-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathDijkstra_Algorithm.py
110 lines (93 loc) · 3.61 KB
/
Dijkstra_Algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
'''
Dijkstra's algorithm for weighted undirected graph
'''
from collections import deque
class Dijkstra:
def __init__(self, graph):
self.vertex_visited = list()
self.distance = {}
self.graph = graph
self.source = None
self.queue_size = 0
self.min_queue = deque()
def initialise(self):
self.vertex_visited = list()
self.distance = {}
#Initialize vertex cost
for k,v in self.graph.iteritems():
if k == self.source:
self.distance.update({k:0})
else:
self.distance.update({k:float('inf')})
#Store source vetex and cost
for k,v in self.graph[self.source].iteritems():
self.priorityQueue({k:v})
def priorityQueue(self,weight):
self.min_queue.append(weight)
self.queue_size = self.queue_size + 1
self.heapify(self.queue_size)
def heapify(self,i):
while i/2 > 0:
if self.min_queue[i].values() <= self.min_queue[i/2].values():
temp = self.min_queue[i]
self.min_queue[i] = self.min_queue[i/2]
self.min_queue[i/2] = temp
i = i/2
def del_min(self):
popped = self.min_queue[1]
self.min_queue[1] = self.min_queue[self.queue_size] #Assign last element to first
self.queue_size = self.queue_size - 1;
self.min_queue.pop()
self.re_heapify(1)
return popped
def re_heapify(self, i):
while 2 * i <= self.queue_size:
mc = self.min_node(i)
if self.min_queue[mc].values() < self.min_queue[i].values():
temp = self.min_queue[i]
self.min_queue[i] = self.min_queue[mc]
self.min_queue[mc] = temp
i = mc
def min_node(self, i):
if (2 * i + 1) > self.queue_size:
return 2 * i;
else:
if self.min_queue[2 * i].values() < self.min_queue[2 * i + 1].values():
return 2 * i
else:
return 2 * i +1
def minDistance(self, source):
self.source = source
self.min_queue.append({self.source:0}) #Insert source vertex into pq and make its distance as 0.
self.initialise() # Reset values for new source
while len(self.min_queue) > 1:
vertex = self.del_min() #Pop out minimum distance vertex from minimum priority queue
if vertex not in self.vertex_visited:
self.vertex_visited.append(vertex)
for parentNode, parentCost in vertex.iteritems():
for adjVertex, adjCost in self.graph[parentNode].iteritems():
if adjVertex not in self.distance:
self.distance.update({adjVertex:adjCost})
else:
#Compare
if self.distance[adjVertex] > (self.distance[parentNode] + adjCost):
self.distance[adjVertex] = self.distance[parentNode] + adjCost
self.priorityQueue({adjVertex:adjCost}) #Add to minimum priority queue
return self.distance
#Graph stored as adjacent list
g = { 'A': {'C': 9, 'B': 7, 'F': 14},
'B': {'A': 7, 'C': 10, 'D': 15},
'C': {'A': 9, 'B': 10, 'D': 11, 'F': 2},
'D': {'E': 6, 'B': 15, 'C': 11},
'E': {'F': 9, 'D': 6},
'F': {'C': 2, 'A': 14, 'E': 9}
}
dijkstra = Dijkstra(g)
print dijkstra.minDistance('A')
print dijkstra.minDistance('E')
'''
Output
-------
{'A': 0, 'C': 9, 'B': 7, 'E': 20, 'D': 20, 'F': 11}
{'A': 26, 'C': 17, 'B': 21, 'E': 0, 'D': 6, 'F': 9}
'''