Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[bug] Segmentation fault occurs at large batch sizes #140

Open
aurora327 opened this issue Dec 20, 2023 · 1 comment
Open

[bug] Segmentation fault occurs at large batch sizes #140

aurora327 opened this issue Dec 20, 2023 · 1 comment

Comments

@aurora327
Copy link
Contributor

aurora327 commented Dec 20, 2023

Segmentation fault occurs at large batch sizes

  1. Command Line:
    ./run_benchmark.sh -m llama-7b -d bf16 -s 1 -bs 100 -in 512 -out 256 -i 1

    Functions with errors:
    onednn_amx_sgemm_f32bf16f32_compute_biasadd

    Matmul matrix shape:
    M = 51200, N = 12288, K= 4096, transA = 0,alpha=1.000000, lda=4096, beta=0.000000,ldc=12288

    oneDNN_verbose:
    onednn_verbose,info,oneDNN v3.2.0 (commit 04b180b9a58a78cf1a1cd2329671a5060c2be8de)
    onednn_verbose,info,cpu,runtime:OpenMP,nthr:48
    onednn_verbose,info,cpu,isa:Intel AVX-512 with float16, Intel DL Boost and bfloat16 support and Intel AMX with bfloat16 and 8-bit integer support
    onednn_verbose,info,gpu,runtime:none
    onednn_verbose,info,prim_template:operation,engine,primitive,implementation,prop_kind,memory_descriptors,attributes,auxiliary,problem_desc,exec_time

  2. Command Line:
    ./run_benchmark.sh -m llama-7b -d bf16 -s 1 -bs 100 -in 32 -out 32 -i 1

    Functions with errors:
    hpj::Matrix &input, hpj::Matrix &output, hpj::Matrix &residential, bool isMaster) {
    TimeLine t("DownProj")
    assert(input.Rows() == output.Rows()); (ASSERT FAILED input.Cols()=22016, downWeight.Rows()=11008;)

    Matmul matrix shape:
    M = 3200, N = 12288, K= 4096, transA = 0,alpha=1.000000, lda=4096, beta=0.000000,ldc=12288

    Verbose:
    xft_verbose,exec,cpu,api,onednn_amx_sgemm_f32bf16f32_compute_biasadd,m3200n12288k4096,29.308059
    xft_verbose,exec,cpu,api,onednn_amx_sgemm_f32bf16f32_compute_residential,m3200n4096k4096,12.953664
    xft_verbose,exec,cpu,api,onednn_amx_sgemm_f32bf16f32_compute,m3200n22016k4096,42.813326

@aurora327
Copy link
Contributor Author

aurora327 commented Dec 20, 2023

FOR CASE 1:
./benchdnn --matmul --dt=bf16:bf16:f32 --stag=ab --wtag=ab --dtag=ab --bia_dt=f32 5120
0x12288:12288x4096
0:PASSED __REPRO: --matmul --dt=bf16:bf16:f32 --stag=ab --wtag=ab --dtag=ab --bia_dt=f32 51200x12288:12288x4096
tests:1 passed:1 skipped:0 mistrusted:0 unimplemented:0 invalid_arguments:0 failed:0 listed:0
total: 3.15s; fill: 1.34s (43%); compute_ref: 0.70s (22%); compare: 0.22s (7%);

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant