-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathhealthequity.py
339 lines (283 loc) · 13 KB
/
healthequity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""Retrieves transaction and balance information from HealthEquity.
This uses the `selenium` Python package in conjunction with `chromedriver` to
scrape the Venmo website.
Configuration:
==============
The following keys may be specified as part of the configuration dict:
- `credentials`: Required. Must be a `dict` with `'username'` and `'password'`
keys.
- `output_directory`: Required. Must be a `str` that specifies the path on the
local filesystem where the output will be written. If the directory does not
exist, it will be created. For compatibility with `beancount-import`, the
last component of the `output_directory` should be your HealthEquity account
number.
- `profile_dir`: Optional. If specified, must be a `str` that specifies the
path to a persistent Chrome browser profile to use. This should be a path
used solely for this single configuration; it should not refer to your normal
browser profile. If not specified, a fresh temporary profile will be used
each time. It is highly recommended to specify a `profile_dir` to avoid
having to manually enter a multi-factor authentication code each time.
Output format:
==============
Cash transactions relating to contributions, distributions, and other are saved
to `cash-transactions-contribution.csv`, `cash-transactions-distribution.csv`,
and `cash-transactions-other.csv`, respectively, with the following fields:
"Date","Transaction","Amount","Cash Balance"
Investment transactions are saved to `investment-transactions.csv` with the
following fields:
"Date","Fund","Category","Description","Price","Amount","Shares","Total Shares","Total Value"
Investment holdings are saved to files named like
`YYYY-MM-ddTHHMMSSZZZZ.balances.csv`, where the date and time are the date and
time at which the scraper was run.
Example:
========
def CONFIG_healthequity():
return dict(
module='finance_dl.healthequity',
credentials={
'username': 'XXXXXX',
'password': 'XXXXXX',
},
# Use your HealthEquity account number as the last directory component.
output_directory=os.path.join(data_dir, 'healthequity', '1234567'),
# profile_dir is optional but highly recommended to avoid having to
# enter multi-factor authentication code each time.
profile_dir=os.path.join(profile_dir, 'healthequity'),
)
Interactive shell:
==================
From the interactive shell, type: `self.run()` to start the scraper.
"""
import urllib.parse
import re
import datetime
import time
import logging
import os
import bs4
import tempfile
import openpyxl
from openpyxl.cell.cell import MergedCell
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import Select
from selenium.webdriver.common.keys import Keys
from . import scrape_lib
from . import csv_merge
logger = logging.getLogger('healthequity_scrape')
netloc_re = r'^([^\.@]+\.)*healthequity.com$'
def check_url(url):
result = urllib.parse.urlparse(url)
if result.scheme != 'https' or not re.fullmatch(netloc_re, result.netloc):
raise RuntimeError('Reached invalid URL: %r' % url)
def find_first_matching_date(lines, date_format):
for line in lines:
try:
return datetime.datetime.strptime(line, date_format).date()
except:
pass
return None
FUND_ACTIVITY_HEADERS = [
'Fund', 'Name', 'Class', 'Target %\nallocation', 'Est. %\nholding', 'Shares\nheld', 'Closing\nprice', 'Closing\nvalue'
]
# For compatibility with beancount-import's healthequity plugin, write the old
# format for balances.csv files. The three new columns are fairly useless
# anyway, and the new (multiline) column titles are unambiguously worse even if
# a human were to actually ever read these CSVs.
OLD_FUND_ACTIVITY_HEADERS = [
'Fund','Name',None,None,None,'Shares (#)','Closing Price','Closing Value'
]
def write_balances(data, path):
rows = []
for entry in data:
keys, values = zip(*entry)
if list(keys) == FUND_ACTIVITY_HEADERS:
entry = [
(k, v.strip().split('\n')[0].strip('$'))
for (k, v) in zip(OLD_FUND_ACTIVITY_HEADERS, values)
if k
]
row_values = dict(entry)
row_values['Fund'] = row_values['Fund'].strip().split()[0]
row_values['Name'] = row_values['Name'].strip().split('\n')[0]
rows.append(row_values)
csv_merge.write_csv([h for h in OLD_FUND_ACTIVITY_HEADERS if h], rows, path)
def write_fund_activity(raw_transactions_data, path):
def format_cell(c):
if c.is_date:
return c.value.strftime('%Y-%m-%d')
if c.number_format[0] == '$':
base = '${:,.2f}'.format(abs(c.value))
if c.value >= 0:
return base
else:
return '(%s)' % base
return str(c.value)
wb = None
with tempfile.NamedTemporaryFile(suffix='.xlsx') as xlsx:
xlsx.write(raw_transactions_data)
xlsx.flush()
wb = openpyxl.load_workbook(xlsx.name)
ws = wb.worksheets[0]
headers = [
'Date', 'Fund', 'Category', 'Description', 'Price', 'Amount', 'Shares',
'Total Shares', 'Total Value'
]
rows = []
for row in ws.rows:
if any([isinstance(c, MergedCell) for c in row]):
continue
assert len(row) == len(headers)
cells = [format_cell(c) for c in row]
if cells == headers:
continue
rows.append(dict(zip(headers, cells)))
csv_merge.merge_into_file(filename=path, field_names=headers, data=rows,
sort_by=lambda x: x['Date'])
def write_transactions(raw_transactions_data, path):
input_date_format = '%m/%d/%Y'
output_date_format = '%Y-%m-%d'
soup = bs4.BeautifulSoup(raw_transactions_data.decode('utf-8'), 'lxml')
headers = ['Date', 'Transaction', 'Amount', 'HSA Cash Balance']
output_headers = ['Date', 'Transaction', 'Amount', 'Cash Balance']
rows = []
for row in soup.find_all('tr'):
cells = [str(x.text).strip() for x in row.find_all('td')]
while cells and not cells[-1].strip():
del cells[-1]
if len(cells) <= 1:
continue
if cells[0] == 'TOTAL':
continue
assert len(cells) >= len(headers), (cells, headers)
if cells[:len(headers)] == headers:
continue
row_values = dict(zip(headers, cells))
# Sanitize whitespace in description
row_values['Transaction'] = ' '.join(row_values['Transaction'].split())
# Remove duplicate tax year in description
row_values['Transaction'] = re.sub(r'(\(Tax year: \d+\)) *\1', r'\1', row_values['Transaction'])
row_values['Cash Balance'] = row_values.pop('HSA Cash Balance')
# Sanitize date_str
date_str = row_values['Date']
date_str = re.sub('\\(Available .*\\)', '', date_str)
row_values['Date'] = datetime.datetime.strptime(
date_str, input_date_format).strftime(output_date_format)
rows.append(row_values)
rows.reverse()
csv_merge.merge_into_file(filename=path, field_names=output_headers,
data=rows, sort_by=lambda x: x['Date'],
# Don't consider balance-after in comparing rows,
# because txn order (and therefore running
# balance) is not stable across visits
compare_fields = output_headers[0:3])
class Scraper(scrape_lib.Scraper):
def __init__(self, credentials, output_directory, **kwargs):
super().__init__(**kwargs)
self.credentials = credentials
self.output_directory = output_directory
self.logged_in = False
def check_after_wait(self):
check_url(self.driver.current_url)
def login(self):
if self.logged_in:
return
logger.info('Initiating log in')
self.driver.get('https://my.healthequity.com/')
(username, password), = self.wait_and_return(
self.find_username_and_password_in_any_frame)
logger.info('Entering username and password')
username.send_keys(self.credentials['username'])
password.send_keys(self.credentials['password'])
with self.wait_for_page_load():
password.send_keys(Keys.ENTER)
logger.info('Logged in')
self.logged_in = True
def download_transaction_history(self):
(transactions_link, ), = self.wait_and_return(
lambda: self.find_visible_elements(By.ID, 'viewAllLink'))
scrape_lib.retry(transactions_link.click, retry_delay=2)
(date_select, ), = self.wait_and_return(
lambda: self.find_visible_elements_by_descendant_partial_text('All dates', 'select'))
date_select = Select(date_select)
with self.wait_for_page_load():
date_select.select_by_visible_text('All dates')
results = {}
for transaction_type in ['Contribution', 'Distribution', 'Other']:
logger.info('Retrieving transaction history of type %s',
transaction_type)
(type_select, ), = self.wait_and_return(
lambda: self.find_visible_elements_by_descendant_partial_text('All Transaction Types', 'select'))
type_select = Select(type_select)
with self.wait_for_page_load():
type_select.select_by_visible_text(transaction_type)
(download_link,), = self.wait_and_return(
lambda: self.find_visible_elements(By.XPATH, '//input[contains(@value,"Download")]'))
scrape_lib.retry(download_link.click, retry_delay=2)
# (excel_link,), = self.wait_and_return(
# lambda: self.find_visible_elements(By.XPATH, '//input[contains(@name,"Excel")]'))
# scrape_lib.retry(excel_link.click, retry_delay=2)
logger.info('Waiting for downloaded transaction history')
download_result, = self.wait_and_return(self.get_downloaded_file)
results[transaction_type] = download_result[1]
self.driver.back() # undo selection of transaction type
self.driver.refresh()
self.driver.back() # undo selection of "All dates"
self.driver.back() # undo selection of "Transaction history"
self.driver.refresh()
return results
def get_investment_balance(self):
headers = FUND_ACTIVITY_HEADERS
(table, ), = self.wait_and_return(
lambda: self.driver.find_elements(By.TAG_NAME, 'table'))
data = scrape_lib.extract_table_data(table, headers)
return data
def go_to_investment_history(self):
logger.info('Going to investment history')
self.driver.get(
'https://www.healthequity.com/Member/Investment/Desktop.aspx')
def download_fund_activity(self):
logger.info('Looking for fund activity link')
(fund_activity_link,), = self.wait_and_return(
lambda: self.find_visible_elements(By.ID, 'EditPortfolioTab'))
scrape_lib.retry(fund_activity_link.click, retry_delay=2)
logger.info('Selecting date range for fund activity')
(start_date,), = self.wait_and_return(
lambda: self.find_visible_elements(By.XPATH, '//input[@type="text" and contains(@id, "startDate")]'))
start_date.clear()
start_date.send_keys('01/01/1900\n')
logger.info('Downloading fund activity')
(download_link, ), = self.wait_and_return(
lambda: self.find_visible_elements(By.ID, 'fundPerformanceDownload'))
scrape_lib.retry(download_link.click, retry_delay=2)
logger.info('Waiting for fund activity download')
download_result, = self.wait_and_return(self.get_downloaded_file)
return download_result[1]
def download_data(self):
raw_transactions = self.download_transaction_history()
self.go_to_investment_history()
raw_balances = self.get_investment_balance()
raw_fund_activity = self.download_fund_activity()
return raw_transactions, raw_balances, raw_fund_activity
def run(self):
self.login()
if not os.path.exists(self.output_directory):
os.makedirs(self.output_directory)
raw_transactions, raw_balances, raw_fund_activity = self.download_data(
)
write_balances(
raw_balances,
os.path.join(
self.output_directory,
'%s.balances.csv' % time.strftime('%Y-%m-%dT%H%M%S%z')))
for k, v in raw_transactions.items():
write_transactions(
v,
os.path.join(self.output_directory,
'cash-transactions-%s.csv' % (k.lower())))
write_fund_activity(
raw_fund_activity,
os.path.join(self.output_directory, 'investment-transactions.csv'))
def run(**kwargs):
scrape_lib.run_with_scraper(Scraper, **kwargs)
def interactive(**kwargs):
return scrape_lib.interact_with_scraper(Scraper, **kwargs)