From e91c899c4be951cc770117c7658d20faa555d88b Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 28 Oct 2024 12:34:49 +0000 Subject: [PATCH] Update pkgdown documentation 5809c056d04ddcdacb4cb1cd4c65876d3dc76dee --- v0.2.8/404.html | 83 + v0.2.8/CODE_OF_CONDUCT.html | 126 + v0.2.8/CONTRIBUTING.html | 177 + v0.2.8/LICENSE-text.html | 72 + v0.2.8/SECURITY.html | 81 + v0.2.8/analytics.js | 1 + v0.2.8/articles/chevron.html | 332 + v0.2.8/articles/chevron_catalog.html | 5366 ++++++++ .../figure-html/unnamed-chunk-100-1.png | Bin 0 -> 62055 bytes .../figure-html/unnamed-chunk-101-1.png | Bin 0 -> 59692 bytes .../figure-html/unnamed-chunk-102-1.png | Bin 0 -> 57474 bytes .../figure-html/unnamed-chunk-103-1.png | Bin 0 -> 25551 bytes .../figure-html/unnamed-chunk-104-1.png | Bin 0 -> 61043 bytes .../figure-html/unnamed-chunk-105-1.png | Bin 0 -> 59825 bytes .../figure-html/unnamed-chunk-106-1.png | Bin 0 -> 95221 bytes .../figure-html/unnamed-chunk-107-1.png | Bin 0 -> 117842 bytes .../figure-html/unnamed-chunk-108-1.png | Bin 0 -> 89591 bytes .../figure-html/unnamed-chunk-109-1.png | Bin 0 -> 70650 bytes .../figure-html/unnamed-chunk-110-1.png | Bin 0 -> 101309 bytes .../figure-html/unnamed-chunk-110-2.png | Bin 0 -> 105810 bytes .../figure-html/unnamed-chunk-111-1.png | Bin 0 -> 70258 bytes .../figure-html/unnamed-chunk-112-1.png | Bin 0 -> 102166 bytes .../figure-html/unnamed-chunk-113-1.png | Bin 0 -> 77624 bytes .../figure-html/unnamed-chunk-114-1.png | Bin 0 -> 104139 bytes .../figure-html/unnamed-chunk-115-1.png | Bin 0 -> 103438 bytes .../figure-html/unnamed-chunk-116-1.png | Bin 0 -> 71206 bytes .../figure-html/unnamed-chunk-117-1.png | Bin 0 -> 71565 bytes .../figure-html/unnamed-chunk-118-1.png | Bin 0 -> 194720 bytes .../figure-html/unnamed-chunk-118-2.png | Bin 0 -> 200951 bytes .../figure-html/unnamed-chunk-118-3.png | Bin 0 -> 188384 bytes .../figure-html/unnamed-chunk-95-1.png | Bin 0 -> 62388 bytes .../figure-html/unnamed-chunk-96-1.png | Bin 0 -> 62698 bytes .../figure-html/unnamed-chunk-97-1.png | Bin 0 -> 57306 bytes .../figure-html/unnamed-chunk-98-1.png | Bin 0 -> 25183 bytes .../figure-html/unnamed-chunk-99-1.png | Bin 0 -> 59439 bytes v0.2.8/articles/index.html | 67 + v0.2.8/articles/script_generator.html | 168 + v0.2.8/authors.html | 117 + v0.2.8/consent.css | 28 + v0.2.8/consent.js | 95 + v0.2.8/cookie_policy.txt | 11 + .../bootstrap-5.3.1/bootstrap.bundle.min.js | 7 + .../bootstrap.bundle.min.js.map | 1 + v0.2.8/deps/bootstrap-5.3.1/bootstrap.min.css | 5 + .../bootstrap-toc-1.0.1/bootstrap-toc.min.js | 5 + .../deps/clipboard.js-2.0.11/clipboard.min.js | 7 + v0.2.8/deps/data-deps.txt | 13 + v0.2.8/deps/font-awesome-6.4.2/css/all.css | 7968 +++++++++++ .../deps/font-awesome-6.4.2/css/all.min.css | 9 + .../deps/font-awesome-6.4.2/css/v4-shims.css | 2194 ++++ .../font-awesome-6.4.2/css/v4-shims.min.css | 6 + .../webfonts/fa-brands-400.ttf | Bin 0 -> 189684 bytes .../webfonts/fa-brands-400.woff2 | Bin 0 -> 109808 bytes .../webfonts/fa-regular-400.ttf | Bin 0 -> 63348 bytes .../webfonts/fa-regular-400.woff2 | Bin 0 -> 24488 bytes .../webfonts/fa-solid-900.ttf | Bin 0 -> 394668 bytes .../webfonts/fa-solid-900.woff2 | Bin 0 -> 150020 bytes .../webfonts/fa-v4compatibility.ttf | Bin 0 -> 10172 bytes .../webfonts/fa-v4compatibility.woff2 | Bin 0 -> 4568 bytes v0.2.8/deps/headroom-0.11.0/headroom.min.js | 7 + .../headroom-0.11.0/jQuery.headroom.min.js | 7 + v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.js | 10881 ++++++++++++++++ v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.min.js | 2 + v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.min.map | 1 + .../search-1.0.0/autocomplete.jquery.min.js | 7 + v0.2.8/deps/search-1.0.0/fuse.min.js | 9 + v0.2.8/deps/search-1.0.0/mark.min.js | 7 + v0.2.8/index.html | 292 + v0.2.8/katex-auto.js | 14 + v0.2.8/lightswitch.js | 85 + v0.2.8/link.svg | 12 + v0.2.8/news/index.html | 190 + v0.2.8/pkgdown.js | 162 + v0.2.8/pkgdown.yml | 11 + v0.2.8/reference/.chevron_g.html | 8 + v0.2.8/reference/.chevron_l.html | 8 + v0.2.8/reference/.chevron_simple.html | 8 + v0.2.8/reference/.chevron_t.html | 8 + v0.2.8/reference/.chevron_tlg.html | 8 + v0.2.8/reference/ael01_nollt.html | 165 + v0.2.8/reference/ael01_nollt_pre.html | 8 + v0.2.8/reference/ael02.html | 139 + v0.2.8/reference/ael02_pre.html | 8 + v0.2.8/reference/ael03.html | 138 + v0.2.8/reference/ael03_pre.html | 8 + v0.2.8/reference/aet01.html | 177 + v0.2.8/reference/aet01_aesi.html | 185 + v0.2.8/reference/aet01_aesi_lyt.html | 89 + v0.2.8/reference/aet01_aesi_post.html | 8 + v0.2.8/reference/aet01_aesi_pre.html | 8 + v0.2.8/reference/aet01_lyt.html | 97 + v0.2.8/reference/aet01_post.html | 8 + v0.2.8/reference/aet01_pre.html | 8 + v0.2.8/reference/aet02.html | 201 + v0.2.8/reference/aet02_main.html | 8 + v0.2.8/reference/aet02_post.html | 8 + v0.2.8/reference/aet02_pre.html | 8 + v0.2.8/reference/aet03.html | 204 + v0.2.8/reference/aet03_lyt.html | 97 + v0.2.8/reference/aet03_post.html | 8 + v0.2.8/reference/aet03_pre.html | 8 + v0.2.8/reference/aet04.html | 183 + v0.2.8/reference/aet04_lyt.html | 108 + v0.2.8/reference/aet04_post.html | 8 + v0.2.8/reference/aet04_pre.html | 8 + v0.2.8/reference/aet05.html | 189 + v0.2.8/reference/aet05_all.html | 131 + v0.2.8/reference/aet05_lyt.html | 102 + v0.2.8/reference/aet05_post.html | 8 + v0.2.8/reference/aet05_pre.html | 8 + v0.2.8/reference/aet10.html | 159 + v0.2.8/reference/aet10_lyt.html | 89 + v0.2.8/reference/aet10_post.html | 8 + v0.2.8/reference/aet10_pre.html | 8 + v0.2.8/reference/afun_p.html | 129 + v0.2.8/reference/afun_skip.html | 141 + .../reference/args_ls,chevron_tlg-method.html | 8 + v0.2.8/reference/args_ls.html | 127 + v0.2.8/reference/assert_single_value.html | 85 + v0.2.8/reference/assert_valid_type.html | 89 + .../reference/assert_valid_var.POSIXct.html | 8 + .../reference/assert_valid_var.character.html | 8 + .../reference/assert_valid_var.default.html | 8 + v0.2.8/reference/assert_valid_var.factor.html | 8 + v0.2.8/reference/assert_valid_var.html | 171 + .../reference/assert_valid_var.logical.html | 8 + .../reference/assert_valid_var.numeric.html | 8 + v0.2.8/reference/assert_valid_var_pair.html | 103 + v0.2.8/reference/assert_valid_variable.html | 104 + v0.2.8/reference/cfbt01.html | 280 + v0.2.8/reference/cfbt01_lyt.html | 150 + v0.2.8/reference/cfbt01_post.html | 8 + v0.2.8/reference/cfbt01_pre.html | 8 + v0.2.8/reference/check_all_colnames.html | 93 + v0.2.8/reference/check_one_colnames.html | 93 + v0.2.8/reference/chevron-package.html | 84 + v0.2.8/reference/chevron.html | 8 + v0.2.8/reference/chevron_g-class.html | 8 + v0.2.8/reference/chevron_g.html | 8 + v0.2.8/reference/chevron_graph.html | 8 + v0.2.8/reference/chevron_l-class.html | 8 + v0.2.8/reference/chevron_l.html | 8 + v0.2.8/reference/chevron_listing.html | 8 + v0.2.8/reference/chevron_simple-class.html | 8 + v0.2.8/reference/chevron_simple.html | 8 + v0.2.8/reference/chevron_t-class.html | 8 + v0.2.8/reference/chevron_t.html | 8 + v0.2.8/reference/chevron_table.html | 8 + v0.2.8/reference/chevron_tlg-class.html | 174 + v0.2.8/reference/cml02a_gl.html | 161 + v0.2.8/reference/cml02a_gl_pre.html | 8 + v0.2.8/reference/cmt01a.html | 230 + v0.2.8/reference/cmt01a_main.html | 8 + v0.2.8/reference/cmt01a_post.html | 8 + v0.2.8/reference/cmt01a_pre.html | 8 + v0.2.8/reference/cmt02_pt.html | 192 + v0.2.8/reference/cmt02_pt_post.html | 8 + v0.2.8/reference/cmt02_pt_pre.html | 8 + v0.2.8/reference/convert_to_month.html | 85 + v0.2.8/reference/count_children.html | 68 + v0.2.8/reference/count_or_summarize.html | 89 + .../reference/count_patients_recursive.html | 89 + v0.2.8/reference/coxt01.html | 211 + v0.2.8/reference/coxt01_lyt.html | 93 + v0.2.8/reference/coxt01_post.html | 8 + v0.2.8/reference/coxt01_pre.html | 8 + v0.2.8/reference/coxt02.html | 198 + v0.2.8/reference/create_id_listings.html | 97 + v0.2.8/reference/ctcv4_dir.html | 73 + v0.2.8/reference/ctcv5_dir.html | 73 + v0.2.8/reference/deparse_print.html | 68 + v0.2.8/reference/dmt01.html | 195 + v0.2.8/reference/dmt01_lyt.html | 96 + v0.2.8/reference/dmt01_post.html | 8 + v0.2.8/reference/dmt01_pre.html | 8 + v0.2.8/reference/do_call.html | 68 + v0.2.8/reference/dose_change_rule.html | 73 + v0.2.8/reference/dst01.html | 204 + v0.2.8/reference/dst01_lyt.html | 99 + v0.2.8/reference/dst01_post.html | 8 + v0.2.8/reference/dst01_pre.html | 8 + v0.2.8/reference/dtht01.html | 193 + v0.2.8/reference/dtht01_lyt.html | 113 + v0.2.8/reference/dtht01_post.html | 8 + v0.2.8/reference/dtht01_pre.html | 8 + v0.2.8/reference/dummy_template.html | 80 + v0.2.8/reference/egt01.html | 283 + v0.2.8/reference/egt01_pre.html | 8 + v0.2.8/reference/egt02_1.html | 156 + v0.2.8/reference/egt02_2.html | 146 + v0.2.8/reference/egt02_lyt.html | 104 + v0.2.8/reference/egt02_post.html | 8 + v0.2.8/reference/egt02_pre.html | 8 + v0.2.8/reference/egt03.html | 191 + v0.2.8/reference/egt03_lyt.html | 111 + v0.2.8/reference/egt03_post.html | 8 + v0.2.8/reference/egt03_pre.html | 8 + v0.2.8/reference/egt05_qtcat.html | 244 + v0.2.8/reference/egt05_qtcat_lyt.html | 129 + v0.2.8/reference/egt05_qtcat_post.html | 8 + v0.2.8/reference/egt05_qtcat_pre.html | 8 + v0.2.8/reference/empty_rule.html | 73 + v0.2.8/reference/execute_with_args.html | 74 + v0.2.8/reference/expand_list.html | 68 + v0.2.8/reference/ext01.html | 333 + v0.2.8/reference/ext01_lyt.html | 110 + v0.2.8/reference/ext01_post.html | 8 + v0.2.8/reference/ext01_pre.html | 8 + v0.2.8/reference/figures/chevron.png | Bin 0 -> 1863501 bytes v0.2.8/reference/format_date.html | 99 + v0.2.8/reference/fstg01-1.png | Bin 0 -> 55753 bytes v0.2.8/reference/fstg01.html | 168 + v0.2.8/reference/fstg01_pre.html | 8 + v0.2.8/reference/fstg02-1.png | Bin 0 -> 53002 bytes v0.2.8/reference/fstg02.html | 162 + v0.2.8/reference/fstg02_pre.html | 8 + v0.2.8/reference/fuse_sequentially.html | 81 + v0.2.8/reference/gen_args.html | 200 + v0.2.8/reference/get_arg.html | 8 + v0.2.8/reference/get_grade_rule.html | 85 + v0.2.8/reference/get_page_by.html | 68 + v0.2.8/reference/get_section_div.html | 73 + v0.2.8/reference/get_subset.html | 68 + v0.2.8/reference/get_x_hjust.html | 77 + v0.2.8/reference/get_x_vjust.html | 77 + v0.2.8/reference/gg_list.html | 81 + v0.2.8/reference/gg_theme_chevron.html | 98 + v0.2.8/reference/grob_list.html | 81 + v0.2.8/reference/h_format_dec.html | 96 + v0.2.8/reference/h_unwrap_layout.html | 68 + v0.2.8/reference/ifneeded_split_col.html | 89 + v0.2.8/reference/ifneeded_split_row.html | 89 + v0.2.8/reference/index.html | 709 + v0.2.8/reference/kmg01-1.png | Bin 0 -> 87049 bytes v0.2.8/reference/kmg01.html | 154 + v0.2.8/reference/kmg01_pre.html | 8 + v0.2.8/reference/lbt01.html | 283 + v0.2.8/reference/lbt01_pre.html | 8 + v0.2.8/reference/lbt04.html | 196 + v0.2.8/reference/lbt04_lyt.html | 113 + v0.2.8/reference/lbt04_post.html | 8 + v0.2.8/reference/lbt04_pre.html | 8 + v0.2.8/reference/lbt05.html | 168 + v0.2.8/reference/lbt05_lyt.html | 93 + v0.2.8/reference/lbt05_post.html | 8 + v0.2.8/reference/lbt05_pre.html | 8 + v0.2.8/reference/lbt06.html | 294 + v0.2.8/reference/lbt06_lyt.html | 124 + v0.2.8/reference/lbt06_post.html | 8 + v0.2.8/reference/lbt06_pre.html | 8 + v0.2.8/reference/lbt07.html | 192 + v0.2.8/reference/lbt07_lyt.html | 116 + v0.2.8/reference/lbt07_post.html | 8 + v0.2.8/reference/lbt07_pre.html | 8 + v0.2.8/reference/lbt14.html | 202 + v0.2.8/reference/lbt14_lyt.html | 85 + v0.2.8/reference/lbt14_post.html | 8 + v0.2.8/reference/lbt14_pre.html | 8 + v0.2.8/reference/lbt15.html | 138 + v0.2.8/reference/listing_format_chevron.html | 73 + v0.2.8/reference/lvls.html | 85 + v0.2.8/reference/main,chevron_tlg-method.html | 8 + v0.2.8/reference/main.html | 93 + v0.2.8/reference/mht01.html | 191 + v0.2.8/reference/mht01_main.html | 8 + v0.2.8/reference/mht01_post.html | 8 + v0.2.8/reference/mht01_pre.html | 8 + v0.2.8/reference/missing_rule.html | 73 + v0.2.8/reference/mla_dir.html | 73 + v0.2.8/reference/mng01-1.png | Bin 0 -> 126059 bytes v0.2.8/reference/mng01-2.png | Bin 0 -> 125451 bytes v0.2.8/reference/mng01-3.png | Bin 0 -> 119145 bytes v0.2.8/reference/mng01.html | 222 + v0.2.8/reference/mng01_pre.html | 8 + v0.2.8/reference/modify_character.html | 68 + v0.2.8/reference/nocoding.html | 73 + v0.2.8/reference/obtain_value.html | 68 + v0.2.8/reference/occurrence_lyt.html | 106 + v0.2.8/reference/outcome_rule.html | 73 + v0.2.8/reference/pdt01.html | 185 + v0.2.8/reference/pdt01_lyt.html | 104 + v0.2.8/reference/pdt01_post.html | 8 + v0.2.8/reference/pdt01_pre.html | 8 + v0.2.8/reference/pdt02.html | 175 + v0.2.8/reference/pdt02_lyt.html | 104 + v0.2.8/reference/pdt02_post.html | 8 + v0.2.8/reference/pdt02_pre.html | 8 + .../postprocess,chevron_tlg-method.html | 8 + v0.2.8/reference/postprocess.html | 93 + .../preprocess,chevron_tlg-method.html | 8 + v0.2.8/reference/preprocess.html | 94 + v0.2.8/reference/print_args.html | 68 + v0.2.8/reference/print_list.html | 68 + v0.2.8/reference/proportion_lyt.html | 112 + v0.2.8/reference/reexports.html | 95 + v0.2.8/reference/reformat.html | 8 + v0.2.8/reference/report_null,ANY-method.html | 8 + v0.2.8/reference/report_null,NULL-method.html | 8 + .../report_null,VTableTree-method.html | 8 + v0.2.8/reference/report_null,list-method.html | 8 + .../report_null,listing_df-method.html | 8 + v0.2.8/reference/report_null.html | 115 + v0.2.8/reference/rmpt01.html | 168 + v0.2.8/reference/rmpt01_lyt.html | 105 + v0.2.8/reference/rmpt01_post.html | 8 + v0.2.8/reference/rmpt01_pre.html | 8 + v0.2.8/reference/rmpt03.html | 162 + v0.2.8/reference/rmpt03_pre.html | 8 + v0.2.8/reference/rmpt04.html | 149 + v0.2.8/reference/rmpt04_pre.html | 8 + v0.2.8/reference/rmpt05.html | 150 + v0.2.8/reference/rmpt05_pre.html | 8 + v0.2.8/reference/rmpt06.html | 185 + v0.2.8/reference/rmpt06_lyt.html | 91 + v0.2.8/reference/rmpt06_post.html | 8 + v0.2.8/reference/rmpt06_pre.html | 8 + v0.2.8/reference/rspt01.html | 228 + v0.2.8/reference/rspt01_lyt.html | 86 + v0.2.8/reference/rspt01_post.html | 8 + v0.2.8/reference/rspt01_pre.html | 8 + v0.2.8/reference/run,chevron_tlg-method.html | 8 + v0.2.8/reference/run-1.png | Bin 0 -> 131246 bytes v0.2.8/reference/run-2.png | Bin 0 -> 132307 bytes v0.2.8/reference/run-3.png | Bin 0 -> 125731 bytes v0.2.8/reference/run.html | 150 + v0.2.8/reference/s_summary_na.html | 100 + v0.2.8/reference/script.html | 118 + .../script_funs,chevron_simple-method.html | 8 + .../script_funs,chevron_tlg-method.html | 8 + v0.2.8/reference/script_funs.html | 8 + v0.2.8/reference/set_section_div.html | 87 + v0.2.8/reference/smart_prune.html | 81 + v0.2.8/reference/split_rows_by_recursive.html | 85 + v0.2.8/reference/standard_null_report.html | 8 + v0.2.8/reference/std_listing.html | 114 + v0.2.8/reference/std_postprocessing.html | 114 + v0.2.8/reference/summarize_vars_allow_na.html | 82 + v0.2.8/reference/syn_data.html | 90 + v0.2.8/reference/ttet01.html | 234 + v0.2.8/reference/ttet01_lyt.html | 97 + v0.2.8/reference/ttet01_post.html | 8 + v0.2.8/reference/ttet01_pre.html | 8 + v0.2.8/reference/unwrap_layout.html | 111 + v0.2.8/reference/var_labels_for.html | 90 + v0.2.8/reference/vst01.html | 268 + v0.2.8/reference/vst01_pre.html | 8 + v0.2.8/reference/vst02_1.html | 169 + v0.2.8/reference/vst02_2.html | 155 + v0.2.8/reference/vst02_lyt.html | 100 + v0.2.8/reference/vst02_post.html | 8 + v0.2.8/reference/vst02_pre.html | 8 + v0.2.8/reference/with_label.html | 8 + v0.2.8/reference/yes_no_rule.html | 73 + v0.2.8/search.json | 1 + v0.2.8/sitemap.xml | 165 + 355 files changed, 49570 insertions(+) create mode 100644 v0.2.8/404.html create mode 100644 v0.2.8/CODE_OF_CONDUCT.html create mode 100644 v0.2.8/CONTRIBUTING.html create mode 100644 v0.2.8/LICENSE-text.html create mode 100644 v0.2.8/SECURITY.html create mode 100644 v0.2.8/analytics.js create mode 100644 v0.2.8/articles/chevron.html create mode 100644 v0.2.8/articles/chevron_catalog.html create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-100-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-101-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-102-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-103-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-104-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-105-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-106-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-107-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-108-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-109-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-110-2.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-111-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-112-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-113-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-114-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-115-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-116-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-117-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-2.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-118-3.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-95-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-96-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-97-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-98-1.png create mode 100644 v0.2.8/articles/chevron_catalog_files/figure-html/unnamed-chunk-99-1.png create mode 100644 v0.2.8/articles/index.html create mode 100644 v0.2.8/articles/script_generator.html create mode 100644 v0.2.8/authors.html create mode 100644 v0.2.8/consent.css create mode 100644 v0.2.8/consent.js create mode 100644 v0.2.8/cookie_policy.txt create mode 100644 v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js create mode 100644 v0.2.8/deps/bootstrap-5.3.1/bootstrap.bundle.min.js.map create mode 100644 v0.2.8/deps/bootstrap-5.3.1/bootstrap.min.css create mode 100644 v0.2.8/deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js create mode 100644 v0.2.8/deps/clipboard.js-2.0.11/clipboard.min.js create mode 100644 v0.2.8/deps/data-deps.txt create mode 100644 v0.2.8/deps/font-awesome-6.4.2/css/all.css create mode 100644 v0.2.8/deps/font-awesome-6.4.2/css/all.min.css create mode 100644 v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.css create mode 100644 v0.2.8/deps/font-awesome-6.4.2/css/v4-shims.min.css create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.ttf create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-brands-400.woff2 create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.ttf create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-regular-400.woff2 create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.ttf create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-solid-900.woff2 create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.ttf create mode 100644 v0.2.8/deps/font-awesome-6.4.2/webfonts/fa-v4compatibility.woff2 create mode 100644 v0.2.8/deps/headroom-0.11.0/headroom.min.js create mode 100644 v0.2.8/deps/headroom-0.11.0/jQuery.headroom.min.js create mode 100644 v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.js create mode 100644 v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.min.js create mode 100644 v0.2.8/deps/jquery-3.6.0/jquery-3.6.0.min.map create mode 100644 v0.2.8/deps/search-1.0.0/autocomplete.jquery.min.js create mode 100644 v0.2.8/deps/search-1.0.0/fuse.min.js create mode 100644 v0.2.8/deps/search-1.0.0/mark.min.js create mode 100644 v0.2.8/index.html create mode 100644 v0.2.8/katex-auto.js create mode 100644 v0.2.8/lightswitch.js create mode 100644 v0.2.8/link.svg create mode 100644 v0.2.8/news/index.html create mode 100644 v0.2.8/pkgdown.js create mode 100644 v0.2.8/pkgdown.yml create mode 100644 v0.2.8/reference/.chevron_g.html create mode 100644 v0.2.8/reference/.chevron_l.html create mode 100644 v0.2.8/reference/.chevron_simple.html create mode 100644 v0.2.8/reference/.chevron_t.html create mode 100644 v0.2.8/reference/.chevron_tlg.html create mode 100644 v0.2.8/reference/ael01_nollt.html create mode 100644 v0.2.8/reference/ael01_nollt_pre.html create mode 100644 v0.2.8/reference/ael02.html create mode 100644 v0.2.8/reference/ael02_pre.html create mode 100644 v0.2.8/reference/ael03.html create mode 100644 v0.2.8/reference/ael03_pre.html create mode 100644 v0.2.8/reference/aet01.html create mode 100644 v0.2.8/reference/aet01_aesi.html create mode 100644 v0.2.8/reference/aet01_aesi_lyt.html create mode 100644 v0.2.8/reference/aet01_aesi_post.html create mode 100644 v0.2.8/reference/aet01_aesi_pre.html create mode 100644 v0.2.8/reference/aet01_lyt.html create mode 100644 v0.2.8/reference/aet01_post.html create mode 100644 v0.2.8/reference/aet01_pre.html create mode 100644 v0.2.8/reference/aet02.html create mode 100644 v0.2.8/reference/aet02_main.html create mode 100644 v0.2.8/reference/aet02_post.html create mode 100644 v0.2.8/reference/aet02_pre.html create mode 100644 v0.2.8/reference/aet03.html create mode 100644 v0.2.8/reference/aet03_lyt.html create mode 100644 v0.2.8/reference/aet03_post.html create mode 100644 v0.2.8/reference/aet03_pre.html create mode 100644 v0.2.8/reference/aet04.html create mode 100644 v0.2.8/reference/aet04_lyt.html create mode 100644 v0.2.8/reference/aet04_post.html create mode 100644 v0.2.8/reference/aet04_pre.html create mode 100644 v0.2.8/reference/aet05.html create mode 100644 v0.2.8/reference/aet05_all.html create mode 100644 v0.2.8/reference/aet05_lyt.html create mode 100644 v0.2.8/reference/aet05_post.html create mode 100644 v0.2.8/reference/aet05_pre.html create mode 100644 v0.2.8/reference/aet10.html create mode 100644 v0.2.8/reference/aet10_lyt.html create mode 100644 v0.2.8/reference/aet10_post.html create mode 100644 v0.2.8/reference/aet10_pre.html create mode 100644 v0.2.8/reference/afun_p.html create mode 100644 v0.2.8/reference/afun_skip.html create mode 100644 v0.2.8/reference/args_ls,chevron_tlg-method.html create mode 100644 v0.2.8/reference/args_ls.html create mode 100644 v0.2.8/reference/assert_single_value.html create mode 100644 v0.2.8/reference/assert_valid_type.html create mode 100644 v0.2.8/reference/assert_valid_var.POSIXct.html create mode 100644 v0.2.8/reference/assert_valid_var.character.html create mode 100644 v0.2.8/reference/assert_valid_var.default.html create mode 100644 v0.2.8/reference/assert_valid_var.factor.html create mode 100644 v0.2.8/reference/assert_valid_var.html create mode 100644 v0.2.8/reference/assert_valid_var.logical.html create mode 100644 v0.2.8/reference/assert_valid_var.numeric.html create mode 100644 v0.2.8/reference/assert_valid_var_pair.html create mode 100644 v0.2.8/reference/assert_valid_variable.html create mode 100644 v0.2.8/reference/cfbt01.html create mode 100644 v0.2.8/reference/cfbt01_lyt.html create mode 100644 v0.2.8/reference/cfbt01_post.html create mode 100644 v0.2.8/reference/cfbt01_pre.html create mode 100644 v0.2.8/reference/check_all_colnames.html create mode 100644 v0.2.8/reference/check_one_colnames.html create mode 100644 v0.2.8/reference/chevron-package.html create mode 100644 v0.2.8/reference/chevron.html create mode 100644 v0.2.8/reference/chevron_g-class.html create mode 100644 v0.2.8/reference/chevron_g.html create mode 100644 v0.2.8/reference/chevron_graph.html create mode 100644 v0.2.8/reference/chevron_l-class.html create mode 100644 v0.2.8/reference/chevron_l.html create mode 100644 v0.2.8/reference/chevron_listing.html create mode 100644 v0.2.8/reference/chevron_simple-class.html create mode 100644 v0.2.8/reference/chevron_simple.html create mode 100644 v0.2.8/reference/chevron_t-class.html create mode 100644 v0.2.8/reference/chevron_t.html create mode 100644 v0.2.8/reference/chevron_table.html create mode 100644 v0.2.8/reference/chevron_tlg-class.html create mode 100644 v0.2.8/reference/cml02a_gl.html create mode 100644 v0.2.8/reference/cml02a_gl_pre.html create mode 100644 v0.2.8/reference/cmt01a.html create mode 100644 v0.2.8/reference/cmt01a_main.html create mode 100644 v0.2.8/reference/cmt01a_post.html create mode 100644 v0.2.8/reference/cmt01a_pre.html create mode 100644 v0.2.8/reference/cmt02_pt.html create mode 100644 v0.2.8/reference/cmt02_pt_post.html create mode 100644 v0.2.8/reference/cmt02_pt_pre.html create mode 100644 v0.2.8/reference/convert_to_month.html create mode 100644 v0.2.8/reference/count_children.html create mode 100644 v0.2.8/reference/count_or_summarize.html create mode 100644 v0.2.8/reference/count_patients_recursive.html create mode 100644 v0.2.8/reference/coxt01.html create mode 100644 v0.2.8/reference/coxt01_lyt.html create mode 100644 v0.2.8/reference/coxt01_post.html create mode 100644 v0.2.8/reference/coxt01_pre.html create mode 100644 v0.2.8/reference/coxt02.html create mode 100644 v0.2.8/reference/create_id_listings.html create mode 100644 v0.2.8/reference/ctcv4_dir.html create mode 100644 v0.2.8/reference/ctcv5_dir.html create mode 100644 v0.2.8/reference/deparse_print.html create mode 100644 v0.2.8/reference/dmt01.html create mode 100644 v0.2.8/reference/dmt01_lyt.html create mode 100644 v0.2.8/reference/dmt01_post.html create mode 100644 v0.2.8/reference/dmt01_pre.html create mode 100644 v0.2.8/reference/do_call.html create mode 100644 v0.2.8/reference/dose_change_rule.html create mode 100644 v0.2.8/reference/dst01.html create mode 100644 v0.2.8/reference/dst01_lyt.html create mode 100644 v0.2.8/reference/dst01_post.html create mode 100644 v0.2.8/reference/dst01_pre.html create mode 100644 v0.2.8/reference/dtht01.html create mode 100644 v0.2.8/reference/dtht01_lyt.html create mode 100644 v0.2.8/reference/dtht01_post.html create mode 100644 v0.2.8/reference/dtht01_pre.html create mode 100644 v0.2.8/reference/dummy_template.html create mode 100644 v0.2.8/reference/egt01.html create mode 100644 v0.2.8/reference/egt01_pre.html create mode 100644 v0.2.8/reference/egt02_1.html create mode 100644 v0.2.8/reference/egt02_2.html create mode 100644 v0.2.8/reference/egt02_lyt.html create mode 100644 v0.2.8/reference/egt02_post.html create mode 100644 v0.2.8/reference/egt02_pre.html create mode 100644 v0.2.8/reference/egt03.html create mode 100644 v0.2.8/reference/egt03_lyt.html create mode 100644 v0.2.8/reference/egt03_post.html create mode 100644 v0.2.8/reference/egt03_pre.html create mode 100644 v0.2.8/reference/egt05_qtcat.html create mode 100644 v0.2.8/reference/egt05_qtcat_lyt.html create mode 100644 v0.2.8/reference/egt05_qtcat_post.html create mode 100644 v0.2.8/reference/egt05_qtcat_pre.html create mode 100644 v0.2.8/reference/empty_rule.html create mode 100644 v0.2.8/reference/execute_with_args.html create mode 100644 v0.2.8/reference/expand_list.html create mode 100644 v0.2.8/reference/ext01.html create mode 100644 v0.2.8/reference/ext01_lyt.html create mode 100644 v0.2.8/reference/ext01_post.html create mode 100644 v0.2.8/reference/ext01_pre.html create mode 100644 v0.2.8/reference/figures/chevron.png create mode 100644 v0.2.8/reference/format_date.html create mode 100644 v0.2.8/reference/fstg01-1.png create mode 100644 v0.2.8/reference/fstg01.html create mode 100644 v0.2.8/reference/fstg01_pre.html create mode 100644 v0.2.8/reference/fstg02-1.png create mode 100644 v0.2.8/reference/fstg02.html create mode 100644 v0.2.8/reference/fstg02_pre.html create mode 100644 v0.2.8/reference/fuse_sequentially.html create mode 100644 v0.2.8/reference/gen_args.html create mode 100644 v0.2.8/reference/get_arg.html create mode 100644 v0.2.8/reference/get_grade_rule.html create mode 100644 v0.2.8/reference/get_page_by.html create mode 100644 v0.2.8/reference/get_section_div.html create mode 100644 v0.2.8/reference/get_subset.html create mode 100644 v0.2.8/reference/get_x_hjust.html create mode 100644 v0.2.8/reference/get_x_vjust.html create mode 100644 v0.2.8/reference/gg_list.html create mode 100644 v0.2.8/reference/gg_theme_chevron.html create mode 100644 v0.2.8/reference/grob_list.html create mode 100644 v0.2.8/reference/h_format_dec.html create mode 100644 v0.2.8/reference/h_unwrap_layout.html create mode 100644 v0.2.8/reference/ifneeded_split_col.html create mode 100644 v0.2.8/reference/ifneeded_split_row.html create mode 100644 v0.2.8/reference/index.html create mode 100644 v0.2.8/reference/kmg01-1.png create mode 100644 v0.2.8/reference/kmg01.html create mode 100644 v0.2.8/reference/kmg01_pre.html create mode 100644 v0.2.8/reference/lbt01.html create mode 100644 v0.2.8/reference/lbt01_pre.html create mode 100644 v0.2.8/reference/lbt04.html create mode 100644 v0.2.8/reference/lbt04_lyt.html create mode 100644 v0.2.8/reference/lbt04_post.html create mode 100644 v0.2.8/reference/lbt04_pre.html create mode 100644 v0.2.8/reference/lbt05.html create mode 100644 v0.2.8/reference/lbt05_lyt.html create mode 100644 v0.2.8/reference/lbt05_post.html create mode 100644 v0.2.8/reference/lbt05_pre.html create mode 100644 v0.2.8/reference/lbt06.html create mode 100644 v0.2.8/reference/lbt06_lyt.html create mode 100644 v0.2.8/reference/lbt06_post.html create mode 100644 v0.2.8/reference/lbt06_pre.html create mode 100644 v0.2.8/reference/lbt07.html create mode 100644 v0.2.8/reference/lbt07_lyt.html create mode 100644 v0.2.8/reference/lbt07_post.html create mode 100644 v0.2.8/reference/lbt07_pre.html create mode 100644 v0.2.8/reference/lbt14.html create mode 100644 v0.2.8/reference/lbt14_lyt.html create mode 100644 v0.2.8/reference/lbt14_post.html create mode 100644 v0.2.8/reference/lbt14_pre.html create mode 100644 v0.2.8/reference/lbt15.html create mode 100644 v0.2.8/reference/listing_format_chevron.html create mode 100644 v0.2.8/reference/lvls.html create mode 100644 v0.2.8/reference/main,chevron_tlg-method.html create mode 100644 v0.2.8/reference/main.html create mode 100644 v0.2.8/reference/mht01.html create mode 100644 v0.2.8/reference/mht01_main.html create mode 100644 v0.2.8/reference/mht01_post.html create mode 100644 v0.2.8/reference/mht01_pre.html create mode 100644 v0.2.8/reference/missing_rule.html create mode 100644 v0.2.8/reference/mla_dir.html create mode 100644 v0.2.8/reference/mng01-1.png create mode 100644 v0.2.8/reference/mng01-2.png create mode 100644 v0.2.8/reference/mng01-3.png create mode 100644 v0.2.8/reference/mng01.html create mode 100644 v0.2.8/reference/mng01_pre.html create mode 100644 v0.2.8/reference/modify_character.html create mode 100644 v0.2.8/reference/nocoding.html create mode 100644 v0.2.8/reference/obtain_value.html create mode 100644 v0.2.8/reference/occurrence_lyt.html create mode 100644 v0.2.8/reference/outcome_rule.html create mode 100644 v0.2.8/reference/pdt01.html create mode 100644 v0.2.8/reference/pdt01_lyt.html create mode 100644 v0.2.8/reference/pdt01_post.html create mode 100644 v0.2.8/reference/pdt01_pre.html create mode 100644 v0.2.8/reference/pdt02.html create mode 100644 v0.2.8/reference/pdt02_lyt.html create mode 100644 v0.2.8/reference/pdt02_post.html create mode 100644 v0.2.8/reference/pdt02_pre.html create mode 100644 v0.2.8/reference/postprocess,chevron_tlg-method.html create mode 100644 v0.2.8/reference/postprocess.html create mode 100644 v0.2.8/reference/preprocess,chevron_tlg-method.html create mode 100644 v0.2.8/reference/preprocess.html create mode 100644 v0.2.8/reference/print_args.html create mode 100644 v0.2.8/reference/print_list.html create mode 100644 v0.2.8/reference/proportion_lyt.html create mode 100644 v0.2.8/reference/reexports.html create mode 100644 v0.2.8/reference/reformat.html create mode 100644 v0.2.8/reference/report_null,ANY-method.html create mode 100644 v0.2.8/reference/report_null,NULL-method.html create mode 100644 v0.2.8/reference/report_null,VTableTree-method.html create mode 100644 v0.2.8/reference/report_null,list-method.html create mode 100644 v0.2.8/reference/report_null,listing_df-method.html create mode 100644 v0.2.8/reference/report_null.html create mode 100644 v0.2.8/reference/rmpt01.html create mode 100644 v0.2.8/reference/rmpt01_lyt.html create mode 100644 v0.2.8/reference/rmpt01_post.html create mode 100644 v0.2.8/reference/rmpt01_pre.html create mode 100644 v0.2.8/reference/rmpt03.html create mode 100644 v0.2.8/reference/rmpt03_pre.html create mode 100644 v0.2.8/reference/rmpt04.html create mode 100644 v0.2.8/reference/rmpt04_pre.html create mode 100644 v0.2.8/reference/rmpt05.html create mode 100644 v0.2.8/reference/rmpt05_pre.html create mode 100644 v0.2.8/reference/rmpt06.html create mode 100644 v0.2.8/reference/rmpt06_lyt.html create mode 100644 v0.2.8/reference/rmpt06_post.html create mode 100644 v0.2.8/reference/rmpt06_pre.html create mode 100644 v0.2.8/reference/rspt01.html create mode 100644 v0.2.8/reference/rspt01_lyt.html create mode 100644 v0.2.8/reference/rspt01_post.html create mode 100644 v0.2.8/reference/rspt01_pre.html create mode 100644 v0.2.8/reference/run,chevron_tlg-method.html create mode 100644 v0.2.8/reference/run-1.png create mode 100644 v0.2.8/reference/run-2.png create mode 100644 v0.2.8/reference/run-3.png create mode 100644 v0.2.8/reference/run.html create mode 100644 v0.2.8/reference/s_summary_na.html create mode 100644 v0.2.8/reference/script.html create mode 100644 v0.2.8/reference/script_funs,chevron_simple-method.html create mode 100644 v0.2.8/reference/script_funs,chevron_tlg-method.html create mode 100644 v0.2.8/reference/script_funs.html create mode 100644 v0.2.8/reference/set_section_div.html create mode 100644 v0.2.8/reference/smart_prune.html create mode 100644 v0.2.8/reference/split_rows_by_recursive.html create mode 100644 v0.2.8/reference/standard_null_report.html create mode 100644 v0.2.8/reference/std_listing.html create mode 100644 v0.2.8/reference/std_postprocessing.html create mode 100644 v0.2.8/reference/summarize_vars_allow_na.html create mode 100644 v0.2.8/reference/syn_data.html create mode 100644 v0.2.8/reference/ttet01.html create mode 100644 v0.2.8/reference/ttet01_lyt.html create mode 100644 v0.2.8/reference/ttet01_post.html create mode 100644 v0.2.8/reference/ttet01_pre.html create mode 100644 v0.2.8/reference/unwrap_layout.html create mode 100644 v0.2.8/reference/var_labels_for.html create mode 100644 v0.2.8/reference/vst01.html create mode 100644 v0.2.8/reference/vst01_pre.html create mode 100644 v0.2.8/reference/vst02_1.html create mode 100644 v0.2.8/reference/vst02_2.html create mode 100644 v0.2.8/reference/vst02_lyt.html create mode 100644 v0.2.8/reference/vst02_post.html create mode 100644 v0.2.8/reference/vst02_pre.html create mode 100644 v0.2.8/reference/with_label.html create mode 100644 v0.2.8/reference/yes_no_rule.html create mode 100644 v0.2.8/search.json create mode 100644 v0.2.8/sitemap.xml diff --git a/v0.2.8/404.html b/v0.2.8/404.html new file mode 100644 index 0000000000..4fba71c338 --- /dev/null +++ b/v0.2.8/404.html @@ -0,0 +1,83 @@ + + +
+ + + + +CODE_OF_CONDUCT.md
+ We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation.
+We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
+Examples of behavior that contributes to a positive environment for our community include:
+Examples of unacceptable behavior include:
+Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
+Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
+This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
+Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly and fairly.
+All community leaders are obligated to respect the privacy and security of the reporter of any incident.
+Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
+Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
+Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
+Community Impact: A violation through a single incident or series of actions.
+Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
+Community Impact: A serious violation of community standards, including sustained inappropriate behavior.
+Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
+Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
+Consequence: A permanent ban from any sort of public interaction within the community.
+This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
+Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.
+For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
+.github/CONTRIBUTING.md
+ 🙏 Thank you for taking the time to contribute!
+Your input is deeply valued, whether an issue, a pull request, or even feedback, regardless of size, content or scope.
+ +Please refer the project documentation for a brief introduction. Please also see other articles within the project documentation for additional information.
+A Code of Conduct governs this project. Participants and contributors are expected to follow the rules outlined therein.
+All your contributions will be covered by this project’s license.
+We use GitHub to track issues, feature requests, and bugs. Before submitting a new issue, please check if the issue has already been reported. If the issue already exists, please upvote the existing issue 👍.
+For new feature requests, please elaborate on the context and the benefit the feature will have for users, developers, or other relevant personas.
+This repository uses the GitHub Flow model for collaboration. To submit a pull request:
+Create a branch
+Please see the branch naming convention below. If you don’t have write access to this repository, please fork it.
+Make changes
+Make sure your code
+Create a pull request (PR)
+In the pull request description, please link the relevant issue (if any), provide a detailed description of the change, and include any assumptions.
+Address review comments, if any
Post approval
+Merge your PR if you have write access. Otherwise, the reviewer will merge the PR on your behalf.
+Pat yourself on the back
+Congratulations! 🎉 You are now an official contributor to this project! We are grateful for your contribution.
+Suppose your changes are related to a current issue in the current project; please name your branch as follows: <issue_id>_<short_description>
. Please use underscore (_
) as a delimiter for word separation. For example, 420_fix_ui_bug
would be a suitable branch name if your change is resolving and UI-related bug reported in issue number 420
in the current project.
If your change affects multiple repositories, please name your branches as follows: <issue_id>_<issue_repo>_<short description>
. For example, 69_awesomeproject_fix_spelling_error
would reference issue 69
reported in project awesomeproject
and aims to resolve one or more spelling errors in multiple (likely related) repositories.
monorepo
and staged.dependencies
+Sometimes you might need to change upstream dependent package(s) to be able to submit a meaningful change. We are using staged.dependencies
functionality to simulate a monorepo
behavior. The dependency configuration is already specified in this project’s staged_dependencies.yaml
file. You need to name the feature branches appropriately. This is the only exception from the branch naming convention described above.
Please refer to the staged.dependencies package documentation for more details.
+This repository follows some unified processes and standards adopted by its maintainers to ensure software development is carried out consistently within teams and cohesively across other repositories.
+This repository follows the standard tidyverse
style guide and uses lintr
for lint checks. Customized lint configurations are available in this repository’s .lintr
file.
Lightweight is the right weight. This repository follows tinyverse recommedations of limiting dependencies to minimum.
+If the code is not compatible with all (!) historical versions of a given dependenct package, it is required to specify minimal version in the DESCRIPTION
file. In particular: if the development version requires (imports) the development version of another package - it is required to put abc (>= 1.2.3.9000)
.
We continuously test our packages against the newest R version along with the most recent dependencies from CRAN and BioConductor. We recommend that your working environment is also set up in the same way. You can find the details about the R version and packages used in the R CMD check
GitHub Action execution log - there is a step that prints out the R sessionInfo()
.
If you discover bugs on older R versions or with an older set of dependencies, please create the relevant bug reports.
+pre-commit
We highly recommend that you use the pre-commit
tool combined with R hooks for pre-commit
to execute some of the checks before committing and pushing your changes.
Pre-commit hooks are already available in this repository’s .pre-commit-config.yaml
file.
As mentioned previously, all contributions are deeply valued and appreciated. While all contribution data is available as part of the repository insights, to recognize a significant contribution and hence add the contributor to the package authors list, the following rules are enforced:
+git blame
query) OR*Excluding auto-generated code, including but not limited to roxygen
comments or renv.lock
files.
The package maintainer also reserves the right to adjust the criteria to recognize contributions.
+Copyright 2022 F. Hoffmann-La Roche AG + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. ++ +
SECURITY.md
+ If you believe you have found a security vulnerability in any of the repositories in this organization, please report it to us through coordinated disclosure.
+Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.
+Instead, please send an email to vulnerability.management[@]roche.com.
+Please include as much of the information listed below as you can to help us better understand and resolve the issue:
+This information will help us triage your report more quickly.
+The chevron
R package provides functions to produce
+standard tables, listings and graphs (TLGs) used to analyze and report
+clinical trials data. The ensemble of function used to produce a
+particular output are stored in an S4
object of virtual
+class chevron_tlg
. Each type of output are associated with
+a specific class: chevron_t
for tables,
+chevron_l
for listings and chevron_g
for
+graphs.
Each standard output is associated with one
+chevron_tlg
object. They contain the following
+objects in separate slots:
main
function also refereed to as
+TLG-function.preprocess
function.postprocess
functionThe TLG-functions in chevron
use other packages
+to produce the final outputs, for example rtables
and
+tern
are used to create tables, ggplot2
,
+lattice
, and grid
are used to create graphs,
+rlistings
to create listings.
TLG-functions in chevron
such as
+dmt01_main
, aet02_main
,
+aet02_main
have the following properties:
GDS
). Note, that the naming convention
+<gds template id>_main
indicates that a Roche
+GDS
defined standard may have different implementations.
+Or, alternatively, a GDS
template id can be regarded as a
+guideline and the function name in chevron
as a
+standard.adam_db
which is the
+collection of ADaM
datasets (ADSL
,
+ADAE
, ADRS
, etc.). Please read the The
+adam_db
Argument vignette in this package for more
+details.The preprocess functions in chevron
use
+base
, dplyr
and dunlin
packages
+to process input data object and turn them into a suitable input for
+TLG-functions.
preprocess in chevron such as dmt01_pre
,
+aet02_pre
, aet02_pre
have the following
+properties:
list
of data.frame
object
+amenable to processing by a TLG-functions. message.adam_db
which is the
+collection of ADaM
datasets (ADSL
,
+ADAE
, ADRS
, etc.). Please read the The
+adam_db
Argument vignette in this package for more
+details.Please note that the ultimate responsible person of the preprocessing
+functions is the end user. The provided preprocessing function is only a
+template and users could modify depending on their need/data. This
+preprocessing function will be printed to allow modification in script
+generated in citril
.
AET02
+For example, the GDS
template aet02
is
+implemented in chevron
with the chevropn_tlg
+objects that have the name aet02
.
We first load the data as a list
of
+data.frame
, where each table represents a domain.
+library(chevron)
+#> Registered S3 method overwritten by 'tern':
+#> method from
+#> tidy.glm broom
+data(syn_data, package = "chevron")
A the aet02
output is then created as follows:
+run(aet02, syn_data)
+#> MedDRA System Organ Class A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Overall total number of events 58 59 99
+#> cl B.2
+#> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Total number of events 18 15 20
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl D.1
+#> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Total number of events 13 9 19
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> cl A.1
+#> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Total number of events 8 11 16
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B.1
+#> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Total number of events 6 6 12
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Total number of events 6 4 12
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> cl D.2
+#> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Total number of events 3 5 10
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> cl C.1
+#> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Total number of events 4 9 10
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
The function associated with a particular slot can be retrieved with
+the corresponding method: main
, lyt
,
+preprocess
postprocess
and
+datasets
.
+main(aet02)
+#> function (adam_db, arm_var = "ACTARM", row_split_var = "AEBODSYS",
+#> lbl_overall = NULL, summary_labels = list(all = aet02_label,
+#> TOTAL = c(nonunique = "Overall total number of events")),
+#> ...)
+#> {
+#> assert_all_tablenames(adam_db, "adsl", "adae")
+#> assert_string(arm_var)
+#> assert_character(row_split_var, null.ok = TRUE)
+#> assert_string(lbl_overall, null.ok = TRUE)
+#> assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var),
+#> types = list(c("character", "factor")))
+#> assert_valid_variable(adam_db$adae, c(arm_var, row_split_var,
+#> "AEDECOD"), types = list(c("character", "factor")))
+#> assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE,
+#> types = list(c("character", "factor")))
+#> assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var)
+#> assert_list(summary_labels, null.ok = TRUE)
+#> assert_subset(names(summary_labels), c("all", "TOTAL", row_split_var))
+#> assert_subset(unique(unlist(lapply(summary_labels, names))),
+#> c("unique", "nonunique", "unique_count"))
+#> summary_labels <- expand_list(summary_labels, c("TOTAL",
+#> row_split_var))
+#> lbl_overall <- render_safe(lbl_overall)
+#> lbl_row_split <- var_labels_for(adam_db$adae, row_split_var)
+#> lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD")
+#> lyt <- occurrence_lyt(arm_var = arm_var, lbl_overall = lbl_overall,
+#> row_split_var = row_split_var, lbl_row_split = lbl_row_split,
+#> medname_var = "AEDECOD", lbl_medname_var = lbl_aedecod,
+#> summary_labels = summary_labels, count_by = NULL)
+#> tbl <- build_table(lyt, adam_db$adae, alt_counts_df = adam_db$adsl)
+#> tbl
+#> }
+#> <bytecode: 0x557118440740>
+#> <environment: namespace:chevron>
These are standard functions that can be used on their own.
+
+res <- preprocess(aet02)(syn_data)
+
+# or
+foo <- aet02@preprocess
+res <- foo(syn_data)
+
+str(res, max.level = 0)
+#> List of 13
chevron_tlg
object customization
+In some instances it is useful to customize the
+chevron_tlg
object, for example by changing the pre
+processing functions in script generated. Please modify the code
+directly inside the pre_fun
, and make sure the function
+returns a named list of data frames. Please be careful about the
+argument names. The default argument of pre
functions will
+be override by the argument in spec.
chevron_tlg
object creation
+In some cases, you may want to create a new chevron_tlg
+template. To create a chevron_tlg
object from scratch, use
+the provided constructors corresponding to the desired output:
chevron_t()
for tables.chevron_l()
for listings.chevron_g()
for graphs.
+library(rtables)
+library(tern)
+my_template <- chevron_t(
+ main = "<your main function to build the table>",
+ preprocess = "<your pre function to process the data>",
+ postprocess = "<your post function to add custom sorting>"
+)
+
+run(my_template, syn_data)
Note that to ensure the correct execution of the run
+function, the name of the first argument of the main
+function must be adam_db
; the input list
of
+data.frame
object to pre-process. The name of the first
+argument of the preprocess
function must be
+adam_db
; the input list
object to create
+TLG
output and finally, the name of the first argument of
+the postprocess
function must be tlg
, the
+input TableTree
object to post-process. Validation criteria
+enforce these rules upon creation of a chevron_tlg
+object.
chevron
is a collection of functions to creates tables,
+listings, and graphs following Roche standards for clinical trials
+reporting. After loading the R packages and the trial data, the output
+is to be created by the main function run(...)
. Two
+arguments object=
and adam_db=
are always
+expected in the function. object=
specifies which Roche
+Standard Template ID to use. adam_db=
specifies the input
+dataset. Other mandatory and optional arguments within the
+run
function vary depending on which template ID is called.
+To access which arguments are required and what functions are used in
+each template, simply try ?template
+(e.g. ?aet01
) to see more detailed descriptions and
+instructions.
The input dataset expected by the argument adam_db=
in
+the run(...)
function is a collection of ADaM
+datasets as a list object. Each ADaM
dataset is expected to
+be an object of data frame. If the ADaM
datasets are read
+in individually, user will need to combine them into a list object and
+provide the name of the list to adam_db=
. Also, each
+element in the list are expected to have corresponding ADaM
+dataset names. Conventional ADaM
dataset names, including
+adsl
,adex
, adae
,
+adlb
,advs
,adeg
,adcm
,admh
,adrs
,
+and adtte
, can be picked up by chevron
with
+one exception.
By default, chevron
does not pull any subject-level
+information from either adsl
or adsub
and
+merge into the analysis dataset in the underlying preprocessing steps.
+The analysis dataset fed into adam_db=
is expected to have
+all variables required for analysis available.
In the output generation, we often need to specify a particular
+sorting order of a variable at the time of display. In
+chevron
, a character variable needs to be factorized with
+pre-specified levels to display in order. When encountering cases, for
+instance, "ARM A"
has an Asian group only while
+"ARM B"
has both Asian and White groups, it is not able to
+produce outputs like the demographic table unless "RACE"
is
+factorized to provide access to the same level attribute of the variable
+"RACE"
after the arm split. It is noted that the feature
+comes from rtables
instead of chevron
.
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+ mutate(RACE = case_when(
+ ARMCD == "ARM A" ~ "ASIAN",
+ ARMCD == "ARM B" & !.data$RACE %in% c("WHITE", "ASIAN") ~ "ASIAN",
+ TRUE ~ RACE
+ ))
Having "RACE"
as a character variable rather than a
+factor leads to error message showing up as “Error: Error applying
+analysis function (var - RACE): Number of rows generated by analysis
+function do not match across all columns,” and it is recommended to
+convert analysis variable "RACE"
to a factor.
+run(dmt01, proc_data)
To resolve this issue, simply try factorizing the variable
+"RACE"
:
+proc_data$adsl$RACE <- as.factor(proc_data$adsl$RACE)
+run(dmt01, proc_data)
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> ————————————————————————————————————————————————————————————————————————————————————————————
+#> Age (yr)
+#> n 15 15 15 45
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3)
+#> Median 31.0 35.0 35.0 34.0
+#> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57
+#> Age Group
+#> n 15 15 15 45
+#> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%)
+#> Sex
+#> n 15 15 15 45
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%)
+#> Ethnicity
+#> n 15 15 15 45
+#> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%)
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%)
+#> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%)
+#> RACE
+#> n 15 15 15 45
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 0 1 (6.7%) 1 (2.2%)
+#> ASIAN 15 (100%) 13 (86.7%) 8 (53.3%) 36 (80.0%)
+#> BLACK OR AFRICAN AMERICAN 0 0 4 (26.7%) 4 (8.9%)
+#> WHITE 0 2 (13.3%) 2 (13.3%) 4 (8.9%)
The run
function when calling a Graphics Template ID
+returns a gTree
object which will be used in the downstream
+workflow for output generation. There are two alternative approaches to
+rendering the plot: (1) having draw = TRUE
in the
+run
function to enable the generated plot to be
+automatically created and viewed via the Plots
tab, and (2)
+calling the function grid.draw
from the package
+grid
which can be utilized to render the plot for viewing
+and testing purpose. See example below:
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+
+# method 1
+run(kmg01, proc_data, dataset = "adtte", draw = TRUE)
+
+# method 2
+res <- run(kmg01, proc_data, dataset = "adtte")
+grid::grid.newpage()
+grid::grid.draw(res)
lbl_overall
: Column of Total
+The generic argument lbl_overall
controls whether the
+column of total will be produced or not. lbl_overall = NULL
+suppresses the total, lbl_overall = "All Patients"
produces
+the total.
Column counts are displayed by default. There is no generic argument
+controlling whether the count of unique number of subjects (N=xxx) will
+be displayed in the column header or not. Users are allowed to customize
+the display of N=xxx by forcing
+display_columncounts = FALSE
to wipe column counts away
+during the postprocessing (with precautions and it is not
+recommended).
+tbl <- run(dmt01, syn_data) # table with column counts
+tbl@col_info@display_columncounts <- FALSE
+tbl # no column counts now
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> ————————————————————————————————————————————————————————————————————————————————————————————
+#> Age (yr)
+#> n 15 15 15 45
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3)
+#> Median 31.0 35.0 35.0 34.0
+#> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57
+#> Age Group
+#> n 15 15 15 45
+#> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%)
+#> Sex
+#> n 15 15 15 45
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%)
+#> Ethnicity
+#> n 15 15 15 45
+#> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%)
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%)
+#> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%)
+#> RACE
+#> n 15 15 15 45
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)
AET01
)
+The aet01
template produces the
+standard safety summary.
+run(aet01, syn_data, arm_var = "ARM")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of AEs 58 59 99
+#> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> Total number of patients withdrawn from study due to an AE 0 0 1 (6.7%)
+#> Total number of patients with at least one
+#> AE with fatal outcome 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> Serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%)
+#> Serious AE leading to withdrawal from treatment 0 0 2 (13.3%)
+#> Serious AE leading to dose modification/interruption 4 (26.7%) 3 (20.0%) 4 (26.7%)
+#> Related Serious AE 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> AE leading to withdrawal from treatment 2 (13.3%) 3 (20.0%) 3 (20.0%)
+#> AE leading to dose modification/interruption 6 (40.0%) 9 (60.0%) 11 (73.3%)
+#> Related AE 11 (73.3%) 10 (66.7%) 13 (86.7%)
+#> Related AE leading to withdrawal from treatment 0 3 (20.0%) 0
+#> Related AE leading to dose modification/interruption 1 (6.7%) 4 (26.7%) 9 (60.0%)
+#> Severe AE (at greatest intensity) 11 (73.3%) 10 (66.7%) 12 (80.0%)
Analyses under “Total number of patients with at least one” can be
+removed, added, or modified by editing the parameter
+anl_vars
. An analysis here is an abbreviated name of the
+analysis of interest, and supported by a variable in ADAE
+derived under the condition of interest. The defined analyses currently
+include "FATAL"
, "SER"
, "SERWD"
,
+"SERDSM"
, "RELSER"
, "WD"
,
+"DSM"
, "REL"
, "RELWD"
,
+"RELDSM"
, and "SEV"
. When modification is
+made, analyses must all be listed in the argument anl_vars
.
+The example below shows adding the customized analysis
+"RELCTC35"
.
+proc_data <- syn_data
+proc_data$adae <- proc_data$adae %>%
+ filter(.data$ANL01FL == "Y") %>%
+ mutate(
+ FATAL = with_label(.data$AESDTH == "Y", "AE with fatal outcome"),
+ SER = with_label(.data$AESER == "Y", "Serious AE"),
+ SEV = with_label(.data$ASEV == "SEVERE", "Severe AE (at greatest intensity)"),
+ REL = with_label(.data$AREL == "Y", "Related AE"),
+ WD = with_label(.data$AEACN == "DRUG WITHDRAWN", "AE leading to withdrawal from treatment"),
+ DSM = with_label(
+ .data$AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
+ "AE leading to dose modification/interruption"
+ ),
+ SERWD = with_label(.data$SER & .data$WD, "Serious AE leading to withdrawal from treatment"),
+ SERDSM = with_label(.data$SER & .data$DSM, "Serious AE leading to dose modification/interruption"),
+ RELSER = with_label(.data$SER & .data$REL, "Related Serious AE"),
+ RELWD = with_label(.data$REL & .data$WD, "Related AE leading to withdrawal from treatment"),
+ RELDSM = with_label(.data$REL & .data$DSM, "Related AE leading to dose modification/interruption"),
+ CTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5"), "Grade 3-5 AE"),
+ CTC45 = with_label(.data$ATOXGR %in% c("4", "5"), "Grade 4/5 AE"),
+ RELCTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5") & .data$AEREL == "Y", "Related Grade 3-5")
+ )
+
+proc_data$adsl <- proc_data$adsl %>%
+ mutate(DCSREAS = reformat(.data$DCSREAS, missing_rule))
+
+run(aet01, proc_data, anl_vars = list(safety_var = c("FATAL", "SER", "RELSER", "RELCTC35")), auto_pre = FALSE)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of AEs 58 59 99
+#> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> Total number of patients withdrawn from study due to an AE 0 0 1 (6.7%)
+#> Total number of patients with at least one
+#> AE with fatal outcome 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> Serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%)
+#> Related Serious AE 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> Related Grade 3-5 11 (73.3%) 10 (66.7%) 12 (80.0%)
AET01_AESI
)
+The aet01_aesi
template produces the
+standard safety summary for adverse events of special interest.
+run(aet01_aesi, syn_data)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of AEs 58 59 99
+#> Total number of patients with at least one AE by worst grade
+#> Grade 1 0 1 (6.7%) 1 (6.7%)
+#> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%)
+#> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> Total number of patients with study drug withdrawn due to AE 2 (13.3%) 3 (20.0%) 3 (20.0%)
+#> Total number of patients with dose modified/interrupted due to AE 6 (40.0%) 9 (60.0%) 11 (73.3%)
+#> Total number of patients with treatment received for AE 10 (66.7%) 10 (66.7%) 14 (93.3%)
+#> Total number of patients with all non-fatal AEs resolved 9 (60.0%) 10 (66.7%) 12 (80.0%)
+#> Total number of patients with at least one unresolved or ongoing non-fatal AE 10 (66.7%) 9 (60.0%) 14 (93.3%)
+#> Total number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%)
+#> Total number of patients with at least one related AE 11 (73.3%) 10 (66.7%) 13 (86.7%)
Additional analyses can be added with the argument
+aesi_vars
, please type ?aet01_aesi
in console
+to find out the list of all pre-defined optional analyses in the
+HELP.
+run(aet01_aesi, syn_data, aesi_vars = c("RESLWD", "RELSER"))
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one AE 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of AEs 58 59 99
+#> Total number of patients with at least one AE by worst grade
+#> Grade 1 0 1 (6.7%) 1 (6.7%)
+#> Grade 2 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> Grade 3 1 (6.7%) 2 (13.3%) 1 (6.7%)
+#> Grade 4 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> Grade 5 (fatal outcome) 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> Total number of patients with study drug withdrawn due to AE 2 (13.3%) 3 (20.0%) 3 (20.0%)
+#> Total number of patients with dose modified/interrupted due to AE 6 (40.0%) 9 (60.0%) 11 (73.3%)
+#> Total number of patients with treatment received for AE 10 (66.7%) 10 (66.7%) 14 (93.3%)
+#> Total number of patients with all non-fatal AEs resolved 9 (60.0%) 10 (66.7%) 12 (80.0%)
+#> Total number of patients with at least one unresolved or ongoing non-fatal AE 10 (66.7%) 9 (60.0%) 14 (93.3%)
+#> Total number of patients with at least one serious AE 12 (80.0%) 12 (80.0%) 11 (73.3%)
+#> Total number of patients with at least one related AE 11 (73.3%) 10 (66.7%) 13 (86.7%)
+#> No. of patients with serious, related AE 8 (53.3%) 8 (53.3%) 10 (66.7%)
For studies with more than one study drug, users need to define the
+analyses in adae
and add to the argument
+aesi_vars
following the example above. No pre-defined
+analysis is available at this moment.
AET02
)
+aet02
produces the standard adverse event
+summary by MedDRA system organ class and preferred term.lbl_overall = "All Patients"
."AEBODSYS"
, and
+"AEDECOD"
are labeled as
+No Coding Available
.
+run(aet02, syn_data)
+#> MedDRA System Organ Class A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Overall total number of events 58 59 99
+#> cl B.2
+#> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Total number of events 18 15 20
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl D.1
+#> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Total number of events 13 9 19
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> cl A.1
+#> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Total number of events 8 11 16
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B.1
+#> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Total number of events 6 6 12
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Total number of events 6 4 12
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> cl D.2
+#> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Total number of events 3 5 10
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> cl C.1
+#> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Total number of events 4 9 10
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
The syntax below displays adverse events by MedDRA system organ +class, high-level term and preferred term.
+
+run(aet02, syn_data, row_split_var = c("AEBODSYS", "AEHLT"))
+#> MedDRA System Organ Class
+#> High Level Term A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Overall total number of events 58 59 99
+#> cl B.2
+#> Total number of patients with at least one adverse event 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Total number of events 18 15 20
+#> hlt B.2.2.3
+#> Total number of patients with at least one adverse event 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> Total number of events 9 7 13
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> hlt B.2.1.2
+#> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> Total number of events 9 8 7
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl D.1
+#> Total number of patients with at least one adverse event 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Total number of events 13 9 19
+#> hlt D.1.1.1
+#> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> Total number of events 5 7 11
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> hlt D.1.1.4
+#> Total number of patients with at least one adverse event 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> Total number of events 8 2 8
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> cl A.1
+#> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Total number of events 8 11 16
+#> hlt A.1.1.1
+#> Total number of patients with at least one adverse event 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Total number of events 8 11 16
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B.1
+#> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Total number of events 6 6 12
+#> hlt B.1.1.1
+#> Total number of patients with at least one adverse event 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Total number of events 6 6 12
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Total number of events 6 4 12
+#> hlt C.2.1.2
+#> Total number of patients with at least one adverse event 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Total number of events 6 4 12
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> cl D.2
+#> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Total number of events 3 5 10
+#> hlt D.2.1.5
+#> Total number of patients with at least one adverse event 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Total number of events 3 5 10
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> cl C.1
+#> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Total number of events 4 9 10
+#> hlt C.1.1.1
+#> Total number of patients with at least one adverse event 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Total number of events 4 9 10
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
The syntax below displays adverse events by preferred term only.
+
+run(aet02, syn_data, row_split_var = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one adverse event 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Overall total number of events 58 59 99
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
AET03
)
+This aet03
template produces the
+standard adverse event by greatest intensity summary
+run(aet03, syn_data)
+#> MedDRA System Organ Class A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————
+#> - Any Intensity - 13 (86.7%) 14 (93.3%) 15 (100%)
+#> MILD 0 1 (6.7%) 1 (6.7%)
+#> MODERATE 2 (13.3%) 3 (20.0%) 2 (13.3%)
+#> SEVERE 11 (73.3%) 10 (66.7%) 12 (80.0%)
+#> cl B.2
+#> - Any Intensity - 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> MILD 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> dcd B.2.2.3.1
+#> - Any Intensity - 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> MILD 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.2.1.2.1
+#> - Any Intensity - 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> MODERATE 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl D.1
+#> - Any Intensity - 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> MODERATE 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.1.1
+#> - Any Intensity - 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> SEVERE 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2
+#> - Any Intensity - 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> MODERATE 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> cl A.1
+#> - Any Intensity - 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> MILD 2 (13.3%) 0 4 (26.7%)
+#> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.2
+#> - Any Intensity - 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> MODERATE 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.1
+#> - Any Intensity - 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> MILD 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B.1
+#> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd B.1.1.1.1
+#> - Any Intensity - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> SEVERE 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> dcd C.2.1.2.1
+#> - Any Intensity - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> MODERATE 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> cl D.2
+#> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> dcd D.2.1.5.3
+#> - Any Intensity - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> MILD 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> cl C.1
+#> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> dcd C.1.1.1.3
+#> - Any Intensity - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> SEVERE 4 (26.7%) 4 (26.7%) 5 (33.3%)
NCI CTCAE
Grade
+(AET04
)
+NCI CTCAE
+Grade
+aet04
template produces the
+standard adverse event by highest NCI CTCAE
grade
+summary.ADSL
.
+run(aet04, syn_data)
+#> MedDRA System Organ Class
+#> MedDRA Preferred Term A: Drug X B: Placebo C: Combination
+#> Grade (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> - Any adverse events -
+#> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%)
+#> 1 0 1 (6.7%) 1 (6.7%)
+#> 2 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 3 (20.0%)
+#> 3 1 (6.7%) 2 (13.3%) 1 (6.7%)
+#> 4 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> Grade 5 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> cl B.2
+#> - Overall -
+#> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> 1 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> dcd B.2.2.3.1
+#> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> 1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.2.1.2.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl D.1
+#> - Overall -
+#> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Grade 3-4 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> 3 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.1.1
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2
+#> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> Grade 3-4 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> 3 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> cl A.1
+#> - Overall -
+#> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> 1 2 (13.3%) 0 4 (26.7%)
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.2
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd A.1.1.1.1
+#> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> 1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B.1
+#> - Overall -
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd B.1.1.1.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> - Overall -
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> dcd C.2.1.2.1
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> cl D.2
+#> - Overall -
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> dcd D.2.1.5.3
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> cl C.1
+#> - Overall -
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> dcd C.1.1.1.3
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
NCI CTCAE
Grade
+(Fill in of Grades)
+If, for some preferred terms, not all grades occur but all grades
+should be displayed, this can be achieved by specifying the argument
+prune_0 = FALSE
.
+run(aet04, syn_data, prune_0 = FALSE)
+#> MedDRA System Organ Class
+#> MedDRA Preferred Term A: Drug X B: Placebo C: Combination
+#> Grade (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> - Any adverse events -
+#> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%)
+#> 1 0 1 (6.7%) 1 (6.7%)
+#> 2 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 3 (20.0%)
+#> 3 1 (6.7%) 2 (13.3%) 1 (6.7%)
+#> 4 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> Grade 5 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> cl B.2
+#> - Overall -
+#> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> 1 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> 2 0 0 0
+#> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd B.2.2.3.1
+#> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> 1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd B.2.1.2.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> cl D.1
+#> - Overall -
+#> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> 3 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> 4 0 0 0
+#> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.1.1
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2
+#> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> 3 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> cl A.1
+#> - Overall -
+#> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> 1 2 (13.3%) 0 4 (26.7%)
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd A.1.1.1.2
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> 1 0 0 0
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd A.1.1.1.1
+#> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> 1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> cl B.1
+#> - Overall -
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd B.1.1.1.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> - Overall -
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 1 0 0 0
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd C.2.1.2.1
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 1 0 0 0
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> cl D.2
+#> - Overall -
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> dcd D.2.1.5.3
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-4 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Grade 5 0 0 0
+#> cl C.1
+#> - Overall -
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 3 0 0 0
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 5 0 0 0
+#> dcd C.1.1.1.3
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 3 0 0 0
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 5 0 0 0
NCI CTCAE
Grade
+with modified grouping of grade
+Collapsing grade 3-4 with grade 5, can be achieved by modifying the
+definition of grade groups in the argument
+grade_groups
.
+grade_groups <- list(
+ "Grade 1-2" = c("1", "2"),
+ "Grade 3-5" = c("3", "4", "5")
+)
+
+run(aet04, syn_data, grade_groups = grade_groups, prune_0 = FALSE)
+#> MedDRA System Organ Class
+#> MedDRA Preferred Term A: Drug X B: Placebo C: Combination
+#> Grade (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> - Any adverse events -
+#> - Any Grade - 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Grade 1-2 1 (6.7%) 2 (13.3%) 2 (13.3%)
+#> 1 0 1 (6.7%) 1 (6.7%)
+#> 2 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> Grade 3-5 12 (80.0%) 12 (80.0%) 13 (86.7%)
+#> 3 1 (6.7%) 2 (13.3%) 1 (6.7%)
+#> 4 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> 5 8 (53.3%) 8 (53.3%) 10 (66.7%)
+#> cl B.2
+#> - Overall -
+#> - Any Grade - 11 (73.3%) 8 (53.3%) 10 (66.7%)
+#> Grade 1-2 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> 1 6 (40.0%) 2 (13.3%) 5 (33.3%)
+#> 2 0 0 0
+#> Grade 3-5 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd B.2.2.3.1
+#> - Any Grade - 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> Grade 1-2 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> 1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd B.2.1.2.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> 4 0 0 0
+#> 5 0 0 0
+#> cl D.1
+#> - Overall -
+#> - Any Grade - 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 9 (60.0%) 5 (33.3%) 11 (73.3%)
+#> 3 5 (33.3%) 1 (6.7%) 4 (26.7%)
+#> 4 0 0 0
+#> 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.1.1
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2
+#> - Any Grade - 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> 3 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> 4 0 0 0
+#> 5 0 0 0
+#> cl A.1
+#> - Overall -
+#> - Any Grade - 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Grade 1-2 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> 1 2 (13.3%) 0 4 (26.7%)
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd A.1.1.1.2
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 1-2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> 1 0 0 0
+#> 2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd A.1.1.1.1
+#> - Any Grade - 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> Grade 1-2 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> 1 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> 2 0 0 0
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> cl B.1
+#> - Overall -
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd B.1.1.1.1
+#> - Any Grade - 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> cl C.2
+#> - Overall -
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 1 0 0 0
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd C.2.1.2.1
+#> - Any Grade - 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 1-2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> 1 0 0 0
+#> 2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> cl D.2
+#> - Overall -
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> dcd D.2.1.5.3
+#> - Any Grade - 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> Grade 1-2 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 1 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> 2 0 0 0
+#> Grade 3-5 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> 5 0 0 0
+#> cl C.1
+#> - Overall -
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 3 0 0 0
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 5 0 0 0
+#> dcd C.1.1.1.3
+#> - Any Grade - 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> Grade 1-2 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> Grade 3-5 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 3 0 0 0
+#> 4 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> 5 0 0 0
AET05
)
+aet05
template produces the
+standard adverse event rate adjusted for patient-years at risk summary
+considering first occurrence only.adsaftte
parameter codes containing the
+string "TTE"
are included in the output. Users are expected
+to filter the parameter(s) of interest from input safety time-to-event
+dataset in pre-processing if needed.CNSR
, 0
indicates the occurrence of an event
+of interest and 1
denotes censoring.
+proc_data <- log_filter(syn_data, PARAMCD == "AETTE1", "adsaftte")
+
+run(aet05, proc_data)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————
+#> Time to first occurrence of any adverse event
+#> Total patient-years at risk 31.0 9.0 22.0
+#> Number of adverse events observed 5 13 8
+#> AE rate per 100 patient-years 16.13 143.75 36.30
+#> 95% CI (1.99, 30.27) (65.61, 221.89) (11.15, 61.45)
conf_type
. Options include normal
+(default), normal_log
and exact
.conf_level
.
+run(aet05, syn_data, conf_level = 0.90, conf_type = "exact")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Time to first occurrence of a grade 3-5 adverse event
+#> Total patient-years at risk 10.3 6.3 8.3
+#> Number of adverse events observed 12 14 13
+#> AE rate per 100 patient-years 116.36 223.74 156.98
+#> 90% CI (67.14, 188.53) (135.27, 349.78) (92.86, 249.59)
+#> Time to first occurrence of any adverse event
+#> Total patient-years at risk 31.0 9.0 22.0
+#> Number of adverse events observed 5 13 8
+#> AE rate per 100 patient-years 16.13 143.75 36.30
+#> 90% CI (6.36, 33.91) (85.03, 228.55) (18.06, 65.50)
+#> Time to first occurrence of any serious adverse event
+#> Total patient-years at risk 32.9 7.6 9.4
+#> Number of adverse events observed 4 14 13
+#> AE rate per 100 patient-years 12.15 183.83 137.79
+#> 90% CI (4.15, 27.80) (111.14, 287.38) (81.50, 219.06)
AET05_ALL
)
+aet05_all
template produces the
+standard adverse event rate adjusted for patient-years at risk summary
+considering all occurrences.adsaftte
parameter codes containing the
+string "TOT"
and the parameter code "AEREPTTE"
+are required. "TOT"
parameters store the number of
+occurrences of adverse event of interests. Parameter code
+"AEREPTTE"
stores the time to end of adverse event
+reporting period in years that contribute to the summary of “total
+patient-years at risk” in the output. Users are expected to filter
+parameters of interest from input analysis dataset in pre-processing, if
+needed.CNSR
, 0
indicates the occurrence of an event
+of interest and 1
denotes censoring.
+proc_data <- log_filter(syn_data, PARAMCD == "AETOT1" | PARAMCD == "AEREPTTE", "adsaftte")
+
+run(aet05_all, proc_data)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————
+#> Number of occurrences of any adverse event
+#> Total patient-years at risk 44.4 44.2 44.4
+#> Number of adverse events observed 29 49 56
+#> AE rate per 100 patient-years 65.32 110.76 126.15
+#> 95% CI (41.54, 89.09) (79.75, 141.77) (93.11, 159.19)
conf_type
. Options include normal
+(default), normal_log
, exact
, and
+byar
.conf_level
.
+run(aet05_all, syn_data, conf_level = 0.90, conf_type = "exact")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Number of occurrences of a grade 3-5 adverse event
+#> Total patient-years at risk 44.4 44.2 44.4
+#> Number of adverse events observed 65 54 95
+#> AE rate per 100 patient-years 146.40 122.06 214.00
+#> 90% CI (117.86, 179.97) (96.08, 153.12) (179.22, 253.80)
+#> Number of occurrences of any adverse event
+#> Total patient-years at risk 44.4 44.2 44.4
+#> Number of adverse events observed 29 49 56
+#> AE rate per 100 patient-years 65.32 110.76 126.15
+#> 90% CI (46.73, 89.06) (86.08, 140.53) (99.76, 157.60)
+#> Number of occurrences of any serious adverse event
+#> Total patient-years at risk 44.4 44.2 44.4
+#> Number of adverse events observed 9 36 60
+#> AE rate per 100 patient-years 20.27 81.37 135.16
+#> 90% CI (10.57, 35.37) (60.42, 107.46) (107.80, 167.58)
AET10
)
+aet10
template produces the
+standard most common adverse events occurring with relative frequency
+>=5% output.
+run(aet10, syn_data)
+#> A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
To modify the threshold for displaying preferred terms, this can be
+achieved by providing the threshold to the argument
+atleast
.
+run(aet10, syn_data, atleast = 0.08)
+#> A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————
+#> dcd B.2.2.3.1 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> dcd B.1.1.1.1 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> dcd C.2.1.2.1 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> dcd A.1.1.1.2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> dcd B.2.1.2.1 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> dcd D.1.1.1.1 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> dcd D.1.1.4.2 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> dcd D.2.1.5.3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+#> dcd C.1.1.1.3 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> dcd A.1.1.1.1 3 (20.0%) 1 (6.7%) 6 (40.0%)
CFBT01
)
+cfbt01
template displays analysis value
+(AVAL
) and absolute change from baseline (CHG
)
+for each visit.
+proc_data <- log_filter(
+ syn_data,
+ PARAMCD %in% c("DIABP", "SYSBP"), "advs"
+)
+run(cfbt01, proc_data, dataset = "advs")
+#> A: Drug X B: Placebo C: Combination
+#> Change from Change from Change from
+#> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
+#> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> SCREENING
+#> n 15 0 15 0 15 0
+#> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE)
+#> Median 94.933 NE 111.133 NE 108.359 NE
+#> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752)
+#> Median 93.328 108.951 102.849
+#> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018)
+#> Median 92.447 -4.066 107.703 3.227 103.058 -2.476
+#> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229)
+#> Median 101.498 1.731 99.501 -9.727 96.789 -10.155
+#> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713)
+#> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075
+#> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881)
+#> Median 98.168 2.510 97.385 -16.793 107.555 7.966
+#> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827)
+#> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665
+#> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11
+#> Systolic Blood Pressure
+#> SCREENING
+#> n 15 0 15 0 15 0
+#> Mean (SD) 154.073 (33.511) NE (NE) 157.840 (34.393) NE (NE) 152.407 (22.311) NE (NE)
+#> Median 156.169 NE 161.670 NE 149.556 NE
+#> Min - Max 78.31 - 210.70 NE - NE 79.76 - 210.40 NE - NE 108.21 - 184.88 NE - NE
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317)
+#> Median 142.705 157.698 155.282
+#> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553)
+#> Median 160.711 5.802 155.030 2.758 145.548 -5.636
+#> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670)
+#> Median 144.253 5.325 142.679 -14.083 147.102 -11.512
+#> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984)
+#> Median 158.938 17.191 155.044 -1.796 156.505 -7.606
+#> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175)
+#> Median 145.506 3.754 149.094 -10.000 150.797 -14.432
+#> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799)
+#> Median 158.142 1.448 164.552 7.060 148.501 -2.385
+#> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35
The skip
arguments controls which visit values should
+not be displayed. For instance, to mask the changes from baseline during
+the “SCREENING” and “BASELINE” visits.
+run(cfbt01, proc_data, dataset = "advs", skip = list(CHG = c("SCREENING", "BASELINE")))
+#> A: Drug X B: Placebo C: Combination
+#> Change from Change from Change from
+#> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
+#> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> SCREENING
+#> n 15 15 15
+#> Mean (SD) 94.385 (17.067) 106.381 (20.586) 106.468 (12.628)
+#> Median 94.933 111.133 108.359
+#> Min - Max 55.71 - 122.00 60.21 - 131.91 83.29 - 127.17
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752)
+#> Median 93.328 108.951 102.849
+#> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018)
+#> Median 92.447 -4.066 107.703 3.227 103.058 -2.476
+#> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229)
+#> Median 101.498 1.731 99.501 -9.727 96.789 -10.155
+#> Min - Max 71.98 - 122.81 -39.50 - 47.57 53.80 - 125.81 -55.15 - 25.26 63.45 - 117.47 -73.10 - 46.54
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 99.101 (26.109) 2.968 (34.327) 91.984 (16.925) -16.127 (21.881) 94.586 (13.560) -8.563 (21.713)
+#> Median 101.146 -0.271 91.244 -14.384 98.398 -16.075
+#> Min - Max 47.68 - 162.22 -47.87 - 76.64 67.80 - 119.72 -53.06 - 22.52 73.50 - 115.43 -37.90 - 32.66
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 103.400 (22.273) 7.267 (30.740) 96.467 (19.451) -11.644 (25.922) 108.338 (18.417) 5.189 (21.881)
+#> Median 98.168 2.510 97.385 -16.793 107.555 7.966
+#> Min - Max 63.09 - 148.25 -38.43 - 61.90 63.35 - 131.57 -57.11 - 48.13 68.78 - 132.52 -33.96 - 41.50
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 93.222 (18.536) -2.911 (28.873) 97.890 (20.701) -10.221 (27.593) 95.317 (16.401) -7.832 (19.827)
+#> Median 90.799 -3.385 99.049 -11.319 93.876 -4.665
+#> Min - Max 63.55 - 139.11 -48.63 - 47.35 69.47 - 137.64 -54.38 - 37.85 71.91 - 138.54 -44.47 - 29.11
+#> Systolic Blood Pressure
+#> SCREENING
+#> n 15 15 15
+#> Mean (SD) 154.073 (33.511) 157.840 (34.393) 152.407 (22.311)
+#> Median 156.169 161.670 149.556
+#> Min - Max 78.31 - 210.70 79.76 - 210.40 108.21 - 184.88
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317)
+#> Median 142.705 157.698 155.282
+#> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 156.509 (21.097) 10.584 (34.598) 147.480 (33.473) -4.527 (48.895) 143.319 (30.759) -10.854 (34.553)
+#> Median 160.711 5.802 155.030 2.758 145.548 -5.636
+#> Min - Max 126.84 - 185.53 -53.28 - 91.52 85.22 - 189.88 -77.34 - 90.98 90.37 - 191.58 -65.71 - 49.04
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 144.202 (33.676) -1.723 (27.067) 136.892 (30.178) -15.115 (37.794) 148.622 (27.088) -5.551 (44.670)
+#> Median 144.253 5.325 142.679 -14.083 147.102 -11.512
+#> Min - Max 62.56 - 203.66 -53.89 - 44.16 70.34 - 174.27 -83.07 - 62.39 108.82 - 200.23 -69.54 - 113.59
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 154.887 (35.374) 8.962 (38.455) 149.761 (28.944) -2.247 (44.835) 150.460 (21.352) -3.712 (37.984)
+#> Median 158.938 17.191 155.044 -1.796 156.505 -7.606
+#> Min - Max 112.32 - 218.83 -47.28 - 96.18 84.42 - 192.92 -110.20 - 94.02 94.70 - 180.41 -74.91 - 72.74
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 150.159 (32.249) 4.234 (32.965) 156.043 (22.863) 4.036 (42.494) 145.714 (22.980) -8.458 (33.175)
+#> Median 145.506 3.754 149.094 -10.000 150.797 -14.432
+#> Min - Max 69.37 - 210.43 -89.16 - 54.32 113.57 - 195.10 -71.44 - 77.75 106.91 - 188.09 -41.95 - 65.16
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 155.964 (30.945) 10.039 (42.252) 156.387 (35.274) 4.380 (51.782) 143.592 (33.170) -10.581 (44.799)
+#> Median 158.142 1.448 164.552 7.060 148.501 -2.385
+#> Min - Max 110.61 - 212.47 -53.91 - 90.45 63.28 - 198.79 -131.34 - 86.84 92.18 - 191.05 -78.77 - 64.35
To display only the absolute value, specify
+summaryvars = "AVAL"
.
+run(cfbt01, proc_data, dataset = "advs", summaryvars = "AVAL")
+#> A: Drug X B: Placebo C: Combination
+#> Value at Visit Value at Visit Value at Visit
+#> Analysis Visit (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> SCREENING
+#> n 15 15 15
+#> Mean (SD) 94.385 (17.067) 106.381 (20.586) 106.468 (12.628)
+#> Median 94.933 111.133 108.359
+#> Min - Max 55.71 - 122.00 60.21 - 131.91 83.29 - 127.17
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752)
+#> Median 93.328 108.951 102.849
+#> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55
+#> WEEK 1 DAY 8
+#> n 15 15 15
+#> Mean (SD) 98.977 (21.359) 104.110 (16.172) 100.826 (19.027)
+#> Median 92.447 107.703 103.058
+#> Min - Max 67.55 - 130.37 70.91 - 132.89 70.04 - 128.68
+#> WEEK 2 DAY 15
+#> n 15 15 15
+#> Mean (SD) 99.758 (14.477) 97.473 (17.296) 94.272 (16.961)
+#> Median 101.498 99.501 96.789
+#> Min - Max 71.98 - 122.81 53.80 - 125.81 63.45 - 117.47
+#> WEEK 3 DAY 22
+#> n 15 15 15
+#> Mean (SD) 99.101 (26.109) 91.984 (16.925) 94.586 (13.560)
+#> Median 101.146 91.244 98.398
+#> Min - Max 47.68 - 162.22 67.80 - 119.72 73.50 - 115.43
+#> WEEK 4 DAY 29
+#> n 15 15 15
+#> Mean (SD) 103.400 (22.273) 96.467 (19.451) 108.338 (18.417)
+#> Median 98.168 97.385 107.555
+#> Min - Max 63.09 - 148.25 63.35 - 131.57 68.78 - 132.52
+#> WEEK 5 DAY 36
+#> n 15 15 15
+#> Mean (SD) 93.222 (18.536) 97.890 (20.701) 95.317 (16.401)
+#> Median 90.799 99.049 93.876
+#> Min - Max 63.55 - 139.11 69.47 - 137.64 71.91 - 138.54
+#> Systolic Blood Pressure
+#> SCREENING
+#> n 15 15 15
+#> Mean (SD) 154.073 (33.511) 157.840 (34.393) 152.407 (22.311)
+#> Median 156.169 161.670 149.556
+#> Min - Max 78.31 - 210.70 79.76 - 210.40 108.21 - 184.88
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 145.925 (28.231) 152.007 (28.664) 154.173 (26.317)
+#> Median 142.705 157.698 155.282
+#> Min - Max 85.21 - 195.68 98.90 - 194.62 86.65 - 192.68
+#> WEEK 1 DAY 8
+#> n 15 15 15
+#> Mean (SD) 156.509 (21.097) 147.480 (33.473) 143.319 (30.759)
+#> Median 160.711 155.030 145.548
+#> Min - Max 126.84 - 185.53 85.22 - 189.88 90.37 - 191.58
+#> WEEK 2 DAY 15
+#> n 15 15 15
+#> Mean (SD) 144.202 (33.676) 136.892 (30.178) 148.622 (27.088)
+#> Median 144.253 142.679 147.102
+#> Min - Max 62.56 - 203.66 70.34 - 174.27 108.82 - 200.23
+#> WEEK 3 DAY 22
+#> n 15 15 15
+#> Mean (SD) 154.887 (35.374) 149.761 (28.944) 150.460 (21.352)
+#> Median 158.938 155.044 156.505
+#> Min - Max 112.32 - 218.83 84.42 - 192.92 94.70 - 180.41
+#> WEEK 4 DAY 29
+#> n 15 15 15
+#> Mean (SD) 150.159 (32.249) 156.043 (22.863) 145.714 (22.980)
+#> Median 145.506 149.094 150.797
+#> Min - Max 69.37 - 210.43 113.57 - 195.10 106.91 - 188.09
+#> WEEK 5 DAY 36
+#> n 15 15 15
+#> Mean (SD) 155.964 (30.945) 156.387 (35.274) 143.592 (33.170)
+#> Median 158.142 164.552 148.501
+#> Min - Max 110.61 - 212.47 63.28 - 198.79 92.18 - 191.05
CMT01A
)
+cmt01a
template displays
+concomitant medications by ATC Level 2
and Preferred Name
+by default.
+run(cmt01a, syn_data)
+#> ATC Level 2 Text A: Drug X B: Placebo C: Combination
+#> Other Treatment (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of treatments 58 59 99
+#> ATCCLAS2 A
+#> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%)
+#> Total number of treatments 15 21 28
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%)
+#> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%)
+#> ATCCLAS2 A p2
+#> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> Total number of treatments 6 8 8
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> ATCCLAS2 B
+#> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%)
+#> Total number of treatments 30 30 52
+#> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%)
+#> ATCCLAS2 B p2
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 B p3
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 C
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 C p2
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 C p3
+#> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> Total number of treatments 5 5 12
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
ATC class level
)
+
+run(cmt01a, syn_data, row_split_var = "ATC1")
+#> ATC Level 1 Text A: Drug X B: Placebo C: Combination
+#> Other Treatment (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of treatments 58 59 99
+#> ATCCLAS1 A
+#> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%)
+#> Total number of treatments 15 21 28
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%)
+#> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%)
+#> ATCCLAS1 A p2
+#> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> Total number of treatments 6 8 8
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> ATCCLAS1 B
+#> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%)
+#> Total number of treatments 30 30 52
+#> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%)
+#> ATCCLAS1 B p2
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS1 B p3
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS1 C
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS1 C p2
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS1 C p3
+#> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> Total number of treatments 5 5 12
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
The argument sort_by_freq = TRUE
sort medication class
+by frequency.
+run(cmt01a, syn_data, sort_by_freq = TRUE)
+#> ATC Level 2 Text A: Drug X B: Placebo C: Combination
+#> Other Treatment (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of treatments 58 59 99
+#> ATCCLAS2 B
+#> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%)
+#> Total number of treatments 30 30 52
+#> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%)
+#> ATCCLAS2 A
+#> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%)
+#> Total number of treatments 15 21 28
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%)
+#> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%)
+#> ATCCLAS2 B p2
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 B p3
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> Total number of treatments 18 17 25
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 C
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 C p2
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> Total number of treatments 13 8 19
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 A p2
+#> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> Total number of treatments 6 8 8
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> ATCCLAS2 C p3
+#> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> Total number of treatments 5 5 12
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
The cmt01a
template includes the
+analysis of ‘total number of treatments’ by default, modify the argument
+summary_labels
to change it.
+run(cmt01a, syn_data, summary_labels = list(TOTAL = cmt01_label, ATC2 = cmt01_label[1]))
+#> ATC Level 2 Text A: Drug X B: Placebo C: Combination
+#> Other Treatment (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of treatments 58 59 99
+#> ATCCLAS2 A
+#> Total number of patients with at least one treatment 10 (66.7%) 11 (73.3%) 12 (80.0%)
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%)
+#> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%)
+#> ATCCLAS2 A p2
+#> Total number of patients with at least one treatment 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> ATCCLAS2 B
+#> Total number of patients with at least one treatment 12 (80.0%) 10 (66.7%) 14 (93.3%)
+#> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%)
+#> ATCCLAS2 B p2
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 B p3
+#> Total number of patients with at least one treatment 10 (66.7%) 8 (53.3%) 12 (80.0%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> ATCCLAS2 C
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 C p2
+#> Total number of patients with at least one treatment 9 (60.0%) 7 (46.7%) 12 (80.0%)
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
+#> ATCCLAS2 C p3
+#> Total number of patients with at least one treatment 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
CMT02_PT
)
+cmt02_pt
template displays
+concomitant medications by Preferred Name by default.sort_by_freq = TRUE
to sort preferred
+names by frequency.
+run(cmt02_pt, syn_data)
+#> A: Drug X B: Placebo C: Combination
+#> Other Treatment (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one treatment 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of treatments 58 59 99
+#> medname B_3/4 8 (53.3%) 6 (40.0%) 8 (53.3%)
+#> medname B_2/4 6 (40.0%) 5 (33.3%) 10 (66.7%)
+#> medname A_3/3 5 (33.3%) 8 (53.3%) 6 (40.0%)
+#> medname B_1/4 7 (46.7%) 6 (40.0%) 6 (40.0%)
+#> medname A_2/3 5 (33.3%) 6 (40.0%) 7 (46.7%)
+#> medname B_4/4 4 (26.7%) 5 (33.3%) 8 (53.3%)
+#> medname C_2/2 4 (26.7%) 5 (33.3%) 7 (46.7%)
+#> medname A_1/3 4 (26.7%) 3 (20.0%) 8 (53.3%)
+#> medname C_1/2 6 (40.0%) 2 (13.3%) 6 (40.0%)
COXT01
)
+coxt01
template produces the
+standard Cox regression output.time_var
argument. By default, time_var
is set
+to "AVAL"
, which comes from ADTTE.AVAL
.event_var
argument. By default, event_var
is
+set to "EVENT"
, which is derived based on the censoring
+indicator ADTTE.CNSR
in the pre-processing function
+coxt01_pre
."Arm A"
and "Arm B"
.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+proc_data <- log_filter(proc_data, ARMCD != "ARM C", "adsl")
+run(coxt01, proc_data, time_var = "AVAL", event_var = "EVENT")
+#> Treatment Effect Adjusted for Covariate
+#> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666
+#> Covariate:
+#> Sex 30 2.91 (0.97, 8.73) 0.0567
+#> RACE 30 3.09 (1.01, 9.50) 0.0487
+#> Age (yr) 30 2.89 (0.97, 8.59) 0.0566
To add the interaction term to the model,
+interaction = TRUE
, which is passed to
+tern::control_coxreg()
, needs to be specified.
+run(coxt01, proc_data, covariates = "AAGE", interaction = TRUE)
+#> Treatment Effect Adjusted for Covariate
+#> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value Interaction p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666
+#> Covariate:
+#> Age (yr) 30 0.3666
+#> 32 2.87 (0.98, 8.41)
"SEX"
, "RACE"
and
+"AAGE"
are used as the covariates for the model.covariates
argument. In the example below,
+"RACE"
and "AAGE"
are used as covariates.
+run(coxt01, proc_data, covariates = c("RACE", "AAGE"))
+#> Treatment Effect Adjusted for Covariate
+#> Effect/Covariate Included in the Model n Hazard Ratio 95% CI p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> B: Placebo vs control (A: Drug X) 30 2.71 (0.93, 7.88) 0.0666
+#> Covariate:
+#> RACE 30 3.09 (1.01, 9.50) 0.0487
+#> Age (yr) 30 2.89 (0.97, 8.59) 0.0566
strata = NULL
(no stratification),
+ties = "exact"
(equivalent to DISCRETE
in
+SAS), and conf_level = 0.95
are applied.strata
argument."efron"
or
+"breslow"
, can be specified in the tie
+argument, which is passed to tern::control_coxreg()
.conf_level
argument, which is passed
+to tern::control_coxreg()
.
+run(coxt01, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90)
+#> Treatment Effect Adjusted for Covariate
+#> Effect/Covariate Included in the Model n Hazard Ratio 90% CI p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> B: Placebo vs control (A: Drug X) 30 2.69 (1.07, 6.76) 0.0785
+#> Covariate:
+#> Sex 30 2.90 (1.12, 7.54) 0.0668
+#> Age (yr) 30 2.72 (1.08, 6.85) 0.0755
COXT02
)
+coxt02
template produces the
+standard multi-variable cox regression output.time_var
argument. By default, time_var
is set
+to "AVAL"
, which comes from ADTTE.AVAL
.event_var
argument. By default, event_var
is
+set to "EVENT"
, which is derived based on the censoring
+indicator ADTTE.CNSR
in the pre-processing function
+coxt01_pre
.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(coxt02, proc_data, time_var = "AVAL", event_var = "EVENT")
+#> Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> Description of Planned Arm (reference = A: Drug X) 0.1630
+#> B: Placebo 2.92 (0.93, 9.17) 0.0672
+#> C: Combination 1.56 (0.47, 5.10) 0.4659
+#> Covariate:
+#> Sex (reference = F)
+#> M 1.03 (0.41, 2.55) 0.9549
+#> RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.8498
+#> ASIAN 1.22 (0.27, 5.55) 0.7967
+#> BLACK OR AFRICAN AMERICAN 0.81 (0.12, 5.70) 0.8340
+#> WHITE 1.57 (0.26, 9.67) 0.6258
+#> Age (yr)
+#> All 0.99 (0.93, 1.05) 0.6650
"SEX"
, "RACE"
and
+"AAGE"
are used as the covariates for the model.covariates
argument. In the example below,
+"RACE"
and "AAGE"
are used as covariates.
+run(coxt02, proc_data, covariates = c("RACE", "AAGE"))
+#> Effect/Covariate Included in the Model Hazard Ratio 95% CI p-value
+#> —————————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> Description of Planned Arm (reference = A: Drug X) 0.1390
+#> B: Placebo 2.94 (0.97, 8.92) 0.0570
+#> C: Combination 1.56 (0.48, 5.09) 0.4605
+#> Covariate:
+#> RACE (reference = AMERICAN INDIAN OR ALASKA NATIVE) 0.8504
+#> ASIAN 1.22 (0.27, 5.54) 0.7972
+#> BLACK OR AFRICAN AMERICAN 0.81 (0.12, 5.65) 0.8306
+#> WHITE 1.56 (0.26, 9.53) 0.6279
+#> Age (yr)
+#> All 0.99 (0.93, 1.05) 0.6633
strata = NULL
(no stratification),
+ties = "exact"
(equivalent to DISCRETE
in
+SAS), and conf_level = 0.95
are applied.strata
argument."efron"
or
+"breslow"
, can be specified in the tie
+argument, which is passed to tern::control_coxreg()
.conf_level
argument, which is passed
+to tern::control_coxreg()
.
+run(coxt02, proc_data, covariates = c("SEX", "AAGE"), strata = c("RACE"), conf_level = 0.90, ties = "efron")
+#> Effect/Covariate Included in the Model Hazard Ratio 90% CI p-value
+#> ————————————————————————————————————————————————————————————————————————————————————————————
+#> Treatment:
+#> Description of Planned Arm (reference = A: Drug X) 0.1680
+#> B: Placebo 2.85 (1.09, 7.46) 0.0743
+#> C: Combination 1.47 (0.54, 4.02) 0.5254
+#> Covariate:
+#> Sex (reference = F)
+#> M 0.98 (0.45, 2.13) 0.9700
+#> Age (yr)
+#> All 0.99 (0.94, 1.04) 0.6571
DMT01
)
+dmt01
template produces the
+standard demographics and baseline characteristics summary.
+run(dmt01, syn_data)
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> ————————————————————————————————————————————————————————————————————————————————————————————
+#> Age (yr)
+#> n 15 15 15 45
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3)
+#> Median 31.0 35.0 35.0 34.0
+#> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57
+#> Age Group
+#> n 15 15 15 45
+#> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%)
+#> Sex
+#> n 15 15 15 45
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%)
+#> Ethnicity
+#> n 15 15 15 45
+#> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%)
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%)
+#> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%)
+#> RACE
+#> n 15 15 15 45
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)
To remove the column of total, set the argument
+lbl_overall
to NULL
.
+run(dmt01, syn_data, lbl_overall = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————
+#> Age (yr)
+#> n 15 15 15
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4)
+#> Median 31.0 35.0 35.0
+#> Min - Max 24 - 40 24 - 57 24 - 49
+#> Age Group
+#> n 15 15 15
+#> <65 15 (100%) 15 (100%) 15 (100%)
+#> Sex
+#> n 15 15 15
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%)
+#> Ethnicity
+#> n 15 15 15
+#> HISPANIC OR LATINO 2 (13.3%) 0 0
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%)
+#> NOT REPORTED 0 0 2 (13.3%)
+#> RACE
+#> n 15 15 15
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%)
summaryvars
. To add or remove analyses, you need
+to pass all variables you would like to include to the argument.
+run(dmt01, syn_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "BBMISI"), lbl_overall = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————
+#> Age
+#> n 15 15 15
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4)
+#> Median 31.0 35.0 35.0
+#> Min - Max 24 - 40 24 - 57 24 - 49
+#> Age Group
+#> n 15 15 15
+#> <65 15 (100%) 15 (100%) 15 (100%)
+#> Sex
+#> n 15 15 15
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%)
+#> Ethnicity
+#> n 15 15 15
+#> HISPANIC OR LATINO 2 (13.3%) 0 0
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%)
+#> NOT REPORTED 0 0 2 (13.3%)
+#> RACE
+#> n 15 15 15
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%)
+#> Baseline BMI
+#> n 15 15 15
+#> Mean (SD) 29.75 (15.10) 41.08 (26.65) 33.90 (15.39)
+#> Median 37.00 33.70 37.80
+#> Min - Max 6.4 - 47.9 5.3 - 117.9 -3.5 - 59.0
summaryvars
.
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+ mutate(
+ SEX = reformat(.data$SEX, rule(Male = "M", Female = "F")),
+ BBMIGR1 = factor(case_when(
+ BBMISI < 15 ~ "Very severely underweight",
+ BBMISI >= 15 & BBMISI < 16 ~ "Severely underweight",
+ BBMISI >= 16 & BBMISI < 18.5 ~ "Underweight",
+ BBMISI >= 18.5 & BBMISI < 25 ~ "Normal (healthy weight)",
+ BBMISI >= 25 & BBMISI < 30 ~ "Overweight",
+ BBMISI >= 30 & BBMISI < 35 ~ "Obese Class I (Moderately obese)",
+ BBMISI >= 35 & BBMISI < 40 ~ "Obese Class II (Severely obese)",
+ BBMISI >= 40 ~ "Obese Class III (Very severely obese)"
+ ), levels = c(
+ "Very severely underweight",
+ "Severely underweight",
+ "Underweight",
+ "Normal (healthy weight)",
+ "Overweight",
+ "Obese Class I (Moderately obese)",
+ "Obese Class II (Severely obese)",
+ "Obese Class III (Very severely obese)"
+ ))
+ )
+
+run(dmt01, proc_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "BBMIGR1"), auto_pre = FALSE)
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Age
+#> n 15 15 15 45
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3)
+#> Median 31.0 35.0 35.0 34.0
+#> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57
+#> Age Group
+#> n 15 15 15 45
+#> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%)
+#> Sex
+#> n 15 15 15 45
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%)
+#> Ethnicity
+#> n 15 15 15 45
+#> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%)
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%)
+#> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%)
+#> RACE
+#> n 15 15 15 45
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)
+#> BBMIGR1
+#> n 15 15 15 45
+#> Very severely underweight 4 (26.7%) 1 (6.7%) 1 (6.7%) 6 (13.3%)
+#> Underweight 1 (6.7%) 0 0 1 (2.2%)
+#> Normal (healthy weight) 1 (6.7%) 3 (20.0%) 4 (26.7%) 8 (17.8%)
+#> Overweight 0 1 (6.7%) 1 (6.7%) 2 (4.4%)
+#> Obese Class I (Moderately obese) 0 3 (20.0%) 0 3 (6.7%)
+#> Obese Class II (Severely obese) 4 (26.7%) 1 (6.7%) 3 (20.0%) 8 (17.8%)
+#> Obese Class III (Very severely obese) 5 (33.3%) 6 (40.0%) 6 (40.0%) 17 (37.8%)
ADVS
or
+ADSUB
+To add baseline vital signs or other baseline characteristics to the
+demographics and baseline characteristics summary, manual preprocess of
+input adsl
dataset is expected and merge the vital signs
+baseline values from advs
(where
+ADVS.ABLFL == "Y"
) or adsub
with
+adsl
by unique subject identifier.
+proc_data <- syn_data
+diabpbl <- proc_data$advs %>%
+ filter(ABLFL == "Y" & PARAMCD == "DIABP") %>%
+ mutate(DIABPBL = AVAL) %>%
+ select("STUDYID", "USUBJID", "DIABPBL")
+
+proc_data$adsl <- proc_data$adsl %>%
+ mutate(SEX = reformat(.data$SEX, rule(Male = "M", Female = "F"))) %>%
+ left_join(diabpbl, by = c("STUDYID", "USUBJID"))
+
+run(dmt01, proc_data, summaryvars = c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "DIABPBL"), auto_pre = FALSE)
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Age
+#> n 15 15 15 45
+#> Mean (SD) 31.3 (5.3) 35.1 (9.0) 36.6 (6.4) 34.3 (7.3)
+#> Median 31.0 35.0 35.0 34.0
+#> Min - Max 24 - 40 24 - 57 24 - 49 24 - 57
+#> Age Group
+#> n 15 15 15 45
+#> <65 15 (100%) 15 (100%) 15 (100%) 45 (100%)
+#> Sex
+#> n 15 15 15 45
+#> Male 3 (20.0%) 7 (46.7%) 5 (33.3%) 15 (33.3%)
+#> Female 12 (80.0%) 8 (53.3%) 10 (66.7%) 30 (66.7%)
+#> Ethnicity
+#> n 15 15 15 45
+#> HISPANIC OR LATINO 2 (13.3%) 0 0 2 (4.4%)
+#> NOT HISPANIC OR LATINO 13 (86.7%) 15 (100%) 13 (86.7%) 41 (91.1%)
+#> NOT REPORTED 0 0 2 (13.3%) 2 (4.4%)
+#> RACE
+#> n 15 15 15 45
+#> AMERICAN INDIAN OR ALASKA NATIVE 0 2 (13.3%) 1 (6.7%) 3 (6.7%)
+#> ASIAN 8 (53.3%) 10 (66.7%) 8 (53.3%) 26 (57.8%)
+#> BLACK OR AFRICAN AMERICAN 4 (26.7%) 1 (6.7%) 4 (26.7%) 9 (20.0%)
+#> WHITE 3 (20.0%) 2 (13.3%) 2 (13.3%) 7 (15.6%)
+#> Analysis Value
+#> n 15 15 15 45
+#> Mean (SD) 96.132511 (22.458204) 108.110944 (15.074451) 103.148818 (19.751687) 102.464091 (19.534945)
+#> Median 93.328321 108.951358 102.849019 102.396129
+#> Min - Max 60.58490 - 136.59343 83.44277 - 131.61501 66.05223 - 136.55256 60.58490 - 136.59343
DST01
)
+dst01
template produces the
+standard patient disposition summary.lbl_overall = NULL
to suppress the default.
+run(dst01, syn_data, lbl_overall = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————
+#> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%)
+#> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%)
+#> ADVERSE EVENT 0 0 1 (6.7%)
+#> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> LACK OF EFFICACY 2 (13.3%) 0 0
+#> PHYSICIAN DECISION 0 0 1 (6.7%)
+#> PROTOCOL VIOLATION 0 1 (6.7%) 0
+#> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0
ADSL.DCSREASGP
] that groups the
+discontinuation reasons needs to be derived manually and provided in the
+input adsl
dataset.
+run(dst01, syn_data, detail_vars = list(Discontinued = c("DCSREASGP", "DCSREAS")), lbl_overall = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————
+#> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%)
+#> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%)
+#> Safety
+#> ADVERSE EVENT 0 0 1 (6.7%)
+#> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> Non-Safety
+#> LACK OF EFFICACY 2 (13.3%) 0 0
+#> PHYSICIAN DECISION 0 0 1 (6.7%)
+#> PROTOCOL VIOLATION 0 1 (6.7%) 0
+#> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0
The syntax below adds the end of treatment status to the standard
+patient disposition summary by providing the end of treatment status
+variable to the argument trt_status_var
.
+run(dst01, syn_data, trt_status_var = "EOTSTT", lbl_overall = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————
+#> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%)
+#> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%)
+#> ADVERSE EVENT 0 0 1 (6.7%)
+#> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> LACK OF EFFICACY 2 (13.3%) 0 0
+#> PHYSICIAN DECISION 0 0 1 (6.7%)
+#> PROTOCOL VIOLATION 0 1 (6.7%) 0
+#> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0
+#> Completed Treatment 8 (53.3%) 4 (26.7%) 5 (33.3%)
+#> Ongoing Treatment 4 (26.7%) 6 (40.0%) 4 (26.7%)
+#> Discontinued Treatment 3 (20.0%) 5 (33.3%) 6 (40.0%)
The syntax adds the details of study ongoing/alive status to the
+standard patient disposition summary by modifying the argument
+detail_vars
.
+run(dst01, syn_data, detail_vars = list(Discontinued = "DCSREAS", Ongoing = "STDONS"))
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%)
+#> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%)
+#> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%)
+#> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%)
+#> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%)
+#> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%)
+#> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%)
+#> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%)
DTHT01
)
+The dtht01
template produces the
+standard deaths output.
+run(dst01, syn_data)
+#> A: Drug X B: Placebo C: Combination All Patients
+#> (N=15) (N=15) (N=15) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Completed 10 (66.7%) 10 (66.7%) 10 (66.7%) 30 (66.7%)
+#> Discontinued 5 (33.3%) 5 (33.3%) 5 (33.3%) 15 (33.3%)
+#> ADVERSE EVENT 0 0 1 (6.7%) 1 (2.2%)
+#> DEATH 2 (13.3%) 4 (26.7%) 3 (20.0%) 9 (20.0%)
+#> LACK OF EFFICACY 2 (13.3%) 0 0 2 (4.4%)
+#> PHYSICIAN DECISION 0 0 1 (6.7%) 1 (2.2%)
+#> PROTOCOL VIOLATION 0 1 (6.7%) 0 1 (2.2%)
+#> WITHDRAWAL BY PARENT/GUARDIAN 1 (6.7%) 0 0 1 (2.2%)
+run(dtht01, syn_data, other_category = TRUE)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————
+#> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> Primary Cause of Death
+#> n 2 4 3
+#> Adverse Event 1 (50.0%) 2 (50.0%) 1 (33.3%)
+#> Progressive Disease 1 (50.0%) 0 2 (66.7%)
+#> Other 0 2 (50.0%) 0
+#> LOST TO FOLLOW UP 0 1 (50%) 0
+#> SUICIDE 0 1 (50%) 0
NOTE: In order to avoid the warning above and display ‘Other’ as the
+last category under “Primary Cause of Death” right above the detailed
+reasons for “Other”, the user is expected to manually provide levels to
+ADSL.DTHCAT
based on categories available in the
+dataset.
Setting time_since_last_dose
to TRUE
, the
+syntax produces the count of deaths by days from last study drug
+administration as well as the count of deaths by primary cause and days
+from last study drug administration.
+run(dtht01, syn_data, time_since_last_dose = TRUE)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of deaths 2 (13.3%) 4 (26.7%) 3 (20.0%)
+#> Days from last drug administration
+#> n 2 4 3
+#> <=30 2 (100%) 1 (25.0%) 2 (66.7%)
+#> >30 0 3 (75.0%) 1 (33.3%)
+#> Primary cause by days from last study drug administration
+#> <=30
+#> n 2 1 2
+#> Adverse Event 1 (50.0%) 0 1 (50.0%)
+#> Progressive Disease 1 (50.0%) 0 1 (50.0%)
+#> Other 0 1 (100%) 0
+#> >30
+#> n 0 3 1
+#> Adverse Event 0 2 (66.7%) 0
+#> Progressive Disease 0 0 1 (100%)
+#> Other 0 1 (33.3%) 0
EGT01
)
+The egt01
template produces the
+standard ECG results and change from baseline by visit summary.
+run(egt01, syn_data)
+#> A: Drug X B: Placebo C: Combination
+#> Change from Change from Change from
+#> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
+#> Analysis Visit (N=15) (N=15) (N=15) (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Heart Rate
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 76.594 (17.889) 69.899 (18.788) 70.492 (18.175)
+#> Median 77.531 77.174 74.111
+#> Min - Max 46.50 - 106.68 26.42 - 97.69 45.37 - 115.49
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 71.140 (23.441) -5.454 (25.128) 70.958 (14.877) 1.059 (23.345) 67.450 (18.932) -3.043 (23.753)
+#> Median 77.210 -2.152 70.033 -8.403 68.471 0.181
+#> Min - Max 8.53 - 102.63 -50.97 - 36.54 44.85 - 93.79 -25.34 - 60.50 38.90 - 100.05 -52.20 - 33.13
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 69.350 (16.083) -7.244 (28.960) 76.096 (14.958) 6.198 (29.319) 63.694 (12.920) -6.799 (23.949)
+#> Median 65.746 -11.369 75.323 0.255 61.076 -4.954
+#> Min - Max 47.22 - 101.44 -49.59 - 42.91 47.50 - 111.40 -37.51 - 69.34 43.25 - 86.13 -52.70 - 40.76
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 73.894 (24.576) -2.700 (32.079) 67.635 (19.114) -2.263 (29.989) 72.054 (19.308) 1.562 (27.494)
+#> Median 69.296 5.492 68.468 -2.093 68.686 -5.848
+#> Min - Max 44.15 - 131.73 -62.53 - 38.19 31.89 - 108.87 -52.26 - 66.81 32.16 - 109.86 -49.61 - 35.23
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 73.241 (19.256) -3.353 (29.170) 66.524 (25.487) -3.374 (36.024) 66.600 (22.839) -3.892 (24.140)
+#> Median 68.689 0.232 66.397 -11.730 64.969 -6.827
+#> Min - Max 33.71 - 111.54 -55.14 - 65.04 19.66 - 111.29 -60.39 - 61.00 10.35 - 100.88 -50.72 - 26.77
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 61.690 (22.182) -14.904 (30.330) 60.712 (20.025) -9.187 (24.587) 72.683 (23.495) 2.191 (26.654)
+#> Median 57.925 -12.660 60.454 -16.100 77.585 14.635
+#> Min - Max 23.89 - 103.74 -60.00 - 57.24 32.53 - 102.02 -52.56 - 50.96 31.21 - 105.05 -42.90 - 34.64
+#> QT Duration
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 335.294 (123.231) 363.104 (68.160) 347.311 (86.236)
+#> Median 372.731 386.316 348.254
+#> Min - Max 121.28 - 554.97 214.65 - 445.53 170.80 - 508.54
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 357.361 (85.688) 22.067 (144.166) 415.225 (105.425) 52.121 (144.259) 321.078 (107.553) -26.233 (129.135)
+#> Median 344.797 49.432 421.950 62.762 307.962 -17.006
+#> Min - Max 241.22 - 517.39 -207.23 - 245.36 234.11 - 604.72 -190.70 - 364.94 118.36 - 480.29 -363.11 - 163.67
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 344.883 (106.793) 9.589 (174.797) 370.548 (80.862) 7.444 (91.301) 354.129 (95.133) 6.818 (142.397)
+#> Median 312.236 -9.264 388.515 -9.429 365.292 39.930
+#> Min - Max 187.77 - 501.87 -278.91 - 372.71 204.55 - 514.43 -190.58 - 173.87 200.19 - 493.40 -279.46 - 265.56
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 342.062 (92.568) 6.768 (151.505) 326.684 (116.421) -36.420 (145.415) 366.245 (99.106) 18.935 (168.417)
+#> Median 352.930 -22.771 298.353 -78.409 329.688 -21.584
+#> Min - Max 199.40 - 476.04 -230.25 - 303.00 151.05 - 561.23 -205.30 - 293.76 249.42 - 580.81 -252.73 - 410.01
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 371.650 (44.805) 36.356 (139.308) 333.697 (110.377) -29.407 (125.592) 333.181 (96.466) -14.130 (107.622)
+#> Median 375.412 58.958 308.020 -40.987 330.911 -25.820
+#> Min - Max 302.32 - 451.62 -214.07 - 258.04 183.09 - 531.08 -241.72 - 134.12 126.95 - 488.57 -234.92 - 152.49
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 345.504 (130.543) 10.210 (198.224) 309.919 (84.624) -53.185 (105.730) 322.931 (67.801) -24.380 (117.331)
+#> Median 355.730 -23.213 306.219 -12.373 341.988 -26.952
+#> Min - Max 88.38 - 661.12 -271.06 - 539.84 189.01 - 448.58 -256.52 - 91.57 217.51 - 427.16 -291.03 - 171.19
+#> RR Duration
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 1086.908 (363.811) 1050.034 (390.444) 1102.659 (310.359)
+#> Median 1116.849 1089.193 1250.037
+#> Min - Max 626.19 - 1653.12 414.61 - 1721.89 385.51 - 1430.81
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 968.499 (287.811) -118.409 (546.796) 1041.186 (211.201) -8.848 (435.281) 948.491 (213.746) -154.168 (442.882)
+#> Median 961.296 -147.460 1013.786 24.754 965.429 -224.054
+#> Min - Max 358.92 - 1593.51 -1014.82 - 911.82 714.44 - 1417.52 -618.80 - 847.31 513.35 - 1229.09 -736.69 - 843.58
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 932.717 (259.634) -154.191 (331.884) 1139.332 (454.231) 89.298 (582.750) 1021.283 (233.529) -81.376 (415.781)
+#> Median 950.533 -205.949 1068.007 -5.449 964.616 -142.180
+#> Min - Max 409.68 - 1269.35 -649.69 - 473.09 486.51 - 2048.73 -846.72 - 1148.61 667.36 - 1367.25 -647.47 - 616.15
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 1068.865 (319.540) -18.043 (513.412) 1110.882 (259.523) 60.848 (432.700) 1105.918 (306.185) 3.259 (516.734)
+#> Median 1201.998 -65.085 1163.690 51.200 1187.130 30.318
+#> Min - Max 380.49 - 1551.65 -832.86 - 703.74 621.41 - 1453.29 -887.06 - 822.18 446.02 - 1648.32 -984.79 - 816.30
+#> WEEK 4 DAY 29
+#> n 15 15 15 15 15 15
+#> Mean (SD) 1087.915 (205.940) 1.008 (403.039) 1161.681 (293.257) 111.647 (460.979) 992.134 (283.177) -110.525 (334.932)
+#> Median 1084.658 146.611 1055.223 191.008 1028.997 -112.599
+#> Min - Max 697.59 - 1499.17 -801.16 - 402.97 722.35 - 1762.04 -528.27 - 1191.83 497.14 - 1382.12 -597.95 - 757.99
+#> WEEK 5 DAY 36
+#> n 15 15 15 15 15 15
+#> Mean (SD) 1016.880 (424.428) -70.027 (505.078) 1135.131 (224.684) 85.097 (497.679) 1089.527 (238.909) -13.132 (362.606)
+#> Median 962.584 -142.925 1158.815 -9.553 1081.015 16.706
+#> Min - Max 352.97 - 1843.86 -894.83 - 1162.79 714.34 - 1436.68 -843.41 - 992.34 699.72 - 1611.38 -696.03 - 561.53
EGT02_1
)
+The egt02_1
template produces the
+standard ECG abnormalities summary where the abnormalities are
+summarized regardless of the abnormality at baseline.
+run(egt02_1, syn_data)
+#> Assessment A: Drug X B: Placebo C: Combination
+#> Abnormality (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————
+#> Heart Rate
+#> Low 4/15 (26.7%) 4/15 (26.7%) 4/15 (26.7%)
+#> High 4/15 (26.7%) 3/15 (20%) 3/15 (20%)
+#> QT Duration
+#> Low 2/15 (13.3%) 5/15 (33.3%) 3/15 (20%)
+#> High 3/15 (20%) 6/15 (40%) 2/15 (13.3%)
+#> RR Duration
+#> Low 6/15 (40%) 2/15 (13.3%) 4/15 (26.7%)
+#> High 4/15 (26.7%) 5/15 (33.3%) 2/15 (13.3%)
EGT02_2
)
+The egt02_2
template produces the
+standard ECG abnormalities summary where the abnormalities are
+summarized among subject without abnormality at baseline.
+run(egt02_2, syn_data)
+#> Assessment A: Drug X B: Placebo C: Combination
+#> Abnormality (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————
+#> Heart Rate
+#> Low 4/15 (26.7%) 4/14 (28.6%) 4/15 (26.7%)
+#> High 3/13 (23.1%) 3/15 (20%) 2/14 (14.3%)
+#> QT Duration
+#> Low 2/12 (16.7%) 5/15 (33.3%) 3/14 (21.4%)
+#> High 3/14 (21.4%) 6/15 (40%) 2/14 (14.3%)
+#> RR Duration
+#> Low 6/15 (40%) 2/13 (15.4%) 4/14 (28.6%)
+#> High 4/13 (30.8%) 5/13 (38.5%) 2/15 (13.3%)
EGT03
)
+The egt03
template produces the
+standard shift table of ECG interval data - baseline versus minimum
+post-baseline summary.
+proc_data <- log_filter(syn_data, PARAMCD == "HR", "adeg")
+run(egt03, proc_data)
+#> Actual Arm Code Minimum Post-Baseline Assessment
+#> Baseline Reference Range Indicator LOW NORMAL HIGH Missing
+#> ————————————————————————————————————————————————————————————————————————————————
+#> Heart Rate
+#> ARM A (N=15)
+#> LOW 0 0 0 0
+#> NORMAL 4 (26.7%) 9 (60.0%) 0 0
+#> HIGH 0 2 (13.3%) 0 0
+#> Missing 0 0 0 0
+#> ARM B (N=15)
+#> LOW 0 1 (6.7%) 0 0
+#> NORMAL 4 (26.7%) 10 (66.7%) 0 0
+#> HIGH 0 0 0 0
+#> Missing 0 0 0 0
+#> ARM C (N=15)
+#> LOW 0 0 0 0
+#> NORMAL 4 (26.7%) 10 (66.7%) 0 0
+#> HIGH 0 1 (6.7%) 0 0
+#> Missing 0 0 0 0
EGT05_QTCAT
)
+The egt05_qtcat
template produces the
+standard ECG actual values and changes from baseline by visit
+summary.
+run(egt05_qtcat, syn_data)
+#> Parameter
+#> Analysis Visit A: Drug X B: Placebo C: Combination
+#> Category (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————
+#> QT Duration
+#> BASELINE
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 13 (86.7%) 15 (100%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 0 0
+#> >480 to <=500 msec 0 0 1 (6.7%)
+#> >500 msec 1 (6.7%) 0 1 (6.7%)
+#> WEEK 1 DAY 8
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 9 (60.0%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> >480 to <=500 msec 1 (6.7%) 3 (20.0%) 1 (6.7%)
+#> >500 msec 1 (6.7%) 2 (13.3%) 0
+#> Change from Baseline
+#> n 15 15 15
+#> <=30 msec 7 (46.7%) 6 (40.0%) 9 (60.0%)
+#> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 1 (6.7%)
+#> >60 msec 6 (40.0%) 8 (53.3%) 5 (33.3%)
+#> WEEK 2 DAY 15
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 11 (73.3%) 14 (93.3%) 12 (80.0%)
+#> >450 to <=480 msec 2 (13.3%) 0 2 (13.3%)
+#> >480 to <=500 msec 1 (6.7%) 0 1 (6.7%)
+#> >500 msec 1 (6.7%) 1 (6.7%) 0
+#> Change from Baseline
+#> n 15 15 15
+#> <=30 msec 9 (60.0%) 12 (80.0%) 7 (46.7%)
+#> >30 to <=60 msec 2 (13.3%) 0 3 (20.0%)
+#> >60 msec 4 (26.7%) 3 (20.0%) 5 (33.3%)
+#> WEEK 3 DAY 22
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 12 (80.0%) 12 (80.0%)
+#> >450 to <=480 msec 3 (20.0%) 1 (6.7%) 1 (6.7%)
+#> >500 msec 0 2 (13.3%) 2 (13.3%)
+#> Change from Baseline
+#> n 15 15 15
+#> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%)
+#> >30 to <=60 msec 1 (6.7%) 1 (6.7%) 0
+#> >60 msec 5 (33.3%) 3 (20.0%) 6 (40.0%)
+#> WEEK 4 DAY 29
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 14 (93.3%) 12 (80.0%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> >480 to <=500 msec 0 0 1 (6.7%)
+#> >500 msec 0 2 (13.3%) 0
+#> Change from Baseline
+#> n 15 15 15
+#> <=30 msec 6 (40.0%) 9 (60.0%) 9 (60.0%)
+#> >30 to <=60 msec 2 (13.3%) 1 (6.7%) 2 (13.3%)
+#> >60 msec 7 (46.7%) 5 (33.3%) 4 (26.7%)
+#> WEEK 5 DAY 36
+#> Value at Visit
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 15 (100%) 15 (100%)
+#> >450 to <=480 msec 2 (13.3%) 0 0
+#> >500 msec 1 (6.7%) 0 0
+#> Change from Baseline
+#> n 15 15 15
+#> <=30 msec 9 (60.0%) 11 (73.3%) 9 (60.0%)
+#> >30 to <=60 msec 0 3 (20.0%) 2 (13.3%)
+#> >60 msec 6 (40.0%) 1 (6.7%) 4 (26.7%)
The template have two default analyses of ADEG.AVALCAT1
+and ADEG.CHGCAT1
. To keep only the analyses needed, this
+can be achieved by modifying the parameter summaryvars
.
+run(egt05_qtcat, syn_data, summaryvars = c("AVALCAT1"))
+#> Parameter
+#> Analysis Visit A: Drug X B: Placebo C: Combination
+#> Category (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————
+#> QT Duration
+#> BASELINE
+#> n 15 15 15
+#> <=450 msec 13 (86.7%) 15 (100%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 0 0
+#> >480 to <=500 msec 0 0 1 (6.7%)
+#> >500 msec 1 (6.7%) 0 1 (6.7%)
+#> WEEK 1 DAY 8
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 9 (60.0%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> >480 to <=500 msec 1 (6.7%) 3 (20.0%) 1 (6.7%)
+#> >500 msec 1 (6.7%) 2 (13.3%) 0
+#> WEEK 2 DAY 15
+#> n 15 15 15
+#> <=450 msec 11 (73.3%) 14 (93.3%) 12 (80.0%)
+#> >450 to <=480 msec 2 (13.3%) 0 2 (13.3%)
+#> >480 to <=500 msec 1 (6.7%) 0 1 (6.7%)
+#> >500 msec 1 (6.7%) 1 (6.7%) 0
+#> WEEK 3 DAY 22
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 12 (80.0%) 12 (80.0%)
+#> >450 to <=480 msec 3 (20.0%) 1 (6.7%) 1 (6.7%)
+#> >500 msec 0 2 (13.3%) 2 (13.3%)
+#> WEEK 4 DAY 29
+#> n 15 15 15
+#> <=450 msec 14 (93.3%) 12 (80.0%) 13 (86.7%)
+#> >450 to <=480 msec 1 (6.7%) 1 (6.7%) 1 (6.7%)
+#> >480 to <=500 msec 0 0 1 (6.7%)
+#> >500 msec 0 2 (13.3%) 0
+#> WEEK 5 DAY 36
+#> n 15 15 15
+#> <=450 msec 12 (80.0%) 15 (100%) 15 (100%)
+#> >450 to <=480 msec 2 (13.3%) 0 0
+#> >500 msec 1 (6.7%) 0 0
EXT01
)
+ext01
template displays total
+number of doses administered and total dose administered by default
+run(ext01, syn_data)
+#> A: Drug X B: Placebo C: Combination
+#> PARCAT2 (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Drug A
+#> Overall duration (days)
+#> n 11 7 7
+#> Mean (SD) 157.5 (67.4) 115.4 (62.8) 98.6 (68.8)
+#> Median 174.0 119.0 89.0
+#> Min - Max 53.0 - 239.0 22.0 - 219.0 1.0 - 182.0
+#> Total dose administered
+#> n 11 7 7
+#> Mean (SD) 6567.3 (1127.1) 7028.6 (1626.1) 6377.1 (863.7)
+#> Median 6720.0 7200.0 6480.0
+#> Min - Max 4800.0 - 8400.0 5280.0 - 9360.0 5280.0 - 7440.0
+#> Drug B
+#> Overall duration (days)
+#> n 4 8 8
+#> Mean (SD) 142.2 (100.3) 105.9 (60.0) 158.2 (96.2)
+#> Median 160.0 95.0 203.0
+#> Min - Max 17.0 - 232.0 37.0 - 211.0 27.0 - 249.0
+#> Total dose administered
+#> n 4 8 8
+#> Mean (SD) 7020.0 (1148.9) 5250.0 (864.7) 5940.0 (1187.9)
+#> Median 6960.0 5160.0 5880.0
+#> Min - Max 5760.0 - 8400.0 4080.0 - 6480.0 4320.0 - 7680.0
LBT01
)
+lbt01
template produces the
+standard laboratory test results and change from baseline by visit.
+t_lb_chg <- run(lbt01, syn_data)
+head(t_lb_chg, 20)
+#> A: Drug X B: Placebo C: Combination
+#> Change from Change from Change from
+#> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
+#> (N=15) (N=15) (N=15) (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 18.655 (12.455) 16.835 (11.080) 22.385 (9.452)
+#> Median 16.040 17.453 25.250
+#> Min - Max 2.43 - 44.06 1.48 - 31.99 0.57 - 37.23
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 16.308 (10.850) -2.348 (17.558) 22.055 (7.537) 5.220 (16.359) 19.574 (9.876) -2.811 (10.902)
+#> Median 14.664 -5.369 22.476 7.252 19.425 -0.995
+#> Min - Max 0.10 - 36.30 -30.18 - 22.66 9.72 - 33.81 -16.82 - 32.33 1.03 - 36.28 -19.61 - 18.45
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 16.646 (10.528) -2.010 (15.773) 20.758 (9.578) 3.923 (14.084) 10.911 (7.721) -11.474 (11.002)
+#> Median 15.470 -6.427 18.499 6.248 9.850 -8.657
+#> Min - Max 0.40 - 35.29 -29.99 - 32.86 1.56 - 42.84 -24.92 - 29.85 0.35 - 25.01 -27.38 - 2.52
+#> WEEK 3 DAY 22
+#> n 15 15 15 15 15 15
+#> Mean (SD) 17.488 (10.679) -1.167 (15.759) 20.055 (8.086) 3.219 (16.285) 18.413 (9.513) -3.973 (9.966)
+#> Median 14.224 1.355 21.852 5.345 19.529 -7.194
LBT04
)
+lbt04
template produces the
+standard laboratory abnormalities summary.
+run(lbt04, syn_data)
+#> Laboratory Test A: Drug X B: Placebo C: Combination
+#> Direction of Abnormality (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————
+#> CHEMISTRY
+#> Alanine Aminotransferase Measurement
+#> Low 0/7 0/2 1/7 (14.3%)
+#> High 0/7 0/3 0/8
+#> C-Reactive Protein Measurement
+#> Low 0/8 1/2 (50.0%) 0/6
+#> High 3/8 (37.5%) 0/2 0/7
+#> Immunoglobulin A Measurement
+#> Low 0/5 0/8 0/7
+#> High 1/3 (33.3%) 1/8 (12.5%) 0/6
+#> COAGULATION
+#> Alanine Aminotransferase Measurement
+#> Low 0/3 0/6 0/4
+#> High 0/5 0/7 0/4
+#> C-Reactive Protein Measurement
+#> Low 0/5 0/5 1/3 (33.3%)
+#> High 0/5 1/6 (16.7%) 1/4 (25.0%)
+#> Immunoglobulin A Measurement
+#> Low 0/8 0/9 0/6
+#> High 0/8 0/9 1/6 (16.7%)
+#> HEMATOLOGY
+#> Alanine Aminotransferase Measurement
+#> Low 0/4 0/5 0/4
+#> High 0/6 0/5 0/4
+#> C-Reactive Protein Measurement
+#> Low 0/5 0/4 0/3
+#> High 0/5 0/4 0/5
+#> Immunoglobulin A Measurement
+#> Low 0/3 0/4 0/8
+#> High 0/3 0/4 0/7
LBT05
)
+lbt05
template produces the
+standard laboratory abnormalities summary for marked abnormalities.
+run(lbt05, syn_data)
+#> Laboratory Test A: Drug X B: Placebo C: Combination
+#> Direction of Abnormality (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement (n) 15 14 14
+#> Low
+#> Single, not last 1 (6.7%) 0 4 (28.6%)
+#> Last or replicated 5 (33.3%) 4 (28.6%) 4 (28.6%)
+#> Any Abnormality 6 (40.0%) 4 (28.6%) 8 (57.1%)
+#> High
+#> Single, not last 0 0 0
+#> Last or replicated 0 0 0
+#> Any Abnormality 0 0 0
+#> C-Reactive Protein Measurement (n) 15 15 15
+#> Low
+#> Single, not last 4 (26.7%) 0 3 (20.0%)
+#> Last or replicated 3 (20.0%) 5 (33.3%) 6 (40.0%)
+#> Any Abnormality 7 (46.7%) 5 (33.3%) 9 (60.0%)
+#> High
+#> Single, not last 1 (6.7%) 3 (20.0%) 0
+#> Last or replicated 4 (26.7%) 3 (20.0%) 6 (40.0%)
+#> Any Abnormality 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> Immunoglobulin A Measurement (n) 13 14 14
+#> Low
+#> Single, not last 0 0 0
+#> Last or replicated 0 0 0
+#> Any Abnormality 0 0 0
+#> High
+#> Single, not last 6 (46.2%) 1 (7.1%) 2 (14.3%)
+#> Last or replicated 3 (23.1%) 4 (28.6%) 3 (21.4%)
+#> Any Abnormality 9 (69.2%) 5 (35.7%) 5 (35.7%)
LBT06
)
+lbt06
template produces the
+standard laboratory abnormalities by visit and baseline status
+summary.
+run(lbt06, syn_data)
+#> Visit
+#> Abnormality at Visit A: Drug X B: Placebo C: Combination
+#> Baseline Status (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> WEEK 1 DAY 8
+#> Low
+#> Not low 0/1 0/6 0/1
+#> Low 0/1 0/1 0/1
+#> Total 0/2 0/7 0/2
+#> High
+#> Not high 0/2 0/7 0/2
+#> High 0/0 0/0 0/0
+#> Total 0/2 0/7 0/2
+#> WEEK 2 DAY 15
+#> Low
+#> Not low 0/3 0/2 0/2
+#> Low 0/0 0/0 0/0
+#> Total 0/3 0/2 0/2
+#> High
+#> Not high 0/3 0/2 0/2
+#> High 0/0 0/0 0/0
+#> Total 0/3 0/2 0/2
+#> WEEK 3 DAY 22
+#> Low
+#> Not low 0/5 0/3 1/6 (16.7%)
+#> Low 0/0 0/0 0/0
+#> Total 0/5 0/3 1/6 (16.7%)
+#> High
+#> Not high 0/5 0/3 0/6
+#> High 0/0 0/0 0/0
+#> Total 0/5 0/3 0/6
+#> WEEK 4 DAY 29
+#> Low
+#> Not low 0/3 0/1 0/1
+#> Low 0/3 0/2 0/0
+#> Total 0/6 0/3 0/1
+#> High
+#> Not high 0/6 0/3 0/1
+#> High 0/0 0/0 0/0
+#> Total 0/6 0/3 0/1
+#> WEEK 5 DAY 36
+#> Low
+#> Not low 0/2 0/2 0/5
+#> Low 0/1 0/1 0/0
+#> Total 0/3 0/3 0/5
+#> High
+#> Not high 0/3 0/3 0/5
+#> High 0/0 0/0 0/0
+#> Total 0/3 0/3 0/5
+#> C-Reactive Protein Measurement
+#> WEEK 1 DAY 8
+#> Low
+#> Not low 0/5 0/3 0/3
+#> Low 0/0 0/1 0/0
+#> Total 0/5 0/4 0/3
+#> High
+#> Not high 0/5 0/3 1/3 (33.3%)
+#> High 0/0 0/1 0/0
+#> Total 0/5 0/4 1/3 (33.3%)
+#> WEEK 2 DAY 15
+#> Low
+#> Not low 0/8 0/2 0/0
+#> Low 0/0 0/0 0/1
+#> Total 0/8 0/2 0/1
+#> High
+#> Not high 1/8 (12.5%) 0/1 0/1
+#> High 0/0 0/1 0/0
+#> Total 1/8 (12.5%) 0/2 0/1
+#> WEEK 3 DAY 22
+#> Low
+#> Not low 0/5 0/4 0/4
+#> Low 0/0 1/1 (100%) 0/2
+#> Total 0/5 1/5 (20%) 0/6
+#> High
+#> Not high 1/5 (20%) 1/5 (20%) 0/6
+#> High 0/0 0/0 0/0
+#> Total 1/5 (20%) 1/5 (20%) 0/6
+#> WEEK 4 DAY 29
+#> Low
+#> Not low 0/2 1/2 (50%) 1/3 (33.3%)
+#> Low 0/0 0/0 0/0
+#> Total 0/2 1/2 (50%) 1/3 (33.3%)
+#> High
+#> Not high 0/2 0/2 0/3
+#> High 0/0 0/0 0/0
+#> Total 0/2 0/2 0/3
+#> WEEK 5 DAY 36
+#> Low
+#> Not low 0/2 0/2 0/5
+#> Low 0/0 1/1 (100%) 0/1
+#> Total 0/2 1/3 (33.3%) 0/6
+#> High
+#> Not high 1/2 (50%) 0/3 0/6
+#> High 0/0 0/0 0/0
+#> Total 1/2 (50%) 0/3 0/6
+#> Immunoglobulin A Measurement
+#> WEEK 1 DAY 8
+#> Low
+#> Not low 0/6 0/6 0/2
+#> Low 0/0 0/0 0/0
+#> Total 0/6 0/6 0/2
+#> High
+#> Not high 0/5 1/6 (16.7%) 0/2
+#> High 0/1 0/0 0/0
+#> Total 0/6 1/6 (16.7%) 0/2
+#> WEEK 2 DAY 15
+#> Low
+#> Not low 0/3 0/7 0/4
+#> Low 0/0 0/0 0/0
+#> Total 0/3 0/7 0/4
+#> High
+#> Not high 0/3 0/7 1/4 (25%)
+#> High 0/0 0/0 0/0
+#> Total 0/3 0/7 1/4 (25%)
+#> WEEK 3 DAY 22
+#> Low
+#> Not low 0/4 0/5 0/9
+#> Low 0/0 0/0 0/0
+#> Total 0/4 0/5 0/9
+#> High
+#> Not high 0/3 0/5 0/8
+#> High 0/1 0/0 0/1
+#> Total 0/4 0/5 0/9
+#> WEEK 4 DAY 29
+#> Low
+#> Not low 0/2 0/6 0/4
+#> Low 0/0 0/0 0/0
+#> Total 0/2 0/6 0/4
+#> High
+#> Not high 1/1 (100%) 0/6 0/3
+#> High 0/1 0/0 0/1
+#> Total 1/2 (50%) 0/6 0/4
+#> WEEK 5 DAY 36
+#> Low
+#> Not low 0/6 0/5 0/5
+#> Low 0/0 0/0 0/0
+#> Total 0/6 0/5 0/5
+#> High
+#> Not high 0/5 0/5 0/5
+#> High 0/1 0/0 0/0
+#> Total 0/6 0/5 0/5
NCI CTCAE
+Grade Post-Baseline (LBT07
)
+NCI CTCAE
Grade Post-Baseline
+lbt07
template produces the
+standard laboratory test results with highest NCI CTCAE
+grade post-baseline summary.NCI CTCAE
grade will be incorporated in
+future release.
+run(lbt07, syn_data)
+#> Parameter
+#> Direction of Abnormality A: Drug X B: Placebo C: Combination
+#> Highest NCI CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement (n) 15 15 15
+#> LOW
+#> 1 3 (20.0%) 0 0
+#> 2 2 (13.3%) 1 (6.7%) 1 (6.7%)
+#> 3 1 (6.7%) 1 (6.7%) 6 (40.0%)
+#> 4 3 (20.0%) 2 (13.3%) 3 (20.0%)
+#> Any 9 (60.0%) 4 (26.7%) 10 (66.7%)
+#> C-Reactive Protein Measurement (n) 15 15 15
+#> LOW
+#> 1 2 (13.3%) 1 (6.7%) 2 (13.3%)
+#> 2 5 (33.3%) 2 (13.3%) 5 (33.3%)
+#> 3 3 (20.0%) 4 (26.7%) 3 (20.0%)
+#> 4 0 1 (6.7%) 0
+#> Any 10 (66.7%) 8 (53.3%) 10 (66.7%)
+#> HIGH
+#> 1 3 (20.0%) 1 (6.7%) 1 (6.7%)
+#> 2 4 (26.7%) 4 (26.7%) 2 (13.3%)
+#> 3 1 (6.7%) 2 (13.3%) 4 (26.7%)
+#> 4 0 1 (6.7%) 0
+#> Any 8 (53.3%) 8 (53.3%) 7 (46.7%)
+#> Immunoglobulin A Measurement (n) 15 15 15
+#> HIGH
+#> 1 3 (20.0%) 1 (6.7%) 1 (6.7%)
+#> 2 5 (33.3%) 4 (26.7%) 2 (13.3%)
+#> 3 3 (20.0%) 3 (20.0%) 2 (13.3%)
+#> 4 0 0 1 (6.7%)
+#> Any 11 (73.3%) 8 (53.3%) 6 (40.0%)
NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (LBT14
)
+NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (High)
+To produce the standard laboratory test results shift table - highest
+NCI-CTCAE
grade post-baseline by baseline
+NCI-CTCAE
grade summary for high abnormalities, use the
+lbt14
template and set the parameter
+direction
to high
.
+run(lbt14, syn_data, direction = "high")
+#> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination
+#> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> Not High 15 15 15
+#> Not High 15 (100%) 15 (100%) 15 (100%)
+#> C-Reactive Protein Measurement
+#> Not High 15 13 14
+#> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%)
+#> 1 3 (20.0%) 1 (7.7%) 1 (7.1%)
+#> 2 4 (26.7%) 3 (23.1%) 1 (7.1%)
+#> 3 1 (6.7%) 1 (7.7%) 4 (28.6%)
+#> 4 0 1 (7.7%) 0
+#> 1 0 0 1
+#> 2 0 0 1 (100%)
+#> 3 0 1 0
+#> 2 0 1 (100%) 0
+#> 4 0 1 0
+#> 3 0 1 (100%) 0
+#> Immunoglobulin A Measurement
+#> Not High 12 14 13
+#> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%)
+#> 1 3 (25.0%) 1 (7.1%) 1 (7.7%)
+#> 2 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 3 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 1 2 0 1
+#> Not High 1 (50.0%) 0 1 (100%)
+#> 2 1 (50.0%) 0 0
+#> 3 0 0 1
+#> 4 0 0 1 (100%)
+#> 4 1 1 0
+#> 2 1 (100%) 1 (100%) 0
NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (Low)
+To produce the standard laboratory test results shift table - highest
+NCI-CTCAE
grade post-baseline by baseline
+NCI-CTCAE
grade summary for high abnormalities, use the
+lbt14
template and the argument
+direction
is low
by default.
+run(lbt14, syn_data)
+#> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination
+#> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> Not Low 12 12 14
+#> Not Low 5 (41.7%) 8 (66.7%) 5 (35.7%)
+#> 1 3 (25.0%) 0 0
+#> 2 2 (16.7%) 1 (8.3%) 1 (7.1%)
+#> 3 0 1 (8.3%) 5 (35.7%)
+#> 4 2 (16.7%) 2 (16.7%) 3 (21.4%)
+#> 1 1 2 0
+#> Not Low 1 (100%) 2 (100%) 0
+#> 2 1 1 0
+#> Not Low 0 1 (100%) 0
+#> 4 1 (100%) 0 0
+#> 3 1 0 1
+#> 3 1 (100%) 0 1 (100%)
+#> C-Reactive Protein Measurement
+#> Not Low 14 13 12
+#> Not Low 5 (35.7%) 7 (53.8%) 4 (33.3%)
+#> 1 2 (14.3%) 0 2 (16.7%)
+#> 2 5 (35.7%) 2 (15.4%) 4 (33.3%)
+#> 3 2 (14.3%) 3 (23.1%) 2 (16.7%)
+#> 4 0 1 (7.7%) 0
+#> 1 0 0 2
+#> Not Low 0 0 1 (50.0%)
+#> 2 0 0 1 (50.0%)
+#> 2 0 1 0
+#> 1 0 1 (100%) 0
+#> 3 1 1 1
+#> 3 1 (100%) 1 (100%) 1 (100%)
+#> Immunoglobulin A Measurement
+#> Not Low 15 15 15
+#> Not Low 15 (100%) 15 (100%) 15 (100%)
NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (High) Without Patients with Missing
+Baseline
+To exclude patients with missing baseline grade, set the argument
+gr_missing
to excl
.
+run(lbt14, syn_data, direction = "high", gr_missing = "excl")
+#> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination
+#> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> Not High 15 15 15
+#> Not High 15 (100%) 15 (100%) 15 (100%)
+#> C-Reactive Protein Measurement
+#> Not High 15 13 14
+#> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%)
+#> 1 3 (20.0%) 1 (7.7%) 1 (7.1%)
+#> 2 4 (26.7%) 3 (23.1%) 1 (7.1%)
+#> 3 1 (6.7%) 1 (7.7%) 4 (28.6%)
+#> 4 0 1 (7.7%) 0
+#> 1 0 0 1
+#> 2 0 0 1 (100%)
+#> 3 0 1 0
+#> 2 0 1 (100%) 0
+#> 4 0 1 0
+#> 3 0 1 (100%) 0
+#> Immunoglobulin A Measurement
+#> Not High 12 14 13
+#> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%)
+#> 1 3 (25.0%) 1 (7.1%) 1 (7.7%)
+#> 2 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 3 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 1 2 0 1
+#> Not High 1 (50.0%) 0 1 (100%)
+#> 2 1 (50.0%) 0 0
+#> 3 0 0 1
+#> 4 0 0 1 (100%)
+#> 4 1 1 0
+#> 2 1 (100%) 1 (100%) 0
NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (Low) with Missing Baseline Considered as
+Grade 0
+To count patients with missing baseline grade as grade 0, set the
+argument gr_missing
to gr_0
.
+run(lbt14, syn_data, gr_missing = "gr_0")
+#> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination
+#> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> 1 1 2 0
+#> Not Low 1 (100%) 2 (100%) 0
+#> 2 1 1 0
+#> Not Low 0 1 (100%) 0
+#> 4 1 (100%) 0 0
+#> 3 1 0 1
+#> 3 1 (100%) 0 1 (100%)
+#> Not Low 12 12 14
+#> Not Low 5 (41.7%) 8 (66.7%) 5 (35.7%)
+#> 1 3 (25.0%) 0 0
+#> 2 2 (16.7%) 1 (8.3%) 1 (7.1%)
+#> 3 0 1 (8.3%) 5 (35.7%)
+#> 4 2 (16.7%) 2 (16.7%) 3 (21.4%)
+#> C-Reactive Protein Measurement
+#> 1 0 0 2
+#> 1 0 0 1 (50.0%)
+#> 3 0 0 1 (50.0%)
+#> 2 0 1 0
+#> 2 0 1 (100%) 0
+#> 3 1 1 1
+#> 3 1 (100%) 1 (100%) 1 (100%)
+#> Not Low 14 13 12
+#> Not Low 5 (35.7%) 7 (53.8%) 4 (33.3%)
+#> 1 2 (14.3%) 0 2 (16.7%)
+#> 2 5 (35.7%) 2 (15.4%) 4 (33.3%)
+#> 3 2 (14.3%) 3 (23.1%) 2 (16.7%)
+#> 4 0 1 (7.7%) 0
+#> Immunoglobulin A Measurement
+#> Not Low 15 15 15
+#> Not Low 15 (100%) 15 (100%) 15 (100%)
NCI-CTCAE
Grade Post-Baseline by Baseline
+NCI-CTCAE
Grade (with fill in of grades)
+To display all possible grades even if they do not occur in the data,
+set the argument prune_0
to FALSE
.
+run(lbt14, syn_data, direction = "high", prune_0 = FALSE)
+#> Baseline Toxicity Grade A: Drug X B: Placebo C: Combination
+#> Post-baseline NCI-CTCAE Grade (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————
+#> Alanine Aminotransferase Measurement
+#> Not High 15 15 15
+#> Not High 15 (100%) 15 (100%) 15 (100%)
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 1 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 2 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 3 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 4 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> Missing 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> C-Reactive Protein Measurement
+#> Not High 15 13 14
+#> Not High 7 (46.7%) 7 (53.8%) 8 (57.1%)
+#> 1 3 (20.0%) 1 (7.7%) 1 (7.1%)
+#> 2 4 (26.7%) 3 (23.1%) 1 (7.1%)
+#> 3 1 (6.7%) 1 (7.7%) 4 (28.6%)
+#> 4 0 1 (7.7%) 0
+#> Missing 0 0 0
+#> 1 0 0 1
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 1 (100%)
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 2 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 3 0 1 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 1 (100%) 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 4 0 1 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 1 (100%) 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> Missing 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> Immunoglobulin A Measurement
+#> Not High 12 14 13
+#> Not High 3 (25.0%) 7 (50.0%) 8 (61.5%)
+#> 1 3 (25.0%) 1 (7.1%) 1 (7.7%)
+#> 2 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 3 3 (25.0%) 3 (21.4%) 2 (15.4%)
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 1 2 0 1
+#> Not High 1 (50.0%) 0 1 (100%)
+#> 1 0 0 0
+#> 2 1 (50.0%) 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 2 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> 3 0 0 1
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 1 (100%)
+#> Missing 0 0 0
+#> 4 1 1 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 1 (100%) 1 (100%) 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
+#> Missing 0 0 0
+#> Not High 0 0 0
+#> 1 0 0 0
+#> 2 0 0 0
+#> 3 0 0 0
+#> 4 0 0 0
+#> Missing 0 0 0
MHT01
)
+mht01
template displays medical
+conditions by MedDRA system organ class and Preferred Name by
+default."ADSL.ARM"
.
+run(mht01, syn_data)
+#> MedDRA System Organ Class A: Drug X B: Placebo C: Combination
+#> MedDRA Preferred Term (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one condition 13 (86.7%) 14 (93.3%) 15 (100%)
+#> Total number of conditions 58 59 99
+#> cl A
+#> Total number of patients with at least one condition 7 (46.7%) 6 (40.0%) 10 (66.7%)
+#> Total number of conditions 8 11 16
+#> trm A_2/2 5 (33.3%) 6 (40.0%) 6 (40.0%)
+#> trm A_1/2 3 (20.0%) 1 (6.7%) 6 (40.0%)
+#> cl B
+#> Total number of patients with at least one condition 12 (80.0%) 11 (73.3%) 12 (80.0%)
+#> Total number of conditions 24 21 32
+#> trm B_3/3 8 (53.3%) 6 (40.0%) 7 (46.7%)
+#> trm B_1/3 5 (33.3%) 6 (40.0%) 8 (53.3%)
+#> trm B_2/3 5 (33.3%) 6 (40.0%) 5 (33.3%)
+#> cl C
+#> Total number of patients with at least one condition 8 (53.3%) 6 (40.0%) 11 (73.3%)
+#> Total number of conditions 10 13 22
+#> trm C_2/2 6 (40.0%) 4 (26.7%) 8 (53.3%)
+#> trm C_1/2 4 (26.7%) 4 (26.7%) 5 (33.3%)
+#> cl D
+#> Total number of patients with at least one condition 10 (66.7%) 7 (46.7%) 13 (86.7%)
+#> Total number of conditions 16 14 29
+#> trm D_1/3 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> trm D_2/3 6 (40.0%) 2 (13.3%) 7 (46.7%)
+#> trm D_3/3 2 (13.3%) 5 (33.3%) 7 (46.7%)
+run(mht01, syn_data, lbl_overall = "All Patients")
+#> MedDRA System Organ Class A: Drug X B: Placebo C: Combination All Patients
+#> MedDRA Preferred Term (N=15) (N=15) (N=15) (N=45)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one condition 13 (86.7%) 14 (93.3%) 15 (100%) 42 (93.3%)
+#> Total number of conditions 58 59 99 216
+#> cl A
+#> Total number of patients with at least one condition 7 (46.7%) 6 (40.0%) 10 (66.7%) 23 (51.1%)
+#> Total number of conditions 8 11 16 35
+#> trm A_2/2 5 (33.3%) 6 (40.0%) 6 (40.0%) 17 (37.8%)
+#> trm A_1/2 3 (20.0%) 1 (6.7%) 6 (40.0%) 10 (22.2%)
+#> cl B
+#> Total number of patients with at least one condition 12 (80.0%) 11 (73.3%) 12 (80.0%) 35 (77.8%)
+#> Total number of conditions 24 21 32 77
+#> trm B_3/3 8 (53.3%) 6 (40.0%) 7 (46.7%) 21 (46.7%)
+#> trm B_1/3 5 (33.3%) 6 (40.0%) 8 (53.3%) 19 (42.2%)
+#> trm B_2/3 5 (33.3%) 6 (40.0%) 5 (33.3%) 16 (35.6%)
+#> cl C
+#> Total number of patients with at least one condition 8 (53.3%) 6 (40.0%) 11 (73.3%) 25 (55.6%)
+#> Total number of conditions 10 13 22 45
+#> trm C_2/2 6 (40.0%) 4 (26.7%) 8 (53.3%) 18 (40.0%)
+#> trm C_1/2 4 (26.7%) 4 (26.7%) 5 (33.3%) 13 (28.9%)
+#> cl D
+#> Total number of patients with at least one condition 10 (66.7%) 7 (46.7%) 13 (86.7%) 30 (66.7%)
+#> Total number of conditions 16 14 29 59
+#> trm D_1/3 4 (26.7%) 4 (26.7%) 7 (46.7%) 15 (33.3%)
+#> trm D_2/3 6 (40.0%) 2 (13.3%) 7 (46.7%) 15 (33.3%)
+#> trm D_3/3 2 (13.3%) 5 (33.3%) 7 (46.7%) 14 (31.1%)
PDT01
)
+pdt01
template produces the
+standard major protocol deviations output.addv
to only include
+records where DVCAT == "MAJOR"
in pre-processing.
+proc_data <- syn_data
+proc_data$addv <- proc_data$addv %>%
+ filter(DVCAT == "MAJOR")
+
+run(pdt01, proc_data)
+#> Category A: Drug X B: Placebo C: Combination
+#> Description (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one major protocol deviation 2 (13.3%) 4 (26.7%) 0
+#> Total number of major protocol deviations 2 5 0
+#> EXCLUSION CRITERIA
+#> Active or untreated or other excluded cns metastases 0 1 (6.7%) 0
+#> Pregnancy criteria 0 1 (6.7%) 0
+#> INCLUSION CRITERIA
+#> Ineligible cancer type or current cancer stage 1 (6.7%) 0 0
+#> MEDICATION
+#> Discontinued study drug for unspecified reason 0 1 (6.7%) 0
+#> Received prohibited concomitant medication 0 1 (6.7%) 0
+#> PROCEDURAL
+#> Eligibility-related test not done/out of window 0 1 (6.7%) 0
+#> Failure to sign updated ICF within two visits 1 (6.7%) 0 0
PDT02
)
+pdt02
template produces the
+reasons for major protocol deviations related to epidemic/pandemic
+summary.ADDV.DVREAS
provides the reason and
+ADDV.DVTERM
provides the description.addv
has been filtered to include only
+records that meet the condition
+AEPRELFL == "Y" & DVCAT == "MAJOR"
.
+run(pdt02, syn_data)
+#> Primary Reason A: Drug X B: Placebo C: Combination
+#> Description (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Total number of patients with at least one major protocol deviation related to epidemic/pandemic 1 (6.7%) 0 0
+#> Total number of major protocol deviations related to epidemic/pandemic 1 0 0
+#> Site action due to epidemic/pandemic 1 (6.7%) 0 0
+#> Failure to sign updated ICF within two visits 1 (6.7%) 0 0
RMPT01
)
+The rmpt01
template produces the
+standard duration of exposure output for the Risk Management Plan
+(RMP
).
Person time is the sum of exposure across all patients in days.
+
+run(rmpt01, syn_data)
+#> Patients Person time
+#> Duration of exposure (N=45) (N=45)
+#> —————————————————————————————————————————————————————————————
+#> < 1 month 4 (8.9%) 67
+#> 1 to <3 months 13 (28.9%) 837
+#> 3 to <6 months 13 (28.9%) 1728
+#> >=6 months 15 (33.3%) 3281
+#> Total patients number/person time 45 (100.0%) 5913
RMPT03
)
+The rmpt03
template produces the
+standard extent of exposure by age group and gender output for the Risk
+Management Plan (RMP
).
By default, the AGEGR1
variable is used as the age
+group. If AGEGR1
is available in ADSL
only but
+not in ADEX
, it needs to be added to ADEX
+first.
+proc_data <- syn_data
+proc_data <- propagate(proc_data, "adsl", "AGEGR1", "USUBJID")
+#>
+#> Updating: adae with: AGEGR1
+#> Updating: adsaftte with: AGEGR1
+#> Updating: adcm with: AGEGR1
+#> Updating: addv with: AGEGR1
+#> Updating: adeg with: AGEGR1
+#> Updating: adex with: AGEGR1
+#> Updating: adlb with: AGEGR1
+#> Updating: admh with: AGEGR1
+#> Skipping: adrs
+#> Updating: adsub with: AGEGR1
+#> Skipping: adtte
+#> Updating: advs with: AGEGR1
+run(rmpt03, proc_data)
+#> F M All Genders
+#> Patients Person time Patients Person time Patients Person time
+#> Age Group (N=30) (N=30) (N=15) (N=15) (N=45) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> <65 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913
+#> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913
Any other study specific age group can be used by editing the
+parameter summaryvars
. For all RMP
tables, if
+the variable specified per summaryvars
is unavailable in
+ADEX
, it needs to be added to ADEX
first.
+proc_data <- syn_data
+proc_data$adsl <- proc_data$adsl %>%
+ mutate(
+ AGEGR2 = with_label(
+ factor(case_when(
+ AAGE < 18 ~ "<18",
+ AAGE >= 18 & AAGE <= 65 ~ "18 - 65",
+ AAGE > 65 ~ ">65",
+ ), levels = c("<18", "18 - 65", ">65")),
+ "Age Group 2"
+ )
+ )
+proc_data <- propagate(proc_data, "adsl", "AGEGR2", "USUBJID")
+#>
+#> Updating: adae with: AGEGR2
+#> Updating: adsaftte with: AGEGR2
+#> Updating: adcm with: AGEGR2
+#> Updating: addv with: AGEGR2
+#> Updating: adeg with: AGEGR2
+#> Updating: adex with: AGEGR2
+#> Updating: adlb with: AGEGR2
+#> Updating: admh with: AGEGR2
+#> Updating: adrs with: AGEGR2
+#> Updating: adsub with: AGEGR2
+#> Updating: adtte with: AGEGR2
+#> Updating: advs with: AGEGR2
+run(rmpt03, proc_data, summaryvars = "AGEGR2")
+#> F M All Genders
+#> Patients Person time Patients Person time Patients Person time
+#> Age Group 2 (N=30) (N=30) (N=15) (N=15) (N=45) (N=45)
+#> —————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> 18 - 65 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913
+#> Total patients number/person time 30 (100.0%) 4088 15 (100.0%) 1825 45 (100.0%) 5913
RMPT04
)
+The rmpt04
template produces the
+standard extent of exposure by ethnic origin output for the Risk
+Management Plan (RMP
).
+run(rmpt04, syn_data)
+#> Patients Person time
+#> ETHNIC (N=45) (N=45)
+#> —————————————————————————————————————————————————————————————
+#> HISPANIC OR LATINO 2 (4.4%) 309
+#> NOT HISPANIC OR LATINO 41 (91.1%) 5555
+#> NOT REPORTED 2 (4.4%) 49
+#> Total patients number/person time 45 (100.0%) 5913
RMPT05
)
+The rmpt05
template produces the
+standard extent of exposure by race output for the Risk Management Plan
+(RMP
).
+run(rmpt05, syn_data)
+#> Patients Person time
+#> RACE (N=45) (N=45)
+#> —————————————————————————————————————————————————————————————
+#> ASIAN 26 (57.8%) 3309
+#> BLACK OR AFRICAN AMERICAN 9 (20.0%) 1139
+#> WHITE 7 (15.6%) 1231
+#> AMERICAN INDIAN OR ALASKA NATIVE 3 (6.7%) 234
+#> Total patients number/person time 45 (100.0%) 5913
RSPT01
)
+rspt01
template produces the
+standard best overall response output.RECIST 1.1
. By
+default, the subjects with response results of "CR"
or
+"PR"
are considered as responders.BICR
.
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, ref_group = NULL, perform_analysis = "unstrat", strata = NULL)
+#> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation
+#> may be incorrect
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————————
+#> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%)
+#> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0)
+#> Unstratified Analysis
+#> Difference in Response rate (%) -6.7 6.7
+#> 95% CI (Wald, with correction) (-47.7, 34.4) (-32.7, 46.0)
+#> p-value (Chi-Squared Test) 0.7048 0.6903
+#> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60)
+#> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25)
+#> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38)
+#> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)
arm_var
+(default to "ADSL.ARM"
unless specified) is treated as the
+reference group without specification.ref_group
, e.g.,
+ref_group = "PLACEBO"
.rtables
displays the reference group at the very
+left column, the order of displayed treatment groups may not be exactly
+the same as the order factorized, depending on which group is selected
+as the reference group. See below for examples:Factorized trt order |
+ref_group |
+Displayed trt order |
+Reference group used in analysis | +
---|---|---|---|
ARM C, ARM B, ARM A | +NULL | +ARM C, ARM B, ARM A | +ARM C | +
NULL | +ARM B | +ARM B, ARM A, ARM C | +ARM B | +
ARM C, ARM B, ARM A | +ARM B | +ARM B, ARM C, ARM A | +ARM B | +
Odds Ratio
can be suppressed with the
+argument odds_ratio = FALSE
.Difference in response rate
can be
+suppressed with the argument perform_analysis = NULL
.
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, odds_ratio = FALSE, perform_analysis = NULL)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————
+#> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%)
+#> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0)
+#> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25)
+#> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38)
+#> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)
perform_analysis = "strat"
and providing the stratification
+variable to the argument strata
. The argument
+strata
is expected if perform_analysis
is set
+to include stratified analysis.adrs
.perform_analysis = c("unstrat", "strat")
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data, perform_analysis = "strat", strata = c("STRATA1", "STRATA2"))
+#> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5
+#> observations in some strata.
+#> Warning in prop_diff_cmh(rsp, grp, strata, conf_level): Less than 5
+#> observations in some strata.
+#> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be
+#> incorrect.
+#> Warning in prop_cmh(tbl): <5 data points in some strata. CMH test may be
+#> incorrect.
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————————————————————
+#> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%)
+#> 95% CI (Wald, with correction) (39.5, 93.9) (31.9, 88.1) (47.6, 99.0)
+#> Stratified Analysis
+#> Difference in Response rate (%) -11.0 22.5
+#> 95% CI (CMH, without correction) (-42.7, 20.7) (-3.5, 48.5)
+#> p-value (Cochran-Mantel-Haenszel Test) 0.5731 0.3088
+#> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60)
+#> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25)
+#> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38)
+#> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)
conf_level
.methods
. It is a named list with
+five optional sub-arguments. For example,
+methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten")
+See table below for what each argument controls and the available +method options:
+Arguments | +Methods Controlled | +Methods Options | +
---|---|---|
prop_conf_method |
+proportion confidence interval | +
+"waldcc" (default), "wald" ,
+etc. |
+
diff_conf_method |
+unstratified difference confidence interval | +
+"waldcc" (default), "wald" ,
+etc. |
+
diff_pval_method |
+unstratified p-value for odds ratio | +
+"chisq" (default),
+"fisher"
+ |
+
strat_diff_conf_method |
+stratified difference confidence interval | +
+"cmh" (default), "ha"
+ |
+
strat_diff_pval_method |
+stratified p-value for odds ratio | +
+"cmh" (default),
+"schouten"
+ |
+
See in the table below the method options for estimates of +proportions and the associated statistical methods:
+Method Options | +Statistical Methods | +
---|---|
"clopper-pearson" |
+Clopper-Pearson | +
"wald" |
+Wald, without correction | +
"waldcc" |
+Wald, with correction | +
"wilson" |
+Wilson, without correction | +
"strat_wilson" |
+Stratified Wilson, without correction | +
"wilsonc" |
+Wilson, with correction | +
"strat_wilsonc" |
+Stratified Wilson, with correction | +
"agresti-coull" |
+Agresti-Coull | +
"jeffreys" |
+Jeffreys | +
See in the table below the method options for estimates of proportion +difference and the associated statistical methods:
+Method Options | +Statistical Methods | +
---|---|
"cmh" |
+
+CMH , without correction |
+
"wald" |
+Wald, with correction | +
"waldcc" |
+Wald, without correction | +
"ha" |
+Anderson-Hauck | +
"newcombe" |
+Newcombe, without correction | +
"newcombecc" |
+Newcombe, with correction | +
"strat_wilsonc" |
+Stratified Wilson, with correction | +
"strat_newcombe" |
+Stratified Newcombe, without correction | +
"strat_newcombecc" |
+Stratified Newcombe, with correction | +
See in the table below the method options for testing proportion +difference and the associated statistical methods:
+Method Options | +Statistical Methods | +
---|---|
"chisq" |
+Chi-Squared test | +
"fisher" |
+the Fisher’s exact test | +
"cmh" |
+stratified Cochran-Mantel-Haenszel test | +
"shouten" |
+Chi-Squared test with Schouten correction | +
An example:
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+run(rspt01, proc_data,
+ conf_level = 0.90,
+ methods = list(
+ prop_conf_method = "wald",
+ diff_conf_method = "wald",
+ diff_pval_method = "fisher"
+ )
+)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————————————
+#> Responders 10 (66.7%) 9 (60.0%) 11 (73.3%)
+#> 90% CI (Wald, without correction) (46.6, 86.7) (39.2, 80.8) (54.6, 92.1)
+#> Unstratified Analysis
+#> Difference in Response rate (%) -6.7 6.7
+#> 90% CI (Wald, without correction) (-35.5, 22.2) (-20.8, 34.1)
+#> p-value (Fisher's Exact Test) 1.0000 1.0000
+#> Odds Ratio (95% CI) 0.75 (0.17 - 3.33) 1.37 (0.29 - 6.60)
+#> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 90% CI (Wald, without correction) (7.89, 45.45) (7.89, 45.45) (25.48, 67.85)
+#> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%)
+#> 90% CI (Wald, without correction) (19.19, 60.81) (13.31, 53.35) (7.89, 45.45)
+#> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%)
+#> 90% CI (Wald, without correction) (13.31, 53.35) (19.19, 60.81) (7.89, 45.45)
The following example shows how to customize the definition of +responder, e.g, consider only complete response as response.
+
+proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
+
+preprocess(rspt01) <- function(adam_db, ...) {
+ adam_db$adrs <- adam_db$adrs %>%
+ mutate(RSP_LAB = tern::d_onco_rsp_label(.data$AVALC)) %>%
+ mutate(IS_RSP = .data$AVALC %in% c("CR"))
+ adam_db
+}
+
+run(rspt01, proc_data)
+#> Warning in stats::prop.test(tbl, correct = FALSE): Chi-squared approximation
+#> may be incorrect
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————————————————————————
+#> Responders 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 95% CI (Wald, with correction) (1.0, 52.4) (1.0, 52.4) (18.1, 75.2)
+#> Unstratified Analysis
+#> Difference in Response rate (%) 0.0 20.0
+#> 95% CI (Wald, with correction) (-38.3, 38.3) (-20.4, 60.4)
+#> p-value (Chi-Squared Test) 1.0000 0.2557
+#> Odds Ratio (95% CI) 1.00 (0.20 - 5.04) 2.41 (0.52 - 11.10)
+#> Complete Response (CR) 4 (26.7%) 4 (26.7%) 7 (46.7%)
+#> 95% CI (Wald, with correction) (0.95, 52.38) (0.95, 52.38) (18.09, 75.25)
+#> Partial Response (PR) 6 (40.0%) 5 (33.3%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (11.87, 68.13) (6.14, 60.52) (0.95, 52.38)
+#> Stable Disease (SD) 5 (33.3%) 6 (40.0%) 4 (26.7%)
+#> 95% CI (Wald, with correction) (6.14, 60.52) (11.87, 68.13) (0.95, 52.38)
TTET01
)
+ttet01
template produces the
+standard time-to-event summary.PARAMCD == "PFS"
) in pre-processing.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> Difference in Event Free Rate -20.00 0.00
+#> 95% CI (-53.74, 13.74) (-31.65, 31.65)
+#> p-value (Z-test) 0.2453 1.0000
+#> ————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ————————————————————————————————————————————————————————————————————————————————————
To suspend the section of earliest contributing events, use
+summarize_event = FALSE
.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, summarize_event = FALSE)
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> Difference in Event Free Rate -20.00 0.00
+#> 95% CI (-53.74, 13.74) (-31.65, 31.65)
+#> p-value (Z-test) 0.2453 1.0000
+#> ————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ————————————————————————————————————————————————————————————————————————————————————
To select either survival estimations or difference in survival or
+both, please specify in the argument method
. -
+surv
calls out the analysis of patients remaining at risk,
+event free rate and corresponding 95% confidence interval of the rates.
+- surv_diff
calls out the analysis of difference in event
+free rate, the 95% confidence interval of the difference and its
+corresponding p-value. - both
calls out both.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, method = "surv")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> ————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ————————————————————————————————————————————————————————————————————————————————
conf_level
.conf_type
. Options are "plain"
(default),
+"log"
and "log-log"
.ties
.
+Options are "efron"
(default),"breslow"
or
+"exact"
.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, conf_level = 0.90, conf_type = "log-log", ties = "efron")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 90% CI (3.8, NE) (4.7, 7.6) (5.8, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 90% CI (0.99, 4.81) (0.45, 2.50)
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 90% CI (49.25, 87.30) (30.65, 71.60) (49.25, 87.30)
+#> Difference in Event Free Rate -20.00 0.00
+#> 90% CI (-48.31, 8.31) (-26.56, 26.56)
+#> p-value (Z-test) 0.2453 1.0000
+#> ———————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ———————————————————————————————————————————————————————————————————————————————————
perform_analysis = "strat"
and providing the stratification
+variable to the argument strata
. The argument
+strata
is expected if perform_analysis
is set
+to include stratified analysis.adrs
.perform_analysis = c("unstrat", "strat")
.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, perform_analysis = "strat", strata = "STRATA1")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Stratified Analysis
+#> p-value (log-rank) 0.0649 0.8901
+#> Hazard Ratio 2.52 1.08
+#> 95% CI (0.92, 6.93) (0.36, 3.22)
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> Difference in Event Free Rate -20.00 0.00
+#> 95% CI (-53.74, 13.74) (-31.65, 31.65)
+#> p-value (Z-test) 0.2453 1.0000
+#> ————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ————————————————————————————————————————————————————————————————————————————————————
The time point for the “survival at xx months” analysis can be
+modified by specifying the argument time_point
. By default,
+the function takes AVAL
from adtte
in days and
+converts it to months. The survival estimates are then summarized in
+month, and the numeric values should be provided in months to
+time_point
.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, perform_analysis = "unstrat", time_point = c(3, 6))
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (MONTHS)
+#> Median 8.6 6.2 8.4
+#> 95% CI (7.3, NE) (4.8, 7.6) (7.0, NE)
+#> 25% and 75%-ile 3.8, NE 4.7, 8.4 5.8, NE
+#> Range 1.2 to 9.5 {1} 0.9 to 9.1 0.9 to 9.5 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 3 MONTHS
+#> Patients remaining at risk 12 12 13
+#> Event Free Rate (%) 80.00 80.00 86.67
+#> 95% CI (59.76, 100.00) (59.76, 100.00) (69.46, 100.00)
+#> Difference in Event Free Rate 0.00 6.67
+#> 95% CI (-28.63, 28.63) (-19.90, 33.23)
+#> p-value (Z-test) 1.0000 0.6228
+#> 6 MONTHS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> Difference in Event Free Rate -20.00 0.00
+#> 95% CI (-53.74, 13.74) (-31.65, 31.65)
+#> p-value (Z-test) 0.2453 1.0000
+#> —————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> —————————————————————————————————————————————————————————————————————————————————————
The following example shows how to specify the time point in +user-defined unit.
+
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+preprocess(ttet01) <- function(adam_db, dataset = "adtte",
+ ...) {
+ adam_db[[dataset]] <- adam_db[[dataset]] %>%
+ mutate(
+ AVALU = "DAYS",
+ IS_EVENT = .data$CNSR == 0,
+ IS_NOT_EVENT = .data$CNSR == 1,
+ EVNT1 = factor(
+ case_when(
+ IS_EVENT == TRUE ~ render_safe("{Patient_label} with event (%)"),
+ IS_EVENT == FALSE ~ render_safe("{Patient_label} without event (%)")
+ ),
+ levels = render_safe(c("{Patient_label} with event (%)", "{Patient_label} without event (%)"))
+ ),
+ EVNTDESC = factor(.data$EVNTDESC)
+ )
+
+ adam_db
+}
+
+run(ttet01, proc_data, perform_analysis = "unstrat", time_point = c(91, 183))
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (DAYS)
+#> Median 261.9 187.7 256.3
+#> 95% CI (221.9, NE) (144.7, 232.2) (212.0, NE)
+#> 25% and 75%-ile 114.9, NE 141.9, 254.4 175.0, NE
+#> Range 37.2 to 288.3 {1} 28.0 to 276.6 26.4 to 288.1 {1}
+#> Unstratified Analysis
+#> p-value (log-rank) 0.0973 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 91 DAYS
+#> Patients remaining at risk 12 12 13
+#> Event Free Rate (%) 80.00 80.00 86.67
+#> 95% CI (59.76, 100.00) (59.76, 100.00) (69.46, 100.00)
+#> Difference in Event Free Rate 0.00 6.67
+#> 95% CI (-28.63, 28.63) (-19.90, 33.23)
+#> p-value (Z-test) 1.0000 0.6228
+#> 183 DAYS
+#> Patients remaining at risk 11 8 11
+#> Event Free Rate (%) 73.33 53.33 73.33
+#> 95% CI (50.95, 95.71) (28.09, 78.58) (50.95, 95.71)
+#> Difference in Event Free Rate -20.00 0.00
+#> 95% CI (-53.74, 13.74) (-31.65, 31.65)
+#> p-value (Z-test) 0.2453 1.0000
+#> —————————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> —————————————————————————————————————————————————————————————————————————————————————————
The default p-value method for testing hazard ratio is “log-rank”.
+Alternative methods can be requested by specifying the argument
+pval_method
and options include, log-rank
+(default), wald
or likelihood
. The syntax
+currently does not allow requesting more than one p-value.
Note that ttet01
has been modified in the previous
+example (i.e., preprocess(ttet01)
has been overridden); to
+access the default template, try chevron::ttet01
.
+proc_data <- log_filter(syn_data, PARAMCD == "PFS", "adtte")
+
+run(ttet01, proc_data, pval_method = "wald")
+#> A: Drug X B: Placebo C: Combination
+#> (N=15) (N=15) (N=15)
+#> ————————————————————————————————————————————————————————————————————————————————————————
+#> Patients with event (%) 7 (46.7%) 12 (80%) 8 (53.3%)
+#> Earliest contributing event
+#> Death 5 11 7
+#> Disease Progression 2 1 1
+#> Patients without event (%) 8 (53.3%) 3 (20%) 7 (46.7%)
+#> Time to Event (DAYS)
+#> Median 261.9 187.7 256.3
+#> 95% CI (221.9, NE) (144.7, 232.2) (212.0, NE)
+#> 25% and 75%-ile 114.9, NE 141.9, 254.4 175.0, NE
+#> Range 37.2 to 288.3 {1} 28.0 to 276.6 26.4 to 288.1 {1}
+#> Unstratified Analysis
+#> p-value (wald) 0.1053 0.9111
+#> Hazard Ratio 2.18 1.06
+#> 95% CI (0.85, 5.60) (0.38, 2.94)
+#> 6 DAYS
+#> Patients remaining at risk 15 15 15
+#> Event Free Rate (%) 100.00 100.00 100.00
+#> 95% CI (100.00, 100.00) (100.00, 100.00) (100.00, 100.00)
+#> 12 DAYS
+#> Patients remaining at risk 15 15 15
+#> Event Free Rate (%) 100.00 100.00 100.00
+#> 95% CI (100.00, 100.00) (100.00, 100.00) (100.00, 100.00)
+#> ————————————————————————————————————————————————————————————————————————————————————————
+#>
+#> {1} - Censored observation: range maximum
+#> ————————————————————————————————————————————————————————————————————————————————————————
VST01
)
+
+t_vs_chg <- run(vst01, syn_data)
+head(t_vs_chg, 20)
+#> A: Drug X B: Placebo C: Combination
+#> Change from Change from Change from
+#> Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
+#> (N=15) (N=15) (N=15) (N=15) (N=15) (N=15)
+#> ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> SCREENING
+#> n 15 0 15 0 15 0
+#> Mean (SD) 94.385 (17.067) NE (NE) 106.381 (20.586) NE (NE) 106.468 (12.628) NE (NE)
+#> Median 94.933 NE 111.133 NE 108.359 NE
+#> Min - Max 55.71 - 122.00 NE - NE 60.21 - 131.91 NE - NE 83.29 - 127.17 NE - NE
+#> BASELINE
+#> n 15 15 15
+#> Mean (SD) 96.133 (22.458) 108.111 (15.074) 103.149 (19.752)
+#> Median 93.328 108.951 102.849
+#> Min - Max 60.58 - 136.59 83.44 - 131.62 66.05 - 136.55
+#> WEEK 1 DAY 8
+#> n 15 15 15 15 15 15
+#> Mean (SD) 98.977 (21.359) 2.844 (28.106) 104.110 (16.172) -4.001 (21.867) 100.826 (19.027) -2.323 (25.018)
+#> Median 92.447 -4.066 107.703 3.227 103.058 -2.476
+#> Min - Max 67.55 - 130.37 -32.82 - 47.68 70.91 - 132.89 -52.94 - 28.63 70.04 - 128.68 -55.15 - 41.81
+#> WEEK 2 DAY 15
+#> n 15 15 15 15 15 15
+#> Mean (SD) 99.758 (14.477) 3.626 (21.189) 97.473 (17.296) -10.638 (20.831) 94.272 (16.961) -8.877 (27.229)
+#> Median 101.498 1.731 99.501 -9.727 96.789 -10.155
VST02_1
)
+
+run(vst02_1, syn_data)
+#> Assessment A: Drug X B: Placebo C: Combination
+#> Abnormality (N=15) (N=15) (N=15)
+#> —————————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> Low 8/15 (53.3%) 9/15 (60%) 8/15 (53.3%)
+#> High 10/15 (66.7%) 5/15 (33.3%) 8/15 (53.3%)
+#> Pulse Rate
+#> Low 9/15 (60%) 3/15 (20%) 5/15 (33.3%)
+#> High 2/15 (13.3%) 6/15 (40%) 5/15 (33.3%)
+#> Respiratory Rate
+#> Low 13/15 (86.7%) 10/15 (66.7%) 13/15 (86.7%)
+#> High 7/15 (46.7%) 10/15 (66.7%) 11/15 (73.3%)
+#> Systolic Blood Pressure
+#> Low 7/15 (46.7%) 9/15 (60%) 11/15 (73.3%)
+#> High 10/15 (66.7%) 9/15 (60%) 9/15 (60%)
+#> Temperature
+#> Low 12/15 (80%) 13/15 (86.7%) 11/15 (73.3%)
+#> High 14/15 (93.3%) 12/15 (80%) 14/15 (93.3%)
+#> Weight
+#> Low 3/15 (20%) 3/15 (20%) 4/15 (26.7%)
+#> High 4/15 (26.7%) 4/15 (26.7%) 5/15 (33.3%)
VST02_2
)
+
+run(vst02_2, syn_data)
+#> Assessment A: Drug X B: Placebo C: Combination
+#> Abnormality (N=15) (N=15) (N=15)
+#> ———————————————————————————————————————————————————————————————————————
+#> Diastolic Blood Pressure
+#> Low 6/11 (54.5%) 9/15 (60%) 6/12 (50%)
+#> High 8/12 (66.7%) 4/11 (36.4%) 7/13 (53.8%)
+#> Pulse Rate
+#> Low 9/15 (60%) 3/15 (20%) 5/13 (38.5%)
+#> High 2/14 (14.3%) 4/12 (33.3%) 5/15 (33.3%)
+#> Respiratory Rate
+#> Low 7/9 (77.8%) 7/11 (63.6%) 11/12 (91.7%)
+#> High 6/14 (42.9%) 7/11 (63.6%) 9/13 (69.2%)
+#> Systolic Blood Pressure
+#> Low 5/13 (38.5%) 8/12 (66.7%) 10/14 (71.4%)
+#> High 8/13 (61.5%) 8/13 (61.5%) 8/13 (61.5%)
+#> Temperature
+#> Low 8/10 (80%) 7/9 (77.8%) 8/10 (80%)
+#> High 8/8 (100%) 7/8 (87.5%) 12/13 (92.3%)
+#> Weight
+#> Low 3/15 (20%) 3/15 (20%) 3/14 (21.4%)
+#> High 4/14 (28.6%) 4/15 (26.7%) 5/14 (35.7%)
AEL01_NOLLT
)
+ael01_nollt
template produces the
+standard glossary of adverse event preferred terms and
+investigator-specified terms.head
function to print only the
+first 10 lines of the output.
+l_ae_nollt <- run(ael01_nollt, syn_data)
+head(l_ae_nollt, 10)
+#> MedDRA System Organ Class MedDRA Preferred Term Reported Term for the Adverse Event
+#> ———————————————————————————————————————————————————————————————————————————————————————
+#> cl A.1 dcd A.1.1.1.1 trm A.1.1.1.1
+#> dcd A.1.1.1.2 trm A.1.1.1.2
+#> cl B.1 dcd B.1.1.1.1 trm B.1.1.1.1
+#> cl B.2 dcd B.2.1.2.1 trm B.2.1.2.1
+#> dcd B.2.2.3.1 trm B.2.2.3.1
+#> cl C.1 dcd C.1.1.1.3 trm C.1.1.1.3
+#> cl C.2 dcd C.2.1.2.1 trm C.2.1.2.1
+#> cl D.1 dcd D.1.1.1.1 trm D.1.1.1.1
+#> dcd D.1.1.4.2 trm D.1.1.4.2
+#> cl D.2 dcd D.2.1.5.3 trm D.2.1.5.3
FSTG01
)
+fstg01
template produces the
+standard forest plot for odds ratio.PARAMCD == "BESRSPI"
) in pre-processing.ARM %in% c("A: Drug X", "B: Placebo")
)."SEX"
, "AGEGR1"
and "RACE"
.
+proc_data <- log_filter(
+ syn_data,
+ PARAMCD == "BESRSPI" & ARM %in% c("A: Drug X", "B: Placebo"), "adrs"
+)
+run(fstg01, proc_data)
The confidence level of the confidence interval can be adjusted by
+the conf_level
argument.
+run(fstg01, proc_data, conf_level = 0.90)
The interaction p-values and a different set of statistics can be
+displayed using the stat_var
argument. Note that the users
+are expected to select a method for p-value computation. see
+[tern::prop_diff_test]
.
The subgroups
arguments controls which variables are
+used for subgroup analysis. If NULL
the subgroup analysis is
+removed.
+run(fstg01, proc_data, subgroups = NULL)
The strata_var
argument is used to pass the columns used
+for stratified analysis.
+run(fstg01, proc_data, strata_var = "STRATA1")
+#> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights,
+#> : Ran out of iterations and did not converge
+#> Warning in s_odds_ratio(df = l_df[[2]], .var = "rsp", .ref_group = l_df[[1]], :
+#> Unable to compute the odds ratio estimate. Please try re-running the function
+#> with parameter `method` set to "approximate".
+#> Warning in coxexact.fit(X, Y, istrat, offset, init, control, weights = weights,
+#> : Ran out of iterations and did not converge
The col_symbol_size
argument controls the size of the
+odds ratio symbols which are by default proportional in size to the
+sample size of the subgroup. If NULL
the same symbol size
+is used for all subgroups.
+run(fstg01, proc_data, col_symbol_size = NULL)
FSTG02
)
+fstg02
template produces the
+standard forest plot for hazard ratio.PARAMCD == "OS"
) in pre-processing.ARM %in% c("A: Drug X", "B: Placebo")
)."SEX"
, "AGEGR1"
and "RACE"
.
+proc_data <- log_filter(
+ syn_data,
+ PARAMCD == "OS" & ARM %in% c("A: Drug X", "B: Placebo"), "adtte"
+)
+run(fstg02, proc_data)
The interaction p-values and a different set of statistics can be
+displayed using the control
argument. More details about
+the control options are available in
+[tern::extract_survival_subgroups]
The subgroups
arguments controls which variables are
+used for subgroup analysis. If NULL
the subgroup analysis is
+removed.
+run(fstg02, proc_data, subgroups = NULL)
The strata_var
argument is used to pass the columns used
+for stratified analysis.
+run(fstg02, proc_data, strata_var = "STRATA1")
+#> Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
+#> Loglik converged before variable 1 ; coefficient may be infinite.
The col_symbol_size
argument controls the size of the
+hazard ratio symbols which are by default proportional in size to the
+number of events in the subgroup. If NULL
the same symbol
+size is used for all subgroups.
+run(fstg02, proc_data, col_symbol_size = NULL)
KMG01
)
+kmg01
template produces the
+standard Kaplan-Meier Plot.g_km
and
+control_coxph
functions can be passed through, please use
+the Help to find out more information.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte")
To enable the comparative statistics (hazard ratio and p-value), the
+argument annot_coxph
needs to be set to TRUE. The compare
+group is determined by the levels in the factorized variable of
+treatment group and the first level is used as reference group in the
+statistics.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(
+ kmg01,
+ proc_data,
+ dataset = "adtte",
+ annot_coxph = TRUE,
+ control_annot_coxph = tern::control_coxph_annot(x = 0.33, y = 0.42)
+)
To suppress the censoring marks, set the argument
+cencor_show
to FALSE.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", censor_show = FALSE)
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_surv_med = FALSE)
To add the statistics annotation, use the function
+annot_stats
. Options are min
or
+median
.
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_stats = "median")
+proc_data <- log_filter(syn_data, PARAMCD == "OS", "adtte")
+run(kmg01, proc_data, dataset = "adtte", annot_at_risk = FALSE)
MNG01
)
+mng01
template produces the
+standard mean plot.mng01
is quite general. The
+users are expected to specify the analysis dataset and the visit
+variable in the run
function, and select the parameters
+prior to the run
function.AVAL
is used for plotting
+by default.ADLB
), please make sure
+that the parameters in appropriate units are selected in advance.
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"))
+#> $`Diastolic Blood Pressure`
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), y_var = "CHG")
+#> `geom_line()`: Each group consists of only one observation.
+#> ℹ Do you need to adjust the group aesthetic?
+#> $`Diastolic Blood Pressure`
To change the statistics, use the argument interval_fun
.
+Options are mean_ci
, mean_sei
,
+mean_sdi
, median_ci
,
+quantiles
,range
.
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), interval_fun = "mean_sdi")
+#> $`Diastolic Blood Pressure`
To change the alpha level of the confidence interval, use the
+argument
+control = control_analyze_vars(conf_level = <0.xx>)
.
+Note that this is only in effect when interval_fun
is set
+to mean_ci
.
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(
+ mng01, proc_data,
+ dataset = "advs", x_var = c("AVISIT", "AVISITN"),
+ interval_fun = "mean_ci", control = tern::control_analyze_vars(conf_level = 0.80)
+)
+#> $`Diastolic Blood Pressure`
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), table = "n")
+#> $`Diastolic Blood Pressure`
+proc_data <- log_filter(syn_data, PARAMCD == "DIABP", "advs")
+run(mng01, proc_data, dataset = "advs", x_var = c("AVISIT", "AVISITN"), table = NULL)
+#> $`Diastolic Blood Pressure`
A new argument has been added to control the theme (e.g. setting the +angle of the axis); see an example below:
+
+ggtheme <- ggplot2::theme(
+ panel.grid = ggplot2::element_line(colour = "black", linetype = 3),
+ panel.background = ggplot2::element_rect(fill = "white"),
+ legend.position = "top",
+ axis.text.x = ggplot2::element_text(angle = 22, hjust = 1, vjust = 1)
+)
+run(mng01, syn_data, dataset = "adlb", ggtheme = ggtheme)
+#> $`Alanine Aminotransferase Measurement`
#>
+#> $`C-Reactive Protein Measurement`
+
+#>
+#> $`Immunoglobulin A Measurement`
+
+TpLl!^Vw(qz6=ns^Lq{X4%ExiFovW|}
zBwUi5Eix4WjWn5P{1}G`Rm1X%t=~2uTI&P>N8c7)ufAuO+t%JO(V9O2oe)+2Miu21
zyehF&D-%bT2Pr1L&)V`dCk +g?+{r&KvgXfj&s_M1^=ee>&=v8Z*GRS0@caj(
zl+OE8Jh*y5;dwdb;d>DMrgPkoS5^*r-DvZyCEaqXne%c5+y%eAUJ$w++<`clqP1uE
z1k6ft9QC=vGso$R=sZ>W?c-0+@MlfeW;8
zD@xN+=B_|Dv6i8_@3(y_j<}X3SY7y2BkWxGOGrrr{=rw%wqvXT`gRAd-1!$)CCo4V3TwR3yH+5X{RjLEWQ{kBrPc
zbUciX`g))4ldh`lg7iYGCd-MHWnJHuet?r3yX&sq(mmWpc&CY*qW{FsFDNMBs8L6M
z=}YdQ1M#1pNn&Q8-P?6vORg!Kr@t%>TlNRF=R!R*x9F_i1JMcJdt`~Wz1P@MV_J9K
zY5CrvDrZAU$E|MMlDYWL7q0o=VwRN6JQPmYt!!%oX=&-%jFT-c>(&!9+o;l>;U;2n
zk_vV#2RpeV6+KL?f}gUPZN|V(*
bvuj_(nRmZIW#{$b>eKTiEvqrv5sxpn{hy2qI{uwy
z>463bI})t7c1L!+b+=IdH#qteKDOV3)9S1)@v8K_A)=d1?x%askX>c3a;MCY7jY4A
z^)E7*UOU!$qNB&CI(_A(b@X(8Y=_)j=u@
TRIu5F&&-8tacTxeh0w-`B7K2SWvU8wExXxzq>)UN!m
zZyQXZhAx5Mj}M1=_eo2lD?p9^_v?7{e`gBo{~0v=??SZw_y3m4aYI9Ha})<^%%;=n
zMF>0dz(A_`v11!_$hS*#Uz8B;X|zo4>$}ET%UGCppHr8S@DFYymzOON+xD+Na_<}4
zG&6w6*m~|eo?m~jD%e|X1GRLDd>{MuE2Po^BO~Bl?puB{(~meV(f?&dpMnG^OkTCF
z9;bJJ{pzgU_&>5GA2RgPHmgu>ed8vs-f^fi0;Q#S6EC(5jLWmshXZjfsa@&!r4d6v
zr{wQZpM9+{J2wTREzZg5`Mjwj3-!Coon5bjy=&uZr`(KOj$-oJo*okkQPVZ^
((Ixxsj(?j`5?9NnK-Hha87Ho*cn${9yafs4nFvYqa0lau%Vcs!9DfYrne9Jb;AHV%1;)$sDJBX}*;V>XwaM
zT)1~px{SKIpqRm%@F-cctrz|+rZ5Q_z=>*xU#lVKT+H+GcLh)#1r2q~L6WO%;FCJ%
z61?qG{eR_GmPcJWlB+XbX@VlGzLV}#Wwe^*d-usp>c_T!#QN;{9y4Vl?xH2Ci$&=|
zEM;O^=>nq)`v=>kwgsnrFU{E7?g8V#xC_p*_r&F{xE$D?70MqMF4wIs*JMNu3yX_K
zb?f9m08JltM#4jJ)56zY68k+&-2xeiYxb$r9YTI0xh)?~Ft)gSZPSsf6OegJ?!>lU
zY7AUGB-R5I1s1f5^B_&ia+3kaJTqE1bT&~oE0%Q%uFisrmtAcF+-f1lyr3y;S7u#@
zwALEN4~;9>H$HF9ordTt^Br-nKJ6#^YjqM-W${_GjJ|Odz*)0Y$Qtw#;FZ)?OMS^a
zRSFlB*(PVn%oWmUQF9#0?(!LZBf1iFfR;+98PCm14n%0ETt7JRAoGfq{*p^3Fc=LC
zEVno<{onzvomhL-tY?|5ar6TP4KF)#HA(aB>es3u#+ktbhlm4ebbA=b3Tf3K%u=`%
zM%v_19-&k7xZH7W@xeA0!m!g=nZNcA3uDF=LE6o^?;tX)n8rB(z0-~SeJYk{;NDEB
zO<{9wtd@+}h+`{-4_G_QUrH)wy1l9rb;FEKT_=)Zv?n_$g+9-=#acz^p<1m$gXHxq
z)nPzBw0U2<`EyiVn@_dX>?c}b=Gcp~`gyzNU8sWk*kfY90#9H%Hx3C);D)LUkwR8(
z@4{*f9D9OlusZ5_aAv(7QfI*}CQx=vK2{ZJJ}xN9Oq&)}DXo)NaainIqk=rQh||kt
zX>6$ep|QVL1b`1GF9nYhVx+PZ+-S;U0V7WmGEGutZ!K?E!n!aNdY5cg@QxeVdJ(>+
z?3#!V6Y0~-2+}p{P()ya4&4YwG~Rum_-7=My#N_dB3HbxE47}X*|KCw%N%ds&A@|A
z(Q&kt?RAb3Frrh~dinMxU^M#>Fn7thPHs+vn(d`f(z7Lpqmo&0mo_KUTt6Nh9
7KH1hkX-R4j(|(<$%$INwn9Vdt*lg!RiNv=
z#t{4jIQrE&sdKi7qvQ?99C{Zj;W9f?f-o7Lnx+wzE$E5u{<*P)%OWT=(nDa{J9^X7
zSZ1%Jn1Sqm$ld;0vH?ymS}~X
+&D)%9JQLLdQHXkV*=bQdngLmXRLO1jkw9soxR3>MJC!%c
zLidH2hYM^sK6Um6+&InXF7(x;c^F;TPEQZtZ~flFh!FQ@Nvv%Tn6zezq||926+deu
zJ-3NEwe#h=-%aaE^HbJA9HD*fhj&VTFC{IkaIpV{2Qjf|;D6BQ&FQqJt(hkL!yNUG
z^-!MP&b?WpS;!bB40BggQez=zQ`z}gX-3;V)0I)avGrpw5`TOp)jB@j+kLI=_#C39
zJg`x|YL+|u#ivUofoCLp7-+ng^l8HJ*Bs}fOH-v-ld{2_%dRzcaEb$=^wRGWTMS$s
zBy^qyoRR}pwYbH7Xahivj_;tZltt{Be}Stzx+R#d=+f!0<;!a+4`iTwa)hshR!$-7
zy}S$f0