forked from spectralDNS/shenfun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhermite_poisson2D.py
86 lines (67 loc) · 2.22 KB
/
hermite_poisson2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
r"""
Solve Poisson equation in 2D with homogeneous Dirichlet bcs in one direction and
periodic in the other. The domain is (-inf, inf) x [0, 2pi]
.. math::
\nabla^2 u = f,
The equation to solve for a Hermite x Fourier basis is
.. math::
(\nabla u, \nabla v) = -(f, v)
"""
import os
import sys
from sympy import symbols, exp, hermite, cos
import numpy as np
from shenfun import inner, grad, TestFunction, TrialFunction, \
Array, Function, FunctionSpace, TensorProductSpace, comm
assert len(sys.argv) == 2, 'Call with one command-line argument'
assert isinstance(int(sys.argv[-1]), int)
# Use sympy to compute a rhs, given an analytical solution
x, y = symbols("x,y", real=True)
#ue = sin(4*x)*exp(-x**2)
ue = cos(4*y)*hermite(4, x)*exp(-x**2/2)
fe = ue.diff(x, 2)+ue.diff(y, 2)
# Size of discretization
N = int(sys.argv[-1])
SD = FunctionSpace(N, 'Hermite')
K0 = FunctionSpace(N, 'Fourier', dtype='d')
T = TensorProductSpace(comm, (SD, K0), axes=(0, 1))
u = TrialFunction(T)
v = TestFunction(T)
# Get f on quad points
fj = Array(T, buffer=fe)
# Compute right hand side of Poisson equation
f_hat = Function(T)
f_hat = inner(v, -fj, output_array=f_hat)
# Get left hand side of Poisson equation
matrices = inner(grad(v), grad(u))
# Solve and transform to real space
u_hat = Function(T) # Solution spectral space
scale = np.squeeze(matrices[1].scale)
for i, k in enumerate(scale):
M = matrices[0].mats[0] + k*matrices[1].mats[0]
u_hat[:, i] = M.solve(f_hat[:, i], u_hat[:, i])
uq = u_hat.backward()
# Compare with analytical solution
uj = Array(T, buffer=ue)
assert np.allclose(uj, uq, atol=1e-5)
print('Error ', np.linalg.norm(uj-uq))
if 'pytest' not in os.environ:
import matplotlib.pyplot as plt
plt.figure()
X = T.local_mesh(True)
plt.contourf(X[0], X[1], uq)
plt.colorbar()
plt.figure()
plt.contourf(X[0], X[1], uj)
plt.colorbar()
plt.figure()
plt.contourf(X[0], X[1], uq-uj)
plt.colorbar()
plt.title('Error')
plt.figure()
X = T.local_mesh()
for x in np.squeeze(X[0]):
plt.plot((x, x), (np.squeeze(X[1])[0], np.squeeze(X[1])[-1]), 'k')
for y in np.squeeze(X[1]):
plt.plot((np.squeeze(X[0])[0], np.squeeze(X[0])[-1]), (y, y), 'k')
#plt.show()