-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional.rex
574 lines (465 loc) · 14.1 KB
/
functional.rex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*
Functional REXX
- Tested with Regina REXX
- This file includes:
* Sample functions
* Unit tests generating TAP (Test Anything Protocol) output
* The library itself (further documentation below)
*/
/* Define some functions */
add = !('...args', 'return car(args) + car(cdr(args))')
getIndex = !('list, index', 'do while index ~= 1; list = cdr(list); index = index - 1; end; return car(list)')
always = !('k', 'return !("val", "return k", "k")')
concat = !('a, b', 'return revlist(revlist(a, nil()), b)')
addOne = !('x', 'return 1 + x')
double = !('x', 'return 2 * x')
triple = !('x', 'return 3 * x')
divide = !('x, y', 'return x / y')
compose = !('x, y', 'return !("...args", "return ?(x, apply(y, args))", "x, y")')
map = !('f, list', 'result = nil(); do while list ~= nil() ; result = cons(?(f, car(list)), result); list = cdr(list); end; return revlist(result, nil())')
lPartial = !('f, ...start', 'return !("...rest", "return apply(f, ?(concat, start, rest))", "f, concat, start")', 'concat')
rPartial = !('f, val', 'return !("z", "return ?(f, z, val)", "f, val")')
listLength = !('list', 'len = 0; do while list ~= nil(); list = cdr(list); len = len + 1; end; return len')
flip = !('fn', "return !('x, y', 'return ?(fn, y, x)', 'fn')")
tail = !('list', 'do while cdr(list) ~= nil(); list = cdr(list); end; return car(list)')
uniq = !('list', 'result = nil(); do while list ~= nil(); if value("found."car(list)) ~= 1 then do ; _dummy = value("found."car(list), 1); result = cons(car(list), result); end; list = cdr(list); end; return revlist(result, nil()) ')
flatMap = !('f, list', 'result = nil(); do while list ~= nil() ; result = ?(concat, ?(f, car(list)), result); list = cdr(list); end; return revlist(result, nil())', 'concat')
reduce = !('f, initial, list', 'result = initial; do while list ~= nil(); result = ?(f, result, car(list)); list = cdr(list); end; return result')
split = !('list, separator', 'result = nil(); do while index(list, separator) ~= 0; parse value list with start (separator) rest; result = cons(start, result); list = rest; end; return revlist(cons(list, result))')
splitChars = !('list', 'result = nil(); do while list ~= ""; result = cons(substr(list, 1, 1), result); list = substr(list, 2); end; return revlist(result)')
filter = !('f, list', 'result = nil(); do while list ~= nil(); if ?(f, car(list)) then result = cons(car(list), result); list = cdr(list); end; return revlist(result, nil()) ')
join = !('list, separator', 'result = ""; do while list ~= nil(); if result ~= "" then result = result || separator; result = result || car(list); list = cdr(list); end; return result')
makeList = !('...args', 'return args')
say 'TAP version 13'
call header 'Ordinary recursion'
do
factorial = !('n', 'if n = 1 then return 1; else return n * ?(__self, n - 1)');
end
call assert ?(factorial, 5), 120
call assert ?(factorial, 1), 1
/* https://github.com/adlawson/js-zcombinator/blob/develop/src/z.js */
call header 'Z combinator'
do
inner = !('fn, r', 'return !("x", "return ?( ?(fn, ?(r, r)), x )", "fn, r") ')
recurse = !('recur', 'return ?(recur, recur)')
Z = ?(compose, recurse, ??(lPartial, inner))
factorial = ?(Z, !('fn', 'return !("n", "if n = 1 then return 1; else return n * ?(fn, n - 1);", "fn")'))
end
call assert ?(factorial, 5), 120
call assert ?(factorial, 1), 1
call header 'variadic compose()'
do
doubleSum = ?(compose, double, add)
end
call assert ?(doubleSum, 5, 6), 22
call assert ?(doubleSum, 5, 0), 10
call header 'splitChars()'
do
list = ?(splitChars, 'abcd')
end
call assert ?(listLength, list), 4
call assert ?(getIndex, list, 1), 'a'
call assert ?(getIndex, list, 2), 'b'
call assert ?(getIndex, list, 3), 'c'
call assert ?(getIndex, list, 4), 'd'
call header 'variadic lPartial()'
do
sumList = ?(lPartial, reduce, add, 0)
sumListWith = ?(lPartial, reduce, add)
testList = cons(1, cons(8, cons(9, cons(2, nil()))))
end
call assert ?(sumList, testList), 20
call assert ?(sumListWith, 0, testList), 20
call assert ?(sumListWith, 5, testList), 25
call header 'shortcut lPartial()'
do
sumList = ??(reduce, add, 0)
sumListWith = ??(reduce, add)
testList = cons(1, cons(8, cons(9, cons(2, nil()))))
end
call assert ?(sumList, testList), 20
call assert ?(sumListWith, 0, testList), 20
call assert ?(sumListWith, 5, testList), 25
call header 'apply()'
call assert apply(add, cons(2, cons(3, nil())) ), 5
call assert apply(listLength, cons( cons(2, nil()) , nil() ) ), 1
call header 'join()'
do
list = cons('a', cons('b', cons('a', cons('c', nil()))))
list2 = nil()
end
call assert ?(join, list, ' '), 'a b a c'
call assert ?(join, list2, ' '), ''
call header 'split()'
do
list = ?(split, 'a b c d', ' ')
end
call assert ?(getIndex, list, 1), 'a'
call assert ?(getIndex, list, 2), 'b'
call assert ?(getIndex, list, 3), 'c'
call assert ?(getIndex, list, 4), 'd'
call header 'makeList()'
do
list = ?(makeList, 'a', 'b', 'c', 'd')
listB = ?(split, 'z', ' ')
listC = ?(split, '', ' ')
end
call assert ?(getIndex, list, 1), 'a'
call assert ?(getIndex, list, 2), 'b'
call assert ?(getIndex, list, 3), 'c'
call assert ?(getIndex, list, 4), 'd'
call assert ?(getIndex, listB, 1), 'z'
call assert ?(getIndex, listC, 1), ''
call header 'filter()'
do
list = ?(filter, !('x', 'return x ~= "a"'), ?(split, 'a b c d', ' '))
end
call assert ?(listLength, list), 3
call assert ?(getIndex, list, 1), 'b'
call assert ?(getIndex, list, 2), 'c'
call assert ?(getIndex, list, 3), 'd'
call header 'reduce()'
do
list = cons(1, cons(5, cons(7, cons(6, nil()))))
end
call assert ?(reduce, add, 0, list), (1+5+7+6)
call header 'flatMap()'
do
list = cons('a', cons('b', cons('a', cons('c', nil()))))
filterer = !('x', 'if x == "a" then return nil(); else return cons(x"z", nil())')
res = ?(flatMap, filterer, list)
end
call assert ?(listLength, res), 2
call assert ?(getIndex, res, 1), 'bz'
call assert ?(getIndex, res, 2), 'cz'
call header 'uniq()'
do
list = cons('a', cons('b', cons('a', cons('c', nil()))))
list = ?(uniq, list)
end
call assert ?(getIndex, list, 1), 'a'
call assert ?(getIndex, list, 2), 'b'
call assert ?(getIndex, list, 3), 'c'
call assert ?(listLength, list), 3
call header 'tail()'
do
list = cons('a', cons('b', nil()))
list2 = cons('a', cons('b', cons('c', nil())))
end
call assert ?(tail, list), 'b'
call assert ?(tail, list2), 'c'
call header 'flip()'
do
undivide = ?(flip, divide)
end
call assert ?(undivide, 2, 1), 0.5
call assert ?(undivide, 1, 2), 2
call header 'listLength()'
do
list = cons('a', cons('b', nil()))
list2 = cons('a', cons('b', cons('c', nil())))
list3 = nil()
end
call assert ?(listLength, list), 2
call assert ?(listLength, list2), 3
call assert ?(listLength, list3), 0
call header 'rPartial()'
do
halve = ?(rPartial, divide, 2)
end
call assert ?(halve, 3), 1.5
call assert ?(halve, 4), 2
call header 'concat()'
do
list = cons('a', cons('b', nil()))
list2 = cons('e', cons('f', nil()))
listC = ?(concat, list, list2)
end
call assert ?(getIndex, listC, 1), 'a'
call assert ?(getIndex, listC, 2), 'b'
call assert ?(getIndex, listC, 3), 'e'
call assert ?(getIndex, listC, 4), 'f'
call header 'always()'
do
alwaysFive = ?(always, 5)
end
call assert ?(alwaysFive, 0), 5
call assert ?(alwaysFive, 1), 5
call assert ?(alwaysFive, 2), 5
call header 'getIndex()'
do
list = cons('a', cons('b', cons('c', cons('d', nil()))))
end
call assert ?(getIndex, list, 1), 'a'
call assert ?(getIndex, list, 2), 'b'
call assert ?(getIndex, list, 3), 'c'
call assert ?(getIndex, list, 4), 'd'
call header 'car(), cdr(), cons()'
call assert car(cons('a'.ENDOFLINE'e', 'b')), 'a' || .ENDOFLINE || 'e'
call assert cdr(cons('a', 'b'.ENDOFLINE'f')), 'b' || .ENDOFLINE || 'f'
call assert cdr(cons(cons('a', 'c'), 'b')), 'b'
call assert car(car(cons(cons('a', 'c'), 'b'))), 'a'
call assert cdr(car(cons(cons('a', 'c'), 'b'))), 'c'
call header 'compose()'
do
addTwo = ?(lPartial, add, 2)
end
call assert ?(addOne, 1), 2
call assert ?(double, 5), 10
call assert ?(?(compose, addOne, double), 5), 11
call assert ?(?(compose, addOne, triple), 5), 16
call assert ?(?(compose, triple, ?(compose, addOne, double) ), 5), 33
call header 'Unstemming'
do
numbers.0 = 4
numbers.1 = 15
numbers.2 = 10
numbers.3 = 0
numbers.4 = 6
unstemmed = destem('numbers.')
end
call assert car(unstemmed), 15
call assert car(cdr(unstemmed)), 10
call assert car(cdr(cdr(unstemmed))), 0
call assert car(cdr(cdr(cdr(unstemmed)))), 6
call header 'Mapping'
do
newList = ?(map, double, unstemmed)
end
call assert car(newList), 30
call assert car(cdr(newList)), 20
call assert car(cdr(cdr(newList))), 0
call assert car(cdr(cdr(cdr(newList)))), 12
call header 'Restem'
do
call restem 'new.', newList
end
call assert new.0, 4
call assert new.1, 30
call assert new.2, 20
call assert new.3, 0
call assert new.4, 12
call header 'add() and addTwo()'
call assert ?(add, 2, 3), 5
call assert ?(addTwo, 1), 3
call assert ?(addTwo, 2), 4
call assert ?(addTwo, 3), 5
call header 'map(), compose(), lPartial()'
do
output = !('x', 'say x ; return x')
newListOne.0 = numbers.0
do i = 1 to numbers.0
newListOne.i = (numbers.i * 2) + 50
end
call restem 'newListTwo.', ?(map, ?(compose, ?(lPartial, add, 50), double), destem('numbers.'))
end
call assert newListOne.0, 4
call assert newListOne.1, 80
call assert newListOne.2, 70
call assert newListOne.3, 50
call assert newListOne.4, 62
call assert newListTwo.0, 4
call assert newListTwo.1, 80
call assert newListTwo.2, 70
call assert newListTwo.3, 50
call assert newListTwo.4, 62
exit
/*
The ! procedure is used to create anonymous functions,
which are stored in strings.
- The first parameter is a comma-separated list of arguments.
Spread parameters can be used to create variadic functions.
- The second parameter is the contents of the procedure
- The third (optional) parameter is a comma-separated list of
variables that the function should be able to access. This serves
as a way of implementing lexical scope.
*/
!:
parse arg _args, _text, _uses
_settings = ""
do while _uses ~= ""
parse value _uses with first ', ' _uses
_settings = _settings .ENDOFLINE first '=' escape(value(first))
end
_arglist = nil()
do while _args ~= ""
if index(_args, '...') == 1 then do
parse value _args with '...'_spreadv
_arglist = cons(_spreadv, cons('...', _arglist))
_args = ''
end
else do
parse value _args with start ', ' _args
_arglist = cons(start, _arglist)
end
end
return cons(_settings .ENDOFLINE _text, revlist(_arglist))
/*
The "escape" procedure converts a string into a REXX string literal,
for use within INTERPRET.
*/
escape:
procedure
parse arg str
dq = '"'
sq = "'"
str = changestr('"', str, dq||sq||dq||sq||dq)
str = changestr(.ENDOFLINE, str, '".ENDOFLINE"')
return '"'str'"'
/*
The ? procedure is used to apply anonymous functions to arguments.
This uses INTERPRET, which presents a possible performance issue.
*/
?:
procedure
parse arg proc
/* Gather arguments */
_arg_tpl = cdr(proc)
do _index = 0 while _arg_tpl ~= nil()
if car(_arg_tpl) == '...' then do
/* Spread parameter */
_args = nil()
do i = (_index + 1) to arg()
_args = cons(arg(i), _args)
end
_dummy = value(car(cdr(_arg_tpl)), cdr(revlist(_args)))
leave
end
_dummy = value(car(_arg_tpl), arg(_index + 2))
_arg_tpl = cdr(_arg_tpl)
end
__self = proc
interpret car(proc)
/*
?? is just a shortcut for partial application (currying), which is useful
in languages where functions can take multiple arguments.
*/
??:
procedure
_args = cons('abc', nil())
do i = 1 to arg()
_args = cons(arg(i), _args)
end
_startArgs = cdr(revlist(_args))
fn = car(_startArgs)
_start = revlist(cdr(_startArgs))
return !("...args", "return apply(fn, revlist(_start, args))", "fn, _start")
/*
apply(proc, args) applies an anonymous procedure to a list of arguments.
*/
apply:
procedure
parse arg proc, arguments
_list = arguments
/* Gather arguments*/
_arg_tpl = cdr(proc)
do while _arg_tpl ~= nil()
if car(_arg_tpl) == '...' then do
_dummy = value( car(cdr(_arg_tpl)), _list )
leave
end
_dummy = value(car(_arg_tpl), car(_list))
_list = cdr(_list)
_arg_tpl = cdr(_arg_tpl)
end
interpret car(proc)
/*
cons(a, b) joins two values together in a pair.
(The names "cons", "car", and "cdr" all come from LISP.)
This can be used to create linked lists or other data structures.
For example, the list "1, 2, 3" can be represented as
cons(1, cons(2, cons(3, nil())))
*/
cons:
procedure
parse arg first, second
return right(length(first), 10, '0') || first || second
/*
car(x) gets the first element of a pair.
*/
car:
procedure
parse arg of
return substr(of, 11, substr(of, 1, 10))
/*
cdr(x) gets the second element of a pair.
*/
cdr:
procedure
parse arg of
return substr(of, 11 + substr(of, 1, 10))
/*
Obtains a value to use for "nil," as in LISP.
This cannot be a global variable since REXX
does not support lexical scope.
*/
nil:
procedure
return '[[[nil]]]'
/*
destem('stem.') converts a stem variable into a linked list.
*/
destem:
parse arg stem
procedure expose (stem)
head = nil()
do i = 1 to value(stem'0')
head = cons(value(stem || i), head)
end
return revlist(head)
/*
revlist quickly reverses a list created with cons.
*/
revlist:
procedure
parse arg list, accumulator
if accumulator == "" then accumulator = nil()
state = cons(list, accumulator)
do while car(state) ~= nil()
/* Move one item from car(state) to cdr(state) */
state = cons( cdr(car(state)), cons(car(car(state)), cdr(state)) )
end
return cdr(state)
/*
restem('stem.', list) turns a list created using "cons" back into a stem variable.
Needed for interop. purposes.
*/
restem:
parse arg stem, list
procedure expose list (stem)
/* Store the items */
do i = 1 while list ~= nil()
first = car(list)
_dummy = value(stem || i, car(list))
list = cdr(list)
end
/* Store the length */
_dummy = value(stem'0', i - 1)
return
/*
assert() is used to assert that two variables are equal.
Generates TAP output.
*/
assert:
procedure
parse arg left, right
if left ~= right then do
say 'not ok'
say ' ---'
say ' data:'
say ' expected:' escape(right)
say ' actual:' escape(left)
say ' ...'
end
else do
say 'ok'
end
return
/*
header() is used to create a heading. Generates TAP output.
*/
header:
procedure
parse arg heading
say '#' heading
return