fa-beat,.fa-beat-fade,.fa-bounce,.fa-fade,.fa-flip,.fa-pulse,.fa-shake,.fa-spin,.fa-spin-pulse{-webkit-animation-delay:-1ms;animation-delay:-1ms;-webkit-animation-duration:1ms;animation-duration:1ms;-webkit-animation-iteration-count:1;animation-iteration-count:1;-webkit-transition-delay:0s;transition-delay:0s;-webkit-transition-duration:0s;transition-duration:0s}}@-webkit-keyframes fa-beat{0%,90%{-webkit-transform:scale(1);transform:scale(1)}45%{-webkit-transform:scale(var(--fa-beat-scale,1.25));transform:scale(var(--fa-beat-scale,1.25))}}@keyframes fa-beat{0%,90%{-webkit-transform:scale(1);transform:scale(1)}45%{-webkit-transform:scale(var(--fa-beat-scale,1.25));transform:scale(var(--fa-beat-scale,1.25))}}@-webkit-keyframes fa-bounce{0%{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}10%{-webkit-transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9)) translateY(0);transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9)) translateY(0)}30%{-webkit-transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1)) translateY(var(--fa-bounce-height,-.5em));transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1)) translateY(var(--fa-bounce-height,-.5em))}50%{-webkit-transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95)) translateY(0);transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95)) translateY(0)}57%{-webkit-transform:scale(1) translateY(var(--fa-bounce-rebound,-.125em));transform:scale(1) translateY(var(--fa-bounce-rebound,-.125em))}64%{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}to{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}}@keyframes fa-bounce{0%{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}10%{-webkit-transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9)) translateY(0);transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9)) translateY(0)}30%{-webkit-transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1)) translateY(var(--fa-bounce-height,-.5em));transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1)) translateY(var(--fa-bounce-height,-.5em))}50%{-webkit-transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95)) translateY(0);transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95)) translateY(0)}57%{-webkit-transform:scale(1) translateY(var(--fa-bounce-rebound,-.125em));transform:scale(1) translateY(var(--fa-bounce-rebound,-.125em))}64%{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}to{-webkit-transform:scale(1) translateY(0);transform:scale(1) translateY(0)}}@-webkit-keyframes fa-fade{50%{opacity:var(--fa-fade-opacity,.4)}}@keyframes fa-fade{50%{opacity:var(--fa-fade-opacity,.4)}}@-webkit-keyframes fa-beat-fade{0%,to{opacity:var(--fa-beat-fade-opacity,.4);-webkit-transform:scale(1);transform:scale(1)}50%{opacity:1;-webkit-transform:scale(var(--fa-beat-fade-scale,1.125));transform:scale(var(--fa-beat-fade-scale,1.125))}}@keyframes fa-beat-fade{0%,to{opacity:var(--fa-beat-fade-opacity,.4);-webkit-transform:scale(1);transform:scale(1)}50%{opacity:1;-webkit-transform:scale(var(--fa-beat-fade-scale,1.125));transform:scale(var(--fa-beat-fade-scale,1.125))}}@-webkit-keyframes fa-flip{50%{-webkit-transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg));transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg))}}@keyframes fa-flip{50%{-webkit-transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg));transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg))}}@-webkit-keyframes fa-shake{0%{-webkit-transform:rotate(-15deg);transform:rotate(-15deg)}4%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}8%,24%{-webkit-transform:rotate(-18deg);transform:rotate(-18deg)}12%,28%{-webkit-transform:rotate(18deg);transform:rotate(18deg)}16%{-webkit-transform:rotate(-22deg);transform:rotate(-22deg)}20%{-webkit-transform:rotate(22deg);transform:rotate(22deg)}32%{-webkit-transform:rotate(-12deg);transform:rotate(-12deg)}36%{-webkit-transform:rotate(12deg);transform:rotate(12deg)}40%,to{-webkit-transform:rotate(0deg);transform:rotate(0deg)}}@keyframes fa-shake{0%{-webkit-transform:rotate(-15deg);transform:rotate(-15deg)}4%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}8%,24%{-webkit-transform:rotate(-18deg);transform:rotate(-18deg)}12%,28%{-webkit-transform:rotate(18deg);transform:rotate(18deg)}16%{-webkit-transform:rotate(-22deg);transform:rotate(-22deg)}20%{-webkit-transform:rotate(22deg);transform:rotate(22deg)}32%{-webkit-transform:rotate(-12deg);transform:rotate(-12deg)}36%{-webkit-transform:rotate(12deg);transform:rotate(12deg)}40%,to{-webkit-transform:rotate(0deg);transform:rotate(0deg)}}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}.fa-rotate-90{-webkit-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-webkit-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-webkit-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-webkit-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-webkit-transform:scaleY(-1);transform:scaleY(-1)}.fa-flip-both,.fa-flip-horizontal.fa-flip-vertical{-webkit-transform:scale(-1);transform:scale(-1)}.fa-rotate-by{-webkit-transform:rotate(var(--fa-rotate-angle,none));transform:rotate(var(--fa-rotate-angle,none))}.fa-stack{display:inline-block;height:2em;line-height:2em;position:relative;vertical-align:middle;width:2.5em}.fa-stack-1x,.fa-stack-2x{left:0;position:absolute;text-align:center;width:100%;z-index:var(--fa-stack-z-index,auto)}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:var(--fa-inverse,#fff)} + +.fa-0:before{content:"\30"}.fa-1:before{content:"\31"}.fa-2:before{content:"\32"}.fa-3:before{content:"\33"}.fa-4:before{content:"\34"}.fa-5:before{content:"\35"}.fa-6:before{content:"\36"}.fa-7:before{content:"\37"}.fa-8:before{content:"\38"}.fa-9:before{content:"\39"}.fa-fill-drip:before{content:"\f576"}.fa-arrows-to-circle:before{content:"\e4bd"}.fa-chevron-circle-right:before,.fa-circle-chevron-right:before{content:"\f138"}.fa-at:before{content:"\40"}.fa-trash-alt:before,.fa-trash-can:before{content:"\f2ed"}.fa-text-height:before{content:"\f034"}.fa-user-times:before,.fa-user-xmark:before{content:"\f235"}.fa-stethoscope:before{content:"\f0f1"}.fa-comment-alt:before,.fa-message:before{content:"\f27a"}.fa-info:before{content:"\f129"}.fa-compress-alt:before,.fa-down-left-and-up-right-to-center:before{content:"\f422"}.fa-explosion:before{content:"\e4e9"}.fa-file-alt:before,.fa-file-lines:before,.fa-file-text:before{content:"\f15c"}.fa-wave-square:before{content:"\f83e"}.fa-ring:before{content:"\f70b"}.fa-building-un:before{content:"\e4d9"}.fa-dice-three:before{content:"\f527"}.fa-calendar-alt:before,.fa-calendar-days:before{content:"\f073"}.fa-anchor-circle-check:before{content:"\e4aa"}.fa-building-circle-arrow-right:before{content:"\e4d1"}.fa-volleyball-ball:before,.fa-volleyball:before{content:"\f45f"}.fa-arrows-up-to-line:before{content:"\e4c2"}.fa-sort-desc:before,.fa-sort-down:before{content:"\f0dd"}.fa-circle-minus:before,.fa-minus-circle:before{content:"\f056"}.fa-door-open:before{content:"\f52b"}.fa-right-from-bracket:before,.fa-sign-out-alt:before{content:"\f2f5"}.fa-atom:before{content:"\f5d2"}.fa-soap:before{content:"\e06e"}.fa-heart-music-camera-bolt:before,.fa-icons:before{content:"\f86d"}.fa-microphone-alt-slash:before,.fa-microphone-lines-slash:before{content:"\f539"}.fa-bridge-circle-check:before{content:"\e4c9"}.fa-pump-medical:before{content:"\e06a"}.fa-fingerprint:before{content:"\f577"}.fa-hand-point-right:before{content:"\f0a4"}.fa-magnifying-glass-location:before,.fa-search-location:before{content:"\f689"}.fa-forward-step:before,.fa-step-forward:before{content:"\f051"}.fa-face-smile-beam:before,.fa-smile-beam:before{content:"\f5b8"}.fa-flag-checkered:before{content:"\f11e"}.fa-football-ball:before,.fa-football:before{content:"\f44e"}.fa-school-circle-exclamation:before{content:"\e56c"}.fa-crop:before{content:"\f125"}.fa-angle-double-down:before,.fa-angles-down:before{content:"\f103"}.fa-users-rectangle:before{content:"\e594"}.fa-people-roof:before{content:"\e537"}.fa-people-line:before{content:"\e534"}.fa-beer-mug-empty:before,.fa-beer:before{content:"\f0fc"}.fa-diagram-predecessor:before{content:"\e477"}.fa-arrow-up-long:before,.fa-long-arrow-up:before{content:"\f176"}.fa-burn:before,.fa-fire-flame-simple:before{content:"\f46a"}.fa-male:before,.fa-person:before{content:"\f183"}.fa-laptop:before{content:"\f109"}.fa-file-csv:before{content:"\f6dd"}.fa-menorah:before{content:"\f676"}.fa-truck-plane:before{content:"\e58f"}.fa-record-vinyl:before{content:"\f8d9"}.fa-face-grin-stars:before,.fa-grin-stars:before{content:"\f587"}.fa-bong:before{content:"\f55c"}.fa-pastafarianism:before,.fa-spaghetti-monster-flying:before{content:"\f67b"}.fa-arrow-down-up-across-line:before{content:"\e4af"}.fa-spoon:before,.fa-utensil-spoon:before{content:"\f2e5"}.fa-jar-wheat:before{content:"\e517"}.fa-envelopes-bulk:before,.fa-mail-bulk:before{content:"\f674"}.fa-file-circle-exclamation:before{content:"\e4eb"}.fa-circle-h:before,.fa-hospital-symbol:before{content:"\f47e"}.fa-pager:before{content:"\f815"}.fa-address-book:before,.fa-contact-book:before{content:"\f2b9"}.fa-strikethrough:before{content:"\f0cc"}.fa-k:before{content:"\4b"}.fa-landmark-flag:before{content:"\e51c"}.fa-pencil-alt:before,.fa-pencil:before{content:"\f303"}.fa-backward:before{content:"\f04a"}.fa-caret-right:before{content:"\f0da"}.fa-comments:before{content:"\f086"}.fa-file-clipboard:before,.fa-paste:before{content:"\f0ea"}.fa-code-pull-request:before{content:"\e13c"}.fa-clipboard-list:before{content:"\f46d"}.fa-truck-loading:before,.fa-truck-ramp-box:before{content:"\f4de"}.fa-user-check:before{content:"\f4fc"}.fa-vial-virus:before{content:"\e597"}.fa-sheet-plastic:before{content:"\e571"}.fa-blog:before{content:"\f781"}.fa-user-ninja:before{content:"\f504"}.fa-person-arrow-up-from-line:before{content:"\e539"}.fa-scroll-torah:before,.fa-torah:before{content:"\f6a0"}.fa-broom-ball:before,.fa-quidditch-broom-ball:before,.fa-quidditch:before{content:"\f458"}.fa-toggle-off:before{content:"\f204"}.fa-archive:before,.fa-box-archive:before{content:"\f187"}.fa-person-drowning:before{content:"\e545"}.fa-arrow-down-9-1:before,.fa-sort-numeric-desc:before,.fa-sort-numeric-down-alt:before{content:"\f886"}.fa-face-grin-tongue-squint:before,.fa-grin-tongue-squint:before{content:"\f58a"}.fa-spray-can:before{content:"\f5bd"}.fa-truck-monster:before{content:"\f63b"}.fa-w:before{content:"\57"}.fa-earth-africa:before,.fa-globe-africa:before{content:"\f57c"}.fa-rainbow:before{content:"\f75b"}.fa-circle-notch:before{content:"\f1ce"}.fa-tablet-alt:before,.fa-tablet-screen-button:before{content:"\f3fa"}.fa-paw:before{content:"\f1b0"}.fa-cloud:before{content:"\f0c2"}.fa-trowel-bricks:before{content:"\e58a"}.fa-face-flushed:before,.fa-flushed:before{content:"\f579"}.fa-hospital-user:before{content:"\f80d"}.fa-tent-arrow-left-right:before{content:"\e57f"}.fa-gavel:before,.fa-legal:before{content:"\f0e3"}.fa-binoculars:before{content:"\f1e5"}.fa-microphone-slash:before{content:"\f131"}.fa-box-tissue:before{content:"\e05b"}.fa-motorcycle:before{content:"\f21c"}.fa-bell-concierge:before,.fa-concierge-bell:before{content:"\f562"}.fa-pen-ruler:before,.fa-pencil-ruler:before{content:"\f5ae"}.fa-people-arrows-left-right:before,.fa-people-arrows:before{content:"\e068"}.fa-mars-and-venus-burst:before{content:"\e523"}.fa-caret-square-right:before,.fa-square-caret-right:before{content:"\f152"}.fa-cut:before,.fa-scissors:before{content:"\f0c4"}.fa-sun-plant-wilt:before{content:"\e57a"}.fa-toilets-portable:before{content:"\e584"}.fa-hockey-puck:before{content:"\f453"}.fa-table:before{content:"\f0ce"}.fa-magnifying-glass-arrow-right:before{content:"\e521"}.fa-digital-tachograph:before,.fa-tachograph-digital:before{content:"\f566"}.fa-users-slash:before{content:"\e073"}.fa-clover:before{content:"\e139"}.fa-mail-reply:before,.fa-reply:before{content:"\f3e5"}.fa-star-and-crescent:before{content:"\f699"}.fa-house-fire:before{content:"\e50c"}.fa-minus-square:before,.fa-square-minus:before{content:"\f146"}.fa-helicopter:before{content:"\f533"}.fa-compass:before{content:"\f14e"}.fa-caret-square-down:before,.fa-square-caret-down:before{content:"\f150"}.fa-file-circle-question:before{content:"\e4ef"}.fa-laptop-code:before{content:"\f5fc"}.fa-swatchbook:before{content:"\f5c3"}.fa-prescription-bottle:before{content:"\f485"}.fa-bars:before,.fa-navicon:before{content:"\f0c9"}.fa-people-group:before{content:"\e533"}.fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"}.fa-heart-broken:before,.fa-heart-crack:before{content:"\f7a9"}.fa-external-link-square-alt:before,.fa-square-up-right:before{content:"\f360"}.fa-face-kiss-beam:before,.fa-kiss-beam:before{content:"\f597"}.fa-film:before{content:"\f008"}.fa-ruler-horizontal:before{content:"\f547"}.fa-people-robbery:before{content:"\e536"}.fa-lightbulb:before{content:"\f0eb"}.fa-caret-left:before{content:"\f0d9"}.fa-circle-exclamation:before,.fa-exclamation-circle:before{content:"\f06a"}.fa-school-circle-xmark:before{content:"\e56d"}.fa-arrow-right-from-bracket:before,.fa-sign-out:before{content:"\f08b"}.fa-chevron-circle-down:before,.fa-circle-chevron-down:before{content:"\f13a"}.fa-unlock-alt:before,.fa-unlock-keyhole:before{content:"\f13e"}.fa-cloud-showers-heavy:before{content:"\f740"}.fa-headphones-alt:before,.fa-headphones-simple:before{content:"\f58f"}.fa-sitemap:before{content:"\f0e8"}.fa-circle-dollar-to-slot:before,.fa-donate:before{content:"\f4b9"}.fa-memory:before{content:"\f538"}.fa-road-spikes:before{content:"\e568"}.fa-fire-burner:before{content:"\e4f1"}.fa-flag:before{content:"\f024"}.fa-hanukiah:before{content:"\f6e6"}.fa-feather:before{content:"\f52d"}.fa-volume-down:before,.fa-volume-low:before{content:"\f027"}.fa-comment-slash:before{content:"\f4b3"}.fa-cloud-sun-rain:before{content:"\f743"}.fa-compress:before{content:"\f066"}.fa-wheat-alt:before,.fa-wheat-awn:before{content:"\e2cd"}.fa-ankh:before{content:"\f644"}.fa-hands-holding-child:before{content:"\e4fa"}.fa-asterisk:before{content:"\2a"}.fa-check-square:before,.fa-square-check:before{content:"\f14a"}.fa-peseta-sign:before{content:"\e221"}.fa-header:before,.fa-heading:before{content:"\f1dc"}.fa-ghost:before{content:"\f6e2"}.fa-list-squares:before,.fa-list:before{content:"\f03a"}.fa-phone-square-alt:before,.fa-square-phone-flip:before{content:"\f87b"}.fa-cart-plus:before{content:"\f217"}.fa-gamepad:before{content:"\f11b"}.fa-circle-dot:before,.fa-dot-circle:before{content:"\f192"}.fa-dizzy:before,.fa-face-dizzy:before{content:"\f567"}.fa-egg:before{content:"\f7fb"}.fa-house-medical-circle-xmark:before{content:"\e513"}.fa-campground:before{content:"\f6bb"}.fa-folder-plus:before{content:"\f65e"}.fa-futbol-ball:before,.fa-futbol:before,.fa-soccer-ball:before{content:"\f1e3"}.fa-paint-brush:before,.fa-paintbrush:before{content:"\f1fc"}.fa-lock:before{content:"\f023"}.fa-gas-pump:before{content:"\f52f"}.fa-hot-tub-person:before,.fa-hot-tub:before{content:"\f593"}.fa-map-location:before,.fa-map-marked:before{content:"\f59f"}.fa-house-flood-water:before{content:"\e50e"}.fa-tree:before{content:"\f1bb"}.fa-bridge-lock:before{content:"\e4cc"}.fa-sack-dollar:before{content:"\f81d"}.fa-edit:before,.fa-pen-to-square:before{content:"\f044"}.fa-car-side:before{content:"\f5e4"}.fa-share-alt:before,.fa-share-nodes:before{content:"\f1e0"}.fa-heart-circle-minus:before{content:"\e4ff"}.fa-hourglass-2:before,.fa-hourglass-half:before{content:"\f252"}.fa-microscope:before{content:"\f610"}.fa-sink:before{content:"\e06d"}.fa-bag-shopping:before,.fa-shopping-bag:before{content:"\f290"}.fa-arrow-down-z-a:before,.fa-sort-alpha-desc:before,.fa-sort-alpha-down-alt:before{content:"\f881"}.fa-mitten:before{content:"\f7b5"}.fa-person-rays:before{content:"\e54d"}.fa-users:before{content:"\f0c0"}.fa-eye-slash:before{content:"\f070"}.fa-flask-vial:before{content:"\e4f3"}.fa-hand-paper:before,.fa-hand:before{content:"\f256"}.fa-om:before{content:"\f679"}.fa-worm:before{content:"\e599"}.fa-house-circle-xmark:before{content:"\e50b"}.fa-plug:before{content:"\f1e6"}.fa-chevron-up:before{content:"\f077"}.fa-hand-spock:before{content:"\f259"}.fa-stopwatch:before{content:"\f2f2"}.fa-face-kiss:before,.fa-kiss:before{content:"\f596"}.fa-bridge-circle-xmark:before{content:"\e4cb"}.fa-face-grin-tongue:before,.fa-grin-tongue:before{content:"\f589"}.fa-chess-bishop:before{content:"\f43a"}.fa-face-grin-wink:before,.fa-grin-wink:before{content:"\f58c"}.fa-deaf:before,.fa-deafness:before,.fa-ear-deaf:before,.fa-hard-of-hearing:before{content:"\f2a4"}.fa-road-circle-check:before{content:"\e564"}.fa-dice-five:before{content:"\f523"}.fa-rss-square:before,.fa-square-rss:before{content:"\f143"}.fa-land-mine-on:before{content:"\e51b"}.fa-i-cursor:before{content:"\f246"}.fa-stamp:before{content:"\f5bf"}.fa-stairs:before{content:"\e289"}.fa-i:before{content:"\49"}.fa-hryvnia-sign:before,.fa-hryvnia:before{content:"\f6f2"}.fa-pills:before{content:"\f484"}.fa-face-grin-wide:before,.fa-grin-alt:before{content:"\f581"}.fa-tooth:before{content:"\f5c9"}.fa-v:before{content:"\56"}.fa-bangladeshi-taka-sign:before{content:"\e2e6"}.fa-bicycle:before{content:"\f206"}.fa-rod-asclepius:before,.fa-rod-snake:before,.fa-staff-aesculapius:before,.fa-staff-snake:before{content:"\e579"}.fa-head-side-cough-slash:before{content:"\e062"}.fa-ambulance:before,.fa-truck-medical:before{content:"\f0f9"}.fa-wheat-awn-circle-exclamation:before{content:"\e598"}.fa-snowman:before{content:"\f7d0"}.fa-mortar-pestle:before{content:"\f5a7"}.fa-road-barrier:before{content:"\e562"}.fa-school:before{content:"\f549"}.fa-igloo:before{content:"\f7ae"}.fa-joint:before{content:"\f595"}.fa-angle-right:before{content:"\f105"}.fa-horse:before{content:"\f6f0"}.fa-q:before{content:"\51"}.fa-g:before{content:"\47"}.fa-notes-medical:before{content:"\f481"}.fa-temperature-2:before,.fa-temperature-half:before,.fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"}.fa-dong-sign:before{content:"\e169"}.fa-capsules:before{content:"\f46b"}.fa-poo-bolt:before,.fa-poo-storm:before{content:"\f75a"}.fa-face-frown-open:before,.fa-frown-open:before{content:"\f57a"}.fa-hand-point-up:before{content:"\f0a6"}.fa-money-bill:before{content:"\f0d6"}.fa-bookmark:before{content:"\f02e"}.fa-align-justify:before{content:"\f039"}.fa-umbrella-beach:before{content:"\f5ca"}.fa-helmet-un:before{content:"\e503"}.fa-bullseye:before{content:"\f140"}.fa-bacon:before{content:"\f7e5"}.fa-hand-point-down:before{content:"\f0a7"}.fa-arrow-up-from-bracket:before{content:"\e09a"}.fa-folder-blank:before,.fa-folder:before{content:"\f07b"}.fa-file-medical-alt:before,.fa-file-waveform:before{content:"\f478"}.fa-radiation:before{content:"\f7b9"}.fa-chart-simple:before{content:"\e473"}.fa-mars-stroke:before{content:"\f229"}.fa-vial:before{content:"\f492"}.fa-dashboard:before,.fa-gauge-med:before,.fa-gauge:before,.fa-tachometer-alt-average:before{content:"\f624"}.fa-magic-wand-sparkles:before,.fa-wand-magic-sparkles:before{content:"\e2ca"}.fa-e:before{content:"\45"}.fa-pen-alt:before,.fa-pen-clip:before{content:"\f305"}.fa-bridge-circle-exclamation:before{content:"\e4ca"}.fa-user:before{content:"\f007"}.fa-school-circle-check:before{content:"\e56b"}.fa-dumpster:before{content:"\f793"}.fa-shuttle-van:before,.fa-van-shuttle:before{content:"\f5b6"}.fa-building-user:before{content:"\e4da"}.fa-caret-square-left:before,.fa-square-caret-left:before{content:"\f191"}.fa-highlighter:before{content:"\f591"}.fa-key:before{content:"\f084"}.fa-bullhorn:before{content:"\f0a1"}.fa-globe:before{content:"\f0ac"}.fa-synagogue:before{content:"\f69b"}.fa-person-half-dress:before{content:"\e548"}.fa-road-bridge:before{content:"\e563"}.fa-location-arrow:before{content:"\f124"}.fa-c:before{content:"\43"}.fa-tablet-button:before{content:"\f10a"}.fa-building-lock:before{content:"\e4d6"}.fa-pizza-slice:before{content:"\f818"}.fa-money-bill-wave:before{content:"\f53a"}.fa-area-chart:before,.fa-chart-area:before{content:"\f1fe"}.fa-house-flag:before{content:"\e50d"}.fa-person-circle-minus:before{content:"\e540"}.fa-ban:before,.fa-cancel:before{content:"\f05e"}.fa-camera-rotate:before{content:"\e0d8"}.fa-air-freshener:before,.fa-spray-can-sparkles:before{content:"\f5d0"}.fa-star:before{content:"\f005"}.fa-repeat:before{content:"\f363"}.fa-cross:before{content:"\f654"}.fa-box:before{content:"\f466"}.fa-venus-mars:before{content:"\f228"}.fa-arrow-pointer:before,.fa-mouse-pointer:before{content:"\f245"}.fa-expand-arrows-alt:before,.fa-maximize:before{content:"\f31e"}.fa-charging-station:before{content:"\f5e7"}.fa-shapes:before,.fa-triangle-circle-square:before{content:"\f61f"}.fa-random:before,.fa-shuffle:before{content:"\f074"}.fa-person-running:before,.fa-running:before{content:"\f70c"}.fa-mobile-retro:before{content:"\e527"}.fa-grip-lines-vertical:before{content:"\f7a5"}.fa-spider:before{content:"\f717"}.fa-hands-bound:before{content:"\e4f9"}.fa-file-invoice-dollar:before{content:"\f571"}.fa-plane-circle-exclamation:before{content:"\e556"}.fa-x-ray:before{content:"\f497"}.fa-spell-check:before{content:"\f891"}.fa-slash:before{content:"\f715"}.fa-computer-mouse:before,.fa-mouse:before{content:"\f8cc"}.fa-arrow-right-to-bracket:before,.fa-sign-in:before{content:"\f090"}.fa-shop-slash:before,.fa-store-alt-slash:before{content:"\e070"}.fa-server:before{content:"\f233"}.fa-virus-covid-slash:before{content:"\e4a9"}.fa-shop-lock:before{content:"\e4a5"}.fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"}.fa-blender-phone:before{content:"\f6b6"}.fa-building-wheat:before{content:"\e4db"}.fa-person-breastfeeding:before{content:"\e53a"}.fa-right-to-bracket:before,.fa-sign-in-alt:before{content:"\f2f6"}.fa-venus:before{content:"\f221"}.fa-passport:before{content:"\f5ab"}.fa-heart-pulse:before,.fa-heartbeat:before{content:"\f21e"}.fa-people-carry-box:before,.fa-people-carry:before{content:"\f4ce"}.fa-temperature-high:before{content:"\f769"}.fa-microchip:before{content:"\f2db"}.fa-crown:before{content:"\f521"}.fa-weight-hanging:before{content:"\f5cd"}.fa-xmarks-lines:before{content:"\e59a"}.fa-file-prescription:before{content:"\f572"}.fa-weight-scale:before,.fa-weight:before{content:"\f496"}.fa-user-friends:before,.fa-user-group:before{content:"\f500"}.fa-arrow-up-a-z:before,.fa-sort-alpha-up:before{content:"\f15e"}.fa-chess-knight:before{content:"\f441"}.fa-face-laugh-squint:before,.fa-laugh-squint:before{content:"\f59b"}.fa-wheelchair:before{content:"\f193"}.fa-arrow-circle-up:before,.fa-circle-arrow-up:before{content:"\f0aa"}.fa-toggle-on:before{content:"\f205"}.fa-person-walking:before,.fa-walking:before{content:"\f554"}.fa-l:before{content:"\4c"}.fa-fire:before{content:"\f06d"}.fa-bed-pulse:before,.fa-procedures:before{content:"\f487"}.fa-shuttle-space:before,.fa-space-shuttle:before{content:"\f197"}.fa-face-laugh:before,.fa-laugh:before{content:"\f599"}.fa-folder-open:before{content:"\f07c"}.fa-heart-circle-plus:before{content:"\e500"}.fa-code-fork:before{content:"\e13b"}.fa-city:before{content:"\f64f"}.fa-microphone-alt:before,.fa-microphone-lines:before{content:"\f3c9"}.fa-pepper-hot:before{content:"\f816"}.fa-unlock:before{content:"\f09c"}.fa-colon-sign:before{content:"\e140"}.fa-headset:before{content:"\f590"}.fa-store-slash:before{content:"\e071"}.fa-road-circle-xmark:before{content:"\e566"}.fa-user-minus:before{content:"\f503"}.fa-mars-stroke-up:before,.fa-mars-stroke-v:before{content:"\f22a"}.fa-champagne-glasses:before,.fa-glass-cheers:before{content:"\f79f"}.fa-clipboard:before{content:"\f328"}.fa-house-circle-exclamation:before{content:"\e50a"}.fa-file-arrow-up:before,.fa-file-upload:before{content:"\f574"}.fa-wifi-3:before,.fa-wifi-strong:before,.fa-wifi:before{content:"\f1eb"}.fa-bath:before,.fa-bathtub:before{content:"\f2cd"}.fa-underline:before{content:"\f0cd"}.fa-user-edit:before,.fa-user-pen:before{content:"\f4ff"}.fa-signature:before{content:"\f5b7"}.fa-stroopwafel:before{content:"\f551"}.fa-bold:before{content:"\f032"}.fa-anchor-lock:before{content:"\e4ad"}.fa-building-ngo:before{content:"\e4d7"}.fa-manat-sign:before{content:"\e1d5"}.fa-not-equal:before{content:"\f53e"}.fa-border-style:before,.fa-border-top-left:before{content:"\f853"}.fa-map-location-dot:before,.fa-map-marked-alt:before{content:"\f5a0"}.fa-jedi:before{content:"\f669"}.fa-poll:before,.fa-square-poll-vertical:before{content:"\f681"}.fa-mug-hot:before{content:"\f7b6"}.fa-battery-car:before,.fa-car-battery:before{content:"\f5df"}.fa-gift:before{content:"\f06b"}.fa-dice-two:before{content:"\f528"}.fa-chess-queen:before{content:"\f445"}.fa-glasses:before{content:"\f530"}.fa-chess-board:before{content:"\f43c"}.fa-building-circle-check:before{content:"\e4d2"}.fa-person-chalkboard:before{content:"\e53d"}.fa-mars-stroke-h:before,.fa-mars-stroke-right:before{content:"\f22b"}.fa-hand-back-fist:before,.fa-hand-rock:before{content:"\f255"}.fa-caret-square-up:before,.fa-square-caret-up:before{content:"\f151"}.fa-cloud-showers-water:before{content:"\e4e4"}.fa-bar-chart:before,.fa-chart-bar:before{content:"\f080"}.fa-hands-bubbles:before,.fa-hands-wash:before{content:"\e05e"}.fa-less-than-equal:before{content:"\f537"}.fa-train:before{content:"\f238"}.fa-eye-low-vision:before,.fa-low-vision:before{content:"\f2a8"}.fa-crow:before{content:"\f520"}.fa-sailboat:before{content:"\e445"}.fa-window-restore:before{content:"\f2d2"}.fa-plus-square:before,.fa-square-plus:before{content:"\f0fe"}.fa-torii-gate:before{content:"\f6a1"}.fa-frog:before{content:"\f52e"}.fa-bucket:before{content:"\e4cf"}.fa-image:before{content:"\f03e"}.fa-microphone:before{content:"\f130"}.fa-cow:before{content:"\f6c8"}.fa-caret-up:before{content:"\f0d8"}.fa-screwdriver:before{content:"\f54a"}.fa-folder-closed:before{content:"\e185"}.fa-house-tsunami:before{content:"\e515"}.fa-square-nfi:before{content:"\e576"}.fa-arrow-up-from-ground-water:before{content:"\e4b5"}.fa-glass-martini-alt:before,.fa-martini-glass:before{content:"\f57b"}.fa-rotate-back:before,.fa-rotate-backward:before,.fa-rotate-left:before,.fa-undo-alt:before{content:"\f2ea"}.fa-columns:before,.fa-table-columns:before{content:"\f0db"}.fa-lemon:before{content:"\f094"}.fa-head-side-mask:before{content:"\e063"}.fa-handshake:before{content:"\f2b5"}.fa-gem:before{content:"\f3a5"}.fa-dolly-box:before,.fa-dolly:before{content:"\f472"}.fa-smoking:before{content:"\f48d"}.fa-compress-arrows-alt:before,.fa-minimize:before{content:"\f78c"}.fa-monument:before{content:"\f5a6"}.fa-snowplow:before{content:"\f7d2"}.fa-angle-double-right:before,.fa-angles-right:before{content:"\f101"}.fa-cannabis:before{content:"\f55f"}.fa-circle-play:before,.fa-play-circle:before{content:"\f144"}.fa-tablets:before{content:"\f490"}.fa-ethernet:before{content:"\f796"}.fa-eur:before,.fa-euro-sign:before,.fa-euro:before{content:"\f153"}.fa-chair:before{content:"\f6c0"}.fa-check-circle:before,.fa-circle-check:before{content:"\f058"}.fa-circle-stop:before,.fa-stop-circle:before{content:"\f28d"}.fa-compass-drafting:before,.fa-drafting-compass:before{content:"\f568"}.fa-plate-wheat:before{content:"\e55a"}.fa-icicles:before{content:"\f7ad"}.fa-person-shelter:before{content:"\e54f"}.fa-neuter:before{content:"\f22c"}.fa-id-badge:before{content:"\f2c1"}.fa-marker:before{content:"\f5a1"}.fa-face-laugh-beam:before,.fa-laugh-beam:before{content:"\f59a"}.fa-helicopter-symbol:before{content:"\e502"}.fa-universal-access:before{content:"\f29a"}.fa-chevron-circle-up:before,.fa-circle-chevron-up:before{content:"\f139"}.fa-lari-sign:before{content:"\e1c8"}.fa-volcano:before{content:"\f770"}.fa-person-walking-dashed-line-arrow-right:before{content:"\e553"}.fa-gbp:before,.fa-pound-sign:before,.fa-sterling-sign:before{content:"\f154"}.fa-viruses:before{content:"\e076"}.fa-square-person-confined:before{content:"\e577"}.fa-user-tie:before{content:"\f508"}.fa-arrow-down-long:before,.fa-long-arrow-down:before{content:"\f175"}.fa-tent-arrow-down-to-line:before{content:"\e57e"}.fa-certificate:before{content:"\f0a3"}.fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"}.fa-suitcase:before{content:"\f0f2"}.fa-person-skating:before,.fa-skating:before{content:"\f7c5"}.fa-filter-circle-dollar:before,.fa-funnel-dollar:before{content:"\f662"}.fa-camera-retro:before{content:"\f083"}.fa-arrow-circle-down:before,.fa-circle-arrow-down:before{content:"\f0ab"}.fa-arrow-right-to-file:before,.fa-file-import:before{content:"\f56f"}.fa-external-link-square:before,.fa-square-arrow-up-right:before{content:"\f14c"}.fa-box-open:before{content:"\f49e"}.fa-scroll:before{content:"\f70e"}.fa-spa:before{content:"\f5bb"}.fa-location-pin-lock:before{content:"\e51f"}.fa-pause:before{content:"\f04c"}.fa-hill-avalanche:before{content:"\e507"}.fa-temperature-0:before,.fa-temperature-empty:before,.fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"}.fa-bomb:before{content:"\f1e2"}.fa-registered:before{content:"\f25d"}.fa-address-card:before,.fa-contact-card:before,.fa-vcard:before{content:"\f2bb"}.fa-balance-scale-right:before,.fa-scale-unbalanced-flip:before{content:"\f516"}.fa-subscript:before{content:"\f12c"}.fa-diamond-turn-right:before,.fa-directions:before{content:"\f5eb"}.fa-burst:before{content:"\e4dc"}.fa-house-laptop:before,.fa-laptop-house:before{content:"\e066"}.fa-face-tired:before,.fa-tired:before{content:"\f5c8"}.fa-money-bills:before{content:"\e1f3"}.fa-smog:before{content:"\f75f"}.fa-crutch:before{content:"\f7f7"}.fa-cloud-arrow-up:before,.fa-cloud-upload-alt:before,.fa-cloud-upload:before{content:"\f0ee"}.fa-palette:before{content:"\f53f"}.fa-arrows-turn-right:before{content:"\e4c0"}.fa-vest:before{content:"\e085"}.fa-ferry:before{content:"\e4ea"}.fa-arrows-down-to-people:before{content:"\e4b9"}.fa-seedling:before,.fa-sprout:before{content:"\f4d8"}.fa-arrows-alt-h:before,.fa-left-right:before{content:"\f337"}.fa-boxes-packing:before{content:"\e4c7"}.fa-arrow-circle-left:before,.fa-circle-arrow-left:before{content:"\f0a8"}.fa-group-arrows-rotate:before{content:"\e4f6"}.fa-bowl-food:before{content:"\e4c6"}.fa-candy-cane:before{content:"\f786"}.fa-arrow-down-wide-short:before,.fa-sort-amount-asc:before,.fa-sort-amount-down:before{content:"\f160"}.fa-cloud-bolt:before,.fa-thunderstorm:before{content:"\f76c"}.fa-remove-format:before,.fa-text-slash:before{content:"\f87d"}.fa-face-smile-wink:before,.fa-smile-wink:before{content:"\f4da"}.fa-file-word:before{content:"\f1c2"}.fa-file-powerpoint:before{content:"\f1c4"}.fa-arrows-h:before,.fa-arrows-left-right:before{content:"\f07e"}.fa-house-lock:before{content:"\e510"}.fa-cloud-arrow-down:before,.fa-cloud-download-alt:before,.fa-cloud-download:before{content:"\f0ed"}.fa-children:before{content:"\e4e1"}.fa-blackboard:before,.fa-chalkboard:before{content:"\f51b"}.fa-user-alt-slash:before,.fa-user-large-slash:before{content:"\f4fa"}.fa-envelope-open:before{content:"\f2b6"}.fa-handshake-alt-slash:before,.fa-handshake-simple-slash:before{content:"\e05f"}.fa-mattress-pillow:before{content:"\e525"}.fa-guarani-sign:before{content:"\e19a"}.fa-arrows-rotate:before,.fa-refresh:before,.fa-sync:before{content:"\f021"}.fa-fire-extinguisher:before{content:"\f134"}.fa-cruzeiro-sign:before{content:"\e152"}.fa-greater-than-equal:before{content:"\f532"}.fa-shield-alt:before,.fa-shield-halved:before{content:"\f3ed"}.fa-atlas:before,.fa-book-atlas:before{content:"\f558"}.fa-virus:before{content:"\e074"}.fa-envelope-circle-check:before{content:"\e4e8"}.fa-layer-group:before{content:"\f5fd"}.fa-arrows-to-dot:before{content:"\e4be"}.fa-archway:before{content:"\f557"}.fa-heart-circle-check:before{content:"\e4fd"}.fa-house-chimney-crack:before,.fa-house-damage:before{content:"\f6f1"}.fa-file-archive:before,.fa-file-zipper:before{content:"\f1c6"}.fa-square:before{content:"\f0c8"}.fa-glass-martini:before,.fa-martini-glass-empty:before{content:"\f000"}.fa-couch:before{content:"\f4b8"}.fa-cedi-sign:before{content:"\e0df"}.fa-italic:before{content:"\f033"}.fa-church:before{content:"\f51d"}.fa-comments-dollar:before{content:"\f653"}.fa-democrat:before{content:"\f747"}.fa-z:before{content:"\5a"}.fa-person-skiing:before,.fa-skiing:before{content:"\f7c9"}.fa-road-lock:before{content:"\e567"}.fa-a:before{content:"\41"}.fa-temperature-arrow-down:before,.fa-temperature-down:before{content:"\e03f"}.fa-feather-alt:before,.fa-feather-pointed:before{content:"\f56b"}.fa-p:before{content:"\50"}.fa-snowflake:before{content:"\f2dc"}.fa-newspaper:before{content:"\f1ea"}.fa-ad:before,.fa-rectangle-ad:before{content:"\f641"}.fa-arrow-circle-right:before,.fa-circle-arrow-right:before{content:"\f0a9"}.fa-filter-circle-xmark:before{content:"\e17b"}.fa-locust:before{content:"\e520"}.fa-sort:before,.fa-unsorted:before{content:"\f0dc"}.fa-list-1-2:before,.fa-list-numeric:before,.fa-list-ol:before{content:"\f0cb"}.fa-person-dress-burst:before{content:"\e544"}.fa-money-check-alt:before,.fa-money-check-dollar:before{content:"\f53d"}.fa-vector-square:before{content:"\f5cb"}.fa-bread-slice:before{content:"\f7ec"}.fa-language:before{content:"\f1ab"}.fa-face-kiss-wink-heart:before,.fa-kiss-wink-heart:before{content:"\f598"}.fa-filter:before{content:"\f0b0"}.fa-question:before{content:"\3f"}.fa-file-signature:before{content:"\f573"}.fa-arrows-alt:before,.fa-up-down-left-right:before{content:"\f0b2"}.fa-house-chimney-user:before{content:"\e065"}.fa-hand-holding-heart:before{content:"\f4be"}.fa-puzzle-piece:before{content:"\f12e"}.fa-money-check:before{content:"\f53c"}.fa-star-half-alt:before,.fa-star-half-stroke:before{content:"\f5c0"}.fa-code:before{content:"\f121"}.fa-glass-whiskey:before,.fa-whiskey-glass:before{content:"\f7a0"}.fa-building-circle-exclamation:before{content:"\e4d3"}.fa-magnifying-glass-chart:before{content:"\e522"}.fa-arrow-up-right-from-square:before,.fa-external-link:before{content:"\f08e"}.fa-cubes-stacked:before{content:"\e4e6"}.fa-krw:before,.fa-won-sign:before,.fa-won:before{content:"\f159"}.fa-virus-covid:before{content:"\e4a8"}.fa-austral-sign:before{content:"\e0a9"}.fa-f:before{content:"\46"}.fa-leaf:before{content:"\f06c"}.fa-road:before{content:"\f018"}.fa-cab:before,.fa-taxi:before{content:"\f1ba"}.fa-person-circle-plus:before{content:"\e541"}.fa-chart-pie:before,.fa-pie-chart:before{content:"\f200"}.fa-bolt-lightning:before{content:"\e0b7"}.fa-sack-xmark:before{content:"\e56a"}.fa-file-excel:before{content:"\f1c3"}.fa-file-contract:before{content:"\f56c"}.fa-fish-fins:before{content:"\e4f2"}.fa-building-flag:before{content:"\e4d5"}.fa-face-grin-beam:before,.fa-grin-beam:before{content:"\f582"}.fa-object-ungroup:before{content:"\f248"}.fa-poop:before{content:"\f619"}.fa-location-pin:before,.fa-map-marker:before{content:"\f041"}.fa-kaaba:before{content:"\f66b"}.fa-toilet-paper:before{content:"\f71e"}.fa-hard-hat:before,.fa-hat-hard:before,.fa-helmet-safety:before{content:"\f807"}.fa-eject:before{content:"\f052"}.fa-arrow-alt-circle-right:before,.fa-circle-right:before{content:"\f35a"}.fa-plane-circle-check:before{content:"\e555"}.fa-face-rolling-eyes:before,.fa-meh-rolling-eyes:before{content:"\f5a5"}.fa-object-group:before{content:"\f247"}.fa-chart-line:before,.fa-line-chart:before{content:"\f201"}.fa-mask-ventilator:before{content:"\e524"}.fa-arrow-right:before{content:"\f061"}.fa-map-signs:before,.fa-signs-post:before{content:"\f277"}.fa-cash-register:before{content:"\f788"}.fa-person-circle-question:before{content:"\e542"}.fa-h:before{content:"\48"}.fa-tarp:before{content:"\e57b"}.fa-screwdriver-wrench:before,.fa-tools:before{content:"\f7d9"}.fa-arrows-to-eye:before{content:"\e4bf"}.fa-plug-circle-bolt:before{content:"\e55b"}.fa-heart:before{content:"\f004"}.fa-mars-and-venus:before{content:"\f224"}.fa-home-user:before,.fa-house-user:before{content:"\e1b0"}.fa-dumpster-fire:before{content:"\f794"}.fa-house-crack:before{content:"\e3b1"}.fa-cocktail:before,.fa-martini-glass-citrus:before{content:"\f561"}.fa-face-surprise:before,.fa-surprise:before{content:"\f5c2"}.fa-bottle-water:before{content:"\e4c5"}.fa-circle-pause:before,.fa-pause-circle:before{content:"\f28b"}.fa-toilet-paper-slash:before{content:"\e072"}.fa-apple-alt:before,.fa-apple-whole:before{content:"\f5d1"}.fa-kitchen-set:before{content:"\e51a"}.fa-r:before{content:"\52"}.fa-temperature-1:before,.fa-temperature-quarter:before,.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"}.fa-cube:before{content:"\f1b2"}.fa-bitcoin-sign:before{content:"\e0b4"}.fa-shield-dog:before{content:"\e573"}.fa-solar-panel:before{content:"\f5ba"}.fa-lock-open:before{content:"\f3c1"}.fa-elevator:before{content:"\e16d"}.fa-money-bill-transfer:before{content:"\e528"}.fa-money-bill-trend-up:before{content:"\e529"}.fa-house-flood-water-circle-arrow-right:before{content:"\e50f"}.fa-poll-h:before,.fa-square-poll-horizontal:before{content:"\f682"}.fa-circle:before{content:"\f111"}.fa-backward-fast:before,.fa-fast-backward:before{content:"\f049"}.fa-recycle:before{content:"\f1b8"}.fa-user-astronaut:before{content:"\f4fb"}.fa-plane-slash:before{content:"\e069"}.fa-trademark:before{content:"\f25c"}.fa-basketball-ball:before,.fa-basketball:before{content:"\f434"}.fa-satellite-dish:before{content:"\f7c0"}.fa-arrow-alt-circle-up:before,.fa-circle-up:before{content:"\f35b"}.fa-mobile-alt:before,.fa-mobile-screen-button:before{content:"\f3cd"}.fa-volume-high:before,.fa-volume-up:before{content:"\f028"}.fa-users-rays:before{content:"\e593"}.fa-wallet:before{content:"\f555"}.fa-clipboard-check:before{content:"\f46c"}.fa-file-audio:before{content:"\f1c7"}.fa-burger:before,.fa-hamburger:before{content:"\f805"}.fa-wrench:before{content:"\f0ad"}.fa-bugs:before{content:"\e4d0"}.fa-rupee-sign:before,.fa-rupee:before{content:"\f156"}.fa-file-image:before{content:"\f1c5"}.fa-circle-question:before,.fa-question-circle:before{content:"\f059"}.fa-plane-departure:before{content:"\f5b0"}.fa-handshake-slash:before{content:"\e060"}.fa-book-bookmark:before{content:"\e0bb"}.fa-code-branch:before{content:"\f126"}.fa-hat-cowboy:before{content:"\f8c0"}.fa-bridge:before{content:"\e4c8"}.fa-phone-alt:before,.fa-phone-flip:before{content:"\f879"}.fa-truck-front:before{content:"\e2b7"}.fa-cat:before{content:"\f6be"}.fa-anchor-circle-exclamation:before{content:"\e4ab"}.fa-truck-field:before{content:"\e58d"}.fa-route:before{content:"\f4d7"}.fa-clipboard-question:before{content:"\e4e3"}.fa-panorama:before{content:"\e209"}.fa-comment-medical:before{content:"\f7f5"}.fa-teeth-open:before{content:"\f62f"}.fa-file-circle-minus:before{content:"\e4ed"}.fa-tags:before{content:"\f02c"}.fa-wine-glass:before{content:"\f4e3"}.fa-fast-forward:before,.fa-forward-fast:before{content:"\f050"}.fa-face-meh-blank:before,.fa-meh-blank:before{content:"\f5a4"}.fa-parking:before,.fa-square-parking:before{content:"\f540"}.fa-house-signal:before{content:"\e012"}.fa-bars-progress:before,.fa-tasks-alt:before{content:"\f828"}.fa-faucet-drip:before{content:"\e006"}.fa-cart-flatbed:before,.fa-dolly-flatbed:before{content:"\f474"}.fa-ban-smoking:before,.fa-smoking-ban:before{content:"\f54d"}.fa-terminal:before{content:"\f120"}.fa-mobile-button:before{content:"\f10b"}.fa-house-medical-flag:before{content:"\e514"}.fa-basket-shopping:before,.fa-shopping-basket:before{content:"\f291"}.fa-tape:before{content:"\f4db"}.fa-bus-alt:before,.fa-bus-simple:before{content:"\f55e"}.fa-eye:before{content:"\f06e"}.fa-face-sad-cry:before,.fa-sad-cry:before{content:"\f5b3"}.fa-audio-description:before{content:"\f29e"}.fa-person-military-to-person:before{content:"\e54c"}.fa-file-shield:before{content:"\e4f0"}.fa-user-slash:before{content:"\f506"}.fa-pen:before{content:"\f304"}.fa-tower-observation:before{content:"\e586"}.fa-file-code:before{content:"\f1c9"}.fa-signal-5:before,.fa-signal-perfect:before,.fa-signal:before{content:"\f012"}.fa-bus:before{content:"\f207"}.fa-heart-circle-xmark:before{content:"\e501"}.fa-home-lg:before,.fa-house-chimney:before{content:"\e3af"}.fa-window-maximize:before{content:"\f2d0"}.fa-face-frown:before,.fa-frown:before{content:"\f119"}.fa-prescription:before{content:"\f5b1"}.fa-shop:before,.fa-store-alt:before{content:"\f54f"}.fa-floppy-disk:before,.fa-save:before{content:"\f0c7"}.fa-vihara:before{content:"\f6a7"}.fa-balance-scale-left:before,.fa-scale-unbalanced:before{content:"\f515"}.fa-sort-asc:before,.fa-sort-up:before{content:"\f0de"}.fa-comment-dots:before,.fa-commenting:before{content:"\f4ad"}.fa-plant-wilt:before{content:"\e5aa"}.fa-diamond:before{content:"\f219"}.fa-face-grin-squint:before,.fa-grin-squint:before{content:"\f585"}.fa-hand-holding-dollar:before,.fa-hand-holding-usd:before{content:"\f4c0"}.fa-bacterium:before{content:"\e05a"}.fa-hand-pointer:before{content:"\f25a"}.fa-drum-steelpan:before{content:"\f56a"}.fa-hand-scissors:before{content:"\f257"}.fa-hands-praying:before,.fa-praying-hands:before{content:"\f684"}.fa-arrow-right-rotate:before,.fa-arrow-rotate-forward:before,.fa-arrow-rotate-right:before,.fa-redo:before{content:"\f01e"}.fa-biohazard:before{content:"\f780"}.fa-location-crosshairs:before,.fa-location:before{content:"\f601"}.fa-mars-double:before{content:"\f227"}.fa-child-dress:before{content:"\e59c"}.fa-users-between-lines:before{content:"\e591"}.fa-lungs-virus:before{content:"\e067"}.fa-face-grin-tears:before,.fa-grin-tears:before{content:"\f588"}.fa-phone:before{content:"\f095"}.fa-calendar-times:before,.fa-calendar-xmark:before{content:"\f273"}.fa-child-reaching:before{content:"\e59d"}.fa-head-side-virus:before{content:"\e064"}.fa-user-cog:before,.fa-user-gear:before{content:"\f4fe"}.fa-arrow-up-1-9:before,.fa-sort-numeric-up:before{content:"\f163"}.fa-door-closed:before{content:"\f52a"}.fa-shield-virus:before{content:"\e06c"}.fa-dice-six:before{content:"\f526"}.fa-mosquito-net:before{content:"\e52c"}.fa-bridge-water:before{content:"\e4ce"}.fa-person-booth:before{content:"\f756"}.fa-text-width:before{content:"\f035"}.fa-hat-wizard:before{content:"\f6e8"}.fa-pen-fancy:before{content:"\f5ac"}.fa-digging:before,.fa-person-digging:before{content:"\f85e"}.fa-trash:before{content:"\f1f8"}.fa-gauge-simple-med:before,.fa-gauge-simple:before,.fa-tachometer-average:before{content:"\f629"}.fa-book-medical:before{content:"\f7e6"}.fa-poo:before{content:"\f2fe"}.fa-quote-right-alt:before,.fa-quote-right:before{content:"\f10e"}.fa-shirt:before,.fa-t-shirt:before,.fa-tshirt:before{content:"\f553"}.fa-cubes:before{content:"\f1b3"}.fa-divide:before{content:"\f529"}.fa-tenge-sign:before,.fa-tenge:before{content:"\f7d7"}.fa-headphones:before{content:"\f025"}.fa-hands-holding:before{content:"\f4c2"}.fa-hands-clapping:before{content:"\e1a8"}.fa-republican:before{content:"\f75e"}.fa-arrow-left:before{content:"\f060"}.fa-person-circle-xmark:before{content:"\e543"}.fa-ruler:before{content:"\f545"}.fa-align-left:before{content:"\f036"}.fa-dice-d6:before{content:"\f6d1"}.fa-restroom:before{content:"\f7bd"}.fa-j:before{content:"\4a"}.fa-users-viewfinder:before{content:"\e595"}.fa-file-video:before{content:"\f1c8"}.fa-external-link-alt:before,.fa-up-right-from-square:before{content:"\f35d"}.fa-table-cells:before,.fa-th:before{content:"\f00a"}.fa-file-pdf:before{content:"\f1c1"}.fa-bible:before,.fa-book-bible:before{content:"\f647"}.fa-o:before{content:"\4f"}.fa-medkit:before,.fa-suitcase-medical:before{content:"\f0fa"}.fa-user-secret:before{content:"\f21b"}.fa-otter:before{content:"\f700"}.fa-female:before,.fa-person-dress:before{content:"\f182"}.fa-comment-dollar:before{content:"\f651"}.fa-briefcase-clock:before,.fa-business-time:before{content:"\f64a"}.fa-table-cells-large:before,.fa-th-large:before{content:"\f009"}.fa-book-tanakh:before,.fa-tanakh:before{content:"\f827"}.fa-phone-volume:before,.fa-volume-control-phone:before{content:"\f2a0"}.fa-hat-cowboy-side:before{content:"\f8c1"}.fa-clipboard-user:before{content:"\f7f3"}.fa-child:before{content:"\f1ae"}.fa-lira-sign:before{content:"\f195"}.fa-satellite:before{content:"\f7bf"}.fa-plane-lock:before{content:"\e558"}.fa-tag:before{content:"\f02b"}.fa-comment:before{content:"\f075"}.fa-birthday-cake:before,.fa-cake-candles:before,.fa-cake:before{content:"\f1fd"}.fa-envelope:before{content:"\f0e0"}.fa-angle-double-up:before,.fa-angles-up:before{content:"\f102"}.fa-paperclip:before{content:"\f0c6"}.fa-arrow-right-to-city:before{content:"\e4b3"}.fa-ribbon:before{content:"\f4d6"}.fa-lungs:before{content:"\f604"}.fa-arrow-up-9-1:before,.fa-sort-numeric-up-alt:before{content:"\f887"}.fa-litecoin-sign:before{content:"\e1d3"}.fa-border-none:before{content:"\f850"}.fa-circle-nodes:before{content:"\e4e2"}.fa-parachute-box:before{content:"\f4cd"}.fa-indent:before{content:"\f03c"}.fa-truck-field-un:before{content:"\e58e"}.fa-hourglass-empty:before,.fa-hourglass:before{content:"\f254"}.fa-mountain:before{content:"\f6fc"}.fa-user-doctor:before,.fa-user-md:before{content:"\f0f0"}.fa-circle-info:before,.fa-info-circle:before{content:"\f05a"}.fa-cloud-meatball:before{content:"\f73b"}.fa-camera-alt:before,.fa-camera:before{content:"\f030"}.fa-square-virus:before{content:"\e578"}.fa-meteor:before{content:"\f753"}.fa-car-on:before{content:"\e4dd"}.fa-sleigh:before{content:"\f7cc"}.fa-arrow-down-1-9:before,.fa-sort-numeric-asc:before,.fa-sort-numeric-down:before{content:"\f162"}.fa-hand-holding-droplet:before,.fa-hand-holding-water:before{content:"\f4c1"}.fa-water:before{content:"\f773"}.fa-calendar-check:before{content:"\f274"}.fa-braille:before{content:"\f2a1"}.fa-prescription-bottle-alt:before,.fa-prescription-bottle-medical:before{content:"\f486"}.fa-landmark:before{content:"\f66f"}.fa-truck:before{content:"\f0d1"}.fa-crosshairs:before{content:"\f05b"}.fa-person-cane:before{content:"\e53c"}.fa-tent:before{content:"\e57d"}.fa-vest-patches:before{content:"\e086"}.fa-check-double:before{content:"\f560"}.fa-arrow-down-a-z:before,.fa-sort-alpha-asc:before,.fa-sort-alpha-down:before{content:"\f15d"}.fa-money-bill-wheat:before{content:"\e52a"}.fa-cookie:before{content:"\f563"}.fa-arrow-left-rotate:before,.fa-arrow-rotate-back:before,.fa-arrow-rotate-backward:before,.fa-arrow-rotate-left:before,.fa-undo:before{content:"\f0e2"}.fa-hard-drive:before,.fa-hdd:before{content:"\f0a0"}.fa-face-grin-squint-tears:before,.fa-grin-squint-tears:before{content:"\f586"}.fa-dumbbell:before{content:"\f44b"}.fa-list-alt:before,.fa-rectangle-list:before{content:"\f022"}.fa-tarp-droplet:before{content:"\e57c"}.fa-house-medical-circle-check:before{content:"\e511"}.fa-person-skiing-nordic:before,.fa-skiing-nordic:before{content:"\f7ca"}.fa-calendar-plus:before{content:"\f271"}.fa-plane-arrival:before{content:"\f5af"}.fa-arrow-alt-circle-left:before,.fa-circle-left:before{content:"\f359"}.fa-subway:before,.fa-train-subway:before{content:"\f239"}.fa-chart-gantt:before{content:"\e0e4"}.fa-indian-rupee-sign:before,.fa-indian-rupee:before,.fa-inr:before{content:"\e1bc"}.fa-crop-alt:before,.fa-crop-simple:before{content:"\f565"}.fa-money-bill-1:before,.fa-money-bill-alt:before{content:"\f3d1"}.fa-left-long:before,.fa-long-arrow-alt-left:before{content:"\f30a"}.fa-dna:before{content:"\f471"}.fa-virus-slash:before{content:"\e075"}.fa-minus:before,.fa-subtract:before{content:"\f068"}.fa-chess:before{content:"\f439"}.fa-arrow-left-long:before,.fa-long-arrow-left:before{content:"\f177"}.fa-plug-circle-check:before{content:"\e55c"}.fa-street-view:before{content:"\f21d"}.fa-franc-sign:before{content:"\e18f"}.fa-volume-off:before{content:"\f026"}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before,.fa-hands-american-sign-language-interpreting:before,.fa-hands-asl-interpreting:before{content:"\f2a3"}.fa-cog:before,.fa-gear:before{content:"\f013"}.fa-droplet-slash:before,.fa-tint-slash:before{content:"\f5c7"}.fa-mosque:before{content:"\f678"}.fa-mosquito:before{content:"\e52b"}.fa-star-of-david:before{content:"\f69a"}.fa-person-military-rifle:before{content:"\e54b"}.fa-cart-shopping:before,.fa-shopping-cart:before{content:"\f07a"}.fa-vials:before{content:"\f493"}.fa-plug-circle-plus:before{content:"\e55f"}.fa-place-of-worship:before{content:"\f67f"}.fa-grip-vertical:before{content:"\f58e"}.fa-arrow-turn-up:before,.fa-level-up:before{content:"\f148"}.fa-u:before{content:"\55"}.fa-square-root-alt:before,.fa-square-root-variable:before{content:"\f698"}.fa-clock-four:before,.fa-clock:before{content:"\f017"}.fa-backward-step:before,.fa-step-backward:before{content:"\f048"}.fa-pallet:before{content:"\f482"}.fa-faucet:before{content:"\e005"}.fa-baseball-bat-ball:before{content:"\f432"}.fa-s:before{content:"\53"}.fa-timeline:before{content:"\e29c"}.fa-keyboard:before{content:"\f11c"}.fa-caret-down:before{content:"\f0d7"}.fa-clinic-medical:before,.fa-house-chimney-medical:before{content:"\f7f2"}.fa-temperature-3:before,.fa-temperature-three-quarters:before,.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-mobile-android-alt:before,.fa-mobile-screen:before{content:"\f3cf"}.fa-plane-up:before{content:"\e22d"}.fa-piggy-bank:before{content:"\f4d3"}.fa-battery-3:before,.fa-battery-half:before{content:"\f242"}.fa-mountain-city:before{content:"\e52e"}.fa-coins:before{content:"\f51e"}.fa-khanda:before{content:"\f66d"}.fa-sliders-h:before,.fa-sliders:before{content:"\f1de"}.fa-folder-tree:before{content:"\f802"}.fa-network-wired:before{content:"\f6ff"}.fa-map-pin:before{content:"\f276"}.fa-hamsa:before{content:"\f665"}.fa-cent-sign:before{content:"\e3f5"}.fa-flask:before{content:"\f0c3"}.fa-person-pregnant:before{content:"\e31e"}.fa-wand-sparkles:before{content:"\f72b"}.fa-ellipsis-v:before,.fa-ellipsis-vertical:before{content:"\f142"}.fa-ticket:before{content:"\f145"}.fa-power-off:before{content:"\f011"}.fa-long-arrow-alt-right:before,.fa-right-long:before{content:"\f30b"}.fa-flag-usa:before{content:"\f74d"}.fa-laptop-file:before{content:"\e51d"}.fa-teletype:before,.fa-tty:before{content:"\f1e4"}.fa-diagram-next:before{content:"\e476"}.fa-person-rifle:before{content:"\e54e"}.fa-house-medical-circle-exclamation:before{content:"\e512"}.fa-closed-captioning:before{content:"\f20a"}.fa-hiking:before,.fa-person-hiking:before{content:"\f6ec"}.fa-venus-double:before{content:"\f226"}.fa-images:before{content:"\f302"}.fa-calculator:before{content:"\f1ec"}.fa-people-pulling:before{content:"\e535"}.fa-n:before{content:"\4e"}.fa-cable-car:before,.fa-tram:before{content:"\f7da"}.fa-cloud-rain:before{content:"\f73d"}.fa-building-circle-xmark:before{content:"\e4d4"}.fa-ship:before{content:"\f21a"}.fa-arrows-down-to-line:before{content:"\e4b8"}.fa-download:before{content:"\f019"}.fa-face-grin:before,.fa-grin:before{content:"\f580"}.fa-backspace:before,.fa-delete-left:before{content:"\f55a"}.fa-eye-dropper-empty:before,.fa-eye-dropper:before,.fa-eyedropper:before{content:"\f1fb"}.fa-file-circle-check:before{content:"\e5a0"}.fa-forward:before{content:"\f04e"}.fa-mobile-android:before,.fa-mobile-phone:before,.fa-mobile:before{content:"\f3ce"}.fa-face-meh:before,.fa-meh:before{content:"\f11a"}.fa-align-center:before{content:"\f037"}.fa-book-dead:before,.fa-book-skull:before{content:"\f6b7"}.fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"}.fa-dedent:before,.fa-outdent:before{content:"\f03b"}.fa-heart-circle-exclamation:before{content:"\e4fe"}.fa-home-alt:before,.fa-home-lg-alt:before,.fa-home:before,.fa-house:before{content:"\f015"}.fa-calendar-week:before{content:"\f784"}.fa-laptop-medical:before{content:"\f812"}.fa-b:before{content:"\42"}.fa-file-medical:before{content:"\f477"}.fa-dice-one:before{content:"\f525"}.fa-kiwi-bird:before{content:"\f535"}.fa-arrow-right-arrow-left:before,.fa-exchange:before{content:"\f0ec"}.fa-redo-alt:before,.fa-rotate-forward:before,.fa-rotate-right:before{content:"\f2f9"}.fa-cutlery:before,.fa-utensils:before{content:"\f2e7"}.fa-arrow-up-wide-short:before,.fa-sort-amount-up:before{content:"\f161"}.fa-mill-sign:before{content:"\e1ed"}.fa-bowl-rice:before{content:"\e2eb"}.fa-skull:before{content:"\f54c"}.fa-broadcast-tower:before,.fa-tower-broadcast:before{content:"\f519"}.fa-truck-pickup:before{content:"\f63c"}.fa-long-arrow-alt-up:before,.fa-up-long:before{content:"\f30c"}.fa-stop:before{content:"\f04d"}.fa-code-merge:before{content:"\f387"}.fa-upload:before{content:"\f093"}.fa-hurricane:before{content:"\f751"}.fa-mound:before{content:"\e52d"}.fa-toilet-portable:before{content:"\e583"}.fa-compact-disc:before{content:"\f51f"}.fa-file-arrow-down:before,.fa-file-download:before{content:"\f56d"}.fa-caravan:before{content:"\f8ff"}.fa-shield-cat:before{content:"\e572"}.fa-bolt:before,.fa-zap:before{content:"\f0e7"}.fa-glass-water:before{content:"\e4f4"}.fa-oil-well:before{content:"\e532"}.fa-vault:before{content:"\e2c5"}.fa-mars:before{content:"\f222"}.fa-toilet:before{content:"\f7d8"}.fa-plane-circle-xmark:before{content:"\e557"}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen-sign:before,.fa-yen:before{content:"\f157"}.fa-rouble:before,.fa-rub:before,.fa-ruble-sign:before,.fa-ruble:before{content:"\f158"}.fa-sun:before{content:"\f185"}.fa-guitar:before{content:"\f7a6"}.fa-face-laugh-wink:before,.fa-laugh-wink:before{content:"\f59c"}.fa-horse-head:before{content:"\f7ab"}.fa-bore-hole:before{content:"\e4c3"}.fa-industry:before{content:"\f275"}.fa-arrow-alt-circle-down:before,.fa-circle-down:before{content:"\f358"}.fa-arrows-turn-to-dots:before{content:"\e4c1"}.fa-florin-sign:before{content:"\e184"}.fa-arrow-down-short-wide:before,.fa-sort-amount-desc:before,.fa-sort-amount-down-alt:before{content:"\f884"}.fa-less-than:before{content:"\3c"}.fa-angle-down:before{content:"\f107"}.fa-car-tunnel:before{content:"\e4de"}.fa-head-side-cough:before{content:"\e061"}.fa-grip-lines:before{content:"\f7a4"}.fa-thumbs-down:before{content:"\f165"}.fa-user-lock:before{content:"\f502"}.fa-arrow-right-long:before,.fa-long-arrow-right:before{content:"\f178"}.fa-anchor-circle-xmark:before{content:"\e4ac"}.fa-ellipsis-h:before,.fa-ellipsis:before{content:"\f141"}.fa-chess-pawn:before{content:"\f443"}.fa-first-aid:before,.fa-kit-medical:before{content:"\f479"}.fa-person-through-window:before{content:"\e5a9"}.fa-toolbox:before{content:"\f552"}.fa-hands-holding-circle:before{content:"\e4fb"}.fa-bug:before{content:"\f188"}.fa-credit-card-alt:before,.fa-credit-card:before{content:"\f09d"}.fa-automobile:before,.fa-car:before{content:"\f1b9"}.fa-hand-holding-hand:before{content:"\e4f7"}.fa-book-open-reader:before,.fa-book-reader:before{content:"\f5da"}.fa-mountain-sun:before{content:"\e52f"}.fa-arrows-left-right-to-line:before{content:"\e4ba"}.fa-dice-d20:before{content:"\f6cf"}.fa-truck-droplet:before{content:"\e58c"}.fa-file-circle-xmark:before{content:"\e5a1"}.fa-temperature-arrow-up:before,.fa-temperature-up:before{content:"\e040"}.fa-medal:before{content:"\f5a2"}.fa-bed:before{content:"\f236"}.fa-h-square:before,.fa-square-h:before{content:"\f0fd"}.fa-podcast:before{content:"\f2ce"}.fa-temperature-4:before,.fa-temperature-full:before,.fa-thermometer-4:before,.fa-thermometer-full:before{content:"\f2c7"}.fa-bell:before{content:"\f0f3"}.fa-superscript:before{content:"\f12b"}.fa-plug-circle-xmark:before{content:"\e560"}.fa-star-of-life:before{content:"\f621"}.fa-phone-slash:before{content:"\f3dd"}.fa-paint-roller:before{content:"\f5aa"}.fa-hands-helping:before,.fa-handshake-angle:before{content:"\f4c4"}.fa-location-dot:before,.fa-map-marker-alt:before{content:"\f3c5"}.fa-file:before{content:"\f15b"}.fa-greater-than:before{content:"\3e"}.fa-person-swimming:before,.fa-swimmer:before{content:"\f5c4"}.fa-arrow-down:before{content:"\f063"}.fa-droplet:before,.fa-tint:before{content:"\f043"}.fa-eraser:before{content:"\f12d"}.fa-earth-america:before,.fa-earth-americas:before,.fa-earth:before,.fa-globe-americas:before{content:"\f57d"}.fa-person-burst:before{content:"\e53b"}.fa-dove:before{content:"\f4ba"}.fa-battery-0:before,.fa-battery-empty:before{content:"\f244"}.fa-socks:before{content:"\f696"}.fa-inbox:before{content:"\f01c"}.fa-section:before{content:"\e447"}.fa-gauge-high:before,.fa-tachometer-alt-fast:before,.fa-tachometer-alt:before{content:"\f625"}.fa-envelope-open-text:before{content:"\f658"}.fa-hospital-alt:before,.fa-hospital-wide:before,.fa-hospital:before{content:"\f0f8"}.fa-wine-bottle:before{content:"\f72f"}.fa-chess-rook:before{content:"\f447"}.fa-bars-staggered:before,.fa-reorder:before,.fa-stream:before{content:"\f550"}.fa-dharmachakra:before{content:"\f655"}.fa-hotdog:before{content:"\f80f"}.fa-blind:before,.fa-person-walking-with-cane:before{content:"\f29d"}.fa-drum:before{content:"\f569"}.fa-ice-cream:before{content:"\f810"}.fa-heart-circle-bolt:before{content:"\e4fc"}.fa-fax:before{content:"\f1ac"}.fa-paragraph:before{content:"\f1dd"}.fa-check-to-slot:before,.fa-vote-yea:before{content:"\f772"}.fa-star-half:before{content:"\f089"}.fa-boxes-alt:before,.fa-boxes-stacked:before,.fa-boxes:before{content:"\f468"}.fa-chain:before,.fa-link:before{content:"\f0c1"}.fa-assistive-listening-systems:before,.fa-ear-listen:before{content:"\f2a2"}.fa-tree-city:before{content:"\e587"}.fa-play:before{content:"\f04b"}.fa-font:before{content:"\f031"}.fa-rupiah-sign:before{content:"\e23d"}.fa-magnifying-glass:before,.fa-search:before{content:"\f002"}.fa-ping-pong-paddle-ball:before,.fa-table-tennis-paddle-ball:before,.fa-table-tennis:before{content:"\f45d"}.fa-diagnoses:before,.fa-person-dots-from-line:before{content:"\f470"}.fa-trash-can-arrow-up:before,.fa-trash-restore-alt:before{content:"\f82a"}.fa-naira-sign:before{content:"\e1f6"}.fa-cart-arrow-down:before{content:"\f218"}.fa-walkie-talkie:before{content:"\f8ef"}.fa-file-edit:before,.fa-file-pen:before{content:"\f31c"}.fa-receipt:before{content:"\f543"}.fa-pen-square:before,.fa-pencil-square:before,.fa-square-pen:before{content:"\f14b"}.fa-suitcase-rolling:before{content:"\f5c1"}.fa-person-circle-exclamation:before{content:"\e53f"}.fa-chevron-down:before{content:"\f078"}.fa-battery-5:before,.fa-battery-full:before,.fa-battery:before{content:"\f240"}.fa-skull-crossbones:before{content:"\f714"}.fa-code-compare:before{content:"\e13a"}.fa-list-dots:before,.fa-list-ul:before{content:"\f0ca"}.fa-school-lock:before{content:"\e56f"}.fa-tower-cell:before{content:"\e585"}.fa-down-long:before,.fa-long-arrow-alt-down:before{content:"\f309"}.fa-ranking-star:before{content:"\e561"}.fa-chess-king:before{content:"\f43f"}.fa-person-harassing:before{content:"\e549"}.fa-brazilian-real-sign:before{content:"\e46c"}.fa-landmark-alt:before,.fa-landmark-dome:before{content:"\f752"}.fa-arrow-up:before{content:"\f062"}.fa-television:before,.fa-tv-alt:before,.fa-tv:before{content:"\f26c"}.fa-shrimp:before{content:"\e448"}.fa-list-check:before,.fa-tasks:before{content:"\f0ae"}.fa-jug-detergent:before{content:"\e519"}.fa-circle-user:before,.fa-user-circle:before{content:"\f2bd"}.fa-user-shield:before{content:"\f505"}.fa-wind:before{content:"\f72e"}.fa-car-burst:before,.fa-car-crash:before{content:"\f5e1"}.fa-y:before{content:"\59"}.fa-person-snowboarding:before,.fa-snowboarding:before{content:"\f7ce"}.fa-shipping-fast:before,.fa-truck-fast:before{content:"\f48b"}.fa-fish:before{content:"\f578"}.fa-user-graduate:before{content:"\f501"}.fa-adjust:before,.fa-circle-half-stroke:before{content:"\f042"}.fa-clapperboard:before{content:"\e131"}.fa-circle-radiation:before,.fa-radiation-alt:before{content:"\f7ba"}.fa-baseball-ball:before,.fa-baseball:before{content:"\f433"}.fa-jet-fighter-up:before{content:"\e518"}.fa-diagram-project:before,.fa-project-diagram:before{content:"\f542"}.fa-copy:before{content:"\f0c5"}.fa-volume-mute:before,.fa-volume-times:before,.fa-volume-xmark:before{content:"\f6a9"}.fa-hand-sparkles:before{content:"\e05d"}.fa-grip-horizontal:before,.fa-grip:before{content:"\f58d"}.fa-share-from-square:before,.fa-share-square:before{content:"\f14d"}.fa-child-combatant:before,.fa-child-rifle:before{content:"\e4e0"}.fa-gun:before{content:"\e19b"}.fa-phone-square:before,.fa-square-phone:before{content:"\f098"}.fa-add:before,.fa-plus:before{content:"\2b"}.fa-expand:before{content:"\f065"}.fa-computer:before{content:"\e4e5"}.fa-close:before,.fa-multiply:before,.fa-remove:before,.fa-times:before,.fa-xmark:before{content:"\f00d"}.fa-arrows-up-down-left-right:before,.fa-arrows:before{content:"\f047"}.fa-chalkboard-teacher:before,.fa-chalkboard-user:before{content:"\f51c"}.fa-peso-sign:before{content:"\e222"}.fa-building-shield:before{content:"\e4d8"}.fa-baby:before{content:"\f77c"}.fa-users-line:before{content:"\e592"}.fa-quote-left-alt:before,.fa-quote-left:before{content:"\f10d"}.fa-tractor:before{content:"\f722"}.fa-trash-arrow-up:before,.fa-trash-restore:before{content:"\f829"}.fa-arrow-down-up-lock:before{content:"\e4b0"}.fa-lines-leaning:before{content:"\e51e"}.fa-ruler-combined:before{content:"\f546"}.fa-copyright:before{content:"\f1f9"}.fa-equals:before{content:"\3d"}.fa-blender:before{content:"\f517"}.fa-teeth:before{content:"\f62e"}.fa-ils:before,.fa-shekel-sign:before,.fa-shekel:before,.fa-sheqel-sign:before,.fa-sheqel:before{content:"\f20b"}.fa-map:before{content:"\f279"}.fa-rocket:before{content:"\f135"}.fa-photo-film:before,.fa-photo-video:before{content:"\f87c"}.fa-folder-minus:before{content:"\f65d"}.fa-store:before{content:"\f54e"}.fa-arrow-trend-up:before{content:"\e098"}.fa-plug-circle-minus:before{content:"\e55e"}.fa-sign-hanging:before,.fa-sign:before{content:"\f4d9"}.fa-bezier-curve:before{content:"\f55b"}.fa-bell-slash:before{content:"\f1f6"}.fa-tablet-android:before,.fa-tablet:before{content:"\f3fb"}.fa-school-flag:before{content:"\e56e"}.fa-fill:before{content:"\f575"}.fa-angle-up:before{content:"\f106"}.fa-drumstick-bite:before{content:"\f6d7"}.fa-holly-berry:before{content:"\f7aa"}.fa-chevron-left:before{content:"\f053"}.fa-bacteria:before{content:"\e059"}.fa-hand-lizard:before{content:"\f258"}.fa-notdef:before{content:"\e1fe"}.fa-disease:before{content:"\f7fa"}.fa-briefcase-medical:before{content:"\f469"}.fa-genderless:before{content:"\f22d"}.fa-chevron-right:before{content:"\f054"}.fa-retweet:before{content:"\f079"}.fa-car-alt:before,.fa-car-rear:before{content:"\f5de"}.fa-pump-soap:before{content:"\e06b"}.fa-video-slash:before{content:"\f4e2"}.fa-battery-2:before,.fa-battery-quarter:before{content:"\f243"}.fa-radio:before{content:"\f8d7"}.fa-baby-carriage:before,.fa-carriage-baby:before{content:"\f77d"}.fa-traffic-light:before{content:"\f637"}.fa-thermometer:before{content:"\f491"}.fa-vr-cardboard:before{content:"\f729"}.fa-hand-middle-finger:before{content:"\f806"}.fa-percent:before,.fa-percentage:before{content:"\25"}.fa-truck-moving:before{content:"\f4df"}.fa-glass-water-droplet:before{content:"\e4f5"}.fa-display:before{content:"\e163"}.fa-face-smile:before,.fa-smile:before{content:"\f118"}.fa-thumb-tack:before,.fa-thumbtack:before{content:"\f08d"}.fa-trophy:before{content:"\f091"}.fa-person-praying:before,.fa-pray:before{content:"\f683"}.fa-hammer:before{content:"\f6e3"}.fa-hand-peace:before{content:"\f25b"}.fa-rotate:before,.fa-sync-alt:before{content:"\f2f1"}.fa-spinner:before{content:"\f110"}.fa-robot:before{content:"\f544"}.fa-peace:before{content:"\f67c"}.fa-cogs:before,.fa-gears:before{content:"\f085"}.fa-warehouse:before{content:"\f494"}.fa-arrow-up-right-dots:before{content:"\e4b7"}.fa-splotch:before{content:"\f5bc"}.fa-face-grin-hearts:before,.fa-grin-hearts:before{content:"\f584"}.fa-dice-four:before{content:"\f524"}.fa-sim-card:before{content:"\f7c4"}.fa-transgender-alt:before,.fa-transgender:before{content:"\f225"}.fa-mercury:before{content:"\f223"}.fa-arrow-turn-down:before,.fa-level-down:before{content:"\f149"}.fa-person-falling-burst:before{content:"\e547"}.fa-award:before{content:"\f559"}.fa-ticket-alt:before,.fa-ticket-simple:before{content:"\f3ff"}.fa-building:before{content:"\f1ad"}.fa-angle-double-left:before,.fa-angles-left:before{content:"\f100"}.fa-qrcode:before{content:"\f029"}.fa-clock-rotate-left:before,.fa-history:before{content:"\f1da"}.fa-face-grin-beam-sweat:before,.fa-grin-beam-sweat:before{content:"\f583"}.fa-arrow-right-from-file:before,.fa-file-export:before{content:"\f56e"}.fa-shield-blank:before,.fa-shield:before{content:"\f132"}.fa-arrow-up-short-wide:before,.fa-sort-amount-up-alt:before{content:"\f885"}.fa-house-medical:before{content:"\e3b2"}.fa-golf-ball-tee:before,.fa-golf-ball:before{content:"\f450"}.fa-chevron-circle-left:before,.fa-circle-chevron-left:before{content:"\f137"}.fa-house-chimney-window:before{content:"\e00d"}.fa-pen-nib:before{content:"\f5ad"}.fa-tent-arrow-turn-left:before{content:"\e580"}.fa-tents:before{content:"\e582"}.fa-magic:before,.fa-wand-magic:before{content:"\f0d0"}.fa-dog:before{content:"\f6d3"}.fa-carrot:before{content:"\f787"}.fa-moon:before{content:"\f186"}.fa-wine-glass-alt:before,.fa-wine-glass-empty:before{content:"\f5ce"}.fa-cheese:before{content:"\f7ef"}.fa-yin-yang:before{content:"\f6ad"}.fa-music:before{content:"\f001"}.fa-code-commit:before{content:"\f386"}.fa-temperature-low:before{content:"\f76b"}.fa-biking:before,.fa-person-biking:before{content:"\f84a"}.fa-broom:before{content:"\f51a"}.fa-shield-heart:before{content:"\e574"}.fa-gopuram:before{content:"\f664"}.fa-earth-oceania:before,.fa-globe-oceania:before{content:"\e47b"}.fa-square-xmark:before,.fa-times-square:before,.fa-xmark-square:before{content:"\f2d3"}.fa-hashtag:before{content:"\23"}.fa-expand-alt:before,.fa-up-right-and-down-left-from-center:before{content:"\f424"}.fa-oil-can:before{content:"\f613"}.fa-t:before{content:"\54"}.fa-hippo:before{content:"\f6ed"}.fa-chart-column:before{content:"\e0e3"}.fa-infinity:before{content:"\f534"}.fa-vial-circle-check:before{content:"\e596"}.fa-person-arrow-down-to-line:before{content:"\e538"}.fa-voicemail:before{content:"\f897"}.fa-fan:before{content:"\f863"}.fa-person-walking-luggage:before{content:"\e554"}.fa-arrows-alt-v:before,.fa-up-down:before{content:"\f338"}.fa-cloud-moon-rain:before{content:"\f73c"}.fa-calendar:before{content:"\f133"}.fa-trailer:before{content:"\e041"}.fa-bahai:before,.fa-haykal:before{content:"\f666"}.fa-sd-card:before{content:"\f7c2"}.fa-dragon:before{content:"\f6d5"}.fa-shoe-prints:before{content:"\f54b"}.fa-circle-plus:before,.fa-plus-circle:before{content:"\f055"}.fa-face-grin-tongue-wink:before,.fa-grin-tongue-wink:before{content:"\f58b"}.fa-hand-holding:before{content:"\f4bd"}.fa-plug-circle-exclamation:before{content:"\e55d"}.fa-chain-broken:before,.fa-chain-slash:before,.fa-link-slash:before,.fa-unlink:before{content:"\f127"}.fa-clone:before{content:"\f24d"}.fa-person-walking-arrow-loop-left:before{content:"\e551"}.fa-arrow-up-z-a:before,.fa-sort-alpha-up-alt:before{content:"\f882"}.fa-fire-alt:before,.fa-fire-flame-curved:before{content:"\f7e4"}.fa-tornado:before{content:"\f76f"}.fa-file-circle-plus:before{content:"\e494"}.fa-book-quran:before,.fa-quran:before{content:"\f687"}.fa-anchor:before{content:"\f13d"}.fa-border-all:before{content:"\f84c"}.fa-angry:before,.fa-face-angry:before{content:"\f556"}.fa-cookie-bite:before{content:"\f564"}.fa-arrow-trend-down:before{content:"\e097"}.fa-feed:before,.fa-rss:before{content:"\f09e"}.fa-draw-polygon:before{content:"\f5ee"}.fa-balance-scale:before,.fa-scale-balanced:before{content:"\f24e"}.fa-gauge-simple-high:before,.fa-tachometer-fast:before,.fa-tachometer:before{content:"\f62a"}.fa-shower:before{content:"\f2cc"}.fa-desktop-alt:before,.fa-desktop:before{content:"\f390"}.fa-m:before{content:"\4d"}.fa-table-list:before,.fa-th-list:before{content:"\f00b"}.fa-comment-sms:before,.fa-sms:before{content:"\f7cd"}.fa-book:before{content:"\f02d"}.fa-user-plus:before{content:"\f234"}.fa-check:before{content:"\f00c"}.fa-battery-4:before,.fa-battery-three-quarters:before{content:"\f241"}.fa-house-circle-check:before{content:"\e509"}.fa-angle-left:before{content:"\f104"}.fa-diagram-successor:before{content:"\e47a"}.fa-truck-arrow-right:before{content:"\e58b"}.fa-arrows-split-up-and-left:before{content:"\e4bc"}.fa-fist-raised:before,.fa-hand-fist:before{content:"\f6de"}.fa-cloud-moon:before{content:"\f6c3"}.fa-briefcase:before{content:"\f0b1"}.fa-person-falling:before{content:"\e546"}.fa-image-portrait:before,.fa-portrait:before{content:"\f3e0"}.fa-user-tag:before{content:"\f507"}.fa-rug:before{content:"\e569"}.fa-earth-europe:before,.fa-globe-europe:before{content:"\f7a2"}.fa-cart-flatbed-suitcase:before,.fa-luggage-cart:before{content:"\f59d"}.fa-rectangle-times:before,.fa-rectangle-xmark:before,.fa-times-rectangle:before,.fa-window-close:before{content:"\f410"}.fa-baht-sign:before{content:"\e0ac"}.fa-book-open:before{content:"\f518"}.fa-book-journal-whills:before,.fa-journal-whills:before{content:"\f66a"}.fa-handcuffs:before{content:"\e4f8"}.fa-exclamation-triangle:before,.fa-triangle-exclamation:before,.fa-warning:before{content:"\f071"}.fa-database:before{content:"\f1c0"}.fa-arrow-turn-right:before,.fa-mail-forward:before,.fa-share:before{content:"\f064"}.fa-bottle-droplet:before{content:"\e4c4"}.fa-mask-face:before{content:"\e1d7"}.fa-hill-rockslide:before{content:"\e508"}.fa-exchange-alt:before,.fa-right-left:before{content:"\f362"}.fa-paper-plane:before{content:"\f1d8"}.fa-road-circle-exclamation:before{content:"\e565"}.fa-dungeon:before{content:"\f6d9"}.fa-align-right:before{content:"\f038"}.fa-money-bill-1-wave:before,.fa-money-bill-wave-alt:before{content:"\f53b"}.fa-life-ring:before{content:"\f1cd"}.fa-hands:before,.fa-sign-language:before,.fa-signing:before{content:"\f2a7"}.fa-calendar-day:before{content:"\f783"}.fa-ladder-water:before,.fa-swimming-pool:before,.fa-water-ladder:before{content:"\f5c5"}.fa-arrows-up-down:before,.fa-arrows-v:before{content:"\f07d"}.fa-face-grimace:before,.fa-grimace:before{content:"\f57f"}.fa-wheelchair-alt:before,.fa-wheelchair-move:before{content:"\e2ce"}.fa-level-down-alt:before,.fa-turn-down:before{content:"\f3be"}.fa-person-walking-arrow-right:before{content:"\e552"}.fa-envelope-square:before,.fa-square-envelope:before{content:"\f199"}.fa-dice:before{content:"\f522"}.fa-bowling-ball:before{content:"\f436"}.fa-brain:before{content:"\f5dc"}.fa-band-aid:before,.fa-bandage:before{content:"\f462"}.fa-calendar-minus:before{content:"\f272"}.fa-circle-xmark:before,.fa-times-circle:before,.fa-xmark-circle:before{content:"\f057"}.fa-gifts:before{content:"\f79c"}.fa-hotel:before{content:"\f594"}.fa-earth-asia:before,.fa-globe-asia:before{content:"\f57e"}.fa-id-card-alt:before,.fa-id-card-clip:before{content:"\f47f"}.fa-magnifying-glass-plus:before,.fa-search-plus:before{content:"\f00e"}.fa-thumbs-up:before{content:"\f164"}.fa-user-clock:before{content:"\f4fd"}.fa-allergies:before,.fa-hand-dots:before{content:"\f461"}.fa-file-invoice:before{content:"\f570"}.fa-window-minimize:before{content:"\f2d1"}.fa-coffee:before,.fa-mug-saucer:before{content:"\f0f4"}.fa-brush:before{content:"\f55d"}.fa-mask:before{content:"\f6fa"}.fa-magnifying-glass-minus:before,.fa-search-minus:before{content:"\f010"}.fa-ruler-vertical:before{content:"\f548"}.fa-user-alt:before,.fa-user-large:before{content:"\f406"}.fa-train-tram:before{content:"\e5b4"}.fa-user-nurse:before{content:"\f82f"}.fa-syringe:before{content:"\f48e"}.fa-cloud-sun:before{content:"\f6c4"}.fa-stopwatch-20:before{content:"\e06f"}.fa-square-full:before{content:"\f45c"}.fa-magnet:before{content:"\f076"}.fa-jar:before{content:"\e516"}.fa-note-sticky:before,.fa-sticky-note:before{content:"\f249"}.fa-bug-slash:before{content:"\e490"}.fa-arrow-up-from-water-pump:before{content:"\e4b6"}.fa-bone:before{content:"\f5d7"}.fa-user-injured:before{content:"\f728"}.fa-face-sad-tear:before,.fa-sad-tear:before{content:"\f5b4"}.fa-plane:before{content:"\f072"}.fa-tent-arrows-down:before{content:"\e581"}.fa-exclamation:before{content:"\21"}.fa-arrows-spin:before{content:"\e4bb"}.fa-print:before{content:"\f02f"}.fa-try:before,.fa-turkish-lira-sign:before,.fa-turkish-lira:before{content:"\e2bb"}.fa-dollar-sign:before,.fa-dollar:before,.fa-usd:before{content:"\24"}.fa-x:before{content:"\58"}.fa-magnifying-glass-dollar:before,.fa-search-dollar:before{content:"\f688"}.fa-users-cog:before,.fa-users-gear:before{content:"\f509"}.fa-person-military-pointing:before{content:"\e54a"}.fa-bank:before,.fa-building-columns:before,.fa-institution:before,.fa-museum:before,.fa-university:before{content:"\f19c"}.fa-umbrella:before{content:"\f0e9"}.fa-trowel:before{content:"\e589"}.fa-d:before{content:"\44"}.fa-stapler:before{content:"\e5af"}.fa-masks-theater:before,.fa-theater-masks:before{content:"\f630"}.fa-kip-sign:before{content:"\e1c4"}.fa-hand-point-left:before{content:"\f0a5"}.fa-handshake-alt:before,.fa-handshake-simple:before{content:"\f4c6"}.fa-fighter-jet:before,.fa-jet-fighter:before{content:"\f0fb"}.fa-share-alt-square:before,.fa-square-share-nodes:before{content:"\f1e1"}.fa-barcode:before{content:"\f02a"}.fa-plus-minus:before{content:"\e43c"}.fa-video-camera:before,.fa-video:before{content:"\f03d"}.fa-graduation-cap:before,.fa-mortar-board:before{content:"\f19d"}.fa-hand-holding-medical:before{content:"\e05c"}.fa-person-circle-check:before{content:"\e53e"}.fa-level-up-alt:before,.fa-turn-up:before{content:"\f3bf"} +.fa-sr-only,.fa-sr-only-focusable:not(:focus),.sr-only,.sr-only-focusable:not(:focus){position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border-width:0}:host,:root{--fa-style-family-brands:"Font Awesome 6 Brands";--fa-font-brands:normal 400 1em/1 "Font Awesome 6 Brands"}@font-face{font-family:"Font Awesome 6 Brands";font-style:normal;font-weight:400;font-display:block;src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); }.fa-brands,.fab{font-weight:400}.fa-monero:before{content:"\f3d0"}.fa-hooli:before{content:"\f427"}.fa-yelp:before{content:"\f1e9"}.fa-cc-visa:before{content:"\f1f0"}.fa-lastfm:before{content:"\f202"}.fa-shopware:before{content:"\f5b5"}.fa-creative-commons-nc:before{content:"\f4e8"}.fa-aws:before{content:"\f375"}.fa-redhat:before{content:"\f7bc"}.fa-yoast:before{content:"\f2b1"}.fa-cloudflare:before{content:"\e07d"}.fa-ups:before{content:"\f7e0"}.fa-wpexplorer:before{content:"\f2de"}.fa-dyalog:before{content:"\f399"}.fa-bity:before{content:"\f37a"}.fa-stackpath:before{content:"\f842"}.fa-buysellads:before{content:"\f20d"}.fa-first-order:before{content:"\f2b0"}.fa-modx:before{content:"\f285"}.fa-guilded:before{content:"\e07e"}.fa-vnv:before{content:"\f40b"}.fa-js-square:before,.fa-square-js:before{content:"\f3b9"}.fa-microsoft:before{content:"\f3ca"}.fa-qq:before{content:"\f1d6"}.fa-orcid:before{content:"\f8d2"}.fa-java:before{content:"\f4e4"}.fa-invision:before{content:"\f7b0"}.fa-creative-commons-pd-alt:before{content:"\f4ed"}.fa-centercode:before{content:"\f380"}.fa-glide-g:before{content:"\f2a6"}.fa-drupal:before{content:"\f1a9"}.fa-hire-a-helper:before{content:"\f3b0"}.fa-creative-commons-by:before{content:"\f4e7"}.fa-unity:before{content:"\e049"}.fa-whmcs:before{content:"\f40d"}.fa-rocketchat:before{content:"\f3e8"}.fa-vk:before{content:"\f189"}.fa-untappd:before{content:"\f405"}.fa-mailchimp:before{content:"\f59e"}.fa-css3-alt:before{content:"\f38b"}.fa-reddit-square:before,.fa-square-reddit:before{content:"\f1a2"}.fa-vimeo-v:before{content:"\f27d"}.fa-contao:before{content:"\f26d"}.fa-square-font-awesome:before{content:"\e5ad"}.fa-deskpro:before{content:"\f38f"}.fa-sistrix:before{content:"\f3ee"}.fa-instagram-square:before,.fa-square-instagram:before{content:"\e055"}.fa-battle-net:before{content:"\f835"}.fa-the-red-yeti:before{content:"\f69d"}.fa-hacker-news-square:before,.fa-square-hacker-news:before{content:"\f3af"}.fa-edge:before{content:"\f282"}.fa-threads:before{content:"\e618"}.fa-napster:before{content:"\f3d2"}.fa-snapchat-square:before,.fa-square-snapchat:before{content:"\f2ad"}.fa-google-plus-g:before{content:"\f0d5"}.fa-artstation:before{content:"\f77a"}.fa-markdown:before{content:"\f60f"}.fa-sourcetree:before{content:"\f7d3"}.fa-google-plus:before{content:"\f2b3"}.fa-diaspora:before{content:"\f791"}.fa-foursquare:before{content:"\f180"}.fa-stack-overflow:before{content:"\f16c"}.fa-github-alt:before{content:"\f113"}.fa-phoenix-squadron:before{content:"\f511"}.fa-pagelines:before{content:"\f18c"}.fa-algolia:before{content:"\f36c"}.fa-red-river:before{content:"\f3e3"}.fa-creative-commons-sa:before{content:"\f4ef"}.fa-safari:before{content:"\f267"}.fa-google:before{content:"\f1a0"}.fa-font-awesome-alt:before,.fa-square-font-awesome-stroke:before{content:"\f35c"}.fa-atlassian:before{content:"\f77b"}.fa-linkedin-in:before{content:"\f0e1"}.fa-digital-ocean:before{content:"\f391"}.fa-nimblr:before{content:"\f5a8"}.fa-chromecast:before{content:"\f838"}.fa-evernote:before{content:"\f839"}.fa-hacker-news:before{content:"\f1d4"}.fa-creative-commons-sampling:before{content:"\f4f0"}.fa-adversal:before{content:"\f36a"}.fa-creative-commons:before{content:"\f25e"}.fa-watchman-monitoring:before{content:"\e087"}.fa-fonticons:before{content:"\f280"}.fa-weixin:before{content:"\f1d7"}.fa-shirtsinbulk:before{content:"\f214"}.fa-codepen:before{content:"\f1cb"}.fa-git-alt:before{content:"\f841"}.fa-lyft:before{content:"\f3c3"}.fa-rev:before{content:"\f5b2"}.fa-windows:before{content:"\f17a"}.fa-wizards-of-the-coast:before{content:"\f730"}.fa-square-viadeo:before,.fa-viadeo-square:before{content:"\f2aa"}.fa-meetup:before{content:"\f2e0"}.fa-centos:before{content:"\f789"}.fa-adn:before{content:"\f170"}.fa-cloudsmith:before{content:"\f384"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-dribbble-square:before,.fa-square-dribbble:before{content:"\f397"}.fa-codiepie:before{content:"\f284"}.fa-node:before{content:"\f419"}.fa-mix:before{content:"\f3cb"}.fa-steam:before{content:"\f1b6"}.fa-cc-apple-pay:before{content:"\f416"}.fa-scribd:before{content:"\f28a"}.fa-debian:before{content:"\e60b"}.fa-openid:before{content:"\f19b"}.fa-instalod:before{content:"\e081"}.fa-expeditedssl:before{content:"\f23e"}.fa-sellcast:before{content:"\f2da"}.fa-square-twitter:before,.fa-twitter-square:before{content:"\f081"}.fa-r-project:before{content:"\f4f7"}.fa-delicious:before{content:"\f1a5"}.fa-freebsd:before{content:"\f3a4"}.fa-vuejs:before{content:"\f41f"}.fa-accusoft:before{content:"\f369"}.fa-ioxhost:before{content:"\f208"}.fa-fonticons-fi:before{content:"\f3a2"}.fa-app-store:before{content:"\f36f"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-itunes-note:before{content:"\f3b5"}.fa-golang:before{content:"\e40f"}.fa-kickstarter:before{content:"\f3bb"}.fa-grav:before{content:"\f2d6"}.fa-weibo:before{content:"\f18a"}.fa-uncharted:before{content:"\e084"}.fa-firstdraft:before{content:"\f3a1"}.fa-square-youtube:before,.fa-youtube-square:before{content:"\f431"}.fa-wikipedia-w:before{content:"\f266"}.fa-rendact:before,.fa-wpressr:before{content:"\f3e4"}.fa-angellist:before{content:"\f209"}.fa-galactic-republic:before{content:"\f50c"}.fa-nfc-directional:before{content:"\e530"}.fa-skype:before{content:"\f17e"}.fa-joget:before{content:"\f3b7"}.fa-fedora:before{content:"\f798"}.fa-stripe-s:before{content:"\f42a"}.fa-meta:before{content:"\e49b"}.fa-laravel:before{content:"\f3bd"}.fa-hotjar:before{content:"\f3b1"}.fa-bluetooth-b:before{content:"\f294"}.fa-sticker-mule:before{content:"\f3f7"}.fa-creative-commons-zero:before{content:"\f4f3"}.fa-hips:before{content:"\f452"}.fa-behance:before{content:"\f1b4"}.fa-reddit:before{content:"\f1a1"}.fa-discord:before{content:"\f392"}.fa-chrome:before{content:"\f268"}.fa-app-store-ios:before{content:"\f370"}.fa-cc-discover:before{content:"\f1f2"}.fa-wpbeginner:before{content:"\f297"}.fa-confluence:before{content:"\f78d"}.fa-mdb:before{content:"\f8ca"}.fa-dochub:before{content:"\f394"}.fa-accessible-icon:before{content:"\f368"}.fa-ebay:before{content:"\f4f4"}.fa-amazon:before{content:"\f270"}.fa-unsplash:before{content:"\e07c"}.fa-yarn:before{content:"\f7e3"}.fa-square-steam:before,.fa-steam-square:before{content:"\f1b7"}.fa-500px:before{content:"\f26e"}.fa-square-vimeo:before,.fa-vimeo-square:before{content:"\f194"}.fa-asymmetrik:before{content:"\f372"}.fa-font-awesome-flag:before,.fa-font-awesome-logo-full:before,.fa-font-awesome:before{content:"\f2b4"}.fa-gratipay:before{content:"\f184"}.fa-apple:before{content:"\f179"}.fa-hive:before{content:"\e07f"}.fa-gitkraken:before{content:"\f3a6"}.fa-keybase:before{content:"\f4f5"}.fa-apple-pay:before{content:"\f415"}.fa-padlet:before{content:"\e4a0"}.fa-amazon-pay:before{content:"\f42c"}.fa-github-square:before,.fa-square-github:before{content:"\f092"}.fa-stumbleupon:before{content:"\f1a4"}.fa-fedex:before{content:"\f797"}.fa-phoenix-framework:before{content:"\f3dc"}.fa-shopify:before{content:"\e057"}.fa-neos:before{content:"\f612"}.fa-square-threads:before{content:"\e619"}.fa-hackerrank:before{content:"\f5f7"}.fa-researchgate:before{content:"\f4f8"}.fa-swift:before{content:"\f8e1"}.fa-angular:before{content:"\f420"}.fa-speakap:before{content:"\f3f3"}.fa-angrycreative:before{content:"\f36e"}.fa-y-combinator:before{content:"\f23b"}.fa-empire:before{content:"\f1d1"}.fa-envira:before{content:"\f299"}.fa-gitlab-square:before,.fa-square-gitlab:before{content:"\e5ae"}.fa-studiovinari:before{content:"\f3f8"}.fa-pied-piper:before{content:"\f2ae"}.fa-wordpress:before{content:"\f19a"}.fa-product-hunt:before{content:"\f288"}.fa-firefox:before{content:"\f269"}.fa-linode:before{content:"\f2b8"}.fa-goodreads:before{content:"\f3a8"}.fa-odnoklassniki-square:before,.fa-square-odnoklassniki:before{content:"\f264"}.fa-jsfiddle:before{content:"\f1cc"}.fa-sith:before{content:"\f512"}.fa-themeisle:before{content:"\f2b2"}.fa-page4:before{content:"\f3d7"}.fa-hashnode:before{content:"\e499"}.fa-react:before{content:"\f41b"}.fa-cc-paypal:before{content:"\f1f4"}.fa-squarespace:before{content:"\f5be"}.fa-cc-stripe:before{content:"\f1f5"}.fa-creative-commons-share:before{content:"\f4f2"}.fa-bitcoin:before{content:"\f379"}.fa-keycdn:before{content:"\f3ba"}.fa-opera:before{content:"\f26a"}.fa-itch-io:before{content:"\f83a"}.fa-umbraco:before{content:"\f8e8"}.fa-galactic-senate:before{content:"\f50d"}.fa-ubuntu:before{content:"\f7df"}.fa-draft2digital:before{content:"\f396"}.fa-stripe:before{content:"\f429"}.fa-houzz:before{content:"\f27c"}.fa-gg:before{content:"\f260"}.fa-dhl:before{content:"\f790"}.fa-pinterest-square:before,.fa-square-pinterest:before{content:"\f0d3"}.fa-xing:before{content:"\f168"}.fa-blackberry:before{content:"\f37b"}.fa-creative-commons-pd:before{content:"\f4ec"}.fa-playstation:before{content:"\f3df"}.fa-quinscape:before{content:"\f459"}.fa-less:before{content:"\f41d"}.fa-blogger-b:before{content:"\f37d"}.fa-opencart:before{content:"\f23d"}.fa-vine:before{content:"\f1ca"}.fa-paypal:before{content:"\f1ed"}.fa-gitlab:before{content:"\f296"}.fa-typo3:before{content:"\f42b"}.fa-reddit-alien:before{content:"\f281"}.fa-yahoo:before{content:"\f19e"}.fa-dailymotion:before{content:"\e052"}.fa-affiliatetheme:before{content:"\f36b"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-bootstrap:before{content:"\f836"}.fa-odnoklassniki:before{content:"\f263"}.fa-nfc-symbol:before{content:"\e531"}.fa-ethereum:before{content:"\f42e"}.fa-speaker-deck:before{content:"\f83c"}.fa-creative-commons-nc-eu:before{content:"\f4e9"}.fa-patreon:before{content:"\f3d9"}.fa-avianex:before{content:"\f374"}.fa-ello:before{content:"\f5f1"}.fa-gofore:before{content:"\f3a7"}.fa-bimobject:before{content:"\f378"}.fa-facebook-f:before{content:"\f39e"}.fa-google-plus-square:before,.fa-square-google-plus:before{content:"\f0d4"}.fa-mandalorian:before{content:"\f50f"}.fa-first-order-alt:before{content:"\f50a"}.fa-osi:before{content:"\f41a"}.fa-google-wallet:before{content:"\f1ee"}.fa-d-and-d-beyond:before{content:"\f6ca"}.fa-periscope:before{content:"\f3da"}.fa-fulcrum:before{content:"\f50b"}.fa-cloudscale:before{content:"\f383"}.fa-forumbee:before{content:"\f211"}.fa-mizuni:before{content:"\f3cc"}.fa-schlix:before{content:"\f3ea"}.fa-square-xing:before,.fa-xing-square:before{content:"\f169"}.fa-bandcamp:before{content:"\f2d5"}.fa-wpforms:before{content:"\f298"}.fa-cloudversify:before{content:"\f385"}.fa-usps:before{content:"\f7e1"}.fa-megaport:before{content:"\f5a3"}.fa-magento:before{content:"\f3c4"}.fa-spotify:before{content:"\f1bc"}.fa-optin-monster:before{content:"\f23c"}.fa-fly:before{content:"\f417"}.fa-aviato:before{content:"\f421"}.fa-itunes:before{content:"\f3b4"}.fa-cuttlefish:before{content:"\f38c"}.fa-blogger:before{content:"\f37c"}.fa-flickr:before{content:"\f16e"}.fa-viber:before{content:"\f409"}.fa-soundcloud:before{content:"\f1be"}.fa-digg:before{content:"\f1a6"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-symfony:before{content:"\f83d"}.fa-maxcdn:before{content:"\f136"}.fa-etsy:before{content:"\f2d7"}.fa-facebook-messenger:before{content:"\f39f"}.fa-audible:before{content:"\f373"}.fa-think-peaks:before{content:"\f731"}.fa-bilibili:before{content:"\e3d9"}.fa-erlang:before{content:"\f39d"}.fa-x-twitter:before{content:"\e61b"}.fa-cotton-bureau:before{content:"\f89e"}.fa-dashcube:before{content:"\f210"}.fa-42-group:before,.fa-innosoft:before{content:"\e080"}.fa-stack-exchange:before{content:"\f18d"}.fa-elementor:before{content:"\f430"}.fa-pied-piper-square:before,.fa-square-pied-piper:before{content:"\e01e"}.fa-creative-commons-nd:before{content:"\f4eb"}.fa-palfed:before{content:"\f3d8"}.fa-superpowers:before{content:"\f2dd"}.fa-resolving:before{content:"\f3e7"}.fa-xbox:before{content:"\f412"}.fa-searchengin:before{content:"\f3eb"}.fa-tiktok:before{content:"\e07b"}.fa-facebook-square:before,.fa-square-facebook:before{content:"\f082"}.fa-renren:before{content:"\f18b"}.fa-linux:before{content:"\f17c"}.fa-glide:before{content:"\f2a5"}.fa-linkedin:before{content:"\f08c"}.fa-hubspot:before{content:"\f3b2"}.fa-deploydog:before{content:"\f38e"}.fa-twitch:before{content:"\f1e8"}.fa-ravelry:before{content:"\f2d9"}.fa-mixer:before{content:"\e056"}.fa-lastfm-square:before,.fa-square-lastfm:before{content:"\f203"}.fa-vimeo:before{content:"\f40a"}.fa-mendeley:before{content:"\f7b3"}.fa-uniregistry:before{content:"\f404"}.fa-figma:before{content:"\f799"}.fa-creative-commons-remix:before{content:"\f4ee"}.fa-cc-amazon-pay:before{content:"\f42d"}.fa-dropbox:before{content:"\f16b"}.fa-instagram:before{content:"\f16d"}.fa-cmplid:before{content:"\e360"}.fa-facebook:before{content:"\f09a"}.fa-gripfire:before{content:"\f3ac"}.fa-jedi-order:before{content:"\f50e"}.fa-uikit:before{content:"\f403"}.fa-fort-awesome-alt:before{content:"\f3a3"}.fa-phabricator:before{content:"\f3db"}.fa-ussunnah:before{content:"\f407"}.fa-earlybirds:before{content:"\f39a"}.fa-trade-federation:before{content:"\f513"}.fa-autoprefixer:before{content:"\f41c"}.fa-whatsapp:before{content:"\f232"}.fa-slideshare:before{content:"\f1e7"}.fa-google-play:before{content:"\f3ab"}.fa-viadeo:before{content:"\f2a9"}.fa-line:before{content:"\f3c0"}.fa-google-drive:before{content:"\f3aa"}.fa-servicestack:before{content:"\f3ec"}.fa-simplybuilt:before{content:"\f215"}.fa-bitbucket:before{content:"\f171"}.fa-imdb:before{content:"\f2d8"}.fa-deezer:before{content:"\e077"}.fa-raspberry-pi:before{content:"\f7bb"}.fa-jira:before{content:"\f7b1"}.fa-docker:before{content:"\f395"}.fa-screenpal:before{content:"\e570"}.fa-bluetooth:before{content:"\f293"}.fa-gitter:before{content:"\f426"}.fa-d-and-d:before{content:"\f38d"}.fa-microblog:before{content:"\e01a"}.fa-cc-diners-club:before{content:"\f24c"}.fa-gg-circle:before{content:"\f261"}.fa-pied-piper-hat:before{content:"\f4e5"}.fa-kickstarter-k:before{content:"\f3bc"}.fa-yandex:before{content:"\f413"}.fa-readme:before{content:"\f4d5"}.fa-html5:before{content:"\f13b"}.fa-sellsy:before{content:"\f213"}.fa-sass:before{content:"\f41e"}.fa-wirsindhandwerk:before,.fa-wsh:before{content:"\e2d0"}.fa-buromobelexperte:before{content:"\f37f"}.fa-salesforce:before{content:"\f83b"}.fa-octopus-deploy:before{content:"\e082"}.fa-medapps:before{content:"\f3c6"}.fa-ns8:before{content:"\f3d5"}.fa-pinterest-p:before{content:"\f231"}.fa-apper:before{content:"\f371"}.fa-fort-awesome:before{content:"\f286"}.fa-waze:before{content:"\f83f"}.fa-cc-jcb:before{content:"\f24b"}.fa-snapchat-ghost:before,.fa-snapchat:before{content:"\f2ab"}.fa-fantasy-flight-games:before{content:"\f6dc"}.fa-rust:before{content:"\e07a"}.fa-wix:before{content:"\f5cf"}.fa-behance-square:before,.fa-square-behance:before{content:"\f1b5"}.fa-supple:before{content:"\f3f9"}.fa-rebel:before{content:"\f1d0"}.fa-css3:before{content:"\f13c"}.fa-staylinked:before{content:"\f3f5"}.fa-kaggle:before{content:"\f5fa"}.fa-space-awesome:before{content:"\e5ac"}.fa-deviantart:before{content:"\f1bd"}.fa-cpanel:before{content:"\f388"}.fa-goodreads-g:before{content:"\f3a9"}.fa-git-square:before,.fa-square-git:before{content:"\f1d2"}.fa-square-tumblr:before,.fa-tumblr-square:before{content:"\f174"}.fa-trello:before{content:"\f181"}.fa-creative-commons-nc-jp:before{content:"\f4ea"}.fa-get-pocket:before{content:"\f265"}.fa-perbyte:before{content:"\e083"}.fa-grunt:before{content:"\f3ad"}.fa-weebly:before{content:"\f5cc"}.fa-connectdevelop:before{content:"\f20e"}.fa-leanpub:before{content:"\f212"}.fa-black-tie:before{content:"\f27e"}.fa-themeco:before{content:"\f5c6"}.fa-python:before{content:"\f3e2"}.fa-android:before{content:"\f17b"}.fa-bots:before{content:"\e340"}.fa-free-code-camp:before{content:"\f2c5"}.fa-hornbill:before{content:"\f592"}.fa-js:before{content:"\f3b8"}.fa-ideal:before{content:"\e013"}.fa-git:before{content:"\f1d3"}.fa-dev:before{content:"\f6cc"}.fa-sketch:before{content:"\f7c6"}.fa-yandex-international:before{content:"\f414"}.fa-cc-amex:before{content:"\f1f3"}.fa-uber:before{content:"\f402"}.fa-github:before{content:"\f09b"}.fa-php:before{content:"\f457"}.fa-alipay:before{content:"\f642"}.fa-youtube:before{content:"\f167"}.fa-skyatlas:before{content:"\f216"}.fa-firefox-browser:before{content:"\e007"}.fa-replyd:before{content:"\f3e6"}.fa-suse:before{content:"\f7d6"}.fa-jenkins:before{content:"\f3b6"}.fa-twitter:before{content:"\f099"}.fa-rockrms:before{content:"\f3e9"}.fa-pinterest:before{content:"\f0d2"}.fa-buffer:before{content:"\f837"}.fa-npm:before{content:"\f3d4"}.fa-yammer:before{content:"\f840"}.fa-btc:before{content:"\f15a"}.fa-dribbble:before{content:"\f17d"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-internet-explorer:before{content:"\f26b"}.fa-stubber:before{content:"\e5c7"}.fa-telegram-plane:before,.fa-telegram:before{content:"\f2c6"}.fa-old-republic:before{content:"\f510"}.fa-odysee:before{content:"\e5c6"}.fa-square-whatsapp:before,.fa-whatsapp-square:before{content:"\f40c"}.fa-node-js:before{content:"\f3d3"}.fa-edge-legacy:before{content:"\e078"}.fa-slack-hash:before,.fa-slack:before{content:"\f198"}.fa-medrt:before{content:"\f3c8"}.fa-usb:before{content:"\f287"}.fa-tumblr:before{content:"\f173"}.fa-vaadin:before{content:"\f408"}.fa-quora:before{content:"\f2c4"}.fa-square-x-twitter:before{content:"\e61a"}.fa-reacteurope:before{content:"\f75d"}.fa-medium-m:before,.fa-medium:before{content:"\f23a"}.fa-amilia:before{content:"\f36d"}.fa-mixcloud:before{content:"\f289"}.fa-flipboard:before{content:"\f44d"}.fa-viacoin:before{content:"\f237"}.fa-critical-role:before{content:"\f6c9"}.fa-sitrox:before{content:"\e44a"}.fa-discourse:before{content:"\f393"}.fa-joomla:before{content:"\f1aa"}.fa-mastodon:before{content:"\f4f6"}.fa-airbnb:before{content:"\f834"}.fa-wolf-pack-battalion:before{content:"\f514"}.fa-buy-n-large:before{content:"\f8a6"}.fa-gulp:before{content:"\f3ae"}.fa-creative-commons-sampling-plus:before{content:"\f4f1"}.fa-strava:before{content:"\f428"}.fa-ember:before{content:"\f423"}.fa-canadian-maple-leaf:before{content:"\f785"}.fa-teamspeak:before{content:"\f4f9"}.fa-pushed:before{content:"\f3e1"}.fa-wordpress-simple:before{content:"\f411"}.fa-nutritionix:before{content:"\f3d6"}.fa-wodu:before{content:"\e088"}.fa-google-pay:before{content:"\e079"}.fa-intercom:before{content:"\f7af"}.fa-zhihu:before{content:"\f63f"}.fa-korvue:before{content:"\f42f"}.fa-pix:before{content:"\e43a"}.fa-steam-symbol:before{content:"\f3f6"}:host,:root{--fa-font-regular:normal 400 1em/1 "Font Awesome 6 Free"}@font-face{font-family:"Font Awesome 6 Free";font-style:normal;font-weight:400;font-display:block;src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); }.fa-regular,.far{font-weight:400}:host,:root{--fa-style-family-classic:"Font Awesome 6 Free";--fa-font-solid:normal 900 1em/1 "Font Awesome 6 Free"}@font-face{font-family:"Font Awesome 6 Free";font-style:normal;font-weight:900;font-display:block;src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); }.fa-solid,.fas{font-weight:900}@font-face{font-family:"Font Awesome 5 Brands";font-display:block;font-weight:400;src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); }@font-face{font-family:"Font Awesome 5 Free";font-display:block;font-weight:900;src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); }@font-face{font-family:"Font Awesome 5 Free";font-display:block;font-weight:400;src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); }@font-face{font-family:"FontAwesome";font-display:block;src: url("../webfonts/fa-solid-900.woff2") format("woff2"), url("../webfonts/fa-solid-900.ttf") format("truetype"); }@font-face{font-family:"FontAwesome";font-display:block;src: url("../webfonts/fa-brands-400.woff2") format("woff2"), url("../webfonts/fa-brands-400.ttf") format("truetype"); }@font-face{font-family:"FontAwesome";font-display:block;src: url("../webfonts/fa-regular-400.woff2") format("woff2"), url("../webfonts/fa-regular-400.ttf") format("truetype"); }@font-face{font-family:"FontAwesome";font-display:block;src: url("../webfonts/fa-v4compatibility.woff2") format("woff2"), url("../webfonts/fa-v4compatibility.ttf") format("truetype"); } \ No newline at end of file diff --git a/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.css b/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.css new file mode 100644 index 0000000000..a85953d174 --- /dev/null +++ b/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.css @@ -0,0 +1,2194 @@ +/*! + * Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com + * License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) + * Copyright 2023 Fonticons, Inc. + */ +.fa.fa-glass:before { + content: "\f000"; } + +.fa.fa-envelope-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-envelope-o:before { + content: "\f0e0"; } + +.fa.fa-star-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-star-o:before { + content: "\f005"; } + +.fa.fa-remove:before { + content: "\f00d"; } + +.fa.fa-close:before { + content: "\f00d"; } + +.fa.fa-gear:before { + content: "\f013"; } + +.fa.fa-trash-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-trash-o:before { + content: "\f2ed"; } + +.fa.fa-home:before { + content: "\f015"; } + +.fa.fa-file-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-o:before { + content: "\f15b"; } + +.fa.fa-clock-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-clock-o:before { + content: "\f017"; } + +.fa.fa-arrow-circle-o-down { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-arrow-circle-o-down:before { + content: "\f358"; } + +.fa.fa-arrow-circle-o-up { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-arrow-circle-o-up:before { + content: "\f35b"; } + +.fa.fa-play-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-play-circle-o:before { + content: "\f144"; } + +.fa.fa-repeat:before { + content: "\f01e"; } + +.fa.fa-rotate-right:before { + content: "\f01e"; } + +.fa.fa-refresh:before { + content: "\f021"; } + +.fa.fa-list-alt { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-list-alt:before { + content: "\f022"; } + +.fa.fa-dedent:before { + content: "\f03b"; } + +.fa.fa-video-camera:before { + content: "\f03d"; } + +.fa.fa-picture-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-picture-o:before { + content: "\f03e"; } + +.fa.fa-photo { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-photo:before { + content: "\f03e"; } + +.fa.fa-image { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-image:before { + content: "\f03e"; } + +.fa.fa-map-marker:before { + content: "\f3c5"; } + +.fa.fa-pencil-square-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-pencil-square-o:before { + content: "\f044"; } + +.fa.fa-edit { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-edit:before { + content: "\f044"; } + +.fa.fa-share-square-o:before { + content: "\f14d"; } + +.fa.fa-check-square-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-check-square-o:before { + content: "\f14a"; } + +.fa.fa-arrows:before { + content: "\f0b2"; } + +.fa.fa-times-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-times-circle-o:before { + content: "\f057"; } + +.fa.fa-check-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-check-circle-o:before { + content: "\f058"; } + +.fa.fa-mail-forward:before { + content: "\f064"; } + +.fa.fa-expand:before { + content: "\f424"; } + +.fa.fa-compress:before { + content: "\f422"; } + +.fa.fa-eye { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-eye-slash { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-warning:before { + content: "\f071"; } + +.fa.fa-calendar:before { + content: "\f073"; } + +.fa.fa-arrows-v:before { + content: "\f338"; } + +.fa.fa-arrows-h:before { + content: "\f337"; } + +.fa.fa-bar-chart:before { + content: "\e0e3"; } + +.fa.fa-bar-chart-o:before { + content: "\e0e3"; } + +.fa.fa-twitter-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-twitter-square:before { + content: "\f081"; } + +.fa.fa-facebook-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-facebook-square:before { + content: "\f082"; } + +.fa.fa-gears:before { + content: "\f085"; } + +.fa.fa-thumbs-o-up { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-thumbs-o-up:before { + content: "\f164"; } + +.fa.fa-thumbs-o-down { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-thumbs-o-down:before { + content: "\f165"; } + +.fa.fa-heart-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-heart-o:before { + content: "\f004"; } + +.fa.fa-sign-out:before { + content: "\f2f5"; } + +.fa.fa-linkedin-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-linkedin-square:before { + content: "\f08c"; } + +.fa.fa-thumb-tack:before { + content: "\f08d"; } + +.fa.fa-external-link:before { + content: "\f35d"; } + +.fa.fa-sign-in:before { + content: "\f2f6"; } + +.fa.fa-github-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-github-square:before { + content: "\f092"; } + +.fa.fa-lemon-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-lemon-o:before { + content: "\f094"; } + +.fa.fa-square-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-square-o:before { + content: "\f0c8"; } + +.fa.fa-bookmark-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-bookmark-o:before { + content: "\f02e"; } + +.fa.fa-twitter { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-facebook { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-facebook:before { + content: "\f39e"; } + +.fa.fa-facebook-f { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-facebook-f:before { + content: "\f39e"; } + +.fa.fa-github { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-credit-card { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-feed:before { + content: "\f09e"; } + +.fa.fa-hdd-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hdd-o:before { + content: "\f0a0"; } + +.fa.fa-hand-o-right { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-o-right:before { + content: "\f0a4"; } + +.fa.fa-hand-o-left { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-o-left:before { + content: "\f0a5"; } + +.fa.fa-hand-o-up { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-o-up:before { + content: "\f0a6"; } + +.fa.fa-hand-o-down { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-o-down:before { + content: "\f0a7"; } + +.fa.fa-globe:before { + content: "\f57d"; } + +.fa.fa-tasks:before { + content: "\f828"; } + +.fa.fa-arrows-alt:before { + content: "\f31e"; } + +.fa.fa-group:before { + content: "\f0c0"; } + +.fa.fa-chain:before { + content: "\f0c1"; } + +.fa.fa-cut:before { + content: "\f0c4"; } + +.fa.fa-files-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-files-o:before { + content: "\f0c5"; } + +.fa.fa-floppy-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-floppy-o:before { + content: "\f0c7"; } + +.fa.fa-save { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-save:before { + content: "\f0c7"; } + +.fa.fa-navicon:before { + content: "\f0c9"; } + +.fa.fa-reorder:before { + content: "\f0c9"; } + +.fa.fa-magic:before { + content: "\e2ca"; } + +.fa.fa-pinterest { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pinterest-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pinterest-square:before { + content: "\f0d3"; } + +.fa.fa-google-plus-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-plus-square:before { + content: "\f0d4"; } + +.fa.fa-google-plus { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-plus:before { + content: "\f0d5"; } + +.fa.fa-money:before { + content: "\f3d1"; } + +.fa.fa-unsorted:before { + content: "\f0dc"; } + +.fa.fa-sort-desc:before { + content: "\f0dd"; } + +.fa.fa-sort-asc:before { + content: "\f0de"; } + +.fa.fa-linkedin { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-linkedin:before { + content: "\f0e1"; } + +.fa.fa-rotate-left:before { + content: "\f0e2"; } + +.fa.fa-legal:before { + content: "\f0e3"; } + +.fa.fa-tachometer:before { + content: "\f625"; } + +.fa.fa-dashboard:before { + content: "\f625"; } + +.fa.fa-comment-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-comment-o:before { + content: "\f075"; } + +.fa.fa-comments-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-comments-o:before { + content: "\f086"; } + +.fa.fa-flash:before { + content: "\f0e7"; } + +.fa.fa-clipboard:before { + content: "\f0ea"; } + +.fa.fa-lightbulb-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-lightbulb-o:before { + content: "\f0eb"; } + +.fa.fa-exchange:before { + content: "\f362"; } + +.fa.fa-cloud-download:before { + content: "\f0ed"; } + +.fa.fa-cloud-upload:before { + content: "\f0ee"; } + +.fa.fa-bell-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-bell-o:before { + content: "\f0f3"; } + +.fa.fa-cutlery:before { + content: "\f2e7"; } + +.fa.fa-file-text-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-text-o:before { + content: "\f15c"; } + +.fa.fa-building-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-building-o:before { + content: "\f1ad"; } + +.fa.fa-hospital-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hospital-o:before { + content: "\f0f8"; } + +.fa.fa-tablet:before { + content: "\f3fa"; } + +.fa.fa-mobile:before { + content: "\f3cd"; } + +.fa.fa-mobile-phone:before { + content: "\f3cd"; } + +.fa.fa-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-circle-o:before { + content: "\f111"; } + +.fa.fa-mail-reply:before { + content: "\f3e5"; } + +.fa.fa-github-alt { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-folder-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-folder-o:before { + content: "\f07b"; } + +.fa.fa-folder-open-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-folder-open-o:before { + content: "\f07c"; } + +.fa.fa-smile-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-smile-o:before { + content: "\f118"; } + +.fa.fa-frown-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-frown-o:before { + content: "\f119"; } + +.fa.fa-meh-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-meh-o:before { + content: "\f11a"; } + +.fa.fa-keyboard-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-keyboard-o:before { + content: "\f11c"; } + +.fa.fa-flag-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-flag-o:before { + content: "\f024"; } + +.fa.fa-mail-reply-all:before { + content: "\f122"; } + +.fa.fa-star-half-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-star-half-o:before { + content: "\f5c0"; } + +.fa.fa-star-half-empty { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-star-half-empty:before { + content: "\f5c0"; } + +.fa.fa-star-half-full { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-star-half-full:before { + content: "\f5c0"; } + +.fa.fa-code-fork:before { + content: "\f126"; } + +.fa.fa-chain-broken:before { + content: "\f127"; } + +.fa.fa-unlink:before { + content: "\f127"; } + +.fa.fa-calendar-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-calendar-o:before { + content: "\f133"; } + +.fa.fa-maxcdn { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-html5 { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-css3 { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-unlock-alt:before { + content: "\f09c"; } + +.fa.fa-minus-square-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-minus-square-o:before { + content: "\f146"; } + +.fa.fa-level-up:before { + content: "\f3bf"; } + +.fa.fa-level-down:before { + content: "\f3be"; } + +.fa.fa-pencil-square:before { + content: "\f14b"; } + +.fa.fa-external-link-square:before { + content: "\f360"; } + +.fa.fa-compass { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-caret-square-o-down { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-caret-square-o-down:before { + content: "\f150"; } + +.fa.fa-toggle-down { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-toggle-down:before { + content: "\f150"; } + +.fa.fa-caret-square-o-up { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-caret-square-o-up:before { + content: "\f151"; } + +.fa.fa-toggle-up { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-toggle-up:before { + content: "\f151"; } + +.fa.fa-caret-square-o-right { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-caret-square-o-right:before { + content: "\f152"; } + +.fa.fa-toggle-right { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-toggle-right:before { + content: "\f152"; } + +.fa.fa-eur:before { + content: "\f153"; } + +.fa.fa-euro:before { + content: "\f153"; } + +.fa.fa-gbp:before { + content: "\f154"; } + +.fa.fa-usd:before { + content: "\24"; } + +.fa.fa-dollar:before { + content: "\24"; } + +.fa.fa-inr:before { + content: "\e1bc"; } + +.fa.fa-rupee:before { + content: "\e1bc"; } + +.fa.fa-jpy:before { + content: "\f157"; } + +.fa.fa-cny:before { + content: "\f157"; } + +.fa.fa-rmb:before { + content: "\f157"; } + +.fa.fa-yen:before { + content: "\f157"; } + +.fa.fa-rub:before { + content: "\f158"; } + +.fa.fa-ruble:before { + content: "\f158"; } + +.fa.fa-rouble:before { + content: "\f158"; } + +.fa.fa-krw:before { + content: "\f159"; } + +.fa.fa-won:before { + content: "\f159"; } + +.fa.fa-btc { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bitcoin { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bitcoin:before { + content: "\f15a"; } + +.fa.fa-file-text:before { + content: "\f15c"; } + +.fa.fa-sort-alpha-asc:before { + content: "\f15d"; } + +.fa.fa-sort-alpha-desc:before { + content: "\f881"; } + +.fa.fa-sort-amount-asc:before { + content: "\f884"; } + +.fa.fa-sort-amount-desc:before { + content: "\f160"; } + +.fa.fa-sort-numeric-asc:before { + content: "\f162"; } + +.fa.fa-sort-numeric-desc:before { + content: "\f886"; } + +.fa.fa-youtube-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-youtube-square:before { + content: "\f431"; } + +.fa.fa-youtube { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-xing { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-xing-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-xing-square:before { + content: "\f169"; } + +.fa.fa-youtube-play { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-youtube-play:before { + content: "\f167"; } + +.fa.fa-dropbox { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-stack-overflow { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-instagram { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-flickr { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-adn { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bitbucket { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bitbucket-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bitbucket-square:before { + content: "\f171"; } + +.fa.fa-tumblr { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-tumblr-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-tumblr-square:before { + content: "\f174"; } + +.fa.fa-long-arrow-down:before { + content: "\f309"; } + +.fa.fa-long-arrow-up:before { + content: "\f30c"; } + +.fa.fa-long-arrow-left:before { + content: "\f30a"; } + +.fa.fa-long-arrow-right:before { + content: "\f30b"; } + +.fa.fa-apple { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-windows { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-android { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-linux { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-dribbble { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-skype { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-foursquare { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-trello { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gratipay { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gittip { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gittip:before { + content: "\f184"; } + +.fa.fa-sun-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-sun-o:before { + content: "\f185"; } + +.fa.fa-moon-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-moon-o:before { + content: "\f186"; } + +.fa.fa-vk { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-weibo { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-renren { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pagelines { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-stack-exchange { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-arrow-circle-o-right { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-arrow-circle-o-right:before { + content: "\f35a"; } + +.fa.fa-arrow-circle-o-left { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-arrow-circle-o-left:before { + content: "\f359"; } + +.fa.fa-caret-square-o-left { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-caret-square-o-left:before { + content: "\f191"; } + +.fa.fa-toggle-left { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-toggle-left:before { + content: "\f191"; } + +.fa.fa-dot-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-dot-circle-o:before { + content: "\f192"; } + +.fa.fa-vimeo-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-vimeo-square:before { + content: "\f194"; } + +.fa.fa-try:before { + content: "\e2bb"; } + +.fa.fa-turkish-lira:before { + content: "\e2bb"; } + +.fa.fa-plus-square-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-plus-square-o:before { + content: "\f0fe"; } + +.fa.fa-slack { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wordpress { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-openid { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-institution:before { + content: "\f19c"; } + +.fa.fa-bank:before { + content: "\f19c"; } + +.fa.fa-mortar-board:before { + content: "\f19d"; } + +.fa.fa-yahoo { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-reddit { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-reddit-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-reddit-square:before { + content: "\f1a2"; } + +.fa.fa-stumbleupon-circle { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-stumbleupon { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-delicious { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-digg { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pied-piper-pp { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pied-piper-alt { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-drupal { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-joomla { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-behance { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-behance-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-behance-square:before { + content: "\f1b5"; } + +.fa.fa-steam { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-steam-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-steam-square:before { + content: "\f1b7"; } + +.fa.fa-automobile:before { + content: "\f1b9"; } + +.fa.fa-cab:before { + content: "\f1ba"; } + +.fa.fa-spotify { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-deviantart { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-soundcloud { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-file-pdf-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-pdf-o:before { + content: "\f1c1"; } + +.fa.fa-file-word-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-word-o:before { + content: "\f1c2"; } + +.fa.fa-file-excel-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-excel-o:before { + content: "\f1c3"; } + +.fa.fa-file-powerpoint-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-powerpoint-o:before { + content: "\f1c4"; } + +.fa.fa-file-image-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-image-o:before { + content: "\f1c5"; } + +.fa.fa-file-photo-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-photo-o:before { + content: "\f1c5"; } + +.fa.fa-file-picture-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-picture-o:before { + content: "\f1c5"; } + +.fa.fa-file-archive-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-archive-o:before { + content: "\f1c6"; } + +.fa.fa-file-zip-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-zip-o:before { + content: "\f1c6"; } + +.fa.fa-file-audio-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-audio-o:before { + content: "\f1c7"; } + +.fa.fa-file-sound-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-sound-o:before { + content: "\f1c7"; } + +.fa.fa-file-video-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-video-o:before { + content: "\f1c8"; } + +.fa.fa-file-movie-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-movie-o:before { + content: "\f1c8"; } + +.fa.fa-file-code-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-file-code-o:before { + content: "\f1c9"; } + +.fa.fa-vine { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-codepen { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-jsfiddle { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-life-bouy:before { + content: "\f1cd"; } + +.fa.fa-life-buoy:before { + content: "\f1cd"; } + +.fa.fa-life-saver:before { + content: "\f1cd"; } + +.fa.fa-support:before { + content: "\f1cd"; } + +.fa.fa-circle-o-notch:before { + content: "\f1ce"; } + +.fa.fa-rebel { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-ra { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-ra:before { + content: "\f1d0"; } + +.fa.fa-resistance { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-resistance:before { + content: "\f1d0"; } + +.fa.fa-empire { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-ge { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-ge:before { + content: "\f1d1"; } + +.fa.fa-git-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-git-square:before { + content: "\f1d2"; } + +.fa.fa-git { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-hacker-news { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-y-combinator-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-y-combinator-square:before { + content: "\f1d4"; } + +.fa.fa-yc-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-yc-square:before { + content: "\f1d4"; } + +.fa.fa-tencent-weibo { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-qq { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-weixin { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wechat { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wechat:before { + content: "\f1d7"; } + +.fa.fa-send:before { + content: "\f1d8"; } + +.fa.fa-paper-plane-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-paper-plane-o:before { + content: "\f1d8"; } + +.fa.fa-send-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-send-o:before { + content: "\f1d8"; } + +.fa.fa-circle-thin { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-circle-thin:before { + content: "\f111"; } + +.fa.fa-header:before { + content: "\f1dc"; } + +.fa.fa-futbol-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-futbol-o:before { + content: "\f1e3"; } + +.fa.fa-soccer-ball-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-soccer-ball-o:before { + content: "\f1e3"; } + +.fa.fa-slideshare { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-twitch { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-yelp { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-newspaper-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-newspaper-o:before { + content: "\f1ea"; } + +.fa.fa-paypal { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-wallet { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-visa { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-mastercard { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-discover { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-amex { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-paypal { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-stripe { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bell-slash-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-bell-slash-o:before { + content: "\f1f6"; } + +.fa.fa-trash:before { + content: "\f2ed"; } + +.fa.fa-copyright { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-eyedropper:before { + content: "\f1fb"; } + +.fa.fa-area-chart:before { + content: "\f1fe"; } + +.fa.fa-pie-chart:before { + content: "\f200"; } + +.fa.fa-line-chart:before { + content: "\f201"; } + +.fa.fa-lastfm { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-lastfm-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-lastfm-square:before { + content: "\f203"; } + +.fa.fa-ioxhost { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-angellist { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-cc:before { + content: "\f20a"; } + +.fa.fa-ils:before { + content: "\f20b"; } + +.fa.fa-shekel:before { + content: "\f20b"; } + +.fa.fa-sheqel:before { + content: "\f20b"; } + +.fa.fa-buysellads { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-connectdevelop { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-dashcube { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-forumbee { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-leanpub { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-sellsy { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-shirtsinbulk { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-simplybuilt { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-skyatlas { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-diamond { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-diamond:before { + content: "\f3a5"; } + +.fa.fa-transgender:before { + content: "\f224"; } + +.fa.fa-intersex:before { + content: "\f224"; } + +.fa.fa-transgender-alt:before { + content: "\f225"; } + +.fa.fa-facebook-official { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-facebook-official:before { + content: "\f09a"; } + +.fa.fa-pinterest-p { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-whatsapp { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-hotel:before { + content: "\f236"; } + +.fa.fa-viacoin { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-medium { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-y-combinator { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-yc { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-yc:before { + content: "\f23b"; } + +.fa.fa-optin-monster { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-opencart { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-expeditedssl { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-battery-4:before { + content: "\f240"; } + +.fa.fa-battery:before { + content: "\f240"; } + +.fa.fa-battery-3:before { + content: "\f241"; } + +.fa.fa-battery-2:before { + content: "\f242"; } + +.fa.fa-battery-1:before { + content: "\f243"; } + +.fa.fa-battery-0:before { + content: "\f244"; } + +.fa.fa-object-group { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-object-ungroup { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-sticky-note-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-sticky-note-o:before { + content: "\f249"; } + +.fa.fa-cc-jcb { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-cc-diners-club { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-clone { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hourglass-o:before { + content: "\f254"; } + +.fa.fa-hourglass-1:before { + content: "\f251"; } + +.fa.fa-hourglass-2:before { + content: "\f252"; } + +.fa.fa-hourglass-3:before { + content: "\f253"; } + +.fa.fa-hand-rock-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-rock-o:before { + content: "\f255"; } + +.fa.fa-hand-grab-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-grab-o:before { + content: "\f255"; } + +.fa.fa-hand-paper-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-paper-o:before { + content: "\f256"; } + +.fa.fa-hand-stop-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-stop-o:before { + content: "\f256"; } + +.fa.fa-hand-scissors-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-scissors-o:before { + content: "\f257"; } + +.fa.fa-hand-lizard-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-lizard-o:before { + content: "\f258"; } + +.fa.fa-hand-spock-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-spock-o:before { + content: "\f259"; } + +.fa.fa-hand-pointer-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-pointer-o:before { + content: "\f25a"; } + +.fa.fa-hand-peace-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-hand-peace-o:before { + content: "\f25b"; } + +.fa.fa-registered { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-creative-commons { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gg { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gg-circle { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-odnoklassniki { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-odnoklassniki-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-odnoklassniki-square:before { + content: "\f264"; } + +.fa.fa-get-pocket { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wikipedia-w { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-safari { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-chrome { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-firefox { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-opera { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-internet-explorer { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-television:before { + content: "\f26c"; } + +.fa.fa-contao { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-500px { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-amazon { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-calendar-plus-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-calendar-plus-o:before { + content: "\f271"; } + +.fa.fa-calendar-minus-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-calendar-minus-o:before { + content: "\f272"; } + +.fa.fa-calendar-times-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-calendar-times-o:before { + content: "\f273"; } + +.fa.fa-calendar-check-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-calendar-check-o:before { + content: "\f274"; } + +.fa.fa-map-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-map-o:before { + content: "\f279"; } + +.fa.fa-commenting:before { + content: "\f4ad"; } + +.fa.fa-commenting-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-commenting-o:before { + content: "\f4ad"; } + +.fa.fa-houzz { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-vimeo { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-vimeo:before { + content: "\f27d"; } + +.fa.fa-black-tie { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-fonticons { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-reddit-alien { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-edge { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-credit-card-alt:before { + content: "\f09d"; } + +.fa.fa-codiepie { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-modx { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-fort-awesome { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-usb { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-product-hunt { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-mixcloud { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-scribd { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-pause-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-pause-circle-o:before { + content: "\f28b"; } + +.fa.fa-stop-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-stop-circle-o:before { + content: "\f28d"; } + +.fa.fa-bluetooth { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-bluetooth-b { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-gitlab { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wpbeginner { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wpforms { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-envira { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wheelchair-alt { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wheelchair-alt:before { + content: "\f368"; } + +.fa.fa-question-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-question-circle-o:before { + content: "\f059"; } + +.fa.fa-volume-control-phone:before { + content: "\f2a0"; } + +.fa.fa-asl-interpreting:before { + content: "\f2a3"; } + +.fa.fa-deafness:before { + content: "\f2a4"; } + +.fa.fa-hard-of-hearing:before { + content: "\f2a4"; } + +.fa.fa-glide { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-glide-g { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-signing:before { + content: "\f2a7"; } + +.fa.fa-viadeo { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-viadeo-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-viadeo-square:before { + content: "\f2aa"; } + +.fa.fa-snapchat { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-snapchat-ghost { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-snapchat-ghost:before { + content: "\f2ab"; } + +.fa.fa-snapchat-square { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-snapchat-square:before { + content: "\f2ad"; } + +.fa.fa-pied-piper { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-first-order { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-yoast { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-themeisle { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-plus-official { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-plus-official:before { + content: "\f2b3"; } + +.fa.fa-google-plus-circle { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-google-plus-circle:before { + content: "\f2b3"; } + +.fa.fa-font-awesome { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-fa { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-fa:before { + content: "\f2b4"; } + +.fa.fa-handshake-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-handshake-o:before { + content: "\f2b5"; } + +.fa.fa-envelope-open-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-envelope-open-o:before { + content: "\f2b6"; } + +.fa.fa-linode { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-address-book-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-address-book-o:before { + content: "\f2b9"; } + +.fa.fa-vcard:before { + content: "\f2bb"; } + +.fa.fa-address-card-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-address-card-o:before { + content: "\f2bb"; } + +.fa.fa-vcard-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-vcard-o:before { + content: "\f2bb"; } + +.fa.fa-user-circle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-user-circle-o:before { + content: "\f2bd"; } + +.fa.fa-user-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-user-o:before { + content: "\f007"; } + +.fa.fa-id-badge { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-drivers-license:before { + content: "\f2c2"; } + +.fa.fa-id-card-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-id-card-o:before { + content: "\f2c2"; } + +.fa.fa-drivers-license-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-drivers-license-o:before { + content: "\f2c2"; } + +.fa.fa-quora { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-free-code-camp { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-telegram { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-thermometer-4:before { + content: "\f2c7"; } + +.fa.fa-thermometer:before { + content: "\f2c7"; } + +.fa.fa-thermometer-3:before { + content: "\f2c8"; } + +.fa.fa-thermometer-2:before { + content: "\f2c9"; } + +.fa.fa-thermometer-1:before { + content: "\f2ca"; } + +.fa.fa-thermometer-0:before { + content: "\f2cb"; } + +.fa.fa-bathtub:before { + content: "\f2cd"; } + +.fa.fa-s15:before { + content: "\f2cd"; } + +.fa.fa-window-maximize { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-window-restore { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-times-rectangle:before { + content: "\f410"; } + +.fa.fa-window-close-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-window-close-o:before { + content: "\f410"; } + +.fa.fa-times-rectangle-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-times-rectangle-o:before { + content: "\f410"; } + +.fa.fa-bandcamp { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-grav { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-etsy { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-imdb { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-ravelry { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-eercast { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-eercast:before { + content: "\f2da"; } + +.fa.fa-snowflake-o { + font-family: 'Font Awesome 6 Free'; + font-weight: 400; } + +.fa.fa-snowflake-o:before { + content: "\f2dc"; } + +.fa.fa-superpowers { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-wpexplorer { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } + +.fa.fa-meetup { + font-family: 'Font Awesome 6 Brands'; + font-weight: 400; } diff --git a/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.min.css b/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.min.css new file mode 100644 index 0000000000..64e4e8d835 --- /dev/null +++ b/v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.min.css @@ -0,0 +1,6 @@ +/*! + * Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com + * License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) + * Copyright 2023 Fonticons, Inc. + */ +.fa.fa-glass:before{content:"\f000"}.fa.fa-envelope-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-envelope-o:before{content:"\f0e0"}.fa.fa-star-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-star-o:before{content:"\f005"}.fa.fa-close:before,.fa.fa-remove:before{content:"\f00d"}.fa.fa-gear:before{content:"\f013"}.fa.fa-trash-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-trash-o:before{content:"\f2ed"}.fa.fa-home:before{content:"\f015"}.fa.fa-file-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-o:before{content:"\f15b"}.fa.fa-clock-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-clock-o:before{content:"\f017"}.fa.fa-arrow-circle-o-down{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-arrow-circle-o-down:before{content:"\f358"}.fa.fa-arrow-circle-o-up{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-arrow-circle-o-up:before{content:"\f35b"}.fa.fa-play-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-play-circle-o:before{content:"\f144"}.fa.fa-repeat:before,.fa.fa-rotate-right:before{content:"\f01e"}.fa.fa-refresh:before{content:"\f021"}.fa.fa-list-alt{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-list-alt:before{content:"\f022"}.fa.fa-dedent:before{content:"\f03b"}.fa.fa-video-camera:before{content:"\f03d"}.fa.fa-picture-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-picture-o:before{content:"\f03e"}.fa.fa-photo{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-photo:before{content:"\f03e"}.fa.fa-image{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-image:before{content:"\f03e"}.fa.fa-map-marker:before{content:"\f3c5"}.fa.fa-pencil-square-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-pencil-square-o:before{content:"\f044"}.fa.fa-edit{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-edit:before{content:"\f044"}.fa.fa-share-square-o:before{content:"\f14d"}.fa.fa-check-square-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-check-square-o:before{content:"\f14a"}.fa.fa-arrows:before{content:"\f0b2"}.fa.fa-times-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-times-circle-o:before{content:"\f057"}.fa.fa-check-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-check-circle-o:before{content:"\f058"}.fa.fa-mail-forward:before{content:"\f064"}.fa.fa-expand:before{content:"\f424"}.fa.fa-compress:before{content:"\f422"}.fa.fa-eye,.fa.fa-eye-slash{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-warning:before{content:"\f071"}.fa.fa-calendar:before{content:"\f073"}.fa.fa-arrows-v:before{content:"\f338"}.fa.fa-arrows-h:before{content:"\f337"}.fa.fa-bar-chart-o:before,.fa.fa-bar-chart:before{content:"\e0e3"}.fa.fa-twitter-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-twitter-square:before{content:"\f081"}.fa.fa-facebook-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-facebook-square:before{content:"\f082"}.fa.fa-gears:before{content:"\f085"}.fa.fa-thumbs-o-up{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-thumbs-o-up:before{content:"\f164"}.fa.fa-thumbs-o-down{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-thumbs-o-down:before{content:"\f165"}.fa.fa-heart-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-heart-o:before{content:"\f004"}.fa.fa-sign-out:before{content:"\f2f5"}.fa.fa-linkedin-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-linkedin-square:before{content:"\f08c"}.fa.fa-thumb-tack:before{content:"\f08d"}.fa.fa-external-link:before{content:"\f35d"}.fa.fa-sign-in:before{content:"\f2f6"}.fa.fa-github-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-github-square:before{content:"\f092"}.fa.fa-lemon-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-lemon-o:before{content:"\f094"}.fa.fa-square-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-square-o:before{content:"\f0c8"}.fa.fa-bookmark-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-bookmark-o:before{content:"\f02e"}.fa.fa-facebook,.fa.fa-twitter{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-facebook:before{content:"\f39e"}.fa.fa-facebook-f{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-facebook-f:before{content:"\f39e"}.fa.fa-github{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-credit-card{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-feed:before{content:"\f09e"}.fa.fa-hdd-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hdd-o:before{content:"\f0a0"}.fa.fa-hand-o-right{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-o-right:before{content:"\f0a4"}.fa.fa-hand-o-left{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-o-left:before{content:"\f0a5"}.fa.fa-hand-o-up{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-o-up:before{content:"\f0a6"}.fa.fa-hand-o-down{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-o-down:before{content:"\f0a7"}.fa.fa-globe:before{content:"\f57d"}.fa.fa-tasks:before{content:"\f828"}.fa.fa-arrows-alt:before{content:"\f31e"}.fa.fa-group:before{content:"\f0c0"}.fa.fa-chain:before{content:"\f0c1"}.fa.fa-cut:before{content:"\f0c4"}.fa.fa-files-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-files-o:before{content:"\f0c5"}.fa.fa-floppy-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-floppy-o:before{content:"\f0c7"}.fa.fa-save{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-save:before{content:"\f0c7"}.fa.fa-navicon:before,.fa.fa-reorder:before{content:"\f0c9"}.fa.fa-magic:before{content:"\e2ca"}.fa.fa-pinterest,.fa.fa-pinterest-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-pinterest-square:before{content:"\f0d3"}.fa.fa-google-plus-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-google-plus-square:before{content:"\f0d4"}.fa.fa-google-plus{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-google-plus:before{content:"\f0d5"}.fa.fa-money:before{content:"\f3d1"}.fa.fa-unsorted:before{content:"\f0dc"}.fa.fa-sort-desc:before{content:"\f0dd"}.fa.fa-sort-asc:before{content:"\f0de"}.fa.fa-linkedin{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-linkedin:before{content:"\f0e1"}.fa.fa-rotate-left:before{content:"\f0e2"}.fa.fa-legal:before{content:"\f0e3"}.fa.fa-dashboard:before,.fa.fa-tachometer:before{content:"\f625"}.fa.fa-comment-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-comment-o:before{content:"\f075"}.fa.fa-comments-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-comments-o:before{content:"\f086"}.fa.fa-flash:before{content:"\f0e7"}.fa.fa-clipboard:before{content:"\f0ea"}.fa.fa-lightbulb-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-lightbulb-o:before{content:"\f0eb"}.fa.fa-exchange:before{content:"\f362"}.fa.fa-cloud-download:before{content:"\f0ed"}.fa.fa-cloud-upload:before{content:"\f0ee"}.fa.fa-bell-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-bell-o:before{content:"\f0f3"}.fa.fa-cutlery:before{content:"\f2e7"}.fa.fa-file-text-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-text-o:before{content:"\f15c"}.fa.fa-building-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-building-o:before{content:"\f1ad"}.fa.fa-hospital-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hospital-o:before{content:"\f0f8"}.fa.fa-tablet:before{content:"\f3fa"}.fa.fa-mobile-phone:before,.fa.fa-mobile:before{content:"\f3cd"}.fa.fa-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-circle-o:before{content:"\f111"}.fa.fa-mail-reply:before{content:"\f3e5"}.fa.fa-github-alt{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-folder-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-folder-o:before{content:"\f07b"}.fa.fa-folder-open-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-folder-open-o:before{content:"\f07c"}.fa.fa-smile-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-smile-o:before{content:"\f118"}.fa.fa-frown-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-frown-o:before{content:"\f119"}.fa.fa-meh-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-meh-o:before{content:"\f11a"}.fa.fa-keyboard-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-keyboard-o:before{content:"\f11c"}.fa.fa-flag-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-flag-o:before{content:"\f024"}.fa.fa-mail-reply-all:before{content:"\f122"}.fa.fa-star-half-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-star-half-o:before{content:"\f5c0"}.fa.fa-star-half-empty{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-star-half-empty:before{content:"\f5c0"}.fa.fa-star-half-full{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-star-half-full:before{content:"\f5c0"}.fa.fa-code-fork:before{content:"\f126"}.fa.fa-chain-broken:before,.fa.fa-unlink:before{content:"\f127"}.fa.fa-calendar-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-calendar-o:before{content:"\f133"}.fa.fa-css3,.fa.fa-html5,.fa.fa-maxcdn{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-unlock-alt:before{content:"\f09c"}.fa.fa-minus-square-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-minus-square-o:before{content:"\f146"}.fa.fa-level-up:before{content:"\f3bf"}.fa.fa-level-down:before{content:"\f3be"}.fa.fa-pencil-square:before{content:"\f14b"}.fa.fa-external-link-square:before{content:"\f360"}.fa.fa-compass{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-caret-square-o-down{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-caret-square-o-down:before{content:"\f150"}.fa.fa-toggle-down{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-toggle-down:before{content:"\f150"}.fa.fa-caret-square-o-up{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-caret-square-o-up:before{content:"\f151"}.fa.fa-toggle-up{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-toggle-up:before{content:"\f151"}.fa.fa-caret-square-o-right{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-caret-square-o-right:before{content:"\f152"}.fa.fa-toggle-right{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-toggle-right:before{content:"\f152"}.fa.fa-eur:before,.fa.fa-euro:before{content:"\f153"}.fa.fa-gbp:before{content:"\f154"}.fa.fa-dollar:before,.fa.fa-usd:before{content:"\24"}.fa.fa-inr:before,.fa.fa-rupee:before{content:"\e1bc"}.fa.fa-cny:before,.fa.fa-jpy:before,.fa.fa-rmb:before,.fa.fa-yen:before{content:"\f157"}.fa.fa-rouble:before,.fa.fa-rub:before,.fa.fa-ruble:before{content:"\f158"}.fa.fa-krw:before,.fa.fa-won:before{content:"\f159"}.fa.fa-bitcoin,.fa.fa-btc{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-bitcoin:before{content:"\f15a"}.fa.fa-file-text:before{content:"\f15c"}.fa.fa-sort-alpha-asc:before{content:"\f15d"}.fa.fa-sort-alpha-desc:before{content:"\f881"}.fa.fa-sort-amount-asc:before{content:"\f884"}.fa.fa-sort-amount-desc:before{content:"\f160"}.fa.fa-sort-numeric-asc:before{content:"\f162"}.fa.fa-sort-numeric-desc:before{content:"\f886"}.fa.fa-youtube-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-youtube-square:before{content:"\f431"}.fa.fa-xing,.fa.fa-xing-square,.fa.fa-youtube{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-xing-square:before{content:"\f169"}.fa.fa-youtube-play{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-youtube-play:before{content:"\f167"}.fa.fa-adn,.fa.fa-bitbucket,.fa.fa-bitbucket-square,.fa.fa-dropbox,.fa.fa-flickr,.fa.fa-instagram,.fa.fa-stack-overflow{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-bitbucket-square:before{content:"\f171"}.fa.fa-tumblr,.fa.fa-tumblr-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-tumblr-square:before{content:"\f174"}.fa.fa-long-arrow-down:before{content:"\f309"}.fa.fa-long-arrow-up:before{content:"\f30c"}.fa.fa-long-arrow-left:before{content:"\f30a"}.fa.fa-long-arrow-right:before{content:"\f30b"}.fa.fa-android,.fa.fa-apple,.fa.fa-dribbble,.fa.fa-foursquare,.fa.fa-gittip,.fa.fa-gratipay,.fa.fa-linux,.fa.fa-skype,.fa.fa-trello,.fa.fa-windows{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-gittip:before{content:"\f184"}.fa.fa-sun-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-sun-o:before{content:"\f185"}.fa.fa-moon-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-moon-o:before{content:"\f186"}.fa.fa-pagelines,.fa.fa-renren,.fa.fa-stack-exchange,.fa.fa-vk,.fa.fa-weibo{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-arrow-circle-o-right{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-arrow-circle-o-right:before{content:"\f35a"}.fa.fa-arrow-circle-o-left{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-arrow-circle-o-left:before{content:"\f359"}.fa.fa-caret-square-o-left{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-caret-square-o-left:before{content:"\f191"}.fa.fa-toggle-left{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-toggle-left:before{content:"\f191"}.fa.fa-dot-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-dot-circle-o:before{content:"\f192"}.fa.fa-vimeo-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-vimeo-square:before{content:"\f194"}.fa.fa-try:before,.fa.fa-turkish-lira:before{content:"\e2bb"}.fa.fa-plus-square-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-plus-square-o:before{content:"\f0fe"}.fa.fa-openid,.fa.fa-slack,.fa.fa-wordpress{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-bank:before,.fa.fa-institution:before{content:"\f19c"}.fa.fa-mortar-board:before{content:"\f19d"}.fa.fa-google,.fa.fa-reddit,.fa.fa-reddit-square,.fa.fa-yahoo{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-reddit-square:before{content:"\f1a2"}.fa.fa-behance,.fa.fa-behance-square,.fa.fa-delicious,.fa.fa-digg,.fa.fa-drupal,.fa.fa-joomla,.fa.fa-pied-piper-alt,.fa.fa-pied-piper-pp,.fa.fa-stumbleupon,.fa.fa-stumbleupon-circle{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-behance-square:before{content:"\f1b5"}.fa.fa-steam,.fa.fa-steam-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-steam-square:before{content:"\f1b7"}.fa.fa-automobile:before{content:"\f1b9"}.fa.fa-cab:before{content:"\f1ba"}.fa.fa-deviantart,.fa.fa-soundcloud,.fa.fa-spotify{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-file-pdf-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-pdf-o:before{content:"\f1c1"}.fa.fa-file-word-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-word-o:before{content:"\f1c2"}.fa.fa-file-excel-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-excel-o:before{content:"\f1c3"}.fa.fa-file-powerpoint-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-powerpoint-o:before{content:"\f1c4"}.fa.fa-file-image-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-image-o:before{content:"\f1c5"}.fa.fa-file-photo-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-photo-o:before{content:"\f1c5"}.fa.fa-file-picture-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-picture-o:before{content:"\f1c5"}.fa.fa-file-archive-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-archive-o:before{content:"\f1c6"}.fa.fa-file-zip-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-zip-o:before{content:"\f1c6"}.fa.fa-file-audio-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-audio-o:before{content:"\f1c7"}.fa.fa-file-sound-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-sound-o:before{content:"\f1c7"}.fa.fa-file-video-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-video-o:before{content:"\f1c8"}.fa.fa-file-movie-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-movie-o:before{content:"\f1c8"}.fa.fa-file-code-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-file-code-o:before{content:"\f1c9"}.fa.fa-codepen,.fa.fa-jsfiddle,.fa.fa-vine{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-life-bouy:before,.fa.fa-life-buoy:before,.fa.fa-life-saver:before,.fa.fa-support:before{content:"\f1cd"}.fa.fa-circle-o-notch:before{content:"\f1ce"}.fa.fa-ra,.fa.fa-rebel{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-ra:before{content:"\f1d0"}.fa.fa-resistance{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-resistance:before{content:"\f1d0"}.fa.fa-empire,.fa.fa-ge{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-ge:before{content:"\f1d1"}.fa.fa-git-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-git-square:before{content:"\f1d2"}.fa.fa-git,.fa.fa-hacker-news,.fa.fa-y-combinator-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-y-combinator-square:before{content:"\f1d4"}.fa.fa-yc-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-yc-square:before{content:"\f1d4"}.fa.fa-qq,.fa.fa-tencent-weibo,.fa.fa-wechat,.fa.fa-weixin{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-wechat:before{content:"\f1d7"}.fa.fa-send:before{content:"\f1d8"}.fa.fa-paper-plane-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-paper-plane-o:before{content:"\f1d8"}.fa.fa-send-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-send-o:before{content:"\f1d8"}.fa.fa-circle-thin{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-circle-thin:before{content:"\f111"}.fa.fa-header:before{content:"\f1dc"}.fa.fa-futbol-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-futbol-o:before{content:"\f1e3"}.fa.fa-soccer-ball-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-soccer-ball-o:before{content:"\f1e3"}.fa.fa-slideshare,.fa.fa-twitch,.fa.fa-yelp{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-newspaper-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-newspaper-o:before{content:"\f1ea"}.fa.fa-cc-amex,.fa.fa-cc-discover,.fa.fa-cc-mastercard,.fa.fa-cc-paypal,.fa.fa-cc-stripe,.fa.fa-cc-visa,.fa.fa-google-wallet,.fa.fa-paypal{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-bell-slash-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-bell-slash-o:before{content:"\f1f6"}.fa.fa-trash:before{content:"\f2ed"}.fa.fa-copyright{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-eyedropper:before{content:"\f1fb"}.fa.fa-area-chart:before{content:"\f1fe"}.fa.fa-pie-chart:before{content:"\f200"}.fa.fa-line-chart:before{content:"\f201"}.fa.fa-lastfm,.fa.fa-lastfm-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-lastfm-square:before{content:"\f203"}.fa.fa-angellist,.fa.fa-ioxhost{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-cc{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-cc:before{content:"\f20a"}.fa.fa-ils:before,.fa.fa-shekel:before,.fa.fa-sheqel:before{content:"\f20b"}.fa.fa-buysellads,.fa.fa-connectdevelop,.fa.fa-dashcube,.fa.fa-forumbee,.fa.fa-leanpub,.fa.fa-sellsy,.fa.fa-shirtsinbulk,.fa.fa-simplybuilt,.fa.fa-skyatlas{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-diamond{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-diamond:before{content:"\f3a5"}.fa.fa-intersex:before,.fa.fa-transgender:before{content:"\f224"}.fa.fa-transgender-alt:before{content:"\f225"}.fa.fa-facebook-official{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-facebook-official:before{content:"\f09a"}.fa.fa-pinterest-p,.fa.fa-whatsapp{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-hotel:before{content:"\f236"}.fa.fa-medium,.fa.fa-viacoin,.fa.fa-y-combinator,.fa.fa-yc{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-yc:before{content:"\f23b"}.fa.fa-expeditedssl,.fa.fa-opencart,.fa.fa-optin-monster{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-battery-4:before,.fa.fa-battery:before{content:"\f240"}.fa.fa-battery-3:before{content:"\f241"}.fa.fa-battery-2:before{content:"\f242"}.fa.fa-battery-1:before{content:"\f243"}.fa.fa-battery-0:before{content:"\f244"}.fa.fa-object-group,.fa.fa-object-ungroup,.fa.fa-sticky-note-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-sticky-note-o:before{content:"\f249"}.fa.fa-cc-diners-club,.fa.fa-cc-jcb{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-clone{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hourglass-o:before{content:"\f254"}.fa.fa-hourglass-1:before{content:"\f251"}.fa.fa-hourglass-2:before{content:"\f252"}.fa.fa-hourglass-3:before{content:"\f253"}.fa.fa-hand-rock-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-rock-o:before{content:"\f255"}.fa.fa-hand-grab-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-grab-o:before{content:"\f255"}.fa.fa-hand-paper-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-paper-o:before{content:"\f256"}.fa.fa-hand-stop-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-stop-o:before{content:"\f256"}.fa.fa-hand-scissors-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-scissors-o:before{content:"\f257"}.fa.fa-hand-lizard-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-lizard-o:before{content:"\f258"}.fa.fa-hand-spock-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-spock-o:before{content:"\f259"}.fa.fa-hand-pointer-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-pointer-o:before{content:"\f25a"}.fa.fa-hand-peace-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-hand-peace-o:before{content:"\f25b"}.fa.fa-registered{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-creative-commons,.fa.fa-gg,.fa.fa-gg-circle,.fa.fa-odnoklassniki,.fa.fa-odnoklassniki-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-odnoklassniki-square:before{content:"\f264"}.fa.fa-chrome,.fa.fa-firefox,.fa.fa-get-pocket,.fa.fa-internet-explorer,.fa.fa-opera,.fa.fa-safari,.fa.fa-wikipedia-w{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-television:before{content:"\f26c"}.fa.fa-500px,.fa.fa-amazon,.fa.fa-contao{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-calendar-plus-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-calendar-plus-o:before{content:"\f271"}.fa.fa-calendar-minus-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-calendar-minus-o:before{content:"\f272"}.fa.fa-calendar-times-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-calendar-times-o:before{content:"\f273"}.fa.fa-calendar-check-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-calendar-check-o:before{content:"\f274"}.fa.fa-map-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-map-o:before{content:"\f279"}.fa.fa-commenting:before{content:"\f4ad"}.fa.fa-commenting-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-commenting-o:before{content:"\f4ad"}.fa.fa-houzz,.fa.fa-vimeo{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-vimeo:before{content:"\f27d"}.fa.fa-black-tie,.fa.fa-edge,.fa.fa-fonticons,.fa.fa-reddit-alien{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-credit-card-alt:before{content:"\f09d"}.fa.fa-codiepie,.fa.fa-fort-awesome,.fa.fa-mixcloud,.fa.fa-modx,.fa.fa-product-hunt,.fa.fa-scribd,.fa.fa-usb{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-pause-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-pause-circle-o:before{content:"\f28b"}.fa.fa-stop-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-stop-circle-o:before{content:"\f28d"}.fa.fa-bluetooth,.fa.fa-bluetooth-b,.fa.fa-envira,.fa.fa-gitlab,.fa.fa-wheelchair-alt,.fa.fa-wpbeginner,.fa.fa-wpforms{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-wheelchair-alt:before{content:"\f368"}.fa.fa-question-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-question-circle-o:before{content:"\f059"}.fa.fa-volume-control-phone:before{content:"\f2a0"}.fa.fa-asl-interpreting:before{content:"\f2a3"}.fa.fa-deafness:before,.fa.fa-hard-of-hearing:before{content:"\f2a4"}.fa.fa-glide,.fa.fa-glide-g{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-signing:before{content:"\f2a7"}.fa.fa-viadeo,.fa.fa-viadeo-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-viadeo-square:before{content:"\f2aa"}.fa.fa-snapchat,.fa.fa-snapchat-ghost{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-snapchat-ghost:before{content:"\f2ab"}.fa.fa-snapchat-square{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-snapchat-square:before{content:"\f2ad"}.fa.fa-first-order,.fa.fa-google-plus-official,.fa.fa-pied-piper,.fa.fa-themeisle,.fa.fa-yoast{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-google-plus-official:before{content:"\f2b3"}.fa.fa-google-plus-circle{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-google-plus-circle:before{content:"\f2b3"}.fa.fa-fa,.fa.fa-font-awesome{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-fa:before{content:"\f2b4"}.fa.fa-handshake-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-handshake-o:before{content:"\f2b5"}.fa.fa-envelope-open-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-envelope-open-o:before{content:"\f2b6"}.fa.fa-linode{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-address-book-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-address-book-o:before{content:"\f2b9"}.fa.fa-vcard:before{content:"\f2bb"}.fa.fa-address-card-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-address-card-o:before{content:"\f2bb"}.fa.fa-vcard-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-vcard-o:before{content:"\f2bb"}.fa.fa-user-circle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-user-circle-o:before{content:"\f2bd"}.fa.fa-user-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-user-o:before{content:"\f007"}.fa.fa-id-badge{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-drivers-license:before{content:"\f2c2"}.fa.fa-id-card-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-id-card-o:before{content:"\f2c2"}.fa.fa-drivers-license-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-drivers-license-o:before{content:"\f2c2"}.fa.fa-free-code-camp,.fa.fa-quora,.fa.fa-telegram{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-thermometer-4:before,.fa.fa-thermometer:before{content:"\f2c7"}.fa.fa-thermometer-3:before{content:"\f2c8"}.fa.fa-thermometer-2:before{content:"\f2c9"}.fa.fa-thermometer-1:before{content:"\f2ca"}.fa.fa-thermometer-0:before{content:"\f2cb"}.fa.fa-bathtub:before,.fa.fa-s15:before{content:"\f2cd"}.fa.fa-window-maximize,.fa.fa-window-restore{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-times-rectangle:before{content:"\f410"}.fa.fa-window-close-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-window-close-o:before{content:"\f410"}.fa.fa-times-rectangle-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-times-rectangle-o:before{content:"\f410"}.fa.fa-bandcamp,.fa.fa-eercast,.fa.fa-etsy,.fa.fa-grav,.fa.fa-imdb,.fa.fa-ravelry{font-family:"Font Awesome 6 Brands";font-weight:400}.fa.fa-eercast:before{content:"\f2da"}.fa.fa-snowflake-o{font-family:"Font Awesome 6 Free";font-weight:400}.fa.fa-snowflake-o:before{content:"\f2dc"}.fa.fa-meetup,.fa.fa-superpowers,.fa.fa-wpexplorer{font-family:"Font Awesome 6 Brands";font-weight:400} \ No newline at end of file diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.ttf b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.ttf new file mode 100644 index 0000000000..30f55b7435 Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.ttf differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.woff2 b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.woff2 new file mode 100644 index 0000000000..8a480d9b1f Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.woff2 differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.ttf b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.ttf new file mode 100644 index 0000000000..c79589d83d Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.ttf differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.woff2 b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.woff2 new file mode 100644 index 0000000000..059a94e2fd Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.woff2 differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.ttf b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.ttf new file mode 100644 index 0000000000..e479fb2934 Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.ttf differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.woff2 b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.woff2 new file mode 100644 index 0000000000..88b0367aae Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.woff2 differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.ttf b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.ttf new file mode 100644 index 0000000000..ba6cb258e0 Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.ttf differ diff --git a/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.woff2 b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.woff2 new file mode 100644 index 0000000000..23b1c47ba2 Binary files /dev/null and b/v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.woff2 differ diff --git a/v0.2.8/deps/headroom-0.11.0/headroom.min.js b/v0.2.8/deps/headroom-0.11.0/headroom.min.js new file mode 100644 index 0000000000..433069fda0 --- /dev/null +++ b/v0.2.8/deps/headroom-0.11.0/headroom.min.js @@ -0,0 +1,7 @@ +/*! + * headroom.js v0.11.0 - Give your page some headroom. Hide your header until you need it + * Copyright (c) 2020 Nick Williams - http://wicky.nillia.ms/headroom.js + * License: MIT + */ + +!function(t,n){"object"==typeof exports&&"undefined"!=typeof module?module.exports=n():"function"==typeof define&&define.amd?define(n):(t=t||self).Headroom=n()}(this,function(){"use strict";function t(){return"undefined"!=typeof window}function d(t){return function(t){return t&&t.document&&function(t){return 9===t.nodeType}(t.document)}(t)?function(t){var n=t.document,o=n.body,s=n.documentElement;return{scrollHeight:function(){return Math.max(o.scrollHeight,s.scrollHeight,o.offsetHeight,s.offsetHeight,o.clientHeight,s.clientHeight)},height:function(){return t.innerHeight||s.clientHeight||o.clientHeight},scrollY:function(){return void 0!==t.pageYOffset?t.pageYOffset:(s||o.parentNode||o).scrollTop}}}(t):function(t){return{scrollHeight:function(){return Math.max(t.scrollHeight,t.offsetHeight,t.clientHeight)},height:function(){return Math.max(t.offsetHeight,t.clientHeight)},scrollY:function(){return t.scrollTop}}}(t)}function n(t,s,e){var n,o=function(){var n=!1;try{var t={get passive(){n=!0}};window.addEventListener("test",t,t),window.removeEventListener("test",t,t)}catch(t){n=!1}return n}(),i=!1,r=d(t),l=r.scrollY(),a={};function c(){var t=Math.round(r.scrollY()),n=r.height(),o=r.scrollHeight();a.scrollY=t,a.lastScrollY=l,a.direction=ls.tolerance[a.direction],e(a),l=t,i=!1}function h(){i||(i=!0,n=requestAnimationFrame(c))}var u=!!o&&{passive:!0,capture:!1};return t.addEventListener("scroll",h,u),c(),{destroy:function(){cancelAnimationFrame(n),t.removeEventListener("scroll",h,u)}}}function o(t,n){n=n||{},Object.assign(this,o.options,n),this.classes=Object.assign({},o.options.classes,n.classes),this.elem=t,this.tolerance=function(t){return t===Object(t)?t:{down:t,up:t}}(this.tolerance),this.initialised=!1,this.frozen=!1}return o.prototype={constructor:o,init:function(){return o.cutsTheMustard&&!this.initialised&&(this.addClass("initial"),this.initialised=!0,setTimeout(function(t){t.scrollTracker=n(t.scroller,{offset:t.offset,tolerance:t.tolerance},t.update.bind(t))},100,this)),this},destroy:function(){this.initialised=!1,Object.keys(this.classes).forEach(this.removeClass,this),this.scrollTracker.destroy()},unpin:function(){!this.hasClass("pinned")&&this.hasClass("unpinned")||(this.addClass("unpinned"),this.removeClass("pinned"),this.onUnpin&&this.onUnpin.call(this))},pin:function(){this.hasClass("unpinned")&&(this.addClass("pinned"),this.removeClass("unpinned"),this.onPin&&this.onPin.call(this))},freeze:function(){this.frozen=!0,this.addClass("frozen")},unfreeze:function(){this.frozen=!1,this.removeClass("frozen")},top:function(){this.hasClass("top")||(this.addClass("top"),this.removeClass("notTop"),this.onTop&&this.onTop.call(this))},notTop:function(){this.hasClass("notTop")||(this.addClass("notTop"),this.removeClass("top"),this.onNotTop&&this.onNotTop.call(this))},bottom:function(){this.hasClass("bottom")||(this.addClass("bottom"),this.removeClass("notBottom"),this.onBottom&&this.onBottom.call(this))},notBottom:function(){this.hasClass("notBottom")||(this.addClass("notBottom"),this.removeClass("bottom"),this.onNotBottom&&this.onNotBottom.call(this))},shouldUnpin:function(t){return"down"===t.direction&&!t.top&&t.toleranceExceeded},shouldPin:function(t){return"up"===t.direction&&t.toleranceExceeded||t.top},addClass:function(t){this.elem.classList.add.apply(this.elem.classList,this.classes[t].split(" "))},removeClass:function(t){this.elem.classList.remove.apply(this.elem.classList,this.classes[t].split(" "))},hasClass:function(t){return this.classes[t].split(" ").every(function(t){return this.classList.contains(t)},this.elem)},update:function(t){t.isOutOfBounds||!0!==this.frozen&&(t.top?this.top():this.notTop(),t.bottom?this.bottom():this.notBottom(),this.shouldUnpin(t)?this.unpin():this.shouldPin(t)&&this.pin())}},o.options={tolerance:{up:0,down:0},offset:0,scroller:t()?window:null,classes:{frozen:"headroom--frozen",pinned:"headroom--pinned",unpinned:"headroom--unpinned",top:"headroom--top",notTop:"headroom--not-top",bottom:"headroom--bottom",notBottom:"headroom--not-bottom",initial:"headroom"}},o.cutsTheMustard=!!(t()&&function(){}.bind&&"classList"in document.documentElement&&Object.assign&&Object.keys&&requestAnimationFrame),o}); \ No newline at end of file diff --git a/v0.2.8/deps/headroom-0.11.0/jQuery.headroom.min.js b/v0.2.8/deps/headroom-0.11.0/jQuery.headroom.min.js new file mode 100644 index 0000000000..17f70c9e31 --- /dev/null +++ b/v0.2.8/deps/headroom-0.11.0/jQuery.headroom.min.js @@ -0,0 +1,7 @@ +/*! + * headroom.js v0.9.4 - Give your page some headroom. Hide your header until you need it + * Copyright (c) 2017 Nick Williams - http://wicky.nillia.ms/headroom.js + * License: MIT + */ + +!function(a){a&&(a.fn.headroom=function(b){return this.each(function(){var c=a(this),d=c.data("headroom"),e="object"==typeof b&&b;e=a.extend(!0,{},Headroom.options,e),d||(d=new Headroom(this,e),d.init(),c.data("headroom",d)),"string"==typeof b&&(d[b](),"destroy"===b&&c.removeData("headroom"))})},a("[data-headroom]").each(function(){var b=a(this);b.headroom(b.data())}))}(window.Zepto||window.jQuery); \ No newline at end of file diff --git a/v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.js b/v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.js new file mode 100644 index 0000000000..fc6c299b73 --- /dev/null +++ b/v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.js @@ -0,0 +1,10881 @@ +/*! + * jQuery JavaScript Library v3.6.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright OpenJS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2021-03-02T17:08Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + // Support: QtWeb <=3.8.5, WebKit <=534.34, wkhtmltopdf tool <=0.12.5 + // Plus for old WebKit, typeof returns "function" for HTML collections + // (e.g., `typeof document.getElementsByTagName("div") === "function"`). (gh-4756) + return typeof obj === "function" && typeof obj.nodeType !== "number" && + typeof obj.item !== "function"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.6.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), + function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); + } ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.6 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2021-02-16 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem && elem.namespaceURI, + docElem = elem && ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +} +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the primary Deferred + primary = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + primary.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, primary.done( updateFunc( i ) ).resolve, primary.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( primary.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return primary.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), primary.reject ); + } + + return primary.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
    " ], + col: [ 2, "", "
    " ], + tr: [ 2, "", "
    " ], + td: [ 3, "", "
    " ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + + // Support: Chrome 86+ + // In Chrome, if an element having a focusout handler is blurred by + // clicking outside of it, it invokes the handler synchronously. If + // that handler calls `.remove()` on the element, the data is cleared, + // leaving `result` undefined. We need to guard against this. + return result && result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + which: true +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + // Suppress native focus or blur as it's already being fired + // in leverageNative. + _default: function() { + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + // + // Support: Firefox 70+ + // Only Firefox includes border widths + // in computed dimensions. (gh-4529) + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px;border-collapse:separate"; + tr.style.cssText = "border:1px solid"; + + // Support: Chrome 86+ + // Height set through cssText does not get applied. + // Computed height then comes back as 0. + tr.style.height = "1px"; + trChild.style.height = "9px"; + + // Support: Android 8 Chrome 86+ + // In our bodyBackground.html iframe, + // display for all div elements is set to "inline", + // which causes a problem only in Android 8 Chrome 86. + // Ensuring the div is display: block + // gets around this issue. + trChild.style.display = "block"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = ( parseInt( trStyle.height, 10 ) + + parseInt( trStyle.borderTopWidth, 10 ) + + parseInt( trStyle.borderBottomWidth, 10 ) ) === tr.offsetHeight; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( dataPriv.get( cur, "events" ) || Object.create( null ) )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml, parserErrorElem; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) {} + + parserErrorElem = xml && xml.getElementsByTagName( "parsererror" )[ 0 ]; + if ( !xml || parserErrorElem ) { + jQuery.error( "Invalid XML: " + ( + parserErrorElem ? + jQuery.map( parserErrorElem.childNodes, function( el ) { + return el.textContent; + } ).join( "\n" ) : + data + ) ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ).filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ).map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + +originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script but not if jsonp + if ( !isSuccess && + jQuery.inArray( "script", s.dataTypes ) > -1 && + jQuery.inArray( "json", s.dataTypes ) < 0 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( " + + + + + + + + + + + Skip to contents + + +
    +
    +
    + + +

    Check 🛠 Docs 📚 Code Coverage 📔

    +

    GitHub forksGitHub repo stars

    +

    GitHub commit activityGitHub contributorsGitHub last commitGitHub pull requestsGitHub repo sizeGitHub language countProject Status: Active – The project has reached a stable, usable state and is being actively developed. Current Version Open Issues

    +

    chevron is a collection of high-level functions to create standard outputs for clinical trials reporting with limited parameterisation. These outputs includes:

    + + +

    Please visit the catalog to see full list of available outputs. If you want a new output, please create an issue.

    +

    If you need more flexibility please refer to tern with its TLG Catalog.

    +
    +

    Installation +

    +

    chevron is available on CRAN and you can install the latest released version with:

    +
    +install.packages("chevron")
    +

    Alternatively, you might also use the development version.

    +
    +# install.packages("pak")
    +pak::pak("insightsengineering/chevron")
    +
    +
    +

    Usage +

    +

    To understand how to use this package, please refer to the Introduction to chevron article, which provides multiple examples of code implementation.

    +

    Below is the showcase of the example usage.

    +
    +library(chevron)
    +
    +data(syn_data)
    +run(aet02, syn_data)
    +

    which returns

    +
      MedDRA System Organ Class                                     A: Drug X    B: Placebo    C: Combination
    +    MedDRA Preferred Term                                        (N=134)       (N=134)        (N=132)
    +  ———————————————————————————————————————————————————————————————————————————————————————————————————————
    +  Total number of patients with at least one adverse event     122 (91.0%)   123 (91.8%)    120 (90.9%)
    +  Overall total number of events                                   609           622            703
    +  cl A.1
    +    Total number of patients with at least one adverse event   78 (58.2%)    75 (56.0%)      89 (67.4%)
    +    Total number of events                                         132           130            160
    +    dcd A.1.1.1.1                                              50 (37.3%)    45 (33.6%)      63 (47.7%)
    +    dcd A.1.1.1.2                                              48 (35.8%)    48 (35.8%)      50 (37.9%)
    +  cl B.2
    +    Total number of patients with at least one adverse event   79 (59.0%)    74 (55.2%)      85 (64.4%)
    +    Total number of events                                         129           138            143
    +    dcd B.2.2.3.1                                              48 (35.8%)    54 (40.3%)      51 (38.6%)
    +    dcd B.2.1.2.1                                              49 (36.6%)    44 (32.8%)      52 (39.4%)
    +  cl D.1
    +    Total number of patients with at least one adverse event   79 (59.0%)    67 (50.0%)      80 (60.6%)
    +    Total number of events                                         127           106            135
    +    dcd D.1.1.1.1                                              50 (37.3%)    42 (31.3%)      51 (38.6%)
    +    dcd D.1.1.4.2                                              48 (35.8%)    42 (31.3%)      50 (37.9%)
    +  cl D.2
    +    Total number of patients with at least one adverse event   47 (35.1%)    58 (43.3%)      57 (43.2%)
    +    Total number of events                                         62            72              74
    +    dcd D.2.1.5.3                                              47 (35.1%)    58 (43.3%)      57 (43.2%)
    +  cl B.1
    +    Total number of patients with at least one adverse event   47 (35.1%)    49 (36.6%)      43 (32.6%)
    +    Total number of events                                         56            60              62
    +    dcd B.1.1.1.1                                              47 (35.1%)    49 (36.6%)      43 (32.6%)
    +  cl C.2
    +    Total number of patients with at least one adverse event   35 (26.1%)    48 (35.8%)      55 (41.7%)
    +    Total number of events                                         48            53              65
    +    dcd C.2.1.2.1                                              35 (26.1%)    48 (35.8%)      55 (41.7%)
    +  cl C.1
    +    Total number of patients with at least one adverse event   43 (32.1%)    46 (34.3%)      43 (32.6%)
    +    Total number of events                                         55            63              64
    +    dcd C.1.1.1.3                                              43 (32.1%)    46 (34.3%)      43 (32.6%)
    +
    +
    + +
      +
    • +rtables - table engine used
    • +
    • +tern - analysis function used
    • +
    +
    +
    +

    Acknowledgment +

    +

    This package is a result of a joint efforts by many developers and stakeholders. We would like to thank everyone who has contributed so far!

    +
    +
    +

    Stargazers and Forkers +

    +
    +

    Stargazers over time +

    +

    Stargazers over time

    +
    +
    +

    Stargazers +

    +

    Stargazers repo roster for chevron

    +

    Forkers repo roster for chevron

    +
    +
    +
    +
    +
    + + + +
    + + + + + + + diff --git a/v0.2.8/katex-auto.js b/v0.2.8/katex-auto.js new file mode 100644 index 0000000000..20651d9fdc --- /dev/null +++ b/v0.2.8/katex-auto.js @@ -0,0 +1,14 @@ +// https://github.com/jgm/pandoc/blob/29fa97ab96b8e2d62d48326e1b949a71dc41f47a/src/Text/Pandoc/Writers/HTML.hs#L332-L345 +document.addEventListener("DOMContentLoaded", function () { + var mathElements = document.getElementsByClassName("math"); + var macros = []; + for (var i = 0; i < mathElements.length; i++) { + var texText = mathElements[i].firstChild; + if (mathElements[i].tagName == "SPAN") { + katex.render(texText.data, mathElements[i], { + displayMode: mathElements[i].classList.contains("display"), + throwOnError: false, + macros: macros, + fleqn: false + }); + }}}); diff --git a/v0.2.8/lightswitch.js b/v0.2.8/lightswitch.js new file mode 100644 index 0000000000..9467125ae2 --- /dev/null +++ b/v0.2.8/lightswitch.js @@ -0,0 +1,85 @@ + +/*! + * Color mode toggler for Bootstrap's docs (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors + * Licensed under the Creative Commons Attribution 3.0 Unported License. + * Updates for {pkgdown} by the {bslib} authors, also licensed under CC-BY-3.0. + */ + +const getStoredTheme = () => localStorage.getItem('theme') +const setStoredTheme = theme => localStorage.setItem('theme', theme) + +const getPreferredTheme = () => { + const storedTheme = getStoredTheme() + if (storedTheme) { + return storedTheme + } + + return window.matchMedia('(prefers-color-scheme: dark)').matches ? 'dark' : 'light' +} + +const setTheme = theme => { + if (theme === 'auto') { + document.documentElement.setAttribute('data-bs-theme', (window.matchMedia('(prefers-color-scheme: dark)').matches ? 'dark' : 'light')) + } else { + document.documentElement.setAttribute('data-bs-theme', theme) + } +} + +function bsSetupThemeToggle () { + 'use strict' + + const showActiveTheme = (theme, focus = false) => { + var activeLabel, activeIcon; + + document.querySelectorAll('[data-bs-theme-value]').forEach(element => { + const buttonTheme = element.getAttribute('data-bs-theme-value') + const isActive = buttonTheme == theme + + element.classList.toggle('active', isActive) + element.setAttribute('aria-pressed', isActive) + + if (isActive) { + activeLabel = element.textContent; + activeIcon = element.querySelector('span').classList.value; + } + }) + + const themeSwitcher = document.querySelector('#dropdown-lightswitch') + if (!themeSwitcher) { + return + } + + themeSwitcher.setAttribute('aria-label', activeLabel) + themeSwitcher.querySelector('span').classList.value = activeIcon; + + if (focus) { + themeSwitcher.focus() + } + } + + window.matchMedia('(prefers-color-scheme: dark)').addEventListener('change', () => { + const storedTheme = getStoredTheme() + if (storedTheme !== 'light' && storedTheme !== 'dark') { + setTheme(getPreferredTheme()) + } + }) + + window.addEventListener('DOMContentLoaded', () => { + showActiveTheme(getPreferredTheme()) + + document + .querySelectorAll('[data-bs-theme-value]') + .forEach(toggle => { + toggle.addEventListener('click', () => { + const theme = toggle.getAttribute('data-bs-theme-value') + setTheme(theme) + setStoredTheme(theme) + showActiveTheme(theme, true) + }) + }) + }) +} + +setTheme(getPreferredTheme()); +bsSetupThemeToggle(); diff --git a/v0.2.8/link.svg b/v0.2.8/link.svg new file mode 100644 index 0000000000..88ad82769b --- /dev/null +++ b/v0.2.8/link.svg @@ -0,0 +1,12 @@ + + + + + + diff --git a/v0.2.8/news/index.html b/v0.2.8/news/index.html new file mode 100644 index 0000000000..e0747e3d88 --- /dev/null +++ b/v0.2.8/news/index.html @@ -0,0 +1,190 @@ + +Changelog • chevron + Skip to contents + + +
    +
    +
    + +
    +

    chevron 0.2.8

    +
    • New unwrap argument prints preprocessing, main, postprocessing and layout function upon execution of the run method.
    • +
    • The chevron.run.verbose option and R_CHEVRON_RUN_VERBOSE environment variable control the verbose argument of the run method, while the chevron.run.unwrap option and R_CHEVRON_RUN_UNWRAP environment variable control the unwrap argument.
    • +
    +
    +

    chevron 0.2.7

    CRAN release: 2024-10-09

    +
    • Add the AEL02, AEL03 and CML02A_gl templates.
    • +
    • Modify the post processing of MHT01 to allow multiple row_split_var.
    • +
    • Improve the report_null method to facilitate the creation of null reports.
    • +
    • Export the std_postprocessing function to simplify post processing logic.
    • +
    • +AET01 can now additionally display the number of death and withdrawal using the show_wd argument.
    • +
    • +MNG01 line type can now be controlled with the line_type argument.
    • +
    • +script_funs doesn’t rely anymore on source code of pre processing functions.
    • +
    +
    +

    chevron 0.2.6

    CRAN release: 2024-04-25

    +
    • Added assertion on class of summaryvars argument of dmt01().
    • +
    • Additional arguments can be passed to ael01_nollt run method, for instance to split the resulting listing.
    • +
    • +strat argument of kmg01_main is now deprecated - use strata instead.
    • +
    • +grob_list and gg_list are now deprecated - use list() instead.
    • +
    +
    +

    chevron 0.2.5

    CRAN release: 2024-02-01

    +
    • +MNG01 plot can now be displayed without error bars and can display a continuous temporal scale on the x axis.
    • +
    • Add a chevron_simple class which only contains main function.
    • +
    • Remove details argument in script_funs, add name argument.
    • +
    • In the run method, the argument passed through ... are combined with the one passed through user_arg. ... arguments have priority.
    • +
    • +AET05 preprocessing now filters on "(AE|CQ|SMQ)TTE" rather than "AETTE".
    • +
    • Rename the dataset ADAETTE in syn_data object to ADSAFTTE. Trim the dataset to remove unused variables.
    • +
    • Use uppercase variable names in AET05 and AET05_ALL.
    • +
    • The string replacing NA values in the tables is now controlled by the tern_default_na_str option set during package load.
    • +
    • Specified minimal version of package dependencies.
    • +
    +
    +

    chevron 0.2.4

    +
    • +TTET01 now uses “NE” to represent NA values.
    • +
    +
    +

    chevron 0.2.3

    +
    • Fix argument printing for run method.
    • +
    • Remove six unused tables from the syn_data object.
    • +
    • Fix EGT03 to allow multiple parameters.
    • +
    • Update TTET01 to provide meaningful error message if stratification variables do not exist in analysis dataset.
    • +
    • +PDT01 preprocessing now filters addv to retain only major protocol deviation.
    • +
    • +AEL01_NOLLT now has argument unique to keep only the unique rows in listing.
    • +
    • +AET01_AESI, EGT02 and LBT14 now remove the check in preprocessing function.
    • +
    • +COXT01 will drop levels on arm_var in preprocessing function now.
    • +
    • +MNG01 uses a ggtheme argument to set graphic parameters instead of the now defunct show_h_grid, show_v_grid and legend_pos arguments. The table arguments now controls the behavior of the table. The arguments show_n and show_table are now defunct.
    • +
    • Add RMPT06 template.
    • +
    • The stats and precision arguments now control the statistical analysis and numbers of digits presented in DMT01.
    • +
    • +FSTG01 and FSTG02 template removes the max_colwidth argument. Default font size of the plot is set to 7.
    • +
    • Introduce set_section_div function to add empty line separator between specified row splits.
    • +
    • +AET02 template the default order of “Total number of events” and “Total number of patients with at least one adverse event” switched.
    • +
    +
    +

    chevron 0.2.2

    +
    • Allow EGT03 to include multiple parameters.
    • +
    • Allow KMG01 to include stratified variables.
    • +
    • Allow LBT06 and LBT14 to be split by pages.
    • +
    • Allow AET02, CMT01A to change the summary statistics with summary_labels argument.
    • +
    • Add FSTG02 template.
    • +
    • Update the argument "is_event" in KMG01 to "IS_EVENT".
    • +
    • Update the argument "is_rsp" in FSTG01 to "IS_RSP".
    • +
    • +FSTG01 and FSTG02 stratification variable labels will be truncated to fit the page.
    • +
    • Update the script for chevron_tlg objects. The details argument is deprecated.
    • +
    • Fix issue when run method is executed with do.call and verbose argument.
    • +
    +
    +

    chevron 0.2.1

    +
    • Placeholder strings are now replaced during layout creation using dunlin::render_safe function.
    • +
    • New chevron_catalog vignette details usage and version of chevron templates.
    • +
    • The run method renders the errors faster thanks to the new internal do_call function.
    • +
    • Add verbose argument for run method which would print the argument used.
    • +
    • Add row_split_var and page_var as argument for some template.
    • +
    • The dataset slot in chevron_tlg class has been removed.
    • +
    • Add CFBT01 template. VST01, EGT01 and LBT01 are now all following CFBT01. By default parameters are displayed by page .
    • +
    • Add RMPT03, RMPT04 and RMPT05 which follow RMPT01.
    • +
    • Add COXT01 template. COXT02 is now based on COXT01.
    • +
    • Add AET05 and AET05_ALL templates.
    • +
    • Add LBT15 based on LBT04. LBT04 has new arguments to make it more flexible.
    • +
    • Update EGT03 to use ACTARMCD as default arm variable, and remove the preprocessing of filtering to “HR”.
    • +
    • Update EXT01 to allow it to be displayed by PARCAT2.
    • +
    • Update LBT06 template to use PARAM as row split.
    • +
    • Convert AVISIT to factor and order levels according to AVISITN in preprocessing.
    • +
    • Update MNG01 so that the numeric jitter argument controls the width of data spread along the x-axis.
    • +
    +
    +

    chevron 0.2.0

    +
    • Remove the usage of dm class of object. The chevron functions now expect list of data.frame as adam_db argument.
    • +
    • Remove variants in template names.
    • +
    • Remove deprecated getter functions get_main, get_preprocess and get_postprocess.
    • +
    • Simplify pre function and add more data checks in main function.
    • +
    • Remove redundant assertion functions.
    • +
    • Add more templates: AET10, KMG01, RSPT01, RMPT01, COXT02, FSTG01, and LBT06.
    • +
    +
    +

    chevron 0.1.4

    +
    • Use list to replace character in template arguments.
    • +
    +
    +

    chevron 0.1.3

    +
    • Add more templates: AET01_AESI, EGT03, EGT05_QTCAT, LBT04, LBT05, LBT07, LBT14, PDT01, PDT02.
    • +
    • Deprecation of previous getter function like get_main to main and main<-.
    • +
    • Add chevron_t, chevron_l and chevron_g subclass of chevron_tlg.
    • +
    • Add script_funs and script_args to obtain string representation of the full code.
    • +
    • Update to current templates.
    • +
    +
    +

    chevron 0.1.2

    +
    • Update snapshot tests
    • +
    +
    +

    chevron 0.1.1

    +
    • First release with implementation of: AET01, AET02, AET03, AET04, CMT01A, CMT02_PT, DMT01, DST01, DTHT01, EGT01, EGT02, EXT01, LBT01, MHT01, MNG01, VST01, VST02.
    • +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/pkgdown.js b/v0.2.8/pkgdown.js new file mode 100644 index 0000000000..1a99c65f5c --- /dev/null +++ b/v0.2.8/pkgdown.js @@ -0,0 +1,162 @@ +/* http://gregfranko.com/blog/jquery-best-practices/ */ +(function($) { + $(function() { + + $('nav.navbar').headroom(); + + Toc.init({ + $nav: $("#toc"), + $scope: $("main h2, main h3, main h4, main h5, main h6") + }); + + if ($('#toc').length) { + $('body').scrollspy({ + target: '#toc', + offset: $("nav.navbar").outerHeight() + 1 + }); + } + + // Activate popovers + $('[data-bs-toggle="popover"]').popover({ + container: 'body', + html: true, + trigger: 'focus', + placement: "top", + sanitize: false, + }); + + $('[data-bs-toggle="tooltip"]').tooltip(); + + /* Clipboard --------------------------*/ + + function changeTooltipMessage(element, msg) { + var tooltipOriginalTitle=element.getAttribute('data-bs-original-title'); + element.setAttribute('data-bs-original-title', msg); + $(element).tooltip('show'); + element.setAttribute('data-bs-original-title', tooltipOriginalTitle); + } + + if(ClipboardJS.isSupported()) { + $(document).ready(function() { + var copyButton = ""; + + $("div.sourceCode").addClass("hasCopyButton"); + + // Insert copy buttons: + $(copyButton).prependTo(".hasCopyButton"); + + // Initialize tooltips: + $('.btn-copy-ex').tooltip({container: 'body'}); + + // Initialize clipboard: + var clipboard = new ClipboardJS('[data-clipboard-copy]', { + text: function(trigger) { + return trigger.parentNode.textContent.replace(/\n#>[^\n]*/g, ""); + } + }); + + clipboard.on('success', function(e) { + changeTooltipMessage(e.trigger, 'Copied!'); + e.clearSelection(); + }); + + clipboard.on('error', function(e) { + changeTooltipMessage(e.trigger,'Press Ctrl+C or Command+C to copy'); + }); + + }); + } + + /* Search marking --------------------------*/ + var url = new URL(window.location.href); + var toMark = url.searchParams.get("q"); + var mark = new Mark("main#main"); + if (toMark) { + mark.mark(toMark, { + accuracy: { + value: "complementary", + limiters: [",", ".", ":", "/"], + } + }); + } + + /* Search --------------------------*/ + /* Adapted from https://github.com/rstudio/bookdown/blob/2d692ba4b61f1e466c92e78fd712b0ab08c11d31/inst/resources/bs4_book/bs4_book.js#L25 */ + // Initialise search index on focus + var fuse; + $("#search-input").focus(async function(e) { + if (fuse) { + return; + } + + $(e.target).addClass("loading"); + var response = await fetch($("#search-input").data("search-index")); + var data = await response.json(); + + var options = { + keys: ["what", "text", "code"], + ignoreLocation: true, + threshold: 0.1, + includeMatches: true, + includeScore: true, + }; + fuse = new Fuse(data, options); + + $(e.target).removeClass("loading"); + }); + + // Use algolia autocomplete + var options = { + autoselect: true, + debug: true, + hint: false, + minLength: 2, + }; + var q; +async function searchFuse(query, callback) { + await fuse; + + var items; + if (!fuse) { + items = []; + } else { + q = query; + var results = fuse.search(query, { limit: 20 }); + items = results + .filter((x) => x.score <= 0.75) + .map((x) => x.item); + if (items.length === 0) { + items = [{dir:"Sorry 😿",previous_headings:"",title:"No results found.",what:"No results found.",path:window.location.href}]; + } + } + callback(items); +} + $("#search-input").autocomplete(options, [ + { + name: "content", + source: searchFuse, + templates: { + suggestion: (s) => { + if (s.title == s.what) { + return `${s.dir} >
    ${s.title}
    `; + } else if (s.previous_headings == "") { + return `${s.dir} >
    ${s.title}
    > ${s.what}`; + } else { + return `${s.dir} >
    ${s.title}
    > ${s.previous_headings} > ${s.what}`; + } + }, + }, + }, + ]).on('autocomplete:selected', function(event, s) { + window.location.href = s.path + "?q=" + q + "#" + s.id; + }); + }); +})(window.jQuery || window.$) + +document.addEventListener('keydown', function(event) { + // Check if the pressed key is '/' + if (event.key === '/') { + event.preventDefault(); // Prevent any default action associated with the '/' key + document.getElementById('search-input').focus(); // Set focus to the search input + } +}); diff --git a/v0.2.8/pkgdown.yml b/v0.2.8/pkgdown.yml new file mode 100644 index 0000000000..bddf27cc58 --- /dev/null +++ b/v0.2.8/pkgdown.yml @@ -0,0 +1,11 @@ +pandoc: '3.4' +pkgdown: 2.1.1 +pkgdown_sha: ~ +articles: + chevron_catalog: chevron_catalog.html + chevron: chevron.html + script_generator: script_generator.html +last_built: 2024-10-28T12:31Z +urls: + reference: https://insightsengineering.github.io/chevron/reference + article: https://insightsengineering.github.io/chevron/articles diff --git a/v0.2.8/reference/.chevron_g.html b/v0.2.8/reference/.chevron_g.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/.chevron_g.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/.chevron_l.html b/v0.2.8/reference/.chevron_l.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/.chevron_l.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/.chevron_simple.html b/v0.2.8/reference/.chevron_simple.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/.chevron_simple.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/.chevron_t.html b/v0.2.8/reference/.chevron_t.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/.chevron_t.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/.chevron_tlg.html b/v0.2.8/reference/.chevron_tlg.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/.chevron_tlg.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/ael01_nollt.html b/v0.2.8/reference/ael01_nollt.html new file mode 100644 index 0000000000..3eb7a8df4a --- /dev/null +++ b/v0.2.8/reference/ael01_nollt.html @@ -0,0 +1,165 @@ + +AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms.

    +
    + +
    +

    Usage

    +
    ael01_nollt_main(
    +  adam_db,
    +  dataset = "adae",
    +  key_cols = c("AEBODSYS", "AEDECOD"),
    +  disp_cols = "AETERM",
    +  split_into_pages_by_var = NULL,
    +  unique_rows = TRUE,
    +  ...
    +)
    +
    +ael01_nollt_pre(
    +  adam_db,
    +  dataset = "adae",
    +  key_cols = c("AEBODSYS", "AEDECOD"),
    +  disp_cols = "AETERM",
    +  ...
    +)
    +
    +ael01_nollt
    +
    + +
    +

    Format

    +

    An object of class chevron_l of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    additional arguments passed to rlistings::as_listing.

    + +
    +
    +

    Value

    +

    the main function returns an rlistings or a list object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • Removes duplicate rows.

    • +
    • By default, uses dataset adae, sorting by key columns AEBODSYS and AEDECOD.

    • +
    • If using with a dataset other than adae, be sure to specify the desired labels for variables in +key_cols and disp_cols, and pre-process missing data.

    • +
    +
    +

    Functions

    + +
    • ael01_nollt_main(): Main TLG function

    • +
    • ael01_nollt_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain the dataset table with columns specified by key_cols and disp_cols.

    • +
    + +
    +

    Examples

    +
    run(ael01_nollt, syn_data)
    +#> MedDRA System Organ Class   MedDRA Preferred Term   Reported Term for the Adverse Event
    +#> ———————————————————————————————————————————————————————————————————————————————————————
    +#> cl A.1                      dcd A.1.1.1.1           trm A.1.1.1.1                      
    +#>                             dcd A.1.1.1.2           trm A.1.1.1.2                      
    +#> cl B.1                      dcd B.1.1.1.1           trm B.1.1.1.1                      
    +#> cl B.2                      dcd B.2.1.2.1           trm B.2.1.2.1                      
    +#>                             dcd B.2.2.3.1           trm B.2.2.3.1                      
    +#> cl C.1                      dcd C.1.1.1.3           trm C.1.1.1.3                      
    +#> cl C.2                      dcd C.2.1.2.1           trm C.2.1.2.1                      
    +#> cl D.1                      dcd D.1.1.1.1           trm D.1.1.1.1                      
    +#>                             dcd D.1.1.4.2           trm D.1.1.4.2                      
    +#> cl D.2                      dcd D.2.1.5.3           trm D.2.1.5.3                      
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ael01_nollt_pre.html b/v0.2.8/reference/ael01_nollt_pre.html new file mode 100644 index 0000000000..bf809e22fa --- /dev/null +++ b/v0.2.8/reference/ael01_nollt_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/ael02.html b/v0.2.8/reference/ael02.html new file mode 100644 index 0000000000..fed950a06a --- /dev/null +++ b/v0.2.8/reference/ael02.html @@ -0,0 +1,139 @@ + +AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    AEL02 Listing 1 (Default) Listing of Adverse Events.

    +
    + +
    +

    Usage

    +
    ael02_main(
    +  adam_db,
    +  dataset = "adae",
    +  key_cols = c("ID", "ASR"),
    +  disp_cols = c("AEDECOD", "TRTSDTM", "ASTDY", "ADURN", "AESER", "ASEV", "AREL", "AEOUT",
    +    "AECONTRT", "AEACN"),
    +  split_into_pages_by_var = "ACTARM",
    +  unique_rows = FALSE,
    +  ...
    +)
    +
    +ael02_pre(adam_db, dataset = "adae", arm_var = "ACTARM", ...)
    +
    +ael02
    +
    + +
    +

    Format

    +

    An object of class chevron_l of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    not used.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + +
    +
    +

    Value

    +

    the main function returns an rlistings or a list object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Functions

    + +
    • ael02_main(): Main TLG function

    • +
    • ael02_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    res <- run(ael02, syn_data)
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ael02_pre.html b/v0.2.8/reference/ael02_pre.html new file mode 100644 index 0000000000..2a35e8eae1 --- /dev/null +++ b/v0.2.8/reference/ael02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/ael03.html b/v0.2.8/reference/ael03.html new file mode 100644 index 0000000000..e54c37595e --- /dev/null +++ b/v0.2.8/reference/ael03.html @@ -0,0 +1,138 @@ + +AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    AEL03 Listing 1 (Default) Listing of Serious Adverse Events.

    +
    + +
    +

    Usage

    +
    ael03_main(
    +  adam_db,
    +  dataset = "adae",
    +  key_cols = c("ID", "ASR"),
    +  disp_cols = c("AEDECOD", "TRTSDTM", "ASTDY", "ADURN", "ASEV", "AREL", "AEOUT",
    +    "AECONTRT", "AEACN", "SERREAS"),
    +  split_into_pages_by_var = "ACTARM",
    +  unique_rows = FALSE,
    +  ...
    +)
    +
    +ael03_pre(adam_db, dataset = "adae", arm_var = "ACTARM", ...)
    +
    +ael03
    +
    + +
    +

    Format

    +

    An object of class chevron_l of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    not used.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + +
    +
    +

    Value

    +

    the main function returns an rlistings or a list object.

    +
    +
    +

    Functions

    + +
    • ael03_main(): Main TLG function

    • +
    • ael03_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    res <- run(ael03, syn_data)
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ael03_pre.html b/v0.2.8/reference/ael03_pre.html new file mode 100644 index 0000000000..c28a20bb7d --- /dev/null +++ b/v0.2.8/reference/ael03_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet01.html b/v0.2.8/reference/aet01.html new file mode 100644 index 0000000000..311bef8b44 --- /dev/null +++ b/v0.2.8/reference/aet01.html @@ -0,0 +1,177 @@ + +AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1.

    +
    + +
    +

    Usage

    +
    aet01_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  anl_vars = list(safety_var = c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD",
    +    "DSM", "REL", "RELWD", "RELDSM", "SEV")),
    +  anl_lbls = "Total number of {patient_label} with at least one",
    +  show_wd = TRUE,
    +  ...
    +)
    +
    +aet01_pre(adam_db, ...)
    +
    +aet01_post(tlg, prune_0 = FALSE, ...)
    +
    +aet01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    anl_vars
    +

    Named (list) of (character) variables the safety variables to be summarized.

    + + +
    anl_lbls
    +

    (character) of analysis labels.

    + + +
    show_wd
    +

    (flag) whether to display the number of patients withdrawn from study due to an adverse event and +the number of death.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Does not remove rows with zero counts by default.

    • +
    +
    +

    Functions

    + +
    • aet01_main(): Main TLG function

    • +
    • aet01_pre(): Preprocessing

    • +
    • aet01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adsl table with the "DTHFL" and "DCSREAS" columns.

    • +
    • adam_db object must contain an adae table with the columns passed to anl_vars.

    • +
    + +
    +

    Examples

    +
    run(aet01, syn_data, arm_var = "ARM")
    +#>                                                                A: Drug X    B: Placebo   C: Combination
    +#>                                                                  (N=15)       (N=15)         (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one AE                13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   Total number of AEs                                              58           59             99      
    +#>   Total number of deaths                                       2 (13.3%)    4 (26.7%)      3 (20.0%)   
    +#>   Total number of patients withdrawn from study due to an AE       0            0           1 (6.7%)   
    +#>   Total number of patients with at least one                                                           
    +#>     AE with fatal outcome                                      8 (53.3%)    8 (53.3%)      10 (66.7%)  
    +#>     Serious AE                                                 12 (80.0%)   12 (80.0%)     11 (73.3%)  
    +#>     Serious AE leading to withdrawal from treatment                0            0          2 (13.3%)   
    +#>     Serious AE leading to dose modification/interruption       4 (26.7%)    3 (20.0%)      4 (26.7%)   
    +#>     Related Serious AE                                         8 (53.3%)    8 (53.3%)      10 (66.7%)  
    +#>     AE leading to withdrawal from treatment                    2 (13.3%)    3 (20.0%)      3 (20.0%)   
    +#>     AE leading to dose modification/interruption               6 (40.0%)    9 (60.0%)      11 (73.3%)  
    +#>     Related AE                                                 11 (73.3%)   10 (66.7%)     13 (86.7%)  
    +#>     Related AE leading to withdrawal from treatment                0        3 (20.0%)          0       
    +#>     Related AE leading to dose modification/interruption        1 (6.7%)    4 (26.7%)      9 (60.0%)   
    +#>     Severe AE (at greatest intensity)                          11 (73.3%)   10 (66.7%)     12 (80.0%)  
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet01_aesi.html b/v0.2.8/reference/aet01_aesi.html new file mode 100644 index 0000000000..ba9be4f3e5 --- /dev/null +++ b/v0.2.8/reference/aet01_aesi.html @@ -0,0 +1,185 @@ + +AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table.

    +
    + +
    +

    Usage

    +
    aet01_aesi_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  aesi_vars = NULL,
    +  grade_groups = NULL,
    +  ...
    +)
    +
    +aet01_aesi_pre(adam_db, ...)
    +
    +aet01_aesi_post(tlg, prune_0 = FALSE, ...)
    +
    +aet01_aesi
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    aesi_vars
    +

    (character) the AESI variables to be included in the summary. Defaults to NA.

    + + +
    grade_groups
    +

    (list) the grade groups to be displayed.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Does not remove rows with zero counts by default.

    • +
    +
    +

    Functions

    + +
    • aet01_aesi_main(): Main TLG function

    • +
    • aet01_aesi_pre(): Preprocessing

    • +
    • aet01_aesi_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adae table with columns "AEOUT", "AEACN", "AECONTRT", "AESER", +"AREL", and the column specified by arm_var.

    • +
    • aesi_vars may contain any/all of the following variables to display: "ALLRESWD", "ALLRESDSM", +"ALLRESCONTRT", "NOTRESWD", "NOTRESDSM", "NOTRESCONTRT", "SERWD", "SERDSM", "SERCONTRT", +"RELWD", "RELDSM", "RELCONTRT", "RELSER".

    • +
    • aesi_vars variable prefixes are defined as follows:

      • "ALLRES" = "all non-fatal adverse events resolved"

      • +
      • "NOTRES" = "at least one unresolved or ongoing non-fatal adverse event"

      • +
      • "SER" = "serious adverse event"

      • +
      • "REL" = "related adverse event"

      • +
    • +
    • aesi_vars variable suffixes are defined as follows:

      • "WD" = "patients with study drug withdrawn"

      • +
      • "DSM" = "patients with dose modified/interrupted"

      • +
      • "CONTRT" = "patients with treatment received"

      • +
    • +
    • Several aesi_vars can be added to the table at once:

      • aesi_vars = "ALL" will include all possible aesi_vars.

      • +
      • Including "ALL_XXX" in aesi_vars where XXX is one of the prefixes listed above will include all +aesi_vars with that prefix.

      • +
    • +
    + +
    +

    Examples

    +
    run(aet01_aesi, syn_data)
    +#>                                                                                   A: Drug X    B: Placebo   C: Combination
    +#>                                                                                     (N=15)       (N=15)         (N=15)    
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one AE                                   13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   Total number of AEs                                                                 58           59             99      
    +#>   Total number of patients with at least one AE by worst grade                                                            
    +#>     Grade 1                                                                           0         1 (6.7%)       1 (6.7%)   
    +#>     Grade 2                                                                        1 (6.7%)     1 (6.7%)       1 (6.7%)   
    +#>     Grade 3                                                                        1 (6.7%)    2 (13.3%)       1 (6.7%)   
    +#>     Grade 4                                                                       3 (20.0%)    2 (13.3%)      2 (13.3%)   
    +#>     Grade 5 (fatal outcome)                                                       8 (53.3%)    8 (53.3%)      10 (66.7%)  
    +#>   Total number of patients with study drug withdrawn due to AE                    2 (13.3%)    3 (20.0%)      3 (20.0%)   
    +#>   Total number of patients with dose modified/interrupted due to AE               6 (40.0%)    9 (60.0%)      11 (73.3%)  
    +#>   Total number of patients with treatment received for AE                         10 (66.7%)   10 (66.7%)     14 (93.3%)  
    +#>   Total number of patients with all non-fatal AEs resolved                        9 (60.0%)    10 (66.7%)     12 (80.0%)  
    +#>   Total number of patients with at least one unresolved or ongoing non-fatal AE   10 (66.7%)   9 (60.0%)      14 (93.3%)  
    +#>   Total number of patients with at least one serious AE                           12 (80.0%)   12 (80.0%)     11 (73.3%)  
    +#>   Total number of patients with at least one related AE                           11 (73.3%)   10 (66.7%)     13 (86.7%)  
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet01_aesi_lyt.html b/v0.2.8/reference/aet01_aesi_lyt.html new file mode 100644 index 0000000000..e692f96658 --- /dev/null +++ b/v0.2.8/reference/aet01_aesi_lyt.html @@ -0,0 +1,89 @@ + +aet01_aesi Layout — aet01_aesi_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet01_aesi Layout

    +
    + +
    +

    Usage

    +
    aet01_aesi_lyt(arm_var, aesi_vars, lbl_overall, lbl_aesi_vars, grade_groups)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_aesi_vars
    +

    (character) the labels of the AESI variables to be summarized.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet01_aesi_post.html b/v0.2.8/reference/aet01_aesi_post.html new file mode 100644 index 0000000000..9ea2b9de2b --- /dev/null +++ b/v0.2.8/reference/aet01_aesi_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet01_aesi_pre.html b/v0.2.8/reference/aet01_aesi_pre.html new file mode 100644 index 0000000000..9ea2b9de2b --- /dev/null +++ b/v0.2.8/reference/aet01_aesi_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet01_lyt.html b/v0.2.8/reference/aet01_lyt.html new file mode 100644 index 0000000000..0b36ca9a02 --- /dev/null +++ b/v0.2.8/reference/aet01_lyt.html @@ -0,0 +1,97 @@ + +aet01 Layout — aet01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet01 Layout

    +
    + +
    +

    Usage

    +
    aet01_lyt(arm_var, lbl_overall, anl_vars, anl_lbls, lbl_vars)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    anl_vars
    +

    Named (list) of analysis variables.

    + + +
    anl_lbls
    +

    (character) of labels.

    + + +
    lbl_vars
    +

    Named (list) of analysis labels.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet01_post.html b/v0.2.8/reference/aet01_post.html new file mode 100644 index 0000000000..09080b218e --- /dev/null +++ b/v0.2.8/reference/aet01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet01_pre.html b/v0.2.8/reference/aet01_pre.html new file mode 100644 index 0000000000..09080b218e --- /dev/null +++ b/v0.2.8/reference/aet01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet02.html b/v0.2.8/reference/aet02.html new file mode 100644 index 0000000000..710c92731c --- /dev/null +++ b/v0.2.8/reference/aet02.html @@ -0,0 +1,201 @@ + +AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The AET02 table provides an overview of the number of subjects experiencing adverse events and the number of advert +events categorized by Body System and Dictionary-Derived Term.

    +
    + +
    +

    Usage

    +
    aet02_label
    +
    +aet02_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  row_split_var = "AEBODSYS",
    +  lbl_overall = NULL,
    +  summary_labels = list(all = aet02_label, TOTAL = c(nonunique =
    +    "Overall total number of events")),
    +  ...
    +)
    +
    +aet02_pre(adam_db, row_split_var = "AEBODSYS", ...)
    +
    +aet02_post(tlg, row_split_var = "AEBODSYS", prune_0 = TRUE, ...)
    +
    +aet02
    +
    + +
    +

    Format

    +

    An object of class character of length 2.

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summary_labels
    +

    (list) of summarize labels. See details.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Numbers represent absolute numbers of subject and fraction of N, or absolute number of event when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort Dictionary-Derived Code (AEDECOD) by highest overall frequencies.

    • +
    • Missing values in AEBODSYS, and AEDECOD are labeled by No Coding Available. +summary_labels is used to control the summary for each level. If "all" is used, then each split will have that +summary statistic with the labels. One special case is "TOTAL", this is for the overall population.

    • +
    +
    +

    Functions

    + +
    • aet02_label: Default labels

    • +
    • aet02_main(): Main TLG function

    • +
    • aet02_pre(): Preprocessing

    • +
    • aet02_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adae table with the columns "AEBODSYS" and "AEDECOD".

    • +
    + +
    +

    Examples

    +
    run(aet02, syn_data)
    +#>   MedDRA System Organ Class                                    A: Drug X    B: Placebo   C: Combination
    +#>     MedDRA Preferred Term                                        (N=15)       (N=15)         (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one adverse event     13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   Overall total number of events                                   58           59             99      
    +#>   cl B.2                                                                                               
    +#>     Total number of patients with at least one adverse event   11 (73.3%)   8 (53.3%)      10 (66.7%)  
    +#>     Total number of events                                         18           15             20      
    +#>     dcd B.2.2.3.1                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
    +#>     dcd B.2.1.2.1                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
    +#>   cl D.1                                                                                               
    +#>     Total number of patients with at least one adverse event   9 (60.0%)    5 (33.3%)      11 (73.3%)  
    +#>     Total number of events                                         13           9              19      
    +#>     dcd D.1.1.1.1                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
    +#>     dcd D.1.1.4.2                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
    +#>   cl A.1                                                                                               
    +#>     Total number of patients with at least one adverse event   7 (46.7%)    6 (40.0%)      10 (66.7%)  
    +#>     Total number of events                                         8            11             16      
    +#>     dcd A.1.1.1.2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
    +#>     dcd A.1.1.1.1                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
    +#>   cl B.1                                                                                               
    +#>     Total number of patients with at least one adverse event   5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>     Total number of events                                         6            6              12      
    +#>     dcd B.1.1.1.1                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>   cl C.2                                                                                               
    +#>     Total number of patients with at least one adverse event   6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>     Total number of events                                         6            4              12      
    +#>     dcd C.2.1.2.1                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>   cl D.2                                                                                               
    +#>     Total number of patients with at least one adverse event   2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>     Total number of events                                         3            5              10      
    +#>     dcd D.2.1.5.3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>   cl C.1                                                                                               
    +#>     Total number of patients with at least one adverse event   4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +#>     Total number of events                                         4            9              10      
    +#>     dcd C.1.1.1.3                                              4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet02_main.html b/v0.2.8/reference/aet02_main.html new file mode 100644 index 0000000000..53adab12ab --- /dev/null +++ b/v0.2.8/reference/aet02_main.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet02_post.html b/v0.2.8/reference/aet02_post.html new file mode 100644 index 0000000000..53adab12ab --- /dev/null +++ b/v0.2.8/reference/aet02_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet02_pre.html b/v0.2.8/reference/aet02_pre.html new file mode 100644 index 0000000000..53adab12ab --- /dev/null +++ b/v0.2.8/reference/aet02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet03.html b/v0.2.8/reference/aet03.html new file mode 100644 index 0000000000..e6f4c961ff --- /dev/null +++ b/v0.2.8/reference/aet03.html @@ -0,0 +1,204 @@ + +AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    An adverse events table categorized by System +Organ Class, Dictionary-Derived Term and Greatest intensity.

    +
    + +
    +

    Usage

    +
    aet03_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...)
    +
    +aet03_pre(adam_db, ...)
    +
    +aet03_post(tlg, prune_0 = TRUE, ...)
    +
    +aet03
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Default Adverse Events by Greatest Intensity table.

    • +
    • Numbers represent absolute numbers of patients and fraction of N.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort by Body System or Organ Class (SOC) and Dictionary-Derived Term (PT).

    • +
    +
    +

    Functions

    + +
    • aet03_main(): Main TLG function

    • +
    • aet03_pre(): Preprocessing

    • +
    • aet03_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adae table with the columns "AEBODSYS", "AEDECOD" and "ASEV".

    • +
    + +
    +

    Examples

    +
    run(aet03, syn_data)
    +#>   MedDRA System Organ Class   A: Drug X    B: Placebo   C: Combination
    +#>     MedDRA Preferred Term       (N=15)       (N=15)         (N=15)    
    +#>   ————————————————————————————————————————————————————————————————————
    +#>   - Any Intensity -           13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   MILD                            0         1 (6.7%)       1 (6.7%)   
    +#>   MODERATE                    2 (13.3%)    3 (20.0%)      2 (13.3%)   
    +#>   SEVERE                      11 (73.3%)   10 (66.7%)     12 (80.0%)  
    +#>   cl B.2                                                              
    +#>     - Any Intensity -         11 (73.3%)   8 (53.3%)      10 (66.7%)  
    +#>     MILD                      6 (40.0%)    2 (13.3%)      5 (33.3%)   
    +#>     MODERATE                  5 (33.3%)    6 (40.0%)      5 (33.3%)   
    +#>     dcd B.2.2.3.1                                                     
    +#>       - Any Intensity -       8 (53.3%)    6 (40.0%)      7 (46.7%)   
    +#>       MILD                    8 (53.3%)    6 (40.0%)      7 (46.7%)   
    +#>     dcd B.2.1.2.1                                                     
    +#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      5 (33.3%)   
    +#>       MODERATE                5 (33.3%)    6 (40.0%)      5 (33.3%)   
    +#>   cl D.1                                                              
    +#>     - Any Intensity -         9 (60.0%)    5 (33.3%)      11 (73.3%)  
    +#>     MODERATE                  5 (33.3%)     1 (6.7%)      4 (26.7%)   
    +#>     SEVERE                    4 (26.7%)    4 (26.7%)      7 (46.7%)   
    +#>     dcd D.1.1.1.1                                                     
    +#>       - Any Intensity -       4 (26.7%)    4 (26.7%)      7 (46.7%)   
    +#>       SEVERE                  4 (26.7%)    4 (26.7%)      7 (46.7%)   
    +#>     dcd D.1.1.4.2                                                     
    +#>       - Any Intensity -       6 (40.0%)    2 (13.3%)      7 (46.7%)   
    +#>       MODERATE                6 (40.0%)    2 (13.3%)      7 (46.7%)   
    +#>   cl A.1                                                              
    +#>     - Any Intensity -         7 (46.7%)    6 (40.0%)      10 (66.7%)  
    +#>     MILD                      2 (13.3%)        0          4 (26.7%)   
    +#>     MODERATE                  5 (33.3%)    6 (40.0%)      6 (40.0%)   
    +#>     dcd A.1.1.1.2                                                     
    +#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      6 (40.0%)   
    +#>       MODERATE                5 (33.3%)    6 (40.0%)      6 (40.0%)   
    +#>     dcd A.1.1.1.1                                                     
    +#>       - Any Intensity -       3 (20.0%)     1 (6.7%)      6 (40.0%)   
    +#>       MILD                    3 (20.0%)     1 (6.7%)      6 (40.0%)   
    +#>   cl B.1                                                              
    +#>     - Any Intensity -         5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>     SEVERE                    5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>     dcd B.1.1.1.1                                                     
    +#>       - Any Intensity -       5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>       SEVERE                  5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>   cl C.2                                                              
    +#>     - Any Intensity -         6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>     MODERATE                  6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>     dcd C.2.1.2.1                                                     
    +#>       - Any Intensity -       6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>       MODERATE                6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>   cl D.2                                                              
    +#>     - Any Intensity -         2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>     MILD                      2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>     dcd D.2.1.5.3                                                     
    +#>       - Any Intensity -       2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>       MILD                    2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +#>   cl C.1                                                              
    +#>     - Any Intensity -         4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +#>     SEVERE                    4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +#>     dcd C.1.1.1.3                                                     
    +#>       - Any Intensity -       4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +#>       SEVERE                  4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet03_lyt.html b/v0.2.8/reference/aet03_lyt.html new file mode 100644 index 0000000000..b8d5ffaccd --- /dev/null +++ b/v0.2.8/reference/aet03_lyt.html @@ -0,0 +1,97 @@ + +aet03 Layout — aet03_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet03 Layout

    +
    + +
    +

    Usage

    +
    aet03_lyt(arm_var, lbl_overall, lbl_aebodsys, lbl_aedecod, intensity_grade)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_aebodsys
    +

    (string) text label for AEBODSYS.

    + + +
    lbl_aedecod
    +

    (string) text label for AEDECOD.

    + + +
    intensity_grade
    +

    (character) describing the intensity levels present in the dataset.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet03_post.html b/v0.2.8/reference/aet03_post.html new file mode 100644 index 0000000000..b2a5f31884 --- /dev/null +++ b/v0.2.8/reference/aet03_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet03_pre.html b/v0.2.8/reference/aet03_pre.html new file mode 100644 index 0000000000..b2a5f31884 --- /dev/null +++ b/v0.2.8/reference/aet03_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet04.html b/v0.2.8/reference/aet04.html new file mode 100644 index 0000000000..654ec4042d --- /dev/null +++ b/v0.2.8/reference/aet04.html @@ -0,0 +1,183 @@ + +AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The AET04 table provides an +overview of adverse event with the highest NCI CTCAE grade per individual.

    +
    + +
    +

    Usage

    +
    aet04_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  grade_groups = NULL,
    +  ...
    +)
    +
    +aet04_pre(adam_db, ...)
    +
    +aet04_post(tlg, prune_0 = TRUE, ...)
    +
    +aet04
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    grade_groups
    +

    (list) putting in correspondence toxicity grades and labels.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Numbers represent absolute numbers of patients and fraction of N, or absolute number of event when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Events with missing grading values are excluded.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sort Body System or Organ Class and Dictionary-Derived Term by highest overall frequencies. Analysis Toxicity +Grade is sorted by severity.

    • +
    +
    +

    Functions

    + +
    • aet04_main(): Main TLG function

    • +
    • aet04_pre(): Preprocessing

    • +
    • aet04_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adae table with the columns "AEBODSYS", "AEDECOD" and "ATOXGR".

    • +
    + +
    +

    Examples

    +
    grade_groups <- list(
    +  "Grade 1-2" = c("1", "2"),
    +  "Grade 3-4" = c("3", "4"),
    +  "Grade 5" = c("5")
    +)
    +proc_data <- dunlin::log_filter(syn_data, AEBODSYS == "cl A.1", "adae")
    +run(aet04, proc_data, grade_groups = grade_groups)
    +#>   MedDRA System Organ Class                                                          
    +#>     MedDRA Preferred Term                     A: Drug X   B: Placebo   C: Combination
    +#>                               Grade            (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————
    +#>   - Any adverse events -                                                             
    +#>                               - Any Grade -   7 (46.7%)   6 (40.0%)      10 (66.7%)  
    +#>                               Grade 1-2       7 (46.7%)   6 (40.0%)      10 (66.7%)  
    +#>                               1               2 (13.3%)       0          4 (26.7%)   
    +#>                               2               5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>   cl A.1                                                                             
    +#>     - Overall -                                                                      
    +#>                               - Any Grade -   7 (46.7%)   6 (40.0%)      10 (66.7%)  
    +#>                               Grade 1-2       7 (46.7%)   6 (40.0%)      10 (66.7%)  
    +#>                               1               2 (13.3%)       0          4 (26.7%)   
    +#>                               2               5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>     dcd A.1.1.1.2                                                                    
    +#>                               - Any Grade -   5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>                               Grade 1-2       5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>                               2               5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>     dcd A.1.1.1.1                                                                    
    +#>                               - Any Grade -   3 (20.0%)    1 (6.7%)      6 (40.0%)   
    +#>                               Grade 1-2       3 (20.0%)    1 (6.7%)      6 (40.0%)   
    +#>                               1               3 (20.0%)    1 (6.7%)      6 (40.0%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet04_lyt.html b/v0.2.8/reference/aet04_lyt.html new file mode 100644 index 0000000000..c67eaf8a90 --- /dev/null +++ b/v0.2.8/reference/aet04_lyt.html @@ -0,0 +1,108 @@ + +aet04 Layout — aet04_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet04 Layout

    +
    + +
    +

    Usage

    +
    aet04_lyt(
    +  arm_var,
    +  total_var,
    +  lbl_overall,
    +  lbl_aebodsys,
    +  lbl_aedecod,
    +  grade_groups
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    total_var
    +

    (string) variable to create summary of all variables.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_aebodsys
    +

    (string) text label for AEBODSYS.

    + + +
    lbl_aedecod
    +

    (string) text label for AEDECOD.

    + + +
    grade_groups
    +

    (list) putting in correspondence toxicity grades and labels.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet04_post.html b/v0.2.8/reference/aet04_post.html new file mode 100644 index 0000000000..bfa4befdcf --- /dev/null +++ b/v0.2.8/reference/aet04_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet04_pre.html b/v0.2.8/reference/aet04_pre.html new file mode 100644 index 0000000000..bfa4befdcf --- /dev/null +++ b/v0.2.8/reference/aet04_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet05.html b/v0.2.8/reference/aet05.html new file mode 100644 index 0000000000..cfc3b10823 --- /dev/null +++ b/v0.2.8/reference/aet05.html @@ -0,0 +1,189 @@ + +AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The AET05 table produces the standard adverse event rate adjusted for patient-years at risk summary +considering first occurrence.

    +
    + +
    +

    Usage

    +
    aet05_main(
    +  adam_db,
    +  dataset = "adsaftte",
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  ...
    +)
    +
    +aet05_pre(adam_db, dataset = "adsaftte", ...)
    +
    +aet05_post(tlg, prune_0 = FALSE, ...)
    +
    +aet05
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) the arm variable used for arm splitting.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    ...
    +

    Further arguments passed to tern::control_incidence_rate().

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Total patient-years at risk is the sum over all patients of the time intervals (in years).

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Split rows by parameter code.

    • +
    • AVAL is patient-years at risk.

    • +
    • N_EVENTS is the number of adverse events observed.

    • +
    • The table allows confidence level to be adjusted, default is 95%.

    • +
    • Keep zero count rows by default.

    • +
    +
    +

    Functions

    + +
    • aet05_main(): Main TLG function

    • +
    • aet05_pre(): Preprocessing

    • +
    • aet05_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain table named as dataset with the columns "PARAMCD", "PARAM", +"AVAL", and "CNSR".

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +#> 
    +#> Attaching package: ‘dplyr’
    +#> The following object is masked from ‘package:testthat’:
    +#> 
    +#>     matches
    +#> The following objects are masked from ‘package:stats’:
    +#> 
    +#>     filter, lag
    +#> The following objects are masked from ‘package:base’:
    +#> 
    +#>     intersect, setdiff, setequal, union
    +library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "AETTE1", "adsaftte")
    +
    +run(aet05, proc_data)
    +#>                                                     A: Drug X       B: Placebo      C: Combination
    +#>                                                      (N=15)           (N=15)            (N=15)    
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Time to first occurrence of any adverse event                                                   
    +#>     Total patient-years at risk                       31.0              9.0              22.0     
    +#>     Number of adverse events observed                   5               13                8       
    +#>     AE rate per 100 patient-years                     16.13           143.75            36.30     
    +#>     95% CI                                        (1.99, 30.27)   (65.61, 221.89)   (11.15, 61.45)
    +
    +run(aet05, proc_data, conf_level = 0.90, conf_type = "exact")
    +#>                                                     A: Drug X       B: Placebo      C: Combination
    +#>                                                      (N=15)           (N=15)            (N=15)    
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Time to first occurrence of any adverse event                                                   
    +#>     Total patient-years at risk                       31.0              9.0              22.0     
    +#>     Number of adverse events observed                   5               13                8       
    +#>     AE rate per 100 patient-years                     16.13           143.75            36.30     
    +#>     90% CI                                        (6.36, 33.91)   (85.03, 228.55)   (18.06, 65.50)
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet05_all.html b/v0.2.8/reference/aet05_all.html new file mode 100644 index 0000000000..c348bae2fe --- /dev/null +++ b/v0.2.8/reference/aet05_all.html @@ -0,0 +1,131 @@ + +AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The AET05_ALL table produces the standard adverse event rate adjusted for patient-years at risk summary +considering all occurrences.

    +
    + +
    +

    Usage

    +
    aet05_all_pre(adam_db, dataset = "adsaftte", ...)
    +
    +aet05_all
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Functions

    + +
    • aet05_all_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "AETOT1" | PARAMCD == "AEREPTTE", "adsaftte")
    +
    +run(aet05_all, proc_data)
    +#>                                                  A: Drug X        B: Placebo      C: Combination 
    +#>                                                    (N=15)           (N=15)            (N=15)     
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Number of occurrences of any adverse event                                                     
    +#>     Total patient-years at risk                     44.4             44.2              44.4      
    +#>     Number of adverse events observed                29               49                56       
    +#>     AE rate per 100 patient-years                  65.32            110.76            126.15     
    +#>     95% CI                                     (41.54, 89.09)   (79.75, 141.77)   (93.11, 159.19)
    +
    +run(aet05_all, proc_data, conf_level = 0.90, conf_type = "exact")
    +#>                                                  A: Drug X        B: Placebo      C: Combination 
    +#>                                                    (N=15)           (N=15)            (N=15)     
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Number of occurrences of any adverse event                                                     
    +#>     Total patient-years at risk                     44.4             44.2              44.4      
    +#>     Number of adverse events observed                29               49                56       
    +#>     AE rate per 100 patient-years                  65.32            110.76            126.15     
    +#>     90% CI                                     (46.73, 89.06)   (86.08, 140.53)   (99.76, 157.60)
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet05_lyt.html b/v0.2.8/reference/aet05_lyt.html new file mode 100644 index 0000000000..f6c2ca9d0f --- /dev/null +++ b/v0.2.8/reference/aet05_lyt.html @@ -0,0 +1,102 @@ + +aet05 Layout — aet05_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet05 Layout

    +
    + +
    +

    Usage

    +
    aet05_lyt(arm_var, lbl_overall, param_label, vars, n_events, control)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    param_label
    +

    (string) variable for parameter code.

    + + +
    vars
    +

    (string) variable for the primary analysis variable to be iterated over.

    + + +
    n_events
    +

    (string) variable to count the number of events observed.

    + + +
    control
    +

    (list) parameters for estimation details, specified by using the helper function +control_incidence_rate().

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet05_post.html b/v0.2.8/reference/aet05_post.html new file mode 100644 index 0000000000..5219f9a88f --- /dev/null +++ b/v0.2.8/reference/aet05_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet05_pre.html b/v0.2.8/reference/aet05_pre.html new file mode 100644 index 0000000000..5219f9a88f --- /dev/null +++ b/v0.2.8/reference/aet05_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet10.html b/v0.2.8/reference/aet10.html new file mode 100644 index 0000000000..1bd9f34490 --- /dev/null +++ b/v0.2.8/reference/aet10.html @@ -0,0 +1,159 @@ + +AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The AET10 table Include Adverse Events occurring with user-specified threshold X% in at least +one of the treatment groups. Standard table summarized by preferred term (PT). +Order the data by total column frequency from most to least frequently reported PT (regardless of SOC).

    +
    + +
    +

    Usage

    +
    aet10_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...)
    +
    +aet10_pre(adam_db, ...)
    +
    +aet10_post(tlg, atleast = 0.05, ...)
    +
    +aet10
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    atleast
    +

    given cut-off in numeric format, default is 0.05

    + +
    +
    +

    Value

    +

    the main function returns an rtables object

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Numbers represent absolute numbers of subject and fraction of N, or absolute number of event when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort Dictionary-Derived Code (AEDECOD) by highest overall frequencies.

    • +
    • Missing values in AEDECOD are labeled by No Coding Available.

    • +
    +
    +

    Functions

    + +
    • aet10_main(): Main TLG function

    • +
    • aet10_pre(): Preprocessing

    • +
    • aet10_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adae table with the columns "AEDECOD".

    • +
    + +
    +

    Examples

    +
    run(aet10, syn_data)
    +#>                           A: Drug X   B: Placebo   C: Combination
    +#>   MedDRA Preferred Term    (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————
    +#>   dcd B.2.2.3.1           8 (53.3%)   6 (40.0%)      7 (46.7%)   
    +#>   dcd B.1.1.1.1           5 (33.3%)   6 (40.0%)      8 (53.3%)   
    +#>   dcd C.2.1.2.1           6 (40.0%)   4 (26.7%)      8 (53.3%)   
    +#>   dcd A.1.1.1.2           5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>   dcd B.2.1.2.1           5 (33.3%)   6 (40.0%)      5 (33.3%)   
    +#>   dcd D.1.1.1.1           4 (26.7%)   4 (26.7%)      7 (46.7%)   
    +#>   dcd D.1.1.4.2           6 (40.0%)   2 (13.3%)      7 (46.7%)   
    +#>   dcd D.2.1.5.3           2 (13.3%)   5 (33.3%)      7 (46.7%)   
    +#>   dcd C.1.1.1.3           4 (26.7%)   4 (26.7%)      5 (33.3%)   
    +#>   dcd A.1.1.1.1           3 (20.0%)    1 (6.7%)      6 (40.0%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet10_lyt.html b/v0.2.8/reference/aet10_lyt.html new file mode 100644 index 0000000000..e34b4a7f1a --- /dev/null +++ b/v0.2.8/reference/aet10_lyt.html @@ -0,0 +1,89 @@ + +aet10 Layout — aet10_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    aet10 Layout

    +
    + +
    +

    Usage

    +
    aet10_lyt(arm_var, lbl_overall, lbl_aedecod)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_aedecod
    +

    (character) text label for AEDECOD.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/aet10_post.html b/v0.2.8/reference/aet10_post.html new file mode 100644 index 0000000000..a6da4b3bb4 --- /dev/null +++ b/v0.2.8/reference/aet10_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/aet10_pre.html b/v0.2.8/reference/aet10_pre.html new file mode 100644 index 0000000000..a6da4b3bb4 --- /dev/null +++ b/v0.2.8/reference/aet10_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/afun_p.html b/v0.2.8/reference/afun_p.html new file mode 100644 index 0000000000..157b483be6 --- /dev/null +++ b/v0.2.8/reference/afun_p.html @@ -0,0 +1,129 @@ + +Analyze with defined precision — afun_p • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Analyze with defined precision

    +
    + +
    +

    Usage

    +
    afun_p(
    +  x,
    +  .N_col,
    +  .spl_context,
    +  precision,
    +  .N_row,
    +  .var = NULL,
    +  .df_row = NULL,
    +  .stats = NULL,
    +  .labels = NULL,
    +  .indent_mods = NULL,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    value to analyze

    + + +
    .N_col
    +

    (int) See tern::analyze_variables.

    + + +
    .spl_context
    +

    split context.

    + + +
    precision
    +

    (named list of integer) where names of columns found in .df_row and the values indicate the +number of digits in statistics for numeric value. If default is set, and parameter precision not specified, the +value for default will be used. If neither are provided, auto determination is used. See tern::format_auto.

    + + +
    .N_row
    +

    (int) See tern::analyze_variables.

    + + +
    .var
    +

    variable name.

    + + +
    .stats
    +

    (named list of character) where names of columns found in .df_row and the values indicate the +statistical analysis to perform. If default is set, and parameter precision not specified, the +value for default will be used.

    + + +
    .labels
    +

    (character) See tern::analyze_variables.

    + + +
    .indent_mods
    +

    (integer) See tern::analyze_variables.

    + + +
    ...
    +

    additional arguments for tern::a_summary.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/afun_skip.html b/v0.2.8/reference/afun_skip.html new file mode 100644 index 0000000000..5b4cc41067 --- /dev/null +++ b/v0.2.8/reference/afun_skip.html @@ -0,0 +1,141 @@ + +Analyze skip baseline — afun_skip • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Analyze skip baseline

    +
    + +
    +

    Usage

    +
    afun_skip(
    +  x,
    +  .var,
    +  .spl_context,
    +  paramcdvar,
    +  visitvar,
    +  skip,
    +  precision,
    +  .stats,
    +  .labels = NULL,
    +  .indent_mods = NULL,
    +  .N_col,
    +  .N_row,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    value to analyze

    + + +
    .var
    +

    variable name.

    + + +
    .spl_context
    +

    split context.

    + + +
    paramcdvar
    +

    (string) name of parameter code.

    + + +
    visitvar
    +

    (string) name of the visit variable.

    + + +
    skip
    +

    Named (character) indicating the pairs to skip in analyze.

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    .stats
    +

    (character) See tern::analyze_variables.

    + + +
    .labels
    +

    (character) See tern::analyze_variables.

    + + +
    .indent_mods
    +

    (integer) See tern::analyze_variables.

    + + +
    .N_col
    +

    (int) See tern::analyze_variables.

    + + +
    .N_row
    +

    (int) See tern::analyze_variables.

    + + +
    ...
    +

    additional arguments for tern::a_summary.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/args_ls,chevron_tlg-method.html b/v0.2.8/reference/args_ls,chevron_tlg-method.html new file mode 100644 index 0000000000..31dce0c508 --- /dev/null +++ b/v0.2.8/reference/args_ls,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/args_ls.html b/v0.2.8/reference/args_ls.html new file mode 100644 index 0000000000..992a2e3b99 --- /dev/null +++ b/v0.2.8/reference/args_ls.html @@ -0,0 +1,127 @@ + +Get Arguments List — args_ls • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get Arguments List

    +
    + +
    +

    Usage

    +
    args_ls(x, simplify = FALSE, omit = NULL)
    +
    +# S4 method for class 'chevron_tlg'
    +args_ls(x, simplify = FALSE, omit = NULL)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (chevron_tlg) input.

    + + +
    simplify
    +

    (flag) whether to simplify the output, coalescing the values of the parameters. The order of +priority for the value of the parameters is: main, preprocess and postprocess.

    + + +
    omit
    +

    (character) the names of the argument to omit from the output.

    + +
    +
    +

    Value

    +

    a list of the formal arguments with their default for the functions stored in the chevron_tlg object +passed a x argument.

    +
    + +
    +

    Examples

    +
    args_ls(aet01, simplify = TRUE)
    +#> $adam_db
    +#> 
    +#> 
    +#> $arm_var
    +#> [1] "ACTARM"
    +#> 
    +#> $lbl_overall
    +#> NULL
    +#> 
    +#> $anl_vars
    +#> list(safety_var = c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", 
    +#>     "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV"))
    +#> 
    +#> $anl_lbls
    +#> [1] "Total number of {patient_label} with at least one"
    +#> 
    +#> $show_wd
    +#> [1] TRUE
    +#> 
    +#> $...
    +#> 
    +#> 
    +#> $tlg
    +#> 
    +#> 
    +#> $prune_0
    +#> [1] FALSE
    +#> 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/assert_single_value.html b/v0.2.8/reference/assert_single_value.html new file mode 100644 index 0000000000..488d1d440e --- /dev/null +++ b/v0.2.8/reference/assert_single_value.html @@ -0,0 +1,85 @@ + +Check variable only has one unique value. — assert_single_value • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check variable only has one unique value.

    +
    + +
    +

    Usage

    +
    assert_single_value(x, label = deparse(substitute(x)))
    +
    + +
    +

    Arguments

    + + +
    x
    +

    value vector.

    + + +
    label
    +

    (string) label of input.

    + +
    +
    +

    Value

    +

    invisible NULL or an error message if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/assert_valid_type.html b/v0.2.8/reference/assert_valid_type.html new file mode 100644 index 0000000000..f93d2758fe --- /dev/null +++ b/v0.2.8/reference/assert_valid_type.html @@ -0,0 +1,89 @@ + +Check variable is of correct type — assert_valid_type • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check variable is of correct type

    +
    + +
    +

    Usage

    +
    assert_valid_type(x, types, label = deparse(substitute(x)))
    +
    + +
    +

    Arguments

    + + +
    x
    +

    Object to check the type.

    + + +
    types
    +

    (character) possible types to check.

    + + +
    label
    +

    (string) label.

    + +
    +
    +

    Value

    +

    invisible NULL or an error message if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.POSIXct.html b/v0.2.8/reference/assert_valid_var.POSIXct.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.POSIXct.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.character.html b/v0.2.8/reference/assert_valid_var.character.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.character.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.default.html b/v0.2.8/reference/assert_valid_var.default.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.default.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.factor.html b/v0.2.8/reference/assert_valid_var.factor.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.factor.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.html b/v0.2.8/reference/assert_valid_var.html new file mode 100644 index 0000000000..45b94c0690 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.html @@ -0,0 +1,171 @@ + +Check whether var is valid — assert_valid_var • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check whether var is valid

    +
    + +
    +

    Usage

    +
    assert_valid_var(x, label, na_ok, empty_ok, ...)
    +
    +# S3 method for class 'character'
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = FALSE,
    +  empty_ok = FALSE,
    +  min_chars = 1L,
    +  ...
    +)
    +
    +# S3 method for class 'factor'
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = FALSE,
    +  empty_ok = FALSE,
    +  min_chars = 1L,
    +  ...
    +)
    +
    +# S3 method for class 'logical'
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = TRUE,
    +  empty_ok = FALSE,
    +  ...
    +)
    +
    +# S3 method for class 'numeric'
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = TRUE,
    +  empty_ok = FALSE,
    +  integerish = FALSE,
    +  ...
    +)
    +
    +# S3 method for class 'POSIXct'
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = TRUE,
    +  empty_ok = FALSE,
    +  tzs = OlsonNames(),
    +  ...
    +)
    +
    +# Default S3 method
    +assert_valid_var(
    +  x,
    +  label = deparse(substitute(x)),
    +  na_ok = FALSE,
    +  empty_ok = FALSE,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    value of col_split variable

    + + +
    label
    +

    (string) hints.

    + + +
    na_ok
    +

    (flag) whether NA value is allowed

    + + +
    empty_ok
    +

    (flag) whether length 0 value is allowed.

    + + +
    ...
    +

    Further arguments to methods.

    + + +
    min_chars
    +

    (integer) the minimum length of the characters.

    + + +
    integerish
    +

    (flag) whether the number should be treated as integerish.

    + + +
    tzs
    +

    (character) time zones.

    + +
    +
    +

    Value

    +

    invisible NULL or an error message if the criteria are not fulfilled.

    +
    +
    +

    Details

    +

    This function checks the variable values are valid or not.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.logical.html b/v0.2.8/reference/assert_valid_var.logical.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.logical.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var.numeric.html b/v0.2.8/reference/assert_valid_var.numeric.html new file mode 100644 index 0000000000..7c1c184125 --- /dev/null +++ b/v0.2.8/reference/assert_valid_var.numeric.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/assert_valid_var_pair.html b/v0.2.8/reference/assert_valid_var_pair.html new file mode 100644 index 0000000000..3f30760d9d --- /dev/null +++ b/v0.2.8/reference/assert_valid_var_pair.html @@ -0,0 +1,103 @@ + +Check variables are of same levels — assert_valid_var_pair • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check variables are of same levels

    +
    + +
    +

    Usage

    +
    assert_valid_var_pair(
    +  df1,
    +  df2,
    +  var,
    +  lab1 = deparse(substitute(df1)),
    +  lab2 = deparse(substitute(df2))
    +)
    +
    + +
    +

    Arguments

    + + +
    df1
    +

    (data.frame) input.

    + + +
    df2
    +

    (data.frame) input.

    + + +
    var
    +

    (string) variable to check.

    + + +
    lab1
    +

    (string) label hint for df1.

    + + +
    lab2
    +

    (string) label hint for df2.

    + +
    +
    +

    Value

    +

    invisible NULL or an error message if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/assert_valid_variable.html b/v0.2.8/reference/assert_valid_variable.html new file mode 100644 index 0000000000..ec9e43dcd8 --- /dev/null +++ b/v0.2.8/reference/assert_valid_variable.html @@ -0,0 +1,104 @@ + +Check variables in a data frame are valid character or factor. — assert_valid_variable • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check variables in a data frame are valid character or factor.

    +
    + +
    +

    Usage

    +
    assert_valid_variable(
    +  df,
    +  vars,
    +  label = deparse(substitute(df)),
    +  types = NULL,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    df
    +

    (data.frame) input dataset.

    + + +
    vars
    +

    (character) variables to check.

    + + +
    label
    +

    (string) labels of the data frame.

    + + +
    types
    +

    Named (list) of type of the input.

    + + +
    ...
    +

    further arguments for assert_valid_var. Please note that different methods have different arguments +so if provided make sure the variables to check is of the same class.

    + +
    +
    +

    Value

    +

    invisible TRUE or an error message if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cfbt01.html b/v0.2.8/reference/cfbt01.html new file mode 100644 index 0000000000..0aa8f3fc30 --- /dev/null +++ b/v0.2.8/reference/cfbt01.html @@ -0,0 +1,280 @@ + +CFBT01 Change from Baseline By Visit Table. — cfbt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The CFBT01 table provides an +overview of the actual values and its change from baseline of each respective arm +over the course of the trial.

    +
    + +
    +

    Usage

    +
    cfbt01_main(
    +  adam_db,
    +  dataset,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  row_split_var = NULL,
    +  summaryvars = c("AVAL", "CHG"),
    +  visitvar = "AVISIT",
    +  precision = list(default = 2L),
    +  page_var = "PARAMCD",
    +  .stats = c("n", "mean_sd", "median", "range"),
    +  skip = list(CHG = "BASELINE"),
    +  ...
    +)
    +
    +cfbt01_pre(adam_db, dataset, ...)
    +
    +cfbt01_post(tlg, prune_0 = TRUE, ...)
    +
    +cfbt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in +table of adam_db is used as label.

    + + +
    visitvar
    +

    (string) typically one of "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    .stats
    +

    (character) statistics names, see tern::analyze_vars().

    + + +
    skip
    +

    Named (list) of visit values that need to be inhibited.

    + + +
    ...
    +

    additional arguments like .indent_mods, .labels.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • The Analysis Value column, displays the number of patients, the mean, standard deviation, median and range of +the analysis value for each visit.

    • +
    • The Change from Baseline column, displays the number of patient and the mean, standard deviation, +median and range of changes relative to the baseline.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level; first by PARAM labels in alphabetic order then by chronological time point given +by AVISIT. Re-level to customize order

    • +
    +
    +

    Functions

    + +
    • cfbt01_main(): Main TLG function

    • +
    • cfbt01_pre(): Preprocessing

    • +
    • cfbt01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain table named as dataset with the columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    library(dunlin)
    +
    +proc_data <- log_filter(
    +  syn_data,
    +  PARAMCD %in% c("DIABP", "SYSBP"), "advs"
    +)
    +run(cfbt01, proc_data, dataset = "advs")
    +#>                                          A: Drug X                            B: Placebo                          C: Combination           
    +#>                                                   Change from                          Change from                           Change from   
    +#>                               Value at Visit       Baseline        Value at Visit        Baseline        Value at Visit        Baseline    
    +#>   Analysis Visit                  (N=15)            (N=15)             (N=15)             (N=15)             (N=15)             (N=15)     
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Diastolic Blood Pressure                                                                                                                 
    +#>     SCREENING                                                                                                                              
    +#>       n                             15                 0                 15                 0                  15                 0        
    +#>       Mean (SD)              94.385 (17.067)        NE (NE)       106.381 (20.586)       NE (NE)        106.468 (12.628)       NE (NE)     
    +#>       Median                      94.933              NE              111.133               NE              108.359               NE       
    +#>       Min - Max               55.71 - 122.00        NE - NE        60.21 - 131.91        NE - NE         83.29 - 127.17        NE - NE     
    +#>     BASELINE                                                                                                                               
    +#>       n                             15                                   15                                    15                          
    +#>       Mean (SD)              96.133 (22.458)                      108.111 (15.074)                      103.149 (19.752)                   
    +#>       Median                      93.328                              108.951                               102.849                        
    +#>       Min - Max               60.58 - 136.59                       83.44 - 131.62                        66.05 - 136.55                    
    +#>     WEEK 1 DAY 8                                                                                                                           
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              98.977 (21.359)    2.844 (28.106)    104.110 (16.172)   -4.001 (21.867)    100.826 (19.027)   -2.323 (25.018) 
    +#>       Median                      92.447            -4.066            107.703             3.227             103.058             -2.476     
    +#>       Min - Max               67.55 - 130.37    -32.82 - 47.68     70.91 - 132.89     -52.94 - 28.63     70.04 - 128.68     -55.15 - 41.81 
    +#>     WEEK 2 DAY 15                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              99.758 (14.477)    3.626 (21.189)    97.473 (17.296)    -10.638 (20.831)   94.272 (16.961)    -8.877 (27.229) 
    +#>       Median                     101.498             1.731             99.501             -9.727             96.789            -10.155     
    +#>       Min - Max               71.98 - 122.81    -39.50 - 47.57     53.80 - 125.81     -55.15 - 25.26     63.45 - 117.47     -73.10 - 46.54 
    +#>     WEEK 3 DAY 22                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              99.101 (26.109)    2.968 (34.327)    91.984 (16.925)    -16.127 (21.881)   94.586 (13.560)    -8.563 (21.713) 
    +#>       Median                     101.146            -0.271             91.244            -14.384             98.398            -16.075     
    +#>       Min - Max               47.68 - 162.22    -47.87 - 76.64     67.80 - 119.72     -53.06 - 22.52     73.50 - 115.43     -37.90 - 32.66 
    +#>     WEEK 4 DAY 29                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              103.400 (22.273)   7.267 (30.740)    96.467 (19.451)    -11.644 (25.922)   108.338 (18.417)    5.189 (21.881) 
    +#>       Median                      98.168             2.510             97.385            -16.793            107.555             7.966      
    +#>       Min - Max               63.09 - 148.25    -38.43 - 61.90     63.35 - 131.57     -57.11 - 48.13     68.78 - 132.52     -33.96 - 41.50 
    +#>     WEEK 5 DAY 36                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              93.222 (18.536)    -2.911 (28.873)   97.890 (20.701)    -10.221 (27.593)   95.317 (16.401)    -7.832 (19.827) 
    +#>       Median                      90.799            -3.385             99.049            -11.319             93.876             -4.665     
    +#>       Min - Max               63.55 - 139.11    -48.63 - 47.35     69.47 - 137.64     -54.38 - 37.85     71.91 - 138.54     -44.47 - 29.11 
    +#>   Systolic Blood Pressure                                                                                                                  
    +#>     SCREENING                                                                                                                              
    +#>       n                             15                 0                 15                 0                  15                 0        
    +#>       Mean (SD)              154.073 (33.511)       NE (NE)       157.840 (34.393)       NE (NE)        152.407 (22.311)       NE (NE)     
    +#>       Median                     156.169              NE              161.670               NE              149.556               NE       
    +#>       Min - Max               78.31 - 210.70        NE - NE        79.76 - 210.40        NE - NE        108.21 - 184.88        NE - NE     
    +#>     BASELINE                                                                                                                               
    +#>       n                             15                                   15                                    15                          
    +#>       Mean (SD)              145.925 (28.231)                     152.007 (28.664)                      154.173 (26.317)                   
    +#>       Median                     142.705                              157.698                               155.282                        
    +#>       Min - Max               85.21 - 195.68                       98.90 - 194.62                        86.65 - 192.68                    
    +#>     WEEK 1 DAY 8                                                                                                                           
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              156.509 (21.097)   10.584 (34.598)   147.480 (33.473)   -4.527 (48.895)    143.319 (30.759)   -10.854 (34.553)
    +#>       Median                     160.711             5.802            155.030             2.758             145.548             -5.636     
    +#>       Min - Max              126.84 - 185.53    -53.28 - 91.52     85.22 - 189.88     -77.34 - 90.98     90.37 - 191.58     -65.71 - 49.04 
    +#>     WEEK 2 DAY 15                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              144.202 (33.676)   -1.723 (27.067)   136.892 (30.178)   -15.115 (37.794)   148.622 (27.088)   -5.551 (44.670) 
    +#>       Median                     144.253             5.325            142.679            -14.083            147.102            -11.512     
    +#>       Min - Max               62.56 - 203.66    -53.89 - 44.16     70.34 - 174.27     -83.07 - 62.39    108.82 - 200.23    -69.54 - 113.59 
    +#>     WEEK 3 DAY 22                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              154.887 (35.374)   8.962 (38.455)    149.761 (28.944)   -2.247 (44.835)    150.460 (21.352)   -3.712 (37.984) 
    +#>       Median                     158.938            17.191            155.044             -1.796            156.505             -7.606     
    +#>       Min - Max              112.32 - 218.83    -47.28 - 96.18     84.42 - 192.92    -110.20 - 94.02     94.70 - 180.41     -74.91 - 72.74 
    +#>     WEEK 4 DAY 29                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              150.159 (32.249)   4.234 (32.965)    156.043 (22.863)    4.036 (42.494)    145.714 (22.980)   -8.458 (33.175) 
    +#>       Median                     145.506             3.754            149.094            -10.000            150.797            -14.432     
    +#>       Min - Max               69.37 - 210.43    -89.16 - 54.32    113.57 - 195.10     -71.44 - 77.75    106.91 - 188.09     -41.95 - 65.16 
    +#>     WEEK 5 DAY 36                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              155.964 (30.945)   10.039 (42.252)   156.387 (35.274)    4.380 (51.782)    143.592 (33.170)   -10.581 (44.799)
    +#>       Median                     158.142             1.448            164.552             7.060             148.501             -2.385     
    +#>       Min - Max              110.61 - 212.47    -53.91 - 90.45     63.28 - 198.79    -131.34 - 86.84     92.18 - 191.05     -78.77 - 64.35 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cfbt01_lyt.html b/v0.2.8/reference/cfbt01_lyt.html new file mode 100644 index 0000000000..5fcccea51c --- /dev/null +++ b/v0.2.8/reference/cfbt01_lyt.html @@ -0,0 +1,150 @@ + +cfbt01 Layout — cfbt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    cfbt01 Layout

    +
    + +
    +

    Usage

    +
    cfbt01_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_avisit,
    +  lbl_param,
    +  summaryvars,
    +  summaryvars_lbls,
    +  row_split_var,
    +  row_split_lbl,
    +  visitvar,
    +  precision,
    +  page_var,
    +  .stats,
    +  skip,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_avisit
    +

    (string) label of the visitvar variable.

    + + +
    lbl_param
    +

    (string) label of the PARAM variable.

    + + +
    summaryvars
    +

    (character) the variables to be analyzed. For this table, AVAL and CHG by default.

    + + +
    summaryvars_lbls
    +

    (character) the label of the variables to be analyzed.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    row_split_lbl
    +

    (character) label of further row splits.

    + + +
    visitvar
    +

    (string) typically one of "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    .stats
    +

    (character) statistics names, see tern::analyze_vars().

    + + +
    skip
    +

    Named (list) of visit values that need to be inhibited.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cfbt01_post.html b/v0.2.8/reference/cfbt01_post.html new file mode 100644 index 0000000000..ad3242f4ac --- /dev/null +++ b/v0.2.8/reference/cfbt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cfbt01_pre.html b/v0.2.8/reference/cfbt01_pre.html new file mode 100644 index 0000000000..ad3242f4ac --- /dev/null +++ b/v0.2.8/reference/cfbt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/check_all_colnames.html b/v0.2.8/reference/check_all_colnames.html new file mode 100644 index 0000000000..e566476613 --- /dev/null +++ b/v0.2.8/reference/check_all_colnames.html @@ -0,0 +1,93 @@ + +Check that all names are among column names — check_all_colnames • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check that all names are among column names

    +
    + +
    +

    Usage

    +
    check_all_colnames(df, x, null_ok = TRUE, qualifier = NULL)
    +
    + +
    +

    Arguments

    + + +
    df
    +

    (data.frame)

    + + +
    x
    +

    (character) the names of the columns to be checked.

    + + +
    null_ok
    +

    (flag) can x be NULL.

    + + +
    qualifier
    +

    (string) to be returned if the check fails.

    + +
    +
    +

    Value

    +

    invisible NULL or a string if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/check_one_colnames.html b/v0.2.8/reference/check_one_colnames.html new file mode 100644 index 0000000000..56d4d71708 --- /dev/null +++ b/v0.2.8/reference/check_one_colnames.html @@ -0,0 +1,93 @@ + +Check that at least one name is among column names — check_one_colnames • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Check that at least one name is among column names

    +
    + +
    +

    Usage

    +
    check_one_colnames(df, x, null_ok = TRUE, qualifier = NULL)
    +
    + +
    +

    Arguments

    + + +
    df
    +

    (data.frame)

    + + +
    x
    +

    (character) the names of the columns to be checked.

    + + +
    null_ok
    +

    (flag) can x be NULL.

    + + +
    qualifier
    +

    (string) to be returned if the check fails.

    + +
    +
    +

    Value

    +

    invisible NULL or a string if the criteria are not fulfilled.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/chevron-package.html b/v0.2.8/reference/chevron-package.html new file mode 100644 index 0000000000..7a9cca7720 --- /dev/null +++ b/v0.2.8/reference/chevron-package.html @@ -0,0 +1,84 @@ + +chevron package — chevron-package • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Provide standard tables, listings, and graphs (TLGs) libraries used in clinical trials. This package implements a structure to reformat the data with 'dunlin', create reporting tables using 'rtables' and 'tern' with standardized input arguments to enable quick generation of standard outputs. In addition, it also provides comprehensive data checks and script generation functionality.

    +
    + + + +
    +

    Author

    +

    Maintainer: Liming Li liming.li@roche.com

    +

    Authors:

    Other contributors:

    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/chevron.html b/v0.2.8/reference/chevron.html new file mode 100644 index 0000000000..08eb43cf6d --- /dev/null +++ b/v0.2.8/reference/chevron.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_g-class.html b/v0.2.8/reference/chevron_g-class.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_g-class.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_g.html b/v0.2.8/reference/chevron_g.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_g.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_graph.html b/v0.2.8/reference/chevron_graph.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_graph.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_l-class.html b/v0.2.8/reference/chevron_l-class.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_l-class.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_l.html b/v0.2.8/reference/chevron_l.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_l.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_listing.html b/v0.2.8/reference/chevron_listing.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_listing.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_simple-class.html b/v0.2.8/reference/chevron_simple-class.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_simple-class.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_simple.html b/v0.2.8/reference/chevron_simple.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_simple.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_t-class.html b/v0.2.8/reference/chevron_t-class.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_t-class.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_t.html b/v0.2.8/reference/chevron_t.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_t.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_table.html b/v0.2.8/reference/chevron_table.html new file mode 100644 index 0000000000..ffa67c2d25 --- /dev/null +++ b/v0.2.8/reference/chevron_table.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/chevron_tlg-class.html b/v0.2.8/reference/chevron_tlg-class.html new file mode 100644 index 0000000000..62fa093da1 --- /dev/null +++ b/v0.2.8/reference/chevron_tlg-class.html @@ -0,0 +1,174 @@ + +chevron_t — chevron_tlg-class • chevron + Skip to contents + + +
    +
    +
    + +
    +

    chevron_t, a subclass of chevron_tlg with specific validation criteria to handle table creation

    +

    chevron_l, a subclass of chevron_tlg with specific validation criteria to handle listing creation

    +

    chevron_g, a subclass of chevron_tlg with specific validation criteria to handle graph creation

    +

    chevron_simple, a subclass of chevron_tlg, where main function is a simple call

    +
    + +
    +

    Usage

    +
    chevron_t(
    +  main = function(adam_db, ...) build_table(basic_table(), adam_db[[1]]),
    +  preprocess = function(adam_db, ...) adam_db,
    +  postprocess = std_postprocessing,
    +  ...
    +)
    +
    +chevron_l(
    +  main = function(adam_db, ...) data.frame(),
    +  preprocess = function(adam_db, ...) adam_db,
    +  postprocess = std_postprocessing,
    +  ...
    +)
    +
    +chevron_g(
    +  main = function(adam_db, ...) ggplot2::ggplot(),
    +  preprocess = function(adam_db, ...) adam_db,
    +  postprocess = std_postprocessing,
    +  ...
    +)
    +
    +chevron_simple()
    +
    + +
    +

    Arguments

    + + +
    main
    +

    (function) returning a tlg, with adam_db as first argument. Typically one of the _main function +of chevron.

    + + +
    preprocess
    +

    (function) returning a pre-processed list of data.frames, with adam_db as first argument. +Typically one of the _pre function of chevron.

    + + +
    postprocess
    +

    (function) returning a post-processed tlg, with tlg as first argument.

    + + +
    ...
    +

    not used

    + +
    +
    +

    Value

    +

    a chevron_t class object.

    +

    a chevron_l class object.

    +

    a chevron_g class object.

    +

    a chevron_simple class object.

    +
    +
    +

    Slots

    + + +
    main
    +

    (function) returning a tlg. Typically one of the *_main function from chevron.

    + + +
    preprocess
    +

    (function) returning a pre-processed list of data.frames amenable to tlg creation. Typically +one of the *_pre function from chevron.

    + + +
    postprocess
    +

    (function) returning a post-processed tlg. Typically one of the *_post function from +chevron.

    + + +
    +
    +

    Note

    +

    To ensure the correct execution of the workflow, additional validation criteria are:

    • the first argument of the main function must be adam_db, the input list of data.frames to pre-process. The +... argument is mandatory.

    • +
    • the first argument of the preprocess function must be adam_db, the input list of data.frames to create +tlg output. The ... argument is mandatory.

    • +
    • the first argument of the postprocess function must be tlg, the input TableTree object to post-process. The +... argument is mandatory.

    • +
    + +
    +

    Examples

    +
    chevron_t_obj <- chevron_t()
    +chevron_t_obj <- chevron_t(postprocess = function(tlg, indent, ...) {
    +  rtables::table_inset(tlg) <- indent
    +  tlg
    +})
    +
    +chevron_l_obj <- chevron_l()
    +
    +chevron_g_obj <- chevron_g()
    +chevron_g_obj <- chevron_g(
    +  postprocess = function(tlg, title, ...) tlg + ggplot2::labs(main = title)
    +)
    +
    +chevron_simple_obj <- chevron_simple()
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cml02a_gl.html b/v0.2.8/reference/cml02a_gl.html new file mode 100644 index 0000000000..3ef9ddb2fb --- /dev/null +++ b/v0.2.8/reference/cml02a_gl.html @@ -0,0 +1,161 @@ + +CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified +Terms.

    +
    + +
    +

    Usage

    +
    cml02a_gl_main(
    +  adam_db,
    +  dataset = "adcm",
    +  key_cols = c("ATC2", "CMDECOD"),
    +  disp_cols = c("ATC2", "CMDECOD", "CMTRT"),
    +  split_into_pages_by_var = NULL,
    +  unique_rows = TRUE,
    +  ...
    +)
    +
    +cml02a_gl_pre(
    +  adam_db,
    +  dataset = "adcm",
    +  disp_cols = c("ATC2", "CMDECOD", "CMTRT"),
    +  ...
    +)
    +
    +cml02a_gl
    +
    + +
    +

    Format

    +

    An object of class chevron_l of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rlistings or a list object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Functions

    + +
    • cml02a_gl_main(): Main TLG function

    • +
    • cml02a_gl_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    run(cml02a_gl, syn_data)
    +#> ATC Class Level 2   WHODrug Preferred Name   Investigator-Specified Treatment Term
    +#> ——————————————————————————————————————————————————————————————————————————————————
    +#> ATCCLAS2 A          medname A_1/3            A_1/3                                
    +#>                     medname A_2/3            A_2/3                                
    +#>                     medname A_3/3            A_3/3                                
    +#> ATCCLAS2 A p2       medname A_3/3            A_3/3                                
    +#> ATCCLAS2 B          medname B_1/4            B_1/4                                
    +#>                     medname B_2/4            B_2/4                                
    +#>                     medname B_3/4            B_3/4                                
    +#>                     medname B_4/4            B_4/4                                
    +#> ATCCLAS2 B p2       medname B_1/4            B_1/4                                
    +#>                     medname B_2/4            B_2/4                                
    +#> ATCCLAS2 B p3       medname B_1/4            B_1/4                                
    +#>                     medname B_2/4            B_2/4                                
    +#> ATCCLAS2 C          medname C_1/2            C_1/2                                
    +#>                     medname C_2/2            C_2/2                                
    +#> ATCCLAS2 C p2       medname C_1/2            C_1/2                                
    +#>                     medname C_2/2            C_2/2                                
    +#> ATCCLAS2 C p3       medname C_2/2            C_2/2                                
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cml02a_gl_pre.html b/v0.2.8/reference/cml02a_gl_pre.html new file mode 100644 index 0000000000..1517e3b18c --- /dev/null +++ b/v0.2.8/reference/cml02a_gl_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cmt01a.html b/v0.2.8/reference/cmt01a.html new file mode 100644 index 0000000000..6304407bd7 --- /dev/null +++ b/v0.2.8/reference/cmt01a.html @@ -0,0 +1,230 @@ + +CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label • chevron + Skip to contents + + +
    +
    +
    + +
    +

    A concomitant medication +table with the number of subjects and the total number of treatments by medication class.

    +
    + +
    +

    Usage

    +
    cmt01_label
    +
    +cmt01a_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = NULL,
    +  row_split_var = "ATC2",
    +  medname_var = "CMDECOD",
    +  summary_labels = setNames(rep(list(cmt01_label), length(row_split_var) + 1L),
    +    c("TOTAL", row_split_var)),
    +  ...
    +)
    +
    +cmt01a_pre(adam_db, ...)
    +
    +cmt01a_post(
    +  tlg,
    +  prune_0 = TRUE,
    +  sort_by_freq = FALSE,
    +  row_split_var = "ATC2",
    +  medname_var = "CMDECOD",
    +  ...
    +)
    +
    +cmt01a
    +
    + +
    +

    Format

    +

    An object of class character of length 2.

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) the variable defining the medication category. By default ATC2.

    + + +
    medname_var
    +

    (string) variable name of medical treatment name.

    + + +
    summary_labels
    +

    (list) of summarize labels. See details.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + + +
    sort_by_freq
    +

    (flag) whether to sort medication class by frequency.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Data should be filtered for concomitant medication. (ATIREL == "CONCOMITANT").

    • +
    • Numbers represent absolute numbers of subjects and fraction of N, or absolute numbers when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort by medication class alphabetically and within medication class by decreasing total number of patients with +the specific medication. +summary_labels is used to control the summary for each level. If "all" is used, then each split will have that +summary statistic with the labels. One special case is "TOTAL", this is for the overall population.

    • +
    +
    +

    Functions

    + +
    • cmt01_label: Default labels

    • +
    • cmt01a_main(): Main TLG function

    • +
    • cmt01a_pre(): Preprocessing

    • +
    • cmt01a_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adcm table with the columns specified in row_split_var and medname_var +as well as "CMSEQ".

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +
    +proc_data <- syn_data
    +proc_data$adcm <- proc_data$adcm %>%
    +  filter(ATIREL == "CONCOMITANT")
    +
    +run(cmt01a, proc_data)
    +#>   ATC Level 2 Text                                         A: Drug X    B: Placebo   C: Combination
    +#>     Other Treatment                                          (N=15)       (N=15)         (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one treatment     13 (86.7%)   14 (93.3%)     14 (93.3%)  
    +#>   Total number of treatments                                   40           40             61      
    +#>   ATCCLAS2 A                                                                                       
    +#>     Total number of patients with at least one treatment   7 (46.7%)    10 (66.7%)     10 (66.7%)  
    +#>     Total number of treatments                                 11           17             19      
    +#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
    +#>     medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
    +#>   ATCCLAS2 A p2                                                                                    
    +#>     Total number of patients with at least one treatment   5 (33.3%)    8 (53.3%)      6 (40.0%)   
    +#>     Total number of treatments                                 6            8              8       
    +#>     medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
    +#>   ATCCLAS2 B                                                                                       
    +#>     Total number of patients with at least one treatment   10 (66.7%)   8 (53.3%)      10 (66.7%)  
    +#>     Total number of treatments                                 16           15             23      
    +#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>     medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
    +#>   ATCCLAS2 B p2                                                                                    
    +#>     Total number of patients with at least one treatment   7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>     Total number of treatments                                 12           8              10      
    +#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>   ATCCLAS2 B p3                                                                                    
    +#>     Total number of patients with at least one treatment   7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>     Total number of treatments                                 12           8              10      
    +#>     medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>   ATCCLAS2 C                                                                                       
    +#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
    +#>     Total number of treatments                                 13           8              19      
    +#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
    +#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
    +#>   ATCCLAS2 C p2                                                                                    
    +#>     Total number of patients with at least one treatment   9 (60.0%)    7 (46.7%)      12 (80.0%)  
    +#>     Total number of treatments                                 13           8              19      
    +#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
    +#>     medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
    +#>   ATCCLAS2 C p3                                                                                    
    +#>     Total number of patients with at least one treatment   4 (26.7%)    5 (33.3%)      7 (46.7%)   
    +#>     Total number of treatments                                 5            5              12      
    +#>     medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cmt01a_main.html b/v0.2.8/reference/cmt01a_main.html new file mode 100644 index 0000000000..28fbea1e8f --- /dev/null +++ b/v0.2.8/reference/cmt01a_main.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cmt01a_post.html b/v0.2.8/reference/cmt01a_post.html new file mode 100644 index 0000000000..28fbea1e8f --- /dev/null +++ b/v0.2.8/reference/cmt01a_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cmt01a_pre.html b/v0.2.8/reference/cmt01a_pre.html new file mode 100644 index 0000000000..28fbea1e8f --- /dev/null +++ b/v0.2.8/reference/cmt01a_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cmt02_pt.html b/v0.2.8/reference/cmt02_pt.html new file mode 100644 index 0000000000..b6a4c89455 --- /dev/null +++ b/v0.2.8/reference/cmt02_pt.html @@ -0,0 +1,192 @@ + +CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    A concomitant medication table with the +number of subjects and the total number of treatments by medication name sorted by frequencies.

    +
    + +
    +

    Usage

    +
    cmt02_pt_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = NULL,
    +  row_split_var = NULL,
    +  medname_var = "CMDECOD",
    +  summary_labels = list(TOTAL = cmt01_label),
    +  ...
    +)
    +
    +cmt02_pt_pre(adam_db, ...)
    +
    +cmt02_pt_post(
    +  tlg,
    +  prune_0 = TRUE,
    +  sort_by_freq = FALSE,
    +  row_split_var = NULL,
    +  medname_var = "CMDECOD",
    +  ...
    +)
    +
    +cmt02_pt
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) the variable defining the medication category. By default ATC2.

    + + +
    medname_var
    +

    (string) variable name of medical treatment name.

    + + +
    summary_labels
    +

    (list) of summarize labels. See details.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + + +
    sort_by_freq
    +

    (flag) whether to sort medication class by frequency.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Data should be filtered for concomitant medication. (ATIREL == "CONCOMITANT").

    • +
    • Numbers represent absolute numbers of subjects and fraction of N, or absolute numbers when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort by medication class alphabetically and within medication class by decreasing total number of patients with +the specific medication. +summary_labels is used to control the summary for each level. If "all" is used, then each split will have that +summary statistic with the labels. One special case is "TOTAL", this is for the overall population.

    • +
    +
    +

    Functions

    + +
    • cmt02_pt_main(): Main TLG function

    • +
    • cmt02_pt_pre(): Preprocessing

    • +
    • cmt02_pt_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adcm table with the columns specified in row_split_var and medname_var +as well as "CMSEQ".

    • +
    + +
    +

    Examples

    +
    run(cmt02_pt, syn_data)
    +#>                                                          A: Drug X    B: Placebo   C: Combination
    +#>   Other Treatment                                          (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one treatment   13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   Total number of treatments                                 58           59             99      
    +#>   medname B_3/4                                          8 (53.3%)    6 (40.0%)      8 (53.3%)   
    +#>   medname B_2/4                                          6 (40.0%)    5 (33.3%)      10 (66.7%)  
    +#>   medname A_3/3                                          5 (33.3%)    8 (53.3%)      6 (40.0%)   
    +#>   medname B_1/4                                          7 (46.7%)    6 (40.0%)      6 (40.0%)   
    +#>   medname A_2/3                                          5 (33.3%)    6 (40.0%)      7 (46.7%)   
    +#>   medname B_4/4                                          4 (26.7%)    5 (33.3%)      8 (53.3%)   
    +#>   medname C_2/2                                          4 (26.7%)    5 (33.3%)      7 (46.7%)   
    +#>   medname A_1/3                                          4 (26.7%)    3 (20.0%)      8 (53.3%)   
    +#>   medname C_1/2                                          6 (40.0%)    2 (13.3%)      6 (40.0%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/cmt02_pt_post.html b/v0.2.8/reference/cmt02_pt_post.html new file mode 100644 index 0000000000..fdb560cd11 --- /dev/null +++ b/v0.2.8/reference/cmt02_pt_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/cmt02_pt_pre.html b/v0.2.8/reference/cmt02_pt_pre.html new file mode 100644 index 0000000000..fdb560cd11 --- /dev/null +++ b/v0.2.8/reference/cmt02_pt_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/convert_to_month.html b/v0.2.8/reference/convert_to_month.html new file mode 100644 index 0000000000..15ad37571e --- /dev/null +++ b/v0.2.8/reference/convert_to_month.html @@ -0,0 +1,85 @@ + +Helper function to convert to months if needed — convert_to_month • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Helper function to convert to months if needed

    +
    + +
    +

    Usage

    +
    convert_to_month(x, unit)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (numeric) time.

    + + +
    unit
    +

    (character) or (factor) time unit.

    + +
    +
    +

    Value

    +

    A numeric vector with the time in months.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/count_children.html b/v0.2.8/reference/count_children.html new file mode 100644 index 0000000000..9a421a08d5 --- /dev/null +++ b/v0.2.8/reference/count_children.html @@ -0,0 +1,68 @@ + +Count Children — count_children • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Count Children

    +
    + +
    +

    Usage

    +
    count_children(x)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/count_or_summarize.html b/v0.2.8/reference/count_or_summarize.html new file mode 100644 index 0000000000..88f95af7a5 --- /dev/null +++ b/v0.2.8/reference/count_or_summarize.html @@ -0,0 +1,89 @@ + +Count or summarize by groups — count_or_summarize • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Count or summarize by groups

    +
    + +
    +

    Usage

    +
    count_or_summarize(lyt, var, level, detail_vars, indent_mod = 0L, ...)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    (PreDataTableLayouts) rtable layout.

    + + +
    var
    +

    (string) of analysis variable.

    + + +
    level
    +

    (string) level to be displayed.

    + + +
    detail_vars
    +

    (character) of variables for detail information.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/count_patients_recursive.html b/v0.2.8/reference/count_patients_recursive.html new file mode 100644 index 0000000000..911f1788ba --- /dev/null +++ b/v0.2.8/reference/count_patients_recursive.html @@ -0,0 +1,89 @@ + +Count patients recursively — count_patients_recursive • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Count patients recursively

    +
    + +
    +

    Usage

    +
    count_patients_recursive(lyt, anl_vars, anl_lbls, lbl_vars)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    (PreDataTableLayouts) rtable layout.

    + + +
    anl_vars
    +

    Named (list) of analysis variables.

    + + +
    anl_lbls
    +

    (character) of labels.

    + + +
    lbl_vars
    +

    Named (list) of analysis labels.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/coxt01.html b/v0.2.8/reference/coxt01.html new file mode 100644 index 0000000000..dae9085c3c --- /dev/null +++ b/v0.2.8/reference/coxt01.html @@ -0,0 +1,211 @@ + +COXT01 (Default) Cox Regression Model Table. — coxt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Cox models are the most commonly used methods to estimate the magnitude of the effect in survival analyses. +It assumes proportional hazards; that is, it assumes that the ratio of the hazards +of the two groups (e.g. two arms) is constant over time. +This ratio is referred to as the "hazard ratio" and is one of the most commonly reported metrics +to describe the effect size in survival analysis.

    +
    + +
    +

    Usage

    +
    coxt01_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  time_var = "AVAL",
    +  event_var = "EVENT",
    +  covariates = c("SEX", "RACE", "AAGE"),
    +  strata = NULL,
    +  lbl_vars = "Effect/Covariate Included in the Model",
    +  multivar = FALSE,
    +  ...
    +)
    +
    +coxt01_pre(adam_db, arm_var = "ARM", ...)
    +
    +coxt01_post(tlg, prune_0 = FALSE, ...)
    +
    +coxt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) the arm variable used for arm splitting.

    + + +
    time_var
    +

    (string) the time variable in a Cox proportional hazards regression model.

    + + +
    event_var
    +

    (string) the event variable in a Cox proportional hazards regression model.

    + + +
    covariates
    +

    (character) will be fitted and the corresponding effect will be estimated.

    + + +
    strata
    +

    (character) will be fitted for the stratified analysis.

    + + +
    lbl_vars
    +

    (string) text label for the a Cox regression model variables.

    + + +
    multivar
    +

    (flag) indicator of whether multivariate cox regression is conducted.

    + + +
    ...
    +

    Further arguments passed to tern::control_coxreg().

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • The reference arm will always the first level of arm_var. Please change the level if you want to +change the reference arms.

    • +
    • The table allows confidence level to be adjusted, default is two-sided 95%.

    • +
    • The stratified analysis is with DISCRETE tie handling (equivalent to tern::control_coxreg(ties = "exact") in R).

    • +
    • Model includes treatment plus specified covariate(s) as factor(s) or numeric(s), +with "SEX", "RACE" and "AAGE" as default candidates.

    • +
    • The selection of the covariates and whether or not there is a selection process +(vs. a fixed, pre-specified list) needs to be pre-specified.

    • +
    • For pairwise comparisons using the hazard ratio, the value for the control group is the denominator.

    • +
    • Keep zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • coxt01_main(): Main TLG function

    • +
    • coxt01_pre(): Preprocessing

    • +
    • coxt01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adtte table with "PARAMCD", "ARM", +"AVAL", "CNSR, and the columns specified by "covariates" which is denoted as +c("SEX", "RACE", "AAGE") by default.

    • +
    + +
    +

    Examples

    +
    library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "CRSD", "adtte")
    +proc_data <- log_filter(proc_data, ARMCD != "ARM C", "adsl")
    +run(coxt01, proc_data)
    +#>                                                Treatment Effect Adjusted for Covariate     
    +#>   Effect/Covariate Included in the Model    n      Hazard Ratio       95% CI       p-value 
    +#>   —————————————————————————————————————————————————————————————————————————————————————————
    +#>   Treatment:                                                                               
    +#>     B: Placebo vs control (A: Drug X)       30         0.68        (0.25, 1.89)     0.4638 
    +#>   Covariate:                                                                               
    +#>     Sex                                     30         0.53        (0.18, 1.58)     0.2553 
    +#>     RACE                                    30         0.79        (0.28, 2.17)     0.6415 
    +#>     Age (yr)                                30         0.67        (0.24, 1.89)     0.4526 
    +
    +run(coxt01, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90)
    +#>                                                Treatment Effect Adjusted for Covariate     
    +#>   Effect/Covariate Included in the Model    n      Hazard Ratio       90% CI       p-value 
    +#>   —————————————————————————————————————————————————————————————————————————————————————————
    +#>   Treatment:                                                                               
    +#>     B: Placebo vs control (A: Drug X)       30         1.03        (0.44, 2.42)     0.9578 
    +#>   Covariate:                                                                               
    +#>     Sex                                     30         0.81        (0.31, 2.10)     0.7214 
    +#>     Age (yr)                                30         1.01        (0.42, 2.40)     0.9856 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/coxt01_lyt.html b/v0.2.8/reference/coxt01_lyt.html new file mode 100644 index 0000000000..963c2e7cbe --- /dev/null +++ b/v0.2.8/reference/coxt01_lyt.html @@ -0,0 +1,93 @@ + +COXT01 Layout — coxt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    COXT01 Layout

    +
    + +
    +

    Usage

    +
    coxt01_lyt(variables, col_split, lbl_vars, control, multivar, ...)
    +
    + +
    +

    Arguments

    + + +
    variables
    +

    (list) list of variables in a Cox proportional hazards regression model.

    + + +
    lbl_vars
    +

    (string) text label for the a Cox regression model variables.

    + + +
    multivar
    +

    (flag) indicator of whether multivariate cox regression is conducted.

    + + +
    ...
    +

    Further arguments passed to tern::control_coxreg().

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/coxt01_post.html b/v0.2.8/reference/coxt01_post.html new file mode 100644 index 0000000000..28f2f99913 --- /dev/null +++ b/v0.2.8/reference/coxt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/coxt01_pre.html b/v0.2.8/reference/coxt01_pre.html new file mode 100644 index 0000000000..28f2f99913 --- /dev/null +++ b/v0.2.8/reference/coxt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/coxt02.html b/v0.2.8/reference/coxt02.html new file mode 100644 index 0000000000..335c2cd79d --- /dev/null +++ b/v0.2.8/reference/coxt02.html @@ -0,0 +1,198 @@ + +COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The COXT02 table follows the same principles as the general Cox model analysis +and produces the estimates for each of the covariates included in the model +(usually the main effects without interaction terms).

    +
    + +
    +

    Usage

    +
    coxt02_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  time_var = "AVAL",
    +  event_var = "EVENT",
    +  covariates = c("SEX", "RACE", "AAGE"),
    +  strata = NULL,
    +  lbl_vars = "Effect/Covariate Included in the Model",
    +  multivar = TRUE,
    +  ...
    +)
    +
    +coxt02
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) the arm variable used for arm splitting.

    + + +
    time_var
    +

    (string) the time variable in a Cox proportional hazards regression model.

    + + +
    event_var
    +

    (string) the event variable in a Cox proportional hazards regression model.

    + + +
    covariates
    +

    (character) will be fitted and the corresponding effect will be estimated.

    + + +
    strata
    +

    (character) will be fitted for the stratified analysis.

    + + +
    lbl_vars
    +

    (string) text label for the a Cox regression model variables.

    + + +
    multivar
    +

    (flag) indicator of whether multivariate cox regression is conducted.

    + + +
    ...
    +

    Further arguments passed to tern::control_coxreg().

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +
    +
    +

    Details

    + +
    • The reference arm will always the first level of arm_var. Please change the level if you want to +change the reference arms.

    • +
    • The table allows confidence level to be adjusted, default is two-sided 95%.

    • +
    • The stratified analysis is with DISCRETE tie handling (equivalent to tern::control_coxreg(ties = "exact") in R).

    • +
    • Model includes treatment plus specified covariate(s) as factor(s) or numeric(s), +with "SEX", "RACE" and "AAGE" as default candidates.

    • +
    • The selection of the covariates and whether or not there is a selection process +(vs. a fixed, pre-specified list) needs to be pre-specified.

    • +
    • For pairwise comparisons using the hazard ratio, the value for the control group is the denominator.

    • +
    • Keep zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • coxt02_main(): Main TLG function

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adtte table with "PARAMCD", "ARM", +"AVAL", "CNSR, and the columns specified by "covariates" which is denoted as +c("SEX", "RACE", "AAGE") by default.

    • +
    + +
    +

    Examples

    +
    library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "CRSD", "adtte")
    +
    +run(coxt02, proc_data)
    +#>   Effect/Covariate Included in the Model                  Hazard Ratio      95% CI       p-value
    +#>   ——————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Treatment:                                                                                    
    +#>     Description of Planned Arm (reference = A: Drug X)                                   0.6859 
    +#>       B: Placebo                                              0.77       (0.29, 2.08)    0.6113 
    +#>       C: Combination                                          0.62       (0.21, 1.82)    0.3853 
    +#>   Covariate:                                                                                    
    +#>     Sex (reference = F)                                                                         
    +#>       M                                                       1.41       (0.61, 3.23)    0.4194 
    +#>     RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE)                                  0.8938 
    +#>       ASIAN                                                   1.69       (0.36, 7.99)    0.5055 
    +#>       BLACK OR AFRICAN AMERICAN                               1.86       (0.29, 11.72)   0.5109 
    +#>       WHITE                                                   2.03       (0.34, 12.25)   0.4414 
    +#>     Age (yr)                                                                                    
    +#>       All                                                     1.00       (0.94, 1.08)    0.8951 
    +
    +run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90)
    +#>   Effect/Covariate Included in the Model                 Hazard Ratio      90% CI      p-value
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Treatment:                                                                                  
    +#>     Description of Planned Arm (reference = A: Drug X)                                 0.7644 
    +#>       B: Placebo                                             0.97       (0.40, 2.35)   0.9586 
    +#>       C: Combination                                         0.70       (0.29, 1.73)   0.5199 
    +#>   Covariate:                                                                                  
    +#>     Sex (reference = F)                                                                       
    +#>       M                                                      1.66       (0.81, 3.41)   0.2468 
    +#>     Age (yr)                                                                                  
    +#>       All                                                    1.01       (0.95, 1.06)   0.8541 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/create_id_listings.html b/v0.2.8/reference/create_id_listings.html new file mode 100644 index 0000000000..3fc056c9c3 --- /dev/null +++ b/v0.2.8/reference/create_id_listings.html @@ -0,0 +1,97 @@ + +Concatenate Site and Subject ID — create_id_listings • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Concatenate Site and Subject ID

    +
    + +
    +

    Usage

    +
    create_id_listings(site, subject, sep = "/")
    +
    + +
    +

    Arguments

    + + +
    site
    +

    (string)

    + + +
    subject
    +

    (string)

    + + +
    sep
    +

    (string)

    + +
    +
    +

    Note

    +

    the {Patient_label} whisker placeholder will be used in the label.

    +
    + +
    +

    Examples

    +
    create_id_listings("BRA-1", "xxx-1234")
    +#> [1] "BRA-1/1234"
    +#> attr(,"label")
    +#> [1] "Center/Patients ID"
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ctcv4_dir.html b/v0.2.8/reference/ctcv4_dir.html new file mode 100644 index 0000000000..e5d7557f9d --- /dev/null +++ b/v0.2.8/reference/ctcv4_dir.html @@ -0,0 +1,73 @@ + +CTC version 4 Grade Direction Data — ctcv4_dir • chevron + Skip to contents + + +
    +
    +
    + +
    +

    CTC version 4 Grade Direction Data

    +
    + +
    +

    Usage

    +
    ctcv4_dir
    +
    + +
    +

    Format

    +

    An object of class data.frame with 35 rows and 3 columns.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ctcv5_dir.html b/v0.2.8/reference/ctcv5_dir.html new file mode 100644 index 0000000000..144a382241 --- /dev/null +++ b/v0.2.8/reference/ctcv5_dir.html @@ -0,0 +1,73 @@ + +CTC version 5 Grade Direction Data — ctcv5_dir • chevron + Skip to contents + + +
    +
    +
    + +
    +

    CTC version 5 Grade Direction Data

    +
    + +
    +

    Usage

    +
    ctcv5_dir
    +
    + +
    +

    Format

    +

    An object of class data.frame with 35 rows and 3 columns.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/deparse_print.html b/v0.2.8/reference/deparse_print.html new file mode 100644 index 0000000000..1e8e187985 --- /dev/null +++ b/v0.2.8/reference/deparse_print.html @@ -0,0 +1,68 @@ + +Deparse print — deparse_print • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Deparse print

    +
    + +
    +

    Usage

    +
    deparse_print(x, indent, max_line = getOption("chevron.arg_max_line", 5L))
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dmt01.html b/v0.2.8/reference/dmt01.html new file mode 100644 index 0000000000..97e99aab9c --- /dev/null +++ b/v0.2.8/reference/dmt01.html @@ -0,0 +1,195 @@ + +DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    For each variable, summary statistics are +by default based on the number of patients in the corresponding n row.

    +
    + +
    +

    Usage

    +
    dmt01_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = "All {Patient_label}",
    +  summaryvars = c("AAGE", "AGEGR1", "SEX", "ETHNIC", "RACE"),
    +  stats = list(default = c("n", "mean_sd", "median", "range", "count_fraction")),
    +  precision = list(),
    +  ...
    +)
    +
    +dmt01_pre(adam_db, ...)
    +
    +dmt01_post(tlg, prune_0 = TRUE, ...)
    +
    +dmt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summaryvars
    +

    (character) variables summarized in demographic table. The label attribute of the corresponding +column in adsl table of adam_db is used as label.

    + + +
    stats
    +

    (named list of character) where names of columns found in .df_row and the values indicate the +statistical analysis to perform. If default is set, and parameter precision not specified, the +value for default will be used.

    + + +
    precision
    +

    (named list of integer) where names are strings found in summaryvars and the values indicate +the number of digits in statistics for numeric variables. If default is set, and parameter precision not +specified, the value for default will be used. If neither are provided, auto determination is used. See +tern::format_auto.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Information from ADSUB are generally included into ADSL before analysis.

    • +
    • Default demographic and characteristics table

    • +
    • If not specified otherwise, numbers represent absolute numbers of patients and fraction of N

    • +
    • Remove zero-count rows

    • +
    • Split columns by arm (planned or actual / code or description)

    • +
    • Include a total column by default

    • +
    +
    +

    Functions

    + +
    • dmt01_main(): Main TLG function

    • +
    • dmt01_pre(): Preprocessing

    • +
    • dmt01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adsl table with the columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    run(dmt01, syn_data)
    +#>                                        A: Drug X    B: Placebo   C: Combination   All Patients
    +#>                                          (N=15)       (N=15)         (N=15)          (N=45)   
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Age (yr)                                                                                    
    +#>     n                                      15           15             15              45     
    +#>     Mean (SD)                          31.3 (5.3)   35.1 (9.0)     36.6 (6.4)      34.3 (7.3) 
    +#>     Median                                31.0         35.0           35.0            34.0    
    +#>     Min - Max                           24 - 40      24 - 57        24 - 49         24 - 57   
    +#>   Age Group                                                                                   
    +#>     n                                      15           15             15              45     
    +#>     <65                                15 (100%)    15 (100%)      15 (100%)       45 (100%)  
    +#>   Sex                                                                                         
    +#>     n                                      15           15             15              45     
    +#>     Male                               3 (20.0%)    7 (46.7%)      5 (33.3%)       15 (33.3%) 
    +#>     Female                             12 (80.0%)   8 (53.3%)      10 (66.7%)      30 (66.7%) 
    +#>   Ethnicity                                                                                   
    +#>     n                                      15           15             15              45     
    +#>     HISPANIC OR LATINO                 2 (13.3%)        0              0            2 (4.4%)  
    +#>     NOT HISPANIC OR LATINO             13 (86.7%)   15 (100%)      13 (86.7%)      41 (91.1%) 
    +#>     NOT REPORTED                           0            0          2 (13.3%)        2 (4.4%)  
    +#>   RACE                                                                                        
    +#>     n                                      15           15             15              45     
    +#>     AMERICAN INDIAN OR ALASKA NATIVE       0        2 (13.3%)       1 (6.7%)        3 (6.7%)  
    +#>     ASIAN                              8 (53.3%)    10 (66.7%)     8 (53.3%)       26 (57.8%) 
    +#>     BLACK OR AFRICAN AMERICAN          4 (26.7%)     1 (6.7%)      4 (26.7%)       9 (20.0%)  
    +#>     WHITE                              3 (20.0%)    2 (13.3%)      2 (13.3%)       7 (15.6%)  
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dmt01_lyt.html b/v0.2.8/reference/dmt01_lyt.html new file mode 100644 index 0000000000..2095a55bf1 --- /dev/null +++ b/v0.2.8/reference/dmt01_lyt.html @@ -0,0 +1,96 @@ + +dmt01 Layout — dmt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    dmt01 Layout

    +
    + +
    +

    Usage

    +
    dmt01_lyt(
    +  arm_var,
    +  lbl_overall,
    +  summaryvars,
    +  summaryvars_lbls,
    +  stats,
    +  precision
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summaryvars_lbls
    +

    (character) labels corresponding to the analyzed variables.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dmt01_post.html b/v0.2.8/reference/dmt01_post.html new file mode 100644 index 0000000000..11a432f996 --- /dev/null +++ b/v0.2.8/reference/dmt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/dmt01_pre.html b/v0.2.8/reference/dmt01_pre.html new file mode 100644 index 0000000000..11a432f996 --- /dev/null +++ b/v0.2.8/reference/dmt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/do_call.html b/v0.2.8/reference/do_call.html new file mode 100644 index 0000000000..1819388e91 --- /dev/null +++ b/v0.2.8/reference/do_call.html @@ -0,0 +1,68 @@ + +Execute a function call — do_call • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Execute a function call

    +
    + +
    +

    Usage

    +
    do_call(what, args)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dose_change_rule.html b/v0.2.8/reference/dose_change_rule.html new file mode 100644 index 0000000000..6757a4e6fe --- /dev/null +++ b/v0.2.8/reference/dose_change_rule.html @@ -0,0 +1,73 @@ + +Dose Change Rule — dose_change_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Dose Change Rule

    +
    + +
    +

    Usage

    +
    dose_change_rule
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 9.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dst01.html b/v0.2.8/reference/dst01.html new file mode 100644 index 0000000000..ce21ebc901 --- /dev/null +++ b/v0.2.8/reference/dst01.html @@ -0,0 +1,204 @@ + +DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The DST01 Disposition Table provides an overview of patients +study completion. For patients who discontinued the study a reason is provided.

    +
    + +
    +

    Usage

    +
    dst01_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = "All {Patient_label}",
    +  study_status_var = "EOSSTT",
    +  detail_vars = list(Discontinued = c("DCSREAS")),
    +  trt_status_var = NULL,
    +  ...
    +)
    +
    +dst01_pre(adam_db, ...)
    +
    +dst01_post(tlg, prune_0 = TRUE, ...)
    +
    +dst01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable. Usually one of ARM, ACTARM, TRT01A, or TRT01A.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    study_status_var
    +

    (string) variable used to define patient status. Default is EOSSTT, however can also be a +variable name with the pattern EOPxxSTT where xx must be substituted by 2 digits referring to the analysis +period.

    + + +
    detail_vars
    +

    Named (list) of grouped display of study_status_var. The names must be subset of unique levels +of study_status_var.

    + + +
    trt_status_var
    +

    (string) variable of treatment status.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Default patient disposition table summarizing the reasons for patients withdrawal.

    • +
    • Numbers represent absolute numbers of patients and fraction of N.

    • +
    • Remove zero-count rows.

    • +
    • Split columns by arm.

    • +
    • Include a total column by default.

    • +
    • Sort withdrawal reasons by alphabetic order.

    • +
    +
    +

    Functions

    + +
    • dst01_main(): Main TLG function

    • +
    • dst01_pre(): Preprocessing

    • +
    • dst01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adsl table with the columns specified by status_var and disc_reason_var.

    • +
    + +
    +

    Examples

    +
    run(dst01, syn_data, detail_vars = list(Ongoing = "STDONS"))
    +#>               A: Drug X    B: Placebo   C: Combination   All Patients
    +#>                 (N=15)       (N=15)         (N=15)          (N=45)   
    +#>   ———————————————————————————————————————————————————————————————————
    +#>   Completed   10 (66.7%)   10 (66.7%)     10 (66.7%)      30 (66.7%) 
    +
    +run(dst01, syn_data, detail_vars = list(Discontinued = "DCSREAS", Ongoing = "STDONS"))
    +#>                                     A: Drug X    B: Placebo   C: Combination   All Patients
    +#>                                       (N=15)       (N=15)         (N=15)          (N=45)   
    +#>   —————————————————————————————————————————————————————————————————————————————————————————
    +#>   Completed                         10 (66.7%)   10 (66.7%)     10 (66.7%)      30 (66.7%) 
    +#>   Discontinued                      5 (33.3%)    5 (33.3%)      5 (33.3%)       15 (33.3%) 
    +#>     ADVERSE EVENT                       0            0           1 (6.7%)        1 (2.2%)  
    +#>     DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)       9 (20.0%)  
    +#>     LACK OF EFFICACY                2 (13.3%)        0              0            2 (4.4%)  
    +#>     PHYSICIAN DECISION                  0            0           1 (6.7%)        1 (2.2%)  
    +#>     PROTOCOL VIOLATION                  0         1 (6.7%)          0            1 (2.2%)  
    +#>     WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0            1 (2.2%)  
    +
    +run(
    +  dst01, syn_data,
    +  detail_vars = list(
    +    Discontinued = c("DCSREASGP", "DCSREAS"),
    +    Ongoing = "STDONS"
    +  )
    +)
    +#>                                       A: Drug X    B: Placebo   C: Combination   All Patients
    +#>                                         (N=15)       (N=15)         (N=15)          (N=45)   
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————
    +#>   Completed                           10 (66.7%)   10 (66.7%)     10 (66.7%)      30 (66.7%) 
    +#>   Discontinued                        5 (33.3%)    5 (33.3%)      5 (33.3%)       15 (33.3%) 
    +#>     Safety                                                                                   
    +#>       ADVERSE EVENT                       0            0           1 (6.7%)        1 (2.2%)  
    +#>       DEATH                           2 (13.3%)    4 (26.7%)      3 (20.0%)       9 (20.0%)  
    +#>     Non-Safety                                                                               
    +#>       LACK OF EFFICACY                2 (13.3%)        0              0            2 (4.4%)  
    +#>       PHYSICIAN DECISION                  0            0           1 (6.7%)        1 (2.2%)  
    +#>       PROTOCOL VIOLATION                  0         1 (6.7%)          0            1 (2.2%)  
    +#>       WITHDRAWAL BY PARENT/GUARDIAN    1 (6.7%)        0              0            1 (2.2%)  
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dst01_lyt.html b/v0.2.8/reference/dst01_lyt.html new file mode 100644 index 0000000000..fb7ac68326 --- /dev/null +++ b/v0.2.8/reference/dst01_lyt.html @@ -0,0 +1,99 @@ + +dst01 Layout — dst01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    dst01 Layout

    +
    + +
    +

    Usage

    +
    dst01_lyt(arm_var, lbl_overall, study_status_var, detail_vars, trt_status_var)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable. Usually one of ARM, ACTARM, TRT01A, or TRT01A.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    study_status_var
    +

    (string) variable used to define patient status. Default is EOSSTT, however can also be a +variable name with the pattern EOPxxSTT where xx must be substituted by 2 digits referring to the analysis +period.

    + + +
    detail_vars
    +

    Named (list) of grouped display of study_status_var.

    + + +
    trt_status_var
    +

    (string) variable of treatment status.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dst01_post.html b/v0.2.8/reference/dst01_post.html new file mode 100644 index 0000000000..f4057054b0 --- /dev/null +++ b/v0.2.8/reference/dst01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/dst01_pre.html b/v0.2.8/reference/dst01_pre.html new file mode 100644 index 0000000000..f4057054b0 --- /dev/null +++ b/v0.2.8/reference/dst01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/dtht01.html b/v0.2.8/reference/dtht01.html new file mode 100644 index 0000000000..5676b14296 --- /dev/null +++ b/v0.2.8/reference/dtht01.html @@ -0,0 +1,193 @@ + +DTHT01 Table 1 (Default) Death Table. — dtht01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    A description of the causes of death optionally with the breakdown of the +OTHER category and/or post-study reporting of death.

    +
    + +
    +

    Usage

    +
    dtht01_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  other_category = FALSE,
    +  time_since_last_dose = FALSE,
    +  ...
    +)
    +
    +dtht01_pre(adam_db, ...)
    +
    +dtht01_post(tlg, prune_0 = TRUE, ...)
    +
    +dtht01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    other_category
    +

    (flag) should the breakdown of the OTHER category be displayed.

    + + +
    time_since_last_dose
    +

    (flag) should the time to event information be displayed.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Numbers represent absolute numbers of subjects and fraction of N, or absolute numbers when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Does not include a total column by default.

    • +
    +
    +

    Functions

    + +
    • dtht01_main(): Main TLG function

    • +
    • dtht01_pre(): Preprocessing

    • +
    • dtht01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adsl table with the columns "DTHFL", "DTHCAT" as well as LDDTHGR1 if +time_since_last_dose is TRUE.

    • +
    + +
    +

    Examples

    +
    run(dtht01, syn_data)
    +#>                            A: Drug X   B: Placebo   C: Combination
    +#>                             (N=15)       (N=15)         (N=15)    
    +#>   ————————————————————————————————————————————————————————————————
    +#>   Total number of deaths   2 (13.3%)   4 (26.7%)      3 (20.0%)   
    +#>   Primary Cause of Death                                          
    +#>     n                          2           4              3       
    +#>     Adverse Event          1 (50.0%)   2 (50.0%)      1 (33.3%)   
    +#>     Progressive Disease    1 (50.0%)       0          2 (66.7%)   
    +#>     Other                      0       2 (50.0%)          0       
    +
    +run(dtht01, syn_data, other_category = TRUE, time_since_last_dose = TRUE)
    +#>                                                               A: Drug X   B: Placebo   C: Combination
    +#>                                                                (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of deaths                                      2 (13.3%)   4 (26.7%)      3 (20.0%)   
    +#>   Primary Cause of Death                                                                             
    +#>     n                                                             2           4              3       
    +#>     Adverse Event                                             1 (50.0%)   2 (50.0%)      1 (33.3%)   
    +#>     Progressive Disease                                       1 (50.0%)       0          2 (66.7%)   
    +#>     Other                                                         0       2 (50.0%)          0       
    +#>       LOST TO FOLLOW UP                                           0        1 (50%)           0       
    +#>       SUICIDE                                                     0        1 (50%)           0       
    +#>   Days from last drug administration                                                                 
    +#>     n                                                             2           4              3       
    +#>     <=30                                                      2 (100%)    1 (25.0%)      2 (66.7%)   
    +#>     >30                                                           0       3 (75.0%)      1 (33.3%)   
    +#>   Primary cause by days from last study drug administration                                          
    +#>     <=30                                                                                             
    +#>       n                                                           2           1              2       
    +#>       Adverse Event                                           1 (50.0%)       0          1 (50.0%)   
    +#>       Progressive Disease                                     1 (50.0%)       0          1 (50.0%)   
    +#>       Other                                                       0        1 (100%)          0       
    +#>     >30                                                                                              
    +#>       n                                                           0           3              1       
    +#>       Adverse Event                                               0       2 (66.7%)          0       
    +#>       Progressive Disease                                         0           0           1 (100%)   
    +#>       Other                                                       0       1 (33.3%)          0       
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dtht01_lyt.html b/v0.2.8/reference/dtht01_lyt.html new file mode 100644 index 0000000000..0549771341 --- /dev/null +++ b/v0.2.8/reference/dtht01_lyt.html @@ -0,0 +1,113 @@ + +dtht01 Layout — dtht01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    dtht01 Layout

    +
    + +
    +

    Usage

    +
    dtht01_lyt(
    +  arm_var,
    +  lbl_overall,
    +  death_flag,
    +  death_var,
    +  other_level,
    +  other_var,
    +  dose_death_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    death_flag
    +

    (string) variable name of death flag.

    + + +
    death_var
    +

    (string) variable name of death category.

    + + +
    other_level
    +

    (string) "Other" level in death category.

    + + +
    other_var
    +

    (string) variable name of death cause under "Other".

    + + +
    dose_death_var
    +

    (string) variable name of the days from last dose.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/dtht01_post.html b/v0.2.8/reference/dtht01_post.html new file mode 100644 index 0000000000..63827e3ce4 --- /dev/null +++ b/v0.2.8/reference/dtht01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/dtht01_pre.html b/v0.2.8/reference/dtht01_pre.html new file mode 100644 index 0000000000..63827e3ce4 --- /dev/null +++ b/v0.2.8/reference/dtht01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/dummy_template.html b/v0.2.8/reference/dummy_template.html new file mode 100644 index 0000000000..480c7d6c64 --- /dev/null +++ b/v0.2.8/reference/dummy_template.html @@ -0,0 +1,80 @@ + +Dummy template. — dummy_template • chevron + Skip to contents + + +
    +
    +
    + +
    +

    This template creates a dummy output.

    +
    + +
    +

    Usage

    +
    dummy_template
    +
    + +
    +

    Format

    +

    An object of class chevron_simple of length 1.

    +
    + +
    +

    Examples

    +
    run(dummy_template, syn_data)
    +#>    all obs
    +#> ——————————
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt01.html b/v0.2.8/reference/egt01.html new file mode 100644 index 0000000000..6f9357a3e7 --- /dev/null +++ b/v0.2.8/reference/egt01.html @@ -0,0 +1,283 @@ + +EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The EGT01 table provides an +overview of the ECG values and its change from baseline of each respective arm +over the course of the trial.

    +
    + +
    +

    Usage

    +
    egt01_main(
    +  adam_db,
    +  dataset = "adeg",
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  row_split_var = NULL,
    +  summaryvars = c("AVAL", "CHG"),
    +  visitvar = "AVISIT",
    +  precision = list(default = 2L),
    +  page_var = "PARAMCD",
    +  .stats = c("n", "mean_sd", "median", "range"),
    +  skip = list(CHG = "BASELINE"),
    +  ...
    +)
    +
    +egt01_pre(adam_db, dataset = "adeg", ...)
    +
    +egt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in +table of adam_db is used as label.

    + + +
    visitvar
    +

    (string) typically one of "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    .stats
    +

    (character) statistics names, see tern::analyze_vars().

    + + +
    skip
    +

    Named (list) of visit values that need to be inhibited.

    + + +
    ...
    +

    additional arguments like .indent_mods, .labels.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • The Analysis Value column, displays the number of patients, the mean, standard deviation, median and range of +the analysis value for each visit.

    • +
    • The Change from Baseline column, displays the number of patient and the mean, standard deviation, +median and range of changes relative to the baseline.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level; first by PARAM labels in alphabetic order then by chronological time point given +by AVISIT. Re-level to customize order

    • +
    +
    +

    Functions

    + +
    • egt01_main(): Main TLG function

    • +
    • egt01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain table named as dataset with the columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    run(egt01, syn_data)
    +#>                                    A: Drug X                                B: Placebo                             C: Combination             
    +#>                                             Change from                               Change from                              Change from    
    +#>                       Value at Visit          Baseline          Value at Visit         Baseline          Value at Visit          Baseline     
    +#>   Analysis Visit          (N=15)               (N=15)               (N=15)              (N=15)               (N=15)               (N=15)      
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Heart Rate                                                                                                                                  
    +#>     BASELINE                                                                                                                                  
    +#>       n                     15                                        15                                       15                             
    +#>       Mean (SD)      76.594 (17.889)                           69.899 (18.788)                          70.492 (18.175)                       
    +#>       Median              77.531                                    77.174                                   74.111                           
    +#>       Min - Max       46.50 - 106.68                            26.42 - 97.69                            45.37 - 115.49                       
    +#>     WEEK 1 DAY 8                                                                                                                              
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      71.140 (23.441)      -5.454 (25.128)      70.958 (14.877)      1.059 (23.345)      67.450 (18.932)      -3.043 (23.753)  
    +#>       Median              77.210               -2.152               70.033              -8.403               68.471               0.181       
    +#>       Min - Max       8.53 - 102.63        -50.97 - 36.54       44.85 - 93.79       -25.34 - 60.50       38.90 - 100.05       -52.20 - 33.13  
    +#>     WEEK 2 DAY 15                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      69.350 (16.083)      -7.244 (28.960)      76.096 (14.958)      6.198 (29.319)      63.694 (12.920)      -6.799 (23.949)  
    +#>       Median              65.746              -11.369               75.323               0.255               61.076               -4.954      
    +#>       Min - Max       47.22 - 101.44       -49.59 - 42.91       47.50 - 111.40      -37.51 - 69.34       43.25 - 86.13        -52.70 - 40.76  
    +#>     WEEK 3 DAY 22                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      73.894 (24.576)      -2.700 (32.079)      67.635 (19.114)      -2.263 (29.989)     72.054 (19.308)       1.562 (27.494)  
    +#>       Median              69.296               5.492                68.468              -2.093               68.686               -5.848      
    +#>       Min - Max       44.15 - 131.73       -62.53 - 38.19       31.89 - 108.87      -52.26 - 66.81       32.16 - 109.86       -49.61 - 35.23  
    +#>     WEEK 4 DAY 29                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      73.241 (19.256)      -3.353 (29.170)      66.524 (25.487)      -3.374 (36.024)     66.600 (22.839)      -3.892 (24.140)  
    +#>       Median              68.689               0.232                66.397              -11.730              64.969               -6.827      
    +#>       Min - Max       33.71 - 111.54       -55.14 - 65.04       19.66 - 111.29      -60.39 - 61.00       10.35 - 100.88       -50.72 - 26.77  
    +#>     WEEK 5 DAY 36                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      61.690 (22.182)      -14.904 (30.330)     60.712 (20.025)      -9.187 (24.587)     72.683 (23.495)       2.191 (26.654)  
    +#>       Median              57.925              -12.660               60.454              -16.100              77.585               14.635      
    +#>       Min - Max       23.89 - 103.74       -60.00 - 57.24       32.53 - 102.02      -52.56 - 50.96       31.21 - 105.05       -42.90 - 34.64  
    +#>   QT Duration                                                                                                                                 
    +#>     BASELINE                                                                                                                                  
    +#>       n                     15                                        15                                       15                             
    +#>       Mean (SD)     335.294 (123.231)                          363.104 (68.160)                         347.311 (86.236)                      
    +#>       Median             372.731                                   386.316                                  348.254                           
    +#>       Min - Max      121.28 - 554.97                           214.65 - 445.53                          170.80 - 508.54                       
    +#>     WEEK 1 DAY 8                                                                                                                              
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      357.361 (85.688)     22.067 (144.166)    415.225 (105.425)    52.121 (144.259)    321.078 (107.553)    -26.233 (129.135) 
    +#>       Median             344.797               49.432              421.950              62.762              307.962              -17.006      
    +#>       Min - Max      241.22 - 517.39      -207.23 - 245.36     234.11 - 604.72     -190.70 - 364.94     118.36 - 480.29      -363.11 - 163.67 
    +#>     WEEK 2 DAY 15                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     344.883 (106.793)     9.589 (174.797)      370.548 (80.862)     7.444 (91.301)      354.129 (95.133)     6.818 (142.397)  
    +#>       Median             312.236               -9.264              388.515              -9.429              365.292               39.930      
    +#>       Min - Max      187.77 - 501.87      -278.91 - 372.71     204.55 - 514.43     -190.58 - 173.87     200.19 - 493.40      -279.46 - 265.56 
    +#>     WEEK 3 DAY 22                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      342.062 (92.568)     6.768 (151.505)     326.684 (116.421)    -36.420 (145.415)    366.245 (99.106)     18.935 (168.417) 
    +#>       Median             352.930              -22.771              298.353              -78.409             329.688              -21.584      
    +#>       Min - Max      199.40 - 476.04      -230.25 - 303.00     151.05 - 561.23     -205.30 - 293.76     249.42 - 580.81      -252.73 - 410.01 
    +#>     WEEK 4 DAY 29                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)      371.650 (44.805)     36.356 (139.308)    333.697 (110.377)    -29.407 (125.592)    333.181 (96.466)    -14.130 (107.622) 
    +#>       Median             375.412               58.958              308.020              -40.987             330.911              -25.820      
    +#>       Min - Max      302.32 - 451.62      -214.07 - 258.04     183.09 - 531.08     -241.72 - 134.12     126.95 - 488.57      -234.92 - 152.49 
    +#>     WEEK 5 DAY 36                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     345.504 (130.543)     10.210 (198.224)     309.919 (84.624)    -53.185 (105.730)    322.931 (67.801)    -24.380 (117.331) 
    +#>       Median             355.730              -23.213              306.219              -12.373             341.988              -26.952      
    +#>       Min - Max       88.38 - 661.12      -271.06 - 539.84     189.01 - 448.58      -256.52 - 91.57     217.51 - 427.16      -291.03 - 171.19 
    +#>   RR Duration                                                                                                                                 
    +#>     BASELINE                                                                                                                                  
    +#>       n                     15                                        15                                       15                             
    +#>       Mean (SD)     1086.908 (363.811)                        1050.034 (390.444)                       1102.659 (310.359)                     
    +#>       Median             1116.849                                  1089.193                                 1250.037                          
    +#>       Min - Max      626.19 - 1653.12                          414.61 - 1721.89                         385.51 - 1430.81                      
    +#>     WEEK 1 DAY 8                                                                                                                              
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     968.499 (287.811)    -118.409 (546.796)   1041.186 (211.201)   -8.848 (435.281)    948.491 (213.746)    -154.168 (442.882)
    +#>       Median             961.296              -147.460             1013.786             24.754              965.429              -224.054     
    +#>       Min - Max      358.92 - 1593.51    -1014.82 - 911.82     714.44 - 1417.52    -618.80 - 847.31     513.35 - 1229.09     -736.69 - 843.58 
    +#>     WEEK 2 DAY 15                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     932.717 (259.634)    -154.191 (331.884)   1139.332 (454.231)   89.298 (582.750)    1021.283 (233.529)   -81.376 (415.781) 
    +#>       Median             950.533              -205.949             1068.007             -5.449              964.616              -142.180     
    +#>       Min - Max      409.68 - 1269.35     -649.69 - 473.09     486.51 - 2048.73    -846.72 - 1148.61    667.36 - 1367.25     -647.47 - 616.15 
    +#>     WEEK 3 DAY 22                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     1068.865 (319.540)   -18.043 (513.412)    1110.882 (259.523)   60.848 (432.700)    1105.918 (306.185)    3.259 (516.734)  
    +#>       Median             1201.998             -65.085              1163.690             51.200              1187.130              30.318      
    +#>       Min - Max      380.49 - 1551.65     -832.86 - 703.74     621.41 - 1453.29    -887.06 - 822.18     446.02 - 1648.32     -984.79 - 816.30 
    +#>     WEEK 4 DAY 29                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     1087.915 (205.940)    1.008 (403.039)     1161.681 (293.257)   111.647 (460.979)   992.134 (283.177)    -110.525 (334.932)
    +#>       Median             1084.658             146.611              1055.223             191.008             1028.997             -112.599     
    +#>       Min - Max      697.59 - 1499.17     -801.16 - 402.97     722.35 - 1762.04    -528.27 - 1191.83    497.14 - 1382.12     -597.95 - 757.99 
    +#>     WEEK 5 DAY 36                                                                                                                             
    +#>       n                     15                   15                   15                  15                   15                   15        
    +#>       Mean (SD)     1016.880 (424.428)   -70.027 (505.078)    1135.131 (224.684)   85.097 (497.679)    1089.527 (238.909)   -13.132 (362.606) 
    +#>       Median             962.584              -142.925             1158.815             -9.553              1081.015              16.706      
    +#>       Min - Max      352.97 - 1843.86    -894.83 - 1162.79     714.34 - 1436.68    -843.41 - 992.34     699.72 - 1611.38     -696.03 - 561.53 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt01_pre.html b/v0.2.8/reference/egt01_pre.html new file mode 100644 index 0000000000..9e84fd0927 --- /dev/null +++ b/v0.2.8/reference/egt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt02_1.html b/v0.2.8/reference/egt02_1.html new file mode 100644 index 0000000000..b047247940 --- /dev/null +++ b/v0.2.8/reference/egt02_1.html @@ -0,0 +1,156 @@ + +EGT02 ECG Abnormalities Table. — egt02_1_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    ECG Parameters outside Normal Limits Regardless of Abnormality at Baseline Table.

    +
    + +
    +

    Usage

    +
    egt02_1_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  exclude_base_abn = FALSE,
    +  ...
    +)
    +
    +egt02_pre(adam_db, ...)
    +
    +egt02_post(tlg, ...)
    +
    +egt02_1
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    exclude_base_abn
    +

    (flag) whether baseline abnormality should be excluded.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count LOW or HIGH values.

    • +
    • Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH".

    • +
    • Does not include a total column by default.

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • egt02_1_main(): Main TLG function

    • +
    • egt02_pre(): Preprocessing

    • +
    • egt02_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adeg table with the "PARAM", "ANRIND" and "BNRIND" columns.

    • +
    + +
    +

    Examples

    +
    run(egt02_1, syn_data)
    +#>   Assessment      A: Drug X      B: Placebo    C: Combination
    +#>    Abnormality      (N=15)         (N=15)          (N=15)    
    +#>   ———————————————————————————————————————————————————————————
    +#>   Heart Rate                                                 
    +#>     Low          4/15 (26.7%)   4/15 (26.7%)    4/15 (26.7%) 
    +#>     High         4/15 (26.7%)    3/15 (20%)      3/15 (20%)  
    +#>   QT Duration                                                
    +#>     Low          2/15 (13.3%)   5/15 (33.3%)     3/15 (20%)  
    +#>     High          3/15 (20%)     6/15 (40%)     2/15 (13.3%) 
    +#>   RR Duration                                                
    +#>     Low           6/15 (40%)    2/15 (13.3%)    4/15 (26.7%) 
    +#>     High         4/15 (26.7%)   5/15 (33.3%)    2/15 (13.3%) 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt02_2.html b/v0.2.8/reference/egt02_2.html new file mode 100644 index 0000000000..1dc1187c30 --- /dev/null +++ b/v0.2.8/reference/egt02_2.html @@ -0,0 +1,146 @@ + +EGT02_2 ECG Abnormalities Table. — egt02_2_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    ECG Parameters outside Normal Limits Among Patients without Abnormality at Baseline Table.

    +
    + +
    +

    Usage

    +
    egt02_2_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  exclude_base_abn = TRUE,
    +  ...
    +)
    +
    +egt02_2
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    exclude_base_abn
    +

    (flag) whether baseline abnormality should be excluded.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count LOW or HIGH values.

    • +
    • Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH".

    • +
    • Does not include a total column by default.

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • egt02_2_main(): Main TLG function

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adeg table with the "PARAM", "ANRIND" and "BNRIND" columns.

    • +
    + +
    +

    Examples

    +
    run(egt02_2, syn_data)
    +#>   Assessment      A: Drug X      B: Placebo    C: Combination
    +#>    Abnormality      (N=15)         (N=15)          (N=15)    
    +#>   ———————————————————————————————————————————————————————————
    +#>   Heart Rate                                                 
    +#>     Low          4/15 (26.7%)   4/14 (28.6%)    4/15 (26.7%) 
    +#>     High         3/13 (23.1%)    3/15 (20%)     2/14 (14.3%) 
    +#>   QT Duration                                                
    +#>     Low          2/12 (16.7%)   5/15 (33.3%)    3/14 (21.4%) 
    +#>     High         3/14 (21.4%)    6/15 (40%)     2/14 (14.3%) 
    +#>   RR Duration                                                
    +#>     Low           6/15 (40%)    2/13 (15.4%)    4/14 (28.6%) 
    +#>     High         4/13 (30.8%)   5/13 (38.5%)    2/15 (13.3%) 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt02_lyt.html b/v0.2.8/reference/egt02_lyt.html new file mode 100644 index 0000000000..b2f723fc12 --- /dev/null +++ b/v0.2.8/reference/egt02_lyt.html @@ -0,0 +1,104 @@ + +egt02 Layout — egt02_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    egt02 Layout

    +
    + +
    +

    Usage

    +
    egt02_lyt(
    +  arm_var = "ACTARM",
    +  lbl_overall,
    +  lbl_vs_assessment = "Assessment",
    +  lbl_vs_abnormality = "Abnormality",
    +  exclude_base_abn
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_vs_assessment
    +

    (string) the label of the assessment variable.

    + + +
    lbl_vs_abnormality
    +

    (string) the label of the abnormality variable.

    + + +
    exclude_base_abn
    +

    (flag) whether to exclude subjects with baseline abnormality from numerator and +denominator.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt02_post.html b/v0.2.8/reference/egt02_post.html new file mode 100644 index 0000000000..18a6ed2102 --- /dev/null +++ b/v0.2.8/reference/egt02_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt02_pre.html b/v0.2.8/reference/egt02_pre.html new file mode 100644 index 0000000000..18a6ed2102 --- /dev/null +++ b/v0.2.8/reference/egt02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt03.html b/v0.2.8/reference/egt03.html new file mode 100644 index 0000000000..d8e6697922 --- /dev/null +++ b/v0.2.8/reference/egt03.html @@ -0,0 +1,191 @@ + +EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The EGT03 Table entries provide the number of patients by baseline assessment and minimum or maximum post-baseline +assessment. Percentages are based on the total number of patients in a treatment group. Baseline is the patient's +last observation prior to initiation of study drug.

    +
    + +
    +

    Usage

    +
    egt03_main(
    +  adam_db,
    +  arm_var = "ACTARMCD",
    +  summaryvar = "BNRIND",
    +  splitvar = "ANRIND",
    +  visitvar = "AVISIT",
    +  page_var = "PARAMCD",
    +  ...
    +)
    +
    +egt03_pre(adam_db, ...)
    +
    +egt03_post(tlg, prune_0 = FALSE, ...)
    +
    +egt03
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (character) the arm variables used for row split, typically "ACTARMCD".

    + + +
    summaryvar
    +

    (character) variables to be analyzed, typically "BNRIND". Labels of the corresponding columns +are used as subtitles.

    + + +
    splitvar
    +

    (character) variables to be analyzed, typically "ANRIND". Labels of the corresponding columns are +used as subtitles.

    + + +
    visitvar
    +

    (string) typically "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • ADEG data are subsetted to contain only "POST-BASELINE MINIMUM"/"POST-BASELINE MAXIMUM" visit +according to the preprocessing.

    • +
    • Percentages are based on the total number of patients in a treatment group.

    • +
    • Split columns by Analysis Reference Range Indicator, typically ANRIND.

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level.

    • +
    +
    +

    Functions

    + +
    • egt03_main(): Main TLG function

    • +
    • egt03_pre(): Preprocessing

    • +
    • egt03_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adeg table with a "ACTARMCD" column as well as columns specified in +summaryvar and splitvar.

    • +
    + +
    +

    Examples

    +
    library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "HR", "adeg")
    +run(egt03, proc_data)
    +#>   Actual Arm Code                            Minimum Post-Baseline Assessment     
    +#>     Baseline Reference Range Indicator      LOW         NORMAL      HIGH   Missing
    +#>   ————————————————————————————————————————————————————————————————————————————————
    +#>   Heart Rate                                                                      
    +#>     ARM A (N=15)                                                                  
    +#>       LOW                                    0             0         0        0   
    +#>       NORMAL                             4 (26.7%)     9 (60.0%)     0        0   
    +#>       HIGH                                   0         2 (13.3%)     0        0   
    +#>       Missing                                0             0         0        0   
    +#>     ARM B (N=15)                                                                  
    +#>       LOW                                    0         1 (6.7%)      0        0   
    +#>       NORMAL                             4 (26.7%)    10 (66.7%)     0        0   
    +#>       HIGH                                   0             0         0        0   
    +#>       Missing                                0             0         0        0   
    +#>     ARM C (N=15)                                                                  
    +#>       LOW                                    0             0         0        0   
    +#>       NORMAL                             4 (26.7%)    10 (66.7%)     0        0   
    +#>       HIGH                                   0         1 (6.7%)      0        0   
    +#>       Missing                                0             0         0        0   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt03_lyt.html b/v0.2.8/reference/egt03_lyt.html new file mode 100644 index 0000000000..61d2d57b58 --- /dev/null +++ b/v0.2.8/reference/egt03_lyt.html @@ -0,0 +1,111 @@ + +egt03 Layout — egt03_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    egt03 Layout

    +
    + +
    +

    Usage

    +
    egt03_lyt(
    +  arm_var,
    +  splitvar,
    +  summaryvar,
    +  lbl_armvar,
    +  lbl_summaryvars,
    +  lbl_param,
    +  page_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    splitvar
    +

    (character) variables to be analyzed, typically "ANRIND". Labels of the corresponding columns are +used as subtitles.

    + + +
    summaryvar
    +

    (character) variables to be analyzed, typically "BNRIND". Labels of the corresponding columns +are used as subtitles.

    + + +
    lbl_armvar
    +

    (string) label of the arm_var variable.

    + + +
    lbl_summaryvars
    +

    (string) label of the summaryvar variable.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt03_post.html b/v0.2.8/reference/egt03_post.html new file mode 100644 index 0000000000..b2ff19d1da --- /dev/null +++ b/v0.2.8/reference/egt03_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt03_pre.html b/v0.2.8/reference/egt03_pre.html new file mode 100644 index 0000000000..b2ff19d1da --- /dev/null +++ b/v0.2.8/reference/egt03_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt05_qtcat.html b/v0.2.8/reference/egt05_qtcat.html new file mode 100644 index 0000000000..826d7beeab --- /dev/null +++ b/v0.2.8/reference/egt05_qtcat.html @@ -0,0 +1,244 @@ + +EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The EGT05_QTCAT table summarizes several electrocardiogram parameters and their evolution +throughout the study.

    +
    + +
    +

    Usage

    +
    egt05_qtcat_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  summaryvars = c("AVALCAT1", "CHGCAT1"),
    +  row_split_var = NULL,
    +  visitvar = "AVISIT",
    +  page_var = NULL,
    +  ...
    +)
    +
    +egt05_qtcat_pre(adam_db, ...)
    +
    +egt05_qtcat_post(tlg, prune_0 = TRUE, ...)
    +
    +egt05_qtcat
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in adeg +table of adam_db is used as name.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    visitvar
    +

    (string) typically "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • The Value at Visit column, displays the categories of the specific "PARAMCD" value for patients.

    • +
    • The Change from Baseline column, displays the categories of the specific "PARAMCD" value +change from baseline for patients.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically "ACTARM".

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level; by chronological time point given by "AVISIT" +or user-defined visit incorporating "ATPT". +Re-level to customize order.

    • +
    • Please note that it is preferable to convert summaryvars to factor.

    • +
    +
    +

    Functions

    + +
    • egt05_qtcat_main(): Main TLG function

    • +
    • egt05_qtcat_pre(): Preprocessing

    • +
    • egt05_qtcat_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adeg table with column specified in visitvar. +For summaryvars, please make sure AVALCAT1 and CHGCAT1 columns existed in input data sets.

    • +
    + +
    +

    Examples

    +
    run(egt05_qtcat, syn_data)
    +#>   Parameter                                                          
    +#>     Analysis Visit           A: Drug X    B: Placebo   C: Combination
    +#>       Category                 (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————
    +#>   QT Duration                                                        
    +#>     BASELINE                                                         
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           13 (86.7%)   15 (100%)      13 (86.7%)  
    +#>         >450 to <=480 msec    1 (6.7%)        0              0       
    +#>         >480 to <=500 msec       0            0           1 (6.7%)   
    +#>         >500 msec             1 (6.7%)        0           1 (6.7%)   
    +#>     WEEK 1 DAY 8                                                     
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           12 (80.0%)   9 (60.0%)      13 (86.7%)  
    +#>         >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
    +#>         >480 to <=500 msec    1 (6.7%)    3 (20.0%)       1 (6.7%)   
    +#>         >500 msec             1 (6.7%)    2 (13.3%)          0       
    +#>       Change from Baseline                                           
    +#>         n                        15           15             15      
    +#>         <=30 msec            7 (46.7%)    6 (40.0%)      9 (60.0%)   
    +#>         >30 to <=60 msec     2 (13.3%)     1 (6.7%)       1 (6.7%)   
    +#>         >60 msec             6 (40.0%)    8 (53.3%)      5 (33.3%)   
    +#>     WEEK 2 DAY 15                                                    
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           11 (73.3%)   14 (93.3%)     12 (80.0%)  
    +#>         >450 to <=480 msec   2 (13.3%)        0          2 (13.3%)   
    +#>         >480 to <=500 msec    1 (6.7%)        0           1 (6.7%)   
    +#>         >500 msec             1 (6.7%)     1 (6.7%)          0       
    +#>       Change from Baseline                                           
    +#>         n                        15           15             15      
    +#>         <=30 msec            9 (60.0%)    12 (80.0%)     7 (46.7%)   
    +#>         >30 to <=60 msec     2 (13.3%)        0          3 (20.0%)   
    +#>         >60 msec             4 (26.7%)    3 (20.0%)      5 (33.3%)   
    +#>     WEEK 3 DAY 22                                                    
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           12 (80.0%)   12 (80.0%)     12 (80.0%)  
    +#>         >450 to <=480 msec   3 (20.0%)     1 (6.7%)       1 (6.7%)   
    +#>         >500 msec                0        2 (13.3%)      2 (13.3%)   
    +#>       Change from Baseline                                           
    +#>         n                        15           15             15      
    +#>         <=30 msec            9 (60.0%)    11 (73.3%)     9 (60.0%)   
    +#>         >30 to <=60 msec      1 (6.7%)     1 (6.7%)          0       
    +#>         >60 msec             5 (33.3%)    3 (20.0%)      6 (40.0%)   
    +#>     WEEK 4 DAY 29                                                    
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           14 (93.3%)   12 (80.0%)     13 (86.7%)  
    +#>         >450 to <=480 msec    1 (6.7%)     1 (6.7%)       1 (6.7%)   
    +#>         >480 to <=500 msec       0            0           1 (6.7%)   
    +#>         >500 msec                0        2 (13.3%)          0       
    +#>       Change from Baseline                                           
    +#>         n                        15           15             15      
    +#>         <=30 msec            6 (40.0%)    9 (60.0%)      9 (60.0%)   
    +#>         >30 to <=60 msec     2 (13.3%)     1 (6.7%)      2 (13.3%)   
    +#>         >60 msec             7 (46.7%)    5 (33.3%)      4 (26.7%)   
    +#>     WEEK 5 DAY 36                                                    
    +#>       Value at Visit                                                 
    +#>         n                        15           15             15      
    +#>         <=450 msec           12 (80.0%)   15 (100%)      15 (100%)   
    +#>         >450 to <=480 msec   2 (13.3%)        0              0       
    +#>         >500 msec             1 (6.7%)        0              0       
    +#>       Change from Baseline                                           
    +#>         n                        15           15             15      
    +#>         <=30 msec            9 (60.0%)    11 (73.3%)     9 (60.0%)   
    +#>         >30 to <=60 msec         0        3 (20.0%)      2 (13.3%)   
    +#>         >60 msec             6 (40.0%)     1 (6.7%)      4 (26.7%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt05_qtcat_lyt.html b/v0.2.8/reference/egt05_qtcat_lyt.html new file mode 100644 index 0000000000..3892a907aa --- /dev/null +++ b/v0.2.8/reference/egt05_qtcat_lyt.html @@ -0,0 +1,129 @@ + +EGT05_QTCAT Layout — egt05_qtcat_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    EGT05_QTCAT Layout

    +
    + +
    +

    Usage

    +
    egt05_qtcat_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_avisit,
    +  lbl_param,
    +  lbl_cat,
    +  summaryvars,
    +  summaryvars_lbls,
    +  row_split_var,
    +  row_split_lbl,
    +  visitvar,
    +  page_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_avisit
    +

    (string) label of the visitvar variable.

    + + +
    lbl_param
    +

    (string) label of the PARAM variable.

    + + +
    lbl_cat
    +

    (string) label of the Category of summaryvars variable. Default as Category.

    + + +
    summaryvars
    +

    (character) the variables to be analyzed. AVALCAT1 and CHGCAT1 by default.

    + + +
    summaryvars_lbls
    +

    (character) the label of the variables to be analyzed.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    visitvar
    +

    (string) typically "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/egt05_qtcat_post.html b/v0.2.8/reference/egt05_qtcat_post.html new file mode 100644 index 0000000000..182ba20ef2 --- /dev/null +++ b/v0.2.8/reference/egt05_qtcat_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/egt05_qtcat_pre.html b/v0.2.8/reference/egt05_qtcat_pre.html new file mode 100644 index 0000000000..182ba20ef2 --- /dev/null +++ b/v0.2.8/reference/egt05_qtcat_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/empty_rule.html b/v0.2.8/reference/empty_rule.html new file mode 100644 index 0000000000..5977e53b39 --- /dev/null +++ b/v0.2.8/reference/empty_rule.html @@ -0,0 +1,73 @@ + +Empty rule — empty_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Empty rule

    +
    + +
    +

    Usage

    +
    empty_rule
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 0.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/execute_with_args.html b/v0.2.8/reference/execute_with_args.html new file mode 100644 index 0000000000..db497ed71f --- /dev/null +++ b/v0.2.8/reference/execute_with_args.html @@ -0,0 +1,74 @@ + +Execute function with given arguments — execute_with_args • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Execute function with given arguments

    +
    + +
    +

    Usage

    +
    execute_with_args(fun, ...)
    +
    + +
    +

    Details

    +

    If the function has ..., this function will not pass other arguments to .... +Only named arguments are passed.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/expand_list.html b/v0.2.8/reference/expand_list.html new file mode 100644 index 0000000000..a029b1b4eb --- /dev/null +++ b/v0.2.8/reference/expand_list.html @@ -0,0 +1,68 @@ + +Expand list to each split — expand_list • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Expand list to each split

    +
    + +
    +

    Usage

    +
    expand_list(lst, split)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ext01.html b/v0.2.8/reference/ext01.html new file mode 100644 index 0000000000..771dc8b1e6 --- /dev/null +++ b/v0.2.8/reference/ext01.html @@ -0,0 +1,333 @@ + +EXT01 Exposure Summary Table. — ext01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The EXT01 table provides an overview of the of the exposure of the +patients in terms of Total dose administered or missed, and treatment duration.

    +
    + +
    +

    Usage

    +
    ext01_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  summaryvars = "AVAL",
    +  row_split_var = "PARCAT2",
    +  page_var = NULL,
    +  map = NULL,
    +  ...
    +)
    +
    +ext01_pre(adam_db, ...)
    +
    +ext01_post(tlg, prune_0 = TRUE, ...)
    +
    +ext01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in adex +table of adam_db is used as label.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    map
    +

    (data.frame) of mapping for split rows.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Default Exposure table

    • +
    • The n row provides the number of non-missing values. The percentages for categorical variables is based on n. +The percentages for Total number of patients with at least one dose modification are based on the number of +patients in the corresponding analysis population given by N.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sorted by alphabetic order of the PARAM value. Transform to factor and re-level for custom order.

    • +
    • ANL01FL is not relevant subset.

    • +
    +
    +

    Functions

    + +
    • ext01_main(): Main TLG function

    • +
    • ext01_pre(): Preprocessing

    • +
    • ext01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adex table with columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    run(ext01, syn_data)
    +#>                                  A: Drug X        B: Placebo      C: Combination 
    +#>   PARCAT2                         (N=15)            (N=15)            (N=15)     
    +#>   ———————————————————————————————————————————————————————————————————————————————
    +#>   Drug A                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)                157.5 (67.4)      115.4 (62.8)       98.6 (68.8)  
    +#>       Median                       174.0             119.0             89.0      
    +#>       Min - Max                53.0 - 239.0      22.0 - 219.0       1.0 - 182.0  
    +#>     Total dose administered                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)               6567.3 (1127.1)   7028.6 (1626.1)   6377.1 (863.7) 
    +#>       Median                      6720.0            7200.0            6480.0     
    +#>       Min - Max               4800.0 - 8400.0   5280.0 - 9360.0   5280.0 - 7440.0
    +#>   Drug B                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)                142.2 (100.3)     105.9 (60.0)      158.2 (96.2)  
    +#>       Median                       160.0             95.0              203.0     
    +#>       Min - Max                17.0 - 232.0      37.0 - 211.0      27.0 - 249.0  
    +#>     Total dose administered                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)               7020.0 (1148.9)   5250.0 (864.7)    5940.0 (1187.9)
    +#>       Median                      6960.0            5160.0            5880.0     
    +#>       Min - Max               5760.0 - 8400.0   4080.0 - 6480.0   4320.0 - 7680.0
    +
    +run(ext01, syn_data, summaryvars = c("AVAL", "AVALCAT1"), prune_0 = FALSE)
    +#>                                  A: Drug X        B: Placebo      C: Combination 
    +#>   PARCAT2                         (N=15)            (N=15)            (N=15)     
    +#>   ———————————————————————————————————————————————————————————————————————————————
    +#>   Drug A                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)                157.5 (67.4)      115.4 (62.8)       98.6 (68.8)  
    +#>       Median                       174.0             119.0             89.0      
    +#>       Min - Max                53.0 - 239.0      22.0 - 219.0       1.0 - 182.0  
    +#>       n                             11                 7                 7       
    +#>       < 1 month                      0             1 (14.3%)         1 (14.3%)   
    +#>       1 to <3 months             3 (27.3%)         1 (14.3%)         3 (42.9%)   
    +#>       3 to <6 months             3 (27.3%)         4 (57.1%)         2 (28.6%)   
    +#>       >=6 months                 5 (45.5%)         1 (14.3%)         1 (14.3%)   
    +#>       <700                           0                 0                 0       
    +#>       700-900                        0                 0                 0       
    +#>       900-1200                       0                 0                 0       
    +#>       >1200                          0                 0                 0       
    +#>       <5000                          0                 0                 0       
    +#>       5000-7000                      0                 0                 0       
    +#>       7000-9000                      0                 0                 0       
    +#>       >9000                          0                 0                 0       
    +#>       7                              0                 0                 0       
    +#>     Total dose administered                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)               6567.3 (1127.1)   7028.6 (1626.1)   6377.1 (863.7) 
    +#>       Median                      6720.0            7200.0            6480.0     
    +#>       Min - Max               4800.0 - 8400.0   5280.0 - 9360.0   5280.0 - 7440.0
    +#>       n                             11                 7                 7       
    +#>       < 1 month                      0                 0                 0       
    +#>       1 to <3 months                 0                 0                 0       
    +#>       3 to <6 months                 0                 0                 0       
    +#>       >=6 months                     0                 0                 0       
    +#>       <700                           0                 0                 0       
    +#>       700-900                        0                 0                 0       
    +#>       900-1200                       0                 0                 0       
    +#>       >1200                          0                 0                 0       
    +#>       <5000                      1 (9.1%)              0                 0       
    +#>       5000-7000                  6 (54.5%)         3 (42.9%)         5 (71.4%)   
    +#>       7000-9000                  4 (36.4%)         3 (42.9%)         2 (28.6%)   
    +#>       >9000                          0             1 (14.3%)             0       
    +#>       7                              0                 0                 0       
    +#>   Drug B                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)                142.2 (100.3)     105.9 (60.0)      158.2 (96.2)  
    +#>       Median                       160.0             95.0              203.0     
    +#>       Min - Max                17.0 - 232.0      37.0 - 211.0      27.0 - 249.0  
    +#>       n                              4                 8                 8       
    +#>       < 1 month                  1 (25.0%)             0             1 (12.5%)   
    +#>       1 to <3 months                 0             4 (50.0%)         2 (25.0%)   
    +#>       3 to <6 months             1 (25.0%)         3 (37.5%)             0       
    +#>       >=6 months                 2 (50.0%)         1 (12.5%)         5 (62.5%)   
    +#>       <700                           0                 0                 0       
    +#>       700-900                        0                 0                 0       
    +#>       900-1200                       0                 0                 0       
    +#>       >1200                          0                 0                 0       
    +#>       <5000                          0                 0                 0       
    +#>       5000-7000                      0                 0                 0       
    +#>       7000-9000                      0                 0                 0       
    +#>       >9000                          0                 0                 0       
    +#>       7                              0                 0                 0       
    +#>     Total dose administered                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)               7020.0 (1148.9)   5250.0 (864.7)    5940.0 (1187.9)
    +#>       Median                      6960.0            5160.0            5880.0     
    +#>       Min - Max               5760.0 - 8400.0   4080.0 - 6480.0   4320.0 - 7680.0
    +#>       n                              4                 8                 8       
    +#>       < 1 month                      0                 0                 0       
    +#>       1 to <3 months                 0                 0                 0       
    +#>       3 to <6 months                 0                 0                 0       
    +#>       >=6 months                     0                 0                 0       
    +#>       <700                           0                 0                 0       
    +#>       700-900                        0                 0                 0       
    +#>       900-1200                       0                 0                 0       
    +#>       >1200                          0                 0                 0       
    +#>       <5000                          0             4 (50.0%)         2 (25.0%)   
    +#>       5000-7000                  2 (50.0%)         4 (50.0%)         4 (50.0%)   
    +#>       7000-9000                  2 (50.0%)             0             2 (25.0%)   
    +#>       >9000                          0                 0                 0       
    +#>       7                              0                 0                 0       
    +
    +levels(syn_data$adex$AVALCAT1) <- c(levels(syn_data$adex$AVALCAT1), "12 months")
    +map <- data.frame(
    +  PARAMCD = "TDURD",
    +  AVALCAT1 = c("< 1 month", "1 to <3 months", ">=6 months", "3 to <6 months", "12 months")
    +)
    +run(ext01, syn_data, summaryvars = c("AVAL", "AVALCAT1"), prune_0 = FALSE, map = map)
    +#>                                  A: Drug X        B: Placebo      C: Combination 
    +#>   PARCAT2                         (N=15)            (N=15)            (N=15)     
    +#>   ———————————————————————————————————————————————————————————————————————————————
    +#>   Drug A                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)                157.5 (67.4)      115.4 (62.8)       98.6 (68.8)  
    +#>       Median                       174.0             119.0             89.0      
    +#>       Min - Max                53.0 - 239.0      22.0 - 219.0       1.0 - 182.0  
    +#>       n                             11                 7                 7       
    +#>       < 1 month                      0             1 (14.3%)         1 (14.3%)   
    +#>       1 to <3 months             3 (27.3%)         1 (14.3%)         3 (42.9%)   
    +#>       >=6 months                 5 (45.5%)         1 (14.3%)         1 (14.3%)   
    +#>       3 to <6 months             3 (27.3%)         4 (57.1%)         2 (28.6%)   
    +#>       12 months                      0                 0                 0       
    +#>     Total dose administered                                                      
    +#>       n                             11                 7                 7       
    +#>       Mean (SD)               6567.3 (1127.1)   7028.6 (1626.1)   6377.1 (863.7) 
    +#>       Median                      6720.0            7200.0            6480.0     
    +#>       Min - Max               4800.0 - 8400.0   5280.0 - 9360.0   5280.0 - 7440.0
    +#>       n                             11                 7                 7       
    +#>       <5000                      1 (9.1%)              0                 0       
    +#>       5000-7000                  6 (54.5%)         3 (42.9%)         5 (71.4%)   
    +#>       7000-9000                  4 (36.4%)         3 (42.9%)         2 (28.6%)   
    +#>       >9000                          0             1 (14.3%)             0       
    +#>   Drug B                                                                         
    +#>     Overall duration (days)                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)                142.2 (100.3)     105.9 (60.0)      158.2 (96.2)  
    +#>       Median                       160.0             95.0              203.0     
    +#>       Min - Max                17.0 - 232.0      37.0 - 211.0      27.0 - 249.0  
    +#>       n                              4                 8                 8       
    +#>       < 1 month                  1 (25.0%)             0             1 (12.5%)   
    +#>       1 to <3 months                 0             4 (50.0%)         2 (25.0%)   
    +#>       >=6 months                 2 (50.0%)         1 (12.5%)         5 (62.5%)   
    +#>       3 to <6 months             1 (25.0%)         3 (37.5%)             0       
    +#>       12 months                      0                 0                 0       
    +#>     Total dose administered                                                      
    +#>       n                              4                 8                 8       
    +#>       Mean (SD)               7020.0 (1148.9)   5250.0 (864.7)    5940.0 (1187.9)
    +#>       Median                      6960.0            5160.0            5880.0     
    +#>       Min - Max               5760.0 - 8400.0   4080.0 - 6480.0   4320.0 - 7680.0
    +#>       n                              4                 8                 8       
    +#>       <5000                          0             4 (50.0%)         2 (25.0%)   
    +#>       5000-7000                  2 (50.0%)         4 (50.0%)         4 (50.0%)   
    +#>       7000-9000                  2 (50.0%)             0             2 (25.0%)   
    +#>       >9000                          0                 0                 0       
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ext01_lyt.html b/v0.2.8/reference/ext01_lyt.html new file mode 100644 index 0000000000..5a9a285655 --- /dev/null +++ b/v0.2.8/reference/ext01_lyt.html @@ -0,0 +1,110 @@ + +ext01 Layout — ext01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    ext01 Layout

    +
    + +
    +

    Usage

    +
    ext01_lyt(
    +  arm_var,
    +  lbl_overall,
    +  summaryvars,
    +  summaryvars_lbls,
    +  row_split_var,
    +  row_split_lbl,
    +  page_var,
    +  map
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summaryvars
    +

    (character) the name of the variable to be analyzed. By default "AVAL".

    + + +
    summaryvars_lbls
    +

    (character) the label associated with the analyzed variable.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    +
    +

    Value

    +

    a PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ext01_post.html b/v0.2.8/reference/ext01_post.html new file mode 100644 index 0000000000..f0d81f762f --- /dev/null +++ b/v0.2.8/reference/ext01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/ext01_pre.html b/v0.2.8/reference/ext01_pre.html new file mode 100644 index 0000000000..f0d81f762f --- /dev/null +++ b/v0.2.8/reference/ext01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/figures/chevron.png b/v0.2.8/reference/figures/chevron.png new file mode 100644 index 0000000000..da233507d7 Binary files /dev/null and b/v0.2.8/reference/figures/chevron.png differ diff --git a/v0.2.8/reference/format_date.html b/v0.2.8/reference/format_date.html new file mode 100644 index 0000000000..da17b96f45 --- /dev/null +++ b/v0.2.8/reference/format_date.html @@ -0,0 +1,99 @@ + +Formatting of date — format_date • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Formatting of date

    +
    + +
    +

    Usage

    +
    format_date(date_format = "%d%b%Y")
    +
    + +
    +

    Arguments

    + + +
    date_format
    +

    (string) the output format.

    + +
    +
    +

    Value

    +

    a function converting a date into string.

    +
    +
    +

    Note

    +

    The date is extracted at the location of the measure, not at the location of the system.

    +
    + +
    +

    Examples

    +
    format_date("%d%b%Y")(as.Date("2021-01-01"))
    +#> [1] "01JAN2021"
    +if ("NZ" %in% OlsonNames()) {
    +  format_date("%d%b%Y")(as.POSIXct("2021-01-01 00:00:01", tz = "NZ"))
    +}
    +#> [1] "01JAN2021"
    +if ("US/Pacific" %in% OlsonNames()) {
    +  format_date("%d%b%Y")(as.POSIXct("2021-01-01 00:00:01", tz = "US/Pacific"))
    +}
    +#> [1] "01JAN2021"
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/fstg01-1.png b/v0.2.8/reference/fstg01-1.png new file mode 100644 index 0000000000..0bb9cd3c7a Binary files /dev/null and b/v0.2.8/reference/fstg01-1.png differ diff --git a/v0.2.8/reference/fstg01.html b/v0.2.8/reference/fstg01.html new file mode 100644 index 0000000000..f9e2b0eadd --- /dev/null +++ b/v0.2.8/reference/fstg01.html @@ -0,0 +1,168 @@ + +FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The template produces the subgroup analysis of best overall response graphic.

    +
    + +
    +

    Usage

    +
    fstg01_main(
    +  adam_db,
    +  dataset = "adrs",
    +  arm_var = "ARM",
    +  rsp_var = "IS_RSP",
    +  subgroups = c("SEX", "AGEGR1", "RACE"),
    +  strata_var = NULL,
    +  stat_var = c("n_tot", "n", "n_rsp", "prop", "or", "ci"),
    +  ...
    +)
    +
    +fstg01_pre(adam_db, ...)
    +
    +fstg01
    +
    + +
    +

    Format

    +

    An object of class chevron_g of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) the arm variable name used for group splitting.

    + + +
    rsp_var
    +

    (string) the response variable name to flag whether each subject is a binary response or not.

    + + +
    subgroups
    +

    (character) the subgroups variable name to list baseline risk factors.

    + + +
    strata_var
    +

    (character) required if stratified analysis is performed.

    + + +
    stat_var
    +

    (character) the names of statistics to be reported in tabulate_rsp_subgroups.

    + + +
    ...
    +

    Further arguments passed to g_forest and extract_rsp_subgroups (a wrapper for +h_odds_ratio_subgroups_df and h_proportion_subgroups_df). For details, see the documentation in tern. +Commonly used arguments include col_symbol_size, col, vline, groups_lists, conf_level, +method, label_all, etc.

    + +
    +
    +

    Value

    +

    the main function returns a grob object.

    +

    a gTree object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    • Keep zero count rows by default.

    • +
    +
    +

    Functions

    + +
    • fstg01_main(): Main TLG Function

    • +
    • fstg01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain the table specified by dataset with "PARAMCD", "ARM", +"AVALC", and the columns specified by subgroups which is denoted as +c("SEX", "AGEGR1", "RACE") by default.

    • +
    • If the plot is too large to be rendered in the output, please provide gp, width_row_names, +width_columns and width_forest manually to make it fit. See tern::g_forest for more details.

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +proc_data <- log_filter(
    +  syn_data,
    +  PARAMCD == "BESRSPI" & ARM %in% c("A: Drug X", "B: Placebo"), "adrs"
    +)
    +run(fstg01, proc_data,
    +  subgroups = c("SEX", "AGEGR1", "RACE"),
    +  conf_level = 0.90, dataset = "adrs"
    +)
    +
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/fstg01_pre.html b/v0.2.8/reference/fstg01_pre.html new file mode 100644 index 0000000000..5a76689e92 --- /dev/null +++ b/v0.2.8/reference/fstg01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/fstg02-1.png b/v0.2.8/reference/fstg02-1.png new file mode 100644 index 0000000000..2a7734d29c Binary files /dev/null and b/v0.2.8/reference/fstg02-1.png differ diff --git a/v0.2.8/reference/fstg02.html b/v0.2.8/reference/fstg02.html new file mode 100644 index 0000000000..e320e53b9e --- /dev/null +++ b/v0.2.8/reference/fstg02.html @@ -0,0 +1,162 @@ + +FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The template produces the subgroup analysis of survival duration graphic.

    +
    + +
    +

    Usage

    +
    fstg02_main(
    +  adam_db,
    +  dataset = "adtte",
    +  arm_var = "ARM",
    +  subgroups = c("SEX", "AGEGR1", "RACE"),
    +  strata_var = NULL,
    +  stat_var = c("n_tot", "n", "median", "hr", "ci"),
    +  ...
    +)
    +
    +fstg02_pre(adam_db, ...)
    +
    +fstg02
    +
    + +
    +

    Format

    +

    An object of class chevron_g of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) the arm variable name used for group splitting.

    + + +
    subgroups
    +

    (character) the subgroups variable name to list baseline risk factors.

    + + +
    strata_var
    +

    (character) required if stratified analysis is performed.

    + + +
    stat_var
    +

    (character) the names of statistics to be reported in tabulate_survival_subgroups.

    + + +
    ...
    +

    Further arguments passed to g_forest and extract_rsp_subgroups (a wrapper for +h_odds_ratio_subgroups_df and h_proportion_subgroups_df). For details, see the documentation in tern. +Commonly used arguments include gp, col_symbol_size, col, vline, groups_lists, conf_level, +method, label_all, etc.

    + +
    +
    +

    Value

    +

    the main function returns a gTree object.

    +

    a gTree object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    • Keep zero count rows by default.

    • +
    +
    +

    Functions

    + +
    • fstg02_main(): Main TLG Function

    • +
    • fstg02_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain the table specified by dataset with "PARAMCD", "ARM", +"AVAL", "AVALU", "CNSR", and the columns specified by subgroups which is denoted as +c("SEX", "AGEGR1", "RACE") by default.

    • +
    • If the plot is too large to be rendered in the output, please refer to FSTG01.

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +proc_data <- log_filter(
    +  syn_data,
    +  PARAMCD == "OS" & ARM %in% c("A: Drug X", "B: Placebo"), "adtte"
    +)
    +run(fstg02, proc_data,
    +  subgroups = c("SEX", "AGEGR1", "RACE"),
    +  conf_level = 0.90, dataset = "adtte"
    +)
    +
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/fstg02_pre.html b/v0.2.8/reference/fstg02_pre.html new file mode 100644 index 0000000000..7dcadd5257 --- /dev/null +++ b/v0.2.8/reference/fstg02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/fuse_sequentially.html b/v0.2.8/reference/fuse_sequentially.html new file mode 100644 index 0000000000..a7c7aa87ca --- /dev/null +++ b/v0.2.8/reference/fuse_sequentially.html @@ -0,0 +1,81 @@ + +Fuse list elements — fuse_sequentially • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Fuse list elements

    +
    + +
    +

    Usage

    +
    fuse_sequentially(x, y)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (list) to fuse.

    + + +
    y
    +

    (list) to fuse. Elements with names already existing in x are discarded.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/gen_args.html b/v0.2.8/reference/gen_args.html new file mode 100644 index 0000000000..45eee38a46 --- /dev/null +++ b/v0.2.8/reference/gen_args.html @@ -0,0 +1,200 @@ + +General Argument Name Convention — gen_args • chevron + Skip to contents + + +
    +
    +
    + +
    +

    General Argument Name Convention

    +
    + +
    +

    Usage

    +
    gen_args(
    +  adam_db,
    +  main,
    +  preprocess,
    +  postprocess,
    +  dataset,
    +  type,
    +  arm_var,
    +  lbl_overall,
    +  prune_0,
    +  req_tables,
    +  deco,
    +  group,
    +  tlg,
    +  visitvar,
    +  visit_value,
    +  paramcd_value,
    +  key_cols,
    +  disp_cols,
    +  row_split_var,
    +  split_into_pages_by_var,
    +  page_var,
    +  unique_rows,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    main
    +

    (function) returning a tlg, with adam_db as first argument. Typically one of the _main function +of chevron.

    + + +
    preprocess
    +

    (function) returning a pre-processed list of data.frames, with adam_db as first argument. +Typically one of the _pre function of chevron.

    + + +
    postprocess
    +

    (function) returning a post-processed tlg, with tlg as first argument.

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    type
    +

    (string) indicating the subclass.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + + +
    req_tables
    +

    (character) names of the required tables.

    + + +
    deco
    +

    (character) decoration with title, subtitles and main_footer content

    + + +
    group
    +

    (list of lists) for group-dependent data binning

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    visitvar
    +

    (string) typically "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    visit_value
    +

    Value of visit variable.

    + + +
    paramcd_value
    +

    Value of PARAMCD variable.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    invisible NULL. This function is for documentation purpose only.

    +
    +
    +

    Details

    +

    the following arguments are better provided through the study object: lbl_overall, arm_var.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_arg.html b/v0.2.8/reference/get_arg.html new file mode 100644 index 0000000000..77b02c1d8c --- /dev/null +++ b/v0.2.8/reference/get_arg.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/get_grade_rule.html b/v0.2.8/reference/get_grade_rule.html new file mode 100644 index 0000000000..e73c6cd756 --- /dev/null +++ b/v0.2.8/reference/get_grade_rule.html @@ -0,0 +1,85 @@ + +Get grade rule — get_grade_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get grade rule

    +
    + +
    +

    Usage

    +
    get_grade_rule(direction = "high", missing = "incl")
    +
    + +
    +

    Arguments

    + + +
    direction
    +

    (string) of abnormality direction.

    + + +
    missing
    +

    (string) method to deal with missing

    + +
    +
    +

    Value

    +

    a rule object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_page_by.html b/v0.2.8/reference/get_page_by.html new file mode 100644 index 0000000000..dafca15be7 --- /dev/null +++ b/v0.2.8/reference/get_page_by.html @@ -0,0 +1,68 @@ + +Get page by value — get_page_by • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get page by value

    +
    + +
    +

    Usage

    +
    get_page_by(var, vars)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_section_div.html b/v0.2.8/reference/get_section_div.html new file mode 100644 index 0000000000..9167793824 --- /dev/null +++ b/v0.2.8/reference/get_section_div.html @@ -0,0 +1,73 @@ + +Get Section dividers — get_section_div • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get Section dividers

    +
    + +
    +

    Usage

    +
    get_section_div()
    +
    + +
    +

    Value

    +

    (character) value with section dividers at corresponding section.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_subset.html b/v0.2.8/reference/get_subset.html new file mode 100644 index 0000000000..c478c8d86f --- /dev/null +++ b/v0.2.8/reference/get_subset.html @@ -0,0 +1,68 @@ + +Subset Arguments and Merge — get_subset • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Subset Arguments and Merge

    +
    + +
    +

    Usage

    +
    get_subset(x, y)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_x_hjust.html b/v0.2.8/reference/get_x_hjust.html new file mode 100644 index 0000000000..c357b8c99f --- /dev/null +++ b/v0.2.8/reference/get_x_hjust.html @@ -0,0 +1,77 @@ + +Get a harmonious value of horizontal justification for x axis — get_x_hjust • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get a harmonious value of horizontal justification for x axis

    +
    + +
    +

    Usage

    +
    get_x_hjust(x)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (numeric) angle between -90 and 90 degree.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/get_x_vjust.html b/v0.2.8/reference/get_x_vjust.html new file mode 100644 index 0000000000..0391bb8add --- /dev/null +++ b/v0.2.8/reference/get_x_vjust.html @@ -0,0 +1,77 @@ + +Get a harmonious value of vertical justification for x axis — get_x_vjust • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Get a harmonious value of vertical justification for x axis

    +
    + +
    +

    Usage

    +
    get_x_vjust(x)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (numeric) angle between -90 and 90 degree.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/gg_list.html b/v0.2.8/reference/gg_list.html new file mode 100644 index 0000000000..fcc1a655f0 --- /dev/null +++ b/v0.2.8/reference/gg_list.html @@ -0,0 +1,81 @@ + +List of gg object — gg_list • chevron + Skip to contents + + +
    +
    +
    + +
    +

    [Deprecated]

    +
    + +
    +

    Usage

    +
    gg_list(...)
    +
    + +
    +

    Arguments

    + + +
    ...
    +

    (ggplot) objects.

    + +
    +
    +

    Value

    +

    a gg_list object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/gg_theme_chevron.html b/v0.2.8/reference/gg_theme_chevron.html new file mode 100644 index 0000000000..600e6624c4 --- /dev/null +++ b/v0.2.8/reference/gg_theme_chevron.html @@ -0,0 +1,98 @@ + +Theme for Chevron Plot — gg_theme_chevron • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Theme for Chevron Plot

    +
    + +
    +

    Usage

    +
    gg_theme_chevron(
    +  grid_y = TRUE,
    +  grid_x = FALSE,
    +  legend_position = "top",
    +  text_axis_x_rot = 45
    +)
    +
    + +
    +

    Arguments

    + + +
    grid_y
    +

    (flag) should horizontal grid be displayed.

    + + +
    grid_x
    +

    (flag) should vertical grid be displayed.

    + + +
    legend_position
    +

    (string) the position of the legend.

    + + +
    text_axis_x_rot
    +

    (numeric) the x axis text rotation angle.

    + +
    +
    +

    Value

    +

    a theme object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/grob_list.html b/v0.2.8/reference/grob_list.html new file mode 100644 index 0000000000..b1ff1b4402 --- /dev/null +++ b/v0.2.8/reference/grob_list.html @@ -0,0 +1,81 @@ + +List of grob object — grob_list • chevron + Skip to contents + + +
    +
    +
    + +
    +

    [Deprecated]

    +
    + +
    +

    Usage

    +
    grob_list(...)
    +
    + +
    +

    Arguments

    + + +
    ...
    +

    (grob) objects.

    + +
    +
    +

    Value

    +

    a grob_list object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/h_format_dec.html b/v0.2.8/reference/h_format_dec.html new file mode 100644 index 0000000000..e52c953175 --- /dev/null +++ b/v0.2.8/reference/h_format_dec.html @@ -0,0 +1,96 @@ + +Decimal formatting — h_format_dec • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Decimal formatting

    +
    + +
    +

    Usage

    +
    h_format_dec(digits, format, ne = NULL)
    +
    + +
    +

    Arguments

    + + +
    digits
    +

    (integer) number of digits.

    + + +
    format
    +

    (string) describing how the numbers should be formatted following the sprintf syntax.

    + + +
    ne
    +

    (string) that should replace actual value. If NULL, no replacement is performed.

    + +
    +
    +

    Value

    +

    function formatting numbers with the defined format.

    +
    + +
    +

    Examples

    +
    fun <- h_format_dec(c(1, 1), "%s - %s")
    +fun(c(123, 567.89))
    +#> [1] "123.0 - 567.9"
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/h_unwrap_layout.html b/v0.2.8/reference/h_unwrap_layout.html new file mode 100644 index 0000000000..c2d2c42832 --- /dev/null +++ b/v0.2.8/reference/h_unwrap_layout.html @@ -0,0 +1,68 @@ + +Helper Function Extracting Layout Functions — h_unwrap_layout • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Helper Function Extracting Layout Functions

    +
    + +
    +

    Usage

    +
    h_unwrap_layout(x, pattern)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ifneeded_split_col.html b/v0.2.8/reference/ifneeded_split_col.html new file mode 100644 index 0000000000..7194d343fa --- /dev/null +++ b/v0.2.8/reference/ifneeded_split_col.html @@ -0,0 +1,89 @@ + +Helper function to add a column split if specified — ifneeded_split_col • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Helper function to add a column split if specified

    +
    + +
    +

    Usage

    +
    ifneeded_split_col(lyt, var, ...)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    (rtables) object.

    + + +
    var
    +

    (string) the name of the variable initiating a new column split.

    + + +
    ...
    +

    Additional arguments for split_cols_by.

    + +
    +
    +

    Value

    +

    rtables object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ifneeded_split_row.html b/v0.2.8/reference/ifneeded_split_row.html new file mode 100644 index 0000000000..4bb16fb779 --- /dev/null +++ b/v0.2.8/reference/ifneeded_split_row.html @@ -0,0 +1,89 @@ + +Helper function to add a row split if specified — ifneeded_split_row • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Helper function to add a row split if specified

    +
    + +
    +

    Usage

    +
    ifneeded_split_row(lyt, var, lbl_var)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    (PreDataTableLayouts) object.

    + + +
    var
    +

    (string) the name of the variable initiating a new row split.

    + + +
    lbl_var
    +

    (string)the label of the variable var.

    + +
    +
    +

    Value

    +

    PreDataTableLayouts object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/index.html b/v0.2.8/reference/index.html new file mode 100644 index 0000000000..1d734d08a6 --- /dev/null +++ b/v0.2.8/reference/index.html @@ -0,0 +1,709 @@ + +Package index • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Package Overview

    + + + + +
    + + + + +
    + + chevron chevron-package + +
    +
    chevron package
    +
    +

    Classes and Instances

    + + + + +
    + + + + +
    + + chevron_t() chevron_l() chevron_g() chevron_simple() + +
    +
    chevron_t
    +
    +

    Methods

    + + + + +
    + + + + +
    + + args_ls() + +
    +
    Get Arguments List
    +
    + + run() + +
    +
    Run the TLG-generating pipeline
    +
    + + main() `main<-`() + +
    +
    Main
    +
    + + preprocess() `preprocess<-`() + +
    +
    Pre process
    +
    + + postprocess() `postprocess<-`() + +
    +
    Post process
    +
    + + script_funs() + +
    +
    Create Script for TLG Generation
    +
    +

    chevron_tlg objects

    + + + + +
    + + + + +
    + + ael01_nollt_main() ael01_nollt_pre() ael01_nollt + +
    +
    AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms.
    +
    + + ael02_main() ael02_pre() ael02 + +
    +
    AEL02 Listing 1 (Default) Listing of Adverse Events.
    +
    + + ael03_main() ael03_pre() ael03 + +
    +
    AEL03 Listing 1 (Default) Listing of Serious Adverse Events.
    +
    + + aet01_main() aet01_pre() aet01_post() aet01 + +
    +
    AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1.
    +
    + + aet01_aesi_main() aet01_aesi_pre() aet01_aesi_post() aet01_aesi + +
    +
    AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table.
    +
    + + aet02_label aet02_main() aet02_pre() aet02_post() aet02 + +
    +
    AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1.
    +
    + + aet03_main() aet03_pre() aet03_post() aet03 + +
    +
    AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1.
    +
    + + aet04_main() aet04_pre() aet04_post() aet04 + +
    +
    AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1.
    +
    + + aet05_main() aet05_pre() aet05_post() aet05 + +
    +
    AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence.
    +
    + + aet05_all_pre() aet05_all + +
    +
    AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences.
    +
    + + aet10_main() aet10_pre() aet10_post() aet10 + +
    +
    AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1.
    +
    + + cfbt01_main() cfbt01_pre() cfbt01_post() cfbt01 + +
    +
    CFBT01 Change from Baseline By Visit Table.
    +
    + + cml02a_gl_main() cml02a_gl_pre() cml02a_gl + +
    +
    CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms.
    +
    + + cmt01_label cmt01a_main() cmt01a_pre() cmt01a_post() cmt01a + +
    +
    CMT01A Concomitant Medication by Medication Class and Preferred Name.
    +
    + + cmt02_pt_main() cmt02_pt_pre() cmt02_pt_post() cmt02_pt + +
    +
    CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name.
    +
    + + coxt01_main() coxt01_pre() coxt01_post() coxt01 + +
    +
    COXT01 (Default) Cox Regression Model Table.
    +
    + + coxt02_main() coxt02 + +
    +
    COXT02 Multi-Variable Cox Regression Model Table.
    +
    + + dmt01_main() dmt01_pre() dmt01_post() dmt01 + +
    +
    DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1.
    +
    + + dst01_main() dst01_pre() dst01_post() dst01 + +
    +
    DST01 Table 1 (Default) Patient Disposition Table 1.
    +
    + + dtht01_main() dtht01_pre() dtht01_post() dtht01 + +
    +
    DTHT01 Table 1 (Default) Death Table.
    +
    + + egt01_main() egt01_pre() egt01 + +
    +
    EGT01 ECG Parameters and Change from Baseline By Visit Table.
    +
    + + egt02_1_main() egt02_pre() egt02_post() egt02_1 + +
    +
    EGT02 ECG Abnormalities Table.
    +
    + + egt02_2_main() egt02_2 + +
    +
    EGT02_2 ECG Abnormalities Table.
    +
    + + egt03_main() egt03_pre() egt03_post() egt03 + +
    +
    EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline.
    +
    + + egt05_qtcat_main() egt05_qtcat_pre() egt05_qtcat_post() egt05_qtcat + +
    +
    EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table.
    +
    + + ext01_main() ext01_pre() ext01_post() ext01 + +
    +
    EXT01 Exposure Summary Table.
    +
    + + fstg01_main() fstg01_pre() fstg01 + +
    +
    FSTG01 Subgroup Analysis of Best Overall Response.
    +
    + + fstg02_main() fstg02_pre() fstg02 + +
    +
    FSTG02 Subgroup Analysis of Survival Duration.
    +
    + + kmg01_main() kmg01_pre() kmg01 + +
    +
    KMG01 Kaplan-Meier Plot 1.
    +
    + + lbt01_main() lbt01_pre() lbt01 + +
    +
    LBT01 Lab Results and Change from Baseline by Visit Table.
    +
    + + lbt04_main() lbt04_pre() lbt04_post() lbt04 + +
    +
    LBT04 Laboratory Abnormalities Not Present at Baseline Table.
    +
    + + lbt05_main() lbt05_pre() lbt05_post() lbt05 + +
    +
    LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked.
    +
    + + lbt06_main() lbt06_pre() lbt06_post() lbt06 + +
    +
    LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1.
    +
    + + lbt07_main() lbt07_pre() lbt07_post() lbt07 + +
    +
    LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit.
    +
    + + lbt14_main() lbt14_pre() lbt14_post() lbt14 + +
    +
    LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction).
    +
    + + lbt15_pre() lbt15 + +
    +
    LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table.
    +
    + + mht01_label mht01_main() mht01_pre() mht01_post() mht01 + +
    +
    MHT01 Medical History Table.
    +
    + + mng01_main() mng01_pre() mng01 + +
    +
    MNG01 Mean Plot Graph.
    +
    + + pdt01_main() pdt01_pre() pdt01_post() pdt01 + +
    +
    pdt01 Major Protocol Deviations Table.
    +
    + + pdt02_main() pdt02_pre() pdt02_post() pdt02 + +
    +
    pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table.
    +
    + + rmpt01_main() rmpt01_pre() rmpt01_post() rmpt01 + +
    +
    RMPT01Duration of Exposure for Risk Management Plan Table.
    +
    + + rmpt03_main() rmpt03_pre() rmpt03 + +
    +
    rmpt03Duration of Exposure for Risk Management Plan Table.
    +
    + + rmpt04_main() rmpt04_pre() rmpt04 + +
    +
    RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table.
    +
    + + rmpt05_main() rmpt05_pre() rmpt05 + +
    +
    RMPT05 Extent of Exposure by Race for Risk Management Plan Table.
    +
    + + rmpt06_main() rmpt06_pre() rmpt06_post() rmpt06 + +
    +
    RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan.
    +
    + + rspt01_main() rspt01_pre() rspt01_post() rspt01 + +
    +
    RSPT01 Binary Outcomes Summary.
    +
    + + ttet01_main() ttet01_pre() ttet01_post() ttet01 + +
    +
    TTET01 Binary Outcomes Summary.
    +
    + + vst01_main() vst01_pre() vst01 + +
    +
    VST01 Vital Sign Results and change from Baseline By Visit Table.
    +
    + + vst02_1_main() vst02_pre() vst02_post() vst02_1 + +
    +
    VST02 Vital Sign Abnormalities Table.
    +
    + + vst02_2_main() vst02_2 + +
    +
    VST02 Vital Sign Abnormalities Table.
    +
    + + dummy_template + +
    +
    Dummy template.
    +
    +

    Data

    + + + + +
    + + + + +
    + + syn_data + +
    +
    Example adam Synthetic Data
    +
    + + ctcv4_dir + +
    +
    CTC version 4 Grade Direction Data
    +
    + + ctcv5_dir + +
    +
    CTC version 5 Grade Direction Data
    +
    + + mla_dir + +
    +
    MLA Grade Direction Data
    +
    +

    Utility Functions

    + + + + +
    + + + + +
    + + assert_single_value() + +
    +
    Check variable only has one unique value.
    +
    + + assert_valid_type() + +
    +
    Check variable is of correct type
    +
    + + assert_valid_var() + +
    +
    Check whether var is valid
    +
    + + assert_valid_var_pair() + +
    +
    Check variables are of same levels
    +
    + + assert_valid_variable() + +
    +
    Check variables in a data frame are valid character or factor.
    +
    + + create_id_listings() + +
    +
    Concatenate Site and Subject ID
    +
    + + report_null() standard_null_report() + +
    +
    Creates NULL Report
    +
    + + std_postprocessing() + +
    +
    Standard Post Processing
    +
    + + smart_prune() + +
    +
    Prune table up to an ElementaryTable
    +
    + + var_labels_for() + +
    +
    Retrieve labels for certain variables
    +
    + + format_date() + +
    +
    Formatting of date
    +
    + + gg_theme_chevron() + +
    +
    Theme for Chevron Plot
    +
    + + h_format_dec() + +
    +
    Decimal formatting
    +
    + + listing_format_chevron() + +
    +
    Format for Chevron Listings
    +
    + + lvls() + +
    +
    Obtain levels from vector
    +
    + + convert_to_month() + +
    +
    Helper function to convert to months if needed
    +
    + + get_section_div() + +
    +
    Get Section dividers
    +
    + + set_section_div() + +
    +
    Set Section Dividers
    +
    +

    Standard Reformatting Rules

    + + + + +
    + + + + +
    + + nocoding + +
    +
    No Coding Available rule
    +
    + + missing_rule + +
    +
    Missing rule
    +
    + + empty_rule + +
    +
    Empty rule
    +
    + + get_grade_rule() + +
    +
    Get grade rule
    +
    + + dose_change_rule + +
    +
    Dose Change Rule
    +
    + + outcome_rule + +
    +
    Outcome Rule
    +
    + + yes_no_rule + +
    +
    Yes/No rule in title case
    +
    +

    Non-exported Documented Functions for Packagage Developers

    + + + + +
    + + + + +
    + + gen_args() + +
    +
    General Argument Name Convention
    +
    + + fuse_sequentially() + +
    +
    Fuse list elements
    +
    +

    Deprecated Functions

    + + + + +
    + + + + +
    + + grob_list() + deprecated +
    +
    List of grob object
    +
    + + gg_list() + deprecated +
    +
    List of gg object
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/kmg01-1.png b/v0.2.8/reference/kmg01-1.png new file mode 100644 index 0000000000..f94d880684 Binary files /dev/null and b/v0.2.8/reference/kmg01-1.png differ diff --git a/v0.2.8/reference/kmg01.html b/v0.2.8/reference/kmg01.html new file mode 100644 index 0000000000..c850fd9422 --- /dev/null +++ b/v0.2.8/reference/kmg01.html @@ -0,0 +1,154 @@ + +KMG01 Kaplan-Meier Plot 1. — kmg01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    KMG01 Kaplan-Meier Plot 1.

    +
    + +
    +

    Usage

    +
    kmg01_main(
    +  adam_db,
    +  dataset = "adtte",
    +  arm_var = "ARM",
    +  strata = NULL,
    +  strat = lifecycle::deprecated(),
    +  ...
    +)
    +
    +kmg01_pre(adam_db, dataset = "adtte", ...)
    +
    +kmg01
    +
    + +
    +

    Format

    +

    An object of class chevron_g of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    strata
    +

    (character) the variable name of stratification variables.

    + + +
    strat
    +

    (character) [Deprecated]; for backwards compatibility only. +Use strata instead.

    + + +
    ...
    +

    Further arguments passed to g_km and control_coxph. For details, see +the documentation in tern. +Commonly used arguments include col, pval_method, ties, conf_level, conf_type, +annot_coxph, annot_stats, etc.

    + +
    +
    +

    Value

    +

    the main function returns a gTree object.

    +

    a gTree object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    +
    +

    Functions

    + +
    • kmg01_main(): Main TLG Function

    • +
    • kmg01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain the table specified by dataset with the columns specified by arm_var.

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +col <- c(
    +  "A: Drug X" = "black",
    +  "B: Placebo" = "blue",
    +  "C: Combination" = "gray"
    +)
    +
    +pre_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
    +run(kmg01, pre_data, dataset = "adtte", col = col)
    +
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/kmg01_pre.html b/v0.2.8/reference/kmg01_pre.html new file mode 100644 index 0000000000..90955dba93 --- /dev/null +++ b/v0.2.8/reference/kmg01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt01.html b/v0.2.8/reference/lbt01.html new file mode 100644 index 0000000000..634a561846 --- /dev/null +++ b/v0.2.8/reference/lbt01.html @@ -0,0 +1,283 @@ + +LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The LBT01 table provides an +overview of the Lab values and its change from baseline of each respective arm +over the course of the trial.

    +
    + +
    +

    Usage

    +
    lbt01_main(
    +  adam_db,
    +  dataset = "adlb",
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  row_split_var = NULL,
    +  summaryvars = c("AVAL", "CHG"),
    +  visitvar = "AVISIT",
    +  precision = list(default = 2L),
    +  page_var = "PARAMCD",
    +  .stats = c("n", "mean_sd", "median", "range"),
    +  skip = list(CHG = "BASELINE"),
    +  ...
    +)
    +
    +lbt01_pre(adam_db, dataset = "adlb", ...)
    +
    +lbt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in +table of adam_db is used as label.

    + + +
    visitvar
    +

    (string) typically one of "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    .stats
    +

    (character) statistics names, see tern::analyze_vars().

    + + +
    skip
    +

    Named (list) of visit values that need to be inhibited.

    + + +
    ...
    +

    additional arguments like .indent_mods, .labels.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • The Analysis Value column, displays the number of patients, the mean, standard deviation, median and range of +the analysis value for each visit.

    • +
    • The Change from Baseline column, displays the number of patient and the mean, standard deviation, +median and range of changes relative to the baseline.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level; first by PARAM labels in alphabetic order then by chronological time point given +by AVISIT. Re-level to customize order

    • +
    +
    +

    Functions

    + +
    • lbt01_main(): Main TLG function

    • +
    • lbt01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain table named as dataset with the columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    run(lbt01, syn_data)
    +#>                                                      A: Drug X                          B: Placebo                        C: Combination          
    +#>                                                              Change from                        Change from                         Change from   
    +#>                                          Value at Visit       Baseline       Value at Visit       Baseline      Value at Visit        Baseline    
    +#>   Analysis Visit                             (N=15)            (N=15)            (N=15)            (N=15)           (N=15)             (N=15)     
    +#>   ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Alanine Aminotransferase Measurement                                                                                                            
    +#>     BASELINE                                                                                                                                      
    +#>       n                                        15                                  15                                 15                          
    +#>       Mean (SD)                          18.655 (12.455)                     16.835 (11.080)                    22.385 (9.452)                    
    +#>       Median                                 16.040                              17.453                             25.250                        
    +#>       Min - Max                           2.43 - 44.06                        1.48 - 31.99                       0.57 - 37.23                     
    +#>     WEEK 1 DAY 8                                                                                                                                  
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                          16.308 (10.850)   -2.348 (17.558)   22.055 (7.537)    5.220 (16.359)   19.574 (9.876)    -2.811 (10.902) 
    +#>       Median                                 14.664            -5.369            22.476            7.252            19.425             -0.995     
    +#>       Min - Max                           0.10 - 36.30     -30.18 - 22.66     9.72 - 33.81     -16.82 - 32.33    1.03 - 36.28      -19.61 - 18.45 
    +#>     WEEK 2 DAY 15                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                          16.646 (10.528)   -2.010 (15.773)   20.758 (9.578)    3.923 (14.084)   10.911 (7.721)    -11.474 (11.002)
    +#>       Median                                 15.470            -6.427            18.499            6.248             9.850             -8.657     
    +#>       Min - Max                           0.40 - 35.29     -29.99 - 32.86     1.56 - 42.84     -24.92 - 29.85    0.35 - 25.01      -27.38 - 2.52  
    +#>     WEEK 3 DAY 22                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                          17.488 (10.679)   -1.167 (15.759)   20.055 (8.086)    3.219 (16.285)   18.413 (9.513)     -3.973 (9.966) 
    +#>       Median                                 14.224             1.355            21.852            5.345            19.529             -7.194     
    +#>       Min - Max                           1.78 - 33.19     -40.09 - 18.58     3.46 - 34.44     -23.02 - 31.38    3.02 - 32.34      -18.70 - 17.30 
    +#>     WEEK 4 DAY 29                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                          16.793 (9.101)    -1.863 (15.499)   17.560 (9.857)    0.725 (13.170)   18.397 (11.618)   -3.989 (13.150) 
    +#>       Median                                 12.816             3.098            17.687            -3.104           18.532             -1.684     
    +#>       Min - Max                           3.58 - 34.00     -32.93 - 18.92     1.90 - 34.08     -16.29 - 22.18    0.72 - 34.47      -30.33 - 17.38 
    +#>     WEEK 5 DAY 36                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                          17.879 (7.239)    -0.776 (15.471)   17.417 (7.065)    0.581 (14.309)   15.173 (8.410)    -7.213 (10.518) 
    +#>       Median                                 18.749             1.108            17.751            2.055            16.394             -8.121     
    +#>       Min - Max                           3.99 - 29.40     -40.08 - 17.24     5.10 - 30.90     -21.68 - 23.41    0.28 - 26.73      -27.12 - 15.83 
    +#>   C-Reactive Protein Measurement                                                                                                                  
    +#>     BASELINE                                                                                                                                      
    +#>       n                                        15                                  15                                 15                          
    +#>       Mean (SD)                           9.032 (0.650)                       9.164 (0.900)                      8.652 (0.769)                    
    +#>       Median                                  8.819                               9.472                              8.502                        
    +#>       Min - Max                            7.81 - 9.93                        7.38 - 10.60                       7.73 - 10.86                     
    +#>     WEEK 1 DAY 8                                                                                                                                  
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           9.050 (1.222)     0.018 (1.242)     8.690 (0.990)    -0.474 (1.418)    9.507 (1.279)     0.854 (1.080)  
    +#>       Median                                  8.960            -0.180             8.734            -0.074            9.830             1.107      
    +#>       Min - Max                           6.87 - 11.33      -1.83 - 2.81      6.84 - 10.14      -3.14 - 1.55     7.27 - 11.09       -1.14 - 2.05  
    +#>     WEEK 2 DAY 15                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           8.825 (0.990)    -0.207 (1.204)     9.371 (1.185)    0.207 (1.572)     8.890 (1.021)     0.238 (1.263)  
    +#>       Median                                  8.860            -0.567             9.073            0.293             8.994             0.462      
    +#>       Min - Max                           7.12 - 10.44      -2.12 - 2.05      8.06 - 12.73      -2.35 - 3.19     6.68 - 10.84       -2.50 - 2.89  
    +#>     WEEK 3 DAY 22                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           9.134 (0.897)     0.102 (1.179)     9.288 (1.033)    0.124 (1.135)     9.176 (0.919)     0.523 (1.209)  
    +#>       Median                                  9.318             0.090             9.413            -0.022            8.963             0.564      
    +#>       Min - Max                           7.38 - 11.00      -1.57 - 1.86      7.42 - 10.66      -1.41 - 3.27     7.72 - 11.20       -2.25 - 3.26  
    +#>     WEEK 4 DAY 29                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           8.728 (0.959)    -0.303 (1.226)     8.971 (0.704)    -0.194 (1.077)    8.662 (0.712)     0.010 (1.039)  
    +#>       Median                                  8.704            -0.046             8.879            -0.375            8.718             0.143      
    +#>       Min - Max                           6.70 - 10.81      -3.17 - 1.99      7.88 - 10.23      -1.59 - 1.54      7.21 - 9.60       -2.63 - 1.68  
    +#>     WEEK 5 DAY 36                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           8.545 (0.846)    -0.487 (1.060)     9.165 (1.182)    0.000 (0.929)     8.654 (0.790)     0.002 (1.102)  
    +#>       Median                                  8.601            -0.452             8.755            0.153             8.766             0.008      
    +#>       Min - Max                           7.10 - 10.03      -2.39 - 1.66      7.86 - 12.50      -1.58 - 1.90      7.37 - 9.92       -3.14 - 1.67  
    +#>   Immunoglobulin A Measurement                                                                                                                    
    +#>     BASELINE                                                                                                                                      
    +#>       n                                        15                                  15                                 15                          
    +#>       Mean (SD)                           2.923 (0.059)                       2.866 (0.083)                      2.887 (0.120)                    
    +#>       Median                                  2.911                               2.862                              2.896                        
    +#>       Min - Max                            2.80 - 3.01                         2.76 - 3.01                        2.65 - 3.14                     
    +#>     WEEK 1 DAY 8                                                                                                                                  
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           2.885 (0.060)    -0.038 (0.082)     2.938 (0.137)    0.073 (0.152)     2.925 (0.091)     0.038 (0.128)  
    +#>       Median                                  2.886            -0.010             2.972            0.109             2.931             0.021      
    +#>       Min - Max                            2.76 - 2.96      -0.18 - 0.06       2.69 - 3.16      -0.27 - 0.27      2.78 - 3.10       -0.12 - 0.28  
    +#>     WEEK 2 DAY 15                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           2.889 (0.141)    -0.034 (0.171)     2.928 (0.075)    0.063 (0.124)     2.913 (0.080)     0.026 (0.156)  
    +#>       Median                                  2.871            -0.024             2.936            0.084             2.910             0.067      
    +#>       Min - Max                            2.67 - 3.16      -0.34 - 0.27       2.79 - 3.03      -0.12 - 0.26      2.78 - 3.09       -0.28 - 0.26  
    +#>     WEEK 3 DAY 22                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           2.875 (0.105)    -0.048 (0.120)     2.919 (0.114)    0.053 (0.151)     2.889 (0.082)     0.002 (0.128)  
    +#>       Median                                  2.861            -0.046             2.938            0.045             2.899             0.020      
    +#>       Min - Max                            2.67 - 3.07      -0.25 - 0.16       2.73 - 3.18      -0.19 - 0.33      2.75 - 3.02       -0.24 - 0.14  
    +#>     WEEK 4 DAY 29                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           2.912 (0.134)    -0.010 (0.140)     2.886 (0.097)    0.020 (0.136)     2.869 (0.104)     -0.019 (0.141) 
    +#>       Median                                  2.942             0.023             2.924            -0.012            2.840             -0.055     
    +#>       Min - Max                            2.63 - 3.16      -0.39 - 0.19       2.58 - 2.96      -0.28 - 0.20      2.74 - 3.08       -0.31 - 0.22  
    +#>     WEEK 5 DAY 36                                                                                                                                 
    +#>       n                                        15                15                15                15               15                 15       
    +#>       Mean (SD)                           2.933 (0.089)     0.010 (0.136)     2.899 (0.094)    0.034 (0.131)     2.902 (0.091)     0.015 (0.168)  
    +#>       Median                                  2.938             0.031             2.936            0.059             2.921             0.026      
    +#>       Min - Max                            2.78 - 3.08      -0.23 - 0.26       2.68 - 3.04      -0.25 - 0.19      2.78 - 3.13       -0.27 - 0.32  
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt01_pre.html b/v0.2.8/reference/lbt01_pre.html new file mode 100644 index 0000000000..35f526bf7d --- /dev/null +++ b/v0.2.8/reference/lbt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt04.html b/v0.2.8/reference/lbt04.html new file mode 100644 index 0000000000..506ff8b5d2 --- /dev/null +++ b/v0.2.8/reference/lbt04.html @@ -0,0 +1,196 @@ + +LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The LBT04 table provides an +overview of laboratory abnormalities not present at baseline.

    +
    + +
    +

    Usage

    +
    lbt04_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  analysis_abn_var = "ANRIND",
    +  baseline_abn_var = "BNRIND",
    +  row_split_var = "PARCAT1",
    +  page_var = tail(row_split_var, 1L),
    +  ...
    +)
    +
    +lbt04_pre(adam_db, ...)
    +
    +lbt04_post(tlg, ...)
    +
    +lbt04
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    analysis_abn_var
    +

    (string) column describing anomaly magnitude

    + + +
    baseline_abn_var
    +

    (string) column describing anomaly at baseline.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count LOW or HIGH values.

    • +
    • Lab test results with missing analysis_abn_var values are excluded.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    +
    +

    Functions

    + +
    • lbt04_main(): Main TLG function

    • +
    • lbt04_pre(): Preprocessing

    • +
    • lbt04_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adlb table with columns "PARCAT1", "PARCAT2", "PARAM", "ANRIND", +and column specified by arm_var.

    • +
    + +
    +

    Examples

    +
    run(lbt04, syn_data)
    +#>   Laboratory Test                           A: Drug X    B: Placebo    C: Combination
    +#>       Direction of Abnormality               (N=15)        (N=15)          (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————
    +#>   CHEMISTRY                                                                          
    +#>     Alanine Aminotransferase Measurement                                             
    +#>       Low                                      0/7           0/2        1/7 (14.3%)  
    +#>       High                                     0/7           0/3            0/8      
    +#>     C-Reactive Protein Measurement                                                   
    +#>       Low                                      0/8       1/2 (50.0%)        0/6      
    +#>       High                                 3/8 (37.5%)       0/2            0/7      
    +#>     Immunoglobulin A Measurement                                                     
    +#>       Low                                      0/5           0/8            0/7      
    +#>       High                                 1/3 (33.3%)   1/8 (12.5%)        0/6      
    +#>   COAGULATION                                                                        
    +#>     Alanine Aminotransferase Measurement                                             
    +#>       Low                                      0/3           0/6            0/4      
    +#>       High                                     0/5           0/7            0/4      
    +#>     C-Reactive Protein Measurement                                                   
    +#>       Low                                      0/5           0/5        1/3 (33.3%)  
    +#>       High                                     0/5       1/6 (16.7%)    1/4 (25.0%)  
    +#>     Immunoglobulin A Measurement                                                     
    +#>       Low                                      0/8           0/9            0/6      
    +#>       High                                     0/8           0/9        1/6 (16.7%)  
    +#>   HEMATOLOGY                                                                         
    +#>     Alanine Aminotransferase Measurement                                             
    +#>       Low                                      0/4           0/5            0/4      
    +#>       High                                     0/6           0/5            0/4      
    +#>     C-Reactive Protein Measurement                                                   
    +#>       Low                                      0/5           0/4            0/3      
    +#>       High                                     0/5           0/4            0/5      
    +#>     Immunoglobulin A Measurement                                                     
    +#>       Low                                      0/3           0/4            0/8      
    +#>       High                                     0/3           0/4            0/7      
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt04_lyt.html b/v0.2.8/reference/lbt04_lyt.html new file mode 100644 index 0000000000..03bed6fdf9 --- /dev/null +++ b/v0.2.8/reference/lbt04_lyt.html @@ -0,0 +1,113 @@ + +lbt04 Layout — lbt04_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    lbt04 Layout

    +
    + +
    +

    Usage

    +
    lbt04_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_param,
    +  lbl_abn_var,
    +  var_parcat,
    +  var_param,
    +  row_split_var,
    +  row_split_lbl,
    +  analysis_abn_var,
    +  variables,
    +  page_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_param
    +

    (string) label of the PARAM variable.

    + + +
    lbl_abn_var
    +

    (string) label of the analysis_abn_var variable.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    variables
    +

    (list) see tern::count_abnormal

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt04_post.html b/v0.2.8/reference/lbt04_post.html new file mode 100644 index 0000000000..344a20c9ad --- /dev/null +++ b/v0.2.8/reference/lbt04_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt04_pre.html b/v0.2.8/reference/lbt04_pre.html new file mode 100644 index 0000000000..344a20c9ad --- /dev/null +++ b/v0.2.8/reference/lbt04_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt05.html b/v0.2.8/reference/lbt05.html new file mode 100644 index 0000000000..3f5d75341c --- /dev/null +++ b/v0.2.8/reference/lbt05.html @@ -0,0 +1,168 @@ + +LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked.

    +
    + +
    +

    Usage

    +
    lbt05_main(adam_db, arm_var = "ACTARM", lbl_overall = NULL, ...)
    +
    +lbt05_pre(adam_db, ...)
    +
    +lbt05_post(tlg, prune_0 = FALSE, ...)
    +
    +lbt05
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Does not remove rows with zero counts by default.

    • +
    • Lab test results with missing AVAL values are excluded.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    +
    +

    Functions

    + +
    • lbt05_main(): Main TLG function

    • +
    • lbt05_pre(): Preprocessing

    • +
    • lbt05_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adlb table with columns "ONTRTFL", "PARCAT2", "PARAM", "ANRIND", +"AVALCAT1", and column specified by arm_var.

    • +
    + +
    +

    Examples

    +
    run(lbt05, syn_data)
    +#>   Laboratory Test                            A: Drug X   B: Placebo   C: Combination
    +#>       Direction of Abnormality                (N=15)       (N=15)         (N=15)    
    +#>   ——————————————————————————————————————————————————————————————————————————————————
    +#>   Alanine Aminotransferase Measurement (n)      15           14             14      
    +#>     Low                                                                             
    +#>       Single, not last                       1 (6.7%)        0          4 (28.6%)   
    +#>       Last or replicated                     5 (33.3%)   4 (28.6%)      4 (28.6%)   
    +#>       Any Abnormality                        6 (40.0%)   4 (28.6%)      8 (57.1%)   
    +#>     High                                                                            
    +#>       Single, not last                           0           0              0       
    +#>       Last or replicated                         0           0              0       
    +#>       Any Abnormality                            0           0              0       
    +#>   C-Reactive Protein Measurement (n)            15           15             15      
    +#>     Low                                                                             
    +#>       Single, not last                       4 (26.7%)       0          3 (20.0%)   
    +#>       Last or replicated                     3 (20.0%)   5 (33.3%)      6 (40.0%)   
    +#>       Any Abnormality                        7 (46.7%)   5 (33.3%)      9 (60.0%)   
    +#>     High                                                                            
    +#>       Single, not last                       1 (6.7%)    3 (20.0%)          0       
    +#>       Last or replicated                     4 (26.7%)   3 (20.0%)      6 (40.0%)   
    +#>       Any Abnormality                        5 (33.3%)   6 (40.0%)      6 (40.0%)   
    +#>   Immunoglobulin A Measurement (n)              13           14             14      
    +#>     Low                                                                             
    +#>       Single, not last                           0           0              0       
    +#>       Last or replicated                         0           0              0       
    +#>       Any Abnormality                            0           0              0       
    +#>     High                                                                            
    +#>       Single, not last                       6 (46.2%)    1 (7.1%)      2 (14.3%)   
    +#>       Last or replicated                     3 (23.1%)   4 (28.6%)      3 (21.4%)   
    +#>       Any Abnormality                        9 (69.2%)   5 (35.7%)      5 (35.7%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt05_lyt.html b/v0.2.8/reference/lbt05_lyt.html new file mode 100644 index 0000000000..f26e3bb635 --- /dev/null +++ b/v0.2.8/reference/lbt05_lyt.html @@ -0,0 +1,93 @@ + +lbt05 Layout — lbt05_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    lbt05 Layout

    +
    + +
    +

    Usage

    +
    lbt05_lyt(arm_var, lbl_overall, lbl_param, lbl_anrind, map)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_param
    +

    (string) label of the PARAM variable.

    + + +
    lbl_anrind
    +

    (string) label of the ANRIND variable.

    + + +
    map
    +

    (data.frame) mapping of PARAMs to directions of abnormality.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt05_post.html b/v0.2.8/reference/lbt05_post.html new file mode 100644 index 0000000000..b17f7af97e --- /dev/null +++ b/v0.2.8/reference/lbt05_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt05_pre.html b/v0.2.8/reference/lbt05_pre.html new file mode 100644 index 0000000000..b17f7af97e --- /dev/null +++ b/v0.2.8/reference/lbt05_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt06.html b/v0.2.8/reference/lbt06.html new file mode 100644 index 0000000000..88633ba949 --- /dev/null +++ b/v0.2.8/reference/lbt06.html @@ -0,0 +1,294 @@ + +LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The LBT06 table produces the standard laboratory abnormalities by visit and +baseline status summary.

    +
    + +
    +

    Usage

    +
    lbt06_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  page_var = "PARAMCD",
    +  ...
    +)
    +
    +lbt06_pre(adam_db, ...)
    +
    +lbt06_post(tlg, prune_0 = FALSE, ...)
    +
    +lbt06
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) the arm variable used for arm splitting.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count "LOW" or "HIGH" values for ANRIND and BNRIND.

    • +
    • Lab test results with missing ANRIND values are excluded.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Keep zero count rows by default.

    • +
    +
    +

    Functions

    + +
    • lbt06_main(): Main TLG function

    • +
    • lbt06_pre(): Preprocessing

    • +
    • lbt06_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adlb table with columns "AVISIT", "ANRIND", "BNRIND", +"ONTRTFL", and "PARCAT2", and column specified by arm_var.

    • +
    + +
    +

    Examples

    +
    run(lbt06, syn_data)
    +#>   Visit                                                                            
    +#>     Abnormality at Visit                  A: Drug X    B: Placebo    C: Combination
    +#>               Baseline Status              (N=15)        (N=15)          (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————
    +#>   Alanine Aminotransferase Measurement                                             
    +#>     WEEK 1 DAY 8                                                                   
    +#>       Low                                                                          
    +#>                 Not low                      0/1           0/6            0/1      
    +#>                 Low                          0/1           0/1            0/1      
    +#>                 Total                        0/2           0/7            0/2      
    +#>       High                                                                         
    +#>                 Not high                     0/2           0/7            0/2      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/2           0/7            0/2      
    +#>     WEEK 2 DAY 15                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/3           0/2            0/2      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/3           0/2            0/2      
    +#>       High                                                                         
    +#>                 Not high                     0/3           0/2            0/2      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/3           0/2            0/2      
    +#>     WEEK 3 DAY 22                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/5           0/3        1/6 (16.7%)  
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/5           0/3        1/6 (16.7%)  
    +#>       High                                                                         
    +#>                 Not high                     0/5           0/3            0/6      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/5           0/3            0/6      
    +#>     WEEK 4 DAY 29                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/3           0/1            0/1      
    +#>                 Low                          0/3           0/2            0/0      
    +#>                 Total                        0/6           0/3            0/1      
    +#>       High                                                                         
    +#>                 Not high                     0/6           0/3            0/1      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/6           0/3            0/1      
    +#>     WEEK 5 DAY 36                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/2           0/2            0/5      
    +#>                 Low                          0/1           0/1            0/0      
    +#>                 Total                        0/3           0/3            0/5      
    +#>       High                                                                         
    +#>                 Not high                     0/3           0/3            0/5      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/3           0/3            0/5      
    +#>   C-Reactive Protein Measurement                                                   
    +#>     WEEK 1 DAY 8                                                                   
    +#>       Low                                                                          
    +#>                 Not low                      0/5           0/3            0/3      
    +#>                 Low                          0/0           0/1            0/0      
    +#>                 Total                        0/5           0/4            0/3      
    +#>       High                                                                         
    +#>                 Not high                     0/5           0/3        1/3 (33.3%)  
    +#>                 High                         0/0           0/1            0/0      
    +#>                 Total                        0/5           0/4        1/3 (33.3%)  
    +#>     WEEK 2 DAY 15                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/8           0/2            0/0      
    +#>                 Low                          0/0           0/0            0/1      
    +#>                 Total                        0/8           0/2            0/1      
    +#>       High                                                                         
    +#>                 Not high                 1/8 (12.5%)       0/1            0/1      
    +#>                 High                         0/0           0/1            0/0      
    +#>                 Total                    1/8 (12.5%)       0/2            0/1      
    +#>     WEEK 3 DAY 22                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/5           0/4            0/4      
    +#>                 Low                          0/0       1/1 (100%)         0/2      
    +#>                 Total                        0/5        1/5 (20%)         0/6      
    +#>       High                                                                         
    +#>                 Not high                  1/5 (20%)     1/5 (20%)         0/6      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                     1/5 (20%)     1/5 (20%)         0/6      
    +#>     WEEK 4 DAY 29                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/2        1/2 (50%)     1/3 (33.3%)  
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/2        1/2 (50%)     1/3 (33.3%)  
    +#>       High                                                                         
    +#>                 Not high                     0/2           0/2            0/3      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/2           0/2            0/3      
    +#>     WEEK 5 DAY 36                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/2           0/2            0/5      
    +#>                 Low                          0/0       1/1 (100%)         0/1      
    +#>                 Total                        0/2       1/3 (33.3%)        0/6      
    +#>       High                                                                         
    +#>                 Not high                  1/2 (50%)        0/3            0/6      
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                     1/2 (50%)        0/3            0/6      
    +#>   Immunoglobulin A Measurement                                                     
    +#>     WEEK 1 DAY 8                                                                   
    +#>       Low                                                                          
    +#>                 Not low                      0/6           0/6            0/2      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/6           0/6            0/2      
    +#>       High                                                                         
    +#>                 Not high                     0/5       1/6 (16.7%)        0/2      
    +#>                 High                         0/1           0/0            0/0      
    +#>                 Total                        0/6       1/6 (16.7%)        0/2      
    +#>     WEEK 2 DAY 15                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/3           0/7            0/4      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/3           0/7            0/4      
    +#>       High                                                                         
    +#>                 Not high                     0/3           0/7         1/4 (25%)   
    +#>                 High                         0/0           0/0            0/0      
    +#>                 Total                        0/3           0/7         1/4 (25%)   
    +#>     WEEK 3 DAY 22                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/4           0/5            0/9      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/4           0/5            0/9      
    +#>       High                                                                         
    +#>                 Not high                     0/3           0/5            0/8      
    +#>                 High                         0/1           0/0            0/1      
    +#>                 Total                        0/4           0/5            0/9      
    +#>     WEEK 4 DAY 29                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/2           0/6            0/4      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/2           0/6            0/4      
    +#>       High                                                                         
    +#>                 Not high                 1/1 (100%)        0/6            0/3      
    +#>                 High                         0/1           0/0            0/1      
    +#>                 Total                     1/2 (50%)        0/6            0/4      
    +#>     WEEK 5 DAY 36                                                                  
    +#>       Low                                                                          
    +#>                 Not low                      0/6           0/5            0/5      
    +#>                 Low                          0/0           0/0            0/0      
    +#>                 Total                        0/6           0/5            0/5      
    +#>       High                                                                         
    +#>                 Not high                     0/5           0/5            0/5      
    +#>                 High                         0/1           0/0            0/0      
    +#>                 Total                        0/6           0/5            0/5      
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt06_lyt.html b/v0.2.8/reference/lbt06_lyt.html new file mode 100644 index 0000000000..40e2be84e9 --- /dev/null +++ b/v0.2.8/reference/lbt06_lyt.html @@ -0,0 +1,124 @@ + +lbt06 Layout — lbt06_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    lbt06 Layout

    +
    + +
    +

    Usage

    +
    lbt06_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_param,
    +  lbl_visit,
    +  lbl_anrind,
    +  lbl_bnrind,
    +  visitvar,
    +  anrind_var,
    +  bnrind_var,
    +  page_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_param
    +

    (string) text label of the PARAM variable.

    + + +
    lbl_visit
    +

    (string) text label of the AVISIT variable.

    + + +
    lbl_anrind
    +

    (string) text label of the ANRIND variable.

    + + +
    lbl_bnrind
    +

    (string) text label of the BNRIND variable.

    + + +
    visitvar
    +

    (string) typically "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    anrind_var
    +

    (string) the variable for analysis reference range indicator.

    + + +
    bnrind_var
    +

    (string) the variable for baseline reference range indicator.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt06_post.html b/v0.2.8/reference/lbt06_post.html new file mode 100644 index 0000000000..ec28169d45 --- /dev/null +++ b/v0.2.8/reference/lbt06_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt06_pre.html b/v0.2.8/reference/lbt06_pre.html new file mode 100644 index 0000000000..ec28169d45 --- /dev/null +++ b/v0.2.8/reference/lbt06_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt07.html b/v0.2.8/reference/lbt07.html new file mode 100644 index 0000000000..dfd59e852c --- /dev/null +++ b/v0.2.8/reference/lbt07.html @@ -0,0 +1,192 @@ + +LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The LBT07 table provides an +overview of the analysis values and its change from baseline of each respective arm over the course of the trial.

    +
    + +
    +

    Usage

    +
    lbt07_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  param_var = "PARAM",
    +  grad_dir_var = "GRADE_DIR",
    +  grad_anl_var = "GRADE_ANL",
    +  ...
    +)
    +
    +lbt07_pre(adam_db, ...)
    +
    +lbt07_post(tlg, prune_0 = TRUE, ...)
    +
    +lbt07
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    param_var
    +

    (string) the name of the column storing the parameters name.

    + + +
    grad_dir_var
    +

    (string) the name of the column storing the grade direction variable which is required in +order to obtain the correct denominators when building the layout as it is used to define row splitting.

    + + +
    grad_anl_var
    +

    (string) the name of the column storing toxicity grade variable where all negative values from +ATOXGR are replaced by their absolute values.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Split columns by arm, typically ACTARM.

    • +
    +
    +

    Functions

    + +
    • lbt07_main(): Main TLG function

    • +
    • lbt07_pre(): Preprocessing

    • +
    • lbt07_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adlb table with columns "USUBJID", "ATOXGR", +"ONTRTFL" and column specified by arm_var.

    • +
    + +
    +

    Examples

    +
    run(lbt07, syn_data)
    +#>   Parameter                                                                          
    +#>     Direction of Abnormality                 A: Drug X    B: Placebo   C: Combination
    +#>               Highest NCI CTCAE Grade          (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————
    +#>   Alanine Aminotransferase Measurement (n)       15           15             15      
    +#>     LOW                                                                              
    +#>               1                              3 (20.0%)        0              0       
    +#>               2                              2 (13.3%)     1 (6.7%)       1 (6.7%)   
    +#>               3                               1 (6.7%)     1 (6.7%)      6 (40.0%)   
    +#>               4                              3 (20.0%)    2 (13.3%)      3 (20.0%)   
    +#>               Any                            9 (60.0%)    4 (26.7%)      10 (66.7%)  
    +#>   C-Reactive Protein Measurement (n)             15           15             15      
    +#>     LOW                                                                              
    +#>               1                              2 (13.3%)     1 (6.7%)      2 (13.3%)   
    +#>               2                              5 (33.3%)    2 (13.3%)      5 (33.3%)   
    +#>               3                              3 (20.0%)    4 (26.7%)      3 (20.0%)   
    +#>               4                                  0         1 (6.7%)          0       
    +#>               Any                            10 (66.7%)   8 (53.3%)      10 (66.7%)  
    +#>     HIGH                                                                             
    +#>               1                              3 (20.0%)     1 (6.7%)       1 (6.7%)   
    +#>               2                              4 (26.7%)    4 (26.7%)      2 (13.3%)   
    +#>               3                               1 (6.7%)    2 (13.3%)      4 (26.7%)   
    +#>               4                                  0         1 (6.7%)          0       
    +#>               Any                            8 (53.3%)    8 (53.3%)      7 (46.7%)   
    +#>   Immunoglobulin A Measurement (n)               15           15             15      
    +#>     HIGH                                                                             
    +#>               1                              3 (20.0%)     1 (6.7%)       1 (6.7%)   
    +#>               2                              5 (33.3%)    4 (26.7%)      2 (13.3%)   
    +#>               3                              3 (20.0%)    3 (20.0%)      2 (13.3%)   
    +#>               4                                  0            0           1 (6.7%)   
    +#>               Any                            11 (73.3%)   8 (53.3%)      6 (40.0%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt07_lyt.html b/v0.2.8/reference/lbt07_lyt.html new file mode 100644 index 0000000000..2360c19e39 --- /dev/null +++ b/v0.2.8/reference/lbt07_lyt.html @@ -0,0 +1,116 @@ + +lbt07 Layout — lbt07_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    lbt07 Layout

    +
    + +
    +

    Usage

    +
    lbt07_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_param_var,
    +  lbl_grad_dir_var,
    +  param_var,
    +  grad_dir_var,
    +  grad_anl_var,
    +  map
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_param_var
    +

    (string) label of the param_var variable.

    + + +
    lbl_grad_dir_var
    +

    (string) label for the grad_dir_var variable.

    + + +
    param_var
    +

    (string) the name of the column storing the parameters name.

    + + +
    grad_dir_var
    +

    (string) the name of the column storing the grade direction variable which is required in +order to obtain the correct denominators when building the layout as it is used to define row splitting.

    + + +
    grad_anl_var
    +

    (string) the name of the column storing toxicity grade variable where all negative values from +ATOXGR are replaced by their absolute values.

    + + +
    map
    +

    (data.frame) mapping of PARAMs to directions of abnormality.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt07_post.html b/v0.2.8/reference/lbt07_post.html new file mode 100644 index 0000000000..88b79c66dc --- /dev/null +++ b/v0.2.8/reference/lbt07_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt07_pre.html b/v0.2.8/reference/lbt07_pre.html new file mode 100644 index 0000000000..88b79c66dc --- /dev/null +++ b/v0.2.8/reference/lbt07_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt14.html b/v0.2.8/reference/lbt14.html new file mode 100644 index 0000000000..f547913671 --- /dev/null +++ b/v0.2.8/reference/lbt14.html @@ -0,0 +1,202 @@ + +LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by +Baseline Grade (Low or High Direction).

    +
    + +
    +

    Usage

    +
    lbt14_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  gr_missing = "incl",
    +  page_var = "PARAMCD",
    +  ...
    +)
    +
    +lbt14_pre(adam_db, gr_missing = "incl", direction = "low", ...)
    +
    +lbt14_post(tlg, prune_0 = TRUE, ...)
    +
    +lbt14
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    gr_missing
    +

    (string) how missing baseline grades should be handled. Defaults to "incl" to include the +"Missing" +level. Other options are "excl" to exclude patients with missing baseline grades and "gr_0" to convert missing +baseline grades to grade 0.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    ...
    +

    not used.

    + + +
    direction
    +

    (string) one of "high" or "low" indicating which shift direction should be detailed.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • This table follows ADaMIG v1.1.

    • +
    • Only the worst grade recorded for each patient is included in the table.

    • +
    • If no missing baseline lab results, the "Missing" level of BTOXGR is excluded.

    • +
    • Grading takes value from -4 to 4, negative value means the abnormality direction is low, +positive value means the abnormality direction is high.

    • +
    • Grades 0, 1, 2, 3, and 4 are counted as "Not Low" when direction = "low". Conversely, when direction = "high", Grades 0, -1, -2, -3, and -4 are counted as `"Not High".

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    +
    +

    Functions

    + +
    • lbt14_main(): Main TLG function

    • +
    • lbt14_pre(): Preprocessing

    • +
    • lbt14_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adlb table with columns "USUBJID", "PARAM", "BTOXGR", "ATOXGR", +and the column specified by arm_var.

    • +
    + +
    +

    Examples

    +
    run(lbt14, syn_data)
    +#>   Baseline Toxicity Grade                 A: Drug X   B: Placebo   C: Combination
    +#>           Post-baseline NCI-CTCAE Grade    (N=15)       (N=15)         (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————
    +#>   Alanine Aminotransferase Measurement                                           
    +#>     Not Low                                  12           12             14      
    +#>             Not Low                       5 (41.7%)   8 (66.7%)      5 (35.7%)   
    +#>             1                             3 (25.0%)       0              0       
    +#>             2                             2 (16.7%)    1 (8.3%)       1 (7.1%)   
    +#>             3                                 0        1 (8.3%)      5 (35.7%)   
    +#>             4                             2 (16.7%)   2 (16.7%)      3 (21.4%)   
    +#>     1                                         1           2              0       
    +#>             Not Low                       1 (100%)     2 (100%)          0       
    +#>     2                                         1           1              0       
    +#>             Not Low                           0        1 (100%)          0       
    +#>             4                             1 (100%)        0              0       
    +#>     3                                         1           0              1       
    +#>             3                             1 (100%)        0           1 (100%)   
    +#>   C-Reactive Protein Measurement                                                 
    +#>     Not Low                                  14           13             12      
    +#>             Not Low                       5 (35.7%)   7 (53.8%)      4 (33.3%)   
    +#>             1                             2 (14.3%)       0          2 (16.7%)   
    +#>             2                             5 (35.7%)   2 (15.4%)      4 (33.3%)   
    +#>             3                             2 (14.3%)   3 (23.1%)      2 (16.7%)   
    +#>             4                                 0        1 (7.7%)          0       
    +#>     1                                         0           0              2       
    +#>             Not Low                           0           0          1 (50.0%)   
    +#>             2                                 0           0          1 (50.0%)   
    +#>     2                                         0           1              0       
    +#>             1                                 0        1 (100%)          0       
    +#>     3                                         1           1              1       
    +#>             3                             1 (100%)     1 (100%)       1 (100%)   
    +#>   Immunoglobulin A Measurement                                                   
    +#>     Not Low                                  15           15             15      
    +#>             Not Low                       15 (100%)   15 (100%)      15 (100%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt14_lyt.html b/v0.2.8/reference/lbt14_lyt.html new file mode 100644 index 0000000000..28d6f1b199 --- /dev/null +++ b/v0.2.8/reference/lbt14_lyt.html @@ -0,0 +1,85 @@ + +lbt14 Layout — lbt14_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    lbt14 Layout

    +
    + +
    +

    Usage

    +
    lbt14_lyt(arm_var, lbl_overall, lbl_param, lbl_btoxgr, page_var)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lbt14_post.html b/v0.2.8/reference/lbt14_post.html new file mode 100644 index 0000000000..95acfd546a --- /dev/null +++ b/v0.2.8/reference/lbt14_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt14_pre.html b/v0.2.8/reference/lbt14_pre.html new file mode 100644 index 0000000000..95acfd546a --- /dev/null +++ b/v0.2.8/reference/lbt14_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/lbt15.html b/v0.2.8/reference/lbt15.html new file mode 100644 index 0000000000..6c2bea1d3c --- /dev/null +++ b/v0.2.8/reference/lbt15.html @@ -0,0 +1,138 @@ + +LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre • chevron + Skip to contents + + +
    +
    +
    + +
    +

    LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table.

    +
    + +
    +

    Usage

    +
    lbt15_pre(adam_db, ...)
    +
    +lbt15
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Source

    +

    lbt04.R

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Functions

    + +
    • lbt15_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    run(lbt15, syn_data)
    +#>   Laboratory Test                          A: Drug X   B: Placebo    C: Combination
    +#>       Analysis Toxicity Grade               (N=15)       (N=15)          (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————
    +#>   CHEMISTRY                                                                        
    +#>     Alanine Aminotransferase Measurement                                           
    +#>       Low                                     0/7          0/3        1/7 (14.3%)  
    +#>       High                                    0/7          0/3            0/8      
    +#>     C-Reactive Protein Measurement                                                 
    +#>       Low                                     0/8          0/3            0/7      
    +#>       High                                    0/8          0/2            0/7      
    +#>     Immunoglobulin A Measurement                                                   
    +#>       Low                                     0/5          0/8            0/7      
    +#>       High                                    0/5          0/8            0/6      
    +#>   COAGULATION                                                                      
    +#>     Alanine Aminotransferase Measurement                                           
    +#>       Low                                     0/4          0/7            0/4      
    +#>       High                                    0/5          0/7            0/4      
    +#>     C-Reactive Protein Measurement                                                 
    +#>       Low                                     0/5          0/6            0/4      
    +#>       High                                    0/5      1/6 (16.7%)    1/4 (25.0%)  
    +#>     Immunoglobulin A Measurement                                                   
    +#>       Low                                     0/8          0/9            0/6      
    +#>       High                                    0/8          0/9        1/6 (16.7%)  
    +#>   HEMATOLOGY                                                                       
    +#>     Alanine Aminotransferase Measurement                                           
    +#>       Low                                     0/5          0/5            0/4      
    +#>       High                                    0/6          0/5            0/4      
    +#>     C-Reactive Protein Measurement                                                 
    +#>       Low                                     0/5          0/5            0/4      
    +#>       High                                    0/5          0/4            0/5      
    +#>     Immunoglobulin A Measurement                                                   
    +#>       Low                                     0/3          0/4            0/8      
    +#>       High                                    0/3          0/4            0/8      
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/listing_format_chevron.html b/v0.2.8/reference/listing_format_chevron.html new file mode 100644 index 0000000000..66f3a515ac --- /dev/null +++ b/v0.2.8/reference/listing_format_chevron.html @@ -0,0 +1,73 @@ + +Format for Chevron Listings — listing_format_chevron • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Format for Chevron Listings

    +
    + +
    +

    Usage

    +
    listing_format_chevron()
    +
    + +
    +

    Value

    +

    a list of fmt_config.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/lvls.html b/v0.2.8/reference/lvls.html new file mode 100644 index 0000000000..c20d4a259c --- /dev/null +++ b/v0.2.8/reference/lvls.html @@ -0,0 +1,85 @@ + +Obtain levels from vector — lvls • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Obtain levels from vector

    +
    + +
    +

    Usage

    +
    lvls(x)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (character) or (factor) object to obtain levels.

    + +
    +
    +

    Value

    +

    character with unique values.

    +
    +
    +

    Details

    +

    For factors, the levels will be returned. For characters, the sorted unique values will be returned.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/main,chevron_tlg-method.html b/v0.2.8/reference/main,chevron_tlg-method.html new file mode 100644 index 0000000000..983867d50a --- /dev/null +++ b/v0.2.8/reference/main,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/main.html b/v0.2.8/reference/main.html new file mode 100644 index 0000000000..c2ae61d16d --- /dev/null +++ b/v0.2.8/reference/main.html @@ -0,0 +1,93 @@ + +Main — main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    retrieve or set main function.

    +
    + +
    +

    Usage

    +
    main(x)
    +
    +# S4 method for class 'chevron_tlg'
    +main(x)
    +
    +main(x) <- value
    +
    +# S4 method for class 'chevron_tlg'
    +main(x) <- value
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (chevron_tlg) input.

    + + +
    value
    +

    (function) returning a tlg. Typically one of the _main function of chevron.

    + +
    +
    +

    Value

    +

    the function stored in the main slot of the x argument.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/mht01.html b/v0.2.8/reference/mht01.html new file mode 100644 index 0000000000..32888fb0eb --- /dev/null +++ b/v0.2.8/reference/mht01.html @@ -0,0 +1,191 @@ + +MHT01 Medical History Table. — mht01_label • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The MHT01 table provides an overview of the subjects medical +history by SOC and Preferred Term.

    +
    + +
    +

    Usage

    +
    mht01_label
    +
    +mht01_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  row_split_var = "MHBODSYS",
    +  lbl_overall = NULL,
    +  summary_labels = list(all = mht01_label),
    +  ...
    +)
    +
    +mht01_pre(adam_db, ...)
    +
    +mht01_post(tlg, row_split_var = "MHBODSYS", prune_0 = TRUE, ...)
    +
    +mht01
    +
    + +
    +

    Format

    +

    An object of class character of length 2.

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    summary_labels
    +

    (list) of summarize labels. See details.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Numbers represent absolute numbers of patients and fraction of N, or absolute number of event when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Order by row_split_var alphabetically and medical condition by decreasing total number of +patients with the specific condition. +summary_labels is used to control the summary for each level. If "all" is used, then each split will have that +summary statistic with the labels. One special case is "TOTAL", this is for the overall population.

    • +
    +
    +

    Functions

    + +
    • mht01_label: Default labels

    • +
    • mht01_main(): Main TLG function

    • +
    • mht01_pre(): Preprocessing

    • +
    • mht01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an admh table with columns "MHBODSYS" and "MHDECOD".

    • +
    + +
    +

    Examples

    +
    run(mht01, syn_data)
    +#>   MedDRA System Organ Class                                A: Drug X    B: Placebo   C: Combination
    +#>     MedDRA Preferred Term                                    (N=15)       (N=15)         (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one condition     13 (86.7%)   14 (93.3%)     15 (100%)   
    +#>   Total number of conditions                                   58           59             99      
    +#>   cl A                                                                                             
    +#>     Total number of patients with at least one condition   7 (46.7%)    6 (40.0%)      10 (66.7%)  
    +#>     Total number of conditions                                 8            11             16      
    +#>     trm A_2/2                                              5 (33.3%)    6 (40.0%)      6 (40.0%)   
    +#>     trm A_1/2                                              3 (20.0%)     1 (6.7%)      6 (40.0%)   
    +#>   cl B                                                                                             
    +#>     Total number of patients with at least one condition   12 (80.0%)   11 (73.3%)     12 (80.0%)  
    +#>     Total number of conditions                                 24           21             32      
    +#>     trm B_3/3                                              8 (53.3%)    6 (40.0%)      7 (46.7%)   
    +#>     trm B_1/3                                              5 (33.3%)    6 (40.0%)      8 (53.3%)   
    +#>     trm B_2/3                                              5 (33.3%)    6 (40.0%)      5 (33.3%)   
    +#>   cl C                                                                                             
    +#>     Total number of patients with at least one condition   8 (53.3%)    6 (40.0%)      11 (73.3%)  
    +#>     Total number of conditions                                 10           13             22      
    +#>     trm C_2/2                                              6 (40.0%)    4 (26.7%)      8 (53.3%)   
    +#>     trm C_1/2                                              4 (26.7%)    4 (26.7%)      5 (33.3%)   
    +#>   cl D                                                                                             
    +#>     Total number of patients with at least one condition   10 (66.7%)   7 (46.7%)      13 (86.7%)  
    +#>     Total number of conditions                                 16           14             29      
    +#>     trm D_1/3                                              4 (26.7%)    4 (26.7%)      7 (46.7%)   
    +#>     trm D_2/3                                              6 (40.0%)    2 (13.3%)      7 (46.7%)   
    +#>     trm D_3/3                                              2 (13.3%)    5 (33.3%)      7 (46.7%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/mht01_main.html b/v0.2.8/reference/mht01_main.html new file mode 100644 index 0000000000..3a6c7aa884 --- /dev/null +++ b/v0.2.8/reference/mht01_main.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/mht01_post.html b/v0.2.8/reference/mht01_post.html new file mode 100644 index 0000000000..3a6c7aa884 --- /dev/null +++ b/v0.2.8/reference/mht01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/mht01_pre.html b/v0.2.8/reference/mht01_pre.html new file mode 100644 index 0000000000..3a6c7aa884 --- /dev/null +++ b/v0.2.8/reference/mht01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/missing_rule.html b/v0.2.8/reference/missing_rule.html new file mode 100644 index 0000000000..873fd31b21 --- /dev/null +++ b/v0.2.8/reference/missing_rule.html @@ -0,0 +1,73 @@ + +Missing rule — missing_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Missing rule

    +
    + +
    +

    Usage

    +
    missing_rule
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 2.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/mla_dir.html b/v0.2.8/reference/mla_dir.html new file mode 100644 index 0000000000..f5ba0daae7 --- /dev/null +++ b/v0.2.8/reference/mla_dir.html @@ -0,0 +1,73 @@ + +MLA Grade Direction Data — mla_dir • chevron + Skip to contents + + +
    +
    +
    + +
    +

    MLA Grade Direction Data

    +
    + +
    +

    Usage

    +
    mla_dir
    +
    + +
    +

    Format

    +

    An object of class data.frame with 76 rows and 2 columns.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/mng01-1.png b/v0.2.8/reference/mng01-1.png new file mode 100644 index 0000000000..606d7a692a Binary files /dev/null and b/v0.2.8/reference/mng01-1.png differ diff --git a/v0.2.8/reference/mng01-2.png b/v0.2.8/reference/mng01-2.png new file mode 100644 index 0000000000..a84ee2dde1 Binary files /dev/null and b/v0.2.8/reference/mng01-2.png differ diff --git a/v0.2.8/reference/mng01-3.png b/v0.2.8/reference/mng01-3.png new file mode 100644 index 0000000000..4b6c1f3e67 Binary files /dev/null and b/v0.2.8/reference/mng01-3.png differ diff --git a/v0.2.8/reference/mng01.html b/v0.2.8/reference/mng01.html new file mode 100644 index 0000000000..d89338b392 --- /dev/null +++ b/v0.2.8/reference/mng01.html @@ -0,0 +1,222 @@ + +MNG01 Mean Plot Graph. — mng01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Overview of a summary statistics across time and arm for a selected data set.

    +
    + +
    +

    Usage

    +
    mng01_main(
    +  adam_db,
    +  dataset = "adlb",
    +  x_var = "AVISIT",
    +  y_var = "AVAL",
    +  y_name = "PARAM",
    +  y_unit = NULL,
    +  arm_var = "ACTARM",
    +  center_fun = "mean",
    +  interval_fun = "mean_ci",
    +  jitter = 0.3,
    +  line_col = nestcolor::color_palette(),
    +  line_type = NULL,
    +  ggtheme = gg_theme_chevron(),
    +  table = c("n", center_fun, interval_fun),
    +  ...
    +)
    +
    +mng01_pre(adam_db, dataset, x_var = "AVISIT", ...)
    +
    +mng01
    +
    + +
    +

    Format

    +

    An object of class chevron_g of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    x_var
    +

    (string) the name of a column in the dataset to represent on the x-axis.

    + + +
    y_var
    +

    (string) the name of the variable to be represented on the y-axis.

    + + +
    y_name
    +

    (string) the variable name for y. Used for plot's subtitle.

    + + +
    y_unit
    +

    (string) the name of the variable with the units of y. Used for plot's subtitle. if NULL, only +y_name is displayed as subtitle.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    center_fun
    +

    (string) the function to compute the estimate value.

    + + +
    interval_fun
    +

    (string) the function defining the crossbar range. If NULL, no crossbar is displayed.

    + + +
    jitter
    +

    (numeric) the width of spread for data points on the x-axis; a number from 0 (no jitter) to 1 (high +jitter), with a default of 0.3 (slight jitter).

    + + +
    line_col
    +

    (character) describing the colors to use for the lines or a named character associating values of +arm_var with color names.

    + + +
    line_type
    +

    (character) describing the line type to use for the lines or a named character associating +values of arm_var with line types.

    + + +
    ggtheme
    +

    (theme) passed to tern::g_lineplot().

    + + +
    table
    +

    (character) names of the statistics to be displayed in the table. If NULL, no table is displayed.

    + + +
    ...
    +

    passed to tern::g_lineplot().

    + +
    +
    +

    Value

    +

    the main function returns a list of ggplot objects.

    +

    a list of ggplot objects.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    • Preprocessing filters for ANL01FL in the selected data set.

    • +
    +
    +

    Functions

    + +
    • mng01_main(): Main TLG Function

    • +
    • mng01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain the table specified by dataset with the columns specified by x_var, y_var, +y_name, y_unit and arm_var.

    • +
    + + +
    +

    Examples

    +
    col <- c(
    +  "A: Drug X" = "black",
    +  "B: Placebo" = "blue",
    +  "C: Combination" = "gray"
    +)
    +
    +lt <- c(
    +  "A: Drug X" = "29",
    +  "B: Placebo" = "99",
    +  "C: Combination" = "solid"
    +)
    +
    +run(
    +  mng01,
    +  syn_data,
    +  dataset = "adlb",
    +  x_var = c("AVISIT", "AVISITN"),
    +  line_col = col,
    +  line_type = lt
    +)
    +#> $`Alanine Aminotransferase Measurement`
    +
    +#> 
    +#> $`C-Reactive Protein Measurement`
    +
    +#> 
    +#> $`Immunoglobulin A Measurement`
    +
    +#> 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/mng01_pre.html b/v0.2.8/reference/mng01_pre.html new file mode 100644 index 0000000000..ad6cfaab92 --- /dev/null +++ b/v0.2.8/reference/mng01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/modify_character.html b/v0.2.8/reference/modify_character.html new file mode 100644 index 0000000000..6d37c1fc1f --- /dev/null +++ b/v0.2.8/reference/modify_character.html @@ -0,0 +1,68 @@ + +Modify character — modify_character • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Modify character

    +
    + +
    +

    Usage

    +
    modify_character(x, y)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/nocoding.html b/v0.2.8/reference/nocoding.html new file mode 100644 index 0000000000..1239dfda2f --- /dev/null +++ b/v0.2.8/reference/nocoding.html @@ -0,0 +1,73 @@ + +No Coding Available rule — nocoding • chevron + Skip to contents + + +
    +
    +
    + +
    +

    No Coding Available rule

    +
    + +
    +

    Usage

    +
    nocoding
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 2.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/obtain_value.html b/v0.2.8/reference/obtain_value.html new file mode 100644 index 0000000000..97569ebf27 --- /dev/null +++ b/v0.2.8/reference/obtain_value.html @@ -0,0 +1,68 @@ + +Obtain value from a vector — obtain_value • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Obtain value from a vector

    +
    + +
    +

    Usage

    +
    obtain_value(obj, index)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/occurrence_lyt.html b/v0.2.8/reference/occurrence_lyt.html new file mode 100644 index 0000000000..5fde5871ed --- /dev/null +++ b/v0.2.8/reference/occurrence_lyt.html @@ -0,0 +1,106 @@ + +Occurrence Layout — occurrence_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Occurrence Layout

    +
    + +
    +

    Usage

    +
    occurrence_lyt(
    +  arm_var,
    +  lbl_overall,
    +  row_split_var,
    +  lbl_row_split,
    +  medname_var,
    +  lbl_medname_var,
    +  summary_labels,
    +  count_by
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    medname_var
    +

    (string) variable name of medical treatment name.

    + + +
    lbl_medname_var
    +

    (string) label for the variable defining the medication name.

    + + +
    summary_labels
    +

    (list) of summarize labels. See details.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/outcome_rule.html b/v0.2.8/reference/outcome_rule.html new file mode 100644 index 0000000000..03ec3f7cc8 --- /dev/null +++ b/v0.2.8/reference/outcome_rule.html @@ -0,0 +1,73 @@ + +Outcome Rule — outcome_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Outcome Rule

    +
    + +
    +

    Usage

    +
    outcome_rule
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 6.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/pdt01.html b/v0.2.8/reference/pdt01.html new file mode 100644 index 0000000000..240dfe24a9 --- /dev/null +++ b/v0.2.8/reference/pdt01.html @@ -0,0 +1,185 @@ + +pdt01 Major Protocol Deviations Table. — pdt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    A major protocol deviations +table with the number of subjects and the total number of treatments by medication class sorted alphabetically and +medication name sorted by frequencies.

    +
    + +
    +

    Usage

    +
    pdt01_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = NULL,
    +  dvcode_var = "DVDECOD",
    +  dvterm_var = "DVTERM",
    +  ...
    +)
    +
    +pdt01_pre(adam_db, ...)
    +
    +pdt01_post(
    +  tlg,
    +  prune_0 = TRUE,
    +  dvcode_var = "DVDECOD",
    +  dvterm_var = "DVTERM",
    +  ...
    +)
    +
    +pdt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    dvcode_var
    +

    (string) the variable defining the protocol deviation coded term. By default DVDECOD.

    + + +
    dvterm_var
    +

    (string) the variable defining the protocol deviation term. By default DVTERM.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Data should be filtered for major protocol deviations. (DVCAT == "MAJOR").

    • +
    • Numbers represent absolute numbers of subjects and fraction of N, or absolute numbers when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort by medication class alphabetically and within medication class by decreasing total number of patients with +the specific medication.

    • +
    +
    +

    Functions

    + +
    • pdt01_main(): Main TLG function

    • +
    • pdt01_pre(): Preprocessing

    • +
    • pdt01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an addv table with the columns specified in dvcode_var and dvterm_var as well +as "DVSEQ".

    • +
    + +
    +

    Examples

    +
    run(pdt01, syn_data)
    +#>   Category                                                              A: Drug X   B: Placebo   C: Combination
    +#>     Description                                                          (N=15)       (N=15)         (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one major protocol deviation   2 (13.3%)   4 (26.7%)          0       
    +#>   Total number of major protocol deviations                                 2           5              0       
    +#>   EXCLUSION CRITERIA                                                                                           
    +#>     Active or untreated or other excluded cns metastases                    0        1 (6.7%)          0       
    +#>     Pregnancy criteria                                                      0        1 (6.7%)          0       
    +#>   INCLUSION CRITERIA                                                                                           
    +#>     Ineligible cancer type or current cancer stage                      1 (6.7%)        0              0       
    +#>   MEDICATION                                                                                                   
    +#>     Discontinued study drug for unspecified reason                          0        1 (6.7%)          0       
    +#>     Received prohibited concomitant medication                              0        1 (6.7%)          0       
    +#>   PROCEDURAL                                                                                                   
    +#>     Eligibility-related test not done/out of window                         0        1 (6.7%)          0       
    +#>     Failure to sign updated ICF within two visits                       1 (6.7%)        0              0       
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/pdt01_lyt.html b/v0.2.8/reference/pdt01_lyt.html new file mode 100644 index 0000000000..8b23c8e29d --- /dev/null +++ b/v0.2.8/reference/pdt01_lyt.html @@ -0,0 +1,104 @@ + +pdt01 Layout — pdt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    pdt01 Layout

    +
    + +
    +

    Usage

    +
    pdt01_lyt(
    +  arm_var,
    +  lbl_overall,
    +  dvcode_var,
    +  lbl_dvcode_var,
    +  dvterm_var,
    +  lbl_dvterm_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    dvcode_var
    +

    (string) the variable defining the protocol deviation coded term. By default DVDECOD.

    + + +
    lbl_dvcode_var
    +

    (string) label for the variable defining the protocol deviation coded term.

    + + +
    dvterm_var
    +

    (string) the variable defining the protocol deviation term. By default DVTERM.

    + + +
    lbl_dvterm_var
    +

    (string) label for the variable defining the protocol deviation term.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/pdt01_post.html b/v0.2.8/reference/pdt01_post.html new file mode 100644 index 0000000000..79393acc15 --- /dev/null +++ b/v0.2.8/reference/pdt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/pdt01_pre.html b/v0.2.8/reference/pdt01_pre.html new file mode 100644 index 0000000000..79393acc15 --- /dev/null +++ b/v0.2.8/reference/pdt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/pdt02.html b/v0.2.8/reference/pdt02.html new file mode 100644 index 0000000000..223749d735 --- /dev/null +++ b/v0.2.8/reference/pdt02.html @@ -0,0 +1,175 @@ + +pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    A major protocol deviations +table with the number of subjects and the total number of Major Protocol Deviations Related +to Epidemic/Pandemic sorted alphabetically and deviations name sorted by frequencies.

    +
    + +
    +

    Usage

    +
    pdt02_main(
    +  adam_db,
    +  arm_var = "ARM",
    +  lbl_overall = NULL,
    +  dvreas_var = "DVREAS",
    +  dvterm_var = "DVTERM",
    +  ...
    +)
    +
    +pdt02_pre(adam_db, ...)
    +
    +pdt02_post(
    +  tlg,
    +  prune_0 = TRUE,
    +  dvreas_var = "DVREAS",
    +  dvterm_var = "DVTERM",
    +  ...
    +)
    +
    +pdt02
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    dvreas_var
    +

    (string) the variable defining the reason for deviation. By default DVREAS.

    + + +
    dvterm_var
    +

    (string) the variable defining the protocol deviation term. By default DVTERM.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Data should be filtered for major protocol deviations related to epidemic/pandemic. +(AEPRELFL == "Y" & DVCAT == "MAJOR").

    • +
    • Numbers represent absolute numbers of subjects and fraction of N, or absolute numbers when specified.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm.

    • +
    • Does not include a total column by default.

    • +
    • Sort by deviation reason alphabetically and within deviation reason by decreasing total number of patients with +the specific deviation term.

    • +
    +
    +

    Functions

    + +
    • pdt02_main(): Main TLG function

    • +
    • pdt02_pre(): Preprocessing

    • +
    • pdt02_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an addv table with the columns specified in dvreas_var and dvterm_var.

    • +
    + +
    +

    Examples

    +
    run(pdt02, syn_data)
    +#>   Primary Reason                                                                                     A: Drug X   B: Placebo   C: Combination
    +#>     Description                                                                                       (N=15)       (N=15)         (N=15)    
    +#>   ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Total number of patients with at least one major protocol deviation related to epidemic/pandemic   1 (6.7%)        0              0       
    +#>   Total number of major protocol deviations related to epidemic/pandemic                                 1           0              0       
    +#>   Site action due to epidemic/pandemic                                                               1 (6.7%)        0              0       
    +#>     Failure to sign updated ICF within two visits                                                    1 (6.7%)        0              0       
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/pdt02_lyt.html b/v0.2.8/reference/pdt02_lyt.html new file mode 100644 index 0000000000..f61017180a --- /dev/null +++ b/v0.2.8/reference/pdt02_lyt.html @@ -0,0 +1,104 @@ + +pdt02 Layout — pdt02_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    pdt02 Layout

    +
    + +
    +

    Usage

    +
    pdt02_lyt(
    +  arm_var,
    +  lbl_overall,
    +  lbl_dvreas_var,
    +  lbl_dvterm_var,
    +  dvreas_var,
    +  dvterm_var
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    lbl_dvreas_var
    +

    (string) label for the variable defining the reason for deviation.

    + + +
    lbl_dvterm_var
    +

    (string) label for the variable defining the protocol deviation term.

    + + +
    dvreas_var
    +

    (string) the variable defining the reason for deviation. By default DVREAS.

    + + +
    dvterm_var
    +

    (string) the variable defining the protocol deviation term. By default DVTERM.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/pdt02_post.html b/v0.2.8/reference/pdt02_post.html new file mode 100644 index 0000000000..0c95de818e --- /dev/null +++ b/v0.2.8/reference/pdt02_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/pdt02_pre.html b/v0.2.8/reference/pdt02_pre.html new file mode 100644 index 0000000000..0c95de818e --- /dev/null +++ b/v0.2.8/reference/pdt02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/postprocess,chevron_tlg-method.html b/v0.2.8/reference/postprocess,chevron_tlg-method.html new file mode 100644 index 0000000000..1d2240c726 --- /dev/null +++ b/v0.2.8/reference/postprocess,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/postprocess.html b/v0.2.8/reference/postprocess.html new file mode 100644 index 0000000000..8e1977be02 --- /dev/null +++ b/v0.2.8/reference/postprocess.html @@ -0,0 +1,93 @@ + +Post process — postprocess • chevron + Skip to contents + + +
    +
    +
    + +
    +

    retrieve or set postprocess function.

    +
    + +
    +

    Usage

    +
    postprocess(x)
    +
    +# S4 method for class 'chevron_tlg'
    +postprocess(x)
    +
    +postprocess(x) <- value
    +
    +# S4 method for class 'chevron_tlg'
    +postprocess(x) <- value
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (chevron_tlg) input.

    + + +
    value
    +

    (function) returning a post-processed tlg.

    + +
    +
    +

    Value

    +

    the function stored in the postprocess slot of the x argument.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/preprocess,chevron_tlg-method.html b/v0.2.8/reference/preprocess,chevron_tlg-method.html new file mode 100644 index 0000000000..321532ba0c --- /dev/null +++ b/v0.2.8/reference/preprocess,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/preprocess.html b/v0.2.8/reference/preprocess.html new file mode 100644 index 0000000000..e0d7555fa0 --- /dev/null +++ b/v0.2.8/reference/preprocess.html @@ -0,0 +1,94 @@ + +Pre process — preprocess • chevron + Skip to contents + + +
    +
    +
    + +
    +

    retrieve or set preprocess function.

    +
    + +
    +

    Usage

    +
    preprocess(x)
    +
    +# S4 method for class 'chevron_tlg'
    +preprocess(x)
    +
    +preprocess(x) <- value
    +
    +# S4 method for class 'chevron_tlg'
    +preprocess(x) <- value
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (chevron_tlg) input.

    + + +
    value
    +

    (function) returning a pre-processed list of data.frames amenable to tlg creation. Typically +one of the _pre function of chevron.

    + +
    +
    +

    Value

    +

    the function stored in the preprocess slot of the x argument.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/print_args.html b/v0.2.8/reference/print_args.html new file mode 100644 index 0000000000..e47283d8fc --- /dev/null +++ b/v0.2.8/reference/print_args.html @@ -0,0 +1,68 @@ + +Print Arguments — print_args • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Print Arguments

    +
    + +
    +

    Usage

    +
    print_args(run_call, additional_args, args, auto_pre = TRUE)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/print_list.html b/v0.2.8/reference/print_list.html new file mode 100644 index 0000000000..92318e5165 --- /dev/null +++ b/v0.2.8/reference/print_list.html @@ -0,0 +1,68 @@ + +Print list — print_list • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Print list

    +
    + +
    +

    Usage

    +
    print_list(x, indent = 2L)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/proportion_lyt.html b/v0.2.8/reference/proportion_lyt.html new file mode 100644 index 0000000000..36ab32673d --- /dev/null +++ b/v0.2.8/reference/proportion_lyt.html @@ -0,0 +1,112 @@ + +Proportion layout — proportion_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Proportion layout

    +
    + +
    +

    Usage

    +
    proportion_lyt(
    +  lyt,
    +  arm_var,
    +  methods,
    +  strata,
    +  conf_level,
    +  odds_ratio = TRUE,
    +  rsp_var = "IS_RSP"
    +)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    layout created by rtables

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    methods
    +

    (list) a named list, use a named list to control, for example: +methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten") +prop_conf_method controls the methods of calculating proportion confidence interval, +diff_conf_method controls the methods of calculating unstratified difference confidence interval, +strat_diff_conf_method controls the methods of calculating stratified difference confidence interval, +diff_pval_method controls the methods of calculating unstratified p-value for odds ratio, +strat_diff_pval_method controls the methods of calculating stratified p-value for odds ratio, +see more details in tern

    + + +
    strata
    +

    (string) stratification factors, e.g. strata = c("STRATA1", "STRATA2"), by default as NULL

    + + +
    conf_level
    +

    (numeric) the level of confidence interval, default is 0.95.

    + + +
    odds_ratio
    +

    (flag) should the odds ratio be calculated, default is TRUE

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/reexports.html b/v0.2.8/reference/reexports.html new file mode 100644 index 0000000000..93a0559b0f --- /dev/null +++ b/v0.2.8/reference/reexports.html @@ -0,0 +1,95 @@ + +Objects exported from other packages — reexports • chevron + Skip to contents + + +
    +
    +
    + +
    +

    These objects are imported from other packages. Follow the links +below to see their documentation.

    +
    dunlin
    +

    get_arg, reformat

    + + +
    formatters
    +

    with_label

    + + +
    + + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/reformat.html b/v0.2.8/reference/reformat.html new file mode 100644 index 0000000000..77b02c1d8c --- /dev/null +++ b/v0.2.8/reference/reformat.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null,ANY-method.html b/v0.2.8/reference/report_null,ANY-method.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/report_null,ANY-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null,NULL-method.html b/v0.2.8/reference/report_null,NULL-method.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/report_null,NULL-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null,VTableTree-method.html b/v0.2.8/reference/report_null,VTableTree-method.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/report_null,VTableTree-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null,list-method.html b/v0.2.8/reference/report_null,list-method.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/report_null,list-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null,listing_df-method.html b/v0.2.8/reference/report_null,listing_df-method.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/report_null,listing_df-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/report_null.html b/v0.2.8/reference/report_null.html new file mode 100644 index 0000000000..f5b059115c --- /dev/null +++ b/v0.2.8/reference/report_null.html @@ -0,0 +1,115 @@ + +Creates NULL Report — report_null • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Creates NULL Report

    +
    + +
    +

    Usage

    +
    report_null(tlg, ...)
    +
    +# S4 method for class 'NULL'
    +report_null(tlg, ind = 2L, ...)
    +
    +# S4 method for class 'VTableTree'
    +report_null(tlg, ind = 2L, ...)
    +
    +# S4 method for class 'listing_df'
    +report_null(tlg, ind = 2L, ...)
    +
    +# S4 method for class 'list'
    +report_null(tlg, ind = 2L, ...)
    +
    +# S4 method for class 'ANY'
    +report_null(tlg, ...)
    +
    +standard_null_report()
    +
    + +
    +

    Arguments

    + + +
    tlg
    +

    to convert to null report.

    + + +
    ...
    +

    not used.

    + + +
    ind
    +

    (integer) indentation for the outputs of class VTableTree.

    + +
    +
    +

    Value

    +

    the tlg object or a NULL report if the tlg is NULL, is a TableTree with 0 rows, is a listing_df +with 0 rows or is a list with 0 elements.

    +
    + +
    +

    Examples

    +
    report_null(NULL)
    +#>                                                                                           
    +#>   ————————————————————————————————————————————————————————————————————————————————————————
    +#>      Null Report: No observations met the reporting criteria for inclusion in this output.
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt01.html b/v0.2.8/reference/rmpt01.html new file mode 100644 index 0000000000..4cd7c27362 --- /dev/null +++ b/v0.2.8/reference/rmpt01.html @@ -0,0 +1,168 @@ + +RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The RMPT01 table provides an overview of duration of exposure.

    +
    + +
    +

    Usage

    +
    rmpt01_main(
    +  adam_db,
    +  summaryvars = "AVALCAT1",
    +  show_tot = TRUE,
    +  row_split_var = NULL,
    +  col_split_var = NULL,
    +  overall_col_lbl = NULL,
    +  ...
    +)
    +
    +rmpt01_pre(adam_db, summaryvars = "AVALCAT1", ...)
    +
    +rmpt01_post(tlg, prune_0 = FALSE, ...)
    +
    +rmpt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    summaryvars
    +

    (string) variables to be analyzed. The label attribute of the corresponding columns in adex +table of adam_db is used as label.

    + + +
    show_tot
    +

    (flag) whether to display the cumulative total.

    + + +
    row_split_var
    +

    (string) the name of the column that containing variable to split exposure by.

    + + +
    col_split_var
    +

    (string) additional column splitting variable.

    + + +
    overall_col_lbl
    +

    (string) name of the overall column. If NULL, no overall level is added.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Person time is the sum of exposure across all patients.

    • +
    • Summary statistics are by default based on the number of patients in the corresponding N row +(number of non-missing values).

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • rmpt01_main(): Main TLG function

    • +
    • rmpt01_pre(): Preprocessing

    • +
    • rmpt01_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an adex table with "AVAL" and the columns specified by summaryvars.

    • +
    + +
    +

    Examples

    +
    run(rmpt01, syn_data, col_split_var = "SEX")
    +#>                                                   F                           M            
    +#>                                        Patients     Person time    Patients     Person time
    +#>   Duration of exposure                  (N=30)        (N=30)        (N=15)        (N=15)   
    +#>   —————————————————————————————————————————————————————————————————————————————————————————
    +#>   < 1 month                            3 (10.0%)        45         1 (6.7%)         22     
    +#>   1 to <3 months                       8 (26.7%)        554        5 (33.3%)        283    
    +#>   3 to <6 months                       8 (26.7%)       1042        5 (33.3%)        686    
    +#>   >=6 months                          11 (36.7%)       2447        4 (26.7%)        834    
    +#>   Total patients number/person time   30 (100.0%)      4088       15 (100.0%)      1825    
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt01_lyt.html b/v0.2.8/reference/rmpt01_lyt.html new file mode 100644 index 0000000000..da72baf2e3 --- /dev/null +++ b/v0.2.8/reference/rmpt01_lyt.html @@ -0,0 +1,105 @@ + +rmpt01 Layout — rmpt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    rmpt01 Layout

    +
    + +
    +

    Usage

    +
    rmpt01_lyt(
    +  summaryvars,
    +  lbl_summaryvars,
    +  show_tot,
    +  row_split_var,
    +  col_split_var,
    +  overall_col_lbl
    +)
    +
    + +
    +

    Arguments

    + + +
    summaryvars
    +

    (string) variables to be analyzed. The label attribute of the corresponding columns in adex +table of adam_db is used as label.

    + + +
    lbl_summaryvars
    +

    (character) label associated with the analyzed variables.

    + + +
    show_tot
    +

    (flag) whether to display the cumulative total.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    col_split_var
    +

    (string) additional column splitting variable.

    + + +
    overall_col_lbl
    +

    (string) name of the overall column. If NULL, no overall level is added.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt01_post.html b/v0.2.8/reference/rmpt01_post.html new file mode 100644 index 0000000000..74afc54f2d --- /dev/null +++ b/v0.2.8/reference/rmpt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt01_pre.html b/v0.2.8/reference/rmpt01_pre.html new file mode 100644 index 0000000000..74afc54f2d --- /dev/null +++ b/v0.2.8/reference/rmpt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt03.html b/v0.2.8/reference/rmpt03.html new file mode 100644 index 0000000000..15c0cb3f13 --- /dev/null +++ b/v0.2.8/reference/rmpt03.html @@ -0,0 +1,162 @@ + +rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The rmpt03 table provides an overview of duration of exposure.

    +
    + +
    +

    Usage

    +
    rmpt03_main(
    +  adam_db,
    +  summaryvars = "AGEGR1",
    +  show_tot = TRUE,
    +  row_split_var = NULL,
    +  col_split_var = "SEX",
    +  overall_col_lbl = "All Genders",
    +  ...
    +)
    +
    +rmpt03_pre(adam_db, summaryvars = "AGEGR1", ...)
    +
    +rmpt03
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    summaryvars
    +

    (string) variables to be analyzed. The label attribute of the corresponding columns in adex +table of adam_db is used as label.

    + + +
    show_tot
    +

    (flag) whether to display the cumulative total.

    + + +
    row_split_var
    +

    (string) the name of the column that containing variable to split exposure by.

    + + +
    col_split_var
    +

    (string) additional column splitting variable.

    + + +
    overall_col_lbl
    +

    (string) name of the overall column. If NULL, no overall level is added.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • Person time is the sum of exposure across all patients.

    • +
    • Summary statistics are by default based on the number of patients in the corresponding N row +(number of non-missing values).

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • rmpt03_main(): Main TLG function

    • +
    • rmpt03_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    pre_data <- dunlin::propagate(syn_data, "adsl", "AGEGR1", "USUBJID")
    +#> 
    +#> Updating: adae with: AGEGR1
    +#> Updating: adsaftte with: AGEGR1
    +#> Updating: adcm with: AGEGR1
    +#> Updating: addv with: AGEGR1
    +#> Updating: adeg with: AGEGR1
    +#> Updating: adex with: AGEGR1
    +#> Updating: adlb with: AGEGR1
    +#> Updating: admh with: AGEGR1
    +#> Skipping: adrs
    +#> Updating: adsub with: AGEGR1
    +#> Skipping: adtte
    +#> Updating: advs with: AGEGR1
    +run(rmpt03, pre_data)
    +#>                                                   F                           M                      All Genders       
    +#>                                        Patients     Person time    Patients     Person time    Patients     Person time
    +#>   Age Group                             (N=30)        (N=30)        (N=15)        (N=15)        (N=45)        (N=45)   
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   <65                                 30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913    
    +#>   Total patients number/person time   30 (100.0%)      4088       15 (100.0%)      1825       45 (100.0%)      5913    
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt03_pre.html b/v0.2.8/reference/rmpt03_pre.html new file mode 100644 index 0000000000..d401618bf4 --- /dev/null +++ b/v0.2.8/reference/rmpt03_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt04.html b/v0.2.8/reference/rmpt04.html new file mode 100644 index 0000000000..66b3110bc3 --- /dev/null +++ b/v0.2.8/reference/rmpt04.html @@ -0,0 +1,149 @@ + +RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The RMPT04 table provides an overview of duration of exposure extent.

    +
    + +
    +

    Usage

    +
    rmpt04_main(
    +  adam_db,
    +  summaryvars = "ETHNIC",
    +  show_tot = TRUE,
    +  row_split_var = NULL,
    +  col_split_var = NULL,
    +  overall_col_lbl = NULL,
    +  ...
    +)
    +
    +rmpt04_pre(adam_db, summaryvars = "ETHNIC", ...)
    +
    +rmpt04
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    summaryvars
    +

    (string) variables to be analyzed. The label attribute of the corresponding columns in adex +table of adam_db is used as label.

    + + +
    show_tot
    +

    (flag) whether to display the cumulative total.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    col_split_var
    +

    (string) additional column splitting variable.

    + + +
    overall_col_lbl
    +

    (string) name of the overall column. If NULL, no overall level is added.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • Person time is the sum of exposure across all patients.

    • +
    • Summary statistics are by default based on the number of patients in the corresponding N row +(number of non-missing values).

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • rmpt04_main(): Main TLG function

    • +
    • rmpt04_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    run(rmpt04, syn_data)
    +#>                                        Patients     Person time
    +#>   ETHNIC                                (N=45)        (N=45)   
    +#>   —————————————————————————————————————————————————————————————
    +#>   HISPANIC OR LATINO                   2 (4.4%)         309    
    +#>   NOT HISPANIC OR LATINO              41 (91.1%)       5555    
    +#>   NOT REPORTED                         2 (4.4%)         49     
    +#>   Total patients number/person time   45 (100.0%)      5913    
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt04_pre.html b/v0.2.8/reference/rmpt04_pre.html new file mode 100644 index 0000000000..bbc3b50584 --- /dev/null +++ b/v0.2.8/reference/rmpt04_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt05.html b/v0.2.8/reference/rmpt05.html new file mode 100644 index 0000000000..79379ca793 --- /dev/null +++ b/v0.2.8/reference/rmpt05.html @@ -0,0 +1,150 @@ + +RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The RMPT05 table provides an overview of duration of exposure extent.

    +
    + +
    +

    Usage

    +
    rmpt05_main(
    +  adam_db,
    +  summaryvars = "RACE",
    +  show_tot = TRUE,
    +  row_split_var = NULL,
    +  col_split_var = NULL,
    +  overall_col_lbl = NULL,
    +  ...
    +)
    +
    +rmpt05_pre(adam_db, summaryvars = "RACE", ...)
    +
    +rmpt05
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    summaryvars
    +

    (string) variables to be analyzed. The label attribute of the corresponding columns in adex +table of adam_db is used as label.

    + + +
    show_tot
    +

    (flag) whether to display the cumulative total.

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    col_split_var
    +

    (string) additional column splitting variable.

    + + +
    overall_col_lbl
    +

    (string) name of the overall column. If NULL, no overall level is added.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • Person time is the sum of exposure across all patients.

    • +
    • Summary statistics are by default based on the number of patients in the corresponding N row +(number of non-missing values).

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • rmpt05_main(): Main TLG function

    • +
    • rmpt05_pre(): Preprocessing

    • +
    + +
    +

    Examples

    +
    run(rmpt05, syn_data)
    +#>                                        Patients     Person time
    +#>   RACE                                  (N=45)        (N=45)   
    +#>   —————————————————————————————————————————————————————————————
    +#>   ASIAN                               26 (57.8%)       3309    
    +#>   BLACK OR AFRICAN AMERICAN            9 (20.0%)       1139    
    +#>   WHITE                                7 (15.6%)       1231    
    +#>   AMERICAN INDIAN OR ALASKA NATIVE     3 (6.7%)         234    
    +#>   Total patients number/person time   45 (100.0%)      5913    
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt05_pre.html b/v0.2.8/reference/rmpt05_pre.html new file mode 100644 index 0000000000..682ed5e5a4 --- /dev/null +++ b/v0.2.8/reference/rmpt05_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt06.html b/v0.2.8/reference/rmpt06.html new file mode 100644 index 0000000000..078a7c9b00 --- /dev/null +++ b/v0.2.8/reference/rmpt06.html @@ -0,0 +1,185 @@ + +RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan.

    +
    + +
    +

    Usage

    +
    rmpt06_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  method = "clopper-pearson",
    +  conf_level = 0.95,
    +  show_diff = FALSE,
    +  ref_group = NULL,
    +  method_diff = "wald",
    +  conf_level_diff = 0.95,
    +  grade_groups = NULL,
    +  ...
    +)
    +
    +rmpt06_pre(adam_db, ...)
    +
    +rmpt06_post(tlg, prune_0 = FALSE, ...)
    +
    +rmpt06
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    method
    +

    (string) the method used to construct the confidence interval. See tern::estimate_proportion.

    + + +
    conf_level
    +

    (proportion) the confidence level of the interval. See tern::estimate_proportion.

    + + +
    show_diff
    +

    (flag) whether to show the difference of patient with at least one adverse event between groups.

    + + +
    ref_group
    +

    (string) the reference group for the difference.

    + + +
    method_diff
    +

    (string) the method used to construct the confidence interval for the difference between groups.

    + + +
    conf_level_diff
    +

    (proportion) the confidence level of the interval for the difference between groups.

    + + +
    grade_groups
    +

    (list) the grade groups to be displayed.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Functions

    + +
    • rmpt06_main(): Main TLG function

    • +
    • rmpt06_pre(): Preprocessing

    • +
    • rmpt06_post(): Postprocessing

    • +
    + +
    +

    Examples

    +
    run(rmpt06, syn_data)
    +#>                                                                   A: Drug X      B: Placebo    C: Combination
    +#>                                                                     (N=15)         (N=15)          (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Number of patients with at least one adverse event              13 (86.7%)     14 (93.3%)     15 (100.0%)  
    +#>   95% CI for % of patients with at least one AE                  (59.5, 98.3)   (68.1, 99.8)   (78.2, 100.0) 
    +#>   Total number of AEs                                                 58             59              99      
    +#>   Total number of patients with at least one AE by worst grade                                               
    +#>     Grade 1                                                           0           1 (6.7%)        1 (6.7%)   
    +#>     Grade 2                                                        1 (6.7%)       1 (6.7%)        1 (6.7%)   
    +#>     Grade 3                                                        1 (6.7%)      2 (13.3%)        1 (6.7%)   
    +#>     Grade 4                                                       3 (20.0%)      2 (13.3%)       2 (13.3%)   
    +#>     Grade 5 (fatal outcome)                                       8 (53.3%)      8 (53.3%)       10 (66.7%)  
    +#>   Number of patients with at least one serious AE                 12 (80.0%)     12 (80.0%)      11 (73.3%)  
    +#>   Number of patients with at least one AE by outcome                                                         
    +#>     Fatal outcome                                                 8 (61.5%)      8 (57.1%)       10 (66.7%)  
    +#>     Unresolved                                                    4 (30.8%)      6 (42.9%)       9 (60.0%)   
    +#>     Recovered/Resolved                                            9 (69.2%)      8 (57.1%)       11 (73.3%)  
    +#>     Resolved with sequelae                                        5 (38.5%)      4 (28.6%)       7 (46.7%)   
    +#>     Recovering/Resolving                                          9 (69.2%)      6 (42.9%)       13 (86.7%)  
    +#>     Unknown outcome                                               2 (15.4%)      4 (28.6%)       7 (46.7%)   
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt06_lyt.html b/v0.2.8/reference/rmpt06_lyt.html new file mode 100644 index 0000000000..815e447b2e --- /dev/null +++ b/v0.2.8/reference/rmpt06_lyt.html @@ -0,0 +1,91 @@ + +rmpt06 Layout — rmpt06_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    rmpt06 Layout

    +
    + +
    +

    Usage

    +
    rmpt06_lyt(
    +  arm_var,
    +  lbl_overall,
    +  method,
    +  conf_level,
    +  show_diff,
    +  ref_group,
    +  method_diff,
    +  conf_level_diff,
    +  grade_groups
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rmpt06_post.html b/v0.2.8/reference/rmpt06_post.html new file mode 100644 index 0000000000..cd482e686c --- /dev/null +++ b/v0.2.8/reference/rmpt06_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rmpt06_pre.html b/v0.2.8/reference/rmpt06_pre.html new file mode 100644 index 0000000000..cd482e686c --- /dev/null +++ b/v0.2.8/reference/rmpt06_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rspt01.html b/v0.2.8/reference/rspt01.html new file mode 100644 index 0000000000..d67e870a59 --- /dev/null +++ b/v0.2.8/reference/rspt01.html @@ -0,0 +1,228 @@ + +RSPT01 Binary Outcomes Summary. — rspt01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    RSPT01 template may be used to summarize any binary outcome or response variable at +a single time point. Typical application for oncology

    +
    + +
    +

    Usage

    +
    rspt01_main(
    +  adam_db,
    +  dataset = "adrs",
    +  arm_var = "ARM",
    +  ref_group = NULL,
    +  odds_ratio = TRUE,
    +  perform_analysis = "unstrat",
    +  strata = NULL,
    +  conf_level = 0.95,
    +  methods = list(),
    +  ...
    +)
    +
    +rspt01_pre(adam_db, ...)
    +
    +rspt01_post(tlg, prune_0 = TRUE, ...)
    +
    +rspt01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    ref_group
    +

    (string) The name of the reference group, the value should +be identical to the values in arm_var, if not specified, it will by default +use the first level or value of arm_var.

    + + +
    odds_ratio
    +

    (flag) should the odds ratio be calculated, default is TRUE

    + + +
    perform_analysis
    +

    (string) option to display statistical comparisons using stratified analyses, +or unstratified analyses, or both, e.g. c("unstrat", "strat"). Only unstratified will be displayed by default

    + + +
    strata
    +

    (string) stratification factors, e.g. strata = c("STRATA1", "STRATA2"), by default as NULL

    + + +
    conf_level
    +

    (numeric) the level of confidence interval, default is 0.95.

    + + +
    methods
    +

    (list) a named list, use a named list to control, for example: +methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten") +prop_conf_method controls the methods of calculating proportion confidence interval, +diff_conf_method controls the methods of calculating unstratified difference confidence interval, +strat_diff_conf_method controls the methods of calculating stratified difference confidence interval, +diff_pval_method controls the methods of calculating unstratified p-value for odds ratio, +strat_diff_pval_method controls the methods of calculating stratified p-value for odds ratio, +see more details in tern

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    +
    +

    Functions

    + +
    • rspt01_main(): Main TLG function

    • +
    • rspt01_pre(): Preprocessing

    • +
    • rspt01_post(): Postprocessing

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
    +
    +run(rspt01, proc_data)
    +#> Warning: Chi-squared approximation may be incorrect
    +#>                                          A: Drug X          B: Placebo         C: Combination  
    +#>                                            (N=15)             (N=15)               (N=15)      
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Responders                             10 (66.7%)         9 (60.0%)            11 (73.3%)    
    +#>   95% CI (Wald, with correction)        (39.5, 93.9)       (31.9, 88.1)         (47.6, 99.0)   
    +#>   Unstratified Analysis                                                                        
    +#>     Difference in Response rate (%)                            -6.7                 6.7        
    +#>       95% CI (Wald, with correction)                      (-47.7, 34.4)        (-32.7, 46.0)   
    +#>     p-value (Chi-Squared Test)                                0.7048               0.6903      
    +#>   Odds Ratio (95% CI)                                   0.75 (0.17 - 3.33)   1.37 (0.29 - 6.60)
    +#>   Complete Response (CR)                 4 (26.7%)          4 (26.7%)            7 (46.7%)     
    +#>     95% CI (Wald, with correction)     (0.95, 52.38)      (0.95, 52.38)        (18.09, 75.25)  
    +#>   Partial Response (PR)                  6 (40.0%)          5 (33.3%)            4 (26.7%)     
    +#>     95% CI (Wald, with correction)     (11.87, 68.13)     (6.14, 60.52)        (0.95, 52.38)   
    +#>   Stable Disease (SD)                    5 (33.3%)          6 (40.0%)            4 (26.7%)     
    +#>     95% CI (Wald, with correction)     (6.14, 60.52)      (11.87, 68.13)       (0.95, 52.38)   
    +
    +run(rspt01, proc_data,
    +  odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"),
    +  strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher")
    +)
    +#> Warning: Less than 5 observations in some strata.
    +#> Warning: Less than 5 observations in some strata.
    +#> Warning: <5 data points in some strata. CMH test may be incorrect.
    +#> Warning: <5 data points in some strata. CMH test may be incorrect.
    +#>                                                A: Drug X        B: Placebo     C: Combination
    +#>                                                  (N=15)           (N=15)           (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————————————————————————
    +#>   Responders                                   10 (66.7%)       9 (60.0%)        11 (73.3%)  
    +#>   95% CI (Wald, with correction)              (39.5, 93.9)     (31.9, 88.1)     (47.6, 99.0) 
    +#>   Unstratified Analysis                                                                      
    +#>     Difference in Response rate (%)                                -6.7             6.7      
    +#>       95% CI (Wald, with correction)                          (-47.7, 34.4)    (-32.7, 46.0) 
    +#>     p-value (Fisher's Exact Test)                                 1.0000           1.0000    
    +#>   Stratified Analysis                                                                        
    +#>     Difference in Response rate (%)                               -11.0             22.5     
    +#>       95% CI (CMH, without correction)                        (-42.7, 20.7)     (-3.5, 48.5) 
    +#>     p-value (Cochran-Mantel-Haenszel Test)                        0.5731           0.3088    
    +#>   Complete Response (CR)                       4 (26.7%)        4 (26.7%)        7 (46.7%)   
    +#>     95% CI (Wald, with correction)           (0.95, 52.38)    (0.95, 52.38)    (18.09, 75.25)
    +#>   Partial Response (PR)                        6 (40.0%)        5 (33.3%)        4 (26.7%)   
    +#>     95% CI (Wald, with correction)           (11.87, 68.13)   (6.14, 60.52)    (0.95, 52.38) 
    +#>   Stable Disease (SD)                          5 (33.3%)        6 (40.0%)        4 (26.7%)   
    +#>     95% CI (Wald, with correction)           (6.14, 60.52)    (11.87, 68.13)   (0.95, 52.38) 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rspt01_lyt.html b/v0.2.8/reference/rspt01_lyt.html new file mode 100644 index 0000000000..95b526bfa9 --- /dev/null +++ b/v0.2.8/reference/rspt01_lyt.html @@ -0,0 +1,86 @@ + +rspt01 Layout — rspt01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    rspt01 Layout

    +
    + +
    +

    Usage

    +
    rspt01_lyt(
    +  arm_var,
    +  rsp_var,
    +  ref_group,
    +  odds_ratio,
    +  perform_analysis,
    +  strata,
    +  conf_level,
    +  methods
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/rspt01_post.html b/v0.2.8/reference/rspt01_post.html new file mode 100644 index 0000000000..c07223fca6 --- /dev/null +++ b/v0.2.8/reference/rspt01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/rspt01_pre.html b/v0.2.8/reference/rspt01_pre.html new file mode 100644 index 0000000000..c07223fca6 --- /dev/null +++ b/v0.2.8/reference/rspt01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/run,chevron_tlg-method.html b/v0.2.8/reference/run,chevron_tlg-method.html new file mode 100644 index 0000000000..49a2e1a21b --- /dev/null +++ b/v0.2.8/reference/run,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/run-1.png b/v0.2.8/reference/run-1.png new file mode 100644 index 0000000000..db57270860 Binary files /dev/null and b/v0.2.8/reference/run-1.png differ diff --git a/v0.2.8/reference/run-2.png b/v0.2.8/reference/run-2.png new file mode 100644 index 0000000000..14042731f8 Binary files /dev/null and b/v0.2.8/reference/run-2.png differ diff --git a/v0.2.8/reference/run-3.png b/v0.2.8/reference/run-3.png new file mode 100644 index 0000000000..8507523828 Binary files /dev/null and b/v0.2.8/reference/run-3.png differ diff --git a/v0.2.8/reference/run.html b/v0.2.8/reference/run.html new file mode 100644 index 0000000000..4a6ca2233b --- /dev/null +++ b/v0.2.8/reference/run.html @@ -0,0 +1,150 @@ + +Run the TLG-generating pipeline — run • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Run the TLG-generating pipeline

    +
    + +
    +

    Usage

    +
    run(
    +  object,
    +  adam_db,
    +  auto_pre = TRUE,
    +  verbose = FALSE,
    +  unwrap = FALSE,
    +  ...,
    +  user_args = list(...)
    +)
    +
    +# S4 method for class 'chevron_tlg'
    +run(
    +  object,
    +  adam_db,
    +  auto_pre = TRUE,
    +  verbose = get_arg("chevron.run.verbose", "R_CHEVRON_RUN_VERBOSE", FALSE),
    +  unwrap = get_arg("chevron.run.unwrap", "R_CHEVRON_RUN_UNWRAP", verbose),
    +  ...,
    +  user_args = list(...)
    +)
    +
    + +
    +

    Arguments

    + + +
    object
    +

    (chevron_tlg) input.

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    auto_pre
    +

    (flag) whether to perform the default pre processing step.

    + + +
    verbose
    +

    (flag) whether to print argument information.

    + + +
    unwrap
    +

    (flag) whether to print the preprocessing postprocessing and main function together with the +associated layout function.

    + + +
    ...
    +

    extra arguments to pass to the pre-processing, main and post-processing functions.

    + + +
    user_args
    +

    (list) arguments from ....

    + +
    +
    +

    Value

    +

    an rtables (for chevron_t), rlistings (for chevron_l), grob (for chevron_g) or ElementaryTable +(null report) depending on the class of chevron_tlg object passed as object argument.

    +
    +
    +

    Details

    +

    The functions stored in the preprocess, main and postprocess slots of the chevron_tlg objects are called +respectively, preprocessing, main and postprocessing functions.

    +

    When executing the run method on a chevron_tlg object, if auto_pre is TRUE, the adam_bd list is first +passed to the preprocessing function. The resulting list is then passed to the main function which produces a +table, graph or listings or a list of these objects. This output is then passed to the postprocessing function +which performed the final modifications before returning the output. Additional arguments specified in ... or +user_args are passed to each of the three functions.

    +
    + +
    +

    Examples

    +
    run(mng01, syn_data, auto_pre = TRUE, dataset = "adlb")
    +#> $`Alanine Aminotransferase Measurement`
    +
    +#> 
    +#> $`C-Reactive Protein Measurement`
    +
    +#> 
    +#> $`Immunoglobulin A Measurement`
    +
    +#> 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/s_summary_na.html b/v0.2.8/reference/s_summary_na.html new file mode 100644 index 0000000000..820ea8e2a5 --- /dev/null +++ b/v0.2.8/reference/s_summary_na.html @@ -0,0 +1,100 @@ + +Summary factor allowing NA — s_summary_na • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Summary factor allowing NA

    +
    + +
    +

    Usage

    +
    s_summary_na(
    +  x,
    +  labelstr,
    +  denom = c("n", "N_row", "N_col"),
    +  .N_row,
    +  .N_col,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (factor) input.

    + + +
    denom
    +

    (string) denominator choice.

    + + +
    .N_row
    +

    (integer) number of rows in row-split dataset.

    + + +
    .N_col
    +

    (integer) number of rows in column-split dataset.

    + + +
    ...
    +

    Not used

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/script.html b/v0.2.8/reference/script.html new file mode 100644 index 0000000000..8c315b8abb --- /dev/null +++ b/v0.2.8/reference/script.html @@ -0,0 +1,118 @@ + +Create Script for TLG Generation — script • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Create Script for TLG Generation

    +
    + +
    +

    Usage

    +
    script_funs(x, adam_db, args, name = deparse(substitute(x)))
    +
    +# S4 method for class 'chevron_tlg'
    +script_funs(x, adam_db, args, name = deparse(substitute(x)))
    +
    +# S4 method for class 'chevron_simple'
    +script_funs(x, adam_db, args, name = deparse(substitute(x)))
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (chevron_tlg) input.

    + + +
    adam_db
    +

    (string) the name of the dataset.

    + + +
    args
    +

    (string) the name of argument list.

    + + +
    name
    +

    (string) name of the template.

    + +
    +
    +

    Value

    +

    character that can be integrated into an executable script.

    +
    + +
    +

    Examples

    +
    script_funs(aet04, adam_db = "syn_data", args = "args")
    +#>  [1] "# Edit Preprocessing Function."                                                         
    +#>  [2] "preprocess(aet04) <- "                                                                  
    +#>  [3] "function (adam_db, ...) "                                                               
    +#>  [4] "{"                                                                                      
    +#>  [5] "    atoxgr_lvls <- c(\"1\", \"2\", \"3\", \"4\", \"5\")"                                
    +#>  [6] "    adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == "                          
    +#>  [7] "        \"Y\") %>% mutate(AEBODSYS = reformat(.data$AEBODSYS, nocoding), "              
    +#>  [8] "        AEDECOD = reformat(.data$AEDECOD, nocoding), ATOXGR = factor(.data$ATOXGR, "    
    +#>  [9] "            levels = atoxgr_lvls))"                                                     
    +#> [10] "    adam_db"                                                                            
    +#> [11] "}"                                                                                      
    +#> [12] ""                                                                                       
    +#> [13] "# Create TLG"                                                                           
    +#> [14] "tlg_output <- run(object = aet04, adam_db = syn_data, verbose = TRUE, user_args = args)"
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/script_funs,chevron_simple-method.html b/v0.2.8/reference/script_funs,chevron_simple-method.html new file mode 100644 index 0000000000..ca64319e70 --- /dev/null +++ b/v0.2.8/reference/script_funs,chevron_simple-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/script_funs,chevron_tlg-method.html b/v0.2.8/reference/script_funs,chevron_tlg-method.html new file mode 100644 index 0000000000..ca64319e70 --- /dev/null +++ b/v0.2.8/reference/script_funs,chevron_tlg-method.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/script_funs.html b/v0.2.8/reference/script_funs.html new file mode 100644 index 0000000000..ca64319e70 --- /dev/null +++ b/v0.2.8/reference/script_funs.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/set_section_div.html b/v0.2.8/reference/set_section_div.html new file mode 100644 index 0000000000..ce15375f7b --- /dev/null +++ b/v0.2.8/reference/set_section_div.html @@ -0,0 +1,87 @@ + +Set Section Dividers — set_section_div • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Set Section Dividers

    +
    + +
    +

    Usage

    +
    set_section_div(x)
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (integerish) value of at which the section divider should be added.

    + +
    +
    +

    Value

    +

    invisible NULL. Set the chevron.section_div option.

    +
    +
    +

    Details

    +

    Section dividers are empty lines between sections in tables. +E.g. if 1 is used then for the first row split an empty line is added. +Currently it only works for aet02, cmt01a and mht01 template.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/smart_prune.html b/v0.2.8/reference/smart_prune.html new file mode 100644 index 0000000000..71659861f7 --- /dev/null +++ b/v0.2.8/reference/smart_prune.html @@ -0,0 +1,81 @@ + +Prune table up to an ElementaryTable — smart_prune • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Avoid returning NULL when the table is empty.

    +
    + +
    +

    Usage

    +
    smart_prune(tlg)
    +
    + +
    +

    Arguments

    + + +
    tlg
    +

    (TableTree) object.

    + +
    +
    +

    Value

    +

    pruned TableTree.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/split_rows_by_recursive.html b/v0.2.8/reference/split_rows_by_recursive.html new file mode 100644 index 0000000000..b1e14cce5f --- /dev/null +++ b/v0.2.8/reference/split_rows_by_recursive.html @@ -0,0 +1,85 @@ + +Count or summarize by groups — split_rows_by_recursive • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Count or summarize by groups

    +
    + +
    +

    Usage

    +
    split_rows_by_recursive(lyt, row_split_var, ...)
    +
    + +
    +

    Arguments

    + + +
    lyt
    +

    (PreDataTableLayouts) rtable layout.

    + + +
    row_split_var
    +

    (character) variable to split rows by.

    + + +
    ...
    +

    Further arguments for split_rows_by

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/standard_null_report.html b/v0.2.8/reference/standard_null_report.html new file mode 100644 index 0000000000..d0f5225aec --- /dev/null +++ b/v0.2.8/reference/standard_null_report.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/std_listing.html b/v0.2.8/reference/std_listing.html new file mode 100644 index 0000000000..baaa238260 --- /dev/null +++ b/v0.2.8/reference/std_listing.html @@ -0,0 +1,114 @@ + +Standard Main Listing Function — std_listing • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Standard Main Listing Function

    +
    + +
    +

    Usage

    +
    std_listing(
    +  adam_db,
    +  dataset,
    +  key_cols,
    +  disp_cols,
    +  split_into_pages_by_var,
    +  unique_rows = FALSE,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    key_cols
    +

    (character) names of columns that should be treated as key columns when rendering the listing. +Key columns allow you to group repeat occurrences.

    + + +
    disp_cols
    +

    (character) names of non-key columns which should be displayed when the listing is rendered.

    + + +
    split_into_pages_by_var
    +

    (character or NULL) the name of the variable to split the listing by.

    + + +
    unique_rows
    +

    (flag) whether to keep only unique rows in listing.

    + + +
    ...
    +

    additional arguments passed to rlistings::as_listing.

    + +
    +
    +

    Value

    +

    the main function returns an rlistings or a list object.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/std_postprocessing.html b/v0.2.8/reference/std_postprocessing.html new file mode 100644 index 0000000000..5dcf8ebbd2 --- /dev/null +++ b/v0.2.8/reference/std_postprocessing.html @@ -0,0 +1,114 @@ + +Standard Post Processing — std_postprocessing • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Standard Post Processing

    +
    + +
    +

    Usage

    +
    std_postprocessing(tlg, ...)
    +
    + +
    +

    Arguments

    + + +
    tlg
    +

    to post process.

    + + +
    ...
    +

    additional arguments passed to report_null.

    + +
    +
    +

    Value

    +

    a processed tlg or a null report.

    +
    + +
    +

    Examples

    +
    library(rtables)
    +#> Loading required package: formatters
    +#> 
    +#> Attaching package: ‘formatters’
    +#> The following object is masked from ‘package:base’:
    +#> 
    +#>     %||%
    +#> Loading required package: magrittr
    +#> 
    +#> Attaching package: ‘magrittr’
    +#> The following objects are masked from ‘package:testthat’:
    +#> 
    +#>     equals, is_less_than, not
    +#> 
    +#> Attaching package: ‘rtables’
    +#> The following object is masked from ‘package:utils’:
    +#> 
    +#>     str
    +std_postprocessing(build_table(basic_table() |> analyze("Species"), iris), ind = 10L)
    +#>                        all obs
    +#>           ————————————————————
    +#>           setosa         50   
    +#>           versicolor     50   
    +#>           virginica      50   
    +
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/summarize_vars_allow_na.html b/v0.2.8/reference/summarize_vars_allow_na.html new file mode 100644 index 0000000000..ded474cdb8 --- /dev/null +++ b/v0.2.8/reference/summarize_vars_allow_na.html @@ -0,0 +1,82 @@ + +Summarize variables allow NA — summarize_vars_allow_na • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Summarize variables allow NA

    +
    + +
    +

    Usage

    +
    summarize_vars_allow_na(
    +  lyt,
    +  vars,
    +  var_labels = vars,
    +  nested = TRUE,
    +  ...,
    +  show_labels = "default",
    +  table_names = vars,
    +  section_div = NA_character_,
    +  .stats = c("n", "count_fraction"),
    +  .formats = list(count_fraction = format_count_fraction_fixed_dp),
    +  .labels = NULL,
    +  .indent_mods = NULL,
    +  inclNAs = TRUE
    +)
    +
    + + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/syn_data.html b/v0.2.8/reference/syn_data.html new file mode 100644 index 0000000000..5367701412 --- /dev/null +++ b/v0.2.8/reference/syn_data.html @@ -0,0 +1,90 @@ + +Example adam Synthetic Data — syn_data • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Example adam Synthetic Data

    +
    + +
    +

    Usage

    +
    syn_data
    +
    + +
    +

    Format

    +

    A named list of 13 data.frames: +- adsl +- adae +- adsaftte +- adcm +- addv +- adeg +- adex +- adlb +- admh +- adrs +- adsub +- adtte +- advs

    +
    +
    +

    Source

    +

    based on package random.cdisc.data

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ttet01.html b/v0.2.8/reference/ttet01.html new file mode 100644 index 0000000000..0dbb76b436 --- /dev/null +++ b/v0.2.8/reference/ttet01.html @@ -0,0 +1,234 @@ + +TTET01 Binary Outcomes Summary. — ttet01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    TTET01 template may be used to summarize any binary outcome or response variable at +a single time point. Typical application for oncology

    +
    + +
    +

    Usage

    +
    ttet01_main(
    +  adam_db,
    +  dataset = "adtte",
    +  arm_var = "ARM",
    +  ref_group = NULL,
    +  summarize_event = TRUE,
    +  perform_analysis = "unstrat",
    +  strata = NULL,
    +  ...
    +)
    +
    +ttet01_pre(adam_db, dataset = "adtte", ...)
    +
    +ttet01_post(tlg, prune_0 = TRUE, ...)
    +
    +ttet01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    ref_group
    +

    (string) The name of the reference group, the value should +be identical to the values in arm_var, if not specified, it will by default +use the first level or value of arm_var.

    + + +
    summarize_event
    +

    (flag) should the event description be displayed, default is TRUE

    + + +
    perform_analysis
    +

    (string) option to display statistical comparisons using stratified analyses, +or unstratified analyses, or both, e.g. c("unstrat", "strat"). Only unstratified will be displayed by default

    + + +
    strata
    +

    (string) stratification factors, e.g. strata = c("STRATA1", "STRATA2"), by default as NULL

    + + +
    ...
    +

    Further arguments passed to control_surv_time(), control_coxph(), control_survtp(), and +surv_timepoint(). For details, see the documentation in tern. Commonly used arguments include pval_method, +conf_level, conf_type, quantiles, ties, time_point, method, etc.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • No overall value.

    • +
    +
    +

    Functions

    + +
    • ttet01_main(): Main TLG function

    • +
    • ttet01_pre(): Preprocessing

    • +
    • ttet01_post(): Postprocessing

    • +
    + +
    +

    Examples

    +
    library(dplyr)
    +library(dunlin)
    +
    +proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
    +run(ttet01, proc_data)
    +#>                                       A: Drug X        B: Placebo      C: Combination 
    +#>                                         (N=15)           (N=15)            (N=15)     
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#>   Patients with event (%)             7 (46.7%)         12 (80%)          8 (53.3%)   
    +#>     Earliest contributing event                                                       
    +#>       Death                               5                11                 7       
    +#>       Disease Progression                 2                 1                 1       
    +#>   Patients without event (%)          8 (53.3%)          3 (20%)          7 (46.7%)   
    +#>   Time to Event (MONTHS)                                                              
    +#>     Median                               8.6               6.2               8.4      
    +#>       95% CI                          (7.3, NE)        (4.8, 7.6)         (7.0, NE)   
    +#>     25% and 75%-ile                    3.8, NE          4.7, 8.4           5.8, NE    
    +#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1      0.9 to 9.5 {1} 
    +#>   Unstratified Analysis                                                               
    +#>     p-value (log-rank)                                   0.0973            0.9111     
    +#>     Hazard Ratio                                          2.18              1.06      
    +#>     95% CI                                            (0.85, 5.60)      (0.38, 2.94)  
    +#>   6 MONTHS                                                                            
    +#>     Patients remaining at risk            11                8                11       
    +#>     Event Free Rate (%)                 73.33             53.33             73.33     
    +#>     95% CI                          (50.95, 95.71)   (28.09, 78.58)    (50.95, 95.71) 
    +#>     Difference in Event Free Rate                        -20.00             0.00      
    +#>       95% CI                                         (-53.74, 13.74)   (-31.65, 31.65)
    +#>       p-value (Z-test)                                   0.2453            1.0000     
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#> 
    +#>   {1} - Censored observation: range maximum
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#> 
    +
    +run(ttet01, proc_data,
    +  summarize_event = FALSE, perform_analysis = c("unstrat", "strat"),
    +  strata = c("STRATA1", "STRATA2"),
    +  conf_type = "log-log",
    +  time_point = c(6, 12),
    +  method = "both"
    +)
    +#>                                       A: Drug X        B: Placebo      C: Combination 
    +#>                                         (N=15)           (N=15)            (N=15)     
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#>   Patients with event (%)             7 (46.7%)         12 (80%)          8 (53.3%)   
    +#>   Patients without event (%)          8 (53.3%)          3 (20%)          7 (46.7%)   
    +#>   Time to Event (MONTHS)                                                              
    +#>     Median                               8.6               6.2               8.4      
    +#>       95% CI                          (2.6, NE)        (2.2, 7.6)         (3.8, NE)   
    +#>     25% and 75%-ile                    3.8, NE          4.7, 8.4           5.8, NE    
    +#>     Range                           1.2 to 9.5 {1}     0.9 to 9.1      0.9 to 9.5 {1} 
    +#>   Unstratified Analysis                                                               
    +#>     p-value (log-rank)                                   0.0973            0.9111     
    +#>     Hazard Ratio                                          2.18              1.06      
    +#>     95% CI                                            (0.85, 5.60)      (0.38, 2.94)  
    +#>   Stratified Analysis                                                                 
    +#>     p-value (log-rank)                                   0.1505            0.8372     
    +#>     Hazard Ratio                                          2.11              0.86      
    +#>     95% CI                                            (0.75, 5.96)      (0.21, 3.49)  
    +#>   6 MONTHS                                                                            
    +#>     Patients remaining at risk            11                8                11       
    +#>     Event Free Rate (%)                 73.33             53.33             73.33     
    +#>     95% CI                          (43.62, 89.05)   (26.32, 74.38)    (43.62, 89.05) 
    +#>     Difference in Event Free Rate                        -20.00             0.00      
    +#>       95% CI                                         (-53.74, 13.74)   (-31.65, 31.65)
    +#>       p-value (Z-test)                                   0.2453            1.0000     
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#> 
    +#>   {1} - Censored observation: range maximum
    +#>   ————————————————————————————————————————————————————————————————————————————————————
    +#> 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ttet01_lyt.html b/v0.2.8/reference/ttet01_lyt.html new file mode 100644 index 0000000000..bfa7418566 --- /dev/null +++ b/v0.2.8/reference/ttet01_lyt.html @@ -0,0 +1,97 @@ + +ttet01 Layout — ttet01_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    ttet01 Layout

    +
    + +
    +

    Usage

    +
    ttet01_lyt(
    +  arm_var,
    +  ref_group,
    +  summarize_event,
    +  perform_analysis,
    +  strata,
    +  timeunit,
    +  event_lvls,
    +  control_survt,
    +  control_cox_ph,
    +  control_survtp,
    +  ...
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    timeunit
    +

    (string) time unit get from AVALU, by default is "Months"

    + + +
    ...
    +

    not used.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/ttet01_post.html b/v0.2.8/reference/ttet01_post.html new file mode 100644 index 0000000000..5170df170a --- /dev/null +++ b/v0.2.8/reference/ttet01_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/ttet01_pre.html b/v0.2.8/reference/ttet01_pre.html new file mode 100644 index 0000000000..5170df170a --- /dev/null +++ b/v0.2.8/reference/ttet01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/unwrap_layout.html b/v0.2.8/reference/unwrap_layout.html new file mode 100644 index 0000000000..dbf8853262 --- /dev/null +++ b/v0.2.8/reference/unwrap_layout.html @@ -0,0 +1,111 @@ + +Extracting Layout Function. — unwrap_layout • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Extracting Layout Function.

    +
    + +
    +

    Usage

    +
    unwrap_layout(x, pattern = "_lyt$")
    +
    + +
    +

    Arguments

    + + +
    x
    +

    (function) containing a call to a layout function.

    + + +
    pattern
    +

    (string) identifying layout functions

    + +
    +
    +

    Value

    +

    invisible NULL and print the content of the layout functions found in the body of x.

    +
    + +
    +

    Examples

    +
    unwrap_layout(aet01_main)
    +#> Layout function:
    +#>   aet01_lyt:
    +#> function (arm_var, lbl_overall, anl_vars, anl_lbls, lbl_vars) 
    +#> {
    +#>     lyt_base <- basic_table(show_colcounts = TRUE) %>% split_cols_by_with_overall(arm_var, 
    +#>         lbl_overall)
    +#>     lyt_ae1 <- lyt_base %>% analyze_num_patients(vars = "USUBJID", 
    +#>         .stats = c("unique", "nonunique"), .labels = c(unique = render_safe("Total number of {patient_label} with at least one AE"), 
    +#>             nonunique = "Total number of AEs"), .formats = list(unique = format_count_fraction_fixed_dp, 
    +#>             nonunique = "xx"), show_labels = "hidden")
    +#>     lyt_adsl <- lyt_base %>% count_patients_with_event("USUBJID", 
    +#>         filters = c(DTHFL = "Y"), denom = "N_col", .labels = c(count_fraction = "Total number of deaths"), 
    +#>         table_names = "TotDeath") %>% count_patients_with_event("USUBJID", 
    +#>         filters = c(DCSREAS = "ADVERSE EVENT"), denom = "N_col", 
    +#>         .labels = c(count_fraction = render_safe("Total number of {patient_label} withdrawn from study due to an AE")), 
    +#>         table_names = "TotWithdrawal")
    +#>     lyt_ae2 <- lyt_base %>% count_patients_recursive(anl_vars = anl_vars, 
    +#>         anl_lbls = anl_lbls, lbl_vars = lbl_vars)
    +#>     return(list(ae1 = lyt_ae1, ae2 = lyt_ae2, adsl = lyt_adsl))
    +#> }
    +
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/var_labels_for.html b/v0.2.8/reference/var_labels_for.html new file mode 100644 index 0000000000..707e7503ac --- /dev/null +++ b/v0.2.8/reference/var_labels_for.html @@ -0,0 +1,90 @@ + +Retrieve labels for certain variables — var_labels_for • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Retrieve labels for certain variables

    +
    + +
    +

    Usage

    +
    var_labels_for(df, vars)
    +
    + +
    +

    Arguments

    + + +
    df
    +

    (data.frame) containing columns with label attribute.

    + + +
    vars
    +

    (character) variable names in df.

    + +
    +
    +

    Value

    +

    a character with replaced placeholders and a label attribute.

    +
    +
    +

    Details

    +

    The labels will be returned if the column has label attribute, otherwise the column name will be returned. +Any values between brackets will be replaced with dunlin::render_safe.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/vst01.html b/v0.2.8/reference/vst01.html new file mode 100644 index 0000000000..aa76d02df3 --- /dev/null +++ b/v0.2.8/reference/vst01.html @@ -0,0 +1,268 @@ + +VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    The VST01 table provides an +overview of the Vital Sign values and its change from baseline of each respective arm +over the course of the trial.

    +
    + +
    +

    Usage

    +
    vst01_main(
    +  adam_db,
    +  dataset = "advs",
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  row_split_var = NULL,
    +  summaryvars = c("AVAL", "CHG"),
    +  visitvar = "AVISIT",
    +  precision = list(default = 2L),
    +  page_var = "PARAMCD",
    +  .stats = c("n", "mean_sd", "median", "range"),
    +  skip = list(CHG = "BASELINE"),
    +  ...
    +)
    +
    +vst01_pre(adam_db, dataset = "advs", ...)
    +
    +vst01
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    dataset
    +

    (string) the name of a table in the adam_db object.

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    row_split_var
    +

    (character) additional row split variables.

    + + +
    summaryvars
    +

    (character) variables to be analyzed. The label attribute of the corresponding column in +table of adam_db is used as label.

    + + +
    visitvar
    +

    (string) typically one of "AVISIT" or user-defined visit incorporating "ATPT".

    + + +
    precision
    +

    (named list of integer) where names are values found in the PARAMCD column and the values +indicate the number of digits in statistics. If default is set, and parameter precision not specified, +the value for default will be used.

    + + +
    page_var
    +

    (string) variable name prior to which the row split is by page.

    + + +
    .stats
    +

    (character) statistics names, see tern::analyze_vars().

    + + +
    skip
    +

    Named (list) of visit values that need to be inhibited.

    + + +
    ...
    +

    additional arguments like .indent_mods, .labels.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +
    +
    +

    Details

    + +
    • The Analysis Value column, displays the number of patients, the mean, standard deviation, median and range of +the analysis value for each visit.

    • +
    • The Change from Baseline column, displays the number of patient and the mean, standard deviation, +median and range of changes relative to the baseline.

    • +
    • Remove zero-count rows unless overridden with prune_0 = FALSE.

    • +
    • Split columns by arm, typically ACTARM.

    • +
    • Does not include a total column by default.

    • +
    • Sorted based on factor level; first by PARAM labels in alphabetic order then by chronological time point given +by AVISIT. Re-level to customize order

    • +
    +
    +

    Functions

    + +
    • vst01_main(): Main TLG function

    • +
    • vst01_pre(): Preprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain table named as dataset with the columns specified in summaryvars.

    • +
    + +
    +

    Examples

    +
    library(dunlin)
    +
    +proc_data <- log_filter(
    +  syn_data,
    +  PARAMCD %in% c("DIABP", "SYSBP"), "advs"
    +)
    +run(vst01, proc_data)
    +#>                                          A: Drug X                            B: Placebo                          C: Combination           
    +#>                                                   Change from                          Change from                           Change from   
    +#>                               Value at Visit       Baseline        Value at Visit        Baseline        Value at Visit        Baseline    
    +#>   Analysis Visit                  (N=15)            (N=15)             (N=15)             (N=15)             (N=15)             (N=15)     
    +#>   —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
    +#>   Diastolic Blood Pressure                                                                                                                 
    +#>     SCREENING                                                                                                                              
    +#>       n                             15                 0                 15                 0                  15                 0        
    +#>       Mean (SD)              94.385 (17.067)        NE (NE)       106.381 (20.586)       NE (NE)        106.468 (12.628)       NE (NE)     
    +#>       Median                      94.933              NE              111.133               NE              108.359               NE       
    +#>       Min - Max               55.71 - 122.00        NE - NE        60.21 - 131.91        NE - NE         83.29 - 127.17        NE - NE     
    +#>     BASELINE                                                                                                                               
    +#>       n                             15                                   15                                    15                          
    +#>       Mean (SD)              96.133 (22.458)                      108.111 (15.074)                      103.149 (19.752)                   
    +#>       Median                      93.328                              108.951                               102.849                        
    +#>       Min - Max               60.58 - 136.59                       83.44 - 131.62                        66.05 - 136.55                    
    +#>     WEEK 1 DAY 8                                                                                                                           
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              98.977 (21.359)    2.844 (28.106)    104.110 (16.172)   -4.001 (21.867)    100.826 (19.027)   -2.323 (25.018) 
    +#>       Median                      92.447            -4.066            107.703             3.227             103.058             -2.476     
    +#>       Min - Max               67.55 - 130.37    -32.82 - 47.68     70.91 - 132.89     -52.94 - 28.63     70.04 - 128.68     -55.15 - 41.81 
    +#>     WEEK 2 DAY 15                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              99.758 (14.477)    3.626 (21.189)    97.473 (17.296)    -10.638 (20.831)   94.272 (16.961)    -8.877 (27.229) 
    +#>       Median                     101.498             1.731             99.501             -9.727             96.789            -10.155     
    +#>       Min - Max               71.98 - 122.81    -39.50 - 47.57     53.80 - 125.81     -55.15 - 25.26     63.45 - 117.47     -73.10 - 46.54 
    +#>     WEEK 3 DAY 22                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              99.101 (26.109)    2.968 (34.327)    91.984 (16.925)    -16.127 (21.881)   94.586 (13.560)    -8.563 (21.713) 
    +#>       Median                     101.146            -0.271             91.244            -14.384             98.398            -16.075     
    +#>       Min - Max               47.68 - 162.22    -47.87 - 76.64     67.80 - 119.72     -53.06 - 22.52     73.50 - 115.43     -37.90 - 32.66 
    +#>     WEEK 4 DAY 29                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              103.400 (22.273)   7.267 (30.740)    96.467 (19.451)    -11.644 (25.922)   108.338 (18.417)    5.189 (21.881) 
    +#>       Median                      98.168             2.510             97.385            -16.793            107.555             7.966      
    +#>       Min - Max               63.09 - 148.25    -38.43 - 61.90     63.35 - 131.57     -57.11 - 48.13     68.78 - 132.52     -33.96 - 41.50 
    +#>     WEEK 5 DAY 36                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              93.222 (18.536)    -2.911 (28.873)   97.890 (20.701)    -10.221 (27.593)   95.317 (16.401)    -7.832 (19.827) 
    +#>       Median                      90.799            -3.385             99.049            -11.319             93.876             -4.665     
    +#>       Min - Max               63.55 - 139.11    -48.63 - 47.35     69.47 - 137.64     -54.38 - 37.85     71.91 - 138.54     -44.47 - 29.11 
    +#>   Systolic Blood Pressure                                                                                                                  
    +#>     SCREENING                                                                                                                              
    +#>       n                             15                 0                 15                 0                  15                 0        
    +#>       Mean (SD)              154.073 (33.511)       NE (NE)       157.840 (34.393)       NE (NE)        152.407 (22.311)       NE (NE)     
    +#>       Median                     156.169              NE              161.670               NE              149.556               NE       
    +#>       Min - Max               78.31 - 210.70        NE - NE        79.76 - 210.40        NE - NE        108.21 - 184.88        NE - NE     
    +#>     BASELINE                                                                                                                               
    +#>       n                             15                                   15                                    15                          
    +#>       Mean (SD)              145.925 (28.231)                     152.007 (28.664)                      154.173 (26.317)                   
    +#>       Median                     142.705                              157.698                               155.282                        
    +#>       Min - Max               85.21 - 195.68                       98.90 - 194.62                        86.65 - 192.68                    
    +#>     WEEK 1 DAY 8                                                                                                                           
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              156.509 (21.097)   10.584 (34.598)   147.480 (33.473)   -4.527 (48.895)    143.319 (30.759)   -10.854 (34.553)
    +#>       Median                     160.711             5.802            155.030             2.758             145.548             -5.636     
    +#>       Min - Max              126.84 - 185.53    -53.28 - 91.52     85.22 - 189.88     -77.34 - 90.98     90.37 - 191.58     -65.71 - 49.04 
    +#>     WEEK 2 DAY 15                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              144.202 (33.676)   -1.723 (27.067)   136.892 (30.178)   -15.115 (37.794)   148.622 (27.088)   -5.551 (44.670) 
    +#>       Median                     144.253             5.325            142.679            -14.083            147.102            -11.512     
    +#>       Min - Max               62.56 - 203.66    -53.89 - 44.16     70.34 - 174.27     -83.07 - 62.39    108.82 - 200.23    -69.54 - 113.59 
    +#>     WEEK 3 DAY 22                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              154.887 (35.374)   8.962 (38.455)    149.761 (28.944)   -2.247 (44.835)    150.460 (21.352)   -3.712 (37.984) 
    +#>       Median                     158.938            17.191            155.044             -1.796            156.505             -7.606     
    +#>       Min - Max              112.32 - 218.83    -47.28 - 96.18     84.42 - 192.92    -110.20 - 94.02     94.70 - 180.41     -74.91 - 72.74 
    +#>     WEEK 4 DAY 29                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              150.159 (32.249)   4.234 (32.965)    156.043 (22.863)    4.036 (42.494)    145.714 (22.980)   -8.458 (33.175) 
    +#>       Median                     145.506             3.754            149.094            -10.000            150.797            -14.432     
    +#>       Min - Max               69.37 - 210.43    -89.16 - 54.32    113.57 - 195.10     -71.44 - 77.75    106.91 - 188.09     -41.95 - 65.16 
    +#>     WEEK 5 DAY 36                                                                                                                          
    +#>       n                             15                15                 15                 15                 15                 15       
    +#>       Mean (SD)              155.964 (30.945)   10.039 (42.252)   156.387 (35.274)    4.380 (51.782)    143.592 (33.170)   -10.581 (44.799)
    +#>       Median                     158.142             1.448            164.552             7.060             148.501             -2.385     
    +#>       Min - Max              110.61 - 212.47    -53.91 - 90.45     63.28 - 198.79    -131.34 - 86.84     92.18 - 191.05     -78.77 - 64.35 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/vst01_pre.html b/v0.2.8/reference/vst01_pre.html new file mode 100644 index 0000000000..0b266dc6ff --- /dev/null +++ b/v0.2.8/reference/vst01_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/vst02_1.html b/v0.2.8/reference/vst02_1.html new file mode 100644 index 0000000000..f413558030 --- /dev/null +++ b/v0.2.8/reference/vst02_1.html @@ -0,0 +1,169 @@ + +VST02 Vital Sign Abnormalities Table. — vst02_1_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Vital Sign Parameters outside Normal Limits Regardless of Abnormality at Baseline.

    +
    + +
    +

    Usage

    +
    vst02_1_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  exclude_base_abn = FALSE,
    +  ...
    +)
    +
    +vst02_pre(adam_db, ...)
    +
    +vst02_post(tlg, prune_0 = FALSE, ...)
    +
    +vst02_1
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    exclude_base_abn
    +

    (flag) whether baseline abnormality should be excluded.

    + + +
    ...
    +

    not used.

    + + +
    tlg
    +

    (TableTree, Listing or ggplot) object typically produced by a main function.

    + + +
    prune_0
    +

    (flag) remove 0 count rows

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count LOW or HIGH values.

    • +
    • Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH".

    • +
    • Does not include a total column by default.

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • vst02_1_main(): Main TLG function

    • +
    • vst02_pre(): Preprocessing

    • +
    • vst02_post(): Postprocessing

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an advs table with the "PARAM", "ANRIND" and "BNRIND" columns.

    • +
    + +
    +

    Examples

    +
    run(vst02_1, syn_data)
    +#>   Assessment                   A: Drug X      B: Placebo     C: Combination
    +#>    Abnormality                  (N=15)          (N=15)           (N=15)    
    +#>   —————————————————————————————————————————————————————————————————————————
    +#>   Diastolic Blood Pressure                                                 
    +#>     Low                      8/15 (53.3%)     9/15 (60%)      8/15 (53.3%) 
    +#>     High                     10/15 (66.7%)   5/15 (33.3%)     8/15 (53.3%) 
    +#>   Pulse Rate                                                               
    +#>     Low                       9/15 (60%)      3/15 (20%)      5/15 (33.3%) 
    +#>     High                     2/15 (13.3%)     6/15 (40%)      5/15 (33.3%) 
    +#>   Respiratory Rate                                                         
    +#>     Low                      13/15 (86.7%)   10/15 (66.7%)   13/15 (86.7%) 
    +#>     High                     7/15 (46.7%)    10/15 (66.7%)   11/15 (73.3%) 
    +#>   Systolic Blood Pressure                                                  
    +#>     Low                      7/15 (46.7%)     9/15 (60%)     11/15 (73.3%) 
    +#>     High                     10/15 (66.7%)    9/15 (60%)       9/15 (60%)  
    +#>   Temperature                                                              
    +#>     Low                       12/15 (80%)    13/15 (86.7%)   11/15 (73.3%) 
    +#>     High                     14/15 (93.3%)    12/15 (80%)    14/15 (93.3%) 
    +#>   Weight                                                                   
    +#>     Low                       3/15 (20%)      3/15 (20%)      4/15 (26.7%) 
    +#>     High                     4/15 (26.7%)    4/15 (26.7%)     5/15 (33.3%) 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/vst02_2.html b/v0.2.8/reference/vst02_2.html new file mode 100644 index 0000000000..cf12a89ced --- /dev/null +++ b/v0.2.8/reference/vst02_2.html @@ -0,0 +1,155 @@ + +VST02 Vital Sign Abnormalities Table. — vst02_2_main • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Vital Sign Parameters outside Normal Limits Among Patients without Abnormality at Baseline.

    +
    + +
    +

    Usage

    +
    vst02_2_main(
    +  adam_db,
    +  arm_var = "ACTARM",
    +  lbl_overall = NULL,
    +  exclude_base_abn = TRUE,
    +  ...
    +)
    +
    +vst02_2
    +
    + +
    +

    Format

    +

    An object of class chevron_t of length 1.

    +
    +
    +

    Arguments

    + + +
    adam_db
    +

    (list of data.frames) object containing the ADaM datasets

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    exclude_base_abn
    +

    (flag) whether baseline abnormality should be excluded.

    + + +
    ...
    +

    not used.

    + +
    +
    +

    Value

    +

    the main function returns an rtables object.

    +

    the preprocessing function returns a list of data.frame.

    +

    the postprocessing function returns an rtables object or an ElementaryTable (null report).

    +
    +
    +

    Details

    + +
    • Only count LOW or HIGH values.

    • +
    • Results of "LOW LOW" are treated as the same as "LOW", and "HIGH HIGH" the same as "HIGH".

    • +
    • Does not include a total column by default.

    • +
    • Does not remove zero-count rows unless overridden with prune_0 = TRUE.

    • +
    +
    +

    Functions

    + +
    • vst02_2_main(): Main TLG function

    • +
    +
    +

    Note

    + +
    • adam_db object must contain an advs table with the "PARAM", "ANRIND" and "BNRIND" columns.

    • +
    + +
    +

    Examples

    +
    run(vst02_2, syn_data)
    +#>   Assessment                  A: Drug X      B: Placebo    C: Combination
    +#>    Abnormality                  (N=15)         (N=15)          (N=15)    
    +#>   ———————————————————————————————————————————————————————————————————————
    +#>   Diastolic Blood Pressure                                               
    +#>     Low                      6/11 (54.5%)    9/15 (60%)      6/12 (50%)  
    +#>     High                     8/12 (66.7%)   4/11 (36.4%)    7/13 (53.8%) 
    +#>   Pulse Rate                                                             
    +#>     Low                       9/15 (60%)     3/15 (20%)     5/13 (38.5%) 
    +#>     High                     2/14 (14.3%)   4/12 (33.3%)    5/15 (33.3%) 
    +#>   Respiratory Rate                                                       
    +#>     Low                      7/9 (77.8%)    7/11 (63.6%)   11/12 (91.7%) 
    +#>     High                     6/14 (42.9%)   7/11 (63.6%)    9/13 (69.2%) 
    +#>   Systolic Blood Pressure                                                
    +#>     Low                      5/13 (38.5%)   8/12 (66.7%)   10/14 (71.4%) 
    +#>     High                     8/13 (61.5%)   8/13 (61.5%)    8/13 (61.5%) 
    +#>   Temperature                                                            
    +#>     Low                       8/10 (80%)    7/9 (77.8%)      8/10 (80%)  
    +#>     High                      8/8 (100%)    7/8 (87.5%)    12/13 (92.3%) 
    +#>   Weight                                                                 
    +#>     Low                       3/15 (20%)     3/15 (20%)     3/14 (21.4%) 
    +#>     High                     4/14 (28.6%)   4/15 (26.7%)    5/14 (35.7%) 
    +
    +
    +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/vst02_lyt.html b/v0.2.8/reference/vst02_lyt.html new file mode 100644 index 0000000000..7238591842 --- /dev/null +++ b/v0.2.8/reference/vst02_lyt.html @@ -0,0 +1,100 @@ + +vst02_1 Layout — vst02_lyt • chevron + Skip to contents + + +
    +
    +
    + +
    +

    vst02_1 Layout

    +
    + +
    +

    Usage

    +
    vst02_lyt(
    +  arm_var,
    +  lbl_overall,
    +  exclude_base_abn,
    +  lbl_vs_assessment,
    +  lbl_vs_abnormality
    +)
    +
    + +
    +

    Arguments

    + + +
    arm_var
    +

    (string) variable used for column splitting

    + + +
    lbl_overall
    +

    (string) label used for overall column, if set to NULL the overall column is omitted

    + + +
    exclude_base_abn
    +

    (flag) whether to exclude subjects with baseline abnormality from numerator and +denominator.

    + + +
    lbl_vs_assessment
    +

    (string) the label of the assessment variable.

    + + +
    lbl_vs_abnormality
    +

    (string) the label of the abnormality variable.

    + +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/reference/vst02_post.html b/v0.2.8/reference/vst02_post.html new file mode 100644 index 0000000000..6dc45c1ee0 --- /dev/null +++ b/v0.2.8/reference/vst02_post.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/vst02_pre.html b/v0.2.8/reference/vst02_pre.html new file mode 100644 index 0000000000..6dc45c1ee0 --- /dev/null +++ b/v0.2.8/reference/vst02_pre.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/with_label.html b/v0.2.8/reference/with_label.html new file mode 100644 index 0000000000..77b02c1d8c --- /dev/null +++ b/v0.2.8/reference/with_label.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/v0.2.8/reference/yes_no_rule.html b/v0.2.8/reference/yes_no_rule.html new file mode 100644 index 0000000000..9b49398bec --- /dev/null +++ b/v0.2.8/reference/yes_no_rule.html @@ -0,0 +1,73 @@ + +Yes/No rule in title case — yes_no_rule • chevron + Skip to contents + + +
    +
    +
    + +
    +

    Yes/No rule in title case

    +
    + +
    +

    Usage

    +
    yes_no_rule
    +
    + +
    +

    Format

    +

    An object of class rule (inherits from character) of length 8.

    +
    + +
    + + +
    + + + + + + + diff --git a/v0.2.8/search.json b/v0.2.8/search.json new file mode 100644 index 0000000000..8ffe09a035 --- /dev/null +++ b/v0.2.8/search.json @@ -0,0 +1 @@ +[{"path":[]},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement [INSERT CONTACT METHOD]. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contribution Guidelines","title":"Contribution Guidelines","text":"🙏 Thank taking time contribute! input deeply valued, whether issue, pull request, even feedback, regardless size, content scope.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"table-of-contents","dir":"","previous_headings":"","what":"Table of contents","title":"Contribution Guidelines","text":"👶 Getting started 📔 Code Conduct 🗃 License 📜 Issues 🚩 Pull requests 💻 Coding guidelines 🏆 Recognition model ❓ Questions","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting started","title":"Contribution Guidelines","text":"Please refer project documentation brief introduction. Please also see articles within project documentation additional information.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contribution Guidelines","text":"Code Conduct governs project. Participants contributors expected follow rules outlined therein.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"license","dir":"","previous_headings":"","what":"License","title":"Contribution Guidelines","text":"contributions covered project’s license.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"issues","dir":"","previous_headings":"","what":"Issues","title":"Contribution Guidelines","text":"use GitHub track issues, feature requests, bugs. submitting new issue, please check issue already reported. issue already exists, please upvote existing issue 👍. new feature requests, please elaborate context benefit feature users, developers, relevant personas.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"github-flow","dir":"","previous_headings":"Pull requests","what":"GitHub Flow","title":"Contribution Guidelines","text":"repository uses GitHub Flow model collaboration. submit pull request: Create branch Please see branch naming convention . don’t write access repository, please fork . Make changes Make sure code passes checks imposed GitHub Actions well documented well tested unit tests sufficiently covering changes introduced Create pull request (PR) pull request description, please link relevant issue (), provide detailed description change, include assumptions. Address review comments, Post approval Merge PR write access. Otherwise, reviewer merge PR behalf. Pat back Congratulations! 🎉 now official contributor project! grateful contribution.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"branch-naming-convention","dir":"","previous_headings":"Pull requests","what":"Branch naming convention","title":"Contribution Guidelines","text":"Suppose changes related current issue current project; please name branch follows: _. Please use underscore (_) delimiter word separation. example, 420_fix_ui_bug suitable branch name change resolving UI-related bug reported issue number 420 current project. change affects multiple repositories, please name branches follows: __. example, 69_awesomeproject_fix_spelling_error reference issue 69 reported project awesomeproject aims resolve one spelling errors multiple (likely related) repositories.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"monorepo-and-stageddependencies","dir":"","previous_headings":"Pull requests","what":"monorepo and staged.dependencies","title":"Contribution Guidelines","text":"Sometimes might need change upstream dependent package(s) able submit meaningful change. using staged.dependencies functionality simulate monorepo behavior. dependency configuration already specified project’s staged_dependencies.yaml file. need name feature branches appropriately. exception branch naming convention described . Please refer staged.dependencies package documentation details.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"coding-guidelines","dir":"","previous_headings":"","what":"Coding guidelines","title":"Contribution Guidelines","text":"repository follows unified processes standards adopted maintainers ensure software development carried consistently within teams cohesively across repositories.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"style-guide","dir":"","previous_headings":"Coding guidelines","what":"Style guide","title":"Contribution Guidelines","text":"repository follows standard tidyverse style guide uses lintr lint checks. Customized lint configurations available repository’s .lintr file.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"dependency-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency management","title":"Contribution Guidelines","text":"Lightweight right weight. repository follows tinyverse recommedations limiting dependencies minimum.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"dependency-version-management","dir":"","previous_headings":"Coding guidelines","what":"Dependency version management","title":"Contribution Guidelines","text":"code compatible (!) historical versions given dependenct package, required specify minimal version DESCRIPTION file. particular: development version requires (imports) development version another package - required put abc (>= 1.2.3.9000).","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"r--package-versions","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"R & package versions","title":"Contribution Guidelines","text":"continuously test packages newest R version along recent dependencies CRAN BioConductor. recommend working environment also set way. can find details R version packages used R CMD check GitHub Action execution log - step prints R sessionInfo(). discover bugs older R versions older set dependencies, please create relevant bug reports.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"pre-commit","dir":"","previous_headings":"Coding guidelines > Recommended development environment & tools","what":"pre-commit","title":"Contribution Guidelines","text":"highly recommend use pre-commit tool combined R hooks pre-commit execute checks committing pushing changes. Pre-commit hooks already available repository’s .pre-commit-config.yaml file.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"recognition-model","dir":"","previous_headings":"","what":"Recognition model","title":"Contribution Guidelines","text":"mentioned previously, contributions deeply valued appreciated. contribution data available part repository insights, recognize significant contribution hence add contributor package authors list, following rules enforced: Minimum 5% lines code authored* (determined git blame query) top 5 contributors terms number commits lines added lines removed* *Excluding auto-generated code, including limited roxygen comments renv.lock files. package maintainer also reserves right adjust criteria recognize contributions.","code":""},{"path":"https://insightsengineering.github.io/chevron/CONTRIBUTING.html","id":"questions","dir":"","previous_headings":"","what":"Questions","title":"Contribution Guidelines","text":"questions regarding contribution guidelines, please contact package/repository maintainer.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/SECURITY.html","id":"reporting-security-issues","dir":"","previous_headings":"","what":"Reporting Security Issues","title":"Security Policy","text":"believe found security vulnerability repositories organization, please report us coordinated disclosure. Please report security vulnerabilities public GitHub issues, discussions, pull requests. Instead, please send email vulnerability.management[@]roche.com. Please include much information listed can help us better understand resolve issue: type issue (e.g., buffer overflow, SQL injection, cross-site scripting) Full paths source file(s) related manifestation issue location affected source code (tag/branch/commit direct URL) special configuration required reproduce issue Step--step instructions reproduce issue Proof--concept exploit code (possible) Impact issue, including attacker might exploit issue information help us triage report quickly.","code":""},{"path":"https://insightsengineering.github.io/chevron/SECURITY.html","id":"data-security-standards-dss","dir":"","previous_headings":"","what":"Data Security Standards (DSS)","title":"Security Policy","text":"Please make sure reporting issues form bug, feature, pull request, sensitive information PII, PHI, PCI completely removed text attachments, including pictures videos.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Introduction to Chevron","text":"chevron R package provides functions produce standard tables, listings graphs (TLGs) used analyze report clinical trials data. ensemble function used produce particular output stored S4 object virtual class chevron_tlg. type output associated specific class: chevron_t tables, chevron_l listings chevron_g graphs. standard output associated one chevron_tlg object. contain following objects separate slots: main function also refereed TLG-function. preprocess function. postprocess function","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"tlg-functions","dir":"Articles","previous_headings":"Introduction","what":"TLG-functions","title":"Introduction to Chevron","text":"TLG-functions chevron use packages produce final outputs, example rtables tern used create tables, ggplot2, lattice, grid used create graphs, rlistings create listings. TLG-functions chevron dmt01_main, aet02_main, aet02_main following properties: produce narrow defined output (currently standards Roche GDS). Note, naming convention _main indicates Roche GDS defined standard may different implementations. , alternatively, GDS template id can regarded guideline function name chevron standard. , possible, arguments modify standard. Generally, arguments may change structure table (arm variable, variables summarized) also parameterize cell content (.e. alpha-level p-value). always first argument adam_db collection ADaM datasets (ADSL, ADAE, ADRS, etc.). Please read adam_db Argument vignette package details.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"preprocessing","dir":"Articles","previous_headings":"Introduction","what":"preprocessing","title":"Introduction to Chevron","text":"preprocess functions chevron use base, dplyr dunlin packages process input data object turn suitable input TLG-functions. preprocess chevron dmt01_pre, aet02_pre, aet02_pre following properties: return list data.frame object amenable processing TLG-functions. message. arguments modify standard. always first argument adam_db collection ADaM datasets (ADSL, ADAE, ADRS, etc.). Please read adam_db Argument vignette package details. Please note ultimate responsible person preprocessing functions end user. provided preprocessing function template users modify depending need/data. preprocessing function printed allow modification script generated citril.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"postprocessing","dir":"Articles","previous_headings":"Introduction","what":"postprocessing","title":"Introduction to Chevron","text":"default, Postprocessing function returns input null report input rows. postprocessing function chevron_tlg object must least tlg formal arguments.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"example-aet02","dir":"Articles","previous_headings":"","what":"Example AET02","title":"Introduction to Chevron","text":"example, GDS template aet02 implemented chevron chevropn_tlg objects name aet02. first load data list data.frame, table represents domain. aet02 output created follows: function associated particular slot can retrieved corresponding method: main, lyt, preprocess postprocess datasets. standard functions can used .","code":"library(chevron) #> Registered S3 method overwritten by 'tern': #> method from #> tidy.glm broom data(syn_data, package = \"chevron\") run(aet02, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%) #> Overall total number of events 58 59 99 #> cl B.2 #> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Total number of events 18 15 20 #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Total number of events 13 9 19 #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of events 8 11 16 #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Total number of events 6 6 12 #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Total number of events 6 4 12 #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Total number of events 3 5 10 #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Total number of events 4 9 10 #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%) main(aet02) #> function (adam_db, arm_var = \"ACTARM\", row_split_var = \"AEBODSYS\", #> lbl_overall = NULL, summary_labels = list(all = aet02_label, #> TOTAL = c(nonunique = \"Overall total number of events\")), #> ...) #> { #> assert_all_tablenames(adam_db, \"adsl\", \"adae\") #> assert_string(arm_var) #> assert_character(row_split_var, null.ok = TRUE) #> assert_string(lbl_overall, null.ok = TRUE) #> assert_valid_variable(adam_db$adsl, c(\"USUBJID\", arm_var), #> types = list(c(\"character\", \"factor\"))) #> assert_valid_variable(adam_db$adae, c(arm_var, row_split_var, #> \"AEDECOD\"), types = list(c(\"character\", \"factor\"))) #> assert_valid_variable(adam_db$adae, \"USUBJID\", empty_ok = TRUE, #> types = list(c(\"character\", \"factor\"))) #> assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var) #> assert_list(summary_labels, null.ok = TRUE) #> assert_subset(names(summary_labels), c(\"all\", \"TOTAL\", row_split_var)) #> assert_subset(unique(unlist(lapply(summary_labels, names))), #> c(\"unique\", \"nonunique\", \"unique_count\")) #> summary_labels <- expand_list(summary_labels, c(\"TOTAL\", #> row_split_var)) #> lbl_overall <- render_safe(lbl_overall) #> lbl_row_split <- var_labels_for(adam_db$adae, row_split_var) #> lbl_aedecod <- var_labels_for(adam_db$adae, \"AEDECOD\") #> lyt <- occurrence_lyt(arm_var = arm_var, lbl_overall = lbl_overall, #> row_split_var = row_split_var, lbl_row_split = lbl_row_split, #> medname_var = \"AEDECOD\", lbl_medname_var = lbl_aedecod, #> summary_labels = summary_labels, count_by = NULL) #> tbl <- build_table(lyt, adam_db$adae, alt_counts_df = adam_db$adsl) #> tbl #> } #> #> res <- preprocess(aet02)(syn_data) # or foo <- aet02@preprocess res <- foo(syn_data) str(res, max.level = 0) #> List of 13"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"chevron_tlg-object-customization","dir":"Articles","previous_headings":"","what":"chevron_tlg object customization","title":"Introduction to Chevron","text":"instances useful customize chevron_tlg object, example changing pre processing functions script generated. Please modify code directly inside pre_fun, make sure function returns named list data frames. Please careful argument names. default argument pre functions override argument spec.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron.html","id":"custom-chevron_tlg-object-creation","dir":"Articles","previous_headings":"","what":"Custom chevron_tlg object creation","title":"Introduction to Chevron","text":"cases, may want create new chevron_tlg template. create chevron_tlg object scratch, use provided constructors corresponding desired output: chevron_t() tables. chevron_l() listings. chevron_g() graphs. Note ensure correct execution run function, name first argument main function must adam_db; input list data.frame object pre-process. name first argument preprocess function must adam_db; input list object create TLG output finally, name first argument postprocess function must tlg, input TableTree object post-process. Validation criteria enforce rules upon creation chevron_tlg object.","code":"library(rtables) library(tern) my_template <- chevron_t( main = \"\", preprocess = \"\", postprocess = \"\" ) run(my_template, syn_data)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"general-concepts","dir":"Articles","previous_headings":"GENERAL","what":"General Concepts","title":"Chevron Catalog","text":"chevron collection functions creates tables, listings, graphs following Roche standards clinical trials reporting. loading R packages trial data, output created main function run(...) . Two arguments object= adam_db= always expected function. object= specifies Roche Standard Template ID use. adam_db= specifies input dataset. mandatory optional arguments within run function vary depending template ID called. access arguments required functions used template, simply try ?template (e.g. ?aet01) see detailed descriptions instructions.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"input-dataset-and-dataset-names","dir":"Articles","previous_headings":"GENERAL > General Concepts","what":"1. Input dataset and dataset names","title":"Chevron Catalog","text":"input dataset expected argument adam_db= run(...) function collection ADaM datasets list object. ADaM dataset expected object data frame. ADaM datasets read individually, user need combine list object provide name list adam_db=. Also, element list expected corresponding ADaM dataset names. Conventional ADaM dataset names, including adsl,adex, adae, adlb,advs,adeg,adcm,admh,adrs, adtte, can picked chevron one exception.","code":"std_data <- list(adsl = adsl, adae = adae) run(object = aet01_nollt, adam_db = std_data)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"expected-variables-in-input-analysis-dataset","dir":"Articles","previous_headings":"GENERAL > General Concepts","what":"2. Expected variables in input analysis dataset","title":"Chevron Catalog","text":"default, chevron pull subject-level information either adsl adsub merge analysis dataset underlying preprocessing steps. analysis dataset fed adam_db= expected variables required analysis available.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"character-vs-factor","dir":"Articles","previous_headings":"GENERAL > General Concepts","what":"3. Character vs Factor","title":"Chevron Catalog","text":"output generation, often need specify particular sorting order variable time display. chevron, character variable needs factorized pre-specified levels display order. encountering cases, instance, \"ARM \" Asian group \"ARM B\" Asian White groups, able produce outputs like demographic table unless \"RACE\" factorized provide access level attribute variable \"RACE\" arm split. noted feature comes rtables instead chevron. \"RACE\" character variable rather factor leads error message showing “Error: Error applying analysis function (var - RACE): Number rows generated analysis function match across columns,” recommended convert analysis variable \"RACE\" factor. resolve issue, simply try factorizing variable \"RACE\":","code":"proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate(RACE = case_when( ARMCD == \"ARM A\" ~ \"ASIAN\", ARMCD == \"ARM B\" & !.data$RACE %in% c(\"WHITE\", \"ASIAN\") ~ \"ASIAN\", TRUE ~ RACE )) run(dmt01, proc_data) proc_data$adsl$RACE <- as.factor(proc_data$adsl$RACE) run(dmt01, proc_data) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Age (yr) #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 0 1 (6.7%) 1 (2.2%) #> ASIAN 15 (100%) 13 (86.7%) 8 (53.3%) 36 (80.0%) #> BLACK OR AFRICAN AMERICAN 0 0 4 (26.7%) 4 (8.9%) #> WHITE 0 2 (13.3%) 2 (13.3%) 4 (8.9%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"testing-the-codes-for-plot-generation","dir":"Articles","previous_headings":"GENERAL > General Concepts","what":"4. Testing the codes for plot generation","title":"Chevron Catalog","text":"run function calling Graphics Template ID returns gTree object used downstream workflow output generation. two alternative approaches rendering plot: (1) draw = TRUE run function enable generated plot automatically created viewed via Plots tab, (2) calling function grid.draw package grid can utilized render plot viewing testing purpose. See example :","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") # method 1 run(kmg01, proc_data, dataset = \"adtte\", draw = TRUE) # method 2 res <- run(kmg01, proc_data, dataset = \"adtte\") grid::grid.newpage() grid::grid.draw(res)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"lbl_overall-column-of-total","dir":"Articles","previous_headings":"GENERAL > General Control Arguments","what":"1. lbl_overall: Column of Total","title":"Chevron Catalog","text":"generic argument lbl_overall controls whether column total produced . lbl_overall = NULL suppresses total, lbl_overall = \"Patients\" produces total.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"column-counts-nxxx","dir":"Articles","previous_headings":"GENERAL > General Control Arguments","what":"2. Column counts: N=xxx","title":"Chevron Catalog","text":"Column counts displayed default. generic argument controlling whether count unique number subjects (N=xxx) displayed column header . Users allowed customize display N=xxx forcing display_columncounts = FALSE wipe column counts away postprocessing (precautions recommended).","code":"tbl <- run(dmt01, syn_data) # table with column counts tbl@col_info@display_columncounts <- FALSE tbl # no column counts now #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Age (yr) #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)"},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"safety-summary","dir":"Articles","previous_headings":"TABLES > Safety Summary (AET01)","what":"1. Safety Summary","title":"Chevron Catalog","text":"aet01 template produces standard safety summary.","code":"run(aet01, syn_data, arm_var = \"ARM\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Total number of patients withdrawn from study due to an AE 0 0 1 (6.7%) #> Total number of patients with at least one #> AE with fatal outcome 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Serious AE leading to withdrawal from treatment 0 0 2 (13.3%) #> Serious AE leading to dose modification/interruption 4 (26.7%) 3 (20.0%) 4 (26.7%) #> Related Serious AE 8 (53.3%) 8 (53.3%) 10 (66.7%) #> AE leading to withdrawal from treatment 2 (13.3%) 3 (20.0%) 3 (20.0%) #> AE leading to dose modification/interruption 6 (40.0%) 9 (60.0%) 11 (73.3%) #> Related AE 11 (73.3%) 10 (66.7%) 13 (86.7%) #> Related AE leading to withdrawal from treatment 0 3 (20.0%) 0 #> Related AE leading to dose modification/interruption 1 (6.7%) 4 (26.7%) 9 (60.0%) #> Severe AE (at greatest intensity) 11 (73.3%) 10 (66.7%) 12 (80.0%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"safety-summary-with-modified-rows","dir":"Articles","previous_headings":"TABLES > Safety Summary (AET01)","what":"2. Safety Summary with Modified Rows","title":"Chevron Catalog","text":"Analyses “Total number patients least one” can removed, added, modified editing parameter anl_vars. analysis abbreviated name analysis interest, supported variable ADAE derived condition interest. defined analyses currently include \"FATAL\", \"SER\", \"SERWD\", \"SERDSM\", \"RELSER\", \"WD\", \"DSM\", \"REL\", \"RELWD\", \"RELDSM\", \"SEV\". modification made, analyses must listed argument anl_vars. example shows adding customized analysis \"RELCTC35\".","code":"proc_data <- syn_data proc_data$adae <- proc_data$adae %>% filter(.data$ANL01FL == \"Y\") %>% mutate( FATAL = with_label(.data$AESDTH == \"Y\", \"AE with fatal outcome\"), SER = with_label(.data$AESER == \"Y\", \"Serious AE\"), SEV = with_label(.data$ASEV == \"SEVERE\", \"Severe AE (at greatest intensity)\"), REL = with_label(.data$AREL == \"Y\", \"Related AE\"), WD = with_label(.data$AEACN == \"DRUG WITHDRAWN\", \"AE leading to withdrawal from treatment\"), DSM = with_label( .data$AEACN %in% c(\"DRUG INTERRUPTED\", \"DOSE INCREASED\", \"DOSE REDUCED\"), \"AE leading to dose modification/interruption\" ), SERWD = with_label(.data$SER & .data$WD, \"Serious AE leading to withdrawal from treatment\"), SERDSM = with_label(.data$SER & .data$DSM, \"Serious AE leading to dose modification/interruption\"), RELSER = with_label(.data$SER & .data$REL, \"Related Serious AE\"), RELWD = with_label(.data$REL & .data$WD, \"Related AE leading to withdrawal from treatment\"), RELDSM = with_label(.data$REL & .data$DSM, \"Related AE leading to dose modification/interruption\"), CTC35 = with_label(.data$ATOXGR %in% c(\"3\", \"4\", \"5\"), \"Grade 3-5 AE\"), CTC45 = with_label(.data$ATOXGR %in% c(\"4\", \"5\"), \"Grade 4/5 AE\"), RELCTC35 = with_label(.data$ATOXGR %in% c(\"3\", \"4\", \"5\") & .data$AEREL == \"Y\", \"Related Grade 3-5\") ) proc_data$adsl <- proc_data$adsl %>% mutate(DCSREAS = reformat(.data$DCSREAS, missing_rule)) run(aet01, proc_data, anl_vars = list(safety_var = c(\"FATAL\", \"SER\", \"RELSER\", \"RELCTC35\")), auto_pre = FALSE) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Total number of patients withdrawn from study due to an AE 0 0 1 (6.7%) #> Total number of patients with at least one #> AE with fatal outcome 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Related Serious AE 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Related Grade 3-5 11 (73.3%) 10 (66.7%) 12 (80.0%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"safety-summary-adverse-events-of-special-interest","dir":"Articles","previous_headings":"TABLES > Safety Summary (Adverse Events of Special Interest) (AET01_AESI)","what":"1. Safety Summary (Adverse Events of Special Interest)","title":"Chevron Catalog","text":"aet01_aesi template produces standard safety summary adverse events special interest.","code":"run(aet01_aesi, syn_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of patients with at least one AE by worst grade #> Grade 1 0 1 (6.7%) 1 (6.7%) #> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Total number of patients with study drug withdrawn due to AE 2 (13.3%) 3 (20.0%) 3 (20.0%) #> Total number of patients with dose modified/interrupted due to AE 6 (40.0%) 9 (60.0%) 11 (73.3%) #> Total number of patients with treatment received for AE 10 (66.7%) 10 (66.7%) 14 (93.3%) #> Total number of patients with all non-fatal AEs resolved 9 (60.0%) 10 (66.7%) 12 (80.0%) #> Total number of patients with at least one unresolved or ongoing non-fatal AE 10 (66.7%) 9 (60.0%) 14 (93.3%) #> Total number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Total number of patients with at least one related AE 11 (73.3%) 10 (66.7%) 13 (86.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"safety-summary-adverse-events-of-special-interest-optional-lines","dir":"Articles","previous_headings":"TABLES > Safety Summary (Adverse Events of Special Interest) (AET01_AESI)","what":"2. Safety Summary (Adverse Events of Special Interest) (optional lines)","title":"Chevron Catalog","text":"Additional analyses can added argument aesi_vars, please type ?aet01_aesi console find list pre-defined optional analyses HELP.","code":"run(aet01_aesi, syn_data, aesi_vars = c(\"RESLWD\", \"RELSER\")) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of patients with at least one AE by worst grade #> Grade 1 0 1 (6.7%) 1 (6.7%) #> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Total number of patients with study drug withdrawn due to AE 2 (13.3%) 3 (20.0%) 3 (20.0%) #> Total number of patients with dose modified/interrupted due to AE 6 (40.0%) 9 (60.0%) 11 (73.3%) #> Total number of patients with treatment received for AE 10 (66.7%) 10 (66.7%) 14 (93.3%) #> Total number of patients with all non-fatal AEs resolved 9 (60.0%) 10 (66.7%) 12 (80.0%) #> Total number of patients with at least one unresolved or ongoing non-fatal AE 10 (66.7%) 9 (60.0%) 14 (93.3%) #> Total number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Total number of patients with at least one related AE 11 (73.3%) 10 (66.7%) 13 (86.7%) #> No. of patients with serious, related AE 8 (53.3%) 8 (53.3%) 10 (66.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"safety-summary-adverse-events-of-special-interest-for-studies-with-multiple-drugs","dir":"Articles","previous_headings":"TABLES > Safety Summary (Adverse Events of Special Interest) (AET01_AESI)","what":"3. Safety Summary (Adverse Events of Special Interest) (for studies with multiple drugs)","title":"Chevron Catalog","text":"studies one study drug, users need define analyses adae add argument aesi_vars following example . pre-defined analysis available moment.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events","dir":"Articles","previous_headings":"TABLES > Adverse Events (AET02)","what":"1. Adverse Events","title":"Chevron Catalog","text":"template aet02 produces standard adverse event summary MedDRA system organ class preferred term. template include column total default. ‘Patients’ column can added argument lbl_overall = \"Patients\". Missing values \"AEBODSYS\", \"AEDECOD\" labeled Coding Available.","code":"run(aet02, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%) #> Overall total number of events 58 59 99 #> cl B.2 #> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Total number of events 18 15 20 #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Total number of events 13 9 19 #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of events 8 11 16 #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Total number of events 6 6 12 #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Total number of events 6 4 12 #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Total number of events 3 5 10 #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Total number of events 4 9 10 #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-with-high-level-term","dir":"Articles","previous_headings":"TABLES > Adverse Events (AET02)","what":"2. Adverse Events (with High-level Term)","title":"Chevron Catalog","text":"syntax displays adverse events MedDRA system organ class, high-level term preferred term.","code":"run(aet02, syn_data, row_split_var = c(\"AEBODSYS\", \"AEHLT\")) #> MedDRA System Organ Class #> High Level Term A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%) #> Overall total number of events 58 59 99 #> cl B.2 #> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Total number of events 18 15 20 #> hlt B.2.2.3 #> Total number of patients with at least one adverse event 8 (53.3%) 6 (40.0%) 7 (46.7%) #> Total number of events 9 7 13 #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> hlt B.2.1.2 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 5 (33.3%) #> Total number of events 9 8 7 #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Total number of events 13 9 19 #> hlt D.1.1.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 7 (46.7%) #> Total number of events 5 7 11 #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> hlt D.1.1.4 #> Total number of patients with at least one adverse event 6 (40.0%) 2 (13.3%) 7 (46.7%) #> Total number of events 8 2 8 #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of events 8 11 16 #> hlt A.1.1.1 #> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of events 8 11 16 #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Total number of events 6 6 12 #> hlt B.1.1.1 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Total number of events 6 6 12 #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Total number of events 6 4 12 #> hlt C.2.1.2 #> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Total number of events 6 4 12 #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Total number of events 3 5 10 #> hlt D.2.1.5 #> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Total number of events 3 5 10 #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Total number of events 4 9 10 #> hlt C.1.1.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Total number of events 4 9 10 #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-preferred-terms-only","dir":"Articles","previous_headings":"TABLES > Adverse Events (AET02)","what":"3. Adverse Events (Preferred Terms only)","title":"Chevron Catalog","text":"syntax displays adverse events preferred term .","code":"run(aet02, syn_data, row_split_var = NULL) #> A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%) #> Overall total number of events 58 59 99 #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-by-greatest-intensity","dir":"Articles","previous_headings":"TABLES > Adverse Events by Greatest Intensity(AET03)","what":"1. Adverse Events by Greatest Intensity","title":"Chevron Catalog","text":"aet03 template produces standard adverse event greatest intensity summary","code":"run(aet03, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————— #> - Any Intensity - 13 (86.7%) 14 (93.3%) 15 (100%) #> MILD 0 1 (6.7%) 1 (6.7%) #> MODERATE 2 (13.3%) 3 (20.0%) 2 (13.3%) #> SEVERE 11 (73.3%) 10 (66.7%) 12 (80.0%) #> cl B.2 #> - Any Intensity - 11 (73.3%) 8 (53.3%) 10 (66.7%) #> MILD 6 (40.0%) 2 (13.3%) 5 (33.3%) #> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd B.2.2.3.1 #> - Any Intensity - 8 (53.3%) 6 (40.0%) 7 (46.7%) #> MILD 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 5 (33.3%) #> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> - Any Intensity - 9 (60.0%) 5 (33.3%) 11 (73.3%) #> MODERATE 5 (33.3%) 1 (6.7%) 4 (26.7%) #> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.1.1 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 7 (46.7%) #> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 #> - Any Intensity - 6 (40.0%) 2 (13.3%) 7 (46.7%) #> MODERATE 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> - Any Intensity - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> MILD 2 (13.3%) 0 4 (26.7%) #> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.2 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 #> - Any Intensity - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> MILD 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd B.1.1.1.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd C.2.1.2.1 #> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd D.2.1.5.3 #> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd C.1.1.1.3 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-by-highest-nci-ctcae-grade","dir":"Articles","previous_headings":"TABLES > Adverse Events by Highest NCI CTCAE Grade (AET04)","what":"1. Adverse Events by Highest NCI CTCAE Grade","title":"Chevron Catalog","text":"aet04 template produces standard adverse event highest NCI CTCAE grade summary. default, template includes grouped grades ‘Grade 1-2’ ‘Grade 3-4’. default template removes rows 0 count. treatment group adverse event, treatment group automatically displayed providing defined ADSL.","code":"run(aet04, syn_data) #> MedDRA System Organ Class #> MedDRA Preferred Term A: Drug X B: Placebo C: Combination #> Grade (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> - Any adverse events - #> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%) #> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%) #> 1 0 1 (6.7%) 1 (6.7%) #> 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3-4 4 (26.7%) 4 (26.7%) 3 (20.0%) #> 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 8 (53.3%) 8 (53.3%) 10 (66.7%) #> cl B.2 #> - Overall - #> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%) #> 1 6 (40.0%) 2 (13.3%) 5 (33.3%) #> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd B.2.2.3.1 #> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%) #> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%) #> 1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%) #> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> - Overall - #> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Grade 3-4 5 (33.3%) 1 (6.7%) 4 (26.7%) #> 3 5 (33.3%) 1 (6.7%) 4 (26.7%) #> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.1.1 #> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%) #> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 #> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%) #> Grade 3-4 6 (40.0%) 2 (13.3%) 7 (46.7%) #> 3 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> - Overall - #> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%) #> 1 2 (13.3%) 0 4 (26.7%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.2 #> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 #> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> - Overall - #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd B.1.1.1.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> - Overall - #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd C.2.1.2.1 #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> - Overall - #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd D.2.1.5.3 #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> - Overall - #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd C.1.1.1.3 #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-by-highest-nci-ctcae-grade-fill-in-of-grades","dir":"Articles","previous_headings":"TABLES > Adverse Events by Highest NCI CTCAE Grade (AET04)","what":"2. Adverse Events by Highest NCI CTCAE Grade (Fill in of Grades)","title":"Chevron Catalog","text":", preferred terms, grades occur grades displayed, can achieved specifying argument prune_0 = FALSE.","code":"run(aet04, syn_data, prune_0 = FALSE) #> MedDRA System Organ Class #> MedDRA Preferred Term A: Drug X B: Placebo C: Combination #> Grade (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> - Any adverse events - #> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%) #> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%) #> 1 0 1 (6.7%) 1 (6.7%) #> 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3-4 4 (26.7%) 4 (26.7%) 3 (20.0%) #> 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 8 (53.3%) 8 (53.3%) 10 (66.7%) #> cl B.2 #> - Overall - #> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%) #> 1 6 (40.0%) 2 (13.3%) 5 (33.3%) #> 2 0 0 0 #> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd B.2.2.3.1 #> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%) #> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%) #> 1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd B.2.1.2.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 4 0 0 0 #> Grade 5 0 0 0 #> cl D.1 #> - Overall - #> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 5 (33.3%) 1 (6.7%) 4 (26.7%) #> 3 5 (33.3%) 1 (6.7%) 4 (26.7%) #> 4 0 0 0 #> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.1.1 #> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 #> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 6 (40.0%) 2 (13.3%) 7 (46.7%) #> 3 6 (40.0%) 2 (13.3%) 7 (46.7%) #> 4 0 0 0 #> Grade 5 0 0 0 #> cl A.1 #> - Overall - #> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%) #> 1 2 (13.3%) 0 4 (26.7%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd A.1.1.1.2 #> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> 1 0 0 0 #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd A.1.1.1.1 #> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> cl B.1 #> - Overall - #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd B.1.1.1.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> - Overall - #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 1 0 0 0 #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd C.2.1.2.1 #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 1 0 0 0 #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> cl D.2 #> - Overall - #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> dcd D.2.1.5.3 #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-4 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Grade 5 0 0 0 #> cl C.1 #> - Overall - #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 3 0 0 0 #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 5 0 0 0 #> dcd C.1.1.1.3 #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 3 0 0 0 #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 5 0 0 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-events-by-highest-nci-ctcae-grade-with-modified-grouping-of-grade","dir":"Articles","previous_headings":"TABLES > Adverse Events by Highest NCI CTCAE Grade (AET04)","what":"3. Adverse Events by Highest NCI CTCAE Grade with modified grouping of grade","title":"Chevron Catalog","text":"Collapsing grade 3-4 grade 5, can achieved modifying definition grade groups argument grade_groups.","code":"grade_groups <- list( \"Grade 1-2\" = c(\"1\", \"2\"), \"Grade 3-5\" = c(\"3\", \"4\", \"5\") ) run(aet04, syn_data, grade_groups = grade_groups, prune_0 = FALSE) #> MedDRA System Organ Class #> MedDRA Preferred Term A: Drug X B: Placebo C: Combination #> Grade (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> - Any adverse events - #> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%) #> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%) #> 1 0 1 (6.7%) 1 (6.7%) #> 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3-5 12 (80.0%) 12 (80.0%) 13 (86.7%) #> 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> 5 8 (53.3%) 8 (53.3%) 10 (66.7%) #> cl B.2 #> - Overall - #> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%) #> 1 6 (40.0%) 2 (13.3%) 5 (33.3%) #> 2 0 0 0 #> Grade 3-5 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 4 0 0 0 #> 5 0 0 0 #> dcd B.2.2.3.1 #> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%) #> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%) #> 1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> dcd B.2.1.2.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> 4 0 0 0 #> 5 0 0 0 #> cl D.1 #> - Overall - #> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 9 (60.0%) 5 (33.3%) 11 (73.3%) #> 3 5 (33.3%) 1 (6.7%) 4 (26.7%) #> 4 0 0 0 #> 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.1.1 #> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 3 0 0 0 #> 4 0 0 0 #> 5 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 #> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 6 (40.0%) 2 (13.3%) 7 (46.7%) #> 3 6 (40.0%) 2 (13.3%) 7 (46.7%) #> 4 0 0 0 #> 5 0 0 0 #> cl A.1 #> - Overall - #> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%) #> 1 2 (13.3%) 0 4 (26.7%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> dcd A.1.1.1.2 #> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> 1 0 0 0 #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> dcd A.1.1.1.1 #> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 2 0 0 0 #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> cl B.1 #> - Overall - #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> 3 0 0 0 #> 4 0 0 0 #> 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd B.1.1.1.1 #> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> 3 0 0 0 #> 4 0 0 0 #> 5 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> - Overall - #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 1 0 0 0 #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> dcd C.2.1.2.1 #> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> 1 0 0 0 #> 2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> cl D.2 #> - Overall - #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> dcd D.2.1.5.3 #> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 1 2 (13.3%) 5 (33.3%) 7 (46.7%) #> 2 0 0 0 #> Grade 3-5 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> cl C.1 #> - Overall - #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 3 0 0 0 #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 5 0 0 0 #> dcd C.1.1.1.3 #> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Grade 1-2 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> Grade 3-5 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 3 0 0 0 #> 4 4 (26.7%) 4 (26.7%) 5 (33.3%) #> 5 0 0 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-event-rate-adjusted-for-patient-years-at-risk---first-occurrence","dir":"Articles","previous_headings":"TABLES > Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence (AET05)","what":"1. Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence","title":"Chevron Catalog","text":"aet05 template produces standard adverse event rate adjusted patient-years risk summary considering first occurrence . default, adsaftte parameter codes containing string \"TTE\" included output. Users expected filter parameter(s) interest input safety time--event dataset pre-processing needed. input safety time--event dataset, censoring variable CNSR, 0 indicates occurrence event interest 1 denotes censoring.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"AETTE1\", \"adsaftte\") run(aet05, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————— #> Time to first occurrence of any adverse event #> Total patient-years at risk 31.0 9.0 22.0 #> Number of adverse events observed 5 13 8 #> AE rate per 100 patient-years 16.13 143.75 36.30 #> 95% CI (1.99, 30.27) (65.61, 221.89) (11.15, 61.45)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-event-rate-adjusted-for-patient-years-at-risk---first-occurrence-setting-type-of-confidence-interval","dir":"Articles","previous_headings":"TABLES > Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence (AET05)","what":"2. Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence (setting type of confidence interval)","title":"Chevron Catalog","text":"type confidence interval rate can specified argument conf_type. Options include normal (default), normal_log exact. confidence interval can adjusted argument conf_level.","code":"run(aet05, syn_data, conf_level = 0.90, conf_type = \"exact\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Time to first occurrence of a grade 3-5 adverse event #> Total patient-years at risk 10.3 6.3 8.3 #> Number of adverse events observed 12 14 13 #> AE rate per 100 patient-years 116.36 223.74 156.98 #> 90% CI (67.14, 188.53) (135.27, 349.78) (92.86, 249.59) #> Time to first occurrence of any adverse event #> Total patient-years at risk 31.0 9.0 22.0 #> Number of adverse events observed 5 13 8 #> AE rate per 100 patient-years 16.13 143.75 36.30 #> 90% CI (6.36, 33.91) (85.03, 228.55) (18.06, 65.50) #> Time to first occurrence of any serious adverse event #> Total patient-years at risk 32.9 7.6 9.4 #> Number of adverse events observed 4 14 13 #> AE rate per 100 patient-years 12.15 183.83 137.79 #> 90% CI (4.15, 27.80) (111.14, 287.38) (81.50, 219.06)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-event-rate-adjusted-for-patient-years-at-risk---all-occurrences","dir":"Articles","previous_headings":"TABLES > Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences (AET05_ALL)","what":"1. Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences","title":"Chevron Catalog","text":"aet05_all template produces standard adverse event rate adjusted patient-years risk summary considering occurrences. default, adsaftte parameter codes containing string \"TOT\" parameter code \"AEREPTTE\" required. \"TOT\" parameters store number occurrences adverse event interests. Parameter code \"AEREPTTE\" stores time end adverse event reporting period years contribute summary “total patient-years risk” output. Users expected filter parameters interest input analysis dataset pre-processing, needed. input safety time--event dataset, censoring variable CNSR, 0 indicates occurrence event interest 1 denotes censoring.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"AETOT1\" | PARAMCD == \"AEREPTTE\", \"adsaftte\") run(aet05_all, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————— #> Number of occurrences of any adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 29 49 56 #> AE rate per 100 patient-years 65.32 110.76 126.15 #> 95% CI (41.54, 89.09) (79.75, 141.77) (93.11, 159.19)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"adverse-event-rate-adjusted-for-patient-years-at-risk---all-occurrences-setting-type-of-confidence-interval","dir":"Articles","previous_headings":"TABLES > Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences (AET05_ALL)","what":"2. Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences (setting type of confidence interval)","title":"Chevron Catalog","text":"type confidence interval rate can specified argument conf_type. Options include normal (default), normal_log, exact, byar. confidence interval can adjusted argument conf_level.","code":"run(aet05_all, syn_data, conf_level = 0.90, conf_type = \"exact\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Number of occurrences of a grade 3-5 adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 65 54 95 #> AE rate per 100 patient-years 146.40 122.06 214.00 #> 90% CI (117.86, 179.97) (96.08, 153.12) (179.22, 253.80) #> Number of occurrences of any adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 29 49 56 #> AE rate per 100 patient-years 65.32 110.76 126.15 #> 90% CI (46.73, 89.06) (86.08, 140.53) (99.76, 157.60) #> Number of occurrences of any serious adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 9 36 60 #> AE rate per 100 patient-years 20.27 81.37 135.16 #> 90% CI (10.57, 35.37) (60.42, 107.46) (107.80, 167.58)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"most-common-5-adverse-events","dir":"Articles","previous_headings":"TABLES > Most Common (>=5%) Adverse Events (AET10)","what":"1. Most Common (>=5%) Adverse Events","title":"Chevron Catalog","text":"aet10 template produces standard common adverse events occurring relative frequency >=5% output.","code":"run(aet10, syn_data) #> A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————— #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"most-common-8-adverse-events-setting-threshold","dir":"Articles","previous_headings":"TABLES > Most Common (>=5%) Adverse Events (AET10)","what":"2. Most Common (>=8%) Adverse Events (setting threshold)","title":"Chevron Catalog","text":"modify threshold displaying preferred terms, can achieved providing threshold argument atleast.","code":"run(aet10, syn_data, atleast = 0.08) #> A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————— #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"absolute-value-and-change-from-baseline-by-visit","dir":"Articles","previous_headings":"TABLES > Absolute Value and Change from Baseline by Visit (CFBT01)","what":"1. Absolute Value and Change from Baseline by Visit","title":"Chevron Catalog","text":"default, cfbt01 template displays analysis value (AVAL) absolute change baseline (CHG) visit. template include column total default. parameter presented separate page. absolute change baseline baseline value displayed.","code":"proc_data <- log_filter( syn_data, PARAMCD %in% c(\"DIABP\", \"SYSBP\"), \"advs\" ) run(cfbt01, proc_data, dataset = \"advs\") #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE) #> Median 94.933 NE 111.133 NE 108.359 NE #> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018) #> Median 92.447 -4.066 107.703 3.227 103.058 -2.476 #> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229) #> Median 101.498 1.731 99.501 -9.727 96.789 -10.155 #> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713) #> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075 #> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881) #> Median 98.168 2.510 97.385 -16.793 107.555 7.966 #> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827) #> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665 #> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11 #> Systolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 154.073 (33.511) NE (NE) 157.840 (34.393) NE (NE) 152.407 (22.311) NE (NE) #> Median 156.169 NE 161.670 NE 149.556 NE #> Min - Max 78.31 - 210.70 NE - NE 79.76 - 210.40 NE - NE 108.21 - 184.88 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317) #> Median 142.705 157.698 155.282 #> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553) #> Median 160.711 5.802 155.030 2.758 145.548 -5.636 #> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670) #> Median 144.253 5.325 142.679 -14.083 147.102 -11.512 #> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984) #> Median 158.938 17.191 155.044 -1.796 156.505 -7.606 #> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175) #> Median 145.506 3.754 149.094 -10.000 150.797 -14.432 #> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799) #> Median 158.142 1.448 164.552 7.060 148.501 -2.385 #> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"absolute-value-and-change-from-baseline-by-visit-without-screening","dir":"Articles","previous_headings":"TABLES > Absolute Value and Change from Baseline by Visit (CFBT01)","what":"2. Absolute Value and Change from Baseline by Visit without Screening","title":"Chevron Catalog","text":"skip arguments controls visit values displayed. instance, mask changes baseline “SCREENING” “BASELINE” visits.","code":"run(cfbt01, proc_data, dataset = \"advs\", skip = list(CHG = c(\"SCREENING\", \"BASELINE\"))) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 15 15 #> Mean (SD) 94.385 (17.067) 106.381 (20.586) 106.468 (12.628) #> Median 94.933 111.133 108.359 #> Min - Max 55.71 - 122.00 60.21 - 131.91 83.29 - 127.17 #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018) #> Median 92.447 -4.066 107.703 3.227 103.058 -2.476 #> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229) #> Median 101.498 1.731 99.501 -9.727 96.789 -10.155 #> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713) #> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075 #> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881) #> Median 98.168 2.510 97.385 -16.793 107.555 7.966 #> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827) #> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665 #> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11 #> Systolic Blood Pressure #> SCREENING #> n 15 15 15 #> Mean (SD) 154.073 (33.511) 157.840 (34.393) 152.407 (22.311) #> Median 156.169 161.670 149.556 #> Min - Max 78.31 - 210.70 79.76 - 210.40 108.21 - 184.88 #> BASELINE #> n 15 15 15 #> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317) #> Median 142.705 157.698 155.282 #> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553) #> Median 160.711 5.802 155.030 2.758 145.548 -5.636 #> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670) #> Median 144.253 5.325 142.679 -14.083 147.102 -11.512 #> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984) #> Median 158.938 17.191 155.044 -1.796 156.505 -7.606 #> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175) #> Median 145.506 3.754 149.094 -10.000 150.797 -14.432 #> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799) #> Median 158.142 1.448 164.552 7.060 148.501 -2.385 #> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"absolute-value-by-visit","dir":"Articles","previous_headings":"TABLES","what":"3. Absolute Value by Visit","title":"Chevron Catalog","text":"display absolute value, specify summaryvars = \"AVAL\".","code":"run(cfbt01, proc_data, dataset = \"advs\", summaryvars = \"AVAL\") #> A: Drug X B: Placebo C: Combination #> Value at Visit Value at Visit Value at Visit #> Analysis Visit (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 15 15 #> Mean (SD) 94.385 (17.067) 106.381 (20.586) 106.468 (12.628) #> Median 94.933 111.133 108.359 #> Min - Max 55.71 - 122.00 60.21 - 131.91 83.29 - 127.17 #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 #> Mean (SD) 98.977 (21.359) 104.110 (16.172) 100.826 (19.027) #> Median 92.447 107.703 103.058 #> Min - Max 67.55 - 130.37 70.91 - 132.89 70.04 - 128.68 #> WEEK 2 DAY 15 #> n 15 15 15 #> Mean (SD) 99.758 (14.477) 97.473 (17.296) 94.272 (16.961) #> Median 101.498 99.501 96.789 #> Min - Max 71.98 - 122.81 53.80 - 125.81 63.45 - 117.47 #> WEEK 3 DAY 22 #> n 15 15 15 #> Mean (SD) 99.101 (26.109) 91.984 (16.925) 94.586 (13.560) #> Median 101.146 91.244 98.398 #> Min - Max 47.68 - 162.22 67.80 - 119.72 73.50 - 115.43 #> WEEK 4 DAY 29 #> n 15 15 15 #> Mean (SD) 103.400 (22.273) 96.467 (19.451) 108.338 (18.417) #> Median 98.168 97.385 107.555 #> Min - Max 63.09 - 148.25 63.35 - 131.57 68.78 - 132.52 #> WEEK 5 DAY 36 #> n 15 15 15 #> Mean (SD) 93.222 (18.536) 97.890 (20.701) 95.317 (16.401) #> Median 90.799 99.049 93.876 #> Min - Max 63.55 - 139.11 69.47 - 137.64 71.91 - 138.54 #> Systolic Blood Pressure #> SCREENING #> n 15 15 15 #> Mean (SD) 154.073 (33.511) 157.840 (34.393) 152.407 (22.311) #> Median 156.169 161.670 149.556 #> Min - Max 78.31 - 210.70 79.76 - 210.40 108.21 - 184.88 #> BASELINE #> n 15 15 15 #> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317) #> Median 142.705 157.698 155.282 #> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68 #> WEEK 1 DAY 8 #> n 15 15 15 #> Mean (SD) 156.509 (21.097) 147.480 (33.473) 143.319 (30.759) #> Median 160.711 155.030 145.548 #> Min - Max 126.84 - 185.53 85.22 - 189.88 90.37 - 191.58 #> WEEK 2 DAY 15 #> n 15 15 15 #> Mean (SD) 144.202 (33.676) 136.892 (30.178) 148.622 (27.088) #> Median 144.253 142.679 147.102 #> Min - Max 62.56 - 203.66 70.34 - 174.27 108.82 - 200.23 #> WEEK 3 DAY 22 #> n 15 15 15 #> Mean (SD) 154.887 (35.374) 149.761 (28.944) 150.460 (21.352) #> Median 158.938 155.044 156.505 #> Min - Max 112.32 - 218.83 84.42 - 192.92 94.70 - 180.41 #> WEEK 4 DAY 29 #> n 15 15 15 #> Mean (SD) 150.159 (32.249) 156.043 (22.863) 145.714 (22.980) #> Median 145.506 149.094 150.797 #> Min - Max 69.37 - 210.43 113.57 - 195.10 106.91 - 188.09 #> WEEK 5 DAY 36 #> n 15 15 15 #> Mean (SD) 155.964 (30.945) 156.387 (35.274) 143.592 (33.170) #> Median 158.142 164.552 148.501 #> Min - Max 110.61 - 212.47 63.28 - 198.79 92.18 - 191.05"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"concomitant-medications-by-medication-class-and-preferred-name","dir":"Articles","previous_headings":"TABLES > Concomitant Medications by Medication Class and Preferred Name (CMT01A)","what":"1. Concomitant Medications by Medication Class and Preferred Name","title":"Chevron Catalog","text":"cmt01a template displays concomitant medications ATC Level 2 Preferred Name default. template include column total default. template sort medication class preferred name alphabetical order default.","code":"run(cmt01a, syn_data) #> ATC Level 2 Text A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> ATCCLAS2 A #> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%) #> Total number of treatments 15 21 28 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> ATCCLAS2 A p2 #> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%) #> Total number of treatments 6 8 8 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> ATCCLAS2 B #> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%) #> Total number of treatments 30 30 52 #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> ATCCLAS2 B p2 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 B p3 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 C #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p2 #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p3 #> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%) #> Total number of treatments 5 5 12 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"concomitant-medications-by-medication-class-and-preferred-name-changing-atc-class-level","dir":"Articles","previous_headings":"TABLES > Concomitant Medications by Medication Class and Preferred Name (CMT01A)","what":"2. Concomitant Medications by Medication Class and Preferred Name (changing ATC class level)","title":"Chevron Catalog","text":"","code":"run(cmt01a, syn_data, row_split_var = \"ATC1\") #> ATC Level 1 Text A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> ATCCLAS1 A #> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%) #> Total number of treatments 15 21 28 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> ATCCLAS1 A p2 #> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%) #> Total number of treatments 6 8 8 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> ATCCLAS1 B #> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%) #> Total number of treatments 30 30 52 #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> ATCCLAS1 B p2 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS1 B p3 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS1 C #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS1 C p2 #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS1 C p3 #> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%) #> Total number of treatments 5 5 12 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"concomitant-medications-by-medication-class-and-preferred-name-classes-sorted-by-frequency","dir":"Articles","previous_headings":"TABLES > Concomitant Medications by Medication Class and Preferred Name (CMT01A)","what":"3. Concomitant Medications by Medication Class and Preferred Name (classes sorted by frequency)","title":"Chevron Catalog","text":"argument sort_by_freq = TRUE sort medication class frequency.","code":"run(cmt01a, syn_data, sort_by_freq = TRUE) #> ATC Level 2 Text A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> ATCCLAS2 B #> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%) #> Total number of treatments 30 30 52 #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> ATCCLAS2 A #> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%) #> Total number of treatments 15 21 28 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> ATCCLAS2 B p2 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 B p3 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> Total number of treatments 18 17 25 #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 C #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p2 #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 A p2 #> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%) #> Total number of treatments 6 8 8 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> ATCCLAS2 C p3 #> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%) #> Total number of treatments 5 5 12 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"concomitant-medications-by-medication-class-and-preferred-name-total-number-of-treatments-per-medication-class-suppressed","dir":"Articles","previous_headings":"TABLES > Concomitant Medications by Medication Class and Preferred Name (CMT01A)","what":"4. Concomitant Medications by Medication Class and Preferred Name (total number of treatments per medication class suppressed)","title":"Chevron Catalog","text":"cmt01a template includes analysis ‘total number treatments’ default, modify argument summary_labels change .","code":"run(cmt01a, syn_data, summary_labels = list(TOTAL = cmt01_label, ATC2 = cmt01_label[1])) #> ATC Level 2 Text A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> ATCCLAS2 A #> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%) #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> ATCCLAS2 A p2 #> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> ATCCLAS2 B #> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%) #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> ATCCLAS2 B p2 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 B p3 #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 C #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p2 #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p3 #> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"concomitant-medications-by-preferred-name","dir":"Articles","previous_headings":"TABLES > Concomitant Medications by Preferred Name (CMT02_PT)","what":"1. Concomitant Medications by Preferred Name","title":"Chevron Catalog","text":"cmt02_pt template displays concomitant medications Preferred Name default. template include column total default. template sorts preferred name alphabetical order default. Set argument sort_by_freq = TRUE sort preferred names frequency.","code":"run(cmt02_pt, syn_data) #> A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"cox-regression","dir":"Articles","previous_headings":"TABLES > Cox Regression (COXT01)","what":"1. Cox Regression","title":"Chevron Catalog","text":"coxt01 template produces standard Cox regression output. Users expected pre-process input analysis data selecting time--event parameter analyzed. example based time--event parameter “Duration Confirmed Response Investigator”. time variable model specified time_var argument. default, time_var set \"AVAL\", comes ADTTE.AVAL. event variable model specified event_var argument. default, event_var set \"EVENT\", derived based censoring indicator ADTTE.CNSR pre-processing function coxt01_pre. two treatment groups present input analysis data, users also expected select two treatment groups. example based treatment groups \"Arm \" \"Arm B\".","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") proc_data <- log_filter(proc_data, ARMCD != \"ARM C\", \"adsl\") run(coxt01, proc_data, time_var = \"AVAL\", event_var = \"EVENT\") #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666 #> Covariate: #> Sex 30 2.91 (0.97, 8.73) 0.0567 #> RACE 30 3.09 (1.01, 9.50) 0.0487 #> Age (yr) 30 2.89 (0.97, 8.59) 0.0566"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"cox-regression-with-interaction-term","dir":"Articles","previous_headings":"TABLES > Cox Regression (COXT01)","what":"2. Cox Regression (with interaction term)","title":"Chevron Catalog","text":"add interaction term model, interaction = TRUE, passed tern::control_coxreg(), needs specified.","code":"run(coxt01, proc_data, covariates = \"AAGE\", interaction = TRUE) #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value Interaction p-value #> ————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666 #> Covariate: #> Age (yr) 30 0.3666 #> 32 2.87 (0.98, 8.41)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"cox-regression-specifying-covariates","dir":"Articles","previous_headings":"TABLES > Cox Regression (COXT01)","what":"3. Cox Regression (specifying covariates)","title":"Chevron Catalog","text":"default, \"SEX\", \"RACE\" \"AAGE\" used covariates model. Users can specify different set covariates covariates argument. example , \"RACE\" \"AAGE\" used covariates.","code":"run(coxt01, proc_data, covariates = c(\"RACE\", \"AAGE\")) #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666 #> Covariate: #> RACE 30 3.09 (1.01, 9.50) 0.0487 #> Age (yr) 30 2.89 (0.97, 8.59) 0.0566"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"cox-regression-setting-strata-ties-and-alpha-level","dir":"Articles","previous_headings":"TABLES > Cox Regression (COXT01)","what":"4. Cox Regression (setting strata, ties, and alpha level)","title":"Chevron Catalog","text":"default, strata = NULL (stratification), ties = \"exact\" (equivalent DISCRETE SAS), conf_level = 0.95 applied. Users can specify one stratification variables via strata argument. tie handling methods, .e., \"efron\" \"breslow\", can specified tie argument, passed tern::control_coxreg(). Users can also customize alpha level confidence intervals conf_level argument, passed tern::control_coxreg().","code":"run(coxt01, proc_data, covariates = c(\"SEX\", \"AAGE\"), strata = c(\"RACE\"), conf_level = 0.90) #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 90% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 2.69 (1.07, 6.76) 0.0785 #> Covariate: #> Sex 30 2.90 (1.12, 7.54) 0.0668 #> Age (yr) 30 2.72 (1.08, 6.85) 0.0755"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"multi-variable-cox-regression","dir":"Articles","previous_headings":"TABLES > Multi-variable Cox Regression (COXT02)","what":"1. Multi-variable Cox Regression","title":"Chevron Catalog","text":"coxt02 template produces standard multi-variable cox regression output. Users expected pre-process input analysis data selecting time--event parameter analyzed. example based time--event parameter “Duration Confirmed Response Investigator”. time variable model specified time_var argument. default, time_var set \"AVAL\", comes ADTTE.AVAL. event variable model specified event_var argument. default, event_var set \"EVENT\", derived based censoring indicator ADTTE.CNSR pre-processing function coxt01_pre.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(coxt02, proc_data, time_var = \"AVAL\", event_var = \"EVENT\") #> Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> Description of Planned Arm (reference = A: Drug X) 0.1630 #> B: Placebo 2.92 (0.93, 9.17) 0.0672 #> C: Combination 1.56 (0.47, 5.10) 0.4659 #> Covariate: #> Sex (reference = F) #> M 1.03 (0.41, 2.55) 0.9549 #> RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.8498 #> ASIAN 1.22 (0.27, 5.55) 0.7967 #> BLACK OR AFRICAN AMERICAN 0.81 (0.12, 5.70) 0.8340 #> WHITE 1.57 (0.26, 9.67) 0.6258 #> Age (yr) #> All 0.99 (0.93, 1.05) 0.6650"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"multi-variable-cox-regression-specifying-covariates","dir":"Articles","previous_headings":"TABLES > Multi-variable Cox Regression (COXT02)","what":"2. Multi-variable Cox Regression (specifying covariates)","title":"Chevron Catalog","text":"default, \"SEX\", \"RACE\" \"AAGE\" used covariates model. Users can specify different set covariates covariates argument. example , \"RACE\" \"AAGE\" used covariates.","code":"run(coxt02, proc_data, covariates = c(\"RACE\", \"AAGE\")) #> Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> Description of Planned Arm (reference = A: Drug X) 0.1390 #> B: Placebo 2.94 (0.97, 8.92) 0.0570 #> C: Combination 1.56 (0.48, 5.09) 0.4605 #> Covariate: #> RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.8504 #> ASIAN 1.22 (0.27, 5.54) 0.7972 #> BLACK OR AFRICAN AMERICAN 0.81 (0.12, 5.65) 0.8306 #> WHITE 1.56 (0.26, 9.53) 0.6279 #> Age (yr) #> All 0.99 (0.93, 1.05) 0.6633"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"multi-variable-cox-regression-setting-strata-ties-and-alpha-level","dir":"Articles","previous_headings":"TABLES > Multi-variable Cox Regression (COXT02)","what":"3. Multi-variable Cox Regression (setting strata, ties, and alpha level)","title":"Chevron Catalog","text":"default, strata = NULL (stratification), ties = \"exact\" (equivalent DISCRETE SAS), conf_level = 0.95 applied. Users can specify one stratification variables via strata argument. tie handling methods, .e., \"efron\" \"breslow\", can specified tie argument, passed tern::control_coxreg(). Users can also customize alpha level confidence intervals conf_level argument, passed tern::control_coxreg().","code":"run(coxt02, proc_data, covariates = c(\"SEX\", \"AAGE\"), strata = c(\"RACE\"), conf_level = 0.90, ties = \"efron\") #> Effect/Covariate Included in the Model Hazard Ratio 90% CI p-value #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> Description of Planned Arm (reference = A: Drug X) 0.1680 #> B: Placebo 2.85 (1.09, 7.46) 0.0743 #> C: Combination 1.47 (0.54, 4.02) 0.5254 #> Covariate: #> Sex (reference = F) #> M 0.98 (0.45, 2.13) 0.9700 #> Age (yr) #> All 0.99 (0.94, 1.04) 0.6571"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"demographics-and-baseline-characteristics-with-all-patients","dir":"Articles","previous_headings":"TABLES > Demographics and Baseline Characteristics (DMT01)","what":"1. Demographics and Baseline Characteristics with All Patients","title":"Chevron Catalog","text":"dmt01 template produces standard demographics baseline characteristics summary. template includes column total default.","code":"run(dmt01, syn_data) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Age (yr) #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"demographics-and-baseline-characteristics-without-all-patients","dir":"Articles","previous_headings":"TABLES > Demographics and Baseline Characteristics (DMT01)","what":"2. Demographics and Baseline Characteristics without All Patients","title":"Chevron Catalog","text":"remove column total, set argument lbl_overall NULL.","code":"run(dmt01, syn_data, lbl_overall = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————— #> Age (yr) #> n 15 15 15 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) #> Median 31.0 35.0 35.0 #> Min - Max 24 - 40 24 - 57 24 - 49 #> Age Group #> n 15 15 15 #> <65 15 (100%) 15 (100%) 15 (100%) #> Sex #> n 15 15 15 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) #> Ethnicity #> n 15 15 15 #> HISPANIC OR LATINO 2 (13.3%) 0 0 #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) #> NOT REPORTED 0 0 2 (13.3%) #> RACE #> n 15 15 15 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"demographics-and-baseline-characteristics-with-an-additional-study-specific-continuous-variable","dir":"Articles","previous_headings":"TABLES > Demographics and Baseline Characteristics (DMT01)","what":"3. Demographics and Baseline Characteristics with an additional study specific continuous variable","title":"Chevron Catalog","text":"Study specific continuous variables can added standard demographics baseline characteristics summary editing argument summaryvars. add remove analyses, need pass variables like include argument. CHEVRON performs analysis based type variable defined input data.","code":"run(dmt01, syn_data, summaryvars = c(\"AGE\", \"AGEGR1\", \"SEX\", \"ETHNIC\", \"RACE\", \"BBMISI\"), lbl_overall = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> Age #> n 15 15 15 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) #> Median 31.0 35.0 35.0 #> Min - Max 24 - 40 24 - 57 24 - 49 #> Age Group #> n 15 15 15 #> <65 15 (100%) 15 (100%) 15 (100%) #> Sex #> n 15 15 15 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) #> Ethnicity #> n 15 15 15 #> HISPANIC OR LATINO 2 (13.3%) 0 0 #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) #> NOT REPORTED 0 0 2 (13.3%) #> RACE #> n 15 15 15 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Baseline BMI #> n 15 15 15 #> Mean (SD) 29.75 (15.10) 41.08 (26.65) 33.90 (15.39) #> Median 37.00 33.70 37.80 #> Min - Max 6.4 - 47.9 5.3 - 117.9 -3.5 - 59.0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"demographics-and-baseline-characteristics-with-an-additional-study-specific-categorical-variable","dir":"Articles","previous_headings":"TABLES > Demographics and Baseline Characteristics (DMT01)","what":"4. Demographics and Baseline Characteristics with an additional study specific categorical variable","title":"Chevron Catalog","text":"Study specific categorical variables can added standard demographics baseline characteristics summary editing argument summaryvars. display values within categorical variable pre-specified order, categorical variable need factorized pre-specified order provided levels.","code":"proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( SEX = reformat(.data$SEX, rule(Male = \"M\", Female = \"F\")), BBMIGR1 = factor(case_when( BBMISI < 15 ~ \"Very severely underweight\", BBMISI >= 15 & BBMISI < 16 ~ \"Severely underweight\", BBMISI >= 16 & BBMISI < 18.5 ~ \"Underweight\", BBMISI >= 18.5 & BBMISI < 25 ~ \"Normal (healthy weight)\", BBMISI >= 25 & BBMISI < 30 ~ \"Overweight\", BBMISI >= 30 & BBMISI < 35 ~ \"Obese Class I (Moderately obese)\", BBMISI >= 35 & BBMISI < 40 ~ \"Obese Class II (Severely obese)\", BBMISI >= 40 ~ \"Obese Class III (Very severely obese)\" ), levels = c( \"Very severely underweight\", \"Severely underweight\", \"Underweight\", \"Normal (healthy weight)\", \"Overweight\", \"Obese Class I (Moderately obese)\", \"Obese Class II (Severely obese)\", \"Obese Class III (Very severely obese)\" )) ) run(dmt01, proc_data, summaryvars = c(\"AGE\", \"AGEGR1\", \"SEX\", \"ETHNIC\", \"RACE\", \"BBMIGR1\"), auto_pre = FALSE) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Age #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%) #> BBMIGR1 #> n 15 15 15 45 #> Very severely underweight 4 (26.7%) 1 (6.7%) 1 (6.7%) 6 (13.3%) #> Underweight 1 (6.7%) 0 0 1 (2.2%) #> Normal (healthy weight) 1 (6.7%) 3 (20.0%) 4 (26.7%) 8 (17.8%) #> Overweight 0 1 (6.7%) 1 (6.7%) 2 (4.4%) #> Obese Class I (Moderately obese) 0 3 (20.0%) 0 3 (6.7%) #> Obese Class II (Severely obese) 4 (26.7%) 1 (6.7%) 3 (20.0%) 8 (17.8%) #> Obese Class III (Very severely obese) 5 (33.3%) 6 (40.0%) 6 (40.0%) 17 (37.8%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"demographics-and-baseline-characteristics-with-additional-vital-signs-baseline-values-from-advs-or-adsub","dir":"Articles","previous_headings":"TABLES > Demographics and Baseline Characteristics (DMT01)","what":"5. Demographics and Baseline Characteristics with additional vital signs baseline values from ADVS or ADSUB","title":"Chevron Catalog","text":"add baseline vital signs baseline characteristics demographics baseline characteristics summary, manual preprocess input adsl dataset expected merge vital signs baseline values advs (ADVS.ABLFL == \"Y\") adsub adsl unique subject identifier.","code":"proc_data <- syn_data diabpbl <- proc_data$advs %>% filter(ABLFL == \"Y\" & PARAMCD == \"DIABP\") %>% mutate(DIABPBL = AVAL) %>% select(\"STUDYID\", \"USUBJID\", \"DIABPBL\") proc_data$adsl <- proc_data$adsl %>% mutate(SEX = reformat(.data$SEX, rule(Male = \"M\", Female = \"F\"))) %>% left_join(diabpbl, by = c(\"STUDYID\", \"USUBJID\")) run(dmt01, proc_data, summaryvars = c(\"AGE\", \"AGEGR1\", \"SEX\", \"ETHNIC\", \"RACE\", \"DIABPBL\"), auto_pre = FALSE) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Age #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%) #> Analysis Value #> n 15 15 15 45 #> Mean (SD) 96.132511 (22.458204) 108.110944 (15.074451) 103.148818 (19.751687) 102.464091 (19.534945) #> Median 93.328321 108.951358 102.849019 102.396129 #> Min - Max 60.58490 - 136.59343 83.44277 - 131.61501 66.05223 - 136.55256 60.58490 - 136.59343"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"patient-disposition","dir":"Articles","previous_headings":"TABLES > Patient Disposition (DST01)","what":"1. Patient Disposition","title":"Chevron Catalog","text":"dst01 template produces standard patient disposition summary. template includes column total default. Use lbl_overall = NULL suppress default.","code":"run(dst01, syn_data, lbl_overall = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) #> ADVERSE EVENT 0 0 1 (6.7%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) #> LACK OF EFFICACY 2 (13.3%) 0 0 #> PHYSICIAN DECISION 0 0 1 (6.7%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"patient-disposition-with-grouping-of-reasons","dir":"Articles","previous_headings":"TABLES > Patient Disposition (DST01)","what":"2. Patient Disposition (with grouping of reasons)","title":"Chevron Catalog","text":"syntax produces standard patient disposition summary grouping discontinuation reasons. variable [ADSL.DCSREASGP] groups discontinuation reasons needs derived manually provided input adsl dataset.","code":"run(dst01, syn_data, detail_vars = list(Discontinued = c(\"DCSREASGP\", \"DCSREAS\")), lbl_overall = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) #> Safety #> ADVERSE EVENT 0 0 1 (6.7%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Non-Safety #> LACK OF EFFICACY 2 (13.3%) 0 0 #> PHYSICIAN DECISION 0 0 1 (6.7%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"patient-disposition-adding-end-of-treatment-status","dir":"Articles","previous_headings":"TABLES > Patient Disposition (DST01)","what":"3. Patient Disposition (adding end of treatment status)","title":"Chevron Catalog","text":"syntax adds end treatment status standard patient disposition summary providing end treatment status variable argument trt_status_var.","code":"run(dst01, syn_data, trt_status_var = \"EOTSTT\", lbl_overall = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) #> ADVERSE EVENT 0 0 1 (6.7%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) #> LACK OF EFFICACY 2 (13.3%) 0 0 #> PHYSICIAN DECISION 0 0 1 (6.7%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 #> Completed Treatment 8 (53.3%) 4 (26.7%) 5 (33.3%) #> Ongoing Treatment 4 (26.7%) 6 (40.0%) 4 (26.7%) #> Discontinued Treatment 3 (20.0%) 5 (33.3%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"patient-disposition-adding-details-of-study-ongoing-status","dir":"Articles","previous_headings":"TABLES > Patient Disposition (DST01)","what":"4. Patient Disposition (adding details of study ongoing status)","title":"Chevron Catalog","text":"syntax adds details study ongoing/alive status standard patient disposition summary modifying argument detail_vars.","code":"run(dst01, syn_data, detail_vars = list(Discontinued = \"DCSREAS\", Ongoing = \"STDONS\")) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%) #> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%) #> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%) #> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%) #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"deaths","dir":"Articles","previous_headings":"TABLES > Deaths (DTHT01)","what":"1. Deaths","title":"Chevron Catalog","text":"dtht01 template produces standard deaths output.","code":"run(dst01, syn_data) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%) #> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%) #> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%) #> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%) #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"deaths-adding-primary-cause-of-death-details-for-other-category","dir":"Articles","previous_headings":"TABLES > Deaths (DTHT01)","what":"2. Deaths (adding “Primary Cause of Death” details for ‘Other’ category)","title":"Chevron Catalog","text":"NOTE: order avoid warning display ‘’ last category “Primary Cause Death” right detailed reasons “”, user expected manually provide levels ADSL.DTHCAT based categories available dataset.","code":"run(dtht01, syn_data, other_category = TRUE) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————— #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Primary Cause of Death #> n 2 4 3 #> Adverse Event 1 (50.0%) 2 (50.0%) 1 (33.3%) #> Progressive Disease 1 (50.0%) 0 2 (66.7%) #> Other 0 2 (50.0%) 0 #> LOST TO FOLLOW UP 0 1 (50%) 0 #> SUICIDE 0 1 (50%) 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"deaths-adding-summary-by-days-from-last-study-drug-administration","dir":"Articles","previous_headings":"TABLES > Deaths (DTHT01)","what":"3. Deaths (adding summary by days from last study drug administration)","title":"Chevron Catalog","text":"Setting time_since_last_dose TRUE, syntax produces count deaths days last study drug administration well count deaths primary cause days last study drug administration.","code":"run(dtht01, syn_data, time_since_last_dose = TRUE) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Days from last drug administration #> n 2 4 3 #> <=30 2 (100%) 1 (25.0%) 2 (66.7%) #> >30 0 3 (75.0%) 1 (33.3%) #> Primary cause by days from last study drug administration #> <=30 #> n 2 1 2 #> Adverse Event 1 (50.0%) 0 1 (50.0%) #> Progressive Disease 1 (50.0%) 0 1 (50.0%) #> Other 0 1 (100%) 0 #> >30 #> n 0 3 1 #> Adverse Event 0 2 (66.7%) 0 #> Progressive Disease 0 0 1 (100%) #> Other 0 1 (33.3%) 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"ecg-results-and-change-from-baseline-by-visit","dir":"Articles","previous_headings":"TABLES > ECG Results and Change from Baseline by Visit (EGT01)","what":"1. ECG Results and Change from Baseline by Visit","title":"Chevron Catalog","text":"egt01 template produces standard ECG results change baseline visit summary.","code":"run(egt01, syn_data) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Heart Rate #> BASELINE #> n 15 15 15 #> Mean (SD) 76.594 (17.889) 69.899 (18.788) 70.492 (18.175) #> Median 77.531 77.174 74.111 #> Min - Max 46.50 - 106.68 26.42 - 97.69 45.37 - 115.49 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 71.140 (23.441) -5.454 (25.128) 70.958 (14.877) 1.059 (23.345) 67.450 (18.932) -3.043 (23.753) #> Median 77.210 -2.152 70.033 -8.403 68.471 0.181 #> Min - Max 8.53 - 102.63 -50.97 - 36.54 44.85 - 93.79 -25.34 - 60.50 38.90 - 100.05 -52.20 - 33.13 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 69.350 (16.083) -7.244 (28.960) 76.096 (14.958) 6.198 (29.319) 63.694 (12.920) -6.799 (23.949) #> Median 65.746 -11.369 75.323 0.255 61.076 -4.954 #> Min - Max 47.22 - 101.44 -49.59 - 42.91 47.50 - 111.40 -37.51 - 69.34 43.25 - 86.13 -52.70 - 40.76 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 73.894 (24.576) -2.700 (32.079) 67.635 (19.114) -2.263 (29.989) 72.054 (19.308) 1.562 (27.494) #> Median 69.296 5.492 68.468 -2.093 68.686 -5.848 #> Min - Max 44.15 - 131.73 -62.53 - 38.19 31.89 - 108.87 -52.26 - 66.81 32.16 - 109.86 -49.61 - 35.23 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 73.241 (19.256) -3.353 (29.170) 66.524 (25.487) -3.374 (36.024) 66.600 (22.839) -3.892 (24.140) #> Median 68.689 0.232 66.397 -11.730 64.969 -6.827 #> Min - Max 33.71 - 111.54 -55.14 - 65.04 19.66 - 111.29 -60.39 - 61.00 10.35 - 100.88 -50.72 - 26.77 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 61.690 (22.182) -14.904 (30.330) 60.712 (20.025) -9.187 (24.587) 72.683 (23.495) 2.191 (26.654) #> Median 57.925 -12.660 60.454 -16.100 77.585 14.635 #> Min - Max 23.89 - 103.74 -60.00 - 57.24 32.53 - 102.02 -52.56 - 50.96 31.21 - 105.05 -42.90 - 34.64 #> QT Duration #> BASELINE #> n 15 15 15 #> Mean (SD) 335.294 (123.231) 363.104 (68.160) 347.311 (86.236) #> Median 372.731 386.316 348.254 #> Min - Max 121.28 - 554.97 214.65 - 445.53 170.80 - 508.54 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 357.361 (85.688) 22.067 (144.166) 415.225 (105.425) 52.121 (144.259) 321.078 (107.553) -26.233 (129.135) #> Median 344.797 49.432 421.950 62.762 307.962 -17.006 #> Min - Max 241.22 - 517.39 -207.23 - 245.36 234.11 - 604.72 -190.70 - 364.94 118.36 - 480.29 -363.11 - 163.67 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 344.883 (106.793) 9.589 (174.797) 370.548 (80.862) 7.444 (91.301) 354.129 (95.133) 6.818 (142.397) #> Median 312.236 -9.264 388.515 -9.429 365.292 39.930 #> Min - Max 187.77 - 501.87 -278.91 - 372.71 204.55 - 514.43 -190.58 - 173.87 200.19 - 493.40 -279.46 - 265.56 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 342.062 (92.568) 6.768 (151.505) 326.684 (116.421) -36.420 (145.415) 366.245 (99.106) 18.935 (168.417) #> Median 352.930 -22.771 298.353 -78.409 329.688 -21.584 #> Min - Max 199.40 - 476.04 -230.25 - 303.00 151.05 - 561.23 -205.30 - 293.76 249.42 - 580.81 -252.73 - 410.01 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 371.650 (44.805) 36.356 (139.308) 333.697 (110.377) -29.407 (125.592) 333.181 (96.466) -14.130 (107.622) #> Median 375.412 58.958 308.020 -40.987 330.911 -25.820 #> Min - Max 302.32 - 451.62 -214.07 - 258.04 183.09 - 531.08 -241.72 - 134.12 126.95 - 488.57 -234.92 - 152.49 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 345.504 (130.543) 10.210 (198.224) 309.919 (84.624) -53.185 (105.730) 322.931 (67.801) -24.380 (117.331) #> Median 355.730 -23.213 306.219 -12.373 341.988 -26.952 #> Min - Max 88.38 - 661.12 -271.06 - 539.84 189.01 - 448.58 -256.52 - 91.57 217.51 - 427.16 -291.03 - 171.19 #> RR Duration #> BASELINE #> n 15 15 15 #> Mean (SD) 1086.908 (363.811) 1050.034 (390.444) 1102.659 (310.359) #> Median 1116.849 1089.193 1250.037 #> Min - Max 626.19 - 1653.12 414.61 - 1721.89 385.51 - 1430.81 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 968.499 (287.811) -118.409 (546.796) 1041.186 (211.201) -8.848 (435.281) 948.491 (213.746) -154.168 (442.882) #> Median 961.296 -147.460 1013.786 24.754 965.429 -224.054 #> Min - Max 358.92 - 1593.51 -1014.82 - 911.82 714.44 - 1417.52 -618.80 - 847.31 513.35 - 1229.09 -736.69 - 843.58 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 932.717 (259.634) -154.191 (331.884) 1139.332 (454.231) 89.298 (582.750) 1021.283 (233.529) -81.376 (415.781) #> Median 950.533 -205.949 1068.007 -5.449 964.616 -142.180 #> Min - Max 409.68 - 1269.35 -649.69 - 473.09 486.51 - 2048.73 -846.72 - 1148.61 667.36 - 1367.25 -647.47 - 616.15 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 1068.865 (319.540) -18.043 (513.412) 1110.882 (259.523) 60.848 (432.700) 1105.918 (306.185) 3.259 (516.734) #> Median 1201.998 -65.085 1163.690 51.200 1187.130 30.318 #> Min - Max 380.49 - 1551.65 -832.86 - 703.74 621.41 - 1453.29 -887.06 - 822.18 446.02 - 1648.32 -984.79 - 816.30 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 1087.915 (205.940) 1.008 (403.039) 1161.681 (293.257) 111.647 (460.979) 992.134 (283.177) -110.525 (334.932) #> Median 1084.658 146.611 1055.223 191.008 1028.997 -112.599 #> Min - Max 697.59 - 1499.17 -801.16 - 402.97 722.35 - 1762.04 -528.27 - 1191.83 497.14 - 1382.12 -597.95 - 757.99 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 1016.880 (424.428) -70.027 (505.078) 1135.131 (224.684) 85.097 (497.679) 1089.527 (238.909) -13.132 (362.606) #> Median 962.584 -142.925 1158.815 -9.553 1081.015 16.706 #> Min - Max 352.97 - 1843.86 -894.83 - 1162.79 714.34 - 1436.68 -843.41 - 992.34 699.72 - 1611.38 -696.03 - 561.53"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"ecg-abnormalities-regardless-of-abnormality-at-baseline","dir":"Articles","previous_headings":"TABLES > ECG Abnormalities (Regardless of Abnormality at Baseline) (EGT02_1)","what":"1. ECG Abnormalities (Regardless of Abnormality at Baseline)","title":"Chevron Catalog","text":"egt02_1 template produces standard ECG abnormalities summary abnormalities summarized regardless abnormality baseline.","code":"run(egt02_1, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————— #> Heart Rate #> Low 4/15 (26.7%) 4/15 (26.7%) 4/15 (26.7%) #> High 4/15 (26.7%) 3/15 (20%) 3/15 (20%) #> QT Duration #> Low 2/15 (13.3%) 5/15 (33.3%) 3/15 (20%) #> High 3/15 (20%) 6/15 (40%) 2/15 (13.3%) #> RR Duration #> Low 6/15 (40%) 2/15 (13.3%) 4/15 (26.7%) #> High 4/15 (26.7%) 5/15 (33.3%) 2/15 (13.3%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"ecg-abnormalities-among-subject-without-abnormality-at-baseline","dir":"Articles","previous_headings":"TABLES > ECG Abnormalities (Among Subject Without Abnormality at Baseline) (EGT02_2)","what":"1. ECG Abnormalities (Among Subject Without Abnormality at Baseline)","title":"Chevron Catalog","text":"egt02_2 template produces standard ECG abnormalities summary abnormalities summarized among subject without abnormality baseline.","code":"run(egt02_2, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————— #> Heart Rate #> Low 4/15 (26.7%) 4/14 (28.6%) 4/15 (26.7%) #> High 3/13 (23.1%) 3/15 (20%) 2/14 (14.3%) #> QT Duration #> Low 2/12 (16.7%) 5/15 (33.3%) 3/14 (21.4%) #> High 3/14 (21.4%) 6/15 (40%) 2/14 (14.3%) #> RR Duration #> Low 6/15 (40%) 2/13 (15.4%) 4/14 (28.6%) #> High 4/13 (30.8%) 5/13 (38.5%) 2/15 (13.3%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"shift-table-of-ecg-interval-data---baseline-versus-minimum-post-baseline","dir":"Articles","previous_headings":"TABLES > Shift Table of ECG Interval Data - Baseline versus Minimum/Maximum Post-Baseline (EGT03)","what":"1. Shift Table of ECG Interval Data - Baseline versus Minimum Post-Baseline","title":"Chevron Catalog","text":"egt03 template produces standard shift table ECG interval data - baseline versus minimum post-baseline summary.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"HR\", \"adeg\") run(egt03, proc_data) #> Actual Arm Code Minimum Post-Baseline Assessment #> Baseline Reference Range Indicator LOW NORMAL HIGH Missing #> ———————————————————————————————————————————————————————————————————————————————— #> Heart Rate #> ARM A (N=15) #> LOW 0 0 0 0 #> NORMAL 4 (26.7%) 9 (60.0%) 0 0 #> HIGH 0 2 (13.3%) 0 0 #> Missing 0 0 0 0 #> ARM B (N=15) #> LOW 0 1 (6.7%) 0 0 #> NORMAL 4 (26.7%) 10 (66.7%) 0 0 #> HIGH 0 0 0 0 #> Missing 0 0 0 0 #> ARM C (N=15) #> LOW 0 0 0 0 #> NORMAL 4 (26.7%) 10 (66.7%) 0 0 #> HIGH 0 1 (6.7%) 0 0 #> Missing 0 0 0 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"shift-table-of-ecg-interval-data---baseline-versus-maximum-post-baseline","dir":"Articles","previous_headings":"TABLES > Shift Table of ECG Interval Data - Baseline versus Minimum/Maximum Post-Baseline (EGT03)","what":"2. Shift Table of ECG Interval Data - Baseline versus Maximum Post-Baseline","title":"Chevron Catalog","text":"produce standard shift table ECG interval data - baseline versus maximum post-baseline summary….TBA","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"ecg-actual-values-and-changes-from-baseline-by-visit","dir":"Articles","previous_headings":"TABLES > ECG Actual Values and Changes from Baseline by Visit (EGT05_QTCAT)","what":"1. ECG Actual Values and Changes from Baseline by Visit","title":"Chevron Catalog","text":"egt05_qtcat template produces standard ECG actual values changes baseline visit summary.","code":"run(egt05_qtcat, syn_data) #> Parameter #> Analysis Visit A: Drug X B: Placebo C: Combination #> Category (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————— #> QT Duration #> BASELINE #> Value at Visit #> n 15 15 15 #> <=450 msec 13 (86.7%) 15 (100%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 0 0 #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 1 (6.7%) 0 1 (6.7%) #> WEEK 1 DAY 8 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 9 (60.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 1 (6.7%) 3 (20.0%) 1 (6.7%) #> >500 msec 1 (6.7%) 2 (13.3%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 7 (46.7%) 6 (40.0%) 9 (60.0%) #> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 1 (6.7%) #> >60 msec 6 (40.0%) 8 (53.3%) 5 (33.3%) #> WEEK 2 DAY 15 #> Value at Visit #> n 15 15 15 #> <=450 msec 11 (73.3%) 14 (93.3%) 12 (80.0%) #> >450 to <=480 msec 2 (13.3%) 0 2 (13.3%) #> >480 to <=500 msec 1 (6.7%) 0 1 (6.7%) #> >500 msec 1 (6.7%) 1 (6.7%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 12 (80.0%) 7 (46.7%) #> >30 to <=60 msec 2 (13.3%) 0 3 (20.0%) #> >60 msec 4 (26.7%) 3 (20.0%) 5 (33.3%) #> WEEK 3 DAY 22 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 12 (80.0%) 12 (80.0%) #> >450 to <=480 msec 3 (20.0%) 1 (6.7%) 1 (6.7%) #> >500 msec 0 2 (13.3%) 2 (13.3%) #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%) #> >30 to <=60 msec 1 (6.7%) 1 (6.7%) 0 #> >60 msec 5 (33.3%) 3 (20.0%) 6 (40.0%) #> WEEK 4 DAY 29 #> Value at Visit #> n 15 15 15 #> <=450 msec 14 (93.3%) 12 (80.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 0 2 (13.3%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 6 (40.0%) 9 (60.0%) 9 (60.0%) #> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 2 (13.3%) #> >60 msec 7 (46.7%) 5 (33.3%) 4 (26.7%) #> WEEK 5 DAY 36 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 15 (100%) 15 (100%) #> >450 to <=480 msec 2 (13.3%) 0 0 #> >500 msec 1 (6.7%) 0 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%) #> >30 to <=60 msec 0 3 (20.0%) 2 (13.3%) #> >60 msec 6 (40.0%) 1 (6.7%) 4 (26.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"ecg-actual-values-and-changes-from-baseline-by-visit-removing-default-analyses","dir":"Articles","previous_headings":"TABLES > ECG Actual Values and Changes from Baseline by Visit (EGT05_QTCAT)","what":"2. ECG Actual Values and Changes from Baseline by Visit (removing default analyses)","title":"Chevron Catalog","text":"template two default analyses ADEG.AVALCAT1 ADEG.CHGCAT1. keep analyses needed, can achieved modifying parameter summaryvars.","code":"run(egt05_qtcat, syn_data, summaryvars = c(\"AVALCAT1\")) #> Parameter #> Analysis Visit A: Drug X B: Placebo C: Combination #> Category (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————— #> QT Duration #> BASELINE #> n 15 15 15 #> <=450 msec 13 (86.7%) 15 (100%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 0 0 #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 1 (6.7%) 0 1 (6.7%) #> WEEK 1 DAY 8 #> n 15 15 15 #> <=450 msec 12 (80.0%) 9 (60.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 1 (6.7%) 3 (20.0%) 1 (6.7%) #> >500 msec 1 (6.7%) 2 (13.3%) 0 #> WEEK 2 DAY 15 #> n 15 15 15 #> <=450 msec 11 (73.3%) 14 (93.3%) 12 (80.0%) #> >450 to <=480 msec 2 (13.3%) 0 2 (13.3%) #> >480 to <=500 msec 1 (6.7%) 0 1 (6.7%) #> >500 msec 1 (6.7%) 1 (6.7%) 0 #> WEEK 3 DAY 22 #> n 15 15 15 #> <=450 msec 12 (80.0%) 12 (80.0%) 12 (80.0%) #> >450 to <=480 msec 3 (20.0%) 1 (6.7%) 1 (6.7%) #> >500 msec 0 2 (13.3%) 2 (13.3%) #> WEEK 4 DAY 29 #> n 15 15 15 #> <=450 msec 14 (93.3%) 12 (80.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 0 2 (13.3%) 0 #> WEEK 5 DAY 36 #> n 15 15 15 #> <=450 msec 12 (80.0%) 15 (100%) 15 (100%) #> >450 to <=480 msec 2 (13.3%) 0 0 #> >500 msec 1 (6.7%) 0 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"study-drug-exposure","dir":"Articles","previous_headings":"TABLES > Study Drug Exposure (EXT01)","what":"1. Study Drug Exposure","title":"Chevron Catalog","text":"ext01 template displays total number doses administered total dose administered default template include column total default","code":"run(ext01, syn_data) #> A: Drug X B: Placebo C: Combination #> PARCAT2 (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Drug A #> Overall duration (days) #> n 11 7 7 #> Mean (SD) 157.5 (67.4) 115.4 (62.8) 98.6 (68.8) #> Median 174.0 119.0 89.0 #> Min - Max 53.0 - 239.0 22.0 - 219.0 1.0 - 182.0 #> Total dose administered #> n 11 7 7 #> Mean (SD) 6567.3 (1127.1) 7028.6 (1626.1) 6377.1 (863.7) #> Median 6720.0 7200.0 6480.0 #> Min - Max 4800.0 - 8400.0 5280.0 - 9360.0 5280.0 - 7440.0 #> Drug B #> Overall duration (days) #> n 4 8 8 #> Mean (SD) 142.2 (100.3) 105.9 (60.0) 158.2 (96.2) #> Median 160.0 95.0 203.0 #> Min - Max 17.0 - 232.0 37.0 - 211.0 27.0 - 249.0 #> Total dose administered #> n 4 8 8 #> Mean (SD) 7020.0 (1148.9) 5250.0 (864.7) 5940.0 (1187.9) #> Median 6960.0 5160.0 5880.0 #> Min - Max 5760.0 - 8400.0 4080.0 - 6480.0 4320.0 - 7680.0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-and-change-from-baseline-by-visit","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results and Change from Baseline by Visit (LBT01)","what":"1. Laboratory Test Results and Change from Baseline by Visit","title":"Chevron Catalog","text":"lbt01 template produces standard laboratory test results change baseline visit. select SI/CV/LS results panel (chemistry/hematology/urinalysis/coagulation etc.) display, user defines individual filters apply input datasets prior running CHEVRON.","code":"t_lb_chg <- run(lbt01, syn_data) head(t_lb_chg, 20) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> BASELINE #> n 15 15 15 #> Mean (SD) 18.655 (12.455) 16.835 (11.080) 22.385 (9.452) #> Median 16.040 17.453 25.250 #> Min - Max 2.43 - 44.06 1.48 - 31.99 0.57 - 37.23 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 16.308 (10.850) -2.348 (17.558) 22.055 (7.537) 5.220 (16.359) 19.574 (9.876) -2.811 (10.902) #> Median 14.664 -5.369 22.476 7.252 19.425 -0.995 #> Min - Max 0.10 - 36.30 -30.18 - 22.66 9.72 - 33.81 -16.82 - 32.33 1.03 - 36.28 -19.61 - 18.45 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 16.646 (10.528) -2.010 (15.773) 20.758 (9.578) 3.923 (14.084) 10.911 (7.721) -11.474 (11.002) #> Median 15.470 -6.427 18.499 6.248 9.850 -8.657 #> Min - Max 0.40 - 35.29 -29.99 - 32.86 1.56 - 42.84 -24.92 - 29.85 0.35 - 25.01 -27.38 - 2.52 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 17.488 (10.679) -1.167 (15.759) 20.055 (8.086) 3.219 (16.285) 18.413 (9.513) -3.973 (9.966) #> Median 14.224 1.355 21.852 5.345 19.529 -7.194"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-and-change-from-baseline-by-visit-customized-precision","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results and Change from Baseline by Visit (LBT01)","what":"2. Laboratory Test Results and Change from Baseline by Visit (customized precision)","title":"Chevron Catalog","text":"TBA","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-abnormalities","dir":"Articles","previous_headings":"TABLES > Laboratory Abnormalities (LBT04)","what":"1. Laboratory Abnormalities","title":"Chevron Catalog","text":"lbt04 template produces standard laboratory abnormalities summary. template subsets SI results default. laboratory tests directions abnormality template data-driven. Table entries provide number patients treatment laboratory value abnormality direction specified among patients without abnormality baseline.","code":"run(lbt04, syn_data) #> Laboratory Test A: Drug X B: Placebo C: Combination #> Direction of Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> CHEMISTRY #> Alanine Aminotransferase Measurement #> Low 0/7 0/2 1/7 (14.3%) #> High 0/7 0/3 0/8 #> C-Reactive Protein Measurement #> Low 0/8 1/2 (50.0%) 0/6 #> High 3/8 (37.5%) 0/2 0/7 #> Immunoglobulin A Measurement #> Low 0/5 0/8 0/7 #> High 1/3 (33.3%) 1/8 (12.5%) 0/6 #> COAGULATION #> Alanine Aminotransferase Measurement #> Low 0/3 0/6 0/4 #> High 0/5 0/7 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/5 1/3 (33.3%) #> High 0/5 1/6 (16.7%) 1/4 (25.0%) #> Immunoglobulin A Measurement #> Low 0/8 0/9 0/6 #> High 0/8 0/9 1/6 (16.7%) #> HEMATOLOGY #> Alanine Aminotransferase Measurement #> Low 0/4 0/5 0/4 #> High 0/6 0/5 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/4 0/3 #> High 0/5 0/4 0/5 #> Immunoglobulin A Measurement #> Low 0/3 0/4 0/8 #> High 0/3 0/4 0/7"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-abnormalities-with-single-and-replicated-marked","dir":"Articles","previous_headings":"TABLES > Laboratory Abnormalities with Single and Replicated Marked (LBT05)","what":"1. Laboratory Abnormalities with Single and Replicated Marked","title":"Chevron Catalog","text":"lbt05 template produces standard laboratory abnormalities summary marked abnormalities. laboratory tests directions abnormality template currently data-driven. standard metadata Safety Lab Standardization incorporated future release.","code":"run(lbt05, syn_data) #> Laboratory Test A: Drug X B: Placebo C: Combination #> Direction of Abnormality (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement (n) 15 14 14 #> Low #> Single, not last 1 (6.7%) 0 4 (28.6%) #> Last or replicated 5 (33.3%) 4 (28.6%) 4 (28.6%) #> Any Abnormality 6 (40.0%) 4 (28.6%) 8 (57.1%) #> High #> Single, not last 0 0 0 #> Last or replicated 0 0 0 #> Any Abnormality 0 0 0 #> C-Reactive Protein Measurement (n) 15 15 15 #> Low #> Single, not last 4 (26.7%) 0 3 (20.0%) #> Last or replicated 3 (20.0%) 5 (33.3%) 6 (40.0%) #> Any Abnormality 7 (46.7%) 5 (33.3%) 9 (60.0%) #> High #> Single, not last 1 (6.7%) 3 (20.0%) 0 #> Last or replicated 4 (26.7%) 3 (20.0%) 6 (40.0%) #> Any Abnormality 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Immunoglobulin A Measurement (n) 13 14 14 #> Low #> Single, not last 0 0 0 #> Last or replicated 0 0 0 #> Any Abnormality 0 0 0 #> High #> Single, not last 6 (46.2%) 1 (7.1%) 2 (14.3%) #> Last or replicated 3 (23.1%) 4 (28.6%) 3 (21.4%) #> Any Abnormality 9 (69.2%) 5 (35.7%) 5 (35.7%)"},{"path":[]},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-abnormalities-by-visit-and-baseline-status","dir":"Articles","previous_headings":"TABLES > Laboratory Abnormalities by Visit and Baseline Status (LBT06)","what":"1. Laboratory Abnormalities by Visit and Baseline Status","title":"Chevron Catalog","text":"lbt06 template produces standard laboratory abnormalities visit baseline status summary.","code":"run(lbt06, syn_data) #> Visit #> Abnormality at Visit A: Drug X B: Placebo C: Combination #> Baseline Status (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/1 0/6 0/1 #> Low 0/1 0/1 0/1 #> Total 0/2 0/7 0/2 #> High #> Not high 0/2 0/7 0/2 #> High 0/0 0/0 0/0 #> Total 0/2 0/7 0/2 #> WEEK 2 DAY 15 #> Low #> Not low 0/3 0/2 0/2 #> Low 0/0 0/0 0/0 #> Total 0/3 0/2 0/2 #> High #> Not high 0/3 0/2 0/2 #> High 0/0 0/0 0/0 #> Total 0/3 0/2 0/2 #> WEEK 3 DAY 22 #> Low #> Not low 0/5 0/3 1/6 (16.7%) #> Low 0/0 0/0 0/0 #> Total 0/5 0/3 1/6 (16.7%) #> High #> Not high 0/5 0/3 0/6 #> High 0/0 0/0 0/0 #> Total 0/5 0/3 0/6 #> WEEK 4 DAY 29 #> Low #> Not low 0/3 0/1 0/1 #> Low 0/3 0/2 0/0 #> Total 0/6 0/3 0/1 #> High #> Not high 0/6 0/3 0/1 #> High 0/0 0/0 0/0 #> Total 0/6 0/3 0/1 #> WEEK 5 DAY 36 #> Low #> Not low 0/2 0/2 0/5 #> Low 0/1 0/1 0/0 #> Total 0/3 0/3 0/5 #> High #> Not high 0/3 0/3 0/5 #> High 0/0 0/0 0/0 #> Total 0/3 0/3 0/5 #> C-Reactive Protein Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/5 0/3 0/3 #> Low 0/0 0/1 0/0 #> Total 0/5 0/4 0/3 #> High #> Not high 0/5 0/3 1/3 (33.3%) #> High 0/0 0/1 0/0 #> Total 0/5 0/4 1/3 (33.3%) #> WEEK 2 DAY 15 #> Low #> Not low 0/8 0/2 0/0 #> Low 0/0 0/0 0/1 #> Total 0/8 0/2 0/1 #> High #> Not high 1/8 (12.5%) 0/1 0/1 #> High 0/0 0/1 0/0 #> Total 1/8 (12.5%) 0/2 0/1 #> WEEK 3 DAY 22 #> Low #> Not low 0/5 0/4 0/4 #> Low 0/0 1/1 (100%) 0/2 #> Total 0/5 1/5 (20%) 0/6 #> High #> Not high 1/5 (20%) 1/5 (20%) 0/6 #> High 0/0 0/0 0/0 #> Total 1/5 (20%) 1/5 (20%) 0/6 #> WEEK 4 DAY 29 #> Low #> Not low 0/2 1/2 (50%) 1/3 (33.3%) #> Low 0/0 0/0 0/0 #> Total 0/2 1/2 (50%) 1/3 (33.3%) #> High #> Not high 0/2 0/2 0/3 #> High 0/0 0/0 0/0 #> Total 0/2 0/2 0/3 #> WEEK 5 DAY 36 #> Low #> Not low 0/2 0/2 0/5 #> Low 0/0 1/1 (100%) 0/1 #> Total 0/2 1/3 (33.3%) 0/6 #> High #> Not high 1/2 (50%) 0/3 0/6 #> High 0/0 0/0 0/0 #> Total 1/2 (50%) 0/3 0/6 #> Immunoglobulin A Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/6 0/6 0/2 #> Low 0/0 0/0 0/0 #> Total 0/6 0/6 0/2 #> High #> Not high 0/5 1/6 (16.7%) 0/2 #> High 0/1 0/0 0/0 #> Total 0/6 1/6 (16.7%) 0/2 #> WEEK 2 DAY 15 #> Low #> Not low 0/3 0/7 0/4 #> Low 0/0 0/0 0/0 #> Total 0/3 0/7 0/4 #> High #> Not high 0/3 0/7 1/4 (25%) #> High 0/0 0/0 0/0 #> Total 0/3 0/7 1/4 (25%) #> WEEK 3 DAY 22 #> Low #> Not low 0/4 0/5 0/9 #> Low 0/0 0/0 0/0 #> Total 0/4 0/5 0/9 #> High #> Not high 0/3 0/5 0/8 #> High 0/1 0/0 0/1 #> Total 0/4 0/5 0/9 #> WEEK 4 DAY 29 #> Low #> Not low 0/2 0/6 0/4 #> Low 0/0 0/0 0/0 #> Total 0/2 0/6 0/4 #> High #> Not high 1/1 (100%) 0/6 0/3 #> High 0/1 0/0 0/1 #> Total 1/2 (50%) 0/6 0/4 #> WEEK 5 DAY 36 #> Low #> Not low 0/6 0/5 0/5 #> Low 0/0 0/0 0/0 #> Total 0/6 0/5 0/5 #> High #> Not high 0/5 0/5 0/5 #> High 0/1 0/0 0/0 #> Total 0/6 0/5 0/5"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-with-highest-nci-ctcae-grade-post-baseline","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results with Highest NCI CTCAE Grade Post-Baseline (LBT07)","what":"1. Laboratory Test Results with Highest NCI CTCAE Grade Post-Baseline","title":"Chevron Catalog","text":"lbt07 template produces standard laboratory test results highest NCI CTCAE grade post-baseline summary. laboratory tests grades template currently data-driven. standard metadata possible lab tests corresponding NCI CTCAE grade incorporated future release.","code":"run(lbt07, syn_data) #> Parameter #> Direction of Abnormality A: Drug X B: Placebo C: Combination #> Highest NCI CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement (n) 15 15 15 #> LOW #> 1 3 (20.0%) 0 0 #> 2 2 (13.3%) 1 (6.7%) 1 (6.7%) #> 3 1 (6.7%) 1 (6.7%) 6 (40.0%) #> 4 3 (20.0%) 2 (13.3%) 3 (20.0%) #> Any 9 (60.0%) 4 (26.7%) 10 (66.7%) #> C-Reactive Protein Measurement (n) 15 15 15 #> LOW #> 1 2 (13.3%) 1 (6.7%) 2 (13.3%) #> 2 5 (33.3%) 2 (13.3%) 5 (33.3%) #> 3 3 (20.0%) 4 (26.7%) 3 (20.0%) #> 4 0 1 (6.7%) 0 #> Any 10 (66.7%) 8 (53.3%) 10 (66.7%) #> HIGH #> 1 3 (20.0%) 1 (6.7%) 1 (6.7%) #> 2 4 (26.7%) 4 (26.7%) 2 (13.3%) #> 3 1 (6.7%) 2 (13.3%) 4 (26.7%) #> 4 0 1 (6.7%) 0 #> Any 8 (53.3%) 8 (53.3%) 7 (46.7%) #> Immunoglobulin A Measurement (n) 15 15 15 #> HIGH #> 1 3 (20.0%) 1 (6.7%) 1 (6.7%) #> 2 5 (33.3%) 4 (26.7%) 2 (13.3%) #> 3 3 (20.0%) 3 (20.0%) 2 (13.3%) #> 4 0 0 1 (6.7%) #> Any 11 (73.3%) 8 (53.3%) 6 (40.0%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-shift-table---highest-nci-ctcae-grade-post-baseline-by-baseline-nci-ctcae-grade-high","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (LBT14)","what":"1. Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (High)","title":"Chevron Catalog","text":"produce standard laboratory test results shift table - highest NCI-CTCAE grade post-baseline baseline NCI-CTCAE grade summary high abnormalities, use lbt14 template set parameter direction high.","code":"run(lbt14, syn_data, direction = \"high\") #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> Not High 15 15 15 #> Not High 15 (100%) 15 (100%) 15 (100%) #> C-Reactive Protein Measurement #> Not High 15 13 14 #> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%) #> 1 3 (20.0%) 1 (7.7%) 1 (7.1%) #> 2 4 (26.7%) 3 (23.1%) 1 (7.1%) #> 3 1 (6.7%) 1 (7.7%) 4 (28.6%) #> 4 0 1 (7.7%) 0 #> 1 0 0 1 #> 2 0 0 1 (100%) #> 3 0 1 0 #> 2 0 1 (100%) 0 #> 4 0 1 0 #> 3 0 1 (100%) 0 #> Immunoglobulin A Measurement #> Not High 12 14 13 #> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%) #> 1 3 (25.0%) 1 (7.1%) 1 (7.7%) #> 2 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 3 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 1 2 0 1 #> Not High 1 (50.0%) 0 1 (100%) #> 2 1 (50.0%) 0 0 #> 3 0 0 1 #> 4 0 0 1 (100%) #> 4 1 1 0 #> 2 1 (100%) 1 (100%) 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-shift-table---highest-nci-ctcae-grade-post-baseline-by-baseline-nci-ctcae-grade-low","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (LBT14)","what":"2. Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (Low)","title":"Chevron Catalog","text":"produce standard laboratory test results shift table - highest NCI-CTCAE grade post-baseline baseline NCI-CTCAE grade summary high abnormalities, use lbt14 template argument direction low default.","code":"run(lbt14, syn_data) #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> Not Low 12 12 14 #> Not Low 5 (41.7%) 8 (66.7%) 5 (35.7%) #> 1 3 (25.0%) 0 0 #> 2 2 (16.7%) 1 (8.3%) 1 (7.1%) #> 3 0 1 (8.3%) 5 (35.7%) #> 4 2 (16.7%) 2 (16.7%) 3 (21.4%) #> 1 1 2 0 #> Not Low 1 (100%) 2 (100%) 0 #> 2 1 1 0 #> Not Low 0 1 (100%) 0 #> 4 1 (100%) 0 0 #> 3 1 0 1 #> 3 1 (100%) 0 1 (100%) #> C-Reactive Protein Measurement #> Not Low 14 13 12 #> Not Low 5 (35.7%) 7 (53.8%) 4 (33.3%) #> 1 2 (14.3%) 0 2 (16.7%) #> 2 5 (35.7%) 2 (15.4%) 4 (33.3%) #> 3 2 (14.3%) 3 (23.1%) 2 (16.7%) #> 4 0 1 (7.7%) 0 #> 1 0 0 2 #> Not Low 0 0 1 (50.0%) #> 2 0 0 1 (50.0%) #> 2 0 1 0 #> 1 0 1 (100%) 0 #> 3 1 1 1 #> 3 1 (100%) 1 (100%) 1 (100%) #> Immunoglobulin A Measurement #> Not Low 15 15 15 #> Not Low 15 (100%) 15 (100%) 15 (100%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-shift-table---highest-nci-ctcae-grade-post-baseline-by-baseline-nci-ctcae-grade-high-without-patients-with-missing-baseline","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (LBT14)","what":"3. Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (High) Without Patients with Missing Baseline","title":"Chevron Catalog","text":"exclude patients missing baseline grade, set argument gr_missing excl.","code":"run(lbt14, syn_data, direction = \"high\", gr_missing = \"excl\") #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> Not High 15 15 15 #> Not High 15 (100%) 15 (100%) 15 (100%) #> C-Reactive Protein Measurement #> Not High 15 13 14 #> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%) #> 1 3 (20.0%) 1 (7.7%) 1 (7.1%) #> 2 4 (26.7%) 3 (23.1%) 1 (7.1%) #> 3 1 (6.7%) 1 (7.7%) 4 (28.6%) #> 4 0 1 (7.7%) 0 #> 1 0 0 1 #> 2 0 0 1 (100%) #> 3 0 1 0 #> 2 0 1 (100%) 0 #> 4 0 1 0 #> 3 0 1 (100%) 0 #> Immunoglobulin A Measurement #> Not High 12 14 13 #> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%) #> 1 3 (25.0%) 1 (7.1%) 1 (7.7%) #> 2 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 3 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 1 2 0 1 #> Not High 1 (50.0%) 0 1 (100%) #> 2 1 (50.0%) 0 0 #> 3 0 0 1 #> 4 0 0 1 (100%) #> 4 1 1 0 #> 2 1 (100%) 1 (100%) 0"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-shift-table---highest-nci-ctcae-grade-post-baseline-by-baseline-nci-ctcae-grade-low-with-missing-baseline-considered-as-grade-0","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (LBT14)","what":"4. Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (Low) with Missing Baseline Considered as Grade 0","title":"Chevron Catalog","text":"count patients missing baseline grade grade 0, set argument gr_missing gr_0.","code":"run(lbt14, syn_data, gr_missing = \"gr_0\") #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> 1 1 2 0 #> Not Low 1 (100%) 2 (100%) 0 #> 2 1 1 0 #> Not Low 0 1 (100%) 0 #> 4 1 (100%) 0 0 #> 3 1 0 1 #> 3 1 (100%) 0 1 (100%) #> Not Low 12 12 14 #> Not Low 5 (41.7%) 8 (66.7%) 5 (35.7%) #> 1 3 (25.0%) 0 0 #> 2 2 (16.7%) 1 (8.3%) 1 (7.1%) #> 3 0 1 (8.3%) 5 (35.7%) #> 4 2 (16.7%) 2 (16.7%) 3 (21.4%) #> C-Reactive Protein Measurement #> 1 0 0 2 #> 1 0 0 1 (50.0%) #> 3 0 0 1 (50.0%) #> 2 0 1 0 #> 2 0 1 (100%) 0 #> 3 1 1 1 #> 3 1 (100%) 1 (100%) 1 (100%) #> Not Low 14 13 12 #> Not Low 5 (35.7%) 7 (53.8%) 4 (33.3%) #> 1 2 (14.3%) 0 2 (16.7%) #> 2 5 (35.7%) 2 (15.4%) 4 (33.3%) #> 3 2 (14.3%) 3 (23.1%) 2 (16.7%) #> 4 0 1 (7.7%) 0 #> Immunoglobulin A Measurement #> Not Low 15 15 15 #> Not Low 15 (100%) 15 (100%) 15 (100%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"laboratory-test-results-shift-table---highest-nci-ctcae-grade-post-baseline-by-baseline-nci-ctcae-grade-with-fill-in-of-grades","dir":"Articles","previous_headings":"TABLES > Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (LBT14)","what":"4. Laboratory Test Results Shift Table - Highest NCI-CTCAE Grade Post-Baseline by Baseline NCI-CTCAE Grade (with fill in of grades)","title":"Chevron Catalog","text":"display possible grades even occur data, set argument prune_0 FALSE.","code":"run(lbt14, syn_data, direction = \"high\", prune_0 = FALSE) #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> Not High 15 15 15 #> Not High 15 (100%) 15 (100%) 15 (100%) #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 1 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 2 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 3 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 4 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> Missing 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> C-Reactive Protein Measurement #> Not High 15 13 14 #> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%) #> 1 3 (20.0%) 1 (7.7%) 1 (7.1%) #> 2 4 (26.7%) 3 (23.1%) 1 (7.1%) #> 3 1 (6.7%) 1 (7.7%) 4 (28.6%) #> 4 0 1 (7.7%) 0 #> Missing 0 0 0 #> 1 0 0 1 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 1 (100%) #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 2 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 3 0 1 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 1 (100%) 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 4 0 1 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 1 (100%) 0 #> 4 0 0 0 #> Missing 0 0 0 #> Missing 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> Immunoglobulin A Measurement #> Not High 12 14 13 #> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%) #> 1 3 (25.0%) 1 (7.1%) 1 (7.7%) #> 2 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 3 3 (25.0%) 3 (21.4%) 2 (15.4%) #> 4 0 0 0 #> Missing 0 0 0 #> 1 2 0 1 #> Not High 1 (50.0%) 0 1 (100%) #> 1 0 0 0 #> 2 1 (50.0%) 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 2 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> 3 0 0 1 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 1 (100%) #> Missing 0 0 0 #> 4 1 1 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 1 (100%) 1 (100%) 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0 #> Missing 0 0 0 #> Not High 0 0 0 #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> Missing 0 0 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"medical-history","dir":"Articles","previous_headings":"TABLES > Medical History (MHT01)","what":"1. Medical History","title":"Chevron Catalog","text":"mht01 template displays medical conditions MedDRA system organ class Preferred Name default. default treatment variable \"ADSL.ARM\". user expected use filter subset medical conditions prior entering study. default, template produces overall ‘total number conditions’ well ‘total number conditions’ per body system summary patients. 5)template currently support sorting MedDRA system organ class preferred names order frequency.","code":"run(mht01, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one condition 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of conditions 58 59 99 #> cl A #> Total number of patients with at least one condition 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of conditions 8 11 16 #> trm A_2/2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> trm A_1/2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B #> Total number of patients with at least one condition 12 (80.0%) 11 (73.3%) 12 (80.0%) #> Total number of conditions 24 21 32 #> trm B_3/3 8 (53.3%) 6 (40.0%) 7 (46.7%) #> trm B_1/3 5 (33.3%) 6 (40.0%) 8 (53.3%) #> trm B_2/3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl C #> Total number of patients with at least one condition 8 (53.3%) 6 (40.0%) 11 (73.3%) #> Total number of conditions 10 13 22 #> trm C_2/2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> trm C_1/2 4 (26.7%) 4 (26.7%) 5 (33.3%) #> cl D #> Total number of patients with at least one condition 10 (66.7%) 7 (46.7%) 13 (86.7%) #> Total number of conditions 16 14 29 #> trm D_1/3 4 (26.7%) 4 (26.7%) 7 (46.7%) #> trm D_2/3 6 (40.0%) 2 (13.3%) 7 (46.7%) #> trm D_3/3 2 (13.3%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"medical-history-showing-additional-column-all-patients","dir":"Articles","previous_headings":"TABLES > Medical History (MHT01)","what":"2. Medical History showing additional column ‘All Patients’","title":"Chevron Catalog","text":"","code":"run(mht01, syn_data, lbl_overall = \"All Patients\") #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination All Patients #> MedDRA Preferred Term (N=15) (N=15) (N=15) (N=45) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one condition 13 (86.7%) 14 (93.3%) 15 (100%) 42 (93.3%) #> Total number of conditions 58 59 99 216 #> cl A #> Total number of patients with at least one condition 7 (46.7%) 6 (40.0%) 10 (66.7%) 23 (51.1%) #> Total number of conditions 8 11 16 35 #> trm A_2/2 5 (33.3%) 6 (40.0%) 6 (40.0%) 17 (37.8%) #> trm A_1/2 3 (20.0%) 1 (6.7%) 6 (40.0%) 10 (22.2%) #> cl B #> Total number of patients with at least one condition 12 (80.0%) 11 (73.3%) 12 (80.0%) 35 (77.8%) #> Total number of conditions 24 21 32 77 #> trm B_3/3 8 (53.3%) 6 (40.0%) 7 (46.7%) 21 (46.7%) #> trm B_1/3 5 (33.3%) 6 (40.0%) 8 (53.3%) 19 (42.2%) #> trm B_2/3 5 (33.3%) 6 (40.0%) 5 (33.3%) 16 (35.6%) #> cl C #> Total number of patients with at least one condition 8 (53.3%) 6 (40.0%) 11 (73.3%) 25 (55.6%) #> Total number of conditions 10 13 22 45 #> trm C_2/2 6 (40.0%) 4 (26.7%) 8 (53.3%) 18 (40.0%) #> trm C_1/2 4 (26.7%) 4 (26.7%) 5 (33.3%) 13 (28.9%) #> cl D #> Total number of patients with at least one condition 10 (66.7%) 7 (46.7%) 13 (86.7%) 30 (66.7%) #> Total number of conditions 16 14 29 59 #> trm D_1/3 4 (26.7%) 4 (26.7%) 7 (46.7%) 15 (33.3%) #> trm D_2/3 6 (40.0%) 2 (13.3%) 7 (46.7%) 15 (33.3%) #> trm D_3/3 2 (13.3%) 5 (33.3%) 7 (46.7%) 14 (31.1%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"major-protocol-deviations","dir":"Articles","previous_headings":"TABLES > Major Protocol Deviations (PDT01)","what":"1. Major Protocol Deviations","title":"Chevron Catalog","text":"pdt01 template produces standard major protocol deviations output. Users expected filter addv include records DVCAT == \"MAJOR\" pre-processing.","code":"proc_data <- syn_data proc_data$addv <- proc_data$addv %>% filter(DVCAT == \"MAJOR\") run(pdt01, proc_data) #> Category A: Drug X B: Placebo C: Combination #> Description (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one major protocol deviation 2 (13.3%) 4 (26.7%) 0 #> Total number of major protocol deviations 2 5 0 #> EXCLUSION CRITERIA #> Active or untreated or other excluded cns metastases 0 1 (6.7%) 0 #> Pregnancy criteria 0 1 (6.7%) 0 #> INCLUSION CRITERIA #> Ineligible cancer type or current cancer stage 1 (6.7%) 0 0 #> MEDICATION #> Discontinued study drug for unspecified reason 0 1 (6.7%) 0 #> Received prohibited concomitant medication 0 1 (6.7%) 0 #> PROCEDURAL #> Eligibility-related test not done/out of window 0 1 (6.7%) 0 #> Failure to sign updated ICF within two visits 1 (6.7%) 0 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"reasons-for-major-protocol-deviations-related-to-epidemicpandemic","dir":"Articles","previous_headings":"TABLES > Reasons for Major Protocol Deviations Related to Epidemic/Pandemic (PDT02)","what":"1. Reasons for Major Protocol Deviations Related to Epidemic/Pandemic","title":"Chevron Catalog","text":"pdt02 template produces reasons major protocol deviations related epidemic/pandemic summary. default, ADDV.DVREAS provides reason ADDV.DVTERM provides description. default, addv filtered include records meet condition AEPRELFL == \"Y\" & DVCAT == \"MAJOR\".","code":"run(pdt02, syn_data) #> Primary Reason A: Drug X B: Placebo C: Combination #> Description (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one major protocol deviation related to epidemic/pandemic 1 (6.7%) 0 0 #> Total number of major protocol deviations related to epidemic/pandemic 1 0 0 #> Site action due to epidemic/pandemic 1 (6.7%) 0 0 #> Failure to sign updated ICF within two visits 1 (6.7%) 0 0"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"duration-of-exposure-for-risk-management-plan","dir":"Articles","previous_headings":"TABLES > Duration of Exposure for Risk Management Plan (RMPT01)","what":"1. Duration of Exposure for Risk Management Plan","title":"Chevron Catalog","text":"rmpt01 template produces standard duration exposure output Risk Management Plan (RMP). Person time sum exposure across patients days.","code":"run(rmpt01, syn_data) #> Patients Person time #> Duration of exposure (N=45) (N=45) #> ————————————————————————————————————————————————————————————— #> < 1 month 4 (8.9%) 67 #> 1 to <3 months 13 (28.9%) 837 #> 3 to <6 months 13 (28.9%) 1728 #> >=6 months 15 (33.3%) 3281 #> Total patients number/person time 45 (100.0%) 5913"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"extent-of-exposure-by-age-group-and-gender-for-risk-management-plan","dir":"Articles","previous_headings":"TABLES > Extent of Exposure by Age Group and Gender for Risk Management Plan (RMPT03)","what":"1. Extent of Exposure by Age Group and Gender for Risk Management Plan","title":"Chevron Catalog","text":"rmpt03 template produces standard extent exposure age group gender output Risk Management Plan (RMP). default, AGEGR1 variable used age group. AGEGR1 available ADSL ADEX, needs added ADEX first. study specific age group can used editing parameter summaryvars. RMP tables, variable specified per summaryvars unavailable ADEX, needs added ADEX first.","code":"proc_data <- syn_data proc_data <- propagate(proc_data, \"adsl\", \"AGEGR1\", \"USUBJID\") #> #> Updating: adae with: AGEGR1 #> Updating: adsaftte with: AGEGR1 #> Updating: adcm with: AGEGR1 #> Updating: addv with: AGEGR1 #> Updating: adeg with: AGEGR1 #> Updating: adex with: AGEGR1 #> Updating: adlb with: AGEGR1 #> Updating: admh with: AGEGR1 #> Skipping: adrs #> Updating: adsub with: AGEGR1 #> Skipping: adtte #> Updating: advs with: AGEGR1 run(rmpt03, proc_data) #> F M All Genders #> Patients Person time Patients Person time Patients Person time #> Age Group (N=30) (N=30) (N=15) (N=15) (N=45) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> <65 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913 #> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913 proc_data <- syn_data proc_data$adsl <- proc_data$adsl %>% mutate( AGEGR2 = with_label( factor(case_when( AAGE < 18 ~ \"<18\", AAGE >= 18 & AAGE <= 65 ~ \"18 - 65\", AAGE > 65 ~ \">65\", ), levels = c(\"<18\", \"18 - 65\", \">65\")), \"Age Group 2\" ) ) proc_data <- propagate(proc_data, \"adsl\", \"AGEGR2\", \"USUBJID\") #> #> Updating: adae with: AGEGR2 #> Updating: adsaftte with: AGEGR2 #> Updating: adcm with: AGEGR2 #> Updating: addv with: AGEGR2 #> Updating: adeg with: AGEGR2 #> Updating: adex with: AGEGR2 #> Updating: adlb with: AGEGR2 #> Updating: admh with: AGEGR2 #> Updating: adrs with: AGEGR2 #> Updating: adsub with: AGEGR2 #> Updating: adtte with: AGEGR2 #> Updating: advs with: AGEGR2 run(rmpt03, proc_data, summaryvars = \"AGEGR2\") #> F M All Genders #> Patients Person time Patients Person time Patients Person time #> Age Group 2 (N=30) (N=30) (N=15) (N=15) (N=45) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> 18 - 65 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913 #> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"extent-of-exposure-by-ethnic-origin-for-risk-management-plan","dir":"Articles","previous_headings":"TABLES > Extent of Exposure by Ethnic Origin for Risk Management Plan (RMPT04)","what":"1. Extent of Exposure by Ethnic Origin for Risk Management Plan","title":"Chevron Catalog","text":"rmpt04 template produces standard extent exposure ethnic origin output Risk Management Plan (RMP).","code":"run(rmpt04, syn_data) #> Patients Person time #> ETHNIC (N=45) (N=45) #> ————————————————————————————————————————————————————————————— #> HISPANIC OR LATINO 2 (4.4%) 309 #> NOT HISPANIC OR LATINO 41 (91.1%) 5555 #> NOT REPORTED 2 (4.4%) 49 #> Total patients number/person time 45 (100.0%) 5913"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"extent-of-exposure-by-race-for-risk-management-plan","dir":"Articles","previous_headings":"TABLES > Extent of Exposure by Race for Risk Management Plan (RMPT05)","what":"1. Extent of Exposure by Race for Risk Management Plan","title":"Chevron Catalog","text":"rmpt05 template produces standard extent exposure race output Risk Management Plan (RMP).","code":"run(rmpt05, syn_data) #> Patients Person time #> RACE (N=45) (N=45) #> ————————————————————————————————————————————————————————————— #> ASIAN 26 (57.8%) 3309 #> BLACK OR AFRICAN AMERICAN 9 (20.0%) 1139 #> WHITE 7 (15.6%) 1231 #> AMERICAN INDIAN OR ALASKA NATIVE 3 (6.7%) 234 #> Total patients number/person time 45 (100.0%) 5913"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"best-overall-response","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"1. Best Overall Response","title":"Chevron Catalog","text":"rspt01 template produces standard best overall response output. template syntax built based RECIST 1.1. default, subjects response results \"CR\" \"PR\" considered responders. Users expected pre-process input analysis data select parameter analyzed, .e., best overall response investigator best overall response BICR. Unstratified analysis provided default.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") run(rspt01, proc_data, ref_group = NULL, perform_analysis = \"unstrat\", strata = NULL) #> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation #> may be incorrect #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0) #> Unstratified Analysis #> Difference in Response rate (%) -6.7 6.7 #> 95% CI (Wald, with correction) (-47.7, 34.4) (-32.7, 46.0) #> p-value (Chi-Squared Test) 0.7048 0.6903 #> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"id_1","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"2. Best Overall Response (Ordering of treatment groups)","title":"Chevron Catalog","text":"default, first level value arm_var (default \"ADSL.ARM\" unless specified) treated reference group without specification. apply user-defined reference group, please provide value treatment variable argument ref_group, e.g., ref_group = \"PLACEBO\". Since rtables displays reference group left column, order displayed treatment groups may exactly order factorized, depending group selected reference group. See examples:","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"best-overall-response-selecting-sections-to-display","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"3. Best Overall Response (selecting sections to display)","title":"Chevron Catalog","text":"section Odds Ratio can suppressed argument odds_ratio = FALSE. section Difference response rate can suppressed argument perform_analysis = NULL.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") run(rspt01, proc_data, odds_ratio = FALSE, perform_analysis = NULL) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"best-overall-response-with-stratified-analysis","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"4. Best Overall Response (with stratified analysis)","title":"Chevron Catalog","text":"stratified analysis can added specifying argument perform_analysis = \"strat\" providing stratification variable argument strata . argument strata expected perform_analysis set include stratified analysis. stratification variables expected available adrs. unstratified stratified analysis required, use perform_analysis = c(\"unstrat\", \"strat\")","code":"proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") run(rspt01, proc_data, perform_analysis = \"strat\", strata = c(\"STRATA1\", \"STRATA2\")) #> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5 #> observations in some strata. #> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5 #> observations in some strata. #> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be #> incorrect. #> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be #> incorrect. #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0) #> Stratified Analysis #> Difference in Response rate (%) -11.0 22.5 #> 95% CI (CMH, without correction) (-42.7, 20.7) (-3.5, 48.5) #> p-value (Cochran-Mantel-Haenszel Test) 0.5731 0.3088 #> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"best-overall-response-modifying-analysis-details-like-type-of-confidence-interval-alpha-level-test-for-p-value","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"5. Best Overall Response (modifying analysis details like type of confidence interval, alpha level, test for p-value)","title":"Chevron Catalog","text":"level confidence intervals defined argument conf_level. methods construct confidence interval p-value controlled argument methods. named list five optional sub-arguments. example, methods = list(prop_conf_method = \"wald\", diff_conf_method = \"wald\", strat_diff_conf_method = \"ha\", diff_pval_method = \"fisher\", strat_diff_pval_method = \"schouten\") See table argument controls available method options: See table method options estimates proportions associated statistical methods: See table method options estimates proportion difference associated statistical methods: See table method options testing proportion difference associated statistical methods: example:","code":"proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") run(rspt01, proc_data, conf_level = 0.90, methods = list( prop_conf_method = \"wald\", diff_conf_method = \"wald\", diff_pval_method = \"fisher\" ) ) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 90% CI (Wald, without correction) (46.6, 86.7) (39.2, 80.8) (54.6, 92.1) #> Unstratified Analysis #> Difference in Response rate (%) -6.7 6.7 #> 90% CI (Wald, without correction) (-35.5, 22.2) (-20.8, 34.1) #> p-value (Fisher's Exact Test) 1.0000 1.0000 #> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 90% CI (Wald, without correction) (7.89, 45.45) (7.89, 45.45) (25.48, 67.85) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 90% CI (Wald, without correction) (19.19, 60.81) (13.31, 53.35) (7.89, 45.45) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 90% CI (Wald, without correction) (13.31, 53.35) (19.19, 60.81) (7.89, 45.45)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"best-overall-response-modifying-the-definition-of-overall-response","dir":"Articles","previous_headings":"TABLES > Best Overall Response (RSPT01)","what":"6. Best Overall Response (modifying the definition of overall response)","title":"Chevron Catalog","text":"following example shows customize definition responder, e.g, consider complete response response.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") preprocess(rspt01) <- function(adam_db, ...) { adam_db$adrs <- adam_db$adrs %>% mutate(RSP_LAB = tern::d_onco_rsp_label(.data$AVALC)) %>% mutate(IS_RSP = .data$AVALC %in% c(\"CR\")) adam_db } run(rspt01, proc_data) #> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation #> may be incorrect #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————————————————— #> Responders 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (1.0, 52.4) (1.0, 52.4) (18.1, 75.2) #> Unstratified Analysis #> Difference in Response rate (%) 0.0 20.0 #> 95% CI (Wald, with correction) (-38.3, 38.3) (-20.4, 60.4) #> p-value (Chi-Squared Test) 1.0000 0.2557 #> Odds Ratio (95% CI) 1.00 (0.20 - 5.04) 2.41 (0.52 - 11.10) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"1. Time-to-event Summary","title":"Chevron Catalog","text":"ttet01 template produces standard time--event summary. Users expected subset parameter interest (e.g. PARAMCD == \"PFS\") pre-processing. Please see section Best Overall Response (Ordering treatment groups) find ordering treatment groups reference group. Unstratified analysis provided default. Survival estimations difference survival provided default.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ———————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ————————————————————————————————————————————————————————————————————————————————————"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary-selecting-sections-to-display","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"2. Time-to-event Summary (selecting sections to display)","title":"Chevron Catalog","text":"suspend section earliest contributing events, use summarize_event = FALSE. select either survival estimations difference survival , please specify argument method. - surv calls analysis patients remaining risk, event free rate corresponding 95% confidence interval rates. - surv_diff calls analysis difference event free rate, 95% confidence interval difference corresponding p-value. - calls .","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, summarize_event = FALSE) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ———————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ———————————————————————————————————————————————————————————————————————————————————— proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, method = \"surv\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> ———————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ————————————————————————————————————————————————————————————————————————————————"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary-modifying-analysis-details-like-confidence-interval-type-ties-and-alpha-level","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"3. Time-to-event Summary (modifying analysis details like confidence interval type, ties, and alpha level)","title":"Chevron Catalog","text":"level confidence intervals defined argument conf_level. type confidence interval defined argument conf_type. Options \"plain\" (default), \"log\" \"log-log\". Handling ties specified argument ties. Options \"efron\" (default),\"breslow\" \"exact\".","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, conf_level = 0.90, conf_type = \"log-log\", ties = \"efron\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 90% CI (3.8, NE) (4.7, 7.6) (5.8, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 90% CI (0.99, 4.81) (0.45, 2.50) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 90% CI (49.25, 87.30) (30.65, 71.60) (49.25, 87.30) #> Difference in Event Free Rate -20.00 0.00 #> 90% CI (-48.31, 8.31) (-26.56, 26.56) #> p-value (Z-test) 0.2453 1.0000 #> ——————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ———————————————————————————————————————————————————————————————————————————————————"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary-with-stratified-analysis","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"4. Time-to-event Summary (with stratified analysis)","title":"Chevron Catalog","text":"stratified analysis can added specifying argument perform_analysis = \"strat\" providing stratification variable argument strata . argument strata expected perform_analysis set include stratified analysis. stratification variables expected available adrs. unstratified stratified analysis required, users can use perform_analysis = c(\"unstrat\", \"strat\").","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, perform_analysis = \"strat\", strata = \"STRATA1\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Stratified Analysis #> p-value (log-rank) 0.0649 0.8901 #> Hazard Ratio 2.52 1.08 #> 95% CI (0.92, 6.93) (0.36, 3.22) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ———————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ————————————————————————————————————————————————————————————————————————————————————"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary-modifying-time-point-for-the-survival-at-xx-months-analysis","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"5. Time-to-event Summary (modifying time point for the “survival at xx months” analysis)","title":"Chevron Catalog","text":"time point “survival xx months” analysis can modified specifying argument time_point. default, function takes AVAL adtte days converts months. survival estimates summarized month, numeric values provided months time_point. following example shows specify time point user-defined unit.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, perform_analysis = \"unstrat\", time_point = c(3, 6)) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 3 MONTHS #> Patients remaining at risk 12 12 13 #> Event Free Rate (%) 80.00 80.00 86.67 #> 95% CI (59.76, 100.00) (59.76, 100.00) (69.46, 100.00) #> Difference in Event Free Rate 0.00 6.67 #> 95% CI (-28.63, 28.63) (-19.90, 33.23) #> p-value (Z-test) 1.0000 0.6228 #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ————————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ————————————————————————————————————————————————————————————————————————————————————— proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") preprocess(ttet01) <- function(adam_db, dataset = \"adtte\", ...) { adam_db[[dataset]] <- adam_db[[dataset]] %>% mutate( AVALU = \"DAYS\", IS_EVENT = .data$CNSR == 0, IS_NOT_EVENT = .data$CNSR == 1, EVNT1 = factor( case_when( IS_EVENT == TRUE ~ render_safe(\"{Patient_label} with event (%)\"), IS_EVENT == FALSE ~ render_safe(\"{Patient_label} without event (%)\") ), levels = render_safe(c(\"{Patient_label} with event (%)\", \"{Patient_label} without event (%)\")) ), EVNTDESC = factor(.data$EVNTDESC) ) adam_db } run(ttet01, proc_data, perform_analysis = \"unstrat\", time_point = c(91, 183)) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (DAYS) #> Median 261.9 187.7 256.3 #> 95% CI (221.9, NE) (144.7, 232.2) (212.0, NE) #> 25% and 75%-ile 114.9, NE 141.9, 254.4 175.0, NE #> Range 37.2 to 288.3 {1} 28.0 to 276.6 26.4 to 288.1 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 91 DAYS #> Patients remaining at risk 12 12 13 #> Event Free Rate (%) 80.00 80.00 86.67 #> 95% CI (59.76, 100.00) (59.76, 100.00) (69.46, 100.00) #> Difference in Event Free Rate 0.00 6.67 #> 95% CI (-28.63, 28.63) (-19.90, 33.23) #> p-value (Z-test) 1.0000 0.6228 #> 183 DAYS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ————————————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> —————————————————————————————————————————————————————————————————————————————————————————"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"time-to-event-summary-modifying-the-p-value-method-for-testing-hazard-ratio","dir":"Articles","previous_headings":"TABLES > Time-to-event Summary (TTET01)","what":"6. Time-to-event Summary (modifying the p-value method for testing hazard ratio)","title":"Chevron Catalog","text":"default p-value method testing hazard ratio “log-rank”. Alternative methods can requested specifying argument pval_method options include, log-rank (default), wald likelihood. syntax currently allow requesting one p-value. Note ttet01 modified previous example (.e., preprocess(ttet01) overridden); access default template, try chevron::ttet01.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data, pval_method = \"wald\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (DAYS) #> Median 261.9 187.7 256.3 #> 95% CI (221.9, NE) (144.7, 232.2) (212.0, NE) #> 25% and 75%-ile 114.9, NE 141.9, 254.4 175.0, NE #> Range 37.2 to 288.3 {1} 28.0 to 276.6 26.4 to 288.1 {1} #> Unstratified Analysis #> p-value (wald) 0.1053 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 6 DAYS #> Patients remaining at risk 15 15 15 #> Event Free Rate (%) 100.00 100.00 100.00 #> 95% CI (100.00, 100.00) (100.00, 100.00) (100.00, 100.00) #> 12 DAYS #> Patients remaining at risk 15 15 15 #> Event Free Rate (%) 100.00 100.00 100.00 #> 95% CI (100.00, 100.00) (100.00, 100.00) (100.00, 100.00) #> ———————————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ————————————————————————————————————————————————————————————————————————————————————————"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"vital-sign-results-and-change-from-baseline-by-visit","dir":"Articles","previous_headings":"TABLES > Vital Signs (VST01)","what":"1. Vital Sign Results and Change from Baseline by Visit","title":"Chevron Catalog","text":"","code":"t_vs_chg <- run(vst01, syn_data) head(t_vs_chg, 20) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE) #> Median 94.933 NE 111.133 NE 108.359 NE #> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018) #> Median 92.447 -4.066 107.703 3.227 103.058 -2.476 #> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229) #> Median 101.498 1.731 99.501 -9.727 96.789 -10.155"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"vital-sign-abnormalities-regardless-of-abnormality-at-baseline","dir":"Articles","previous_headings":"TABLES > Vital Signs Abnormalities (Regardless of Abnormality at Baseline) (VST02_1)","what":"1. Vital Sign Abnormalities (Regardless of Abnormality at Baseline)","title":"Chevron Catalog","text":"","code":"run(vst02_1, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> Low 8/15 (53.3%) 9/15 (60%) 8/15 (53.3%) #> High 10/15 (66.7%) 5/15 (33.3%) 8/15 (53.3%) #> Pulse Rate #> Low 9/15 (60%) 3/15 (20%) 5/15 (33.3%) #> High 2/15 (13.3%) 6/15 (40%) 5/15 (33.3%) #> Respiratory Rate #> Low 13/15 (86.7%) 10/15 (66.7%) 13/15 (86.7%) #> High 7/15 (46.7%) 10/15 (66.7%) 11/15 (73.3%) #> Systolic Blood Pressure #> Low 7/15 (46.7%) 9/15 (60%) 11/15 (73.3%) #> High 10/15 (66.7%) 9/15 (60%) 9/15 (60%) #> Temperature #> Low 12/15 (80%) 13/15 (86.7%) 11/15 (73.3%) #> High 14/15 (93.3%) 12/15 (80%) 14/15 (93.3%) #> Weight #> Low 3/15 (20%) 3/15 (20%) 4/15 (26.7%) #> High 4/15 (26.7%) 4/15 (26.7%) 5/15 (33.3%)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"vital-sign-abnormalities-among-subject-without-abnormality-at-baseline","dir":"Articles","previous_headings":"TABLES > Vital Signs Abnormalities (Among Subject Without Abnormality at Baseline) (VST02_2)","what":"1. Vital Sign Abnormalities (Among Subject Without Abnormality at Baseline)","title":"Chevron Catalog","text":"","code":"run(vst02_2, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> Low 6/11 (54.5%) 9/15 (60%) 6/12 (50%) #> High 8/12 (66.7%) 4/11 (36.4%) 7/13 (53.8%) #> Pulse Rate #> Low 9/15 (60%) 3/15 (20%) 5/13 (38.5%) #> High 2/14 (14.3%) 4/12 (33.3%) 5/15 (33.3%) #> Respiratory Rate #> Low 7/9 (77.8%) 7/11 (63.6%) 11/12 (91.7%) #> High 6/14 (42.9%) 7/11 (63.6%) 9/13 (69.2%) #> Systolic Blood Pressure #> Low 5/13 (38.5%) 8/12 (66.7%) 10/14 (71.4%) #> High 8/13 (61.5%) 8/13 (61.5%) 8/13 (61.5%) #> Temperature #> Low 8/10 (80%) 7/9 (77.8%) 8/10 (80%) #> High 8/8 (100%) 7/8 (87.5%) 12/13 (92.3%) #> Weight #> Low 3/15 (20%) 3/15 (20%) 3/14 (21.4%) #> High 4/14 (28.6%) 4/15 (26.7%) 5/14 (35.7%)"},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"glossary-of-adverse-event-preferred-terms-and-investigator-specified-terms","dir":"Articles","previous_headings":"LISTINGS > Glossary of Adverse Event Preferred Terms and Investigator-Specified Terms (AEL01_NOLLT)","what":"1. Glossary of Adverse Event Preferred Terms and Investigator-Specified Terms","title":"Chevron Catalog","text":"ael01_nollt template produces standard glossary adverse event preferred terms investigator-specified terms. example uses head function print first 10 lines output.","code":"l_ae_nollt <- run(ael01_nollt, syn_data) head(l_ae_nollt, 10) #> MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event #> ——————————————————————————————————————————————————————————————————————————————————————— #> cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 #> dcd A.1.1.1.2 trm A.1.1.1.2 #> cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 #> cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 #> dcd B.2.2.3.1 trm B.2.2.3.1 #> cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 #> cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 #> cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 #> dcd D.1.1.4.2 trm D.1.1.4.2 #> cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3"},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-with-subgroup-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"1. Forest Plot for Odds Ratio (with subgroup analysis)","title":"Chevron Catalog","text":"fstg01 template produces standard forest plot odds ratio. Users expected subset parameter interest (e.g. PARAMCD == \"BESRSPI\") pre-processing. Users expected subset arm variable keep two arms compare (e.g. ARM %% c(\": Drug X\", \"B: Placebo\")). default, plots displays subgroup analysis \"SEX\", \"AGEGR1\" \"RACE\". Unstratified analysis provided default. plots displays default Total number subjects, odd ratio 95% confidence interval, , arm, number subject, number responders proportion responders.","code":"proc_data <- log_filter( syn_data, PARAMCD == \"BESRSPI\" & ARM %in% c(\"A: Drug X\", \"B: Placebo\"), \"adrs\" ) run(fstg01, proc_data)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-with-a-user-defined-confidence-level","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"2. Forest Plot for Odds Ratio (with a user-defined confidence level)","title":"Chevron Catalog","text":"confidence level confidence interval can adjusted conf_level argument.","code":"run(fstg01, proc_data, conf_level = 0.90)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-with-p-values-andor-different-statistics","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"3. Forest Plot for Odds Ratio (with p-values and/or different statistics)","title":"Chevron Catalog","text":"interaction p-values different set statistics can displayed using stat_var argument. Note users expected select method p-value computation. see [tern::prop_diff_test].","code":"run(fstg01, proc_data, method = \"fisher\", stat_var = c(\"n_tot\", \"n\", \"ci\", \"or\", \"pval\"))"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-with-user-defined-subgroup-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"4. Forest Plot for Odds Ratio (with user-defined subgroup analysis)","title":"Chevron Catalog","text":"subgroups arguments controls variables used subgroup analysis. NULLthe subgroup analysis removed.","code":"run(fstg01, proc_data, subgroups = NULL)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-with-stratified-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"5. Forest Plot for Odds Ratio (with stratified analysis)","title":"Chevron Catalog","text":"strata_var argument used pass columns used stratified analysis.","code":"run(fstg01, proc_data, strata_var = \"STRATA1\") #> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights, #> : Ran out of iterations and did not converge #> Warning in s_odds_ratio(df = l_df[[2]], .var = \"rsp\", .ref_group = l_df[[1]], : #> Unable to compute the odds ratio estimate. Please try re-running the function #> with parameter `method` set to \"approximate\". #> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights, #> : Ran out of iterations and did not converge"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-odds-ratio-without-proportional-sizing-of-the-odds-ratio-symbol","dir":"Articles","previous_headings":"Graphics > Forest Plot for Odds Ratio (FSTG01)","what":"6. Forest Plot for Odds Ratio (without proportional sizing of the odds ratio symbol)","title":"Chevron Catalog","text":"col_symbol_size argument controls size odds ratio symbols default proportional size sample size subgroup. NULL symbol size used subgroups.","code":"run(fstg01, proc_data, col_symbol_size = NULL)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-hazard-ratio-with-subgroup-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Hazard Ratio (FSTG02)","what":"1. Forest Plot for Hazard Ratio (with subgroup analysis)","title":"Chevron Catalog","text":"fstg02 template produces standard forest plot hazard ratio. Users expected subset parameter interest (e.g. PARAMCD == \"OS\") pre-processing. Users expected subset arm variable keep two arms compare (e.g. ARM %% c(\": Drug X\", \"B: Placebo\")). default, plots displays subgroup analysis \"SEX\", \"AGEGR1\" \"RACE\". Unstratified analysis provided default. plots displays default Total number events, hazard ratio 95% confidence interval, , arm, number events median time event month.","code":"proc_data <- log_filter( syn_data, PARAMCD == \"OS\" & ARM %in% c(\"A: Drug X\", \"B: Placebo\"), \"adtte\" ) run(fstg02, proc_data)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-hazard-ratio-with-p-values-andor-different-statistics","dir":"Articles","previous_headings":"Graphics > Forest Plot for Hazard Ratio (FSTG02)","what":"2. Forest Plot for Hazard Ratio (with p-values and/or different statistics)","title":"Chevron Catalog","text":"interaction p-values different set statistics can displayed using control argument. details control options available [tern::extract_survival_subgroups]","code":"run( fstg02, proc_data, stat_var = c(\"n_tot\", \"n\", \"ci\", \"hr\", \"pval\"), control = list(conf_level = 0.9, pval_method = \"likelihood\") )"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-hazard-ratio-with-user-defined-subgroup-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Hazard Ratio (FSTG02)","what":"3. Forest Plot for Hazard Ratio (with user-defined subgroup analysis)","title":"Chevron Catalog","text":"subgroups arguments controls variables used subgroup analysis. NULLthe subgroup analysis removed.","code":"run(fstg02, proc_data, subgroups = NULL)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-hazard-ratio-with-stratified-analysis","dir":"Articles","previous_headings":"Graphics > Forest Plot for Hazard Ratio (FSTG02)","what":"4. Forest Plot for Hazard Ratio (with stratified analysis)","title":"Chevron Catalog","text":"strata_var argument used pass columns used stratified analysis.","code":"run(fstg02, proc_data, strata_var = \"STRATA1\") #> Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, : #> Loglik converged before variable 1 ; coefficient may be infinite."},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"forest-plot-for-hazard-ratio-without-proportional-sizing-of-the-hazard-ratio-symbol","dir":"Articles","previous_headings":"Graphics > Forest Plot for Hazard Ratio (FSTG02)","what":"5. Forest Plot for Hazard Ratio (without proportional sizing of the hazard ratio symbol)","title":"Chevron Catalog","text":"col_symbol_size argument controls size hazard ratio symbols default proportional size number events subgroup. NULL symbol size used subgroups.","code":"run(fstg02, proc_data, col_symbol_size = NULL)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-without-comparative-statistics","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"1. Kaplan-Meier Plot (without comparative statistics)","title":"Chevron Catalog","text":"kmg01 template produces standard Kaplan-Meier Plot. Users expected select particular parameter analysis. Users expected select treatment groups compare, otherwise, treatment groups available input datasets plotted. comparative statistics included default. estimation median survival time per treatment group default. arguments g_km control_coxph functions can passed , please use Help find information.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, proc_data, dataset = \"adtte\")"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-with-comparative-statistics","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"2. Kaplan-Meier Plot (with comparative statistics)","title":"Chevron Catalog","text":"enable comparative statistics (hazard ratio p-value), argument annot_coxph needs set TRUE. compare group determined levels factorized variable treatment group first level used reference group statistics.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run( kmg01, proc_data, dataset = \"adtte\", annot_coxph = TRUE, control_annot_coxph = tern::control_coxph_annot(x = 0.33, y = 0.42) )"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-without-censoring-marks","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"3. Kaplan-Meier Plot (without censoring marks)","title":"Chevron Catalog","text":"suppress censoring marks, set argument cencor_show FALSE.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, proc_data, dataset = \"adtte\", censor_show = FALSE)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-without-estimation-of-median-survival-time","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"4. Kaplan-Meier Plot (without estimation of median survival time)","title":"Chevron Catalog","text":"","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, proc_data, dataset = \"adtte\", annot_surv_med = FALSE)"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-with-statistical-annotation-of-either-median-or-min-of-survival-time","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"5. Kaplan-Meier Plot (with statistical annotation of either median or min of survival time)","title":"Chevron Catalog","text":"add statistics annotation, use function annot_stats. Options min median.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, proc_data, dataset = \"adtte\", annot_stats = \"median\") run(kmg01, proc_data, dataset = \"adtte\", annot_stats = c(\"min\", \"median\"))"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"kaplan-meier-plot-without-the-table-of-patients-at-risk","dir":"Articles","previous_headings":"Graphics > Kaplan-Meier Plot (KMG01)","what":"6. Kaplan-Meier Plot (without the table of patients at risk)","title":"Chevron Catalog","text":"","code":"proc_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, proc_data, dataset = \"adtte\", annot_at_risk = FALSE)"},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean-and-confidence-interval-with-table-section","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"1. Plot of Mean and Confidence Interval (with Table Section)","title":"Chevron Catalog","text":"mng01 template produces standard mean plot. Note template mng01 quite general. users expected specify analysis dataset visit variable run function, select parameters prior run function. table summary statistics included default. variable Analysis Value AVAL used plotting default. input dataset contains results analyses multiple units,(e.g. SI/CV units ADLB), please make sure parameters appropriate units selected advance.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run(mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\")) #> $`Diastolic Blood Pressure`"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean-and-confidence-interval-of-change-from-baseline-of-vital-signs","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"2. Plot of Mean and Confidence Interval of Change from Baseline of Vital Signs","title":"Chevron Catalog","text":"","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run(mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\"), y_var = \"CHG\") #> `geom_line()`: Each group consists of only one observation. #> ℹ Do you need to adjust the group aesthetic? #> $`Diastolic Blood Pressure`"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean--sd-changing-the-statistics","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"3. Plot of Mean (+/-SD) (Changing the Statistics)","title":"Chevron Catalog","text":"change statistics, use argument interval_fun. Options mean_ci, mean_sei, mean_sdi, median_ci, quantiles,range.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run(mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\"), interval_fun = \"mean_sdi\") #> $`Diastolic Blood Pressure`"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean-and-confidence-interval-modify-alpha-level","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"4. Plot of Mean and Confidence Interval (Modify Alpha Level)","title":"Chevron Catalog","text":"change alpha level confidence interval, use argument control = control_analyze_vars(conf_level = <0.xx>). Note effect interval_fun set mean_ci.","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run( mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\"), interval_fun = \"mean_ci\", control = tern::control_analyze_vars(conf_level = 0.80) ) #> $`Diastolic Blood Pressure`"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean-and-confidence-interval-with-number-of-patients-only","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"5. Plot of Mean and Confidence Interval (With Number of Patients Only)","title":"Chevron Catalog","text":"","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run(mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\"), table = \"n\") #> $`Diastolic Blood Pressure`"},{"path":"https://insightsengineering.github.io/chevron/articles/chevron_catalog.html","id":"plot-of-mean-and-confidence-interval-without-table-section","dir":"Articles","previous_headings":"Graphics > Mean Plot (MNG01)","what":"6. Plot of Mean and Confidence Interval (without Table Section)","title":"Chevron Catalog","text":"new argument added control theme (e.g. setting angle axis); see example :","code":"proc_data <- log_filter(syn_data, PARAMCD == \"DIABP\", \"advs\") run(mng01, proc_data, dataset = \"advs\", x_var = c(\"AVISIT\", \"AVISITN\"), table = NULL) #> $`Diastolic Blood Pressure` ggtheme <- ggplot2::theme( panel.grid = ggplot2::element_line(colour = \"black\", linetype = 3), panel.background = ggplot2::element_rect(fill = \"white\"), legend.position = \"top\", axis.text.x = ggplot2::element_text(angle = 22, hjust = 1, vjust = 1) ) run(mng01, syn_data, dataset = \"adlb\", ggtheme = ggtheme) #> $`Alanine Aminotransferase Measurement` #> #> $`C-Reactive Protein Measurement` #> #> $`Immunoglobulin A Measurement`"},{"path":"https://insightsengineering.github.io/chevron/articles/script_generator.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Script_Generator","text":"addition embedded run() method create tlg, chevron offers script-based approach allows user quickly edit chevron workflow without need modifying chevron_tlg object. script generated script_funs method default output script corresponding preprocessing function generated script.","code":""},{"path":"https://insightsengineering.github.io/chevron/articles/script_generator.html","id":"using-a-chevron-defined-object","dir":"Articles","previous_headings":"","what":"Using a chevron-defined object","title":"Script_Generator","text":"object returned script methods vectors character one element per line script, can easily rendered.","code":"res <- script_funs(aet01, adam_db = \"syn_data\", args = \"args_list\") writeLines(res) #> # Edit Preprocessing Function. #> preprocess(aet01) <- #> function (adam_db, ...) #> { #> adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == #> \"Y\") %>% mutate(FATAL = with_label(.data$AESDTH == \"Y\", #> \"AE with fatal outcome\"), SER = with_label(.data$AESER == #> \"Y\", \"Serious AE\"), SEV = with_label(.data$ASEV == \"SEVERE\", #> \"Severe AE (at greatest intensity)\"), REL = with_label(.data$AREL == #> \"Y\", \"Related AE\"), WD = with_label(.data$AEACN == \"DRUG WITHDRAWN\", #> \"AE leading to withdrawal from treatment\"), DSM = with_label(.data$AEACN %in% #> c(\"DRUG INTERRUPTED\", \"DOSE INCREASED\", \"DOSE REDUCED\"), #> \"AE leading to dose modification/interruption\"), SERWD = with_label(.data$SER & #> .data$WD, \"Serious AE leading to withdrawal from treatment\"), #> SERDSM = with_label(.data$SER & .data$DSM, \"Serious AE leading to dose modification/interruption\"), #> RELSER = with_label(.data$SER & .data$REL, \"Related Serious AE\"), #> RELWD = with_label(.data$REL & .data$WD, \"Related AE leading to withdrawal from treatment\"), #> RELDSM = with_label(.data$REL & .data$DSM, \"Related AE leading to dose modification/interruption\"), #> CTC35 = with_label(.data$ATOXGR %in% c(\"3\", \"4\", \"5\"), #> \"Grade 3-5 AE\"), CTC45 = with_label(.data$ATOXGR %in% #> c(\"4\", \"5\"), \"Grade 4/5 AE\")) #> adam_db$adsl <- adam_db$adsl %>% mutate(DCSREAS = reformat(.data$DCSREAS, #> missing_rule)) #> adam_db #> } #> #> # Create TLG #> tlg_output <- run(object = aet01, adam_db = syn_data, verbose = TRUE, user_args = args_list)"},{"path":"https://insightsengineering.github.io/chevron/articles/script_generator.html","id":"with-a-modified-chevron-object","dir":"Articles","previous_headings":"","what":"With a modified chevron object","title":"Script_Generator","text":"script generator depends functions actually stored object. Modifying chevron_tlg object can lead different script. Print generated scripts. Note new argument new_format added pre processing function modified.","code":"aet01_custom <- aet01 preprocess(aet01_custom) <- function(adam_db, new_format, ...) { reformat(adam_db, new_format) } res_funs <- script_funs(aet01_custom, adam_db = \"syn_data\", args = \"args_list\") writeLines(res_funs) #> # Edit Preprocessing Function. #> preprocess(aet01_custom) <- #> function (adam_db, new_format, ...) #> { #> reformat(adam_db, new_format) #> } #> #> # Create TLG #> tlg_output <- run(object = aet01_custom, adam_db = syn_data, verbose = TRUE, user_args = args_list)"},{"path":"https://insightsengineering.github.io/chevron/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Liming Li. Author, maintainer. Benoit Falquet. Author. Xiaoli Duan. Author. Adrian Waddell. Contributor. Chenkai Lv. Contributor. Pawel Rucki. Contributor. Tim Barnett. Contributor. Tian Fang. Contributor. F. Hoffmann-La Roche AG. Copyright holder, funder.","code":""},{"path":"https://insightsengineering.github.io/chevron/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Li L, Falquet B, Duan X (2024). chevron: Standard TLGs Clinical Trials Reporting. R package version 0.2.8, https://github.com/insightsengineering/chevron/, https://insightsengineering.github.io/chevron/.","code":"@Manual{, title = {chevron: Standard TLGs for Clinical Trials Reporting}, author = {Liming Li and Benoit Falquet and Xiaoli Duan}, year = {2024}, note = {R package version 0.2.8, https://github.com/insightsengineering/chevron/}, url = {https://insightsengineering.github.io/chevron/}, }"},{"path":"https://insightsengineering.github.io/chevron/index.html","id":"chevron-standard-tlgs-for-clinical-trials-reporting-","dir":"","previous_headings":"","what":"Standard TLGs for Clinical Trials Reporting","title":"Standard TLGs for Clinical Trials Reporting","text":"chevron collection high-level functions create standard outputs clinical trials reporting limited parameterisation. outputs includes: Safety Summary (AET01) Adverse Events (AET02) Adverse Events Greatest Intensity (AET03) Common (>=5%) Adverse Events (AET10) Demographics Baseline Characteristics (DMT01) ECG Results Change Baseline Visit (EGT01) ECG Abnormalities (Regardless Abnormality Baseline) (EGT02_1) ECG Abnormalities (Among Subject Without Abnormality Baseline) (EGT02_2) Laboratory Test Results Change Baseline Visit (LBT01) Laboratory Abnormalities (LBT04) Laboratory Abnormalities Single Replicated Marked (LBT05) Medical History (MHT01) Best Overall Response (RSPT01) Time--event Summary (TTET01) Vital Signs (VST01) Vital Signs Abnormalities (Regardless Abnormality Baseline) (VST02_1) Vital Signs Abnormalities (Among Subject Without Abnormality Baseline) (VST02_2) Listings Kaplan-Meier Plot (KMG01) Mean Plot (MNG01) Please visit catalog see full list available outputs. want new output, please create issue. need flexibility please refer tern TLG Catalog.","code":""},{"path":"https://insightsengineering.github.io/chevron/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Standard TLGs for Clinical Trials Reporting","text":"chevron available CRAN can install latest released version : Alternatively, might also use development version.","code":"install.packages(\"chevron\") # install.packages(\"pak\") pak::pak(\"insightsengineering/chevron\")"},{"path":"https://insightsengineering.github.io/chevron/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Standard TLGs for Clinical Trials Reporting","text":"understand use package, please refer Introduction chevron article, provides multiple examples code implementation. showcase example usage. returns","code":"library(chevron) data(syn_data) run(aet02, syn_data) MedDRA System Organ Class A: Drug X B: Placebo C: Combination MedDRA Preferred Term (N=134) (N=134) (N=132) ——————————————————————————————————————————————————————————————————————————————————————————————————————— Total number of patients with at least one adverse event 122 (91.0%) 123 (91.8%) 120 (90.9%) Overall total number of events 609 622 703 cl A.1 Total number of patients with at least one adverse event 78 (58.2%) 75 (56.0%) 89 (67.4%) Total number of events 132 130 160 dcd A.1.1.1.1 50 (37.3%) 45 (33.6%) 63 (47.7%) dcd A.1.1.1.2 48 (35.8%) 48 (35.8%) 50 (37.9%) cl B.2 Total number of patients with at least one adverse event 79 (59.0%) 74 (55.2%) 85 (64.4%) Total number of events 129 138 143 dcd B.2.2.3.1 48 (35.8%) 54 (40.3%) 51 (38.6%) dcd B.2.1.2.1 49 (36.6%) 44 (32.8%) 52 (39.4%) cl D.1 Total number of patients with at least one adverse event 79 (59.0%) 67 (50.0%) 80 (60.6%) Total number of events 127 106 135 dcd D.1.1.1.1 50 (37.3%) 42 (31.3%) 51 (38.6%) dcd D.1.1.4.2 48 (35.8%) 42 (31.3%) 50 (37.9%) cl D.2 Total number of patients with at least one adverse event 47 (35.1%) 58 (43.3%) 57 (43.2%) Total number of events 62 72 74 dcd D.2.1.5.3 47 (35.1%) 58 (43.3%) 57 (43.2%) cl B.1 Total number of patients with at least one adverse event 47 (35.1%) 49 (36.6%) 43 (32.6%) Total number of events 56 60 62 dcd B.1.1.1.1 47 (35.1%) 49 (36.6%) 43 (32.6%) cl C.2 Total number of patients with at least one adverse event 35 (26.1%) 48 (35.8%) 55 (41.7%) Total number of events 48 53 65 dcd C.2.1.2.1 35 (26.1%) 48 (35.8%) 55 (41.7%) cl C.1 Total number of patients with at least one adverse event 43 (32.1%) 46 (34.3%) 43 (32.6%) Total number of events 55 63 64 dcd C.1.1.1.3 43 (32.1%) 46 (34.3%) 43 (32.6%)"},{"path":"https://insightsengineering.github.io/chevron/index.html","id":"related","dir":"","previous_headings":"","what":"Related","title":"Standard TLGs for Clinical Trials Reporting","text":"rtables - table engine used tern - analysis function used","code":""},{"path":"https://insightsengineering.github.io/chevron/index.html","id":"acknowledgment","dir":"","previous_headings":"","what":"Acknowledgment","title":"Standard TLGs for Clinical Trials Reporting","text":"package result joint efforts many developers stakeholders. like thank everyone contributed far!","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":null,"dir":"Reference","previous_headings":"","what":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"AEL01_NOLLT Listing 1 (Default) Glossary Preferred Terms Investigator-Specified Terms.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"","code":"ael01_nollt_main( adam_db, dataset = \"adae\", key_cols = c(\"AEBODSYS\", \"AEDECOD\"), disp_cols = \"AETERM\", split_into_pages_by_var = NULL, unique_rows = TRUE, ... ) ael01_nollt_pre( adam_db, dataset = \"adae\", key_cols = c(\"AEBODSYS\", \"AEDECOD\"), disp_cols = \"AETERM\", ... ) ael01_nollt"},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"object class chevron_l length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. split_into_pages_by_var (character NULL) name variable split listing . unique_rows (flag) whether keep unique rows listing. ... additional arguments passed rlistings::as_listing.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"main function returns rlistings list object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"Removes duplicate rows. default, uses dataset adae, sorting key columns AEBODSYS AEDECOD. using dataset adae, sure specify desired labels variables key_cols disp_cols, pre-process missing data.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"ael01_nollt_main(): Main TLG function ael01_nollt_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"adam_db object must contain dataset table columns specified key_cols disp_cols.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael01_nollt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AEL01_NOLLT Listing 1 (Default) Glossary of Preferred Terms and Investigator-Specified Terms. — ael01_nollt_main","text":"","code":"run(ael01_nollt, syn_data) #> MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event #> ——————————————————————————————————————————————————————————————————————————————————————— #> cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1 #> dcd A.1.1.1.2 trm A.1.1.1.2 #> cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1 #> cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1 #> dcd B.2.2.3.1 trm B.2.2.3.1 #> cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3 #> cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1 #> cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1 #> dcd D.1.1.4.2 trm D.1.1.4.2 #> cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3"},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":null,"dir":"Reference","previous_headings":"","what":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"AEL02 Listing 1 (Default) Listing Adverse Events.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"","code":"ael02_main( adam_db, dataset = \"adae\", key_cols = c(\"ID\", \"ASR\"), disp_cols = c(\"AEDECOD\", \"TRTSDTM\", \"ASTDY\", \"ADURN\", \"AESER\", \"ASEV\", \"AREL\", \"AEOUT\", \"AECONTRT\", \"AEACN\"), split_into_pages_by_var = \"ACTARM\", unique_rows = FALSE, ... ) ael02_pre(adam_db, dataset = \"adae\", arm_var = \"ACTARM\", ...) ael02"},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"object class chevron_l length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. split_into_pages_by_var (character NULL) name variable split listing . unique_rows (flag) whether keep unique rows listing. ... used. arm_var (string) variable used column splitting","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"main function returns rlistings list object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"ael02_main(): Main TLG function ael02_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael02.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AEL02 Listing 1 (Default) Listing of Adverse Events. — ael02_main","text":"","code":"res <- run(ael02, syn_data)"},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":null,"dir":"Reference","previous_headings":"","what":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"AEL03 Listing 1 (Default) Listing Serious Adverse Events.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"","code":"ael03_main( adam_db, dataset = \"adae\", key_cols = c(\"ID\", \"ASR\"), disp_cols = c(\"AEDECOD\", \"TRTSDTM\", \"ASTDY\", \"ADURN\", \"ASEV\", \"AREL\", \"AEOUT\", \"AECONTRT\", \"AEACN\", \"SERREAS\"), split_into_pages_by_var = \"ACTARM\", unique_rows = FALSE, ... ) ael03_pre(adam_db, dataset = \"adae\", arm_var = \"ACTARM\", ...) ael03"},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"object class chevron_l length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. split_into_pages_by_var (character NULL) name variable split listing . unique_rows (flag) whether keep unique rows listing. ... used. arm_var (string) variable used column splitting","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"main function returns rlistings list object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"ael03_main(): Main TLG function ael03_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ael03.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AEL03 Listing 1 (Default) Listing of Serious Adverse Events. — ael03_main","text":"","code":"res <- run(ael03, syn_data)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":null,"dir":"Reference","previous_headings":"","what":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"AET01 Table 1 (Default) Overview Deaths Adverse Events Summary Table 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"","code":"aet01_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, anl_vars = list(safety_var = c(\"FATAL\", \"SER\", \"SERWD\", \"SERDSM\", \"RELSER\", \"WD\", \"DSM\", \"REL\", \"RELWD\", \"RELDSM\", \"SEV\")), anl_lbls = \"Total number of {patient_label} with at least one\", show_wd = TRUE, ... ) aet01_pre(adam_db, ...) aet01_post(tlg, prune_0 = FALSE, ...) aet01"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted anl_vars Named (list) (character) variables safety variables summarized. anl_lbls (character) analysis labels. show_wd (flag) whether display number patients withdrawn study due adverse event number death. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"remove rows zero counts default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"aet01_main(): Main TLG function aet01_pre(): Preprocessing aet01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"adam_db object must contain adsl table \"DTHFL\" \"DCSREAS\" columns. adam_db object must contain adae table columns passed anl_vars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET01 Table 1 (Default) Overview of Deaths and Adverse Events Summary Table 1. — aet01_main","text":"","code":"run(aet01, syn_data, arm_var = \"ARM\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Total number of patients withdrawn from study due to an AE 0 0 1 (6.7%) #> Total number of patients with at least one #> AE with fatal outcome 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Serious AE leading to withdrawal from treatment 0 0 2 (13.3%) #> Serious AE leading to dose modification/interruption 4 (26.7%) 3 (20.0%) 4 (26.7%) #> Related Serious AE 8 (53.3%) 8 (53.3%) 10 (66.7%) #> AE leading to withdrawal from treatment 2 (13.3%) 3 (20.0%) 3 (20.0%) #> AE leading to dose modification/interruption 6 (40.0%) 9 (60.0%) 11 (73.3%) #> Related AE 11 (73.3%) 10 (66.7%) 13 (86.7%) #> Related AE leading to withdrawal from treatment 0 3 (20.0%) 0 #> Related AE leading to dose modification/interruption 1 (6.7%) 4 (26.7%) 9 (60.0%) #> Severe AE (at greatest intensity) 11 (73.3%) 10 (66.7%) 12 (80.0%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":null,"dir":"Reference","previous_headings":"","what":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"AET01_AESI Table 1 (Default) Adverse Event Special Interest Summary Table.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"","code":"aet01_aesi_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, aesi_vars = NULL, grade_groups = NULL, ... ) aet01_aesi_pre(adam_db, ...) aet01_aesi_post(tlg, prune_0 = FALSE, ...) aet01_aesi"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted aesi_vars (character) AESI variables included summary. Defaults NA. grade_groups (list) grade groups displayed. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"remove rows zero counts default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"aet01_aesi_main(): Main TLG function aet01_aesi_pre(): Preprocessing aet01_aesi_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"adam_db object must contain adae table columns \"AEOUT\", \"AEACN\", \"AECONTRT\", \"AESER\", \"AREL\", column specified arm_var. aesi_vars may contain /following variables display: \"ALLRESWD\", \"ALLRESDSM\", \"ALLRESCONTRT\", \"NOTRESWD\", \"NOTRESDSM\", \"NOTRESCONTRT\", \"SERWD\", \"SERDSM\", \"SERCONTRT\", \"RELWD\", \"RELDSM\", \"RELCONTRT\", \"RELSER\". aesi_vars variable prefixes defined follows: \"ALLRES\" = \"non-fatal adverse events resolved\" \"NOTRES\" = \"least one unresolved ongoing non-fatal adverse event\" \"SER\" = \"serious adverse event\" \"REL\" = \"related adverse event\" aesi_vars variable suffixes defined follows: \"WD\" = \"patients study drug withdrawn\" \"DSM\" = \"patients dose modified/interrupted\" \"CONTRT\" = \"patients treatment received\" Several aesi_vars can added table : aesi_vars = \"\" include possible aesi_vars. Including \"ALL_XXX\" aesi_vars XXX one prefixes listed include aesi_vars prefix.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET01_AESI Table 1 (Default) Adverse Event of Special Interest Summary Table. — aet01_aesi_main","text":"","code":"run(aet01_aesi, syn_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of AEs 58 59 99 #> Total number of patients with at least one AE by worst grade #> Grade 1 0 1 (6.7%) 1 (6.7%) #> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Total number of patients with study drug withdrawn due to AE 2 (13.3%) 3 (20.0%) 3 (20.0%) #> Total number of patients with dose modified/interrupted due to AE 6 (40.0%) 9 (60.0%) 11 (73.3%) #> Total number of patients with treatment received for AE 10 (66.7%) 10 (66.7%) 14 (93.3%) #> Total number of patients with all non-fatal AEs resolved 9 (60.0%) 10 (66.7%) 12 (80.0%) #> Total number of patients with at least one unresolved or ongoing non-fatal AE 10 (66.7%) 9 (60.0%) 14 (93.3%) #> Total number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Total number of patients with at least one related AE 11 (73.3%) 10 (66.7%) 13 (86.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet01_aesi Layout — aet01_aesi_lyt","title":"aet01_aesi Layout — aet01_aesi_lyt","text":"aet01_aesi Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet01_aesi Layout — aet01_aesi_lyt","text":"","code":"aet01_aesi_lyt(arm_var, aesi_vars, lbl_overall, lbl_aesi_vars, grade_groups)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet01_aesi Layout — aet01_aesi_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_aesi_vars (character) labels AESI variables summarized.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_aesi_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet01_aesi Layout — aet01_aesi_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet01 Layout — aet01_lyt","title":"aet01 Layout — aet01_lyt","text":"aet01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet01 Layout — aet01_lyt","text":"","code":"aet01_lyt(arm_var, lbl_overall, anl_vars, anl_lbls, lbl_vars)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet01 Layout — aet01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted anl_vars Named (list) analysis variables. anl_lbls (character) labels. lbl_vars Named (list) analysis labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet01 Layout — aet01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":null,"dir":"Reference","previous_headings":"","what":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"AET02 table provides overview number subjects experiencing adverse events number advert events categorized Body System Dictionary-Derived Term.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"","code":"aet02_label aet02_main( adam_db, arm_var = \"ACTARM\", row_split_var = \"AEBODSYS\", lbl_overall = NULL, summary_labels = list(all = aet02_label, TOTAL = c(nonunique = \"Overall total number of events\")), ... ) aet02_pre(adam_db, row_split_var = \"AEBODSYS\", ...) aet02_post(tlg, row_split_var = \"AEBODSYS\", prune_0 = TRUE, ...) aet02"},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"object class character length 2. object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting row_split_var (character) additional row split variables. lbl_overall (string) label used overall column, set NULL overall column omitted summary_labels (list) summarize labels. See details. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"Numbers represent absolute numbers subject fraction N, absolute number event specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort Dictionary-Derived Code (AEDECOD) highest overall frequencies. Missing values AEBODSYS, AEDECOD labeled Coding Available. summary_labels used control summary level. \"\" used, split summary statistic labels. One special case \"TOTAL\", overall population.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"aet02_label: Default labels aet02_main(): Main TLG function aet02_pre(): Preprocessing aet02_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"adam_db object must contain adae table columns \"AEBODSYS\" \"AEDECOD\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet02.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET02 Table 1 (Default) Adverse Events by System Organ Class and Preferred Term Table 1. — aet02_label","text":"","code":"run(aet02, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%) #> Overall total number of events 58 59 99 #> cl B.2 #> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%) #> Total number of events 18 15 20 #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%) #> Total number of events 13 9 19 #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of events 8 11 16 #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%) #> Total number of events 6 6 12 #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%) #> Total number of events 6 4 12 #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%) #> Total number of events 3 5 10 #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%) #> Total number of events 4 9 10 #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":null,"dir":"Reference","previous_headings":"","what":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"adverse events table categorized System Organ Class, Dictionary-Derived Term Greatest intensity.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"","code":"aet03_main(adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, ...) aet03_pre(adam_db, ...) aet03_post(tlg, prune_0 = TRUE, ...) aet03"},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"Default Adverse Events Greatest Intensity table. Numbers represent absolute numbers patients fraction N. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort Body System Organ Class (SOC) Dictionary-Derived Term (PT).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"aet03_main(): Main TLG function aet03_pre(): Preprocessing aet03_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"adam_db object must contain adae table columns \"AEBODSYS\", \"AEDECOD\" \"ASEV\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET03 Table 1 (Default) Advert Events by Greatest Intensity Table 1. — aet03_main","text":"","code":"run(aet03, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————— #> - Any Intensity - 13 (86.7%) 14 (93.3%) 15 (100%) #> MILD 0 1 (6.7%) 1 (6.7%) #> MODERATE 2 (13.3%) 3 (20.0%) 2 (13.3%) #> SEVERE 11 (73.3%) 10 (66.7%) 12 (80.0%) #> cl B.2 #> - Any Intensity - 11 (73.3%) 8 (53.3%) 10 (66.7%) #> MILD 6 (40.0%) 2 (13.3%) 5 (33.3%) #> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd B.2.2.3.1 #> - Any Intensity - 8 (53.3%) 6 (40.0%) 7 (46.7%) #> MILD 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.2.1.2.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 5 (33.3%) #> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl D.1 #> - Any Intensity - 9 (60.0%) 5 (33.3%) 11 (73.3%) #> MODERATE 5 (33.3%) 1 (6.7%) 4 (26.7%) #> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.1.1 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 7 (46.7%) #> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 #> - Any Intensity - 6 (40.0%) 2 (13.3%) 7 (46.7%) #> MODERATE 6 (40.0%) 2 (13.3%) 7 (46.7%) #> cl A.1 #> - Any Intensity - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> MILD 2 (13.3%) 0 4 (26.7%) #> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.2 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 #> - Any Intensity - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> MILD 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd B.1.1.1.1 #> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%) #> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%) #> cl C.2 #> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd C.2.1.2.1 #> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%) #> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%) #> cl D.2 #> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd D.2.1.5.3 #> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%) #> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%) #> cl C.1 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd C.1.1.1.3 #> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%) #> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet03_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet03 Layout — aet03_lyt","title":"aet03 Layout — aet03_lyt","text":"aet03 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet03 Layout — aet03_lyt","text":"","code":"aet03_lyt(arm_var, lbl_overall, lbl_aebodsys, lbl_aedecod, intensity_grade)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet03_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet03 Layout — aet03_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_aebodsys (string) text label AEBODSYS. lbl_aedecod (string) text label AEDECOD. intensity_grade (character) describing intensity levels present dataset.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet03_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet03 Layout — aet03_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":null,"dir":"Reference","previous_headings":"","what":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"AET04 table provides overview adverse event highest NCI CTCAE grade per individual.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"","code":"aet04_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, grade_groups = NULL, ... ) aet04_pre(adam_db, ...) aet04_post(tlg, prune_0 = TRUE, ...) aet04"},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted grade_groups (list) putting correspondence toxicity grades labels. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"Numbers represent absolute numbers patients fraction N, absolute number event specified. Remove zero-count rows unless overridden prune_0 = FALSE. Events missing grading values excluded. Split columns arm, typically ACTARM. include total column default. Sort Body System Organ Class Dictionary-Derived Term highest overall frequencies. Analysis Toxicity Grade sorted severity.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"aet04_main(): Main TLG function aet04_pre(): Preprocessing aet04_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"adam_db object must contain adae table columns \"AEBODSYS\", \"AEDECOD\" \"ATOXGR\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET04 Table 1 (Default) Adverse Events by Highest NCI CTACAE AE Grade Table 1. — aet04_main","text":"","code":"grade_groups <- list( \"Grade 1-2\" = c(\"1\", \"2\"), \"Grade 3-4\" = c(\"3\", \"4\"), \"Grade 5\" = c(\"5\") ) proc_data <- dunlin::log_filter(syn_data, AEBODSYS == \"cl A.1\", \"adae\") run(aet04, proc_data, grade_groups = grade_groups) #> MedDRA System Organ Class #> MedDRA Preferred Term A: Drug X B: Placebo C: Combination #> Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> - Any adverse events - #> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%) #> 1 2 (13.3%) 0 4 (26.7%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> cl A.1 #> - Overall - #> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%) #> 1 2 (13.3%) 0 4 (26.7%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.2 #> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> 2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd A.1.1.1.1 #> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%) #> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> 1 3 (20.0%) 1 (6.7%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet04_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet04 Layout — aet04_lyt","title":"aet04 Layout — aet04_lyt","text":"aet04 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet04 Layout — aet04_lyt","text":"","code":"aet04_lyt( arm_var, total_var, lbl_overall, lbl_aebodsys, lbl_aedecod, grade_groups )"},{"path":"https://insightsengineering.github.io/chevron/reference/aet04_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet04 Layout — aet04_lyt","text":"arm_var (string) variable used column splitting total_var (string) variable create summary variables. lbl_overall (string) label used overall column, set NULL overall column omitted lbl_aebodsys (string) text label AEBODSYS. lbl_aedecod (string) text label AEDECOD. grade_groups (list) putting correspondence toxicity grades labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet04_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet04 Layout — aet04_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":null,"dir":"Reference","previous_headings":"","what":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"AET05 table produces standard adverse event rate adjusted patient-years risk summary considering first occurrence.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"","code":"aet05_main( adam_db, dataset = \"adsaftte\", arm_var = \"ACTARM\", lbl_overall = NULL, ... ) aet05_pre(adam_db, dataset = \"adsaftte\", ...) aet05_post(tlg, prune_0 = FALSE, ...) aet05"},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) arm variable used arm splitting. lbl_overall (string) label used overall column, set NULL overall column omitted ... arguments passed tern::control_incidence_rate(). tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"Total patient-years risk sum patients time intervals (years). Split columns arm, typically ACTARM. Split rows parameter code. AVAL patient-years risk. N_EVENTS number adverse events observed. table allows confidence level adjusted, default 95%. Keep zero count rows default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"aet05_main(): Main TLG function aet05_pre(): Preprocessing aet05_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"adam_db object must contain table named dataset columns \"PARAMCD\", \"PARAM\", \"AVAL\", \"CNSR\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET05 Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - First Occurrence. — aet05_main","text":"","code":"library(dplyr) #> #> Attaching package: ‘dplyr’ #> The following object is masked from ‘package:testthat’: #> #> matches #> The following objects are masked from ‘package:stats’: #> #> filter, lag #> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"AETTE1\", \"adsaftte\") run(aet05, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————— #> Time to first occurrence of any adverse event #> Total patient-years at risk 31.0 9.0 22.0 #> Number of adverse events observed 5 13 8 #> AE rate per 100 patient-years 16.13 143.75 36.30 #> 95% CI (1.99, 30.27) (65.61, 221.89) (11.15, 61.45) run(aet05, proc_data, conf_level = 0.90, conf_type = \"exact\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————— #> Time to first occurrence of any adverse event #> Total patient-years at risk 31.0 9.0 22.0 #> Number of adverse events observed 5 13 8 #> AE rate per 100 patient-years 16.13 143.75 36.30 #> 90% CI (6.36, 33.91) (85.03, 228.55) (18.06, 65.50)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":null,"dir":"Reference","previous_headings":"","what":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"AET05_ALL table produces standard adverse event rate adjusted patient-years risk summary considering occurrences.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"","code":"aet05_all_pre(adam_db, dataset = \"adsaftte\", ...) aet05_all"},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"aet05_all_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_all.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET05_ALL Table 1 (Default) Adverse Event Rate Adjusted for Patient-Years at Risk - All Occurrences. — aet05_all_pre","text":"","code":"library(dplyr) library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"AETOT1\" | PARAMCD == \"AEREPTTE\", \"adsaftte\") run(aet05_all, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————— #> Number of occurrences of any adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 29 49 56 #> AE rate per 100 patient-years 65.32 110.76 126.15 #> 95% CI (41.54, 89.09) (79.75, 141.77) (93.11, 159.19) run(aet05_all, proc_data, conf_level = 0.90, conf_type = \"exact\") #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————— #> Number of occurrences of any adverse event #> Total patient-years at risk 44.4 44.2 44.4 #> Number of adverse events observed 29 49 56 #> AE rate per 100 patient-years 65.32 110.76 126.15 #> 90% CI (46.73, 89.06) (86.08, 140.53) (99.76, 157.60)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet05 Layout — aet05_lyt","title":"aet05 Layout — aet05_lyt","text":"aet05 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet05 Layout — aet05_lyt","text":"","code":"aet05_lyt(arm_var, lbl_overall, param_label, vars, n_events, control)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet05 Layout — aet05_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted param_label (string) variable parameter code. vars (string) variable primary analysis variable iterated . n_events (string) variable count number events observed. control (list) parameters estimation details, specified using helper function control_incidence_rate().","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet05_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet05 Layout — aet05_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":null,"dir":"Reference","previous_headings":"","what":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"AET10 table Include Adverse Events occurring user-specified threshold X% least one treatment groups. Standard table summarized preferred term (PT). Order data total column frequency least frequently reported PT (regardless SOC).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"","code":"aet10_main(adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, ...) aet10_pre(adam_db, ...) aet10_post(tlg, atleast = 0.05, ...) aet10"},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted ... used. tlg (TableTree, Listing ggplot) object typically produced main function. atleast given cut-numeric format, default 0.05","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"main function returns rtables object preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"Numbers represent absolute numbers subject fraction N, absolute number event specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort Dictionary-Derived Code (AEDECOD) highest overall frequencies. Missing values AEDECOD labeled Coding Available.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"aet10_main(): Main TLG function aet10_pre(): Preprocessing aet10_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"adam_db object must contain adae table columns \"AEDECOD\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"AET10 Table 1 (Default) Most Common (xx%) Adverse Events Preferred Terms Table 1. — aet10_main","text":"","code":"run(aet10, syn_data) #> A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————— #> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%) #> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%) #> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%) #> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%) #> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%) #> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%) #> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%) #> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%) #> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet10_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"aet10 Layout — aet10_lyt","title":"aet10 Layout — aet10_lyt","text":"aet10 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"aet10 Layout — aet10_lyt","text":"","code":"aet10_lyt(arm_var, lbl_overall, lbl_aedecod)"},{"path":"https://insightsengineering.github.io/chevron/reference/aet10_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"aet10 Layout — aet10_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_aedecod (character) text label AEDECOD.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/aet10_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"aet10 Layout — aet10_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/afun_p.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyze with defined precision — afun_p","title":"Analyze with defined precision — afun_p","text":"Analyze defined precision","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/afun_p.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyze with defined precision — afun_p","text":"","code":"afun_p( x, .N_col, .spl_context, precision, .N_row, .var = NULL, .df_row = NULL, .stats = NULL, .labels = NULL, .indent_mods = NULL, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/afun_p.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyze with defined precision — afun_p","text":"x value analyze .N_col (int) See tern::analyze_variables. .spl_context split context. precision (named list integer) names columns found .df_row values indicate number digits statistics numeric value. default set, parameter precision specified, value default used. neither provided, auto determination used. See tern::format_auto. .N_row (int) See tern::analyze_variables. .var variable name. .stats (named list character) names columns found .df_row values indicate statistical analysis perform. default set, parameter precision specified, value default used. .labels (character) See tern::analyze_variables. .indent_mods (integer) See tern::analyze_variables. ... additional arguments tern::a_summary.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/afun_skip.html","id":null,"dir":"Reference","previous_headings":"","what":"Analyze skip baseline — afun_skip","title":"Analyze skip baseline — afun_skip","text":"Analyze skip baseline","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/afun_skip.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Analyze skip baseline — afun_skip","text":"","code":"afun_skip( x, .var, .spl_context, paramcdvar, visitvar, skip, precision, .stats, .labels = NULL, .indent_mods = NULL, .N_col, .N_row, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/afun_skip.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Analyze skip baseline — afun_skip","text":"x value analyze .var variable name. .spl_context split context. paramcdvar (string) name parameter code. visitvar (string) name visit variable. skip Named (character) indicating pairs skip analyze. precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. .stats (character) See tern::analyze_variables. .labels (character) See tern::analyze_variables. .indent_mods (integer) See tern::analyze_variables. .N_col (int) See tern::analyze_variables. .N_row (int) See tern::analyze_variables. ... additional arguments tern::a_summary.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/args_ls.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Arguments List — args_ls","title":"Get Arguments List — args_ls","text":"Get Arguments List","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/args_ls.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Arguments List — args_ls","text":"","code":"args_ls(x, simplify = FALSE, omit = NULL) # S4 method for class 'chevron_tlg' args_ls(x, simplify = FALSE, omit = NULL)"},{"path":"https://insightsengineering.github.io/chevron/reference/args_ls.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Arguments List — args_ls","text":"x (chevron_tlg) input. simplify (flag) whether simplify output, coalescing values parameters. order priority value parameters : main, preprocess postprocess. omit (character) names argument omit output.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/args_ls.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Arguments List — args_ls","text":"list formal arguments default functions stored chevron_tlg object passed x argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/args_ls.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get Arguments List — args_ls","text":"","code":"args_ls(aet01, simplify = TRUE) #> $adam_db #> #> #> $arm_var #> [1] \"ACTARM\" #> #> $lbl_overall #> NULL #> #> $anl_vars #> list(safety_var = c(\"FATAL\", \"SER\", \"SERWD\", \"SERDSM\", \"RELSER\", #> \"WD\", \"DSM\", \"REL\", \"RELWD\", \"RELDSM\", \"SEV\")) #> #> $anl_lbls #> [1] \"Total number of {patient_label} with at least one\" #> #> $show_wd #> [1] TRUE #> #> $... #> #> #> $tlg #> #> #> $prune_0 #> [1] FALSE #>"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_single_value.html","id":null,"dir":"Reference","previous_headings":"","what":"Check variable only has one unique value. — assert_single_value","title":"Check variable only has one unique value. — assert_single_value","text":"Check variable one unique value.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_single_value.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check variable only has one unique value. — assert_single_value","text":"","code":"assert_single_value(x, label = deparse(substitute(x)))"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_single_value.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check variable only has one unique value. — assert_single_value","text":"x value vector. label (string) label input.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_single_value.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check variable only has one unique value. — assert_single_value","text":"invisible NULL error message criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_type.html","id":null,"dir":"Reference","previous_headings":"","what":"Check variable is of correct type — assert_valid_type","title":"Check variable is of correct type — assert_valid_type","text":"Check variable correct type","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_type.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check variable is of correct type — assert_valid_type","text":"","code":"assert_valid_type(x, types, label = deparse(substitute(x)))"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_type.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check variable is of correct type — assert_valid_type","text":"x Object check type. types (character) possible types check. label (string) label.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_type.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check variable is of correct type — assert_valid_type","text":"invisible NULL error message criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var.html","id":null,"dir":"Reference","previous_headings":"","what":"Check whether var is valid — assert_valid_var","title":"Check whether var is valid — assert_valid_var","text":"Check whether var valid","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check whether var is valid — assert_valid_var","text":"","code":"assert_valid_var(x, label, na_ok, empty_ok, ...) # S3 method for class 'character' assert_valid_var( x, label = deparse(substitute(x)), na_ok = FALSE, empty_ok = FALSE, min_chars = 1L, ... ) # S3 method for class 'factor' assert_valid_var( x, label = deparse(substitute(x)), na_ok = FALSE, empty_ok = FALSE, min_chars = 1L, ... ) # S3 method for class 'logical' assert_valid_var( x, label = deparse(substitute(x)), na_ok = TRUE, empty_ok = FALSE, ... ) # S3 method for class 'numeric' assert_valid_var( x, label = deparse(substitute(x)), na_ok = TRUE, empty_ok = FALSE, integerish = FALSE, ... ) # S3 method for class 'POSIXct' assert_valid_var( x, label = deparse(substitute(x)), na_ok = TRUE, empty_ok = FALSE, tzs = OlsonNames(), ... ) # Default S3 method assert_valid_var( x, label = deparse(substitute(x)), na_ok = FALSE, empty_ok = FALSE, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check whether var is valid — assert_valid_var","text":"x value col_split variable label (string) hints. na_ok (flag) whether NA value allowed empty_ok (flag) whether length 0 value allowed. ... arguments methods. min_chars (integer) minimum length characters. integerish (flag) whether number treated integerish. tzs (character) time zones.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check whether var is valid — assert_valid_var","text":"invisible NULL error message criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Check whether var is valid — assert_valid_var","text":"function checks variable values valid .","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var_pair.html","id":null,"dir":"Reference","previous_headings":"","what":"Check variables are of same levels — assert_valid_var_pair","title":"Check variables are of same levels — assert_valid_var_pair","text":"Check variables levels","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var_pair.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check variables are of same levels — assert_valid_var_pair","text":"","code":"assert_valid_var_pair( df1, df2, var, lab1 = deparse(substitute(df1)), lab2 = deparse(substitute(df2)) )"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var_pair.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check variables are of same levels — assert_valid_var_pair","text":"df1 (data.frame) input. df2 (data.frame) input. var (string) variable check. lab1 (string) label hint df1. lab2 (string) label hint df2.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_var_pair.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check variables are of same levels — assert_valid_var_pair","text":"invisible NULL error message criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_variable.html","id":null,"dir":"Reference","previous_headings":"","what":"Check variables in a data frame are valid character or factor. — assert_valid_variable","title":"Check variables in a data frame are valid character or factor. — assert_valid_variable","text":"Check variables data frame valid character factor.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_variable.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check variables in a data frame are valid character or factor. — assert_valid_variable","text":"","code":"assert_valid_variable( df, vars, label = deparse(substitute(df)), types = NULL, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_variable.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check variables in a data frame are valid character or factor. — assert_valid_variable","text":"df (data.frame) input dataset. vars (character) variables check. label (string) labels data frame. types Named (list) type input. ... arguments assert_valid_var. Please note different methods different arguments provided make sure variables check class.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/assert_valid_variable.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check variables in a data frame are valid character or factor. — assert_valid_variable","text":"invisible TRUE error message criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":null,"dir":"Reference","previous_headings":"","what":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"CFBT01 table provides overview actual values change baseline respective arm course trial.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"","code":"cfbt01_main( adam_db, dataset, arm_var = \"ACTARM\", lbl_overall = NULL, row_split_var = NULL, summaryvars = c(\"AVAL\", \"CHG\"), visitvar = \"AVISIT\", precision = list(default = 2L), page_var = \"PARAMCD\", .stats = c(\"n\", \"mean_sd\", \"median\", \"range\"), skip = list(CHG = \"BASELINE\"), ... ) cfbt01_pre(adam_db, dataset, ...) cfbt01_post(tlg, prune_0 = TRUE, ...) cfbt01"},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) additional row split variables. summaryvars (character) variables analyzed. label attribute corresponding column table adam_db used label. visitvar (string) typically one \"AVISIT\" user-defined visit incorporating \"ATPT\". precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. page_var (string) variable name prior row split page. .stats (character) statistics names, see tern::analyze_vars(). skip Named (list) visit values need inhibited. ... additional arguments like .indent_mods, .labels. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"Analysis Value column, displays number patients, mean, standard deviation, median range analysis value visit. Change Baseline column, displays number patient mean, standard deviation, median range changes relative baseline. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically ACTARM. include total column default. Sorted based factor level; first PARAM labels alphabetic order chronological time point given AVISIT. Re-level customize order","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"cfbt01_main(): Main TLG function cfbt01_pre(): Preprocessing cfbt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"adam_db object must contain table named dataset columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"CFBT01 Change from Baseline By Visit Table. — cfbt01_main","text":"","code":"library(dunlin) proc_data <- log_filter( syn_data, PARAMCD %in% c(\"DIABP\", \"SYSBP\"), \"advs\" ) run(cfbt01, proc_data, dataset = \"advs\") #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE) #> Median 94.933 NE 111.133 NE 108.359 NE #> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018) #> Median 92.447 -4.066 107.703 3.227 103.058 -2.476 #> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229) #> Median 101.498 1.731 99.501 -9.727 96.789 -10.155 #> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713) #> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075 #> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881) #> Median 98.168 2.510 97.385 -16.793 107.555 7.966 #> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827) #> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665 #> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11 #> Systolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 154.073 (33.511) NE (NE) 157.840 (34.393) NE (NE) 152.407 (22.311) NE (NE) #> Median 156.169 NE 161.670 NE 149.556 NE #> Min - Max 78.31 - 210.70 NE - NE 79.76 - 210.40 NE - NE 108.21 - 184.88 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317) #> Median 142.705 157.698 155.282 #> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553) #> Median 160.711 5.802 155.030 2.758 145.548 -5.636 #> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670) #> Median 144.253 5.325 142.679 -14.083 147.102 -11.512 #> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984) #> Median 158.938 17.191 155.044 -1.796 156.505 -7.606 #> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175) #> Median 145.506 3.754 149.094 -10.000 150.797 -14.432 #> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799) #> Median 158.142 1.448 164.552 7.060 148.501 -2.385 #> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35"},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"cfbt01 Layout — cfbt01_lyt","title":"cfbt01 Layout — cfbt01_lyt","text":"cfbt01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"cfbt01 Layout — cfbt01_lyt","text":"","code":"cfbt01_lyt( arm_var, lbl_overall, lbl_avisit, lbl_param, summaryvars, summaryvars_lbls, row_split_var, row_split_lbl, visitvar, precision, page_var, .stats, skip, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"cfbt01 Layout — cfbt01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_avisit (string) label visitvar variable. lbl_param (string) label PARAM variable. summaryvars (character) variables analyzed. table, AVAL CHG default. summaryvars_lbls (character) label variables analyzed. row_split_var (character) additional row split variables. row_split_lbl (character) label row splits. visitvar (string) typically one \"AVISIT\" user-defined visit incorporating \"ATPT\". precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. page_var (string) variable name prior row split page. .stats (character) statistics names, see tern::analyze_vars(). skip Named (list) visit values need inhibited. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cfbt01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"cfbt01 Layout — cfbt01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_all_colnames.html","id":null,"dir":"Reference","previous_headings":"","what":"Check that all names are among column names — check_all_colnames","title":"Check that all names are among column names — check_all_colnames","text":"Check names among column names","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_all_colnames.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check that all names are among column names — check_all_colnames","text":"","code":"check_all_colnames(df, x, null_ok = TRUE, qualifier = NULL)"},{"path":"https://insightsengineering.github.io/chevron/reference/check_all_colnames.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check that all names are among column names — check_all_colnames","text":"df (data.frame) x (character) names columns checked. null_ok (flag) can x NULL. qualifier (string) returned check fails.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_all_colnames.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check that all names are among column names — check_all_colnames","text":"invisible NULL string criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_one_colnames.html","id":null,"dir":"Reference","previous_headings":"","what":"Check that at least one name is among column names — check_one_colnames","title":"Check that at least one name is among column names — check_one_colnames","text":"Check least one name among column names","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_one_colnames.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check that at least one name is among column names — check_one_colnames","text":"","code":"check_one_colnames(df, x, null_ok = TRUE, qualifier = NULL)"},{"path":"https://insightsengineering.github.io/chevron/reference/check_one_colnames.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check that at least one name is among column names — check_one_colnames","text":"df (data.frame) x (character) names columns checked. null_ok (flag) can x NULL. qualifier (string) returned check fails.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/check_one_colnames.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check that at least one name is among column names — check_one_colnames","text":"invisible NULL string criteria fulfilled.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron-package.html","id":null,"dir":"Reference","previous_headings":"","what":"chevron package — chevron-package","title":"chevron package — chevron-package","text":"Provide standard tables, listings, graphs (TLGs) libraries used clinical trials. package implements structure reformat data 'dunlin', create reporting tables using 'rtables' 'tern' standardized input arguments enable quick generation standard outputs. addition, also provides comprehensive data checks script generation functionality.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/reference/chevron-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"chevron package — chevron-package","text":"Maintainer: Liming Li liming.li@roche.com Authors: Benoit Falquet benoit.falquet@roche.com Xiaoli Duan xiaoli.duan@roche.com contributors: Adrian Waddell waddell.adrian@gene.com [contributor] Chenkai Lv chenkai.lv@roche.com [contributor] Pawel Rucki pawel.rucki@roche.com [contributor] Tim Barnett timothy.barnett@roche.com [contributor] Tian Fang tian.fang@roche.com [contributor] F. Hoffmann-La Roche AG [copyright holder, funder]","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":null,"dir":"Reference","previous_headings":"","what":"chevron_t — chevron_tlg-class","title":"chevron_t — chevron_tlg-class","text":"chevron_t, subclass chevron_tlg specific validation criteria handle table creation chevron_l, subclass chevron_tlg specific validation criteria handle listing creation chevron_g, subclass chevron_tlg specific validation criteria handle graph creation chevron_simple, subclass chevron_tlg, main function simple call","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"chevron_t — chevron_tlg-class","text":"","code":"chevron_t( main = function(adam_db, ...) build_table(basic_table(), adam_db[[1]]), preprocess = function(adam_db, ...) adam_db, postprocess = std_postprocessing, ... ) chevron_l( main = function(adam_db, ...) data.frame(), preprocess = function(adam_db, ...) adam_db, postprocess = std_postprocessing, ... ) chevron_g( main = function(adam_db, ...) ggplot2::ggplot(), preprocess = function(adam_db, ...) adam_db, postprocess = std_postprocessing, ... ) chevron_simple()"},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"chevron_t — chevron_tlg-class","text":"main (function) returning tlg, adam_db first argument. Typically one _main function chevron. preprocess (function) returning pre-processed list data.frames, adam_db first argument. Typically one _pre function chevron. postprocess (function) returning post-processed tlg, tlg first argument. ... used","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"chevron_t — chevron_tlg-class","text":"chevron_t class object. chevron_l class object. chevron_g class object. chevron_simple class object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"chevron_t — chevron_tlg-class","text":"main (function) returning tlg. Typically one *_main function chevron. preprocess (function) returning pre-processed list data.frames amenable tlg creation. Typically one *_pre function chevron. postprocess (function) returning post-processed tlg. Typically one *_post function chevron.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"chevron_t — chevron_tlg-class","text":"ensure correct execution workflow, additional validation criteria : first argument main function must adam_db, input list data.frames pre-process. ... argument mandatory. first argument preprocess function must adam_db, input list data.frames create tlg output. ... argument mandatory. first argument postprocess function must tlg, input TableTree object post-process. ... argument mandatory.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"chevron_t — chevron_tlg-class","text":"","code":"chevron_t_obj <- chevron_t() chevron_t_obj <- chevron_t(postprocess = function(tlg, indent, ...) { rtables::table_inset(tlg) <- indent tlg }) chevron_l_obj <- chevron_l() chevron_g_obj <- chevron_g() chevron_g_obj <- chevron_g( postprocess = function(tlg, title, ...) tlg + ggplot2::labs(main = title) ) chevron_simple_obj <- chevron_simple()"},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":null,"dir":"Reference","previous_headings":"","what":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, Investigator-Specified Terms.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"","code":"cml02a_gl_main( adam_db, dataset = \"adcm\", key_cols = c(\"ATC2\", \"CMDECOD\"), disp_cols = c(\"ATC2\", \"CMDECOD\", \"CMTRT\"), split_into_pages_by_var = NULL, unique_rows = TRUE, ... ) cml02a_gl_pre( adam_db, dataset = \"adcm\", disp_cols = c(\"ATC2\", \"CMDECOD\", \"CMTRT\"), ... ) cml02a_gl"},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"object class chevron_l length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. split_into_pages_by_var (character NULL) name variable split listing . unique_rows (flag) whether keep unique rows listing. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"main function returns rlistings list object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"cml02a_gl_main(): Main TLG function cml02a_gl_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cml02a_gl.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"CML02A_GL Listing 1 (Default) Concomitant Medication Class Level 2, Preferred Name, and Investigator-Specified Terms. — cml02a_gl_main","text":"","code":"run(cml02a_gl, syn_data) #> ATC Class Level 2 WHODrug Preferred Name Investigator-Specified Treatment Term #> —————————————————————————————————————————————————————————————————————————————————— #> ATCCLAS2 A medname A_1/3 A_1/3 #> medname A_2/3 A_2/3 #> medname A_3/3 A_3/3 #> ATCCLAS2 A p2 medname A_3/3 A_3/3 #> ATCCLAS2 B medname B_1/4 B_1/4 #> medname B_2/4 B_2/4 #> medname B_3/4 B_3/4 #> medname B_4/4 B_4/4 #> ATCCLAS2 B p2 medname B_1/4 B_1/4 #> medname B_2/4 B_2/4 #> ATCCLAS2 B p3 medname B_1/4 B_1/4 #> medname B_2/4 B_2/4 #> ATCCLAS2 C medname C_1/2 C_1/2 #> medname C_2/2 C_2/2 #> ATCCLAS2 C p2 medname C_1/2 C_1/2 #> medname C_2/2 C_2/2 #> ATCCLAS2 C p3 medname C_2/2 C_2/2"},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":null,"dir":"Reference","previous_headings":"","what":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"concomitant medication table number subjects total number treatments medication class.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"","code":"cmt01_label cmt01a_main( adam_db, arm_var = \"ARM\", lbl_overall = NULL, row_split_var = \"ATC2\", medname_var = \"CMDECOD\", summary_labels = setNames(rep(list(cmt01_label), length(row_split_var) + 1L), c(\"TOTAL\", row_split_var)), ... ) cmt01a_pre(adam_db, ...) cmt01a_post( tlg, prune_0 = TRUE, sort_by_freq = FALSE, row_split_var = \"ATC2\", medname_var = \"CMDECOD\", ... ) cmt01a"},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"object class character length 2. object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) variable defining medication category. default ATC2. medname_var (string) variable name medical treatment name. summary_labels (list) summarize labels. See details. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows sort_by_freq (flag) whether sort medication class frequency.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"Data filtered concomitant medication. (ATIREL == \"CONCOMITANT\"). Numbers represent absolute numbers subjects fraction N, absolute numbers specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort medication class alphabetically within medication class decreasing total number patients specific medication. summary_labels used control summary level. \"\" used, split summary statistic labels. One special case \"TOTAL\", overall population.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"cmt01_label: Default labels cmt01a_main(): Main TLG function cmt01a_pre(): Preprocessing cmt01a_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"adam_db object must contain adcm table columns specified row_split_var medname_var well \"CMSEQ\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt01a.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"CMT01A Concomitant Medication by Medication Class and Preferred Name. — cmt01_label","text":"","code":"library(dplyr) proc_data <- syn_data proc_data$adcm <- proc_data$adcm %>% filter(ATIREL == \"CONCOMITANT\") run(cmt01a, proc_data) #> ATC Level 2 Text A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 14 (93.3%) #> Total number of treatments 40 40 61 #> ATCCLAS2 A #> Total number of patients with at least one treatment 7 (46.7%) 10 (66.7%) 10 (66.7%) #> Total number of treatments 11 17 19 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> ATCCLAS2 A p2 #> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%) #> Total number of treatments 6 8 8 #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> ATCCLAS2 B #> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 10 (66.7%) #> Total number of treatments 16 15 23 #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> ATCCLAS2 B p2 #> Total number of patients with at least one treatment 7 (46.7%) 6 (40.0%) 6 (40.0%) #> Total number of treatments 12 8 10 #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 B p3 #> Total number of patients with at least one treatment 7 (46.7%) 6 (40.0%) 6 (40.0%) #> Total number of treatments 12 8 10 #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> ATCCLAS2 C #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p2 #> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%) #> Total number of treatments 13 8 19 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%) #> ATCCLAS2 C p3 #> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%) #> Total number of treatments 5 5 12 #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":null,"dir":"Reference","previous_headings":"","what":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"concomitant medication table number subjects total number treatments medication name sorted frequencies.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"","code":"cmt02_pt_main( adam_db, arm_var = \"ARM\", lbl_overall = NULL, row_split_var = NULL, medname_var = \"CMDECOD\", summary_labels = list(TOTAL = cmt01_label), ... ) cmt02_pt_pre(adam_db, ...) cmt02_pt_post( tlg, prune_0 = TRUE, sort_by_freq = FALSE, row_split_var = NULL, medname_var = \"CMDECOD\", ... ) cmt02_pt"},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) variable defining medication category. default ATC2. medname_var (string) variable name medical treatment name. summary_labels (list) summarize labels. See details. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows sort_by_freq (flag) whether sort medication class frequency.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"Data filtered concomitant medication. (ATIREL == \"CONCOMITANT\"). Numbers represent absolute numbers subjects fraction N, absolute numbers specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort medication class alphabetically within medication class decreasing total number patients specific medication. summary_labels used control summary level. \"\" used, split summary statistic labels. One special case \"TOTAL\", overall population.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"cmt02_pt_main(): Main TLG function cmt02_pt_pre(): Preprocessing cmt02_pt_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"adam_db object must contain adcm table columns specified row_split_var medname_var well \"CMSEQ\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/cmt02_pt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"CMT02_PT Table 1 (Default) Concomitant Medications by Preferred Name. — cmt02_pt_main","text":"","code":"run(cmt02_pt, syn_data) #> A: Drug X B: Placebo C: Combination #> Other Treatment (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of treatments 58 59 99 #> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%) #> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%) #> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%) #> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%) #> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%) #> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%) #> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%) #> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%) #> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/reference/convert_to_month.html","id":null,"dir":"Reference","previous_headings":"","what":"Helper function to convert to months if needed — convert_to_month","title":"Helper function to convert to months if needed — convert_to_month","text":"Helper function convert months needed","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/convert_to_month.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Helper function to convert to months if needed — convert_to_month","text":"","code":"convert_to_month(x, unit)"},{"path":"https://insightsengineering.github.io/chevron/reference/convert_to_month.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Helper function to convert to months if needed — convert_to_month","text":"x (numeric) time. unit (character) (factor) time unit.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/convert_to_month.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Helper function to convert to months if needed — convert_to_month","text":"numeric vector time months.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/count_children.html","id":null,"dir":"Reference","previous_headings":"","what":"Count Children — count_children","title":"Count Children — count_children","text":"Count Children","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/count_children.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Count Children — count_children","text":"","code":"count_children(x)"},{"path":"https://insightsengineering.github.io/chevron/reference/count_or_summarize.html","id":null,"dir":"Reference","previous_headings":"","what":"Count or summarize by groups — count_or_summarize","title":"Count or summarize by groups — count_or_summarize","text":"Count summarize groups","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/count_or_summarize.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Count or summarize by groups — count_or_summarize","text":"","code":"count_or_summarize(lyt, var, level, detail_vars, indent_mod = 0L, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/count_or_summarize.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Count or summarize by groups — count_or_summarize","text":"lyt (PreDataTableLayouts) rtable layout. var (string) analysis variable. level (string) level displayed. detail_vars (character) variables detail information.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/count_patients_recursive.html","id":null,"dir":"Reference","previous_headings":"","what":"Count patients recursively — count_patients_recursive","title":"Count patients recursively — count_patients_recursive","text":"Count patients recursively","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/count_patients_recursive.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Count patients recursively — count_patients_recursive","text":"","code":"count_patients_recursive(lyt, anl_vars, anl_lbls, lbl_vars)"},{"path":"https://insightsengineering.github.io/chevron/reference/count_patients_recursive.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Count patients recursively — count_patients_recursive","text":"lyt (PreDataTableLayouts) rtable layout. anl_vars Named (list) analysis variables. anl_lbls (character) labels. lbl_vars Named (list) analysis labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":null,"dir":"Reference","previous_headings":"","what":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"Cox models commonly used methods estimate magnitude effect survival analyses. assumes proportional hazards; , assumes ratio hazards two groups (e.g. two arms) constant time. ratio referred \"hazard ratio\" one commonly reported metrics describe effect size survival analysis.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"","code":"coxt01_main( adam_db, arm_var = \"ARM\", time_var = \"AVAL\", event_var = \"EVENT\", covariates = c(\"SEX\", \"RACE\", \"AAGE\"), strata = NULL, lbl_vars = \"Effect/Covariate Included in the Model\", multivar = FALSE, ... ) coxt01_pre(adam_db, arm_var = \"ARM\", ...) coxt01_post(tlg, prune_0 = FALSE, ...) coxt01"},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) arm variable used arm splitting. time_var (string) time variable Cox proportional hazards regression model. event_var (string) event variable Cox proportional hazards regression model. covariates (character) fitted corresponding effect estimated. strata (character) fitted stratified analysis. lbl_vars (string) text label Cox regression model variables. multivar (flag) indicator whether multivariate cox regression conducted. ... arguments passed tern::control_coxreg(). tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"main function returns rtables object preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"reference arm always first level arm_var. Please change level want change reference arms. table allows confidence level adjusted, default two-sided 95%. stratified analysis DISCRETE tie handling (equivalent tern::control_coxreg(ties = \"exact\") R). Model includes treatment plus specified covariate(s) factor(s) numeric(s), \"SEX\", \"RACE\" \"AAGE\" default candidates. selection covariates whether selection process (vs. fixed, pre-specified list) needs pre-specified. pairwise comparisons using hazard ratio, value control group denominator. Keep zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"coxt01_main(): Main TLG function coxt01_pre(): Preprocessing coxt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"adam_db object must contain adtte table \"PARAMCD\", \"ARM\", \"AVAL\", \"CNSR, columns specified \"covariates\" denoted c(\"SEX\", \"RACE\", \"AAGE\") default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"COXT01 (Default) Cox Regression Model Table. — coxt01_main","text":"","code":"library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"CRSD\", \"adtte\") proc_data <- log_filter(proc_data, ARMCD != \"ARM C\", \"adsl\") run(coxt01, proc_data) #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 0.68 (0.25, 1.89) 0.4638 #> Covariate: #> Sex 30 0.53 (0.18, 1.58) 0.2553 #> RACE 30 0.79 (0.28, 2.17) 0.6415 #> Age (yr) 30 0.67 (0.24, 1.89) 0.4526 run(coxt01, proc_data, covariates = c(\"SEX\", \"AAGE\"), strata = c(\"RACE\"), conf_level = 0.90) #> Treatment Effect Adjusted for Covariate #> Effect/Covariate Included in the Model n Hazard Ratio 90% CI p-value #> ————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> B: Placebo vs control (A: Drug X) 30 1.03 (0.44, 2.42) 0.9578 #> Covariate: #> Sex 30 0.81 (0.31, 2.10) 0.7214 #> Age (yr) 30 1.01 (0.42, 2.40) 0.9856"},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"COXT01 Layout — coxt01_lyt","title":"COXT01 Layout — coxt01_lyt","text":"COXT01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"COXT01 Layout — coxt01_lyt","text":"","code":"coxt01_lyt(variables, col_split, lbl_vars, control, multivar, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"COXT01 Layout — coxt01_lyt","text":"variables (list) list variables Cox proportional hazards regression model. lbl_vars (string) text label Cox regression model variables. multivar (flag) indicator whether multivariate cox regression conducted. ... arguments passed tern::control_coxreg().","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"COXT01 Layout — coxt01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":null,"dir":"Reference","previous_headings":"","what":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"COXT02 table follows principles general Cox model analysis produces estimates covariates included model (usually main effects without interaction terms).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"","code":"coxt02_main( adam_db, arm_var = \"ARM\", time_var = \"AVAL\", event_var = \"EVENT\", covariates = c(\"SEX\", \"RACE\", \"AAGE\"), strata = NULL, lbl_vars = \"Effect/Covariate Included in the Model\", multivar = TRUE, ... ) coxt02"},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) arm variable used arm splitting. time_var (string) time variable Cox proportional hazards regression model. event_var (string) event variable Cox proportional hazards regression model. covariates (character) fitted corresponding effect estimated. strata (character) fitted stratified analysis. lbl_vars (string) text label Cox regression model variables. multivar (flag) indicator whether multivariate cox regression conducted. ... arguments passed tern::control_coxreg().","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"main function returns rtables object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"reference arm always first level arm_var. Please change level want change reference arms. table allows confidence level adjusted, default two-sided 95%. stratified analysis DISCRETE tie handling (equivalent tern::control_coxreg(ties = \"exact\") R). Model includes treatment plus specified covariate(s) factor(s) numeric(s), \"SEX\", \"RACE\" \"AAGE\" default candidates. selection covariates whether selection process (vs. fixed, pre-specified list) needs pre-specified. pairwise comparisons using hazard ratio, value control group denominator. Keep zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"coxt02_main(): Main TLG function","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"adam_db object must contain adtte table \"PARAMCD\", \"ARM\", \"AVAL\", \"CNSR, columns specified \"covariates\" denoted c(\"SEX\", \"RACE\", \"AAGE\") default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/coxt02.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"COXT02 Multi-Variable Cox Regression Model Table. — coxt02_main","text":"","code":"library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"CRSD\", \"adtte\") run(coxt02, proc_data) #> Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value #> —————————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> Description of Planned Arm (reference = A: Drug X) 0.6859 #> B: Placebo 0.77 (0.29, 2.08) 0.6113 #> C: Combination 0.62 (0.21, 1.82) 0.3853 #> Covariate: #> Sex (reference = F) #> M 1.41 (0.61, 3.23) 0.4194 #> RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.8938 #> ASIAN 1.69 (0.36, 7.99) 0.5055 #> BLACK OR AFRICAN AMERICAN 1.86 (0.29, 11.72) 0.5109 #> WHITE 2.03 (0.34, 12.25) 0.4414 #> Age (yr) #> All 1.00 (0.94, 1.08) 0.8951 run(coxt02, proc_data, covariates = c(\"SEX\", \"AAGE\"), strata = c(\"RACE\"), conf_level = 0.90) #> Effect/Covariate Included in the Model Hazard Ratio 90% CI p-value #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Treatment: #> Description of Planned Arm (reference = A: Drug X) 0.7644 #> B: Placebo 0.97 (0.40, 2.35) 0.9586 #> C: Combination 0.70 (0.29, 1.73) 0.5199 #> Covariate: #> Sex (reference = F) #> M 1.66 (0.81, 3.41) 0.2468 #> Age (yr) #> All 1.01 (0.95, 1.06) 0.8541"},{"path":"https://insightsengineering.github.io/chevron/reference/create_id_listings.html","id":null,"dir":"Reference","previous_headings":"","what":"Concatenate Site and Subject ID — create_id_listings","title":"Concatenate Site and Subject ID — create_id_listings","text":"Concatenate Site Subject ID","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/create_id_listings.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Concatenate Site and Subject ID — create_id_listings","text":"","code":"create_id_listings(site, subject, sep = \"/\")"},{"path":"https://insightsengineering.github.io/chevron/reference/create_id_listings.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Concatenate Site and Subject ID — create_id_listings","text":"site (string) subject (string) sep (string)","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/create_id_listings.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Concatenate Site and Subject ID — create_id_listings","text":"{Patient_label} whisker placeholder used label.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/create_id_listings.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Concatenate Site and Subject ID — create_id_listings","text":"","code":"create_id_listings(\"BRA-1\", \"xxx-1234\") #> [1] \"BRA-1/1234\" #> attr(,\"label\") #> [1] \"Center/Patients ID\""},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv4_dir.html","id":null,"dir":"Reference","previous_headings":"","what":"CTC version 4 Grade Direction Data — ctcv4_dir","title":"CTC version 4 Grade Direction Data — ctcv4_dir","text":"CTC version 4 Grade Direction Data","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv4_dir.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CTC version 4 Grade Direction Data — ctcv4_dir","text":"","code":"ctcv4_dir"},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv4_dir.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CTC version 4 Grade Direction Data — ctcv4_dir","text":"object class data.frame 35 rows 3 columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv5_dir.html","id":null,"dir":"Reference","previous_headings":"","what":"CTC version 5 Grade Direction Data — ctcv5_dir","title":"CTC version 5 Grade Direction Data — ctcv5_dir","text":"CTC version 5 Grade Direction Data","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv5_dir.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CTC version 5 Grade Direction Data — ctcv5_dir","text":"","code":"ctcv5_dir"},{"path":"https://insightsengineering.github.io/chevron/reference/ctcv5_dir.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CTC version 5 Grade Direction Data — ctcv5_dir","text":"object class data.frame 35 rows 3 columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/deparse_print.html","id":null,"dir":"Reference","previous_headings":"","what":"Deparse print — deparse_print","title":"Deparse print — deparse_print","text":"Deparse print","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/deparse_print.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Deparse print — deparse_print","text":"","code":"deparse_print(x, indent, max_line = getOption(\"chevron.arg_max_line\", 5L))"},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":null,"dir":"Reference","previous_headings":"","what":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"variable, summary statistics default based number patients corresponding n row.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"","code":"dmt01_main( adam_db, arm_var = \"ARM\", lbl_overall = \"All {Patient_label}\", summaryvars = c(\"AAGE\", \"AGEGR1\", \"SEX\", \"ETHNIC\", \"RACE\"), stats = list(default = c(\"n\", \"mean_sd\", \"median\", \"range\", \"count_fraction\")), precision = list(), ... ) dmt01_pre(adam_db, ...) dmt01_post(tlg, prune_0 = TRUE, ...) dmt01"},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted summaryvars (character) variables summarized demographic table. label attribute corresponding column adsl table adam_db used label. stats (named list character) names columns found .df_row values indicate statistical analysis perform. default set, parameter precision specified, value default used. precision (named list integer) names strings found summaryvars values indicate number digits statistics numeric variables. default set, parameter precision specified, value default used. neither provided, auto determination used. See tern::format_auto. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"Information ADSUB generally included ADSL analysis. Default demographic characteristics table specified otherwise, numbers represent absolute numbers patients fraction N Remove zero-count rows Split columns arm (planned actual / code description) Include total column default","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"dmt01_main(): Main TLG function dmt01_pre(): Preprocessing dmt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"adam_db object must contain adsl table columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1. — dmt01_main","text":"","code":"run(dmt01, syn_data) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ———————————————————————————————————————————————————————————————————————————————————————————— #> Age (yr) #> n 15 15 15 45 #> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3) #> Median 31.0 35.0 35.0 34.0 #> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57 #> Age Group #> n 15 15 15 45 #> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%) #> Sex #> n 15 15 15 45 #> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%) #> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%) #> Ethnicity #> n 15 15 15 45 #> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%) #> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%) #> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%) #> RACE #> n 15 15 15 45 #> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%) #> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%) #> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%) #> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)"},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"dmt01 Layout — dmt01_lyt","title":"dmt01 Layout — dmt01_lyt","text":"dmt01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"dmt01 Layout — dmt01_lyt","text":"","code":"dmt01_lyt( arm_var, lbl_overall, summaryvars, summaryvars_lbls, stats, precision )"},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"dmt01 Layout — dmt01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted summaryvars_lbls (character) labels corresponding analyzed variables.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dmt01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"dmt01 Layout — dmt01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/do_call.html","id":null,"dir":"Reference","previous_headings":"","what":"Execute a function call — do_call","title":"Execute a function call — do_call","text":"Execute function call","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/do_call.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Execute a function call — do_call","text":"","code":"do_call(what, args)"},{"path":"https://insightsengineering.github.io/chevron/reference/dose_change_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Dose Change Rule — dose_change_rule","title":"Dose Change Rule — dose_change_rule","text":"Dose Change Rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dose_change_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dose Change Rule — dose_change_rule","text":"","code":"dose_change_rule"},{"path":"https://insightsengineering.github.io/chevron/reference/dose_change_rule.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dose Change Rule — dose_change_rule","text":"object class rule (inherits character) length 9.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":null,"dir":"Reference","previous_headings":"","what":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"DST01 Disposition Table provides overview patients study completion. patients discontinued study reason provided.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"","code":"dst01_main( adam_db, arm_var = \"ARM\", lbl_overall = \"All {Patient_label}\", study_status_var = \"EOSSTT\", detail_vars = list(Discontinued = c(\"DCSREAS\")), trt_status_var = NULL, ... ) dst01_pre(adam_db, ...) dst01_post(tlg, prune_0 = TRUE, ...) dst01"},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable. Usually one ARM, ACTARM, TRT01A, TRT01A. lbl_overall (string) label used overall column, set NULL overall column omitted study_status_var (string) variable used define patient status. Default EOSSTT, however can also variable name pattern EOPxxSTT xx must substituted 2 digits referring analysis period. detail_vars Named (list) grouped display study_status_var. names must subset unique levels study_status_var. trt_status_var (string) variable treatment status. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"Default patient disposition table summarizing reasons patients withdrawal. Numbers represent absolute numbers patients fraction N. Remove zero-count rows. Split columns arm. Include total column default. Sort withdrawal reasons alphabetic order.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"dst01_main(): Main TLG function dst01_pre(): Preprocessing dst01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"adam_db object must contain adsl table columns specified status_var disc_reason_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"DST01 Table 1 (Default) Patient Disposition Table 1. — dst01_main","text":"","code":"run(dst01, syn_data, detail_vars = list(Ongoing = \"STDONS\")) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ——————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%) run(dst01, syn_data, detail_vars = list(Discontinued = \"DCSREAS\", Ongoing = \"STDONS\")) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%) #> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%) #> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%) #> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%) #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%) run( dst01, syn_data, detail_vars = list( Discontinued = c(\"DCSREASGP\", \"DCSREAS\"), Ongoing = \"STDONS\" ) ) #> A: Drug X B: Placebo C: Combination All Patients #> (N=15) (N=15) (N=15) (N=45) #> ——————————————————————————————————————————————————————————————————————————————————————————— #> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%) #> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%) #> Safety #> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%) #> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%) #> Non-Safety #> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%) #> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%) #> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%) #> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%)"},{"path":"https://insightsengineering.github.io/chevron/reference/dst01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"dst01 Layout — dst01_lyt","title":"dst01 Layout — dst01_lyt","text":"dst01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"dst01 Layout — dst01_lyt","text":"","code":"dst01_lyt(arm_var, lbl_overall, study_status_var, detail_vars, trt_status_var)"},{"path":"https://insightsengineering.github.io/chevron/reference/dst01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"dst01 Layout — dst01_lyt","text":"arm_var (string) variable. Usually one ARM, ACTARM, TRT01A, TRT01A. lbl_overall (string) label used overall column, set NULL overall column omitted study_status_var (string) variable used define patient status. Default EOSSTT, however can also variable name pattern EOPxxSTT xx must substituted 2 digits referring analysis period. detail_vars Named (list) grouped display study_status_var. trt_status_var (string) variable treatment status.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dst01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"dst01 Layout — dst01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":null,"dir":"Reference","previous_headings":"","what":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"description causes death optionally breakdown category /post-study reporting death.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"","code":"dtht01_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, other_category = FALSE, time_since_last_dose = FALSE, ... ) dtht01_pre(adam_db, ...) dtht01_post(tlg, prune_0 = TRUE, ...) dtht01"},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted other_category (flag) breakdown category displayed. time_since_last_dose (flag) time event information displayed. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"Numbers represent absolute numbers subjects fraction N, absolute numbers specified. Remove zero-count rows unless overridden prune_0 = FALSE. include total column default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"dtht01_main(): Main TLG function dtht01_pre(): Preprocessing dtht01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"adam_db object must contain adsl table columns \"DTHFL\", \"DTHCAT\" well LDDTHGR1 time_since_last_dose TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"DTHT01 Table 1 (Default) Death Table. — dtht01_main","text":"","code":"run(dtht01, syn_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————— #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Primary Cause of Death #> n 2 4 3 #> Adverse Event 1 (50.0%) 2 (50.0%) 1 (33.3%) #> Progressive Disease 1 (50.0%) 0 2 (66.7%) #> Other 0 2 (50.0%) 0 run(dtht01, syn_data, other_category = TRUE, time_since_last_dose = TRUE) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%) #> Primary Cause of Death #> n 2 4 3 #> Adverse Event 1 (50.0%) 2 (50.0%) 1 (33.3%) #> Progressive Disease 1 (50.0%) 0 2 (66.7%) #> Other 0 2 (50.0%) 0 #> LOST TO FOLLOW UP 0 1 (50%) 0 #> SUICIDE 0 1 (50%) 0 #> Days from last drug administration #> n 2 4 3 #> <=30 2 (100%) 1 (25.0%) 2 (66.7%) #> >30 0 3 (75.0%) 1 (33.3%) #> Primary cause by days from last study drug administration #> <=30 #> n 2 1 2 #> Adverse Event 1 (50.0%) 0 1 (50.0%) #> Progressive Disease 1 (50.0%) 0 1 (50.0%) #> Other 0 1 (100%) 0 #> >30 #> n 0 3 1 #> Adverse Event 0 2 (66.7%) 0 #> Progressive Disease 0 0 1 (100%) #> Other 0 1 (33.3%) 0"},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"dtht01 Layout — dtht01_lyt","title":"dtht01 Layout — dtht01_lyt","text":"dtht01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"dtht01 Layout — dtht01_lyt","text":"","code":"dtht01_lyt( arm_var, lbl_overall, death_flag, death_var, other_level, other_var, dose_death_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"dtht01 Layout — dtht01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted death_flag (string) variable name death flag. death_var (string) variable name death category. other_level (string) \"\" level death category. other_var (string) variable name death cause \"\". dose_death_var (string) variable name days last dose.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dtht01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"dtht01 Layout — dtht01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dummy_template.html","id":null,"dir":"Reference","previous_headings":"","what":"Dummy template. — dummy_template","title":"Dummy template. — dummy_template","text":"template creates dummy output.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dummy_template.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Dummy template. — dummy_template","text":"","code":"dummy_template"},{"path":"https://insightsengineering.github.io/chevron/reference/dummy_template.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dummy template. — dummy_template","text":"object class chevron_simple length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/dummy_template.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Dummy template. — dummy_template","text":"","code":"run(dummy_template, syn_data) #> all obs #> ——————————"},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"EGT01 table provides overview ECG values change baseline respective arm course trial.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"","code":"egt01_main( adam_db, dataset = \"adeg\", arm_var = \"ACTARM\", lbl_overall = NULL, row_split_var = NULL, summaryvars = c(\"AVAL\", \"CHG\"), visitvar = \"AVISIT\", precision = list(default = 2L), page_var = \"PARAMCD\", .stats = c(\"n\", \"mean_sd\", \"median\", \"range\"), skip = list(CHG = \"BASELINE\"), ... ) egt01_pre(adam_db, dataset = \"adeg\", ...) egt01"},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) additional row split variables. summaryvars (character) variables analyzed. label attribute corresponding column table adam_db used label. visitvar (string) typically one \"AVISIT\" user-defined visit incorporating \"ATPT\". precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. page_var (string) variable name prior row split page. .stats (character) statistics names, see tern::analyze_vars(). skip Named (list) visit values need inhibited. ... additional arguments like .indent_mods, .labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"Analysis Value column, displays number patients, mean, standard deviation, median range analysis value visit. Change Baseline column, displays number patient mean, standard deviation, median range changes relative baseline. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically ACTARM. include total column default. Sorted based factor level; first PARAM labels alphabetic order chronological time point given AVISIT. Re-level customize order","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"egt01_main(): Main TLG function egt01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"adam_db object must contain table named dataset columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EGT01 ECG Parameters and Change from Baseline By Visit Table. — egt01_main","text":"","code":"run(egt01, syn_data) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Heart Rate #> BASELINE #> n 15 15 15 #> Mean (SD) 76.594 (17.889) 69.899 (18.788) 70.492 (18.175) #> Median 77.531 77.174 74.111 #> Min - Max 46.50 - 106.68 26.42 - 97.69 45.37 - 115.49 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 71.140 (23.441) -5.454 (25.128) 70.958 (14.877) 1.059 (23.345) 67.450 (18.932) -3.043 (23.753) #> Median 77.210 -2.152 70.033 -8.403 68.471 0.181 #> Min - Max 8.53 - 102.63 -50.97 - 36.54 44.85 - 93.79 -25.34 - 60.50 38.90 - 100.05 -52.20 - 33.13 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 69.350 (16.083) -7.244 (28.960) 76.096 (14.958) 6.198 (29.319) 63.694 (12.920) -6.799 (23.949) #> Median 65.746 -11.369 75.323 0.255 61.076 -4.954 #> Min - Max 47.22 - 101.44 -49.59 - 42.91 47.50 - 111.40 -37.51 - 69.34 43.25 - 86.13 -52.70 - 40.76 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 73.894 (24.576) -2.700 (32.079) 67.635 (19.114) -2.263 (29.989) 72.054 (19.308) 1.562 (27.494) #> Median 69.296 5.492 68.468 -2.093 68.686 -5.848 #> Min - Max 44.15 - 131.73 -62.53 - 38.19 31.89 - 108.87 -52.26 - 66.81 32.16 - 109.86 -49.61 - 35.23 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 73.241 (19.256) -3.353 (29.170) 66.524 (25.487) -3.374 (36.024) 66.600 (22.839) -3.892 (24.140) #> Median 68.689 0.232 66.397 -11.730 64.969 -6.827 #> Min - Max 33.71 - 111.54 -55.14 - 65.04 19.66 - 111.29 -60.39 - 61.00 10.35 - 100.88 -50.72 - 26.77 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 61.690 (22.182) -14.904 (30.330) 60.712 (20.025) -9.187 (24.587) 72.683 (23.495) 2.191 (26.654) #> Median 57.925 -12.660 60.454 -16.100 77.585 14.635 #> Min - Max 23.89 - 103.74 -60.00 - 57.24 32.53 - 102.02 -52.56 - 50.96 31.21 - 105.05 -42.90 - 34.64 #> QT Duration #> BASELINE #> n 15 15 15 #> Mean (SD) 335.294 (123.231) 363.104 (68.160) 347.311 (86.236) #> Median 372.731 386.316 348.254 #> Min - Max 121.28 - 554.97 214.65 - 445.53 170.80 - 508.54 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 357.361 (85.688) 22.067 (144.166) 415.225 (105.425) 52.121 (144.259) 321.078 (107.553) -26.233 (129.135) #> Median 344.797 49.432 421.950 62.762 307.962 -17.006 #> Min - Max 241.22 - 517.39 -207.23 - 245.36 234.11 - 604.72 -190.70 - 364.94 118.36 - 480.29 -363.11 - 163.67 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 344.883 (106.793) 9.589 (174.797) 370.548 (80.862) 7.444 (91.301) 354.129 (95.133) 6.818 (142.397) #> Median 312.236 -9.264 388.515 -9.429 365.292 39.930 #> Min - Max 187.77 - 501.87 -278.91 - 372.71 204.55 - 514.43 -190.58 - 173.87 200.19 - 493.40 -279.46 - 265.56 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 342.062 (92.568) 6.768 (151.505) 326.684 (116.421) -36.420 (145.415) 366.245 (99.106) 18.935 (168.417) #> Median 352.930 -22.771 298.353 -78.409 329.688 -21.584 #> Min - Max 199.40 - 476.04 -230.25 - 303.00 151.05 - 561.23 -205.30 - 293.76 249.42 - 580.81 -252.73 - 410.01 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 371.650 (44.805) 36.356 (139.308) 333.697 (110.377) -29.407 (125.592) 333.181 (96.466) -14.130 (107.622) #> Median 375.412 58.958 308.020 -40.987 330.911 -25.820 #> Min - Max 302.32 - 451.62 -214.07 - 258.04 183.09 - 531.08 -241.72 - 134.12 126.95 - 488.57 -234.92 - 152.49 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 345.504 (130.543) 10.210 (198.224) 309.919 (84.624) -53.185 (105.730) 322.931 (67.801) -24.380 (117.331) #> Median 355.730 -23.213 306.219 -12.373 341.988 -26.952 #> Min - Max 88.38 - 661.12 -271.06 - 539.84 189.01 - 448.58 -256.52 - 91.57 217.51 - 427.16 -291.03 - 171.19 #> RR Duration #> BASELINE #> n 15 15 15 #> Mean (SD) 1086.908 (363.811) 1050.034 (390.444) 1102.659 (310.359) #> Median 1116.849 1089.193 1250.037 #> Min - Max 626.19 - 1653.12 414.61 - 1721.89 385.51 - 1430.81 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 968.499 (287.811) -118.409 (546.796) 1041.186 (211.201) -8.848 (435.281) 948.491 (213.746) -154.168 (442.882) #> Median 961.296 -147.460 1013.786 24.754 965.429 -224.054 #> Min - Max 358.92 - 1593.51 -1014.82 - 911.82 714.44 - 1417.52 -618.80 - 847.31 513.35 - 1229.09 -736.69 - 843.58 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 932.717 (259.634) -154.191 (331.884) 1139.332 (454.231) 89.298 (582.750) 1021.283 (233.529) -81.376 (415.781) #> Median 950.533 -205.949 1068.007 -5.449 964.616 -142.180 #> Min - Max 409.68 - 1269.35 -649.69 - 473.09 486.51 - 2048.73 -846.72 - 1148.61 667.36 - 1367.25 -647.47 - 616.15 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 1068.865 (319.540) -18.043 (513.412) 1110.882 (259.523) 60.848 (432.700) 1105.918 (306.185) 3.259 (516.734) #> Median 1201.998 -65.085 1163.690 51.200 1187.130 30.318 #> Min - Max 380.49 - 1551.65 -832.86 - 703.74 621.41 - 1453.29 -887.06 - 822.18 446.02 - 1648.32 -984.79 - 816.30 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 1087.915 (205.940) 1.008 (403.039) 1161.681 (293.257) 111.647 (460.979) 992.134 (283.177) -110.525 (334.932) #> Median 1084.658 146.611 1055.223 191.008 1028.997 -112.599 #> Min - Max 697.59 - 1499.17 -801.16 - 402.97 722.35 - 1762.04 -528.27 - 1191.83 497.14 - 1382.12 -597.95 - 757.99 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 1016.880 (424.428) -70.027 (505.078) 1135.131 (224.684) 85.097 (497.679) 1089.527 (238.909) -13.132 (362.606) #> Median 962.584 -142.925 1158.815 -9.553 1081.015 16.706 #> Min - Max 352.97 - 1843.86 -894.83 - 1162.79 714.34 - 1436.68 -843.41 - 992.34 699.72 - 1611.38 -696.03 - 561.53"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT02 ECG Abnormalities Table. — egt02_1_main","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"ECG Parameters outside Normal Limits Regardless Abnormality Baseline Table.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"","code":"egt02_1_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, exclude_base_abn = FALSE, ... ) egt02_pre(adam_db, ...) egt02_post(tlg, ...) egt02_1"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted exclude_base_abn (flag) whether baseline abnormality excluded. ... used. tlg (TableTree, Listing ggplot) object typically produced main function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"main function returns rtables object preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"count LOW HIGH values. Results \"LOW LOW\" treated \"LOW\", \"HIGH HIGH\" \"HIGH\". include total column default. remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"egt02_1_main(): Main TLG function egt02_pre(): Preprocessing egt02_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"adam_db object must contain adeg table \"PARAM\", \"ANRIND\" \"BNRIND\" columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EGT02 ECG Abnormalities Table. — egt02_1_main","text":"","code":"run(egt02_1, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————— #> Heart Rate #> Low 4/15 (26.7%) 4/15 (26.7%) 4/15 (26.7%) #> High 4/15 (26.7%) 3/15 (20%) 3/15 (20%) #> QT Duration #> Low 2/15 (13.3%) 5/15 (33.3%) 3/15 (20%) #> High 3/15 (20%) 6/15 (40%) 2/15 (13.3%) #> RR Duration #> Low 6/15 (40%) 2/15 (13.3%) 4/15 (26.7%) #> High 4/15 (26.7%) 5/15 (33.3%) 2/15 (13.3%)"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"ECG Parameters outside Normal Limits Among Patients without Abnormality Baseline Table.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"","code":"egt02_2_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, exclude_base_abn = TRUE, ... ) egt02_2"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted exclude_base_abn (flag) whether baseline abnormality excluded. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"main function returns rtables object preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"count LOW HIGH values. Results \"LOW LOW\" treated \"LOW\", \"HIGH HIGH\" \"HIGH\". include total column default. remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"egt02_2_main(): Main TLG function","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"adam_db object must contain adeg table \"PARAM\", \"ANRIND\" \"BNRIND\" columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EGT02_2 ECG Abnormalities Table. — egt02_2_main","text":"","code":"run(egt02_2, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————— #> Heart Rate #> Low 4/15 (26.7%) 4/14 (28.6%) 4/15 (26.7%) #> High 3/13 (23.1%) 3/15 (20%) 2/14 (14.3%) #> QT Duration #> Low 2/12 (16.7%) 5/15 (33.3%) 3/14 (21.4%) #> High 3/14 (21.4%) 6/15 (40%) 2/14 (14.3%) #> RR Duration #> Low 6/15 (40%) 2/13 (15.4%) 4/14 (28.6%) #> High 4/13 (30.8%) 5/13 (38.5%) 2/15 (13.3%)"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"egt02 Layout — egt02_lyt","title":"egt02 Layout — egt02_lyt","text":"egt02 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"egt02 Layout — egt02_lyt","text":"","code":"egt02_lyt( arm_var = \"ACTARM\", lbl_overall, lbl_vs_assessment = \"Assessment\", lbl_vs_abnormality = \"Abnormality\", exclude_base_abn )"},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"egt02 Layout — egt02_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_vs_assessment (string) label assessment variable. lbl_vs_abnormality (string) label abnormality variable. exclude_base_abn (flag) whether exclude subjects baseline abnormality numerator denominator.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt02_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"egt02 Layout — egt02_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"EGT03 Table entries provide number patients baseline assessment minimum maximum post-baseline assessment. Percentages based total number patients treatment group. Baseline patient's last observation prior initiation study drug.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"","code":"egt03_main( adam_db, arm_var = \"ACTARMCD\", summaryvar = \"BNRIND\", splitvar = \"ANRIND\", visitvar = \"AVISIT\", page_var = \"PARAMCD\", ... ) egt03_pre(adam_db, ...) egt03_post(tlg, prune_0 = FALSE, ...) egt03"},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (character) arm variables used row split, typically \"ACTARMCD\". summaryvar (character) variables analyzed, typically \"BNRIND\". Labels corresponding columns used subtitles. splitvar (character) variables analyzed, typically \"ANRIND\". Labels corresponding columns used subtitles. visitvar (string) typically \"AVISIT\" user-defined visit incorporating \"ATPT\". page_var (string) variable name prior row split page. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"ADEG data subsetted contain \"POST-BASELINE MINIMUM\"/\"POST-BASELINE MAXIMUM\" visit according preprocessing. Percentages based total number patients treatment group. Split columns Analysis Reference Range Indicator, typically ANRIND. include total column default. Sorted based factor level.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"egt03_main(): Main TLG function egt03_pre(): Preprocessing egt03_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"adam_db object must contain adeg table \"ACTARMCD\" column well columns specified summaryvar splitvar.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EGT03 Shift Table of ECG Interval Data - Baseline versus Minimum or Maximum Post-Baseline. — egt03_main","text":"","code":"library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"HR\", \"adeg\") run(egt03, proc_data) #> Actual Arm Code Minimum Post-Baseline Assessment #> Baseline Reference Range Indicator LOW NORMAL HIGH Missing #> ———————————————————————————————————————————————————————————————————————————————— #> Heart Rate #> ARM A (N=15) #> LOW 0 0 0 0 #> NORMAL 4 (26.7%) 9 (60.0%) 0 0 #> HIGH 0 2 (13.3%) 0 0 #> Missing 0 0 0 0 #> ARM B (N=15) #> LOW 0 1 (6.7%) 0 0 #> NORMAL 4 (26.7%) 10 (66.7%) 0 0 #> HIGH 0 0 0 0 #> Missing 0 0 0 0 #> ARM C (N=15) #> LOW 0 0 0 0 #> NORMAL 4 (26.7%) 10 (66.7%) 0 0 #> HIGH 0 1 (6.7%) 0 0 #> Missing 0 0 0 0"},{"path":"https://insightsengineering.github.io/chevron/reference/egt03_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"egt03 Layout — egt03_lyt","title":"egt03 Layout — egt03_lyt","text":"egt03 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"egt03 Layout — egt03_lyt","text":"","code":"egt03_lyt( arm_var, splitvar, summaryvar, lbl_armvar, lbl_summaryvars, lbl_param, page_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/egt03_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"egt03 Layout — egt03_lyt","text":"arm_var (string) variable used column splitting splitvar (character) variables analyzed, typically \"ANRIND\". Labels corresponding columns used subtitles. summaryvar (character) variables analyzed, typically \"BNRIND\". Labels corresponding columns used subtitles. lbl_armvar (string) label arm_var variable. lbl_summaryvars (string) label summaryvar variable. page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt03_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"egt03 Layout — egt03_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"EGT05_QTCAT table summarizes several electrocardiogram parameters evolution throughout study.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"","code":"egt05_qtcat_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, summaryvars = c(\"AVALCAT1\", \"CHGCAT1\"), row_split_var = NULL, visitvar = \"AVISIT\", page_var = NULL, ... ) egt05_qtcat_pre(adam_db, ...) egt05_qtcat_post(tlg, prune_0 = TRUE, ...) egt05_qtcat"},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted summaryvars (character) variables analyzed. label attribute corresponding column adeg table adam_db used name. row_split_var (character) additional row split variables. visitvar (string) typically \"AVISIT\" user-defined visit incorporating \"ATPT\". page_var (string) variable name prior row split page. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"Value Visit column, displays categories specific \"PARAMCD\" value patients. Change Baseline column, displays categories specific \"PARAMCD\" value change baseline patients. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically \"ACTARM\". include total column default. Sorted based factor level; chronological time point given \"AVISIT\" user-defined visit incorporating \"ATPT\". Re-level customize order. Please note preferable convert summaryvars factor.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"egt05_qtcat_main(): Main TLG function egt05_qtcat_pre(): Preprocessing egt05_qtcat_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"adam_db object must contain adeg table column specified visitvar. summaryvars, please make sure AVALCAT1 CHGCAT1 columns existed input data sets.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EGT05_QTCAT ECG Actual Values and Changes from Baseline by Visit Table. — egt05_qtcat_main","text":"","code":"run(egt05_qtcat, syn_data) #> Parameter #> Analysis Visit A: Drug X B: Placebo C: Combination #> Category (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————— #> QT Duration #> BASELINE #> Value at Visit #> n 15 15 15 #> <=450 msec 13 (86.7%) 15 (100%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 0 0 #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 1 (6.7%) 0 1 (6.7%) #> WEEK 1 DAY 8 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 9 (60.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 1 (6.7%) 3 (20.0%) 1 (6.7%) #> >500 msec 1 (6.7%) 2 (13.3%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 7 (46.7%) 6 (40.0%) 9 (60.0%) #> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 1 (6.7%) #> >60 msec 6 (40.0%) 8 (53.3%) 5 (33.3%) #> WEEK 2 DAY 15 #> Value at Visit #> n 15 15 15 #> <=450 msec 11 (73.3%) 14 (93.3%) 12 (80.0%) #> >450 to <=480 msec 2 (13.3%) 0 2 (13.3%) #> >480 to <=500 msec 1 (6.7%) 0 1 (6.7%) #> >500 msec 1 (6.7%) 1 (6.7%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 12 (80.0%) 7 (46.7%) #> >30 to <=60 msec 2 (13.3%) 0 3 (20.0%) #> >60 msec 4 (26.7%) 3 (20.0%) 5 (33.3%) #> WEEK 3 DAY 22 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 12 (80.0%) 12 (80.0%) #> >450 to <=480 msec 3 (20.0%) 1 (6.7%) 1 (6.7%) #> >500 msec 0 2 (13.3%) 2 (13.3%) #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%) #> >30 to <=60 msec 1 (6.7%) 1 (6.7%) 0 #> >60 msec 5 (33.3%) 3 (20.0%) 6 (40.0%) #> WEEK 4 DAY 29 #> Value at Visit #> n 15 15 15 #> <=450 msec 14 (93.3%) 12 (80.0%) 13 (86.7%) #> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%) #> >480 to <=500 msec 0 0 1 (6.7%) #> >500 msec 0 2 (13.3%) 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 6 (40.0%) 9 (60.0%) 9 (60.0%) #> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 2 (13.3%) #> >60 msec 7 (46.7%) 5 (33.3%) 4 (26.7%) #> WEEK 5 DAY 36 #> Value at Visit #> n 15 15 15 #> <=450 msec 12 (80.0%) 15 (100%) 15 (100%) #> >450 to <=480 msec 2 (13.3%) 0 0 #> >500 msec 1 (6.7%) 0 0 #> Change from Baseline #> n 15 15 15 #> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%) #> >30 to <=60 msec 0 3 (20.0%) 2 (13.3%) #> >60 msec 6 (40.0%) 1 (6.7%) 4 (26.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"EGT05_QTCAT Layout — egt05_qtcat_lyt","title":"EGT05_QTCAT Layout — egt05_qtcat_lyt","text":"EGT05_QTCAT Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EGT05_QTCAT Layout — egt05_qtcat_lyt","text":"","code":"egt05_qtcat_lyt( arm_var, lbl_overall, lbl_avisit, lbl_param, lbl_cat, summaryvars, summaryvars_lbls, row_split_var, row_split_lbl, visitvar, page_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EGT05_QTCAT Layout — egt05_qtcat_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_avisit (string) label visitvar variable. lbl_param (string) label PARAM variable. lbl_cat (string) label Category summaryvars variable. Default Category. summaryvars (character) variables analyzed. AVALCAT1 CHGCAT1 default. summaryvars_lbls (character) label variables analyzed. row_split_var (character) additional row split variables. visitvar (string) typically \"AVISIT\" user-defined visit incorporating \"ATPT\". page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/egt05_qtcat_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EGT05_QTCAT Layout — egt05_qtcat_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/empty_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Empty rule — empty_rule","title":"Empty rule — empty_rule","text":"Empty rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/empty_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Empty rule — empty_rule","text":"","code":"empty_rule"},{"path":"https://insightsengineering.github.io/chevron/reference/empty_rule.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Empty rule — empty_rule","text":"object class rule (inherits character) length 0.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/execute_with_args.html","id":null,"dir":"Reference","previous_headings":"","what":"Execute function with given arguments — execute_with_args","title":"Execute function with given arguments — execute_with_args","text":"Execute function given arguments","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/execute_with_args.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Execute function with given arguments — execute_with_args","text":"","code":"execute_with_args(fun, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/execute_with_args.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Execute function with given arguments — execute_with_args","text":"function ..., function pass arguments .... named arguments passed.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/expand_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Expand list to each split — expand_list","title":"Expand list to each split — expand_list","text":"Expand list split","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/expand_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expand list to each split — expand_list","text":"","code":"expand_list(lst, split)"},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":null,"dir":"Reference","previous_headings":"","what":"EXT01 Exposure Summary Table. — ext01_main","title":"EXT01 Exposure Summary Table. — ext01_main","text":"EXT01 table provides overview exposure patients terms Total dose administered missed, treatment duration.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"EXT01 Exposure Summary Table. — ext01_main","text":"","code":"ext01_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, summaryvars = \"AVAL\", row_split_var = \"PARCAT2\", page_var = NULL, map = NULL, ... ) ext01_pre(adam_db, ...) ext01_post(tlg, prune_0 = TRUE, ...) ext01"},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"EXT01 Exposure Summary Table. — ext01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"EXT01 Exposure Summary Table. — ext01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted summaryvars (character) variables analyzed. label attribute corresponding column adex table adam_db used label. row_split_var (character) additional row split variables. page_var (string) variable name prior row split page. map (data.frame) mapping split rows. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"EXT01 Exposure Summary Table. — ext01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"EXT01 Exposure Summary Table. — ext01_main","text":"Default Exposure table n row provides number non-missing values. percentages categorical variables based n. percentages Total number patients least one dose modification based number patients corresponding analysis population given N. Split columns arm, typically ACTARM. include total column default. Sorted alphabetic order PARAM value. Transform factor re-level custom order. ANL01FL relevant subset.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"EXT01 Exposure Summary Table. — ext01_main","text":"ext01_main(): Main TLG function ext01_pre(): Preprocessing ext01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"EXT01 Exposure Summary Table. — ext01_main","text":"adam_db object must contain adex table columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"EXT01 Exposure Summary Table. — ext01_main","text":"","code":"run(ext01, syn_data) #> A: Drug X B: Placebo C: Combination #> PARCAT2 (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Drug A #> Overall duration (days) #> n 11 7 7 #> Mean (SD) 157.5 (67.4) 115.4 (62.8) 98.6 (68.8) #> Median 174.0 119.0 89.0 #> Min - Max 53.0 - 239.0 22.0 - 219.0 1.0 - 182.0 #> Total dose administered #> n 11 7 7 #> Mean (SD) 6567.3 (1127.1) 7028.6 (1626.1) 6377.1 (863.7) #> Median 6720.0 7200.0 6480.0 #> Min - Max 4800.0 - 8400.0 5280.0 - 9360.0 5280.0 - 7440.0 #> Drug B #> Overall duration (days) #> n 4 8 8 #> Mean (SD) 142.2 (100.3) 105.9 (60.0) 158.2 (96.2) #> Median 160.0 95.0 203.0 #> Min - Max 17.0 - 232.0 37.0 - 211.0 27.0 - 249.0 #> Total dose administered #> n 4 8 8 #> Mean (SD) 7020.0 (1148.9) 5250.0 (864.7) 5940.0 (1187.9) #> Median 6960.0 5160.0 5880.0 #> Min - Max 5760.0 - 8400.0 4080.0 - 6480.0 4320.0 - 7680.0 run(ext01, syn_data, summaryvars = c(\"AVAL\", \"AVALCAT1\"), prune_0 = FALSE) #> A: Drug X B: Placebo C: Combination #> PARCAT2 (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Drug A #> Overall duration (days) #> n 11 7 7 #> Mean (SD) 157.5 (67.4) 115.4 (62.8) 98.6 (68.8) #> Median 174.0 119.0 89.0 #> Min - Max 53.0 - 239.0 22.0 - 219.0 1.0 - 182.0 #> n 11 7 7 #> < 1 month 0 1 (14.3%) 1 (14.3%) #> 1 to <3 months 3 (27.3%) 1 (14.3%) 3 (42.9%) #> 3 to <6 months 3 (27.3%) 4 (57.1%) 2 (28.6%) #> >=6 months 5 (45.5%) 1 (14.3%) 1 (14.3%) #> <700 0 0 0 #> 700-900 0 0 0 #> 900-1200 0 0 0 #> >1200 0 0 0 #> <5000 0 0 0 #> 5000-7000 0 0 0 #> 7000-9000 0 0 0 #> >9000 0 0 0 #> 7 0 0 0 #> Total dose administered #> n 11 7 7 #> Mean (SD) 6567.3 (1127.1) 7028.6 (1626.1) 6377.1 (863.7) #> Median 6720.0 7200.0 6480.0 #> Min - Max 4800.0 - 8400.0 5280.0 - 9360.0 5280.0 - 7440.0 #> n 11 7 7 #> < 1 month 0 0 0 #> 1 to <3 months 0 0 0 #> 3 to <6 months 0 0 0 #> >=6 months 0 0 0 #> <700 0 0 0 #> 700-900 0 0 0 #> 900-1200 0 0 0 #> >1200 0 0 0 #> <5000 1 (9.1%) 0 0 #> 5000-7000 6 (54.5%) 3 (42.9%) 5 (71.4%) #> 7000-9000 4 (36.4%) 3 (42.9%) 2 (28.6%) #> >9000 0 1 (14.3%) 0 #> 7 0 0 0 #> Drug B #> Overall duration (days) #> n 4 8 8 #> Mean (SD) 142.2 (100.3) 105.9 (60.0) 158.2 (96.2) #> Median 160.0 95.0 203.0 #> Min - Max 17.0 - 232.0 37.0 - 211.0 27.0 - 249.0 #> n 4 8 8 #> < 1 month 1 (25.0%) 0 1 (12.5%) #> 1 to <3 months 0 4 (50.0%) 2 (25.0%) #> 3 to <6 months 1 (25.0%) 3 (37.5%) 0 #> >=6 months 2 (50.0%) 1 (12.5%) 5 (62.5%) #> <700 0 0 0 #> 700-900 0 0 0 #> 900-1200 0 0 0 #> >1200 0 0 0 #> <5000 0 0 0 #> 5000-7000 0 0 0 #> 7000-9000 0 0 0 #> >9000 0 0 0 #> 7 0 0 0 #> Total dose administered #> n 4 8 8 #> Mean (SD) 7020.0 (1148.9) 5250.0 (864.7) 5940.0 (1187.9) #> Median 6960.0 5160.0 5880.0 #> Min - Max 5760.0 - 8400.0 4080.0 - 6480.0 4320.0 - 7680.0 #> n 4 8 8 #> < 1 month 0 0 0 #> 1 to <3 months 0 0 0 #> 3 to <6 months 0 0 0 #> >=6 months 0 0 0 #> <700 0 0 0 #> 700-900 0 0 0 #> 900-1200 0 0 0 #> >1200 0 0 0 #> <5000 0 4 (50.0%) 2 (25.0%) #> 5000-7000 2 (50.0%) 4 (50.0%) 4 (50.0%) #> 7000-9000 2 (50.0%) 0 2 (25.0%) #> >9000 0 0 0 #> 7 0 0 0 levels(syn_data$adex$AVALCAT1) <- c(levels(syn_data$adex$AVALCAT1), \"12 months\") map <- data.frame( PARAMCD = \"TDURD\", AVALCAT1 = c(\"< 1 month\", \"1 to <3 months\", \">=6 months\", \"3 to <6 months\", \"12 months\") ) run(ext01, syn_data, summaryvars = c(\"AVAL\", \"AVALCAT1\"), prune_0 = FALSE, map = map) #> A: Drug X B: Placebo C: Combination #> PARCAT2 (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Drug A #> Overall duration (days) #> n 11 7 7 #> Mean (SD) 157.5 (67.4) 115.4 (62.8) 98.6 (68.8) #> Median 174.0 119.0 89.0 #> Min - Max 53.0 - 239.0 22.0 - 219.0 1.0 - 182.0 #> n 11 7 7 #> < 1 month 0 1 (14.3%) 1 (14.3%) #> 1 to <3 months 3 (27.3%) 1 (14.3%) 3 (42.9%) #> >=6 months 5 (45.5%) 1 (14.3%) 1 (14.3%) #> 3 to <6 months 3 (27.3%) 4 (57.1%) 2 (28.6%) #> 12 months 0 0 0 #> Total dose administered #> n 11 7 7 #> Mean (SD) 6567.3 (1127.1) 7028.6 (1626.1) 6377.1 (863.7) #> Median 6720.0 7200.0 6480.0 #> Min - Max 4800.0 - 8400.0 5280.0 - 9360.0 5280.0 - 7440.0 #> n 11 7 7 #> <5000 1 (9.1%) 0 0 #> 5000-7000 6 (54.5%) 3 (42.9%) 5 (71.4%) #> 7000-9000 4 (36.4%) 3 (42.9%) 2 (28.6%) #> >9000 0 1 (14.3%) 0 #> Drug B #> Overall duration (days) #> n 4 8 8 #> Mean (SD) 142.2 (100.3) 105.9 (60.0) 158.2 (96.2) #> Median 160.0 95.0 203.0 #> Min - Max 17.0 - 232.0 37.0 - 211.0 27.0 - 249.0 #> n 4 8 8 #> < 1 month 1 (25.0%) 0 1 (12.5%) #> 1 to <3 months 0 4 (50.0%) 2 (25.0%) #> >=6 months 2 (50.0%) 1 (12.5%) 5 (62.5%) #> 3 to <6 months 1 (25.0%) 3 (37.5%) 0 #> 12 months 0 0 0 #> Total dose administered #> n 4 8 8 #> Mean (SD) 7020.0 (1148.9) 5250.0 (864.7) 5940.0 (1187.9) #> Median 6960.0 5160.0 5880.0 #> Min - Max 5760.0 - 8400.0 4080.0 - 6480.0 4320.0 - 7680.0 #> n 4 8 8 #> <5000 0 4 (50.0%) 2 (25.0%) #> 5000-7000 2 (50.0%) 4 (50.0%) 4 (50.0%) #> 7000-9000 2 (50.0%) 0 2 (25.0%) #> >9000 0 0 0"},{"path":"https://insightsengineering.github.io/chevron/reference/ext01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"ext01 Layout — ext01_lyt","title":"ext01 Layout — ext01_lyt","text":"ext01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"ext01 Layout — ext01_lyt","text":"","code":"ext01_lyt( arm_var, lbl_overall, summaryvars, summaryvars_lbls, row_split_var, row_split_lbl, page_var, map )"},{"path":"https://insightsengineering.github.io/chevron/reference/ext01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"ext01 Layout — ext01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted summaryvars (character) name variable analyzed. default \"AVAL\". summaryvars_lbls (character) label associated analyzed variable. row_split_var (character) additional row split variables. page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ext01_lyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"ext01 Layout — ext01_lyt","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":null,"dir":"Reference","previous_headings":"","what":"Formatting of date — format_date","title":"Formatting of date — format_date","text":"Formatting date","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Formatting of date — format_date","text":"","code":"format_date(date_format = \"%d%b%Y\")"},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Formatting of date — format_date","text":"date_format (string) output format.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Formatting of date — format_date","text":"function converting date string.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Formatting of date — format_date","text":"date extracted location measure, location system.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/format_date.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Formatting of date — format_date","text":"","code":"format_date(\"%d%b%Y\")(as.Date(\"2021-01-01\")) #> [1] \"01JAN2021\" if (\"NZ\" %in% OlsonNames()) { format_date(\"%d%b%Y\")(as.POSIXct(\"2021-01-01 00:00:01\", tz = \"NZ\")) } #> [1] \"01JAN2021\" if (\"US/Pacific\" %in% OlsonNames()) { format_date(\"%d%b%Y\")(as.POSIXct(\"2021-01-01 00:00:01\", tz = \"US/Pacific\")) } #> [1] \"01JAN2021\""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":null,"dir":"Reference","previous_headings":"","what":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"template produces subgroup analysis best overall response graphic.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"","code":"fstg01_main( adam_db, dataset = \"adrs\", arm_var = \"ARM\", rsp_var = \"IS_RSP\", subgroups = c(\"SEX\", \"AGEGR1\", \"RACE\"), strata_var = NULL, stat_var = c(\"n_tot\", \"n\", \"n_rsp\", \"prop\", \"or\", \"ci\"), ... ) fstg01_pre(adam_db, ...) fstg01"},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"object class chevron_g length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) arm variable name used group splitting. rsp_var (string) response variable name flag whether subject binary response . subgroups (character) subgroups variable name list baseline risk factors. strata_var (character) required stratified analysis performed. stat_var (character) names statistics reported tabulate_rsp_subgroups. ... arguments passed g_forest extract_rsp_subgroups (wrapper h_odds_ratio_subgroups_df h_proportion_subgroups_df). details, see documentation tern. Commonly used arguments include col_symbol_size, col, vline, groups_lists, conf_level, method, label_all, etc.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"main function returns grob object. gTree object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"overall value. Keep zero count rows default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"fstg01_main(): Main TLG Function fstg01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"adam_db object must contain table specified dataset \"PARAMCD\", \"ARM\", \"AVALC\", columns specified subgroups denoted c(\"SEX\", \"AGEGR1\", \"RACE\") default. plot large rendered output, please provide gp, width_row_names, width_columns width_forest manually make fit. See tern::g_forest details.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"FSTG01 Subgroup Analysis of Best Overall Response. — fstg01_main","text":"","code":"library(dplyr) library(dunlin) proc_data <- log_filter( syn_data, PARAMCD == \"BESRSPI\" & ARM %in% c(\"A: Drug X\", \"B: Placebo\"), \"adrs\" ) run(fstg01, proc_data, subgroups = c(\"SEX\", \"AGEGR1\", \"RACE\"), conf_level = 0.90, dataset = \"adrs\" )"},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":null,"dir":"Reference","previous_headings":"","what":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"template produces subgroup analysis survival duration graphic.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"","code":"fstg02_main( adam_db, dataset = \"adtte\", arm_var = \"ARM\", subgroups = c(\"SEX\", \"AGEGR1\", \"RACE\"), strata_var = NULL, stat_var = c(\"n_tot\", \"n\", \"median\", \"hr\", \"ci\"), ... ) fstg02_pre(adam_db, ...) fstg02"},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"object class chevron_g length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) arm variable name used group splitting. subgroups (character) subgroups variable name list baseline risk factors. strata_var (character) required stratified analysis performed. stat_var (character) names statistics reported tabulate_survival_subgroups. ... arguments passed g_forest extract_rsp_subgroups (wrapper h_odds_ratio_subgroups_df h_proportion_subgroups_df). details, see documentation tern. Commonly used arguments include gp, col_symbol_size, col, vline, groups_lists, conf_level, method, label_all, etc.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"main function returns gTree object. gTree object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"overall value. Keep zero count rows default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"fstg02_main(): Main TLG Function fstg02_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"adam_db object must contain table specified dataset \"PARAMCD\", \"ARM\", \"AVAL\", \"AVALU\", \"CNSR\", columns specified subgroups denoted c(\"SEX\", \"AGEGR1\", \"RACE\") default. plot large rendered output, please refer FSTG01.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fstg02.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"FSTG02 Subgroup Analysis of Survival Duration. — fstg02_main","text":"","code":"library(dplyr) library(dunlin) proc_data <- log_filter( syn_data, PARAMCD == \"OS\" & ARM %in% c(\"A: Drug X\", \"B: Placebo\"), \"adtte\" ) run(fstg02, proc_data, subgroups = c(\"SEX\", \"AGEGR1\", \"RACE\"), conf_level = 0.90, dataset = \"adtte\" )"},{"path":"https://insightsengineering.github.io/chevron/reference/fuse_sequentially.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuse list elements — fuse_sequentially","title":"Fuse list elements — fuse_sequentially","text":"Fuse list elements","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/fuse_sequentially.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuse list elements — fuse_sequentially","text":"","code":"fuse_sequentially(x, y)"},{"path":"https://insightsengineering.github.io/chevron/reference/fuse_sequentially.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuse list elements — fuse_sequentially","text":"x (list) fuse. y (list) fuse. Elements names already existing x discarded.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gen_args.html","id":null,"dir":"Reference","previous_headings":"","what":"General Argument Name Convention — gen_args","title":"General Argument Name Convention — gen_args","text":"General Argument Name Convention","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gen_args.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"General Argument Name Convention — gen_args","text":"","code":"gen_args( adam_db, main, preprocess, postprocess, dataset, type, arm_var, lbl_overall, prune_0, req_tables, deco, group, tlg, visitvar, visit_value, paramcd_value, key_cols, disp_cols, row_split_var, split_into_pages_by_var, page_var, unique_rows, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/gen_args.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"General Argument Name Convention — gen_args","text":"adam_db (list data.frames) object containing ADaM datasets main (function) returning tlg, adam_db first argument. Typically one _main function chevron. preprocess (function) returning pre-processed list data.frames, adam_db first argument. Typically one _pre function chevron. postprocess (function) returning post-processed tlg, tlg first argument. dataset (string) name table adam_db object. type (string) indicating subclass. arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted prune_0 (flag) remove 0 count rows req_tables (character) names required tables. deco (character) decoration title, subtitles main_footer content group (list lists) group-dependent data binning tlg (TableTree, Listing ggplot) object typically produced main function. visitvar (string) typically \"AVISIT\" user-defined visit incorporating \"ATPT\". visit_value Value visit variable. paramcd_value Value PARAMCD variable. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. row_split_var (character) additional row split variables. split_into_pages_by_var (character NULL) name variable split listing . page_var (string) variable name prior row split page. unique_rows (flag) whether keep unique rows listing. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gen_args.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"General Argument Name Convention — gen_args","text":"invisible NULL. function documentation purpose .","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gen_args.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"General Argument Name Convention — gen_args","text":"following arguments better provided study object: lbl_overall, arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_grade_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Get grade rule — get_grade_rule","title":"Get grade rule — get_grade_rule","text":"Get grade rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_grade_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get grade rule — get_grade_rule","text":"","code":"get_grade_rule(direction = \"high\", missing = \"incl\")"},{"path":"https://insightsengineering.github.io/chevron/reference/get_grade_rule.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get grade rule — get_grade_rule","text":"direction (string) abnormality direction. missing (string) method deal missing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_grade_rule.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get grade rule — get_grade_rule","text":"rule object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_page_by.html","id":null,"dir":"Reference","previous_headings":"","what":"Get page by value — get_page_by","title":"Get page by value — get_page_by","text":"Get page value","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_page_by.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get page by value — get_page_by","text":"","code":"get_page_by(var, vars)"},{"path":"https://insightsengineering.github.io/chevron/reference/get_section_div.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Section dividers — get_section_div","title":"Get Section dividers — get_section_div","text":"Get Section dividers","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_section_div.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Section dividers — get_section_div","text":"","code":"get_section_div()"},{"path":"https://insightsengineering.github.io/chevron/reference/get_section_div.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Section dividers — get_section_div","text":"(character) value section dividers corresponding section.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_subset.html","id":null,"dir":"Reference","previous_headings":"","what":"Subset Arguments and Merge — get_subset","title":"Subset Arguments and Merge — get_subset","text":"Subset Arguments Merge","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_subset.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Subset Arguments and Merge — get_subset","text":"","code":"get_subset(x, y)"},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_hjust.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a harmonious value of horizontal justification for x axis — get_x_hjust","title":"Get a harmonious value of horizontal justification for x axis — get_x_hjust","text":"Get harmonious value horizontal justification x axis","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_hjust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a harmonious value of horizontal justification for x axis — get_x_hjust","text":"","code":"get_x_hjust(x)"},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_hjust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a harmonious value of horizontal justification for x axis — get_x_hjust","text":"x (numeric) angle -90 90 degree.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_vjust.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a harmonious value of vertical justification for x axis — get_x_vjust","title":"Get a harmonious value of vertical justification for x axis — get_x_vjust","text":"Get harmonious value vertical justification x axis","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_vjust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a harmonious value of vertical justification for x axis — get_x_vjust","text":"","code":"get_x_vjust(x)"},{"path":"https://insightsengineering.github.io/chevron/reference/get_x_vjust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a harmonious value of vertical justification for x axis — get_x_vjust","text":"x (numeric) angle -90 90 degree.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/reference/gg_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"List of gg object — gg_list","text":"","code":"gg_list(...)"},{"path":"https://insightsengineering.github.io/chevron/reference/gg_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"List of gg object — gg_list","text":"... (ggplot) objects.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gg_list.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"List of gg object — gg_list","text":"gg_list object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gg_theme_chevron.html","id":null,"dir":"Reference","previous_headings":"","what":"Theme for Chevron Plot — gg_theme_chevron","title":"Theme for Chevron Plot — gg_theme_chevron","text":"Theme Chevron Plot","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gg_theme_chevron.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Theme for Chevron Plot — gg_theme_chevron","text":"","code":"gg_theme_chevron( grid_y = TRUE, grid_x = FALSE, legend_position = \"top\", text_axis_x_rot = 45 )"},{"path":"https://insightsengineering.github.io/chevron/reference/gg_theme_chevron.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Theme for Chevron Plot — gg_theme_chevron","text":"grid_y (flag) horizontal grid displayed. grid_x (flag) vertical grid displayed. legend_position (string) position legend. text_axis_x_rot (numeric) x axis text rotation angle.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/gg_theme_chevron.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Theme for Chevron Plot — gg_theme_chevron","text":"theme object.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/reference/grob_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"List of grob object — grob_list","text":"","code":"grob_list(...)"},{"path":"https://insightsengineering.github.io/chevron/reference/grob_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"List of grob object — grob_list","text":"... (grob) objects.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/grob_list.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"List of grob object — grob_list","text":"grob_list object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/h_format_dec.html","id":null,"dir":"Reference","previous_headings":"","what":"Decimal formatting — h_format_dec","title":"Decimal formatting — h_format_dec","text":"Decimal formatting","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/h_format_dec.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Decimal formatting — h_format_dec","text":"","code":"h_format_dec(digits, format, ne = NULL)"},{"path":"https://insightsengineering.github.io/chevron/reference/h_format_dec.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Decimal formatting — h_format_dec","text":"digits (integer) number digits. format (string) describing numbers formatted following sprintf syntax. ne (string) replace actual value. NULL, replacement performed.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/h_format_dec.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Decimal formatting — h_format_dec","text":"function formatting numbers defined format.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/h_format_dec.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Decimal formatting — h_format_dec","text":"","code":"fun <- h_format_dec(c(1, 1), \"%s - %s\") fun(c(123, 567.89)) #> [1] \"123.0 - 567.9\""},{"path":"https://insightsengineering.github.io/chevron/reference/h_unwrap_layout.html","id":null,"dir":"Reference","previous_headings":"","what":"Helper Function Extracting Layout Functions — h_unwrap_layout","title":"Helper Function Extracting Layout Functions — h_unwrap_layout","text":"Helper Function Extracting Layout Functions","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/h_unwrap_layout.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Helper Function Extracting Layout Functions — h_unwrap_layout","text":"","code":"h_unwrap_layout(x, pattern)"},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_col.html","id":null,"dir":"Reference","previous_headings":"","what":"Helper function to add a column split if specified — ifneeded_split_col","title":"Helper function to add a column split if specified — ifneeded_split_col","text":"Helper function add column split specified","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_col.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Helper function to add a column split if specified — ifneeded_split_col","text":"","code":"ifneeded_split_col(lyt, var, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_col.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Helper function to add a column split if specified — ifneeded_split_col","text":"lyt (rtables) object. var (string) name variable initiating new column split. ... Additional arguments split_cols_by.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_col.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Helper function to add a column split if specified — ifneeded_split_col","text":"rtables object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_row.html","id":null,"dir":"Reference","previous_headings":"","what":"Helper function to add a row split if specified — ifneeded_split_row","title":"Helper function to add a row split if specified — ifneeded_split_row","text":"Helper function add row split specified","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_row.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Helper function to add a row split if specified — ifneeded_split_row","text":"","code":"ifneeded_split_row(lyt, var, lbl_var)"},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_row.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Helper function to add a row split if specified — ifneeded_split_row","text":"lyt (PreDataTableLayouts) object. var (string) name variable initiating new row split. lbl_var (string)label variable var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ifneeded_split_row.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Helper function to add a row split if specified — ifneeded_split_row","text":"PreDataTableLayouts object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":null,"dir":"Reference","previous_headings":"","what":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"KMG01 Kaplan-Meier Plot 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"","code":"kmg01_main( adam_db, dataset = \"adtte\", arm_var = \"ARM\", strata = NULL, strat = lifecycle::deprecated(), ... ) kmg01_pre(adam_db, dataset = \"adtte\", ...) kmg01"},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"object class chevron_g length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting strata (character) variable name stratification variables. strat (character) ; backwards compatibility . Use strata instead. ... arguments passed g_km control_coxph. details, see documentation tern. Commonly used arguments include col, pval_method, ties, conf_level, conf_type, annot_coxph, annot_stats, etc.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"main function returns gTree object. gTree object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"overall value.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"kmg01_main(): Main TLG Function kmg01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"adam_db object must contain table specified dataset columns specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/kmg01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"KMG01 Kaplan-Meier Plot 1. — kmg01_main","text":"","code":"library(dplyr) library(dunlin) col <- c( \"A: Drug X\" = \"black\", \"B: Placebo\" = \"blue\", \"C: Combination\" = \"gray\" ) pre_data <- log_filter(syn_data, PARAMCD == \"OS\", \"adtte\") run(kmg01, pre_data, dataset = \"adtte\", col = col)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"LBT01 table provides overview Lab values change baseline respective arm course trial.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"","code":"lbt01_main( adam_db, dataset = \"adlb\", arm_var = \"ACTARM\", lbl_overall = NULL, row_split_var = NULL, summaryvars = c(\"AVAL\", \"CHG\"), visitvar = \"AVISIT\", precision = list(default = 2L), page_var = \"PARAMCD\", .stats = c(\"n\", \"mean_sd\", \"median\", \"range\"), skip = list(CHG = \"BASELINE\"), ... ) lbt01_pre(adam_db, dataset = \"adlb\", ...) lbt01"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) additional row split variables. summaryvars (character) variables analyzed. label attribute corresponding column table adam_db used label. visitvar (string) typically one \"AVISIT\" user-defined visit incorporating \"ATPT\". precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. page_var (string) variable name prior row split page. .stats (character) statistics names, see tern::analyze_vars(). skip Named (list) visit values need inhibited. ... additional arguments like .indent_mods, .labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"Analysis Value column, displays number patients, mean, standard deviation, median range analysis value visit. Change Baseline column, displays number patient mean, standard deviation, median range changes relative baseline. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically ACTARM. include total column default. Sorted based factor level; first PARAM labels alphabetic order chronological time point given AVISIT. Re-level customize order","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"lbt01_main(): Main TLG function lbt01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"adam_db object must contain table named dataset columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT01 Lab Results and Change from Baseline by Visit Table. — lbt01_main","text":"","code":"run(lbt01, syn_data) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> BASELINE #> n 15 15 15 #> Mean (SD) 18.655 (12.455) 16.835 (11.080) 22.385 (9.452) #> Median 16.040 17.453 25.250 #> Min - Max 2.43 - 44.06 1.48 - 31.99 0.57 - 37.23 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 16.308 (10.850) -2.348 (17.558) 22.055 (7.537) 5.220 (16.359) 19.574 (9.876) -2.811 (10.902) #> Median 14.664 -5.369 22.476 7.252 19.425 -0.995 #> Min - Max 0.10 - 36.30 -30.18 - 22.66 9.72 - 33.81 -16.82 - 32.33 1.03 - 36.28 -19.61 - 18.45 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 16.646 (10.528) -2.010 (15.773) 20.758 (9.578) 3.923 (14.084) 10.911 (7.721) -11.474 (11.002) #> Median 15.470 -6.427 18.499 6.248 9.850 -8.657 #> Min - Max 0.40 - 35.29 -29.99 - 32.86 1.56 - 42.84 -24.92 - 29.85 0.35 - 25.01 -27.38 - 2.52 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 17.488 (10.679) -1.167 (15.759) 20.055 (8.086) 3.219 (16.285) 18.413 (9.513) -3.973 (9.966) #> Median 14.224 1.355 21.852 5.345 19.529 -7.194 #> Min - Max 1.78 - 33.19 -40.09 - 18.58 3.46 - 34.44 -23.02 - 31.38 3.02 - 32.34 -18.70 - 17.30 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 16.793 (9.101) -1.863 (15.499) 17.560 (9.857) 0.725 (13.170) 18.397 (11.618) -3.989 (13.150) #> Median 12.816 3.098 17.687 -3.104 18.532 -1.684 #> Min - Max 3.58 - 34.00 -32.93 - 18.92 1.90 - 34.08 -16.29 - 22.18 0.72 - 34.47 -30.33 - 17.38 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 17.879 (7.239) -0.776 (15.471) 17.417 (7.065) 0.581 (14.309) 15.173 (8.410) -7.213 (10.518) #> Median 18.749 1.108 17.751 2.055 16.394 -8.121 #> Min - Max 3.99 - 29.40 -40.08 - 17.24 5.10 - 30.90 -21.68 - 23.41 0.28 - 26.73 -27.12 - 15.83 #> C-Reactive Protein Measurement #> BASELINE #> n 15 15 15 #> Mean (SD) 9.032 (0.650) 9.164 (0.900) 8.652 (0.769) #> Median 8.819 9.472 8.502 #> Min - Max 7.81 - 9.93 7.38 - 10.60 7.73 - 10.86 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 9.050 (1.222) 0.018 (1.242) 8.690 (0.990) -0.474 (1.418) 9.507 (1.279) 0.854 (1.080) #> Median 8.960 -0.180 8.734 -0.074 9.830 1.107 #> Min - Max 6.87 - 11.33 -1.83 - 2.81 6.84 - 10.14 -3.14 - 1.55 7.27 - 11.09 -1.14 - 2.05 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 8.825 (0.990) -0.207 (1.204) 9.371 (1.185) 0.207 (1.572) 8.890 (1.021) 0.238 (1.263) #> Median 8.860 -0.567 9.073 0.293 8.994 0.462 #> Min - Max 7.12 - 10.44 -2.12 - 2.05 8.06 - 12.73 -2.35 - 3.19 6.68 - 10.84 -2.50 - 2.89 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 9.134 (0.897) 0.102 (1.179) 9.288 (1.033) 0.124 (1.135) 9.176 (0.919) 0.523 (1.209) #> Median 9.318 0.090 9.413 -0.022 8.963 0.564 #> Min - Max 7.38 - 11.00 -1.57 - 1.86 7.42 - 10.66 -1.41 - 3.27 7.72 - 11.20 -2.25 - 3.26 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 8.728 (0.959) -0.303 (1.226) 8.971 (0.704) -0.194 (1.077) 8.662 (0.712) 0.010 (1.039) #> Median 8.704 -0.046 8.879 -0.375 8.718 0.143 #> Min - Max 6.70 - 10.81 -3.17 - 1.99 7.88 - 10.23 -1.59 - 1.54 7.21 - 9.60 -2.63 - 1.68 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 8.545 (0.846) -0.487 (1.060) 9.165 (1.182) 0.000 (0.929) 8.654 (0.790) 0.002 (1.102) #> Median 8.601 -0.452 8.755 0.153 8.766 0.008 #> Min - Max 7.10 - 10.03 -2.39 - 1.66 7.86 - 12.50 -1.58 - 1.90 7.37 - 9.92 -3.14 - 1.67 #> Immunoglobulin A Measurement #> BASELINE #> n 15 15 15 #> Mean (SD) 2.923 (0.059) 2.866 (0.083) 2.887 (0.120) #> Median 2.911 2.862 2.896 #> Min - Max 2.80 - 3.01 2.76 - 3.01 2.65 - 3.14 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 2.885 (0.060) -0.038 (0.082) 2.938 (0.137) 0.073 (0.152) 2.925 (0.091) 0.038 (0.128) #> Median 2.886 -0.010 2.972 0.109 2.931 0.021 #> Min - Max 2.76 - 2.96 -0.18 - 0.06 2.69 - 3.16 -0.27 - 0.27 2.78 - 3.10 -0.12 - 0.28 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 2.889 (0.141) -0.034 (0.171) 2.928 (0.075) 0.063 (0.124) 2.913 (0.080) 0.026 (0.156) #> Median 2.871 -0.024 2.936 0.084 2.910 0.067 #> Min - Max 2.67 - 3.16 -0.34 - 0.27 2.79 - 3.03 -0.12 - 0.26 2.78 - 3.09 -0.28 - 0.26 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 2.875 (0.105) -0.048 (0.120) 2.919 (0.114) 0.053 (0.151) 2.889 (0.082) 0.002 (0.128) #> Median 2.861 -0.046 2.938 0.045 2.899 0.020 #> Min - Max 2.67 - 3.07 -0.25 - 0.16 2.73 - 3.18 -0.19 - 0.33 2.75 - 3.02 -0.24 - 0.14 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 2.912 (0.134) -0.010 (0.140) 2.886 (0.097) 0.020 (0.136) 2.869 (0.104) -0.019 (0.141) #> Median 2.942 0.023 2.924 -0.012 2.840 -0.055 #> Min - Max 2.63 - 3.16 -0.39 - 0.19 2.58 - 2.96 -0.28 - 0.20 2.74 - 3.08 -0.31 - 0.22 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 2.933 (0.089) 0.010 (0.136) 2.899 (0.094) 0.034 (0.131) 2.902 (0.091) 0.015 (0.168) #> Median 2.938 0.031 2.936 0.059 2.921 0.026 #> Min - Max 2.78 - 3.08 -0.23 - 0.26 2.68 - 3.04 -0.25 - 0.19 2.78 - 3.13 -0.27 - 0.32"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"LBT04 table provides overview laboratory abnormalities present baseline.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"","code":"lbt04_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, analysis_abn_var = \"ANRIND\", baseline_abn_var = \"BNRIND\", row_split_var = \"PARCAT1\", page_var = tail(row_split_var, 1L), ... ) lbt04_pre(adam_db, ...) lbt04_post(tlg, ...) lbt04"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted analysis_abn_var (string) column describing anomaly magnitude baseline_abn_var (string) column describing anomaly baseline. row_split_var (character) additional row split variables. page_var (string) variable name prior row split page. ... used. tlg (TableTree, Listing ggplot) object typically produced main function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"count LOW HIGH values. Lab test results missing analysis_abn_var values excluded. Split columns arm, typically ACTARM. include total column default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"lbt04_main(): Main TLG function lbt04_pre(): Preprocessing lbt04_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"adam_db object must contain adlb table columns \"PARCAT1\", \"PARCAT2\", \"PARAM\", \"ANRIND\", column specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT04 Laboratory Abnormalities Not Present at Baseline Table. — lbt04_main","text":"","code":"run(lbt04, syn_data) #> Laboratory Test A: Drug X B: Placebo C: Combination #> Direction of Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> CHEMISTRY #> Alanine Aminotransferase Measurement #> Low 0/7 0/2 1/7 (14.3%) #> High 0/7 0/3 0/8 #> C-Reactive Protein Measurement #> Low 0/8 1/2 (50.0%) 0/6 #> High 3/8 (37.5%) 0/2 0/7 #> Immunoglobulin A Measurement #> Low 0/5 0/8 0/7 #> High 1/3 (33.3%) 1/8 (12.5%) 0/6 #> COAGULATION #> Alanine Aminotransferase Measurement #> Low 0/3 0/6 0/4 #> High 0/5 0/7 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/5 1/3 (33.3%) #> High 0/5 1/6 (16.7%) 1/4 (25.0%) #> Immunoglobulin A Measurement #> Low 0/8 0/9 0/6 #> High 0/8 0/9 1/6 (16.7%) #> HEMATOLOGY #> Alanine Aminotransferase Measurement #> Low 0/4 0/5 0/4 #> High 0/6 0/5 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/4 0/3 #> High 0/5 0/4 0/5 #> Immunoglobulin A Measurement #> Low 0/3 0/4 0/8 #> High 0/3 0/4 0/7"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"lbt04 Layout — lbt04_lyt","title":"lbt04 Layout — lbt04_lyt","text":"lbt04 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"lbt04 Layout — lbt04_lyt","text":"","code":"lbt04_lyt( arm_var, lbl_overall, lbl_param, lbl_abn_var, var_parcat, var_param, row_split_var, row_split_lbl, analysis_abn_var, variables, page_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt04_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"lbt04 Layout — lbt04_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_param (string) label PARAM variable. lbl_abn_var (string) label analysis_abn_var variable. row_split_var (character) additional row split variables. variables (list) see tern::count_abnormal page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"LBT05 Table 1 (Default) Laboratory Abnormalities Single Replicated Marked.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"","code":"lbt05_main(adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, ...) lbt05_pre(adam_db, ...) lbt05_post(tlg, prune_0 = FALSE, ...) lbt05"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"remove rows zero counts default. Lab test results missing AVAL values excluded. Split columns arm, typically ACTARM.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"lbt05_main(): Main TLG function lbt05_pre(): Preprocessing lbt05_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"adam_db object must contain adlb table columns \"ONTRTFL\", \"PARCAT2\", \"PARAM\", \"ANRIND\", \"AVALCAT1\", column specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT05 Table 1 (Default) Laboratory Abnormalities with Single and Replicated Marked. — lbt05_main","text":"","code":"run(lbt05, syn_data) #> Laboratory Test A: Drug X B: Placebo C: Combination #> Direction of Abnormality (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement (n) 15 14 14 #> Low #> Single, not last 1 (6.7%) 0 4 (28.6%) #> Last or replicated 5 (33.3%) 4 (28.6%) 4 (28.6%) #> Any Abnormality 6 (40.0%) 4 (28.6%) 8 (57.1%) #> High #> Single, not last 0 0 0 #> Last or replicated 0 0 0 #> Any Abnormality 0 0 0 #> C-Reactive Protein Measurement (n) 15 15 15 #> Low #> Single, not last 4 (26.7%) 0 3 (20.0%) #> Last or replicated 3 (20.0%) 5 (33.3%) 6 (40.0%) #> Any Abnormality 7 (46.7%) 5 (33.3%) 9 (60.0%) #> High #> Single, not last 1 (6.7%) 3 (20.0%) 0 #> Last or replicated 4 (26.7%) 3 (20.0%) 6 (40.0%) #> Any Abnormality 5 (33.3%) 6 (40.0%) 6 (40.0%) #> Immunoglobulin A Measurement (n) 13 14 14 #> Low #> Single, not last 0 0 0 #> Last or replicated 0 0 0 #> Any Abnormality 0 0 0 #> High #> Single, not last 6 (46.2%) 1 (7.1%) 2 (14.3%) #> Last or replicated 3 (23.1%) 4 (28.6%) 3 (21.4%) #> Any Abnormality 9 (69.2%) 5 (35.7%) 5 (35.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"lbt05 Layout — lbt05_lyt","title":"lbt05 Layout — lbt05_lyt","text":"lbt05 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"lbt05 Layout — lbt05_lyt","text":"","code":"lbt05_lyt(arm_var, lbl_overall, lbl_param, lbl_anrind, map)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt05_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"lbt05 Layout — lbt05_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_param (string) label PARAM variable. lbl_anrind (string) label ANRIND variable. map (data.frame) mapping PARAMs directions abnormality.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"LBT06 table produces standard laboratory abnormalities visit baseline status summary.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"","code":"lbt06_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, page_var = \"PARAMCD\", ... ) lbt06_pre(adam_db, ...) lbt06_post(tlg, prune_0 = FALSE, ...) lbt06"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) arm variable used arm splitting. lbl_overall (string) label used overall column, set NULL overall column omitted page_var (string) variable name prior row split page. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"count \"LOW\" \"HIGH\" values ANRIND BNRIND. Lab test results missing ANRIND values excluded. Split columns arm, typically ACTARM. Keep zero count rows default.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"lbt06_main(): Main TLG function lbt06_pre(): Preprocessing lbt06_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"adam_db object must contain adlb table columns \"AVISIT\", \"ANRIND\", \"BNRIND\", \"ONTRTFL\", \"PARCAT2\", column specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT06 Table 1 (Default) Laboratory Abnormalities by Visit and Baseline Status Table 1. — lbt06_main","text":"","code":"run(lbt06, syn_data) #> Visit #> Abnormality at Visit A: Drug X B: Placebo C: Combination #> Baseline Status (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/1 0/6 0/1 #> Low 0/1 0/1 0/1 #> Total 0/2 0/7 0/2 #> High #> Not high 0/2 0/7 0/2 #> High 0/0 0/0 0/0 #> Total 0/2 0/7 0/2 #> WEEK 2 DAY 15 #> Low #> Not low 0/3 0/2 0/2 #> Low 0/0 0/0 0/0 #> Total 0/3 0/2 0/2 #> High #> Not high 0/3 0/2 0/2 #> High 0/0 0/0 0/0 #> Total 0/3 0/2 0/2 #> WEEK 3 DAY 22 #> Low #> Not low 0/5 0/3 1/6 (16.7%) #> Low 0/0 0/0 0/0 #> Total 0/5 0/3 1/6 (16.7%) #> High #> Not high 0/5 0/3 0/6 #> High 0/0 0/0 0/0 #> Total 0/5 0/3 0/6 #> WEEK 4 DAY 29 #> Low #> Not low 0/3 0/1 0/1 #> Low 0/3 0/2 0/0 #> Total 0/6 0/3 0/1 #> High #> Not high 0/6 0/3 0/1 #> High 0/0 0/0 0/0 #> Total 0/6 0/3 0/1 #> WEEK 5 DAY 36 #> Low #> Not low 0/2 0/2 0/5 #> Low 0/1 0/1 0/0 #> Total 0/3 0/3 0/5 #> High #> Not high 0/3 0/3 0/5 #> High 0/0 0/0 0/0 #> Total 0/3 0/3 0/5 #> C-Reactive Protein Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/5 0/3 0/3 #> Low 0/0 0/1 0/0 #> Total 0/5 0/4 0/3 #> High #> Not high 0/5 0/3 1/3 (33.3%) #> High 0/0 0/1 0/0 #> Total 0/5 0/4 1/3 (33.3%) #> WEEK 2 DAY 15 #> Low #> Not low 0/8 0/2 0/0 #> Low 0/0 0/0 0/1 #> Total 0/8 0/2 0/1 #> High #> Not high 1/8 (12.5%) 0/1 0/1 #> High 0/0 0/1 0/0 #> Total 1/8 (12.5%) 0/2 0/1 #> WEEK 3 DAY 22 #> Low #> Not low 0/5 0/4 0/4 #> Low 0/0 1/1 (100%) 0/2 #> Total 0/5 1/5 (20%) 0/6 #> High #> Not high 1/5 (20%) 1/5 (20%) 0/6 #> High 0/0 0/0 0/0 #> Total 1/5 (20%) 1/5 (20%) 0/6 #> WEEK 4 DAY 29 #> Low #> Not low 0/2 1/2 (50%) 1/3 (33.3%) #> Low 0/0 0/0 0/0 #> Total 0/2 1/2 (50%) 1/3 (33.3%) #> High #> Not high 0/2 0/2 0/3 #> High 0/0 0/0 0/0 #> Total 0/2 0/2 0/3 #> WEEK 5 DAY 36 #> Low #> Not low 0/2 0/2 0/5 #> Low 0/0 1/1 (100%) 0/1 #> Total 0/2 1/3 (33.3%) 0/6 #> High #> Not high 1/2 (50%) 0/3 0/6 #> High 0/0 0/0 0/0 #> Total 1/2 (50%) 0/3 0/6 #> Immunoglobulin A Measurement #> WEEK 1 DAY 8 #> Low #> Not low 0/6 0/6 0/2 #> Low 0/0 0/0 0/0 #> Total 0/6 0/6 0/2 #> High #> Not high 0/5 1/6 (16.7%) 0/2 #> High 0/1 0/0 0/0 #> Total 0/6 1/6 (16.7%) 0/2 #> WEEK 2 DAY 15 #> Low #> Not low 0/3 0/7 0/4 #> Low 0/0 0/0 0/0 #> Total 0/3 0/7 0/4 #> High #> Not high 0/3 0/7 1/4 (25%) #> High 0/0 0/0 0/0 #> Total 0/3 0/7 1/4 (25%) #> WEEK 3 DAY 22 #> Low #> Not low 0/4 0/5 0/9 #> Low 0/0 0/0 0/0 #> Total 0/4 0/5 0/9 #> High #> Not high 0/3 0/5 0/8 #> High 0/1 0/0 0/1 #> Total 0/4 0/5 0/9 #> WEEK 4 DAY 29 #> Low #> Not low 0/2 0/6 0/4 #> Low 0/0 0/0 0/0 #> Total 0/2 0/6 0/4 #> High #> Not high 1/1 (100%) 0/6 0/3 #> High 0/1 0/0 0/1 #> Total 1/2 (50%) 0/6 0/4 #> WEEK 5 DAY 36 #> Low #> Not low 0/6 0/5 0/5 #> Low 0/0 0/0 0/0 #> Total 0/6 0/5 0/5 #> High #> Not high 0/5 0/5 0/5 #> High 0/1 0/0 0/0 #> Total 0/6 0/5 0/5"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"lbt06 Layout — lbt06_lyt","title":"lbt06 Layout — lbt06_lyt","text":"lbt06 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"lbt06 Layout — lbt06_lyt","text":"","code":"lbt06_lyt( arm_var, lbl_overall, lbl_param, lbl_visit, lbl_anrind, lbl_bnrind, visitvar, anrind_var, bnrind_var, page_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt06_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"lbt06 Layout — lbt06_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_param (string) text label PARAM variable. lbl_visit (string) text label AVISIT variable. lbl_anrind (string) text label ANRIND variable. lbl_bnrind (string) text label BNRIND variable. visitvar (string) typically \"AVISIT\" user-defined visit incorporating \"ATPT\". anrind_var (string) variable analysis reference range indicator. bnrind_var (string) variable baseline reference range indicator. page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"LBT07 table provides overview analysis values change baseline respective arm course trial.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"","code":"lbt07_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, param_var = \"PARAM\", grad_dir_var = \"GRADE_DIR\", grad_anl_var = \"GRADE_ANL\", ... ) lbt07_pre(adam_db, ...) lbt07_post(tlg, prune_0 = TRUE, ...) lbt07"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted param_var (string) name column storing parameters name. grad_dir_var (string) name column storing grade direction variable required order obtain correct denominators building layout used define row splitting. grad_anl_var (string) name column storing toxicity grade variable negative values ATOXGR replaced absolute values. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"Split columns arm, typically ACTARM.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"lbt07_main(): Main TLG function lbt07_pre(): Preprocessing lbt07_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"adam_db object must contain adlb table columns \"USUBJID\", \"ATOXGR\", \"ONTRTFL\" column specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT07 Table 1 (Default) Laboratory Test Results and Change from Baseline by Visit. — lbt07_main","text":"","code":"run(lbt07, syn_data) #> Parameter #> Direction of Abnormality A: Drug X B: Placebo C: Combination #> Highest NCI CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement (n) 15 15 15 #> LOW #> 1 3 (20.0%) 0 0 #> 2 2 (13.3%) 1 (6.7%) 1 (6.7%) #> 3 1 (6.7%) 1 (6.7%) 6 (40.0%) #> 4 3 (20.0%) 2 (13.3%) 3 (20.0%) #> Any 9 (60.0%) 4 (26.7%) 10 (66.7%) #> C-Reactive Protein Measurement (n) 15 15 15 #> LOW #> 1 2 (13.3%) 1 (6.7%) 2 (13.3%) #> 2 5 (33.3%) 2 (13.3%) 5 (33.3%) #> 3 3 (20.0%) 4 (26.7%) 3 (20.0%) #> 4 0 1 (6.7%) 0 #> Any 10 (66.7%) 8 (53.3%) 10 (66.7%) #> HIGH #> 1 3 (20.0%) 1 (6.7%) 1 (6.7%) #> 2 4 (26.7%) 4 (26.7%) 2 (13.3%) #> 3 1 (6.7%) 2 (13.3%) 4 (26.7%) #> 4 0 1 (6.7%) 0 #> Any 8 (53.3%) 8 (53.3%) 7 (46.7%) #> Immunoglobulin A Measurement (n) 15 15 15 #> HIGH #> 1 3 (20.0%) 1 (6.7%) 1 (6.7%) #> 2 5 (33.3%) 4 (26.7%) 2 (13.3%) #> 3 3 (20.0%) 3 (20.0%) 2 (13.3%) #> 4 0 0 1 (6.7%) #> Any 11 (73.3%) 8 (53.3%) 6 (40.0%)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"lbt07 Layout — lbt07_lyt","title":"lbt07 Layout — lbt07_lyt","text":"lbt07 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"lbt07 Layout — lbt07_lyt","text":"","code":"lbt07_lyt( arm_var, lbl_overall, lbl_param_var, lbl_grad_dir_var, param_var, grad_dir_var, grad_anl_var, map )"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt07_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"lbt07 Layout — lbt07_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_param_var (string) label param_var variable. lbl_grad_dir_var (string) label grad_dir_var variable. param_var (string) name column storing parameters name. grad_dir_var (string) name column storing grade direction variable required order obtain correct denominators building layout used define row splitting. grad_anl_var (string) name column storing toxicity grade variable negative values ATOXGR replaced absolute values. map (data.frame) mapping PARAMs directions abnormality.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline Baseline Grade (Low High Direction).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"","code":"lbt14_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, gr_missing = \"incl\", page_var = \"PARAMCD\", ... ) lbt14_pre(adam_db, gr_missing = \"incl\", direction = \"low\", ...) lbt14_post(tlg, prune_0 = TRUE, ...) lbt14"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted gr_missing (string) missing baseline grades handled. Defaults \"incl\" include \"Missing\" level. options \"excl\" exclude patients missing baseline grades \"gr_0\" convert missing baseline grades grade 0. page_var (string) variable name prior row split page. ... used. direction (string) one \"high\" \"low\" indicating shift direction detailed. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"table follows ADaMIG v1.1. worst grade recorded patient included table. missing baseline lab results, \"Missing\" level BTOXGR excluded. Grading takes value -4 4, negative value means abnormality direction low, positive value means abnormality direction high. Grades 0, 1, 2, 3, 4 counted \"Low\" direction = \"low\". Conversely, direction = \"high\", Grades 0, -1, -2, -3, -4 counted `\"High\". Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically ACTARM.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"lbt14_main(): Main TLG function lbt14_pre(): Preprocessing lbt14_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"adam_db object must contain adlb table columns \"USUBJID\", \"PARAM\", \"BTOXGR\", \"ATOXGR\", column specified arm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT14 Laboratory Test Results Shift Table – Highest NCI-CTCAE Grade Post-Baseline by Baseline Grade (Low or High Direction). — lbt14_main","text":"","code":"run(lbt14, syn_data) #> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination #> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————— #> Alanine Aminotransferase Measurement #> Not Low 12 12 14 #> Not Low 5 (41.7%) 8 (66.7%) 5 (35.7%) #> 1 3 (25.0%) 0 0 #> 2 2 (16.7%) 1 (8.3%) 1 (7.1%) #> 3 0 1 (8.3%) 5 (35.7%) #> 4 2 (16.7%) 2 (16.7%) 3 (21.4%) #> 1 1 2 0 #> Not Low 1 (100%) 2 (100%) 0 #> 2 1 1 0 #> Not Low 0 1 (100%) 0 #> 4 1 (100%) 0 0 #> 3 1 0 1 #> 3 1 (100%) 0 1 (100%) #> C-Reactive Protein Measurement #> Not Low 14 13 12 #> Not Low 5 (35.7%) 7 (53.8%) 4 (33.3%) #> 1 2 (14.3%) 0 2 (16.7%) #> 2 5 (35.7%) 2 (15.4%) 4 (33.3%) #> 3 2 (14.3%) 3 (23.1%) 2 (16.7%) #> 4 0 1 (7.7%) 0 #> 1 0 0 2 #> Not Low 0 0 1 (50.0%) #> 2 0 0 1 (50.0%) #> 2 0 1 0 #> 1 0 1 (100%) 0 #> 3 1 1 1 #> 3 1 (100%) 1 (100%) 1 (100%) #> Immunoglobulin A Measurement #> Not Low 15 15 15 #> Not Low 15 (100%) 15 (100%) 15 (100%)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"lbt14 Layout — lbt14_lyt","title":"lbt14 Layout — lbt14_lyt","text":"lbt14 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"lbt14 Layout — lbt14_lyt","text":"","code":"lbt14_lyt(arm_var, lbl_overall, lbl_param, lbl_btoxgr, page_var)"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt14_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"lbt14 Layout — lbt14_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted page_var (string) variable name prior row split page.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":null,"dir":"Reference","previous_headings":"","what":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"LBT15 Laboratory Test Shifts NCI-CTCAE Grade 3-4 Post-Baseline Table.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"","code":"lbt15_pre(adam_db, ...) lbt15"},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"lbt04.R","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"adam_db (list data.frames) object containing ADaM datasets ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"lbt15_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lbt15.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"LBT15 Laboratory Test Shifts to NCI-CTCAE Grade 3-4 Post-Baseline Table. — lbt15_pre","text":"","code":"run(lbt15, syn_data) #> Laboratory Test A: Drug X B: Placebo C: Combination #> Analysis Toxicity Grade (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————— #> CHEMISTRY #> Alanine Aminotransferase Measurement #> Low 0/7 0/3 1/7 (14.3%) #> High 0/7 0/3 0/8 #> C-Reactive Protein Measurement #> Low 0/8 0/3 0/7 #> High 0/8 0/2 0/7 #> Immunoglobulin A Measurement #> Low 0/5 0/8 0/7 #> High 0/5 0/8 0/6 #> COAGULATION #> Alanine Aminotransferase Measurement #> Low 0/4 0/7 0/4 #> High 0/5 0/7 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/6 0/4 #> High 0/5 1/6 (16.7%) 1/4 (25.0%) #> Immunoglobulin A Measurement #> Low 0/8 0/9 0/6 #> High 0/8 0/9 1/6 (16.7%) #> HEMATOLOGY #> Alanine Aminotransferase Measurement #> Low 0/5 0/5 0/4 #> High 0/6 0/5 0/4 #> C-Reactive Protein Measurement #> Low 0/5 0/5 0/4 #> High 0/5 0/4 0/5 #> Immunoglobulin A Measurement #> Low 0/3 0/4 0/8 #> High 0/3 0/4 0/8"},{"path":"https://insightsengineering.github.io/chevron/reference/listing_format_chevron.html","id":null,"dir":"Reference","previous_headings":"","what":"Format for Chevron Listings — listing_format_chevron","title":"Format for Chevron Listings — listing_format_chevron","text":"Format Chevron Listings","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/listing_format_chevron.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Format for Chevron Listings — listing_format_chevron","text":"","code":"listing_format_chevron()"},{"path":"https://insightsengineering.github.io/chevron/reference/listing_format_chevron.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Format for Chevron Listings — listing_format_chevron","text":"list fmt_config.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lvls.html","id":null,"dir":"Reference","previous_headings":"","what":"Obtain levels from vector — lvls","title":"Obtain levels from vector — lvls","text":"Obtain levels vector","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lvls.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Obtain levels from vector — lvls","text":"","code":"lvls(x)"},{"path":"https://insightsengineering.github.io/chevron/reference/lvls.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Obtain levels from vector — lvls","text":"x (character) (factor) object obtain levels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lvls.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Obtain levels from vector — lvls","text":"character unique values.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/lvls.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Obtain levels from vector — lvls","text":"factors, levels returned. characters, sorted unique values returned.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/main.html","id":null,"dir":"Reference","previous_headings":"","what":"Main — main","title":"Main — main","text":"retrieve set main function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/main.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Main — main","text":"","code":"main(x) # S4 method for class 'chevron_tlg' main(x) main(x) <- value # S4 method for class 'chevron_tlg' main(x) <- value"},{"path":"https://insightsengineering.github.io/chevron/reference/main.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Main — main","text":"x (chevron_tlg) input. value (function) returning tlg. Typically one _main function chevron.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/main.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Main — main","text":"function stored main slot x argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":null,"dir":"Reference","previous_headings":"","what":"MHT01 Medical History Table. — mht01_label","title":"MHT01 Medical History Table. — mht01_label","text":"MHT01 table provides overview subjects medical history SOC Preferred Term.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"MHT01 Medical History Table. — mht01_label","text":"","code":"mht01_label mht01_main( adam_db, arm_var = \"ARM\", row_split_var = \"MHBODSYS\", lbl_overall = NULL, summary_labels = list(all = mht01_label), ... ) mht01_pre(adam_db, ...) mht01_post(tlg, row_split_var = \"MHBODSYS\", prune_0 = TRUE, ...) mht01"},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"MHT01 Medical History Table. — mht01_label","text":"object class character length 2. object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"MHT01 Medical History Table. — mht01_label","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting row_split_var (character) additional row split variables. lbl_overall (string) label used overall column, set NULL overall column omitted summary_labels (list) summarize labels. See details. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"MHT01 Medical History Table. — mht01_label","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"MHT01 Medical History Table. — mht01_label","text":"Numbers represent absolute numbers patients fraction N, absolute number event specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Order row_split_var alphabetically medical condition decreasing total number patients specific condition. summary_labels used control summary level. \"\" used, split summary statistic labels. One special case \"TOTAL\", overall population.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"MHT01 Medical History Table. — mht01_label","text":"mht01_label: Default labels mht01_main(): Main TLG function mht01_pre(): Preprocessing mht01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"MHT01 Medical History Table. — mht01_label","text":"adam_db object must contain admh table columns \"MHBODSYS\" \"MHDECOD\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mht01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"MHT01 Medical History Table. — mht01_label","text":"","code":"run(mht01, syn_data) #> MedDRA System Organ Class A: Drug X B: Placebo C: Combination #> MedDRA Preferred Term (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one condition 13 (86.7%) 14 (93.3%) 15 (100%) #> Total number of conditions 58 59 99 #> cl A #> Total number of patients with at least one condition 7 (46.7%) 6 (40.0%) 10 (66.7%) #> Total number of conditions 8 11 16 #> trm A_2/2 5 (33.3%) 6 (40.0%) 6 (40.0%) #> trm A_1/2 3 (20.0%) 1 (6.7%) 6 (40.0%) #> cl B #> Total number of patients with at least one condition 12 (80.0%) 11 (73.3%) 12 (80.0%) #> Total number of conditions 24 21 32 #> trm B_3/3 8 (53.3%) 6 (40.0%) 7 (46.7%) #> trm B_1/3 5 (33.3%) 6 (40.0%) 8 (53.3%) #> trm B_2/3 5 (33.3%) 6 (40.0%) 5 (33.3%) #> cl C #> Total number of patients with at least one condition 8 (53.3%) 6 (40.0%) 11 (73.3%) #> Total number of conditions 10 13 22 #> trm C_2/2 6 (40.0%) 4 (26.7%) 8 (53.3%) #> trm C_1/2 4 (26.7%) 4 (26.7%) 5 (33.3%) #> cl D #> Total number of patients with at least one condition 10 (66.7%) 7 (46.7%) 13 (86.7%) #> Total number of conditions 16 14 29 #> trm D_1/3 4 (26.7%) 4 (26.7%) 7 (46.7%) #> trm D_2/3 6 (40.0%) 2 (13.3%) 7 (46.7%) #> trm D_3/3 2 (13.3%) 5 (33.3%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/missing_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Missing rule — missing_rule","title":"Missing rule — missing_rule","text":"Missing rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/missing_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Missing rule — missing_rule","text":"","code":"missing_rule"},{"path":"https://insightsengineering.github.io/chevron/reference/missing_rule.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Missing rule — missing_rule","text":"object class rule (inherits character) length 2.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mla_dir.html","id":null,"dir":"Reference","previous_headings":"","what":"MLA Grade Direction Data — mla_dir","title":"MLA Grade Direction Data — mla_dir","text":"MLA Grade Direction Data","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mla_dir.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"MLA Grade Direction Data — mla_dir","text":"","code":"mla_dir"},{"path":"https://insightsengineering.github.io/chevron/reference/mla_dir.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"MLA Grade Direction Data — mla_dir","text":"object class data.frame 76 rows 2 columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":null,"dir":"Reference","previous_headings":"","what":"MNG01 Mean Plot Graph. — mng01_main","title":"MNG01 Mean Plot Graph. — mng01_main","text":"Overview summary statistics across time arm selected data set.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"MNG01 Mean Plot Graph. — mng01_main","text":"","code":"mng01_main( adam_db, dataset = \"adlb\", x_var = \"AVISIT\", y_var = \"AVAL\", y_name = \"PARAM\", y_unit = NULL, arm_var = \"ACTARM\", center_fun = \"mean\", interval_fun = \"mean_ci\", jitter = 0.3, line_col = nestcolor::color_palette(), line_type = NULL, ggtheme = gg_theme_chevron(), table = c(\"n\", center_fun, interval_fun), ... ) mng01_pre(adam_db, dataset, x_var = \"AVISIT\", ...) mng01"},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"MNG01 Mean Plot Graph. — mng01_main","text":"object class chevron_g length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"MNG01 Mean Plot Graph. — mng01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. x_var (string) name column dataset represent x-axis. y_var (string) name variable represented y-axis. y_name (string) variable name y. Used plot's subtitle. y_unit (string) name variable units y. Used plot's subtitle. NULL, y_name displayed subtitle. arm_var (string) variable used column splitting center_fun (string) function compute estimate value. interval_fun (string) function defining crossbar range. NULL, crossbar displayed. jitter (numeric) width spread data points x-axis; number 0 (jitter) 1 (high jitter), default 0.3 (slight jitter). line_col (character) describing colors use lines named character associating values arm_var color names. line_type (character) describing line type use lines named character associating values arm_var line types. ggtheme (theme) passed tern::g_lineplot(). table (character) names statistics displayed table. NULL, table displayed. ... passed tern::g_lineplot().","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"MNG01 Mean Plot Graph. — mng01_main","text":"main function returns list ggplot objects. list ggplot objects. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"MNG01 Mean Plot Graph. — mng01_main","text":"overall value. Preprocessing filters ANL01FL selected data set.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"MNG01 Mean Plot Graph. — mng01_main","text":"mng01_main(): Main TLG Function mng01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"MNG01 Mean Plot Graph. — mng01_main","text":"adam_db object must contain table specified dataset columns specified x_var, y_var, y_name, y_unit arm_var.","code":""},{"path":[]},{"path":"https://insightsengineering.github.io/chevron/reference/mng01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"MNG01 Mean Plot Graph. — mng01_main","text":"","code":"col <- c( \"A: Drug X\" = \"black\", \"B: Placebo\" = \"blue\", \"C: Combination\" = \"gray\" ) lt <- c( \"A: Drug X\" = \"29\", \"B: Placebo\" = \"99\", \"C: Combination\" = \"solid\" ) run( mng01, syn_data, dataset = \"adlb\", x_var = c(\"AVISIT\", \"AVISITN\"), line_col = col, line_type = lt ) #> $`Alanine Aminotransferase Measurement` #> #> $`C-Reactive Protein Measurement` #> #> $`Immunoglobulin A Measurement` #>"},{"path":"https://insightsengineering.github.io/chevron/reference/modify_character.html","id":null,"dir":"Reference","previous_headings":"","what":"Modify character — modify_character","title":"Modify character — modify_character","text":"Modify character","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/modify_character.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Modify character — modify_character","text":"","code":"modify_character(x, y)"},{"path":"https://insightsengineering.github.io/chevron/reference/nocoding.html","id":null,"dir":"Reference","previous_headings":"","what":"No Coding Available rule — nocoding","title":"No Coding Available rule — nocoding","text":"Coding Available rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/nocoding.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"No Coding Available rule — nocoding","text":"","code":"nocoding"},{"path":"https://insightsengineering.github.io/chevron/reference/nocoding.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"No Coding Available rule — nocoding","text":"object class rule (inherits character) length 2.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/obtain_value.html","id":null,"dir":"Reference","previous_headings":"","what":"Obtain value from a vector — obtain_value","title":"Obtain value from a vector — obtain_value","text":"Obtain value vector","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/obtain_value.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Obtain value from a vector — obtain_value","text":"","code":"obtain_value(obj, index)"},{"path":"https://insightsengineering.github.io/chevron/reference/occurrence_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Occurrence Layout — occurrence_lyt","title":"Occurrence Layout — occurrence_lyt","text":"Occurrence Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/occurrence_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Occurrence Layout — occurrence_lyt","text":"","code":"occurrence_lyt( arm_var, lbl_overall, row_split_var, lbl_row_split, medname_var, lbl_medname_var, summary_labels, count_by )"},{"path":"https://insightsengineering.github.io/chevron/reference/occurrence_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Occurrence Layout — occurrence_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) additional row split variables. medname_var (string) variable name medical treatment name. lbl_medname_var (string) label variable defining medication name. summary_labels (list) summarize labels. See details.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/outcome_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Outcome Rule — outcome_rule","title":"Outcome Rule — outcome_rule","text":"Outcome Rule","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/outcome_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Outcome Rule — outcome_rule","text":"","code":"outcome_rule"},{"path":"https://insightsengineering.github.io/chevron/reference/outcome_rule.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Outcome Rule — outcome_rule","text":"object class rule (inherits character) length 6.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":null,"dir":"Reference","previous_headings":"","what":"pdt01 Major Protocol Deviations Table. — pdt01_main","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"major protocol deviations table number subjects total number treatments medication class sorted alphabetically medication name sorted frequencies.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"","code":"pdt01_main( adam_db, arm_var = \"ARM\", lbl_overall = NULL, dvcode_var = \"DVDECOD\", dvterm_var = \"DVTERM\", ... ) pdt01_pre(adam_db, ...) pdt01_post( tlg, prune_0 = TRUE, dvcode_var = \"DVDECOD\", dvterm_var = \"DVTERM\", ... ) pdt01"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted dvcode_var (string) variable defining protocol deviation coded term. default DVDECOD. dvterm_var (string) variable defining protocol deviation term. default DVTERM. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"Data filtered major protocol deviations. (DVCAT == \"MAJOR\"). Numbers represent absolute numbers subjects fraction N, absolute numbers specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort medication class alphabetically within medication class decreasing total number patients specific medication.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"pdt01_main(): Main TLG function pdt01_pre(): Preprocessing pdt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"adam_db object must contain addv table columns specified dvcode_var dvterm_var well \"DVSEQ\".","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"pdt01 Major Protocol Deviations Table. — pdt01_main","text":"","code":"run(pdt01, syn_data) #> Category A: Drug X B: Placebo C: Combination #> Description (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one major protocol deviation 2 (13.3%) 4 (26.7%) 0 #> Total number of major protocol deviations 2 5 0 #> EXCLUSION CRITERIA #> Active or untreated or other excluded cns metastases 0 1 (6.7%) 0 #> Pregnancy criteria 0 1 (6.7%) 0 #> INCLUSION CRITERIA #> Ineligible cancer type or current cancer stage 1 (6.7%) 0 0 #> MEDICATION #> Discontinued study drug for unspecified reason 0 1 (6.7%) 0 #> Received prohibited concomitant medication 0 1 (6.7%) 0 #> PROCEDURAL #> Eligibility-related test not done/out of window 0 1 (6.7%) 0 #> Failure to sign updated ICF within two visits 1 (6.7%) 0 0"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"pdt01 Layout — pdt01_lyt","title":"pdt01 Layout — pdt01_lyt","text":"pdt01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"pdt01 Layout — pdt01_lyt","text":"","code":"pdt01_lyt( arm_var, lbl_overall, dvcode_var, lbl_dvcode_var, dvterm_var, lbl_dvterm_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"pdt01 Layout — pdt01_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted dvcode_var (string) variable defining protocol deviation coded term. default DVDECOD. lbl_dvcode_var (string) label variable defining protocol deviation coded term. dvterm_var (string) variable defining protocol deviation term. default DVTERM. lbl_dvterm_var (string) label variable defining protocol deviation term.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":null,"dir":"Reference","previous_headings":"","what":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"major protocol deviations table number subjects total number Major Protocol Deviations Related Epidemic/Pandemic sorted alphabetically deviations name sorted frequencies.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"","code":"pdt02_main( adam_db, arm_var = \"ARM\", lbl_overall = NULL, dvreas_var = \"DVREAS\", dvterm_var = \"DVTERM\", ... ) pdt02_pre(adam_db, ...) pdt02_post( tlg, prune_0 = TRUE, dvreas_var = \"DVREAS\", dvterm_var = \"DVTERM\", ... ) pdt02"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted dvreas_var (string) variable defining reason deviation. default DVREAS. dvterm_var (string) variable defining protocol deviation term. default DVTERM. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"Data filtered major protocol deviations related epidemic/pandemic. (AEPRELFL == \"Y\" & DVCAT == \"MAJOR\"). Numbers represent absolute numbers subjects fraction N, absolute numbers specified. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm. include total column default. Sort deviation reason alphabetically within deviation reason decreasing total number patients specific deviation term.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"pdt02_main(): Main TLG function pdt02_pre(): Preprocessing pdt02_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"adam_db object must contain addv table columns specified dvreas_var dvterm_var.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"pdt02 Major Protocol Deviations Related to Epidemic/Pandemic Table. — pdt02_main","text":"","code":"run(pdt02, syn_data) #> Primary Reason A: Drug X B: Placebo C: Combination #> Description (N=15) (N=15) (N=15) #> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Total number of patients with at least one major protocol deviation related to epidemic/pandemic 1 (6.7%) 0 0 #> Total number of major protocol deviations related to epidemic/pandemic 1 0 0 #> Site action due to epidemic/pandemic 1 (6.7%) 0 0 #> Failure to sign updated ICF within two visits 1 (6.7%) 0 0"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"pdt02 Layout — pdt02_lyt","title":"pdt02 Layout — pdt02_lyt","text":"pdt02 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"pdt02 Layout — pdt02_lyt","text":"","code":"pdt02_lyt( arm_var, lbl_overall, lbl_dvreas_var, lbl_dvterm_var, dvreas_var, dvterm_var )"},{"path":"https://insightsengineering.github.io/chevron/reference/pdt02_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"pdt02 Layout — pdt02_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted lbl_dvreas_var (string) label variable defining reason deviation. lbl_dvterm_var (string) label variable defining protocol deviation term. dvreas_var (string) variable defining reason deviation. default DVREAS. dvterm_var (string) variable defining protocol deviation term. default DVTERM.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/postprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Post process — postprocess","title":"Post process — postprocess","text":"retrieve set postprocess function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/postprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Post process — postprocess","text":"","code":"postprocess(x) # S4 method for class 'chevron_tlg' postprocess(x) postprocess(x) <- value # S4 method for class 'chevron_tlg' postprocess(x) <- value"},{"path":"https://insightsengineering.github.io/chevron/reference/postprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Post process — postprocess","text":"x (chevron_tlg) input. value (function) returning post-processed tlg.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/postprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Post process — postprocess","text":"function stored postprocess slot x argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/preprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Pre process — preprocess","title":"Pre process — preprocess","text":"retrieve set preprocess function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/preprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pre process — preprocess","text":"","code":"preprocess(x) # S4 method for class 'chevron_tlg' preprocess(x) preprocess(x) <- value # S4 method for class 'chevron_tlg' preprocess(x) <- value"},{"path":"https://insightsengineering.github.io/chevron/reference/preprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pre process — preprocess","text":"x (chevron_tlg) input. value (function) returning pre-processed list data.frames amenable tlg creation. Typically one _pre function chevron.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/preprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Pre process — preprocess","text":"function stored preprocess slot x argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/print_args.html","id":null,"dir":"Reference","previous_headings":"","what":"Print Arguments — print_args","title":"Print Arguments — print_args","text":"Print Arguments","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/print_args.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print Arguments — print_args","text":"","code":"print_args(run_call, additional_args, args, auto_pre = TRUE)"},{"path":"https://insightsengineering.github.io/chevron/reference/print_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Print list — print_list","title":"Print list — print_list","text":"Print list","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/print_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print list — print_list","text":"","code":"print_list(x, indent = 2L)"},{"path":"https://insightsengineering.github.io/chevron/reference/proportion_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Proportion layout — proportion_lyt","title":"Proportion layout — proportion_lyt","text":"Proportion layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/proportion_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Proportion layout — proportion_lyt","text":"","code":"proportion_lyt( lyt, arm_var, methods, strata, conf_level, odds_ratio = TRUE, rsp_var = \"IS_RSP\" )"},{"path":"https://insightsengineering.github.io/chevron/reference/proportion_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Proportion layout — proportion_lyt","text":"lyt layout created rtables arm_var (string) variable used column splitting methods (list) named list, use named list control, example: methods = list(prop_conf_method = \"wald\", diff_conf_method = \"wald\", strat_diff_conf_method = \"ha\", diff_pval_method = \"fisher\", strat_diff_pval_method = \"schouten\") prop_conf_method controls methods calculating proportion confidence interval, diff_conf_method controls methods calculating unstratified difference confidence interval, strat_diff_conf_method controls methods calculating stratified difference confidence interval, diff_pval_method controls methods calculating unstratified p-value odds ratio, strat_diff_pval_method controls methods calculating stratified p-value odds ratio, see details tern strata (string) stratification factors, e.g. strata = c(\"STRATA1\", \"STRATA2\"), default NULL conf_level (numeric) level confidence interval, default 0.95. odds_ratio (flag) odds ratio calculated, default TRUE","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. dunlin get_arg, reformat formatters with_label","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/report_null.html","id":null,"dir":"Reference","previous_headings":"","what":"Creates NULL Report — report_null","title":"Creates NULL Report — report_null","text":"Creates NULL Report","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/report_null.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Creates NULL Report — report_null","text":"","code":"report_null(tlg, ...) # S4 method for class 'NULL' report_null(tlg, ind = 2L, ...) # S4 method for class 'VTableTree' report_null(tlg, ind = 2L, ...) # S4 method for class 'listing_df' report_null(tlg, ind = 2L, ...) # S4 method for class 'list' report_null(tlg, ind = 2L, ...) # S4 method for class 'ANY' report_null(tlg, ...) standard_null_report()"},{"path":"https://insightsengineering.github.io/chevron/reference/report_null.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Creates NULL Report — report_null","text":"tlg convert null report. ... used. ind (integer) indentation outputs class VTableTree.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/report_null.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Creates NULL Report — report_null","text":"tlg object NULL report tlg NULL, TableTree 0 rows, listing_df 0 rows list 0 elements.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/report_null.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Creates NULL Report — report_null","text":"","code":"report_null(NULL) #> #> ———————————————————————————————————————————————————————————————————————————————————————— #> Null Report: No observations met the reporting criteria for inclusion in this output."},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":null,"dir":"Reference","previous_headings":"","what":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"RMPT01 table provides overview duration exposure.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"","code":"rmpt01_main( adam_db, summaryvars = \"AVALCAT1\", show_tot = TRUE, row_split_var = NULL, col_split_var = NULL, overall_col_lbl = NULL, ... ) rmpt01_pre(adam_db, summaryvars = \"AVALCAT1\", ...) rmpt01_post(tlg, prune_0 = FALSE, ...) rmpt01"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"adam_db (list data.frames) object containing ADaM datasets summaryvars (string) variables analyzed. label attribute corresponding columns adex table adam_db used label. show_tot (flag) whether display cumulative total. row_split_var (string) name column containing variable split exposure . col_split_var (string) additional column splitting variable. overall_col_lbl (string) name overall column. NULL, overall level added. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"Person time sum exposure across patients. Summary statistics default based number patients corresponding N row (number non-missing values). remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"rmpt01_main(): Main TLG function rmpt01_pre(): Preprocessing rmpt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"adam_db object must contain adex table \"AVAL\" columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"RMPT01Duration of Exposure for Risk Management Plan Table. — rmpt01_main","text":"","code":"run(rmpt01, syn_data, col_split_var = \"SEX\") #> F M #> Patients Person time Patients Person time #> Duration of exposure (N=30) (N=30) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————— #> < 1 month 3 (10.0%) 45 1 (6.7%) 22 #> 1 to <3 months 8 (26.7%) 554 5 (33.3%) 283 #> 3 to <6 months 8 (26.7%) 1042 5 (33.3%) 686 #> >=6 months 11 (36.7%) 2447 4 (26.7%) 834 #> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"rmpt01 Layout — rmpt01_lyt","title":"rmpt01 Layout — rmpt01_lyt","text":"rmpt01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"rmpt01 Layout — rmpt01_lyt","text":"","code":"rmpt01_lyt( summaryvars, lbl_summaryvars, show_tot, row_split_var, col_split_var, overall_col_lbl )"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"rmpt01 Layout — rmpt01_lyt","text":"summaryvars (string) variables analyzed. label attribute corresponding columns adex table adam_db used label. lbl_summaryvars (character) label associated analyzed variables. show_tot (flag) whether display cumulative total. row_split_var (character) additional row split variables. col_split_var (string) additional column splitting variable. overall_col_lbl (string) name overall column. NULL, overall level added.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":null,"dir":"Reference","previous_headings":"","what":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"rmpt03 table provides overview duration exposure.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"","code":"rmpt03_main( adam_db, summaryvars = \"AGEGR1\", show_tot = TRUE, row_split_var = NULL, col_split_var = \"SEX\", overall_col_lbl = \"All Genders\", ... ) rmpt03_pre(adam_db, summaryvars = \"AGEGR1\", ...) rmpt03"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"adam_db (list data.frames) object containing ADaM datasets summaryvars (string) variables analyzed. label attribute corresponding columns adex table adam_db used label. show_tot (flag) whether display cumulative total. row_split_var (string) name column containing variable split exposure . col_split_var (string) additional column splitting variable. overall_col_lbl (string) name overall column. NULL, overall level added. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"Person time sum exposure across patients. Summary statistics default based number patients corresponding N row (number non-missing values). remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"rmpt03_main(): Main TLG function rmpt03_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt03.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"rmpt03Duration of Exposure for Risk Management Plan Table. — rmpt03_main","text":"","code":"pre_data <- dunlin::propagate(syn_data, \"adsl\", \"AGEGR1\", \"USUBJID\") #> #> Updating: adae with: AGEGR1 #> Updating: adsaftte with: AGEGR1 #> Updating: adcm with: AGEGR1 #> Updating: addv with: AGEGR1 #> Updating: adeg with: AGEGR1 #> Updating: adex with: AGEGR1 #> Updating: adlb with: AGEGR1 #> Updating: admh with: AGEGR1 #> Skipping: adrs #> Updating: adsub with: AGEGR1 #> Skipping: adtte #> Updating: advs with: AGEGR1 run(rmpt03, pre_data) #> F M All Genders #> Patients Person time Patients Person time Patients Person time #> Age Group (N=30) (N=30) (N=15) (N=15) (N=45) (N=45) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> <65 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913 #> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":null,"dir":"Reference","previous_headings":"","what":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"RMPT04 table provides overview duration exposure extent.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"","code":"rmpt04_main( adam_db, summaryvars = \"ETHNIC\", show_tot = TRUE, row_split_var = NULL, col_split_var = NULL, overall_col_lbl = NULL, ... ) rmpt04_pre(adam_db, summaryvars = \"ETHNIC\", ...) rmpt04"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"adam_db (list data.frames) object containing ADaM datasets summaryvars (string) variables analyzed. label attribute corresponding columns adex table adam_db used label. show_tot (flag) whether display cumulative total. row_split_var (character) additional row split variables. col_split_var (string) additional column splitting variable. overall_col_lbl (string) name overall column. NULL, overall level added. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"Person time sum exposure across patients. Summary statistics default based number patients corresponding N row (number non-missing values). remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"rmpt04_main(): Main TLG function rmpt04_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt04.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"RMPT04Extent of Exposure by Ethnic Origin for Risk Management Plan Table. — rmpt04_main","text":"","code":"run(rmpt04, syn_data) #> Patients Person time #> ETHNIC (N=45) (N=45) #> ————————————————————————————————————————————————————————————— #> HISPANIC OR LATINO 2 (4.4%) 309 #> NOT HISPANIC OR LATINO 41 (91.1%) 5555 #> NOT REPORTED 2 (4.4%) 49 #> Total patients number/person time 45 (100.0%) 5913"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":null,"dir":"Reference","previous_headings":"","what":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"RMPT05 table provides overview duration exposure extent.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"","code":"rmpt05_main( adam_db, summaryvars = \"RACE\", show_tot = TRUE, row_split_var = NULL, col_split_var = NULL, overall_col_lbl = NULL, ... ) rmpt05_pre(adam_db, summaryvars = \"RACE\", ...) rmpt05"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"adam_db (list data.frames) object containing ADaM datasets summaryvars (string) variables analyzed. label attribute corresponding columns adex table adam_db used label. show_tot (flag) whether display cumulative total. row_split_var (character) additional row split variables. col_split_var (string) additional column splitting variable. overall_col_lbl (string) name overall column. NULL, overall level added. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"Person time sum exposure across patients. Summary statistics default based number patients corresponding N row (number non-missing values). remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"rmpt05_main(): Main TLG function rmpt05_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt05.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"RMPT05 Extent of Exposure by Race for Risk Management Plan Table. — rmpt05_main","text":"","code":"run(rmpt05, syn_data) #> Patients Person time #> RACE (N=45) (N=45) #> ————————————————————————————————————————————————————————————— #> ASIAN 26 (57.8%) 3309 #> BLACK OR AFRICAN AMERICAN 9 (20.0%) 1139 #> WHITE 7 (15.6%) 1231 #> AMERICAN INDIAN OR ALASKA NATIVE 3 (6.7%) 234 #> Total patients number/person time 45 (100.0%) 5913"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":null,"dir":"Reference","previous_headings":"","what":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency 95% CI Risk Management Plan.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"","code":"rmpt06_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, method = \"clopper-pearson\", conf_level = 0.95, show_diff = FALSE, ref_group = NULL, method_diff = \"wald\", conf_level_diff = 0.95, grade_groups = NULL, ... ) rmpt06_pre(adam_db, ...) rmpt06_post(tlg, prune_0 = FALSE, ...) rmpt06"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted method (string) method used construct confidence interval. See tern::estimate_proportion. conf_level (proportion) confidence level interval. See tern::estimate_proportion. show_diff (flag) whether show difference patient least one adverse event groups. ref_group (string) reference group difference. method_diff (string) method used construct confidence interval difference groups. conf_level_diff (proportion) confidence level interval difference groups. grade_groups (list) grade groups displayed. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"rmpt06_main(): Main TLG function rmpt06_pre(): Preprocessing rmpt06_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"RMPT06 Table 1 (Default) Seriousness, Outcomes, Severity, Frequency with 95% CI for Risk Management Plan. — rmpt06_main","text":"","code":"run(rmpt06, syn_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100.0%) #> 95% CI for % of patients with at least one AE (59.5, 98.3) (68.1, 99.8) (78.2, 100.0) #> Total number of AEs 58 59 99 #> Total number of patients with at least one AE by worst grade #> Grade 1 0 1 (6.7%) 1 (6.7%) #> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%) #> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%) #> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%) #> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%) #> Number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%) #> Number of patients with at least one AE by outcome #> Fatal outcome 8 (61.5%) 8 (57.1%) 10 (66.7%) #> Unresolved 4 (30.8%) 6 (42.9%) 9 (60.0%) #> Recovered/Resolved 9 (69.2%) 8 (57.1%) 11 (73.3%) #> Resolved with sequelae 5 (38.5%) 4 (28.6%) 7 (46.7%) #> Recovering/Resolving 9 (69.2%) 6 (42.9%) 13 (86.7%) #> Unknown outcome 2 (15.4%) 4 (28.6%) 7 (46.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"rmpt06 Layout — rmpt06_lyt","title":"rmpt06 Layout — rmpt06_lyt","text":"rmpt06 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"rmpt06 Layout — rmpt06_lyt","text":"","code":"rmpt06_lyt( arm_var, lbl_overall, method, conf_level, show_diff, ref_group, method_diff, conf_level_diff, grade_groups )"},{"path":"https://insightsengineering.github.io/chevron/reference/rmpt06_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"rmpt06 Layout — rmpt06_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":null,"dir":"Reference","previous_headings":"","what":"RSPT01 Binary Outcomes Summary. — rspt01_main","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"RSPT01 template may used summarize binary outcome response variable single time point. Typical application oncology","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"","code":"rspt01_main( adam_db, dataset = \"adrs\", arm_var = \"ARM\", ref_group = NULL, odds_ratio = TRUE, perform_analysis = \"unstrat\", strata = NULL, conf_level = 0.95, methods = list(), ... ) rspt01_pre(adam_db, ...) rspt01_post(tlg, prune_0 = TRUE, ...) rspt01"},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting ref_group (string) name reference group, value identical values arm_var, specified, default use first level value arm_var. odds_ratio (flag) odds ratio calculated, default TRUE perform_analysis (string) option display statistical comparisons using stratified analyses, unstratified analyses, , e.g. c(\"unstrat\", \"strat\"). unstratified displayed default strata (string) stratification factors, e.g. strata = c(\"STRATA1\", \"STRATA2\"), default NULL conf_level (numeric) level confidence interval, default 0.95. methods (list) named list, use named list control, example: methods = list(prop_conf_method = \"wald\", diff_conf_method = \"wald\", strat_diff_conf_method = \"ha\", diff_pval_method = \"fisher\", strat_diff_pval_method = \"schouten\") prop_conf_method controls methods calculating proportion confidence interval, diff_conf_method controls methods calculating unstratified difference confidence interval, strat_diff_conf_method controls methods calculating stratified difference confidence interval, diff_pval_method controls methods calculating unstratified p-value odds ratio, strat_diff_pval_method controls methods calculating stratified p-value odds ratio, see details tern ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"overall value.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"rspt01_main(): Main TLG function rspt01_pre(): Preprocessing rspt01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"RSPT01 Binary Outcomes Summary. — rspt01_main","text":"","code":"library(dplyr) library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"BESRSPI\", \"adrs\") run(rspt01, proc_data) #> Warning: Chi-squared approximation may be incorrect #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0) #> Unstratified Analysis #> Difference in Response rate (%) -6.7 6.7 #> 95% CI (Wald, with correction) (-47.7, 34.4) (-32.7, 46.0) #> p-value (Chi-Squared Test) 0.7048 0.6903 #> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60) #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38) run(rspt01, proc_data, odds_ratio = FALSE, perform_analysis = c(\"unstrat\", \"strat\"), strata = c(\"STRATA1\", \"STRATA2\"), methods = list(diff_pval_method = \"fisher\") ) #> Warning: Less than 5 observations in some strata. #> Warning: Less than 5 observations in some strata. #> Warning: <5 data points in some strata. CMH test may be incorrect. #> Warning: <5 data points in some strata. CMH test may be incorrect. #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————————————————————————— #> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%) #> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0) #> Unstratified Analysis #> Difference in Response rate (%) -6.7 6.7 #> 95% CI (Wald, with correction) (-47.7, 34.4) (-32.7, 46.0) #> p-value (Fisher's Exact Test) 1.0000 1.0000 #> Stratified Analysis #> Difference in Response rate (%) -11.0 22.5 #> 95% CI (CMH, without correction) (-42.7, 20.7) (-3.5, 48.5) #> p-value (Cochran-Mantel-Haenszel Test) 0.5731 0.3088 #> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%) #> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25) #> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%) #> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38) #> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%) #> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)"},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"rspt01 Layout — rspt01_lyt","title":"rspt01 Layout — rspt01_lyt","text":"rspt01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"rspt01 Layout — rspt01_lyt","text":"","code":"rspt01_lyt( arm_var, rsp_var, ref_group, odds_ratio, perform_analysis, strata, conf_level, methods )"},{"path":"https://insightsengineering.github.io/chevron/reference/rspt01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"rspt01 Layout — rspt01_lyt","text":"arm_var (string) variable used column splitting","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":null,"dir":"Reference","previous_headings":"","what":"Run the TLG-generating pipeline — run","title":"Run the TLG-generating pipeline — run","text":"Run TLG-generating pipeline","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Run the TLG-generating pipeline — run","text":"","code":"run( object, adam_db, auto_pre = TRUE, verbose = FALSE, unwrap = FALSE, ..., user_args = list(...) ) # S4 method for class 'chevron_tlg' run( object, adam_db, auto_pre = TRUE, verbose = get_arg(\"chevron.run.verbose\", \"R_CHEVRON_RUN_VERBOSE\", FALSE), unwrap = get_arg(\"chevron.run.unwrap\", \"R_CHEVRON_RUN_UNWRAP\", verbose), ..., user_args = list(...) )"},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Run the TLG-generating pipeline — run","text":"object (chevron_tlg) input. adam_db (list data.frames) object containing ADaM datasets auto_pre (flag) whether perform default pre processing step. verbose (flag) whether print argument information. unwrap (flag) whether print preprocessing postprocessing main function together associated layout function. ... extra arguments pass pre-processing, main post-processing functions. user_args (list) arguments ....","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Run the TLG-generating pipeline — run","text":"rtables (chevron_t), rlistings (chevron_l), grob (chevron_g) ElementaryTable (null report) depending class chevron_tlg object passed object argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Run the TLG-generating pipeline — run","text":"functions stored preprocess, main postprocess slots chevron_tlg objects called respectively, preprocessing, main postprocessing functions. executing run method chevron_tlg object, auto_pre TRUE, adam_bd list first passed preprocessing function. resulting list passed main function produces table, graph listings list objects. output passed postprocessing function performed final modifications returning output. Additional arguments specified ... user_args passed three functions.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/run.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Run the TLG-generating pipeline — run","text":"","code":"run(mng01, syn_data, auto_pre = TRUE, dataset = \"adlb\") #> $`Alanine Aminotransferase Measurement` #> #> $`C-Reactive Protein Measurement` #> #> $`Immunoglobulin A Measurement` #>"},{"path":"https://insightsengineering.github.io/chevron/reference/s_summary_na.html","id":null,"dir":"Reference","previous_headings":"","what":"Summary factor allowing NA — s_summary_na","title":"Summary factor allowing NA — s_summary_na","text":"Summary factor allowing NA","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/s_summary_na.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summary factor allowing NA — s_summary_na","text":"","code":"s_summary_na( x, labelstr, denom = c(\"n\", \"N_row\", \"N_col\"), .N_row, .N_col, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/s_summary_na.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summary factor allowing NA — s_summary_na","text":"x (factor) input. denom (string) denominator choice. .N_row (integer) number rows row-split dataset. .N_col (integer) number rows column-split dataset. ... used","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/script.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Script for TLG Generation — script","title":"Create Script for TLG Generation — script","text":"Create Script TLG Generation","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/script.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Script for TLG Generation — script","text":"","code":"script_funs(x, adam_db, args, name = deparse(substitute(x))) # S4 method for class 'chevron_tlg' script_funs(x, adam_db, args, name = deparse(substitute(x))) # S4 method for class 'chevron_simple' script_funs(x, adam_db, args, name = deparse(substitute(x)))"},{"path":"https://insightsengineering.github.io/chevron/reference/script.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create Script for TLG Generation — script","text":"x (chevron_tlg) input. adam_db (string) name dataset. args (string) name argument list. name (string) name template.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/script.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Script for TLG Generation — script","text":"character can integrated executable script.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/script.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create Script for TLG Generation — script","text":"","code":"script_funs(aet04, adam_db = \"syn_data\", args = \"args\") #> [1] \"# Edit Preprocessing Function.\" #> [2] \"preprocess(aet04) <- \" #> [3] \"function (adam_db, ...) \" #> [4] \"{\" #> [5] \" atoxgr_lvls <- c(\\\"1\\\", \\\"2\\\", \\\"3\\\", \\\"4\\\", \\\"5\\\")\" #> [6] \" adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL == \" #> [7] \" \\\"Y\\\") %>% mutate(AEBODSYS = reformat(.data$AEBODSYS, nocoding), \" #> [8] \" AEDECOD = reformat(.data$AEDECOD, nocoding), ATOXGR = factor(.data$ATOXGR, \" #> [9] \" levels = atoxgr_lvls))\" #> [10] \" adam_db\" #> [11] \"}\" #> [12] \"\" #> [13] \"# Create TLG\" #> [14] \"tlg_output <- run(object = aet04, adam_db = syn_data, verbose = TRUE, user_args = args)\""},{"path":"https://insightsengineering.github.io/chevron/reference/set_section_div.html","id":null,"dir":"Reference","previous_headings":"","what":"Set Section Dividers — set_section_div","title":"Set Section Dividers — set_section_div","text":"Set Section Dividers","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/set_section_div.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Set Section Dividers — set_section_div","text":"","code":"set_section_div(x)"},{"path":"https://insightsengineering.github.io/chevron/reference/set_section_div.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Set Section Dividers — set_section_div","text":"x (integerish) value section divider added.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/set_section_div.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Set Section Dividers — set_section_div","text":"invisible NULL. Set chevron.section_div option.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/set_section_div.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Set Section Dividers — set_section_div","text":"Section dividers empty lines sections tables. E.g. 1 used first row split empty line added. Currently works aet02, cmt01a mht01 template.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/smart_prune.html","id":null,"dir":"Reference","previous_headings":"","what":"Prune table up to an ElementaryTable — smart_prune","title":"Prune table up to an ElementaryTable — smart_prune","text":"Avoid returning NULL table empty.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/smart_prune.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prune table up to an ElementaryTable — smart_prune","text":"","code":"smart_prune(tlg)"},{"path":"https://insightsengineering.github.io/chevron/reference/smart_prune.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prune table up to an ElementaryTable — smart_prune","text":"tlg (TableTree) object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/smart_prune.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prune table up to an ElementaryTable — smart_prune","text":"pruned TableTree.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/split_rows_by_recursive.html","id":null,"dir":"Reference","previous_headings":"","what":"Count or summarize by groups — split_rows_by_recursive","title":"Count or summarize by groups — split_rows_by_recursive","text":"Count summarize groups","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/split_rows_by_recursive.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Count or summarize by groups — split_rows_by_recursive","text":"","code":"split_rows_by_recursive(lyt, row_split_var, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/split_rows_by_recursive.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Count or summarize by groups — split_rows_by_recursive","text":"lyt (PreDataTableLayouts) rtable layout. row_split_var (character) variable split rows . ... arguments split_rows_by","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_listing.html","id":null,"dir":"Reference","previous_headings":"","what":"Standard Main Listing Function — std_listing","title":"Standard Main Listing Function — std_listing","text":"Standard Main Listing Function","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_listing.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standard Main Listing Function — std_listing","text":"","code":"std_listing( adam_db, dataset, key_cols, disp_cols, split_into_pages_by_var, unique_rows = FALSE, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/std_listing.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standard Main Listing Function — std_listing","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. key_cols (character) names columns treated key columns rendering listing. Key columns allow group repeat occurrences. disp_cols (character) names non-key columns displayed listing rendered. split_into_pages_by_var (character NULL) name variable split listing . unique_rows (flag) whether keep unique rows listing. ... additional arguments passed rlistings::as_listing.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_listing.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standard Main Listing Function — std_listing","text":"main function returns rlistings list object.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_postprocessing.html","id":null,"dir":"Reference","previous_headings":"","what":"Standard Post Processing — std_postprocessing","title":"Standard Post Processing — std_postprocessing","text":"Standard Post Processing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_postprocessing.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standard Post Processing — std_postprocessing","text":"","code":"std_postprocessing(tlg, ...)"},{"path":"https://insightsengineering.github.io/chevron/reference/std_postprocessing.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standard Post Processing — std_postprocessing","text":"tlg post process. ... additional arguments passed report_null.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_postprocessing.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standard Post Processing — std_postprocessing","text":"processed tlg null report.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/std_postprocessing.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Standard Post Processing — std_postprocessing","text":"","code":"library(rtables) #> Loading required package: formatters #> #> Attaching package: ‘formatters’ #> The following object is masked from ‘package:base’: #> #> %||% #> Loading required package: magrittr #> #> Attaching package: ‘magrittr’ #> The following objects are masked from ‘package:testthat’: #> #> equals, is_less_than, not #> #> Attaching package: ‘rtables’ #> The following object is masked from ‘package:utils’: #> #> str std_postprocessing(build_table(basic_table() |> analyze(\"Species\"), iris), ind = 10L) #> all obs #> ———————————————————— #> setosa 50 #> versicolor 50 #> virginica 50"},{"path":"https://insightsengineering.github.io/chevron/reference/summarize_vars_allow_na.html","id":null,"dir":"Reference","previous_headings":"","what":"Summarize variables allow NA — summarize_vars_allow_na","title":"Summarize variables allow NA — summarize_vars_allow_na","text":"Summarize variables allow NA","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/summarize_vars_allow_na.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summarize variables allow NA — summarize_vars_allow_na","text":"","code":"summarize_vars_allow_na( lyt, vars, var_labels = vars, nested = TRUE, ..., show_labels = \"default\", table_names = vars, section_div = NA_character_, .stats = c(\"n\", \"count_fraction\"), .formats = list(count_fraction = format_count_fraction_fixed_dp), .labels = NULL, .indent_mods = NULL, inclNAs = TRUE )"},{"path":"https://insightsengineering.github.io/chevron/reference/syn_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Example adam Synthetic Data — syn_data","title":"Example adam Synthetic Data — syn_data","text":"Example adam Synthetic Data","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/syn_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example adam Synthetic Data — syn_data","text":"","code":"syn_data"},{"path":"https://insightsengineering.github.io/chevron/reference/syn_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example adam Synthetic Data — syn_data","text":"named list 13 data.frames: - adsl - adae - adsaftte - adcm - addv - adeg - adex - adlb - admh - adrs - adsub - adtte - advs","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/syn_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Example adam Synthetic Data — syn_data","text":"based package random.cdisc.data","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":null,"dir":"Reference","previous_headings":"","what":"TTET01 Binary Outcomes Summary. — ttet01_main","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"TTET01 template may used summarize binary outcome response variable single time point. Typical application oncology","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"","code":"ttet01_main( adam_db, dataset = \"adtte\", arm_var = \"ARM\", ref_group = NULL, summarize_event = TRUE, perform_analysis = \"unstrat\", strata = NULL, ... ) ttet01_pre(adam_db, dataset = \"adtte\", ...) ttet01_post(tlg, prune_0 = TRUE, ...) ttet01"},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting ref_group (string) name reference group, value identical values arm_var, specified, default use first level value arm_var. summarize_event (flag) event description displayed, default TRUE perform_analysis (string) option display statistical comparisons using stratified analyses, unstratified analyses, , e.g. c(\"unstrat\", \"strat\"). unstratified displayed default strata (string) stratification factors, e.g. strata = c(\"STRATA1\", \"STRATA2\"), default NULL ... arguments passed control_surv_time(), control_coxph(), control_survtp(), surv_timepoint(). details, see documentation tern. Commonly used arguments include pval_method, conf_level, conf_type, quantiles, ties, time_point, method, etc. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"overall value.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"ttet01_main(): Main TLG function ttet01_pre(): Preprocessing ttet01_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"TTET01 Binary Outcomes Summary. — ttet01_main","text":"","code":"library(dplyr) library(dunlin) proc_data <- log_filter(syn_data, PARAMCD == \"PFS\", \"adtte\") run(ttet01, proc_data) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Earliest contributing event #> Death 5 11 7 #> Disease Progression 2 1 1 #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ———————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ———————————————————————————————————————————————————————————————————————————————————— #> run(ttet01, proc_data, summarize_event = FALSE, perform_analysis = c(\"unstrat\", \"strat\"), strata = c(\"STRATA1\", \"STRATA2\"), conf_type = \"log-log\", time_point = c(6, 12), method = \"both\" ) #> A: Drug X B: Placebo C: Combination #> (N=15) (N=15) (N=15) #> ———————————————————————————————————————————————————————————————————————————————————— #> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%) #> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%) #> Time to Event (MONTHS) #> Median 8.6 6.2 8.4 #> 95% CI (2.6, NE) (2.2, 7.6) (3.8, NE) #> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE #> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1} #> Unstratified Analysis #> p-value (log-rank) 0.0973 0.9111 #> Hazard Ratio 2.18 1.06 #> 95% CI (0.85, 5.60) (0.38, 2.94) #> Stratified Analysis #> p-value (log-rank) 0.1505 0.8372 #> Hazard Ratio 2.11 0.86 #> 95% CI (0.75, 5.96) (0.21, 3.49) #> 6 MONTHS #> Patients remaining at risk 11 8 11 #> Event Free Rate (%) 73.33 53.33 73.33 #> 95% CI (43.62, 89.05) (26.32, 74.38) (43.62, 89.05) #> Difference in Event Free Rate -20.00 0.00 #> 95% CI (-53.74, 13.74) (-31.65, 31.65) #> p-value (Z-test) 0.2453 1.0000 #> ———————————————————————————————————————————————————————————————————————————————————— #> #> {1} - Censored observation: range maximum #> ———————————————————————————————————————————————————————————————————————————————————— #>"},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"ttet01 Layout — ttet01_lyt","title":"ttet01 Layout — ttet01_lyt","text":"ttet01 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"ttet01 Layout — ttet01_lyt","text":"","code":"ttet01_lyt( arm_var, ref_group, summarize_event, perform_analysis, strata, timeunit, event_lvls, control_survt, control_cox_ph, control_survtp, ... )"},{"path":"https://insightsengineering.github.io/chevron/reference/ttet01_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"ttet01 Layout — ttet01_lyt","text":"arm_var (string) variable used column splitting timeunit (string) time unit get AVALU, default \"Months\" ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/unwrap_layout.html","id":null,"dir":"Reference","previous_headings":"","what":"Extracting Layout Function. — unwrap_layout","title":"Extracting Layout Function. — unwrap_layout","text":"Extracting Layout Function.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/unwrap_layout.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracting Layout Function. — unwrap_layout","text":"","code":"unwrap_layout(x, pattern = \"_lyt$\")"},{"path":"https://insightsengineering.github.io/chevron/reference/unwrap_layout.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracting Layout Function. — unwrap_layout","text":"x (function) containing call layout function. pattern (string) identifying layout functions","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/unwrap_layout.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extracting Layout Function. — unwrap_layout","text":"invisible NULL print content layout functions found body x.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/unwrap_layout.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extracting Layout Function. — unwrap_layout","text":"","code":"unwrap_layout(aet01_main) #> Layout function: #> aet01_lyt: #> function (arm_var, lbl_overall, anl_vars, anl_lbls, lbl_vars) #> { #> lyt_base <- basic_table(show_colcounts = TRUE) %>% split_cols_by_with_overall(arm_var, #> lbl_overall) #> lyt_ae1 <- lyt_base %>% analyze_num_patients(vars = \"USUBJID\", #> .stats = c(\"unique\", \"nonunique\"), .labels = c(unique = render_safe(\"Total number of {patient_label} with at least one AE\"), #> nonunique = \"Total number of AEs\"), .formats = list(unique = format_count_fraction_fixed_dp, #> nonunique = \"xx\"), show_labels = \"hidden\") #> lyt_adsl <- lyt_base %>% count_patients_with_event(\"USUBJID\", #> filters = c(DTHFL = \"Y\"), denom = \"N_col\", .labels = c(count_fraction = \"Total number of deaths\"), #> table_names = \"TotDeath\") %>% count_patients_with_event(\"USUBJID\", #> filters = c(DCSREAS = \"ADVERSE EVENT\"), denom = \"N_col\", #> .labels = c(count_fraction = render_safe(\"Total number of {patient_label} withdrawn from study due to an AE\")), #> table_names = \"TotWithdrawal\") #> lyt_ae2 <- lyt_base %>% count_patients_recursive(anl_vars = anl_vars, #> anl_lbls = anl_lbls, lbl_vars = lbl_vars) #> return(list(ae1 = lyt_ae1, ae2 = lyt_ae2, adsl = lyt_adsl)) #> }"},{"path":"https://insightsengineering.github.io/chevron/reference/var_labels_for.html","id":null,"dir":"Reference","previous_headings":"","what":"Retrieve labels for certain variables — var_labels_for","title":"Retrieve labels for certain variables — var_labels_for","text":"Retrieve labels certain variables","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/var_labels_for.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Retrieve labels for certain variables — var_labels_for","text":"","code":"var_labels_for(df, vars)"},{"path":"https://insightsengineering.github.io/chevron/reference/var_labels_for.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Retrieve labels for certain variables — var_labels_for","text":"df (data.frame) containing columns label attribute. vars (character) variable names df.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/var_labels_for.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Retrieve labels for certain variables — var_labels_for","text":"character replaced placeholders label attribute.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/var_labels_for.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Retrieve labels for certain variables — var_labels_for","text":"labels returned column label attribute, otherwise column name returned. values brackets replaced dunlin::render_safe.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":null,"dir":"Reference","previous_headings":"","what":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"VST01 table provides overview Vital Sign values change baseline respective arm course trial.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"","code":"vst01_main( adam_db, dataset = \"advs\", arm_var = \"ACTARM\", lbl_overall = NULL, row_split_var = NULL, summaryvars = c(\"AVAL\", \"CHG\"), visitvar = \"AVISIT\", precision = list(default = 2L), page_var = \"PARAMCD\", .stats = c(\"n\", \"mean_sd\", \"median\", \"range\"), skip = list(CHG = \"BASELINE\"), ... ) vst01_pre(adam_db, dataset = \"advs\", ...) vst01"},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"adam_db (list data.frames) object containing ADaM datasets dataset (string) name table adam_db object. arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted row_split_var (character) additional row split variables. summaryvars (character) variables analyzed. label attribute corresponding column table adam_db used label. visitvar (string) typically one \"AVISIT\" user-defined visit incorporating \"ATPT\". precision (named list integer) names values found PARAMCD column values indicate number digits statistics. default set, parameter precision specified, value default used. page_var (string) variable name prior row split page. .stats (character) statistics names, see tern::analyze_vars(). skip Named (list) visit values need inhibited. ... additional arguments like .indent_mods, .labels.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"main function returns rtables object. preprocessing function returns list data.frame.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"Analysis Value column, displays number patients, mean, standard deviation, median range analysis value visit. Change Baseline column, displays number patient mean, standard deviation, median range changes relative baseline. Remove zero-count rows unless overridden prune_0 = FALSE. Split columns arm, typically ACTARM. include total column default. Sorted based factor level; first PARAM labels alphabetic order chronological time point given AVISIT. Re-level customize order","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"vst01_main(): Main TLG function vst01_pre(): Preprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"adam_db object must contain table named dataset columns specified summaryvars.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst01.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"VST01 Vital Sign Results and change from Baseline By Visit Table. — vst01_main","text":"","code":"library(dunlin) proc_data <- log_filter( syn_data, PARAMCD %in% c(\"DIABP\", \"SYSBP\"), \"advs\" ) run(vst01, proc_data) #> A: Drug X B: Placebo C: Combination #> Change from Change from Change from #> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline #> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE) #> Median 94.933 NE 111.133 NE 108.359 NE #> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752) #> Median 93.328 108.951 102.849 #> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018) #> Median 92.447 -4.066 107.703 3.227 103.058 -2.476 #> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229) #> Median 101.498 1.731 99.501 -9.727 96.789 -10.155 #> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713) #> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075 #> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881) #> Median 98.168 2.510 97.385 -16.793 107.555 7.966 #> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827) #> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665 #> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11 #> Systolic Blood Pressure #> SCREENING #> n 15 0 15 0 15 0 #> Mean (SD) 154.073 (33.511) NE (NE) 157.840 (34.393) NE (NE) 152.407 (22.311) NE (NE) #> Median 156.169 NE 161.670 NE 149.556 NE #> Min - Max 78.31 - 210.70 NE - NE 79.76 - 210.40 NE - NE 108.21 - 184.88 NE - NE #> BASELINE #> n 15 15 15 #> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317) #> Median 142.705 157.698 155.282 #> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68 #> WEEK 1 DAY 8 #> n 15 15 15 15 15 15 #> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553) #> Median 160.711 5.802 155.030 2.758 145.548 -5.636 #> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04 #> WEEK 2 DAY 15 #> n 15 15 15 15 15 15 #> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670) #> Median 144.253 5.325 142.679 -14.083 147.102 -11.512 #> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59 #> WEEK 3 DAY 22 #> n 15 15 15 15 15 15 #> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984) #> Median 158.938 17.191 155.044 -1.796 156.505 -7.606 #> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74 #> WEEK 4 DAY 29 #> n 15 15 15 15 15 15 #> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175) #> Median 145.506 3.754 149.094 -10.000 150.797 -14.432 #> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16 #> WEEK 5 DAY 36 #> n 15 15 15 15 15 15 #> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799) #> Median 158.142 1.448 164.552 7.060 148.501 -2.385 #> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":null,"dir":"Reference","previous_headings":"","what":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"Vital Sign Parameters outside Normal Limits Regardless Abnormality Baseline.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"","code":"vst02_1_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, exclude_base_abn = FALSE, ... ) vst02_pre(adam_db, ...) vst02_post(tlg, prune_0 = FALSE, ...) vst02_1"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted exclude_base_abn (flag) whether baseline abnormality excluded. ... used. tlg (TableTree, Listing ggplot) object typically produced main function. prune_0 (flag) remove 0 count rows","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"count LOW HIGH values. Results \"LOW LOW\" treated \"LOW\", \"HIGH HIGH\" \"HIGH\". include total column default. remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"vst02_1_main(): Main TLG function vst02_pre(): Preprocessing vst02_post(): Postprocessing","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"adam_db object must contain advs table \"PARAM\", \"ANRIND\" \"BNRIND\" columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"VST02 Vital Sign Abnormalities Table. — vst02_1_main","text":"","code":"run(vst02_1, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ————————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> Low 8/15 (53.3%) 9/15 (60%) 8/15 (53.3%) #> High 10/15 (66.7%) 5/15 (33.3%) 8/15 (53.3%) #> Pulse Rate #> Low 9/15 (60%) 3/15 (20%) 5/15 (33.3%) #> High 2/15 (13.3%) 6/15 (40%) 5/15 (33.3%) #> Respiratory Rate #> Low 13/15 (86.7%) 10/15 (66.7%) 13/15 (86.7%) #> High 7/15 (46.7%) 10/15 (66.7%) 11/15 (73.3%) #> Systolic Blood Pressure #> Low 7/15 (46.7%) 9/15 (60%) 11/15 (73.3%) #> High 10/15 (66.7%) 9/15 (60%) 9/15 (60%) #> Temperature #> Low 12/15 (80%) 13/15 (86.7%) 11/15 (73.3%) #> High 14/15 (93.3%) 12/15 (80%) 14/15 (93.3%) #> Weight #> Low 3/15 (20%) 3/15 (20%) 4/15 (26.7%) #> High 4/15 (26.7%) 4/15 (26.7%) 5/15 (33.3%)"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":null,"dir":"Reference","previous_headings":"","what":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"Vital Sign Parameters outside Normal Limits Among Patients without Abnormality Baseline.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"","code":"vst02_2_main( adam_db, arm_var = \"ACTARM\", lbl_overall = NULL, exclude_base_abn = TRUE, ... ) vst02_2"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"object class chevron_t length 1.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"adam_db (list data.frames) object containing ADaM datasets arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted exclude_base_abn (flag) whether baseline abnormality excluded. ... used.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"main function returns rtables object. preprocessing function returns list data.frame. postprocessing function returns rtables object ElementaryTable (null report).","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"count LOW HIGH values. Results \"LOW LOW\" treated \"LOW\", \"HIGH HIGH\" \"HIGH\". include total column default. remove zero-count rows unless overridden prune_0 = TRUE.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"vst02_2_main(): Main TLG function","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"adam_db object must contain advs table \"PARAM\", \"ANRIND\" \"BNRIND\" columns.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"VST02 Vital Sign Abnormalities Table. — vst02_2_main","text":"","code":"run(vst02_2, syn_data) #> Assessment A: Drug X B: Placebo C: Combination #> Abnormality (N=15) (N=15) (N=15) #> ——————————————————————————————————————————————————————————————————————— #> Diastolic Blood Pressure #> Low 6/11 (54.5%) 9/15 (60%) 6/12 (50%) #> High 8/12 (66.7%) 4/11 (36.4%) 7/13 (53.8%) #> Pulse Rate #> Low 9/15 (60%) 3/15 (20%) 5/13 (38.5%) #> High 2/14 (14.3%) 4/12 (33.3%) 5/15 (33.3%) #> Respiratory Rate #> Low 7/9 (77.8%) 7/11 (63.6%) 11/12 (91.7%) #> High 6/14 (42.9%) 7/11 (63.6%) 9/13 (69.2%) #> Systolic Blood Pressure #> Low 5/13 (38.5%) 8/12 (66.7%) 10/14 (71.4%) #> High 8/13 (61.5%) 8/13 (61.5%) 8/13 (61.5%) #> Temperature #> Low 8/10 (80%) 7/9 (77.8%) 8/10 (80%) #> High 8/8 (100%) 7/8 (87.5%) 12/13 (92.3%) #> Weight #> Low 3/15 (20%) 3/15 (20%) 3/14 (21.4%) #> High 4/14 (28.6%) 4/15 (26.7%) 5/14 (35.7%)"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_lyt.html","id":null,"dir":"Reference","previous_headings":"","what":"vst02_1 Layout — vst02_lyt","title":"vst02_1 Layout — vst02_lyt","text":"vst02_1 Layout","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_lyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"vst02_1 Layout — vst02_lyt","text":"","code":"vst02_lyt( arm_var, lbl_overall, exclude_base_abn, lbl_vs_assessment, lbl_vs_abnormality )"},{"path":"https://insightsengineering.github.io/chevron/reference/vst02_lyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"vst02_1 Layout — vst02_lyt","text":"arm_var (string) variable used column splitting lbl_overall (string) label used overall column, set NULL overall column omitted exclude_base_abn (flag) whether exclude subjects baseline abnormality numerator denominator. lbl_vs_assessment (string) label assessment variable. lbl_vs_abnormality (string) label abnormality variable.","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/yes_no_rule.html","id":null,"dir":"Reference","previous_headings":"","what":"Yes/No rule in title case — yes_no_rule","title":"Yes/No rule in title case — yes_no_rule","text":"Yes/rule title case","code":""},{"path":"https://insightsengineering.github.io/chevron/reference/yes_no_rule.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Yes/No rule in title case — yes_no_rule","text":"","code":"yes_no_rule"},{"path":"https://insightsengineering.github.io/chevron/reference/yes_no_rule.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Yes/No rule in title case — yes_no_rule","text":"object class rule (inherits character) length 8.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-028","dir":"Changelog","previous_headings":"","what":"chevron 0.2.8","title":"chevron 0.2.8","text":"New unwrap argument prints preprocessing, main, postprocessing layout function upon execution run method. chevron.run.verbose option R_CHEVRON_RUN_VERBOSE environment variable control verbose argument run method, chevron.run.unwrap option R_CHEVRON_RUN_UNWRAP environment variable control unwrap argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-027","dir":"Changelog","previous_headings":"","what":"chevron 0.2.7","title":"chevron 0.2.7","text":"CRAN release: 2024-10-09 Add AEL02, AEL03 CML02A_gl templates. Modify post processing MHT01 allow multiple row_split_var. Improve report_null method facilitate creation null reports. Export std_postprocessing function simplify post processing logic. AET01 can now additionally display number death withdrawal using show_wd argument. MNG01 line type can now controlled line_type argument. script_funs doesn’t rely anymore source code pre processing functions.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-026","dir":"Changelog","previous_headings":"","what":"chevron 0.2.6","title":"chevron 0.2.6","text":"CRAN release: 2024-04-25 Added assertion class summaryvars argument dmt01(). Additional arguments can passed ael01_nollt run method, instance split resulting listing. strat argument kmg01_main now deprecated - use strata instead. grob_list gg_list now deprecated - use list() instead.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-025","dir":"Changelog","previous_headings":"","what":"chevron 0.2.5","title":"chevron 0.2.5","text":"CRAN release: 2024-02-01 MNG01 plot can now displayed without error bars can display continuous temporal scale x axis. Add chevron_simple class contains main function. Remove details argument script_funs, add name argument. run method, argument passed ... combined one passed user_arg. ... arguments priority. AET05 preprocessing now filters \"(AE|CQ|SMQ)TTE\" rather \"AETTE\". Rename dataset ADAETTE syn_data object ADSAFTTE. Trim dataset remove unused variables. Use uppercase variable names AET05 AET05_ALL. string replacing NA values tables now controlled tern_default_na_str option set package load. Specified minimal version package dependencies.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-024","dir":"Changelog","previous_headings":"","what":"chevron 0.2.4","title":"chevron 0.2.4","text":"TTET01 now uses “NE” represent NA values.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-023","dir":"Changelog","previous_headings":"","what":"chevron 0.2.3","title":"chevron 0.2.3","text":"Fix argument printing run method. Remove six unused tables syn_data object. Fix EGT03 allow multiple parameters. Update TTET01 provide meaningful error message stratification variables exist analysis dataset. PDT01 preprocessing now filters addv retain major protocol deviation. AEL01_NOLLT now argument unique keep unique rows listing. AET01_AESI, EGT02 LBT14 now remove check preprocessing function. COXT01 drop levels arm_var preprocessing function now. MNG01 uses ggtheme argument set graphic parameters instead now defunct show_h_grid, show_v_grid legend_pos arguments. table arguments now controls behavior table. arguments show_n show_table now defunct. Add RMPT06 template. stats precision arguments now control statistical analysis numbers digits presented DMT01. FSTG01 FSTG02 template removes max_colwidth argument. Default font size plot set 7. Introduce set_section_div function add empty line separator specified row splits. AET02 template default order “Total number events” “Total number patients least one adverse event” switched.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-022","dir":"Changelog","previous_headings":"","what":"chevron 0.2.2","title":"chevron 0.2.2","text":"Allow EGT03 include multiple parameters. Allow KMG01 include stratified variables. Allow LBT06 LBT14 split pages. Allow AET02, CMT01A change summary statistics summary_labels argument. Add FSTG02 template. Update argument \"is_event\" KMG01 \"IS_EVENT\". Update argument \"is_rsp\" FSTG01 \"IS_RSP\". FSTG01 FSTG02 stratification variable labels truncated fit page. Update script chevron_tlg objects. details argument deprecated. Fix issue run method executed .call verbose argument.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-021","dir":"Changelog","previous_headings":"","what":"chevron 0.2.1","title":"chevron 0.2.1","text":"Placeholder strings now replaced layout creation using dunlin::render_safe function. New chevron_catalog vignette details usage version chevron templates. run method renders errors faster thanks new internal do_call function. Add verbose argument run method print argument used. Add row_split_var page_var argument template. dataset slot chevron_tlg class removed. Add CFBT01 template. VST01, EGT01 LBT01 now following CFBT01. default parameters displayed page . Add RMPT03, RMPT04 RMPT05 follow RMPT01. Add COXT01 template. COXT02 now based COXT01. Add AET05 AET05_ALL templates. Add LBT15 based LBT04. LBT04 new arguments make flexible. Update EGT03 use ACTARMCD default arm variable, remove preprocessing filtering “HR”. Update EXT01 allow displayed PARCAT2. Update LBT06 template use PARAM row split. Convert AVISIT factor order levels according AVISITN preprocessing. Update MNG01 numeric jitter argument controls width data spread along x-axis.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-020","dir":"Changelog","previous_headings":"","what":"chevron 0.2.0","title":"chevron 0.2.0","text":"Remove usage dm class object. chevron functions now expect list data.frame adam_db argument. Remove variants template names. Remove deprecated getter functions get_main, get_preprocess get_postprocess. Simplify pre function add data checks main function. Remove redundant assertion functions. Add templates: AET10, KMG01, RSPT01, RMPT01, COXT02, FSTG01, LBT06.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-014","dir":"Changelog","previous_headings":"","what":"chevron 0.1.4","title":"chevron 0.1.4","text":"Use list replace character template arguments.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-013","dir":"Changelog","previous_headings":"","what":"chevron 0.1.3","title":"chevron 0.1.3","text":"Add templates: AET01_AESI, EGT03, EGT05_QTCAT, LBT04, LBT05, LBT07, LBT14, PDT01, PDT02. Deprecation previous getter function like get_main main main<-. Add chevron_t, chevron_l chevron_g subclass chevron_tlg. Add script_funs script_args obtain string representation full code. Update current templates.","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-012","dir":"Changelog","previous_headings":"","what":"chevron 0.1.2","title":"chevron 0.1.2","text":"Update snapshot tests","code":""},{"path":"https://insightsengineering.github.io/chevron/news/index.html","id":"chevron-011","dir":"Changelog","previous_headings":"","what":"chevron 0.1.1","title":"chevron 0.1.1","text":"First release implementation : AET01, AET02, AET03, AET04, CMT01A, CMT02_PT, DMT01, DST01, DTHT01, EGT01, EGT02, EXT01, LBT01, MHT01, MNG01, VST01, VST02.","code":""}] diff --git a/v0.2.8/sitemap.xml b/v0.2.8/sitemap.xml new file mode 100644 index 0000000000..bf77466ffd --- /dev/null +++ b/v0.2.8/sitemap.xml @@ -0,0 +1,165 @@ + +https://insightsengineering.github.io/chevron/404.html +https://insightsengineering.github.io/chevron/CODE_OF_CONDUCT.html +https://insightsengineering.github.io/chevron/CONTRIBUTING.html +https://insightsengineering.github.io/chevron/LICENSE-text.html +https://insightsengineering.github.io/chevron/SECURITY.html +https://insightsengineering.github.io/chevron/articles/chevron.html +https://insightsengineering.github.io/chevron/articles/chevron_catalog.html +https://insightsengineering.github.io/chevron/articles/index.html +https://insightsengineering.github.io/chevron/articles/script_generator.html +https://insightsengineering.github.io/chevron/authors.html +https://insightsengineering.github.io/chevron/index.html +https://insightsengineering.github.io/chevron/news/index.html +https://insightsengineering.github.io/chevron/reference/ael01_nollt.html +https://insightsengineering.github.io/chevron/reference/ael02.html +https://insightsengineering.github.io/chevron/reference/ael03.html +https://insightsengineering.github.io/chevron/reference/aet01.html +https://insightsengineering.github.io/chevron/reference/aet01_aesi.html +https://insightsengineering.github.io/chevron/reference/aet01_aesi_lyt.html +https://insightsengineering.github.io/chevron/reference/aet01_lyt.html +https://insightsengineering.github.io/chevron/reference/aet02.html +https://insightsengineering.github.io/chevron/reference/aet03.html +https://insightsengineering.github.io/chevron/reference/aet03_lyt.html +https://insightsengineering.github.io/chevron/reference/aet04.html +https://insightsengineering.github.io/chevron/reference/aet04_lyt.html +https://insightsengineering.github.io/chevron/reference/aet05.html +https://insightsengineering.github.io/chevron/reference/aet05_all.html +https://insightsengineering.github.io/chevron/reference/aet05_lyt.html +https://insightsengineering.github.io/chevron/reference/aet10.html +https://insightsengineering.github.io/chevron/reference/aet10_lyt.html +https://insightsengineering.github.io/chevron/reference/afun_p.html +https://insightsengineering.github.io/chevron/reference/afun_skip.html +https://insightsengineering.github.io/chevron/reference/args_ls.html +https://insightsengineering.github.io/chevron/reference/assert_single_value.html +https://insightsengineering.github.io/chevron/reference/assert_valid_type.html +https://insightsengineering.github.io/chevron/reference/assert_valid_var.html +https://insightsengineering.github.io/chevron/reference/assert_valid_var_pair.html +https://insightsengineering.github.io/chevron/reference/assert_valid_variable.html +https://insightsengineering.github.io/chevron/reference/cfbt01.html +https://insightsengineering.github.io/chevron/reference/cfbt01_lyt.html +https://insightsengineering.github.io/chevron/reference/check_all_colnames.html +https://insightsengineering.github.io/chevron/reference/check_one_colnames.html +https://insightsengineering.github.io/chevron/reference/chevron-package.html +https://insightsengineering.github.io/chevron/reference/chevron_tlg-class.html +https://insightsengineering.github.io/chevron/reference/cml02a_gl.html +https://insightsengineering.github.io/chevron/reference/cmt01a.html +https://insightsengineering.github.io/chevron/reference/cmt02_pt.html +https://insightsengineering.github.io/chevron/reference/convert_to_month.html +https://insightsengineering.github.io/chevron/reference/count_children.html +https://insightsengineering.github.io/chevron/reference/count_or_summarize.html +https://insightsengineering.github.io/chevron/reference/count_patients_recursive.html +https://insightsengineering.github.io/chevron/reference/coxt01.html +https://insightsengineering.github.io/chevron/reference/coxt01_lyt.html +https://insightsengineering.github.io/chevron/reference/coxt02.html +https://insightsengineering.github.io/chevron/reference/create_id_listings.html +https://insightsengineering.github.io/chevron/reference/ctcv4_dir.html +https://insightsengineering.github.io/chevron/reference/ctcv5_dir.html +https://insightsengineering.github.io/chevron/reference/deparse_print.html +https://insightsengineering.github.io/chevron/reference/dmt01.html +https://insightsengineering.github.io/chevron/reference/dmt01_lyt.html +https://insightsengineering.github.io/chevron/reference/do_call.html +https://insightsengineering.github.io/chevron/reference/dose_change_rule.html +https://insightsengineering.github.io/chevron/reference/dst01.html +https://insightsengineering.github.io/chevron/reference/dst01_lyt.html +https://insightsengineering.github.io/chevron/reference/dtht01.html +https://insightsengineering.github.io/chevron/reference/dtht01_lyt.html +https://insightsengineering.github.io/chevron/reference/dummy_template.html +https://insightsengineering.github.io/chevron/reference/egt01.html +https://insightsengineering.github.io/chevron/reference/egt02_1.html +https://insightsengineering.github.io/chevron/reference/egt02_2.html +https://insightsengineering.github.io/chevron/reference/egt02_lyt.html +https://insightsengineering.github.io/chevron/reference/egt03.html +https://insightsengineering.github.io/chevron/reference/egt03_lyt.html +https://insightsengineering.github.io/chevron/reference/egt05_qtcat.html +https://insightsengineering.github.io/chevron/reference/egt05_qtcat_lyt.html +https://insightsengineering.github.io/chevron/reference/empty_rule.html +https://insightsengineering.github.io/chevron/reference/execute_with_args.html +https://insightsengineering.github.io/chevron/reference/expand_list.html +https://insightsengineering.github.io/chevron/reference/ext01.html +https://insightsengineering.github.io/chevron/reference/ext01_lyt.html +https://insightsengineering.github.io/chevron/reference/format_date.html +https://insightsengineering.github.io/chevron/reference/fstg01.html +https://insightsengineering.github.io/chevron/reference/fstg02.html +https://insightsengineering.github.io/chevron/reference/fuse_sequentially.html +https://insightsengineering.github.io/chevron/reference/gen_args.html +https://insightsengineering.github.io/chevron/reference/get_grade_rule.html +https://insightsengineering.github.io/chevron/reference/get_page_by.html +https://insightsengineering.github.io/chevron/reference/get_section_div.html +https://insightsengineering.github.io/chevron/reference/get_subset.html +https://insightsengineering.github.io/chevron/reference/get_x_hjust.html +https://insightsengineering.github.io/chevron/reference/get_x_vjust.html +https://insightsengineering.github.io/chevron/reference/gg_list.html +https://insightsengineering.github.io/chevron/reference/gg_theme_chevron.html +https://insightsengineering.github.io/chevron/reference/grob_list.html +https://insightsengineering.github.io/chevron/reference/h_format_dec.html +https://insightsengineering.github.io/chevron/reference/h_unwrap_layout.html +https://insightsengineering.github.io/chevron/reference/ifneeded_split_col.html +https://insightsengineering.github.io/chevron/reference/ifneeded_split_row.html +https://insightsengineering.github.io/chevron/reference/index.html +https://insightsengineering.github.io/chevron/reference/kmg01.html +https://insightsengineering.github.io/chevron/reference/lbt01.html +https://insightsengineering.github.io/chevron/reference/lbt04.html +https://insightsengineering.github.io/chevron/reference/lbt04_lyt.html +https://insightsengineering.github.io/chevron/reference/lbt05.html +https://insightsengineering.github.io/chevron/reference/lbt05_lyt.html +https://insightsengineering.github.io/chevron/reference/lbt06.html +https://insightsengineering.github.io/chevron/reference/lbt06_lyt.html +https://insightsengineering.github.io/chevron/reference/lbt07.html +https://insightsengineering.github.io/chevron/reference/lbt07_lyt.html +https://insightsengineering.github.io/chevron/reference/lbt14.html +https://insightsengineering.github.io/chevron/reference/lbt14_lyt.html +https://insightsengineering.github.io/chevron/reference/lbt15.html +https://insightsengineering.github.io/chevron/reference/listing_format_chevron.html +https://insightsengineering.github.io/chevron/reference/lvls.html +https://insightsengineering.github.io/chevron/reference/main.html +https://insightsengineering.github.io/chevron/reference/mht01.html +https://insightsengineering.github.io/chevron/reference/missing_rule.html +https://insightsengineering.github.io/chevron/reference/mla_dir.html +https://insightsengineering.github.io/chevron/reference/mng01.html +https://insightsengineering.github.io/chevron/reference/modify_character.html +https://insightsengineering.github.io/chevron/reference/nocoding.html +https://insightsengineering.github.io/chevron/reference/obtain_value.html +https://insightsengineering.github.io/chevron/reference/occurrence_lyt.html +https://insightsengineering.github.io/chevron/reference/outcome_rule.html +https://insightsengineering.github.io/chevron/reference/pdt01.html +https://insightsengineering.github.io/chevron/reference/pdt01_lyt.html +https://insightsengineering.github.io/chevron/reference/pdt02.html +https://insightsengineering.github.io/chevron/reference/pdt02_lyt.html +https://insightsengineering.github.io/chevron/reference/postprocess.html +https://insightsengineering.github.io/chevron/reference/preprocess.html +https://insightsengineering.github.io/chevron/reference/print_args.html +https://insightsengineering.github.io/chevron/reference/print_list.html +https://insightsengineering.github.io/chevron/reference/proportion_lyt.html +https://insightsengineering.github.io/chevron/reference/reexports.html +https://insightsengineering.github.io/chevron/reference/report_null.html +https://insightsengineering.github.io/chevron/reference/rmpt01.html +https://insightsengineering.github.io/chevron/reference/rmpt01_lyt.html +https://insightsengineering.github.io/chevron/reference/rmpt03.html +https://insightsengineering.github.io/chevron/reference/rmpt04.html +https://insightsengineering.github.io/chevron/reference/rmpt05.html +https://insightsengineering.github.io/chevron/reference/rmpt06.html +https://insightsengineering.github.io/chevron/reference/rmpt06_lyt.html +https://insightsengineering.github.io/chevron/reference/rspt01.html +https://insightsengineering.github.io/chevron/reference/rspt01_lyt.html +https://insightsengineering.github.io/chevron/reference/run.html +https://insightsengineering.github.io/chevron/reference/s_summary_na.html +https://insightsengineering.github.io/chevron/reference/script.html +https://insightsengineering.github.io/chevron/reference/set_section_div.html +https://insightsengineering.github.io/chevron/reference/smart_prune.html +https://insightsengineering.github.io/chevron/reference/split_rows_by_recursive.html +https://insightsengineering.github.io/chevron/reference/std_listing.html +https://insightsengineering.github.io/chevron/reference/std_postprocessing.html +https://insightsengineering.github.io/chevron/reference/summarize_vars_allow_na.html +https://insightsengineering.github.io/chevron/reference/syn_data.html +https://insightsengineering.github.io/chevron/reference/ttet01.html +https://insightsengineering.github.io/chevron/reference/ttet01_lyt.html +https://insightsengineering.github.io/chevron/reference/unwrap_layout.html +https://insightsengineering.github.io/chevron/reference/var_labels_for.html +https://insightsengineering.github.io/chevron/reference/vst01.html +https://insightsengineering.github.io/chevron/reference/vst02_1.html +https://insightsengineering.github.io/chevron/reference/vst02_2.html +https://insightsengineering.github.io/chevron/reference/vst02_lyt.html +https://insightsengineering.github.io/chevron/reference/yes_no_rule.html + +