From fcf42900d62cbed3bf61a2d8d40167e9d8afee5d Mon Sep 17 00:00:00 2001 From: jeksterslab Date: Tue, 18 Jun 2024 23:48:46 +0000 Subject: [PATCH] Automated build. --- .setup/build/betaSandwich.pdf | Bin 153225 -> 153225 bytes .setup/build/betaSandwich_1.0.7.9000.tar.gz | Bin 21829 -> 24288 bytes .setup/latex/bib/quarto.bib | 11 - .setup/latex/figures/pdf/std-reg.pdf | Bin 98034 -> 98034 bytes .setup/latex/pdf/.gitignore | 5 + .../pdf/betaSandwich-001-description.pdf | Bin 0 -> 90701 bytes .setup/latex/pdf/betaSandwich-999-session.pdf | Bin 0 -> 92655 bytes .../latex/pdf/betaSandwich-zzz-references.pdf | Bin 0 -> 219149 bytes .../pdf/betaSandwich-zzz-tests-benchmark.pdf | Bin 0 -> 85247 bytes .../pdf/betaSandwich-zzz-tests-external.pdf | Bin 0 -> 94366 bytes .../pdf/betaSandwich-zzz-tests-internal.pdf | Bin 0 -> 107877 bytes .../pdf/betaSandwich-zzz-tests-staging.pdf | Bin 0 -> 97502 bytes .setup/latex/pdf/bib.bib | 4551 +++++++++++++++++ README.md | 2 +- 14 files changed, 4557 insertions(+), 12 deletions(-) delete mode 100644 .setup/latex/bib/quarto.bib create mode 100644 .setup/latex/pdf/.gitignore create mode 100644 .setup/latex/pdf/betaSandwich-001-description.pdf create mode 100644 .setup/latex/pdf/betaSandwich-999-session.pdf create mode 100644 .setup/latex/pdf/betaSandwich-zzz-references.pdf create mode 100644 .setup/latex/pdf/betaSandwich-zzz-tests-benchmark.pdf create mode 100644 .setup/latex/pdf/betaSandwich-zzz-tests-external.pdf create mode 100644 .setup/latex/pdf/betaSandwich-zzz-tests-internal.pdf create mode 100644 .setup/latex/pdf/betaSandwich-zzz-tests-staging.pdf create mode 100644 .setup/latex/pdf/bib.bib diff --git a/.setup/build/betaSandwich.pdf b/.setup/build/betaSandwich.pdf index f3132e0bcd9c137c78902ce7f615d83d43f19b8a..54ad9ccbcb0e9236a889e1bd8fa2c0d62326042d 100644 GIT binary patch delta 1299 zcmV+u1?>8XtqF;(36S!C!Vb-VVj5`k6|5Fhf|7_v+KoqIih?B31Gs7YOkKi8rJD0? zOSWN20~FI3p0p;D`qrg*)JSFGp48O`jA_oR%tE@X6c_)vG#sUKX>Q%s!VGQ{Og9yI z`IYD9&V=jP7lKP!)|JNLU_=&6Ba)DAwgh1WbYYAK16reAz*8wNJ6hZw%Z=%X)=)Y|4P;kTV}Y3Fy^u$H;ZE{@@=u_y)nZ(~Yp_-JL0+~R zx#L0ywIS-eAJf@RwvIQGX;x1!nA*wa3TOsmvRcy+zNCxgoXedv7o8)332?S`^Ono9 zaDmavl5x{i+q9g_c+)KiBQ5HGyR;Y{11GUhVuG{>L_wl7j(5vzZ`Ff7gnheU-%Vck zY<7bgp9jHzX2FjTCVp3vW=bvPi}AQ9)vUQiS-lv4;`g8#A?NAsxa(oMe+_mK5uTxJcm6S<5g2k__7vT?dDmiL%{kS6pl+N z8!n#(xed`H<#n0yO7cDZ4YO5$dviH8TK#ohf9H08UA(?LIlI0&+t>KCHv__I?yQ1E zsQbhKiXcQmhvD7y++%}L+PC`?O}{>zrYaqb5ut#sI;#>59}Z$(?}eGvUml?L4o0B} zN2|p$hu)_P!6Fs+d9BOcXIoBwGneVa4e;pQS=Y>-hGYD0Z7G(#%H<#&flSI(Qlff;8J}<`1`61FY<>(hT;H?eMtmX7jp#mfH=^{C=M{T_!TYyU}v?(d-AIRq12M zW((E2dinf9&QP-6>2@`-7Fn62S`^R&G4@;!g2KQzqks`+Ml7Ishy=ny#PCXbM|&ks zNrIwa>y+>&g{>5P`5@sT2*)QsLU?=5>ybmCKhnLqkJBFh)c-MnN`1 zG%-XnL`Fm~H8nFvFhoT%G(I3aLqkC@MnpL@I7C54K{i7)F+?&%Mno_*H8VyqL`5<* Jx8G0#ss*7ddAR@p delta 1299 zcmV+u1?>8XtqF;(36S!C;vbp;#Wc|7D_AY21SJuTv>T7a6a`752XNE)nYx6HN;T)( zmTbe41}LU6JZViP^{q?ssFBLVJ*le?7}K0rnT2#&DK7qTX*f#f(%ibMg&Eu^m~JZa z@+;5Hoe9^oF9esetSgPf!H6(`*-~JFp49wKJJgY~l2=L&P8AS;Cm1LrAxaYK;!j{7 zkGSZfJT+TCMkFEKYze{$=)xEe2DC=KfTvt$qFkyy@xlO6KkDLL@QRC6am$<7B0GCT zb~!+{d_=bBlWl$O;uc6ukWUkv2dkGxmQ`WQW*h?7@?MLY=c!a>R;mXN5Xw?2aMQ&00Xee6$;AOU&+GC90YPFMk0l|#A9-Nz0VBTmwU<|T`3UX8H=WsB zEjJf`mRd-Vx7tqEK5Aq)2W6iWRupZc@SX!=2=R<)1)ZtHro}*I=vcgS>1t za>s=ZYD3g_Kc=&tY#nbV)2yCeFtwA-70?XCWVNOtd`TC}IhQ+UE;>g56X0y?<}H_H z;R2(TCF7>4wrM$;@upi4Mq1SWc4;v@22Nt1!~|&%h=N3E9PgIb-l_+E2>W)yzMH)6 z+3W^0J`aL_&4M2xO#H4S&6HZo7vphJs#$Z3vU)N8#P2~fLeA6Mao59i{~GKfB!C*Z zY9ogO+-$+|D3nzn`~C9T!P>xrEX1)nk zHe5anavP#Y%Ih-YmE?Q+8)mEi_U3YGwEFA1{?6@xx_Etga&~=lwy*JNZw7?b+*t*S zQ1^)e6hVlB4#T_YxyJ^hv~Tw(ntpvaO;tJ=BSHaNbyg)BJ{-in-U~CSzdS(g9gIQ| zj#i6h4!utof<-Fs^IDg?&$gWWW-il-8{pBqv#yyv4afN1+EOfemCHdm1chWp?POh= zjw}FwAB70-k8a%bqTe({!KM0!@b^`zgsquklM;Im_Bl$;Qgzt%Kb4;H`QxlU4K3>B z>AF^f+K-_8$E-saBOeX3VBhbtaLsuxPwK_8oTvNtb_~dlR|>4^!C>~~Ua(_VZwJ&2 zdil_jhUF2jD(j`$2Uyu%r5WrY+u?EB&E|D~Ew>w-`Tag^x=dt(ccbO(quCEatJ24i z%@(S4_44_JoS|gB)9q?vEwVC4wJ4wmV(hsd1ciZbMgb$tj95VN5DA2Zh~bs=j`m8N zk_1J;)+yml3R@}o@DinJO%MJB)Q^=xgK-6iaRmXlaRmYnLL@UWI5Rmk zIa(Lqan`Mno|7OiwFP!000001MR(Aa~oNjAXdH8Jr{UqcI>fdXFR*!(~znKr~nX100hNq z))b4Bs?;s9*d$e#71d-CnIKXGGQrFQMHUwm6Z^Vv-UmB&U;JdhtRozL^{XH42#0@w z!?AzE5j+0AbICj>FSrmONJ)thL}Z@ZcW&SPeCNdU^?lto-dXML%J$R!t-a^F2hYFV z`DB5gDtuNO4g6bcHLLPp{AjDK#wWGLYQ52@HCtNqlWMK0)vBM6>L*M13_V|W0TkEs zhlb^(=9`rMo_==q_L+Wau9FjKA>NuJxj>0anPk8~WD z?E6qacMa<&(;$21scU+k<=8pGKU%z3j2FX9a&~5S?z3rTk%~QSSI9|RK)DEAH-nV*Jm~+?ktW(`q zlU=80LSnm+*N1+-MDlIdq<;q8d{N11_I0a=^|+O{=9veb^m_Wqm#6r;(suf4z3`$B zeWF!=ySMdx8%yF+F2lE8ZmiYT%4-d+nlBb}+osoct$|Ow{*ts4w26p)4#VHtXseM-6}6n4Bb)6hL1lKrbPRP9;N6M$1xMoia*;ie7r9mB-7 zEZ>I~POeC=UntTVb&nVn=o3h=Y_dHxPEBaKpux5+l3yE+wO*@MYSn6M#jDlo_0=*Y zl%F(L>*b%msL(nNx+WR0rA68>htMqtmKZ<_b@~oDH7Y_TVGi@ zwfyez1XtXOv<_F~%^9vlQAo;J;T2epQf4Lh)$nxB95}A;&D7Y6<#|Ks{tK&Z+8&^U zm(LH#XRvBuW4(C3^>k0()j#zFQ)$C|Dw} zeSE*G`z4CAw#}Zei$-=FA7E@%>Xlk<$21LZ%jplSp3Zik?c_MRGu8>rLZe(=E!WnF zR$p&4*0mbIzx6rch@Ru7brQ!xV&2JXKr1BzNCo~Ibl=d4Dg0Utuj95YqvE)yD+#FK zi(>Aj4l5qM=J-Z_or03S$Snf@E0fJx1KI_|JQ0wY5#*P z0Q9OB_=_%aC5XH|ztqa#fm;Jf;PaCB2P{ zwsTP$mo}z$njWj#yhQe}@D;q=+Re4-6Elwqu zODYL(ACO($Z+EfyOUnj9-f-GOEJ}qiN>9Ax(yMcoZmOj>4Ff2eff@j&8R) zrdIJxZ~HKQ7rJXiKZB;)Z z%?$r9d;aCeG6?<`K|YVd>Juv%E&cb4BpvOj=o z1UsPE4F*BySW6WN;!_J_6}@DXD&J{3o-NUkA|Wg}B+;s`>@Hj zvu#EWW*`R?;Vm3*-!3BFfBI5P`E&?be6Ui6a%Hq6qfHe-aui96(HBJ-wcQ+NWuN8n z|M*bWjm})m|3v&>t2VTHl>e`SxR~Mp<>3FPo^SP$B}{SWQr) zkqfA3y9d$(IhHL&$2k5#Vz7_Yr-uz5j#S6#^_+J&(Pqy?t*y7tYC04SW!LN(-dMib zzs7+aT?>MS)7h(x)GRPCo|FY1sXo|?=Iiy3V8Gk3WJlM#><0|eaj$>O`xGrex$h%; zbUltziy~w?QHx9vw=DlE8H{dwS~x(AYU93Rn&70$7SyBIL_m&NtCkUp*K-DDY}zhp ztpV;>NS&tVkFFUb8uJNMON>V>m_kDKty9|qTuFP- zL%Rt%G|%npLt1832{)ebTExe%T<4u_mdMKr`MyF5wI^#0w)?};rWi*S*2`$n5E^&P zi%yd`Kss=ISDrqTxdWqo@i^(jVH~T+K)sZR{?(D{`tH@ep4Zv748VShtpUhzvAAY@U}vp zRk%|qtv?_`beLtPiz3XedAx#gu=ZGQU&O#SdI&Gxo3K&?zX#+Bb`n2QVq6A z;0_B9e6xTE(d!p}_iFRS^MfDB-;tfoy@Tgl^P!AG(F7a)=L8_G} z&EnjW8C1!K5*;OSyyuD}#zrAo7Gt;v9nY(kYO@4DRcrMBYOTm*vyc#Cr4>#KU%U(k zmoPaS6NOj}$g&HltFM2*cW}@}aDgf2S|=p^@C0p!H9r(@8IT?py;5_~cdu)2q#Tz? zIm#l7+jRh}NFMg`H6IFXT}nDDjeTnX_XTx5+kCPAl)mE4oU09-v$q5F?SO0VD2S*z zl$_~d+}OxOyMlxIm0j7M!?Gj#9Zd2D8PgIfd5@gV zk->6ScAwi9+dxzcm2DhDxp&2)48{%nme4b-_5nN3fNu>T`b_-k0?$EERPqGpXX0rO z#+&Atf+t1K&3hM7AcaffE$gnTM56U=D9cmKXiof3*FSH!P>bx3B5WwEM9PDI89wmL z^COVHonVfmg);zVUCMpo#*)gcATtJp)Jn6wox%7``rLRQy9B%}`o z9UR3$&_xa83sMCMoR=rHB$Qv-dj7rMGX%Jd&hUodK>+R{LH5pFzhGGUDIcPTlrsnz zQy+yUlo1nYws`rIU_1gLr4zO&5jf5!6_-GeCgT5YdtUR;MEg&DwHERJZnbKe{r^3) z|L|Y|)0%<4iJe#{q4XKE17#MC%%YK5G;YnJL8Z>EF8pqz3J0wW_9Exz8tPLY9z&iCUp4a!WT^rl%$lfzmpwkM z9kYH>rF&o&W*{j=wOCPY%A#kHl8F3ZT77bSb{s7W-R4*ayHF*EJ@XtYpnqyva;X_S+(By}@{LoMy`tnm#mEb}UsvvEh!S*~8Qde6bHUR%jGFF6! z3Rs-E6k9`*rC~}tLzyT8-j|Z@ZCqa-te& z{PspXadrbMk35?(OH9H#fVZMQ%DO-o?a;3GPMl9s4y(LlF5IC{cVsCAuxHkt_uc*j z6MDP;-;h*|*?)jB&h&pDlK=On&><;e(~i&~&8+9Ufn)g2yl&xWlfRi;I5y4HXr`B@ zMZ2-Lcc${pRGyj2^Uj^PGksg8ZwvHoJ0GdKZD&etTjs|6!K*ZG+nH2Inwc}{Qk_Z1 zsu{*OdtoKy8Pf*ncuzeW zZ0d@8Y6c=ncz9gSW^^L?wqu^I3veDy4kZ!~=@g>$1k-9_f}Qx*=r9)0rVJaB@&Y|V zRs6k%2dM0jT2dNMvq{7qy-6A6+hDd%;Y=zD*-!}Ec+6?Q=p&{KL}AS$#|+Nnn_9mnnNb3|NG8z6X)G!?scCeB zBXEKMqkYy2$T18XaM^>QF9f>K@>vQ^rX>QP%5k-%DEbSftjlw~#lgmu*!=-QU%xBUqL1#WM^b&IjeIdsXb$+j$q^h3&$YwDB&QY z6_?l*Rq>rrG@}1b&yk=87wx?jE@OV%bvzGBat13@_XhDmr&FG@$MGXpoJpY$m^`97 zpI*hDs!mVQYQz6ywb(Jv_?9)<XRhhAvr!s36NzMovjkC{AC*u@q>(}$qrqGvpY!x2J09R!V89yJ zy`sN- z-avy<0wO+Age*zpoRXPRtJhYEyotOnl5#L=N>VYG^m~+GdVVj}#pCe*Th439iU2^C z<#(%u8bp7=%3_9k2V~%QmTz4! z)oh4^0ga!SF1yi9@Z1Z~oC0aM(6Ko$2`49U;|hWv@GDA;OME@_t)92O-gf#Yc0u4m zV4^{S$e~LQWHGFM0df~#Yi~jxmQgi+NKThEi#G7b@WkDJY~Y{aNpREXWLH47Z-95t z15N5%tQQ)3T_V;S!9^lseEYig<_#v+)VCUYTdt`FGs==?rz$>3`yUT3JhuvXLj0E+ zJVo`t&DBPR|CfaScTriywN4ag045G~dRqxPy^k~E*X0bszABXp$PR{uL;!nU z1v(eXLk6Wh1q$iCoS->Wt(X%t^Fi7mjfq)d@)?wY1>rT2R4hc;FDo#>vqzRtRN z`4DwbMV^gme-7>au{(kCSzOBUo#9|$x=;_bf}+O@m#XrSor0}%mOuu8xhp$EJCKoh zM7U673Y1>bV8%6GQh?rIl-LhNI-;i`m?k>IHj9rhc+XLeu#MeEyc0Q1F%k3d{OP!7 zD$~WxC}<`mG%Xt9iuA?cBH1ltI)o%Enx@1>(ZQV$Ayg*wEw8wXR%yq z9f=%=;5KTc%;0@pqqzGuwpAjl>#dT4-QSQ0Q0AR}1sraUl6Jb}sLfw^JG8B0BPW3YY1B)AYad z`T5Of7utKC`O3>y(P)=tRw^JidYU zW=8$Ze2V1IgpU^OcP8FIJWarrL=AJt@)xLO4i6pOy{0+CYcrm1>tqV(JHT*J5B{lD z)MK&S)MDI?kloDaZUHLm1!6tk%8aNlU7tM`>n%^GeV3A>+pz#q-KvYLpM>iH`iBFRqa1zs`ka{ zf8DZoew+H=RwL^FTW>V8`ycO>{@3-+Z&yu118uVy)~;*v(CzI=-(x&>pOwH9keN^cPm9ik26!Aon?>%JUH?0)`gd;a@3aVR z(W>1v1h-tRZqWNJsrS*ldjR?DOUP$4L_Yj=@vii}3&WnbjK%I3R-lUDX;A{z11|(0 zB&zc0J^*mS8ydvgy*EoURA)`K+$Jx!k7=z@&GEErjVg|BZ>)bZk3eqcGRV98ukzib9 z){U}*p-%Bqh0M2*q1+(xD-cKV8<4boaswF9Gi;%N>~6RC``R>B)@Q0xo2JS}P$j)Q zg);C;2vH0m8qD>$sG%xI_~~1=8V59@kuKQeF|h#lv*d7};@2n_K26hc+LNg|-w%4< z)B7jJJl*&EG*o!drCG-1G_v}kE_pyehK(1|#uk}-4B2>0GlOiJNqMdG7>3ub^p`{~`FtXV>;EewV{(oM-uPOQe zX02Y0-Tza~;=eD8{}1l}nO37c*(7o=E(uET_xQ-}2%6HQN~SZbj=fIkcG}7=9J+1u z!2+)v;+Davql#iSRP5DL*e-4?K|+oyne7|PyJm>r2-H?i$3*TzFUe_RY@W*1 z2=S`KeFv|Du50V@T#_U`AvqS*jF2}<-(t5IA$91NMa7o;a@a0`|+q ze9@kb1$=B`JWv};IZtet$6-&oiiul!CK{~c7fuCUN`d;Ie_^BgKsP#}`atJ*F15Q( zPqXZc0{$peHi6piKYjV!zA#-cxUqxI#RmNo7|7X`MZC>WI4Bm2;gv?>*5!ErZ0Qc> z5fD+&jKD=90qm3x0d14LmZ3Q6wxcx$fAd}aJ&pXQRb%&mSK((S|1C-Wd%v8VGFSWi zaHDwJqI^t(d4@XIOv_)-dyjaOMBVpm#N+H<%B|uNSK6E0EKXV0Bt9hqgv6_4ggc}E zQTmTuxS9CqM?-#sbdVSZ3krwNZfUuQ$WS=2G&V{W*rx# zGqMLY*r!x1YOE4N6d8yjmQ4oU6{;ki(<^*JE6l6?O>UNpo8c%8I_a5{>~P#r_ z5g;=?%fBKngD7ga+IhCQ_3FjwI=nHoqql*wU6H=Y4wi7>IOwtRU+-;h@5|+RMgspC zLmi~XXc2C?0T4~M4TKV1+mgzWcU=b%QQNdG@LHGQ0F4(3m3_T;5Y&~_0T^UzaCJ@3 z)Lpz)+SL<`iOj^L^kjI_v%D_SZWlyeZlOvL+4|C94;73AxOZQDl?XST zeaAM@{ML6|GY*Gr5k&QX90e>`yL+O$TMp1>t5+cfY9OOh@#9UK0KWiarq5d!qf_RK z)i;&ZO4p}tVITK>oE^Fj_no$dhoFG9IWfEXg+*7n$G6I3+SH-pSl6{`rPk84)s-i$ zHRclu@ZpWr!#31Ndps~*dP)hnsE+IOX^Z1FVu_te8@d3@l`v#R3Rtj;cF{AoM84O( zF02CIu}fsTvQ<$z9z^xIJje6-Ozz9%KcN5Akg~b`tW1BDb)!?JXXSu{w{LtDV3PdT z3jF^${ns=t^Z!{I{onMi`UBqqG&|-JH0rL9=(j@(QU%+V#|Q)Bv}dkq0;|6jETEf8 zenz0>WNKip<=i$eEGC0`Z6F$okH&@B?g}gLQMiPY)urF)y-u0Ev3?4UuJVJRqGZg~ zMsCigs`K!y0v|8W`pJxnqhgDtNuohI^G{6>LBHlX!hu!9QDgEs%9PQWT+oi6#1_&X zwF*-ka47%nnMmzqPgm4K9)ET$w}dAAp5lTVI^x#WZ561fL+)6R4cT3n>rdOR<9SGi z3$c=lyF^MM18+lrQ;cPbzEPh?DwqaF`55cX%LQQAJ#m0jChuli+{yTVXrJKmK;!00 zz)A97L#sycKfMwr!~Y)!{(r?6&`q(waQT46n1sm{k|3c(Q@FMAF6beYh6H69ZFu96 zy8xhnVNV1=8jJK$HxbIhA!UA)nC7w34lCdWMb8`dQLLlZPnrhZvr+u+DSi6b2%%VE z3K>jZHj_wP@?1|UbwheOj+%ytHKa=LI7tE3r!|RWC>mG7(zT+0Xu)2R43(l~+Cex&BlB>KO@sXt8B0#1KVmj7z?MnwPH zT5V?jKkp6we<_or9Y&61M&PD|U+m;GQa^?a4J`ZO$mtvzsl{J9ATpMBO&c%?`sGmP zSkYZ$IOvHWMq#NK@!A#MR5jVgi6n!vC7qjL3i0y4K3@|B~=O zo=@AB5Z(<>;3@dSRMgK%lY>M+|6b0{J_4}reh&=@hD~p+ULG}cM zyd4cHamL*_u4p7N1^`2r-183T#yheh;!N0W2Oav)xG%wZ>|%^+r3py-3|Znc@>%FP z2o1dMIqzVYpoIcFl?XZjLR|-Yubvj)U`6LV9}QkB^06eJ{*0!?z4Aj$k6JZUbkUpw zng0kc&r{C4UzW&~tVgptc(g+%96s}Lyu@SpS2FduqA@CzkOH=Y&WmGCuV;kgKH-0- zvj7q>8UJfh{NK{D`#+Y2|3foMV1#~Y0=6%35#YH!7~a@)bD3hg!4s@;wjKQfOgC9K zwMElZT~i9J3H=!WNe8xkBWyEzp~czcngGEM`}VlXW};nfow{63N4a?BB)a8vqLeG; zk_tAo$!T`->$A9|aY@Q@Tp~2xs1=LAM6uvSc072|Std2yZ~TuE9+H4L<$y`?KUW)3 z{9kKTn;HIJBLA;yL!PVJkc9~cX?FZ{ZOa{q0=v-r?S2HQ8gWz@*Q*5Qt^-U*4`55U zRk9-|D58VII!nZdWA{JM-$f{ZC++`6tr6w_YSk?M@3Qv)cii4*!uDEFG#-g_Q+UCb ziM#hZ#o##A4pwcH3A-5TRJkIyfeovVKOu$29}af(<;Ti-Oxpk5+mHWSZN~S%*3A4r zmbL$>(SHF*AZ3$J!VR~J1iDFBK#^!fjF?ahr^qdmI3+3O6v^eydn~z3-v9Iv)m&I$ zqWyO@y8mnSX2$<7m;RF-dPfBYdR7nu-CT>jc&Qx;%N@TsH4NMxx!eVRu%OClHjouK zo;gU1_q}go7OV#QCJq&ax5eBCB()>%2btokQS9ml$ya!=TOM0T(((TgVyz#;pE0d| zQvH&mf1rE5S(R{MSO6dhAFdQsI7$kLK;3GCh(Vc#=e@%J-mTkztBqDY%KyR74F4|) z|L>zF#Q(tAKre|8>60E_hG{0D-@rr7^;Gk_EMzvgPp|3BORcgO!F zA%u(#Tn3Vwg%5l`7(v!A#{FfS-@V8GJP^x^mu181EX4VHGXB?^+G^DQTWi)c{J$jp zzio9yGzG-0d+cJZgwRem;R9(X=R|*wU5xCY_ryhB^cZi?8Hk7zEMDP>(=)uQKKy~- zP}OKuiByi$ml6b#$8-d4*1$VKZ_wKBuMeRCwb8-2`^myv$>buJjBG^-THwfzo+Tk^ zQ|plF&Mw=Xq}NX)I>G+MJW2i{R!1Q(VL)x=BL+4hDak>d^)I}YbwIu#wcs`j{-I!@BT&!BVWsc=;GHXNhW!;SA@?(miRByh=ME(I;#n7vwQ0vN`3TBxH(ZP~wM2XMSfhHo?*> zzSiiQQA8CbN6`+7Zv;O}3G*i<%R54}v>|@Ir#?)n^q>DK_xiUS|G8GLu13#)SDURY z{@1eTzo07U>eCZp7UviB7IM4J>t0{Jh9&Wm9R~2|Iu;nR*Nq;kwE0 zIR&)$!_jqZRKmzjzDJ)1qY;VSd2>0smONK^=^v*pEiUOEU4N&DpTf_oFF_V-d2C7P zGF0xLI<79Du255OAY-cbZGPzxKgu0R9mp}nB>p9m?QC>?e1^mnPe8=x=6rPhf=Trp z9?CqKz7&y7I(iPm{jd#dEe4CxfmZO;@Y!)fsP1U){t#9KdOL?YhDk#q&cuzbw-Rn& znpj*uqddAEcj7)Vd;keU2uuUy2x@bP-@hO`DP*IJbKcg#p;a*h%giK++YF9=Qa@?&UOwqQkmOz_*Mub0#6SLM(md_ z5u*}I+Z^~bzFw-#7Oe)EnCj^IxhS2KE;loE#dPjGKuk~ZS^y#jJDQCKWglJdPKB>Z z;VgSpEp7I#flkLox>O-nY!EHRV?9q% z)Wwm!G`Q_^}E%JcaC303GgAzF}5qcW~GH5~#LLspElgC;)3m&O%gvRea!#F89 zdeZ~F`M6Av*U*Egl-+_aJA*pFGpGY`2K52pXUdM_Z+HM!2!Hm6yr;+;@nL}E5T9YD zAU;DlVD@%%bktB0hOah^1uM)VMTQUJ2cRg~Snr0zH>pI4cIj zA0k)OY*5-uOYC(Wr$cYjQyU8}tE0C-<6E%_AB6mMz+iZE37Z|EYLa%Df|!|xu*%km z*POgj9{5P+ilx)fLd010STj)==S@lt`r z>BBo=l$n&<0V*g8f2DJiAG=&IxL4*(I-!nd@Pv03Yqp(O2CLn`|HFlXtU+0fS!5An za=-#4=7?#8k@KLC@9zTJD9lrrp`{0uLpto$% ziYnNoVODj*M9LtRqNpfEm$)8sAU}@SC>aqBLaaBg@53!*9Tu1oV;v= z@D<1CJ|8eDDqTfLNpWfX1%r$jiw91c6|yX>&OekOGgYgM6#ifFufZ%=m?fw_9CV2s zZv;OD9Fe|C-~}p;Kug>AsEW4l$rm~XXHlgAR5lAkndi#wNk%7ZD5RNuCA%zs*=sI8$3ceH zFr*cX3wt$?UPW+r)SB^dvPI+JM61Tb_uI0OeQsd?fepm`Hp}n}kABl7e!KBMsx7S+ z_5Z6jvh!cdvj51cJ09|b1_DV6_P4+gAYrK7gWn2x&+AxiZH zkeX`Ap=+IX{lgL0y`Gp1aBKxN&K|d3dx6CoY7Z2;!B~hl8$lAbSqPp^%u~z0)?HV> z8eO;BLH?Tf@vAVa0d-eP4a&0vA09PVf_!&ta7f2H6 zUUUZqkQy{C~5S-T$~W`u`g~%aM@ZiN}9LB6XrFKgWxMVVft0 z1*fiGd!{!)<%jRkVu6L6AE8;EQ+XvJuK2WqNz7X%yqZ##SyHfVidU0@J#Xw=j+!9e z4W2hJFbJWkL+?litb#Fbj!P7ZGXRKt;-Ry`G2PO~NRTPD+57#q7LX>X0@l!UbsW-h z4lCjScdSd(IJzV+oKvf<_oOyN3JbA;jku=nM;(Qb9m9-?1u5PfQ_=-g=k%uuFBTBA zZRqiZj&m|4Av2@`38YMHH?#~=N%8x=g9Bj$o8*|EauO`6-ktb4pE~DY>YU*ko4QD3 z;uxI{41yIpEYHy`q7d3UxM_o{;Ay^>>~~5|YRXQseH+YnN^Pw45^2jYxusn{oMyiYzj}m3)hD5`iWRD#F)h-W~EPC zL2o5?IT@Iw^+92(C2grmb%k?4>nH~oXB61c6ue9$WEt>@4+HZ8fzs5EVZ^)i%LIHe zU3cQM6b`f$ZIVL8z%m9CrtdOs_T+YEgZgqRpkp_T@X-{75!Lb`3_6nBYNGveY}*ul z4~q%sf8GkWqs)*szx)TH`gAhj1o^MkYDVw>ZMIf3`_Bg`|3y{JixLK>JOn&hD!huw zQVC}bRACU^k%crEtL<_;Op>p~lp-e6C8f%(X)gHpN^re@g4aIx_EUtfl;h76gs`jG zi(JlBgs*^^%AC)Xo8K>H@D;3xL-ZFUWOFOeoWIPMLO_ZE6g>J$KHBQEjm9qJkYdcqqTz051uZI{y1uEt)>BlS;lz*c%lQ{Lx3M$`|89OhO*BuVx{u2-&; zI#;ffIu~x7OOWLUczaXeqB}W=WR1tdn@Nxl_*PVuBhyK{?46L9 zP|6M7Of7FA@QTcJg(@h4Tv7Dl@D-=6RfVb`FpZE)na}y-5Hs^Cj(~AL3UN9WDig~h zeiryk3A;d%HH*7dh*w$+=|ik^NGg;fslWvT6|ZWhQMyz|eoWi)N>Lz)$gzIt*UwrD z>7FFW2Fp6F33fOrN}{IiTVz?sdMKyAE+rJ2aHu9S8?hl!yl&a*G2~s&VC52ik$e`d z0aKLGllMWwnVKj-X=$(7-FaTTd+}jS&?+P?9K)%gXFP-Z9Uj*Nn%_RLY=hGj-91GQ z^PWB!^sdH}x(HFTWQr!86XMzrg&$J5qA}gK-l(jeV3o#RfIW(7<&@JJ@#dnNC8p~! zRAg*KNPx6K##b)3NpzP;6mgacR8`UVk~daI$>rZ9uU2J$-mLmyXrt}|Z)Vhbjn)5f zpvv@Q>aE@XRIAma@n1A8^Z#3(|1a7~@zN)lWE$Lx^Rf}O%z^}c8Wx5g^*5}x&_i&E zUo$@_QAikOq(I}0pmPcRb#{yBVe_q5Hj%9Ti#iD!gf*Dj?|SwFFu%V(9Jp5Bobn`0D$cnT9FlZ4G#cDts`D!{ zKVg`D7}W@H20rJauEF!3XHgjy5laXwuJOoQnbh~e$$uV~0Ot$%R ze^{FQC&^;-%YF-W$C~YsP6Dx*o>C}h7?Ve2%5#iqLM4rMHNBrvFaUAvAB^#17T7Kj zGFK#zn&cbl<9E`Nc=R|`&6s++BnT@P3$Dkk!AVA^Bm-2YIlQO%pZWRDY5kdu|EsO2 z{in9tT+Q(RUD0bT#jG3nekub_82&5I zf9CJ2ZAU~jqn)c}_MPl=6Z}sD0L?=LCdL2J>e2K6+Nze_|9+?Vf2xxjOK=HDhGS;> zkrGx!_3%w1BXQSQnXss&MTzT};G-;3^C}jP;8_WO3#Wt7A0Zz}x=e0~rOnz7!X^_o z`Y2VB;3|+tOk(6D8GsmRQM`jc$dOi@=Mt+7&j?6Nf*0cwrsfk8I0Z!tyN9bFV=(TB z{=d_EM!9X3>E8ui|2m2OH&&}!^!`_PnbH3x(f{vZuE~~TchE1pjf?=$$qT(Fu6+I4 zv`rU7Cr`{d$8B-8qU1}uH!e83IN{R4^6=k1vnW^Y9S>8FG!LO%sV z$=(e;QwQefF;=;>Y2&!MeOxzaxzC&RR;tYsM$@U$|EslPa*1HFl9R*R03vX( zy)1<@8o160J0rM@znsn{!cq_r(ZBRA8o)L5L>JajW*wr2R+Eb%KM4t>R!8tgVcR=%&^%JjvZ@ALm8Pa~xQ!<5I432OH zu}l!-UOFA3+{7em$U_wYCzMM>;zWw8LZ$GR@<7? z`{-37Tw-B+^f9Sbt0j{EG+&hJNtzINCu)$|9LY!jAWQTLFj=03P2&IQXrSL0 z#ZB{z0h8@N&8Ypq-pKsFm&N}hS<+9ep5b z&wuyd{rCU=U;bm`kH38Q*Z=8fpZtFh|HJ><%24NrxBoG~#NyHaO!&XiY9an_R97?n ze>d}Q>t5~2ng-}!U*Pe+u7!4&R6HEy4G{ zf^Px7kKy}Q@cnP#`(MHr>CHcb@1Mc-=;0{@1wj_}@R{Fk*dq-u@#A{y*huzv5*JybSi^*Zke59RB}|=lwID z|8ID^Yy9tH-dBXR$ot}OIR2cM`3wI0PkB1weL}eYlD9*6nF7!MpYwMAhQEI(!H?*V?@cn<_`?q||{~d=( z%n#Q4l=tgj^8CB}{qOkqdk*v0yl>Co`?&-^!np`a18%79}`>){~K>#<7t1w({LaB@9_PfdA|P( zzL$t7`Fvr!CY#5f;ad40_#7PYJ@qg6-2D|_e}{;SdHKKKbN27~9DKw3`ii%Ob^Hej z{zrW6ApF0D?>^7B$G^YjYg^-ef6CX>0k0FEpYy+8^RW?i?r<1>+4LDj^3GXF^6+~2+0eDVC?NB;PSJI^+^UcCsO zzTVs1-WOSSw+{AS?e2<1c>H?rAjrD8ckp~mO51()RTO}BPxk}>;$;qbf=UO?yOHdF z;yUjt0%n|ufAsh8-#`4rKm6bD=Rfgp_IaQ9Kg;&~d&2)WwT%D2oB7{*ez1A){M((y z&i^?7@1`c^ztL*ek^gV5Rx|z2Qa)EE3u~cOwR(;jUygk9lA1j8+~iUs&nx6N6|z|= zk^Lb&?p4V5@cUO}t7{JJQ+Qh;&no%c;Ovw}ImT#(yL$UfKQ(i{<@Zcl8!okNv*+v7 z$wXdw>m&0)p?@Gw+pT1|C3yV;9)XqZ=e2 zH#R9QtAyKrHi7|BlU=80QY%d!TFRG5zU`Xy&!C%EolDHVZed*Kyjyu|o_Xk)-qTOM zJjK_Qw$oSZg%|W{HLUvEy{+flSQ0l(8HMI@W39GUUTbL8ym0r8_G{0vPv4mqz>?e> zn9E2S?@GSypX8Gvw_MBfhW3&7W!LdTxXBEF!?#hcH8d?1@cr(PJkzbTSzxO!aT3Nr z?sbP9-Kw-{;Tw&)R(`V9s+FHK8f*EYu!QAo^yR|{yaN}OZU>iGevb^;@+V?Ze#+LA zvM{0WiFE?axzuq2e*0Gg+KWxsx7t1Co57dw2LFMt*q+*8fAIy~#T)bwJ{pdNwbZJW zT6L|u0+6@rwN|Zyo4lfF)tc67(YoI{L$pX@=9j~sZ&4ph=+0MWSHG|vmtF+zL9OjB z&5xLYLmzSXmQV*QeZogIUx1}Sp(6Pr?uklXN@d_jUQPi>v_#kU2j2S13Us^TxTh-< z`i&)X-0!_>>V_E{BH$tH4;<3AeBl`bNR77xXl5`x=~-=dXGe()dZzA~=pndHYlInn zujxNt;CPk(s6v-|2`|IujUQDx=u zu;Q8iaImtn{)kjaEYIh;+yk<2`o3kKdbx*}#)UO7I(<9>k`EusKao{ZwupF99@?JX zF)QuPDJeVT({1wUx8&3PJgx0}$34?sX9%2u?+_iGzR3XHZQEz)F|6C(KzD&ZxFQ9y z-A^sQJ3K)gzTyCyg}vBWLE>b3;t#B-C&k=D1^@!bf0d1$Z}&H!J>7#}n=f8``~B|z z!QST1{_f`9)19p!8C(D$1#SEXK;LydAAL^R$eN%-ONU@19Sd;ugNfyH51|7Cs|O{I z+I@r4Sneo7M7NFxu6e{;AfFyE$R2vbHoh2B3IK~210vWPLVc{5Tnn8D^Lz-{w}(U! zCZc@m6K6mjp2;iEq>}@{TwpTC7Np}ked3*2g8}y5HCcan3=td+XXp=xex>J}QqGS* z!WiWqo;pW;$3R+EPih@WqInrWus5^`e>Jq*j%`@@9u~_Lb2vXa>Cs`QKJ(c2ke(|v z0MJVAAuD+_q@IQvG}pf(55L`e{`JxB_OqkSub;vzZ+MbC>de;>OL#yt+vX9SUKqcl z*VQ+l2Z^k2Qeq7fY3c)VYWf6O0`#xH#8U+@TDVXw^jHGoX8Saw0uoeGeyLQO8%3c3 zgdTh0lxKM!Fe4?=p$qaIp)jx!sqgQIw{lp4(R{eF;>N0tlvEmHC867_Bp;d=j&nxY zeVv@ymhYkqdfRag>WW2sEt-%L1o-)f*Kv?XWho~@n*ThwwzF);>rt+kK}HUkecf+& zagw|%yNzp(wuews7%P>^q0MWh4pmpcLG%mx0T$b5MJjv1ZX^t7DQT>VpL3UCJ}At! zjR4aF>)Vo$is6`^{m5sl2#>40)9LeYfGgby#%ky3_v!2CbLogB*8WSw>{zyG6y##X zXs#fWyhw}WSHFt1wh`M|tWVFZ(;*&bfsF|}7Ji-69pJH*PajrRU`khpp1X2l*(>;p z4>C*MVC3j`Q1eKED0oZ3DPKzYVtu8_Se;b!5nvgQwO%d*I)-rvp_7!$w)qYp%O@tx zy;(MG!^7*P`}tU53AUqecMtZH0c1(VU`!CJVIAQ%0(9560NY9{T$;I21v2o)`J$sR zlt2XOS$^RWc~p|1DwdRaFGcGw%H4n^fMlL-3Tk^#hWQ}LwyMj&vW+RwwBT|g+ zh+zE=dU~53o?!s6r%HqHzb#dg`#wnM*uJf);n^238FW^N` zO1?Wg#~aT_S2dv^S$DcLgN->z?Czu=9Y1M|r25ZWu@Hp?74Mg93SU+H+u? z!yga+ROv5A!zTiesaf^5jal`!8_8Py9M>FWV7}$_lw8y(edSp=Sr9|n*U!w;5JXB= zalE2kfu3Mi8Z{%@k=&OSJ^TRmoD}kpEAWI>AZ7B}dQW!?n4t)>QWaF`VOSX+y$&AA z00QI%AdqL}O!a=!&{B|WyceMjtQq3qIBTkmTHfwCC@b4NFHZ*zUugIQu;KvmM~QCA zgT&yY<5Pj02q|wJ`-`B8G>?@1;Ndhnm;m)}DMuiI8=2ibAhbBW><><_;T%yC{V28) z_Uw1*S+Q5*nRjasRb9gq&o7*xU+>|0(*Xc)l1HJ#v~}X@?o}aAi;2BMk9Yv`rIj5% z1Zk=uaU2^5QZ`y{eI5T4KHV>IRJrl#wv^`)zoREIu`oCt^UCgbl*!BuhF-VuCGO=T z+krifQWbRd_bl%^5MgAID~~BRUZ^}S!qfn6#%${kqhprucW@c_ojzX%{mzl^9N{w` zvfu@|4wpcOJUTo?)_#4Xr+cRR*7QFomW}wD&h;ZGjjYZjSYPNTCS&TShP0*t+QSNJ zDy;0?OyD9<;XA{2moHVn#yXG$fEEWpO8`Kd4*)G4fO;H&dIA9T`2eV=1JH;A&`1EF zF&_YpbO4%h0GbH^H0J}LnGV2e9DvmX09NM%U^N|pRvds<0syV~0BEHHuoeekEdhYF z`2bi;2jEE@fF}t6Jed!GCmfN*vGQO#tju&$XaXDd42Iu;c*1{FQVKBN=O_~clQ;xE zv66uM2H58S^$oCl<{%)}!HXzAgW7|Tjgk1~Y9dpkdsqE|j~0(8Q$w49WOB_b5KZ8_ z!#r)`Fb|DHCJU1Dr96UKs+Q^ zC=ru}RdP;$;0%m{I)A)aoMUKr&-@5enj6|6;hvF4Ts6nCJVM#2+=;$roGO=Uxo&vt zo8KNh{Q(8r=ilz^KN<gL|p-@Pu&+A2QYC%paw&n#ptg!Q3NJqewatn9%7(d|={7?w*<172}OR1f4g zJlN>9oq-t!Izsu}wN8&9J6Z|f1>+v5&xR)~4gQZn6o%l1v;xm5y?;R5p)Dqe-r_Eg z1Qi7E)c4Q}7DIt)N_q|m4pd(P6_i;86%S2i0k9<^uQaZabYR@tXDG~KHp`}AG59b< zp%oR0k>xXIlkYZPJm20tcuJ@y_nk@f-aGxuV-ld=!Kfer70T?qYf^CxKHr(}OLqH?{QF5nB7r9Ag^tc6Cc2dfN5 zSEmXGx)^Cp6zFBgAs3d;KxA_esmXIl54D(n*L8-cT}kVqWQ4V37wEd}0-pXgB5h@R z$pVB}Q9Lfo2I6En?K&2xfUX1ba0R7AML8)x@4B!C3crTdzbGb@7vsC~`@{Xu)(;K# zB~KB6^_8>|bYU_eKl|+S)GSm}keocqjeny)wLt(!#MzCE6;4i}R>U5NG5aDqW;9Qg zD=l|@Vg2p%K=k7VRNCA-Yyg}ybM z_7I(=*xd-|gSR5DrZPU1b)!?+%N-&kbj_F6D0is$EZviysV7hnv`r2AD#df%lAQi> zsJvpA6S0h(}Q(t>>h`R9WUVl^pE}dni zm5;8Y5h~)rDfmSfEPn;5)FBPNcAX1iV%UT=oQpI_!=v(P8X->r;;a=!;!TLXXZB3m zpY@y+b&m(U(|f(qwTON}@DYIFeQ{4cDJ>Y5AVaS&EZ3v!UG@WJJQx)YevtiC@Avg1 zdvq;LU^{vdNRD4x<*_^A;^{CBLu%6L%bsQ|DxBqCMOy2&Cp7oX7Q4Zc_E9Z7AE4nd zLei8~$s32?sUm8*ptS`1<3@GR*oxl;fmV{U(xu3j3H95!&fTw#&A`JDHLyR!NQ{&< zrnSHtZV!6_T4T%c5GCZ-8ypwB5y-1h9F20YcMPl3FC zzQwxO?qkJ;Hz?rH{HT+@Crp%JxX&( z7f?Fvp#+;Nu$pb)sJJ3Fo(KNvqw2!5{2}w9tl(srm$Yq| z4YuEDJh6U(AAKT!N7&&d@)==gn%ECK>r_JD9z@0bXlgNsfxe-*in5Ej2jr#ccOAnc z<(qwSRC*~u_0Yx;_O^S)9?%h;{lX0<-q{_VyTp+-2yc}q&0-Gw>zZ__w6Vuuxz0P= zERmP!Qcnudi3W^oxQ^-U%7G`#7*P^+S=gJL2-mKI=zfJ!91+up8w83C+i2~Bfj%_* zgYNZLuH{=^m;8o%{z87(MO_oNCpJb+Li-}>DLn6bS9oENb9x0UkX2D{jX=sOkyY(K z{{6pQt3%C(V_l=uEqqqqR@ZZWb*AGjQ1tDZHYzj#{3qHP!2hIKlR5y9 zu6VUty}nuo;L1;$tM&3v0QYPMA+T#&9lAE=#6xcW6Az-BlN_c;atG7gqAAk$OcS7R zu5;g_T83^SA|MU}T&)v%-}CK0g8g2Kz2Awy-UdYZl{6CZ9C+7iBm-rtsE7G=ZcJ#f z5!M4EI`FSkV22z$G}pB}9nx#qvmaAnt3>(lo2^BPe-q`uTD=*S|5mg6Uq1}_uiI9{ zKR^_+^hX~TC;aU>CorAUv5MbdxN65cGYuU{9WefQ2n|T6k4#*$5C~jNj&Pxb9*5x! zTDM(iM|CDd89uGyjd}E!hQBH_n%@~^4qCanMMnf@biLKp(VfghO5&oiFt-(mClumJ zZr6b!MJF>JtsA|iS$)uzYCgcn@KjTtH07zTJT=s(K0G4X3tu(!ix6{#d{qky3pNy9 zu?|r(s=&x@Rm63av9bF?Q_a@aG^VbbZJS|+(?lKTfP zxi20o-=fe6DE{8djF}YmVM~rVx-_AnCzlrxhwX|AP{%dCTzYjzH>tEQ4 z0Jx*be>=;v{cQ@)Q9<)Nf^$^Gyq(O_m&ps6yl@XKeG|6v+?Kr^X1&^3hE)$R<6Krf z8CF79y6L4Y^!sh7+sQ<(Oys&}B3F_{>qC^eV*G!!lM4_9CdL1*wzLTU-&$R5Wc>eo z&i^CvWI})!tR*f9#CDPp3K9|`^1(JI$!&JOrow0JQ^sUwwj$*Iqs`x%AfWK&$OPb3 zupZ+Ecvu6@q)njQrSVKmi3GNYaSlP^-YM^PrIY9=;0jSjB6oWdO2>l9I6zk!K2sb9 zK2Ot2GLyJ#=w!}N7wPnj_H-r3@ZGntJ(iVG3kYZ02@N&KI-+KQb2X*KKF{V(r3|L2yy z^A!FsioXQ=7k?k&{;0@^Iy6eWxF$!@DHZmh*`e-2e~{4W##@+S)Io{Y#X0!H2z(iP zc&qH8>z#j)++klV;K?;k-pLkR4i5?o4&O$1`9e8RXd`4m=>z3I z=`YHD@^_5;gok^_d?u;EmdJg=kYvo~?eTvK3FlGl=VSsW-TzUqMfg9h+SFDv{_j2K z|ANJXTKx9G)xf;wuST2=Ov)bcf+tA~VoC|dC8}47aJR$6%i7UgF^z>XN(9ANc`#74 z_V!%HkRkPZ?8bZ^F?O-=c@z~99?=3T$D?`Jj^*=d12R}7x<>@dLoImRX2tDQWP+`z zLXiCt*H!=nN07ph6MDS?jr)DdJD=X^fWVg$h(7fOC*$;6X;v|^Nu*g2oUZ^CYo(z{ z1%E)zs63)J8;QUQMr~hMfSJ9xy^Bm?WvVD-_myXMhCPDh5IId`#GnTl9fkfTheNk_ zoe-y9y7gs6UEhf%rR)`6i{&T2k7Nb%RjG@=k~b6%Pdt#1(| zVG(w|7@=6ipx(WuF0`j*#N#ITpIRO(OT_=Hty)z7vs%yeKOegOC%(=k)SsBhQ2)#p zopcd^wvwhH8t85xFwxGd7cW#B{Gydd*btBb;tk9;b)FGs4(9Iy$uMB3OV6QY!>2|W zc2|0mC8m@!E$S5@lM8#;KYrBG{>0TP4}!c50w zbWIP{g+Q=Ta`D`nl6zJ<7x>B~_AoBt+;B-OOItSfnAzPDs8syFKo!s=`+v0-)&JBQ z%}oFEQRsh?7h8-Fq-uducfO?b$lXXi#A!pihG_BhVT|%9qY<}8BW7AD_d`84{%A@j z@?@X6>Hh*%fD`HesurdH^=20T^`p@LB`&rY`A^dVrs4G5ZK(%2Q;@15Ts%*Zt~|_G zg4<#VJ{U#l*h2&vn~;6t^q;S{CEov~0Rs>@|Jht^)HC}3{?UKLS^K8%m4j6j`u<~@ zaQx@V0i6$@8C}N*vZHgfzuDFevwuZ>7ZClTAH%kT#0W1aah+2jJMf0p-@%|)K2QZH zZJ$zyhsG+x%CZkcc7S&f+--tSNRwXeZ{`vX71G0KCxFKjP8D)oPNUjk%>>Xt#@r$< z10Xo4xASas>(vW-WD;m9!qw5+KxeK<-(*yl1HnNI3x2(~xxFtJMyb@;OLG*c70L zCq2vSBEfWhtKGv$6h6DwhMg}EK&nm2K<&QzDiJ6;WsYqUdNu;R|D$b*BaNJ)wKJStk&oW=JzNsu(x=3w$FEQTI zgDZ01XV`#NBZFS{IYpn(^_e`kP7`CAzI(h@srMw*MWE$!Y8yYtd zC19S0E&y;P&SOM!TQFF=s5>cXu0GMR| zZB^@0`)^&#?7ttj{WreO0&XBNi7^Jdn8Z(FvwPZY63We6X|~q5C{NpnT7ECXNDfSb zH>^|3$D6ksW90YC8O^;n44r`DHmg^Laa76;Jr>+F61spDW2g6mSf`f~9ISJr>uuIa zN`Z0U=NG?o<2_VMxyYf$QVs|SyH}mwI|nZeEX4d(@xnX9>6dbYGP|#)gy92n(~0;u zTrkTK-lbrrcO{Ug;Qxgl0GMq5jokmN)oRTw{^Lhr|4m+O5kin^`<;Go$Ervr2yt`o zf{DTy8}COz7-l-ja6jopd^z3&ldv4!Fw^a3pLyy3LJxpUr2q9s)c#v-X7|5*1oq#= z#TFs|X|~_#F?O_uRN@~q>n@n~r`vKr0@A;T6D#+VBZ#fgJGcBwq2@AfAp6Wh|9NP_ zWuE`R!~W6pKdnsu|FHGHN$V`2{3(e%3JgnJgcg{$lXe2=2DJZ12Y~L9`iBv2KPI*C zjn~j}XuEQC)vZ$SRQ$ip^FPh#`OjLjmf`=8K>wSz*kXhrRR=uFMxH_o91w)`V?PTg z3inhayiCGyZ`HzcEwB5a7*?;k$%Mh|GbR0B>iM5m?EJ5m#sB#T^uH;KEk^#+bilKq z=gC^&fcU2#?^!tQzn>c6Ws?5)O)WgnlDm7wuyXN8#tmej82!gPXqFuR8=ZZl@xL2c z{ErV?{~KFp0ntxN;p9H`ekgGWVb(Ao?7FV|7$Lkb_bVs5TaH~QmP@%MHcq(a9K7Wa zFM0)57Fzs{@&9t;e>YrhI&gjB@jt)KxeV8+T z_yR}zKBz>cOTIH2lZ^kD8~?i*)Bjal+5JBsgZ?jRv8m`kRr5C%C*4l?A4U}JZ*=fk zNWwzy37(Nsd>B!6!b^HT1nQySe^i=!D+_M}k$kJ!OvC^93GjcT)%parKlRopq?zIW zyO@9cA8(vrxx4va#Xs5n-|hTY_7*t*WB9*ntt!s{G+NDi1LuD=^Z#1Tr)QnGXb=*U zUd)L%^2z{OhZ&CAU9){w$jeFjVy15UK=D8RC@U8*L` z7s)kE=$jr2S_S%!zOg!_@JsX3g5_Aqb6!1P6#1dFOTl0tWa$f13qb+7S#ewV22rtB zkfj*r_N*Q{NNkXUy;o29TL#yN{%=s_l87OOZ*DAy7#&uzGxUWRvbp^%kVDu=vF*6N zPEj!a6ulkjARWF?ppr4dTf}9O)PZ?s zWrPC_*=Y=0Bq8(}<^lKg6zD6TE9M@MgRbS#e#27f4|Lb`sOb~_4tu^QETIBh(9n3> zL*vwRY*NsGY<+0l&OG$L+n!EDm_Ywqt>FI0fd1D(B+TglJ)-~Jc1He}LjEN!B&KxR z)mTc2_*Vnk7f8*Ee6_LpYC%42Y(6c>S09_N9^`9`&DRL?^~Y!I2RWN#GdA-XUv%I3 zBDyYbnK6Pk;*8Pi8e@p6bZ|N8UO{kg zrll60mfF&%MO(tOXt8N&X?&M7*{)fu-lu8NqSK-+eOl^En3j5cTGrSuS*!7BY2K%4 zsYj=!zVvBnEMZz2v1wW3!uFb0V}I+7do(SL=(IGJKP~-b%u7FEV)%qK7&=>9UAs>c z(~r$ef9X@xT*AyWy>Yi>pMcWg<`2g?|OG*lf6(pi~pPUjqOeK|JcPl0) z_AhJ!;?5)pA@3LvgVZ>TK~fw@sZ;`#L8{IsC&_G<0H`j;KM~L%H4bQy6bDo)l>lgv zI(Erq>*FI|AEQ}#1dfT3QMhCK4-E5y{6Av$pJsOc>z>j73p+CaEyVz|lX-t+-XG(< zKUz($O>c4Wy3xwKKPDls%==>z^gn)-cN!(Y1p41-)+7GkT1#tY@jvdE{-@7%rUY07 z$>$t8rcLadrg&sc-?#e2zSSr8tvbg)0UhkeCmZ~7iK zCw8zov473+-D{5TU2|gRnp0@z(s`r>spsxJ|38faa6JEy;s5GU{oiV>p7H!ATjgV2~k_UKGmPK%l&JDL=`G<8jAHf*~ z2+!)@U<&AMD)Nv{BcCpaGrvuUV`B1x*xuWOdAzi~AO>^k9jGm?1KOQ*KwDe~>UYwC z`r8zWw9SKiijq69upC&a!Vn0-GnlWXQ`w?WAO^nP|VYUhv zzX~Vtd+DSlpYeI`7yq{a|DP)Gd$IF>tJ(R#d&mD}{y(?J4L+FT!zuurd||rS#T!;I zF9f~*(ZF@uFqb$Em0kAx#Y^QpV};(4W9jyHX1lv@o%Z$b_YMxaW;la5J1{U|Z4dE{ zm>ds_wDrNInnk>R9n7J&E+wCpCcZaZXQ0mb8+2~hGHTb6wPA9RiR!aS3bctTw97DOn&K;6 z^(8C6!gn3((lm~+y=R**_SK>P@cSHFZ68jTr8Ic)y7uN{oAap#AaMc2*)$pZW_Hl* TlYO$!t$+T1<4T`Q05AgpZstVb literal 21829 zcmV)MK)AmjiwFP!000001MR(Aa~oNj7+CG;o(tA99`EdqXLjuM8B|pdpavjh0w5^5 z*;6c1s#1@{Vv|%|EUCpLkRVb7kYHwlB8vgXgkSx(eprY7;wSsX8?mvk`?`<25gYph zHXQyN8{ygSJD1FJ@`@WlN=k$vBJhvG(JwDn!e0p&F^qc)p zR`{vIXQSDqf8i7Ut8cWmPqgMnL*Hm@G+M1s>RO}S)IK5gPuB36xSruaR~*~+((+}c zzo(xAqjPSYnOo#k+6aYX%NxMEL;Dn_hwR#;p4Bx+9g{pAd8Tt|3|!K)9dhJB0mJE9 zKbl=~Xr4Ky>st1xK=^0ZHhVp*W0@n*EqrS_n7Bo>TD{h;J%W`l>`c7A?YLhYZV_5& z40-HP>CCz`M`W86pI#ax@@u1GpOT$3V_@5EvEtVbpPn(a2G^MLz;vxMW27cK_P~V1 zPN`^2ykdnEJB~^JjQhp1lG7X-)&T2qYH!VR7Y6ALjMFd9@O74W)HbV|O}$<$mkWEQ+i|S1M~D8EIWir?GhOH!o!U+?wU#oqt~|Al zKebRmno{h`#I;6eq;EoD+dVhChU-DHcU^_5T?7=PWixMd-@<(1HuK*T z7!>JRy`Je{d6(F|nWl~PaEA|)t_&9Sq%LF49he|uUKzvjz+_Vmt&%a+2$isz;hU~P zjwU14o!!1Uf#ray(i`$rZPp(Gpldg@wpPQmnhukxx7#pXFAkq=k-q1R-K~cY&n&M$ zImI3KP}+wN<--~5L{Uh}S>qL0wo>L{;mgU{p*gl4&z-BWhnDM3VEE6hjyZAxBs_n5 zOnw2o1`gJKc}Niws~l zmWGCN-nHN1={`Pu@fgp?*c^4CSBIqZt8LP#wQBWp;b?MpX1dtf^O5B_72=436#~b{ z^ZJHYp)hOD9C(IkWZ(9nkL_BcrWN*0v+M5K!?86m*y$VD1rF}ITLf02S*>qWwFc2P zw;GSOni}+f_n#32^c*m4kthHXi%wnwOsNonDDdC7|C+8!>6c<|ZKq>(YqoRtFa|FC zs$6((z;=hPncm1R6X4OW3M+#D%3|{sT{Vu$!2bY8>OTJ0+6~12y57q1|2jTDJl;8^ zhoMo}{pR3@!>3<;eN4Xo=Gork!?cZA_$2>)5Fh3I@9#W+d~~q0`*^MAU(;Ih`ETR- zZ#EnG`CrH9Q=cZKM4-d)sJ=zIHsDK-m|e@mgg)$%LgA<}GyySoOGr;uaPPQ$@03Gn zNSCFhJMKkdGEjsguac3R+5pRv+{V~RX@MoC)Xy>`*X~Y+K&@O?GLlnT5LuGjxa`=M zm9(^!+G%>EYV!)o!_t@Va%b;}^8EF#^0@Cm?Li}7N)W_PI6S&g-{+9_eSrUuzdNc8 zyKAQZG+k?i>A!}yk;DJ>z<+rM$g-Kj1M&<-6&^6km*&78Q<29dlj770g}9RN_EU0T zc%42Le{PL{k?-1_2^OVH7{w=UeCds)O1IR~JKZi|v@S{jm}H;_Kf3l1g%8N-d&ViS zu<#!E`N<%u(q>$xSo|am`AX#zDgdB~A?Sx`y~(J9Lr7?-k=PK2$8sI=(u*$Om1`>5=*Cx~CH7-vxZ0yl{e*OZwI{CW)%-Q0tAZ2D@JqrF>$K|U z##`H=Rl{VtHbLsbJhO0Ka$tPd@c;1Pt+YW|e3a`a@&ENO|F1Xo<|m|;!~b=!zx-GQ z#{aU~?^L_CS3A5#{NL8}(E7LaW{&^Yga7}E?6}v%v1fZ$hwR!EU!XMpx#2n16&H*b zAe*A>IWQb!h&l)It%-OBGGLxB3@SHG6CCl3W2}I@?HFUS4+!3Y#)q`U8YUA~7<$6r z3IToJ81$-_v`OnnN)xc`Jeevrs@8BkuuPQT`=epCu)Oaqua9Vd4Als7K+zkF{lT%8 zYEqBS4B*TXd%YvH6h<(okzT}A_hxuGN~kiWCNXT6Dk+l2Yq-EpqLOF`gpNhCcqTCS z&d?Z;uH{0`(+Q(1_~LN28j>Ew$Kg)|1w*r(o7eAbr|YVC9w7$PHdO%0K_o3kUzBCgwm8hnKkK3Y@u6yTdrJ}j znebn$H}$amZ)2n0%;Eo<;QwRSvxZ0#CYW=nW?WD}$hmfH2jQkYLhBEJPY7q>M+9qN znHSVd$y4#monE|bov4Sc3}%z1KKLub`Z4tAn*EUeu8y%j6r9@%sbE? z=cO+!dyOS5*EbLHNYAl{X8_y- zIgvF*CpiCrVsMPqriV=)&Q#AH4D5Hf(B{BIsja)kYI-FM%5K;*yskMq7j=wwZv4VKiNhh->^Ty_J>WR5PgGj-|(qEi6|uG$T}NY04wPT2Bi5TE-rgMaIcY? zv(K&{P{{b8(SA_U$`!Jq|Chi0*P9Jm>#MG9-JroEd>+27>Gfu_y4ld$H5^jSJFVB- zn~!Q&V%oW7X@wlrxOFM5<;WhI1gLh$zGP4YVO^Y|s2KKaR-f2uHVT+E$2vD2RLFx( z{XwY-qj;om!Z04SG<6)YHm;)kzWL|V8u@jN?9{j+=pim+h5VdbgTmVyc~av>p|pM< z4bf?qi7pB-cbBmW#>qNlqkS$zpfAn7acS8OtmUEUnugQqKL`yr$x78fCcZf=Jn+K; zEW}_~`pt`-XHSoRApe5w?;IXK-6g*u2fN2#9UikEM=uTzDok^5T=?v{Ke>eQ*_bHU zY5E8I;w|f>i$$;19Q55w?X{HSDlSJ=WO4d7 zbSspHy?n{1Lf?{-&MT>JyFh(GT~BtN9X+P6crzDj0~hS=SbaO@(mUEklpIRN^e}I1 zX2L_kNqs;B>no*>NR?=u0e+|?@MZvo^b?w@;nI|XIaG7-^1gr*2v=I@D|`Xl>ct3F z7w8~Xfyf5A7`Y`mpLE}1 zq)zrINI6$i&Uu1gHff@^lTt*%aFYe8S}`rd%Te64?2B>xi@Z%zT0$Z38@u0iXY5ZOXbys`k}D`b6K{Jk+O)s~ zJPC4cKDv+qDcBNk*>F`M60L7r*`8uW3*vve|9QJ5Ep$H0aGXHOXV!+Q;ErhrO=x`${!QNxE4 zZxoprTqi##5$JQ9sL)=pps*SJJ4XWM)4%eTkwCq?38ZcPW|X>*V?fx_`&ckEP-y?f zvuD!F&{p76!}bXN;pc$8xb$D32~sTb;k$D;UbLUqP! zxSl<>dLx@7HERR}hUK{`iW8No5LvFvp#-y!qRz|c5J!Ex#hKTetfd{A2 zE*PQ)@+(pY4xE=KS{%r)?LPg^7<5H<8J^({!Gq|yiwN1haJ*92GS2uEeMTt*pD^{1 zX+j<`7H5l>KMKObXHt4WixPt4WKwwz2q_c(_dCm~e=_wy0QJNApJp@H|G#JYAMPw* zRyEMqksIqI;65XIpj@MoYcz6=#;s{IDA&2$hu<9(;h>gbbjFF3U4Lz8Hvaa&2H1dC zC>Q~S3Qd-9QtWr?Tzkr%H04QGo*K$iQ+*o3V?dMPt5$J^B$aQ2sfj9h*^@KvgpG>| z-F>w%>ylDbj}+BsEP5U)iNFt*)gve8C*iU%Yz}pB2zBymU|v84^pBRLRLYerxpKu< zu6(`wk?K}LR>vv)O>o>A#n=pKs+ZUT09dw(7N4YJQmqx6cupszJ+nF|!~@ZRd~S_C z7qT!yC`_&d51Ra-%MT6tp{YC!<)@a)!3ABY1GjY!$MalpT^#|~p!?^NvLaAaz~(F@ z=o;cQ4KwN)lC%u5I)-wkFso?vf(t}{BXzTn9HM6cb-2|xJcbg*0wuK@lKA2u@rrJo zGk@pM&2pyu;};XU?f;a=kf0FAb$&DI{FEyh{vO>g&AdV8m7L@E9bX+^^Af$dP?i)l z{6YomQ$+RRpRn!FT?%Dr+sb1|6H}Awk4WevJ2w8PQQ<~ds!{&%bvN=!juiu?A8&*c z=L=|g+uw;SOxNLtDx3d#>Gi-}OJRpto!P z4N3K8#QwXL>wi8d`|lkgLsHnLeIY}dTh6zDVfg;CX5pxlU(75Vn`UA((@m11Eo|+b zi#&6YXD;%*b0h9t-j>VTe0kgcM=EaHpHbSDn=yazB8}TNCKa4!ZcMsXW71SHLyEzt zpFI}|yf6I!irhbC+J8118)5rTO{?ep|C;#!WX4^P>$l+Y9B}i&(m@z<4y?l}Oa3QvlLqRI9NGqu96I9wPxqlwdg| z0@WzMmK4X+Y!Y%uYf^^!wwbO|7?X-ZBPfJzJm5HB`VnJ>H29BFvQ=CH$h800L-wCK zMu5uU|2?q(-&4cuBuR*ms6b}r7XfAr?z8Z{fLk#Chc4rZ>7qR3-kASGrxLCJ2sg%a zTmx9eRe-Q_`j7WI00u!?o3a1G@L#OcVi+I;{x{lM*#BR>wUNXBwd?=VfV~gl7t#K$ z#)MymvI_j*=CNzlY4t2`dV>xVg*J+ zpS65+4ATZw_ITn6hAz;2Rsxl2g+Nzjzgm(P{gqYS_)k<{Af+*d0lrwZ#sKS-RR-Z%n2QLRQIW99ON!B}dSjp_bU~hAQ>EhZJDbn| zn~o`{R1CUF75Wzw%Q3sPVwuw`NMr=$jBG4t_1;Kg&xoqSpE+N{F^;`TI1Wk0C2~a- ze8&_G$-k3x#E8K~dvArwnAdS^*M*XtzzW2@zCX~}gy-xrea6aj3Dg0SheYSIi`Wyz z=?PM8_&-&O9ifbGS(2Sb|54ff3M9Z;{C`Vph2_7^dLI9IUG(1!4xfemae3m7%Pr$2 zzq{13ALI4_MwL;#ucM4F7AGa9c>ae9`Th;ygIBPFUHm;(Zhl?JRbC2dHq`hGu%1H$ z0aJ(mLt)G{n{+meBj-YqOmP;&s`IN73X1F|V8^gCm(b@TIcXGi@GKyp#$~T)^ZNkE z^X{bM>uk}~yZ8%V$w<}T#&|rq4wSmzBiqbT$w;~|^W?=or1(R!1Tqb}`qFw04Tcej z_(&eIB#CoEW{Ry|S{3p-^tw!{{;VlU;Uuv&kW1^aUj#%jgjenoF2cf=5Y2^tJQ#a=vs&b(3!R`@?D+x3PPUt z$ce0p6SCHc%PzqLf@zxT1QX~@l9MZ?vt8>919O2u7cFxYxEq9VUj!!@_I*f6g?Lm5<= zXJgWzSEHlUlR)V#&SiP_WIQ$J4(vK}F#C)I?TbO~D8TLd6$ zK9KSarp(ibnU_6^{#jAd_OL8Lt*CI z+)zRX$W}Ya{Bn(e=dQ>R_#bEzf>J|DdQkHisGHgG_-6esr=A=dD(%!HXV#?|e~Ffp zBPO6G(^0nih{^|D)XXcdQJWkPH$%%s52Y2f9F#gh+oq8hx~QL$$G}J>>T@9I4}0mW z`|o1EXWjZtKLE7!3g{cU!ZVXMa!2POaAbo~Y|)o;(&nM#X&{-)GdmWwuaK#ZSc*eX z8ycyy{=U>G?0$)DRmjFxyP`n%*W^}g)R7J7Ez}{xtZCx zg@E1M;BEyX>lH#h-pZVyFIk?Q3iZ|})4t1Fy>m&p=YpHJ4ZrRiJW#Ie%qAgU5hTcx zluP??&D$&x>g8J}W$P$+zh;w#uVL%VC=-{q6rIZ6`ynM?nr_M^<#%{qGVepqB1>N# zAvT{(eF3@pVzPA+vBMmldHqswtb;2Ol9)YA3@svRZ*6TPirRn7MeVDT|2kFo;x^^K z?Pfb7|E=foAMcg?*KsdyS4=`3Z8IO%j$?Ay?VXV4c|uBuuo))?UJ^t{6zqN;Vt(diseilo5rF&w+kLf{NwCPcuqf-@ljP6KH3@E!BZf9DndE-n3?6~L`pw3`Ir)+^QZ zN53nLJ{-FTfX|Txe0Boh!(W&0O5VFN=y}Uf?0!K7DhQqxBv3i_h3PF4qIK?*yJG+0g z^VQ=b;K@&szxMi;%Rn%cG`CPf0q`Y0%^YDGNq^FblfI&@@imSz{1f#+6n?z48-<`@wxV!=Z2@yr~Np(@jUKjFn~reE*<6{ zsJ_?~9aCztB&t7uNX52!=pxDuFjI(rSq@6{xi$J6xL3NXDm*@sAY5hAjgo_bOz}$X znP(wExlN)W5U0@yNP0280d(jYv`|8Fw_pCPHcOR_xvJD>sj}%;NrR_Q0$y<;iVj5m zwNCRIs&)xKLu;h^0S!r{OC$1tSkU+Lcz2)T*R&8k%`$L0l9>iS^hZB1hNs1@`L~n8!e)z7Fl`@*?i10i7kH)r77@F=L0e{uHZ2GQ^Gv$-s(1! z_LVwG*p(0{i6}|biA?fDJKMCj9DM;0S!MwKd=O|6<5PUv>p$^#DFw)$X&;fA*eUiAGcHeYyTsU1&Ej5=y# zDHpNrazE?|p_sUqCsSb^4LIdnDf!}q;pGU$2S&FShz|@NbE(s}2f8)7Ea8t*Z3nRJ z(c|Y&N0+AK`Vl+mT5QulzJi>EEaGhj%t5(a4ni7HP4W@SfvUMoC_K?3c@(>pe%$JAFE+i~Q~1>P zGZa;be!A^QRQcy#@_);P{+@;Z)9c~*-&!00SkE|1kbXs&PpQAS?b` zvk}4nt&Lp%yDt3i3lqN;mo)C%4U_qCjj@&?1h;bhl^C))9*&<^vJ+zh zH4B*x=lZz*SM;~40Z$(&4pDCy-+*t3py+TD@+Q`D9urnGCYCgPL4!({@ZGGDqb0_c zGqXjY2t(JqXzq^(4~F1BN|ujI&#iLV^3t}yGx2{~82-1KS~G|LYl8o{&Sc-x$^ zM%Nr(Q`bre)X|65o{hW(Bpx{S8GvGV1N+1Wv$g}=899U+MrV{QYHpCOC^8mBtPvTz z*C>*-&#v(awJEXD_WO~DUM*z(XEbp2)tVdzR)&7&6-51ZM zH$lYEp3wo!c1?yRyI8_I$GaXW|JC8n-jQ6MXC&}ncVYn77%sv!H_%1X=>Vcc)3&&B zr5z(inaEU3%19=s1Iz6r z?skCXo8cx#9;qBLegSpqU|WUCd6EZ&uG#b}QYVBMZlPH!dx@%Uym{9?+&!ib`UGT-Tmdg+W!n7xjX#%Og>u;b%IlrziFgGy9#{1TC8Sgh6VkK=LjZNVMn{!_b3x)C%fP%dJ|i4dsHh-b-)4tcW5HElPz6Q4tes6 z6S*Z+;SUrO+`tf5+Zw5z3LE66cDXB?>vH*N$FW@((QqkJQZbiEDAdJh=&#F>OyM`` z^Hl9-7rlI>TJv%S7*0>L!wHMGm=re~{!d1ycs;PYxDYUl|7+?I`%n0t!~YKi{=eWG zXi?}dOg>;U#zArgB}gFA6lSe_2u9G$uGGsa>hRKmyXe61a+KKtX)cmo-Gnd;?)Pndl4Vwm+ zHKa=LI!Ot|r<#N^6p1Tg>3Uh@Y{VcJNQ<8xAL~TBF<>$|g4^HO{GZlnhVOqjwcP*1dxQU<%jjsIp(B|PSQPP# zlbnR=Q_#@Z8eP7zdvCgl#h=^2GFA`F5kL~O%b~`xVz}MOcp#h@1*Ia$Yd;lr?Pnma zeFa^K!N%hZc|1|1p#w-%MvS^K0U6_9<+)>z%+9&#$lx=s2jX1-HG@>S#T=G?81R2! zjZDMY8JwA?j#2Hd#sNqc{MYqX*#4uwk=uW+3;yH%v^@#nEqEg@!+Xb`H8e-A#8IGI ziPLNPCj?>>j6cI5_~?2#G(80D2~b$s%*6Gx#{lHLuv3Y1Zq9K{J&CanFks0o?*MPS zBiq8y#HeGVLH{|oCAf$L#;Dg?0Hn{6Bt9p<2rLJoftLgO9ZVCnP=colK?6Xj>-g}+ zLh!kzc43b~f$XjTuecF2gs zV>XUgcn$wr#va$yM}^{2U}U55V#@9H9C6$y_;2@CfC94NzaEDF%?&+=|7(K(ff~hE zLO(YF+Lt&B@N_huEUdb@N>JV44b~{xj&=d26EB|HDFN36_6z`|eO-PxXfqtp z;yk-10PvIHD6O)&a978mCYQ5eE}l6KZ`r*t=1K@s!KOAoZ503dJj!WYk*e&M2vs*~ z#lkUB#Cg#u>b&SY=Nj%e{6`KCQNWUXK$ic{jiw&f|1_Jq{r5WQe^natRF#ITj5$cs z<0ng7?tm3IfYI*_LqN3~1%*+$ihu9ghjjD;wgg)xJ#vg7+P|!`MtGQd{sI54LI9j~ z{?XVsB>&xLa+8`d`y>`hUInpX}2Z73k<$ z0SNSPtupXZC*+np8aOp@+#L$;fc`bD3Hrx|>zQ>476t{N2f@R&0t%;b z4iTtXt?w}?m+-t-@ZY_4{cpVqFhAn|C+Gjx1^I2XfjkLis6lAE){P z4}fKQbN&MXV>6upr3t`H`mePSrvLQ({NEk@7Y7h>GH@M0Y92c9{U8L{xES@9Q-1dz z{&Pnx&z@JiR&OQ7-`VhAZ|RZvfAxAE|7%_Ff6wX(Zwd%m4_RQX7}rjV(1FyIbF4kb z0eW^Y1|pCby~aDR$HL9YQznueDvi@41A>@WB)nHkCz^%q~S_$DQ^hO&}>*1Ud<)~w7(Ka?yq1oDSK69bef zclD)34K@8oKCG8og;=j&lb95pri7}Js)?^6xi}pdFCRhXEK#j7Sm9z-ijx+~tF#j! zeZn?!NuGl;TT|YZm`srjivRHN%J1()7Fc@4_ZodO4T+*;FWP?bZU1K_X8ojO`9z48 zw#Bda)P^Y$|MOqf!SI&-KWmNpMm;S5Y3RBCuXW*nfmP7dXCT}xF3;+%B)ZPa!B7sv z5*uWPb$EIcaSS;aM#AiTKfQTwcg=w?-DGi20qlMM=0=-V&~uaL(x>rsN+L0DuBJDV zpx6knZWtw+j0y?5u`T&mt|SmXv~_a{JV@x&XUEP5y<9nc5%mphNsBcPMo% z`w)}pmr%Cz>CMSGB2&Bp5m}py>CH37)${&P;>q+Rk8IM_b71Z#9oTD;zI1!g3f>w% zKZ$YG9nL+Rz>Yv`=Rn4gH5KAc-1KHQCi+rlarut&^d{}beXRQc61WhUrIS}Fy$lvA zsCtI&BM;zexe?5_Z)u~j4~4Jxu5Y+L|Kdrv!*PZZy+$mz3JLeo<0dUqZ`47A8Ixy$ z4JhB+L~uCYJ=joXPT%H7A@B%1dson7zZ^u2ax5Kl>{0)Ei9B1l8YE)s)0?NFbX>aJ z%*++jwQ~V5J;tyAL`-%#8+FP)y*Zc(UR8os6fw$J1hW(P%NxX>$}u~M8xm43@~~W) z;msaf$5u<5Lu+i%d69xDM2d~W#kjBM8HzeMleZi(F2He&W=A}yh&N_ldztEw)FMxH z(9OB(2A)B!)*5xqt2razA&IkcA;E#4z8WvrgQ4o!`cq2A6<8RgI=w3C89)$jotfS) z###{J>o6<5Xyck5nV^H0(`)E6yuX$lV^aY0vO;L!tShNHno#3+H-kFA$1GP={fC9{ z31!!UI-{PVg*WM|vXt_YW%d*0_RB18msAk5ijoDvJ$*4lkD`Z?D7ZpOI zF(82^#2~Z>BmU&FR?huLDjT8xyU)>2N`XdtpplQO^m+}wh)T&V__8~wW4wbp7I#oT z1^7(Kar_MrKnmf{;e?MAX(K)jkQ~4>%;fuL2&NpP`>{Ebpcjq975G+@df3nZ=*P)uP5~{wE>!$Vkku^k?vfQ@pk>;1eC5_+xz>Up_PcrkmGZOyE z6I?9C_f7RngXI<14OmEAK`7CC$))qMKm7r4Mac%my|lz(-?n=+lAhXF5Uh?yfyTGu z5Plla*FJ&a(k*QEgs4e6WeQ+s62dy$BW927N>PBmVSAgSGiig+H{vkT!0;@h2}%b? zcr18;G%@3{SccbDiSdJX6#_8OR|J&EtMHxe&L#~GWS?|iY0yY`uzN7WtWSK_xA_m& zn{(;%Hv<5Q?CVNE0qBU2vkF86=ft1_vCD@sVU(4W+W{;n3V&&El^+W(=*N{gmu{%z z9Xw&3#hUHJmceSb@&90>AZbt)a~9f!nCz1Pu{k0VVWd20&yNm(Y?N1;3*5rOHaXa1 zbj9HSi3+j4qYF`^%SMLH{nigs?~j&kT2TdCG|Z|lm`E8%QWO!T7!sF5j^)QGo271u zf)M+Si@Z@ZuSCBLc7Ec_;QrtngQJ)2pnv5Q+2^MWi%OvgDJrg{2N-0?SUhmlte|C~ zb^g8rnWpI!K6#*c-#Le`Vktd)IDFM;Y(?UE)~%ZT{)nme-~An zK;^J7ka?j*PwMu9h60?)r$XRO7IhgzJ5DM=s){yK4|oW3ZYz(e=OGp>hAOyHY7nJy zCEN&89qy`(*|tfFx4R^CxSi!DPr-xR%A+!w3Uo;X$+%AO7>;gx#B$s8PelSib$-U` z@=N6~21so?jF3cZF8Vj*dW`>ol? zKMUx8-~chZ%_{uDtKW2s->(0UdOI5bv(?V;f2~XZBa801%Ma=ZB+l923SEGt`tQ4l zH|YpnOm~wc!L@lVkIUmvkeK+#LXlO)MF;cwuvxA6E}~b`E`Z~_f^W#th7apaqtj

|x1fUp=G$g=<12;2Ybn!b_if7fUKFLB1gDoe5g zJEEKl4*|#wrQjg-PkT29Qz53@H3pr@0QDyB%vM*vx1ml%ci%V*a}LVU9P=$eT_BL z?hADNxe#x*{UmI&)uuB~a4jT-pA+SAh9nm6g-?)=4r6wc6cs4EOYsmQ(n)Ml#*JAvN&&rrY ztW|>0lq%1X0BsYjniS}{ux&X?g7`3aUSGi=n5G_$kql4;ecqf@XfMv8L);P%jTKJl zkv>6$OtH=3Z*O!THAxk)hGwhd6`kjxBHrPib!B$nT#;w?nbk1{QX3+Lx!Ax)9MkZ^ zhC)b=VaC{k6mF)JbO6-Z!&%&m`3P+fMto`Dn#_pEx>A7{R3?raY6dB%_}$_0vCx5K z8RjS41PhCIGd~wI=N!+RGuUG@7YQvK!_&S(utullDVjx;0(}QpZEz7h&G(%BPRL1B z*>Sq>F4LV-9V-nYZFNnqX*bUJn;t3gP73Xn2$(JVgeFWE!tM+RMFVpX?awrK5lvh7 z@wlQyTC(PgpjM=IMEGkOAzM=S@rnD4ZklT$K~~>hsV~EtRxvY{TN_OVgA%N~fBPY3 z#w4?daA$n6`Df~eXYaUtUAG-7R<};6rhk<{Y zvOj{R@bxk;X24}nkoXr(phj^)&y9O#Vh~~(G8;sO;mEI@G)?!8$lgW}2`PL*8 z{CmZ?-ap3ch+F$9%vZwo=L{z7dj29;a~0t`V6HM3bLHmo#kzb4E9?;c#Z$^Y8F3Y4 zpN*@+U#|a(ku7mNkAJ@!S+{bC{TYWDD}}g3j716OH{#5MZa){{J*Sfc7ksk1m1izq z6)QnU%6>1n_myI})ma;j1m%(L!%I>srmUoKMgAgC<1$O-gQOoX^Fo_op^&F7SFzsaLA}hj*$HW_{3lIo)WiNi+qwPU`s{yESBgQOV3DbF zD^AOX#4;;l^r>4Idey&cb%Y#(bNr&=nYevHeaCS6GBK_&_A#-u(mkE z_e4H4`Tw}uv7M@Wam)8VHuOmRpN(ej|9Nfp-~9Tnu$_|R$P0?(UCAgZB>LuUF=r!@ z>%wywHYqMIqCKAthtQjKaUL+}Jz@oQxQ?43M@8Lr1g+31c<4J0&`6a?CZ>>9rCIJA zcBYuyX*Nc!2I^+)!4Cy z=8QLC5@F7*z>v7Rp<(9^Gu>a2>4~oC1zwE+X5e!nY#O}meHN8a5x#`5VvT#=%DKJ| zj{kEx2e_mI=q&iJ>w1{}Yqs+E4{PK9BwlQJ-fyMmSo2-di9r^#V+!RCWBiQFc#koO zsifYnX16o)Cm;&_{W*TX9NYO!=0nM%CO#s4G$uWXdXH1ZjET2Pe7ABD=Xy*V9H(@O zQ$XdC!+Q$NX!9?j_B>bZU=|11LksRN*8kU*CIAH5O2|F6N1 z9RA-W{GaKj#u`il;`=c-{zz~uqFVUIp^>O*tc+Mx)S~!xjImJ`sYMlvhv2LPzlG63 zV2@A?C0)h0#M0(%2m2-?Hu@-45@RZmgiIpnB)$U?)S_4ie~>e+7|+F48Qc+&hy*u6 zCCp4G#83(f7j_SKK~7-Y5&nN?47$~hRi%Gd6#g{}|2H@4VfkMRU*-6JJ^24SSZlIt zk9ugA-9bVC@Z_a25FuZ`GDoI^u9Gu!E)gwmqzL)q;>P(`7c&CKnXWgzc`V#LhlAdj zQv4_rgZhMX043s(AE!6RP!A1S0BFbRxY2-TW9ZRfVum9cSu~uKm?2Bd&{Xl5w{HW% z#iIZ8$ccwd1x|0!9b3mjM{F1u7AD6ri9NJDPcnRAloytZ6|?%oSA(NxTt{W|fs~jT zSDsyrN^-j-u7={Axa3{mWD$_iy94Q8k8OBxEf<{wdCo++Dr*eJ{e*gtth15TvpQ7H zJ1{TJ!9%4>KgM_w`q7_C_HN>us=6*e>^`qM8F;jQX=OWW16>WoVq1^ z!-f9#gpPyWk|`A;{RmbN%lJO-rQ0D&BqmWq5vuSh$)alpzkdvVj*Ib}#O=qwELp4X?ZpvTmRDv>;LgpPXDim{ztTAoLU3Rv&<;XZ%D44$Dy3W za9z7&8E8D}Q|#V5yNXV`;oS+{KqriH!_t>PEubI{{&gJFaFMPD>VQcMm*gN4x)~yw z7a%s5Cwo|<@sSpNia_7c)?HqJ|c;_D-OspRK z&jtS({ol|UIsCt)^&c6o_GnWF@NcYe{ZrsSU2Grz>j?jw?M80@v6j!_-uI2d_ejbA z&L=HTeF0`2HjK z{uB6q2Hy&N|9kkB;QIi+e+J+G5x)N&d=cOLWBC3NeE))%|0g`(Um`~0b^W*eJ=Rl& z@1OH`f63oro&SJ;vCW^um+(6O7{31l?mYhYk9Z%kz9Mh`ucZF}Ay4}`FI(bea2&tn z?>^`K|8IESKjQiSg15WL|32Vj#lDvLSZv;pKjvlrg#Z3So=*6fuwQ@5+abJ6iRb@^ zyxqUx??03JkLh3YcCd~<|BG!rlKN8R<;VQ}e}wM^e1C*5?(PlvegofU@ck7+2lzJO z`~SlCulbz+Tiz$JK3MN#KCXYx^B?f{zv18Sc%Q%GV|xPMeFM0VdcsiEd z;pKn9>-asMUf^TIem400YrNe**BDHm~E)`P?^n8~>R1t03)(Cwx6| zkKqycH9s|beEvlLf1jQo_Kfq?;&bz#+3!vD_O*Lm6> z@H9LJ{|9{k7oP9`hVK;uO1@s$uF2N%C%9MsJzs-key08@U%Nl!`|lM3V_yDG_?rDY zz6M|OvA*DKVIBWT>i=Kyy@UP#8~7gae24t|H+*mFeC&_;emdrL;`3Af_bWa(qRxHZ zhadQy|1~f7*Szc_UjIuzhu`uw$Nkvlefoy)=Vv_sQ`ScXy#9=eiTPswo`AW(d9m~C z>G2Qz@pt#1?CidH=0AOPxU+X8vL5UnAH6s@5Q*^k)#0(9b?5N->8_M^@Z!sG2RZ}8 z6&(;S3rG{xdZ^wFW&Z=mepeHH#)bHMe+&Qp-QWG){{w&iEC1%7_lf?qMy_{1=zkqv z<@EoZtpD!QRP(Cd1mz?3g&1p2|OOw$anDj=VZ5UPDW?&wnm=RiiPp{8TE3E-U<(l&be`B7Cg%v zn6x(BYJ29uGpLb?yz#b3oXHfmMRyY}jCO3Z*RwhncL7HZivuDoG7I zh6H<5Vv$F;NinKyQcP9}*Zpk!6QU+N_Q0fCnj*ARtdL^IG3lRizo;6Qm_x%tzs^Oc z_SQUi(J*~roPKeJuWKE9sMZTFXlOO8`kTYur+Ziu4@?!A=4x|O+pKOj^?Fg5`-aDL zXphd`nHKaVel)O_p)@{}V#hlz#`oNEEZ3ck-nd`%Z7=9InWN+IZC16Wt|xZ=eCUC9?7-IT;T9_% zk}=!*`881CKNukPN6x68cx7(?|Mu}vEz7FXTWST`1alAKkyYhQ`_t>zM!Xg zoBqMau5Dp0TD_*#H|r0f=k12p)@pdjYr0<7^md!p{nnnKMiMhWpA0;U+E~JHzBK#B zrDZ!b5VQ-mcKS3wLI&RZkh!-6I$-M)KC8tNYz^8gQY_<{s1>DD*8R}S89EX!(f7Qu zyY=uP47+AKXAd*RjU@}*?!9jsUDLlrz+KoM+oWT8!ZHSc8gB={%y@D-usSSeM}>?B zrs0}sA-F|rgcW_S@&C{m-2(YHC;it(`mc`m-#Ptv2kVcKmUs4^)DFArqW@Y=eIvB~ z&E`fP|7k6s&wW#$E(QR1?5pcDbEIzp4k3Wqh}pF~Oz6WNDSS>27{sG*yLM-S$ddWS zKpO0!yql`{P&K-}+F{`p$_Z}x)|wVx83W63rDuu>e4~B!(w}snZ&xDv3P?mU=Tr`) zkL^(xt%;~7IQ$XyS@nXN8)1=RShW0!Gte9wtK^)ljB1*sTD|yAHM1?_@Oh^)B;ZO2?=cUaq6T zG(yshRmlg3`_vJ&T+&+n^RZAJ^lr_!zM)-wR=O40HW}lb+!XHD!Dih<6Gb?m!A%@E z1_O4}1NLxdGVs9~+m5fG@$;A492UG5z^hcAP782$x>m1eI>!X{8|F{J=Xw{K^y@xN8Ca6anjEUQA#o51{>8A+x{qtm9;i z+196*b=<&(CaZo3wIE)=*nI;yx@MuoY95ha5xrHPmSdXwdY85I^{!|L4hH3^xZ&r} z#%ooUH(@k%4Hv__qHV)!u=7ss$%iE_`X>K^FyS@%1z|F6_5)?z6%iAIt0v0@yyy+Z zRghgSd`h01z@T(pQeEs*pxj*vs)sfvaJGSGqYo&EV88HyiFczO&t2ib8Ur{#Y5~Uw z<8@5BRXRB0FENq@FhS2zq(VwCh$hTyu#f5L$`_BSc%umUNE}T;T-P^%i@U~KJP7H7 z0|Lb+9Y6+X2K&k!j{7%XI+ka-ee!G0`9Xd-MSb9sX=7A0b0luP!SjK8jSi#ivuoIa ztcpf^TGGlDvZ4Q%zx~&n4X7CyuN!2#;Pdb;a9ho0brTq`8jhysodWg0`KWdUC~j}k zJu~f5g&e?GfgfwbSdZ+XNvt7S2b;p9f9w^c!mRQjF;>=hm@3CQH_!_heY>eoOHJth zBYhM4|EQ%&1Av}BbTzHf*r-D1s*hS5jp~ok@A(8_I5fQhLral(6_%HHiD70j%u{)Q zNo+9%+OBCrFYKGbH?SiddWeYVabV!QMdWkOkNXtPdnNLIKl*wP0Ogm`Ohj{_uia1v zN>ot^!%ZQ@G<=Hnz>JQ)n}ohY4sM!#BQJ;a8qVy;WY`?b|9!o?O7<_4|I-?+F#p%c z{r`R#{9nJLuzvt3WbThXu8#RTv`=99uw&=9e>s6ZH{wF9JC8dvyRxE>CJB6aEuP##YUoG zbXF_u`s@kqajkG*!<3!^wa0I31G&c`Fbt($^x-i)Y08tXJT;W3rusC5M?`zUt5$Ip zY_8z1G{3MQL*W%05JjUZ3C%hr71yK1_1TM`OQmtwz?SuRk@IP6c^G_wj-*ar4a^Hz zboxijIrp4%|G+u-)kEc5WEug)-+P`h=b}DLE(&GgIUALK?wtSIUn%>S>Hn*(YhnIR z&-H&F2LCs_94QRozQX_QuS@s0BPd4&%z=V(aT=`;k>`rg|KUNdfECEP|6OnE zA^Lx#sn>J*|2?Pw5qUBu!1ebM=L8}rNiYR52_gPqkE7%c^RKGV8Ap^bnVYN#sQ+;D zx5fx4bU6|M=nB|n)POzl#uHD(-ps(jG-F*wkV?EM#95}v?96?H|t%@+j zRszb9JyFt-{iL*^c*}@Ge2SwE*F$n7NPq8^&cG?jg}Wc9{5Q0g#8Z^Ng2r4%T%5fGsC zfzqG!7bQRWJ4SuN!@VOuRL(#dga=e;{?a-KDxH^Ca%fxVrAbF?;kL#?szKUe%ifRPO zAK|tH2snZmhMZFO7G1mqc*X~xJZK-mS7MMpwFW0?@~tGT7}+7xDhSF~bd^P{>cXbv z^Z`|)j-e(f%x1#Zf>GTU7GP>GuJ0l0Eh%NM@meffDflobd1#Jp2hQr`3}(Qay9*D|uMft{ zn-*kb{>t?ndvtd5+<>Kqujx#;QlfL9s?x9qHwg}orlj<$@0dNmW46<=y3}b)jAJ9< zj?e|qv`k)h?D4f@o%KD^w+CI*c}+VhNCFXABc}_N$NzZpYBJlkyaXsK{*M;b|7|pL z{Qth=e||?fK?D@pXFiUPOJN8;31u_IMj)nn#hRuyO;urvFS4oCYD-II0&xh`HoY;r zFfGs@yhbev24W;0Qm~>V49Jx|5k5S94%Wjb2gWqB^L+wV^IegH>iZ1;!;0DEa6lIP zZ!{WV{;%22;s1vM|5NNhVmF(L2x3whGDy>O&x{))wJ(bwA{DLzN6g4HC83PDX6im@ z`z4Khj$rNr{)aR#w=4hCnvJmk$97{Q_y7E%!2c9IaNK57!GAQ7LI0VwP)Cv$Y9|m# z@z>=fq!4a%S)35AZxtwE6?(o1qFBYG-o2(S(5L0dV-fgIHIKD5!vBr77J>gc{r|zs zf1>+L0{yXx4D`>f(Me_jXe&t)qOsu&0TS)Mc=k-y!LM3)gbe{2Anw@gP~#b)=3w?N zG;lTQh};5dHax17VZQR?G%=NeX;G^H8C{Gf!&9gL&3%;D7`~@gcnbK$a#0zDrc48= zMXF1o+NdsY5Z$29bUvmx^io~W2{ua(-dj_0&x_}LTbbAqMmd}Xx5T=nWvSQ9?iN8M z!v7VDfU@-ebuA?S(d)XF!~c&${u961B8VVS3Y2*AC80-QA@LB$4apLs)#Ha0;Zcqw zZVgAwwNvhgcr5*DO3w1+pQZ8t3PpgK_hGe!_8-%P;XhCI@qF;i@H#$_eS?GjosQ8phu7400l_cYG3?ohj4(inW1j)q zfj6xF9y-1904qT0(HS*(Xl`I%S@yBWj=>!L*e3XdIO)aFP9f$}A-#-t3UEB;Rw0Mw z)T@D>mkaV71pezz z@H&E@mtzm;jp=l7ZO+Wt0zf0!=<&-0dZ0_($rx?NvX39FXx zK{CXqbQ(ivx_v~LEV?PsB_0cF!|oS|PO44GojQ2&Wo)PDlG!7Z(7O?6{U2^iTxsM4 z9p7&ef?&~o7j_rsS0P+k0r4;yb*upk@uQc83#^?Hx^6RFcgTk%=CjIotY<1)mTuCK zg)@dxdT>V`*&T}q?l}#7Xt}(@vJb7cu5Ubi)ZWzK<)I1Hb|)REh|b>FbSNzcCz-ms z!-mo(q5{Oz#DNZ6i~AU%+!jpM0m@D)wf7)JcwQv!oOe5sqS6Sbpo>6tX{c~(@J6DGUuit*9EK?yS?Z8I=zzm!3Hm)aO@{l4C!*W&9;k$6?}oW-H~%b)|5theBoqHPnqmCEQE%n=|HIe+ z#%{I{`cKmR&JMA|H6$Ych+22WxIbB!`w^i2Roqy)pA;D9{kT; z6Rz|APrDJ}|M5y_j{iSo`ET4l^D%!yBKHEr5?3Jw=Itci09pX|FLVLuF0p^$;r3$^ z3opEf)`Q!X&{emJ!4u*CI`99qw8;IRRu2C^0{L&!W{V(#L>cfr2YCi5u#XUuul=kX zDcnH zp0lOEKJrhz-m`Mte?KL{>qPzUn^<_6EqC{VVI}ZLP7UOr2>!E@^0*3OxYbBNu|h(W*eK#!a`M)L zyl4ol+_m@}!~gaA|87S8|Fs&q{m(}r|Bc;jDk4ah{HDRP!jj&>8D6;0-ofX=4@>$F zU*SyO2a%{0`a zpoEpg37!*Ed>CGJf*`#g0`^egKMGCVhbwObfqc8wN`n9NcL4tzpI}6w4WR#9IsCti z^~e7);{3zATmP1>=j(sh>t8!u;rgf0e|4?i46lEq*~sa?b$kZase=k3vFPQ3cq8u& zz;&46O{Z^m&Pzo(saVd%Z67H7#~)RNq*ti;s?qJu1S7KSKbngFS2+KAQ_JH&t>^RU zr=$uWGQ(OI2F7?ixGoh4`5s7UtpY!uyx51Iy~(J9#C*xZccG7G58~dMS6-Ri(1fAs zBBNEJ@8}z=M@oNbURkgmOGQqr7t10)ly+!0*au1alGK7&Ec{PSw-+0c%l;_JB3`)uZ8K-V3v|==-5_Gams-#n@ z*P4%7T7}eWjYnDw|H9GL%SxFt`Q(V<2H#Kz%r{c#fgUO z)Q2rnjr1AT0nhXd;Hy|D7d|D&eaofehOIIj8;5e!fO(zJ{N#nVPQ|i32)!u~3RkvxEPEsM5>WznL`^5_v;j>ZQ2iy;W^&9Z3WWzp8Y zEczOjMUN~?Tj!^w#ZJv;{XQ*=9$prG?aR_w!?HA@%d*K%$)?7arFEZ{r4e41#@d&q zxrSwFMwVrhGuxZG#{M>%_h?y~;bm#Ae_4j>SeIeU!te!YGH|xJv3Z{sW*AwS;o6s` zwT6{xMFClZi>F#`j`r`=v zLf(`v`l-=A`bp7FN~L0Y>8BcOapKfwF&#C;{Kt0GPmOlePl|R_DizaFKQ(pB_|9H>v|K%uG0IfvYX@gMFQ|0l0?E(BNw%I7Rpt2b zve6J{!R~83@-JF0ceNnuKgnyI+kdT4 z;}iBVo@o9R@)IAm{z}Y1Rpg1Oac=gbreBE}xHc+o7zu`7;i@8bUx^uF2clYirId{y zh-CBCNE%3R3oC6L5qp}%46)--t!Yxq#*f3#FdrM4@4|c+u6`G0(0j?KrI^!s?-%{I z0{fpjI(rP;|7iLBzk5gj<@P_fM-6_u#D`S?F!|DSaEJ?5uxt+o!#88c?!a2&Jk$=@ z?`O}I`;0XjBgZmE-)2y;#b1lW3$?8a@qVnnAB*=GJ&46!mn1k#Pp|Wa1ts!t*0EXr%&GBs zOq>vU8&VCe#!L+W{l4-@)N3j!l`x5G8_eVcQ8>_jO z&L_t2a_O)Wk)>O#XYa2G$J|TjGbnetbiya1vUH2}Y;pbYM~*HQ(}3j2;?9x9`?YX6 zs#sESog<1>BZ|3YZ@I2Dm;WWp|9<@O$EuJlEEo|o)Bk59tp7!qvAO(j?eaf)t#c*s zD#UuKOib?K*49>nh>YrWWNDaOBvX8rB|ys*p|T;KlvyB-1_JL2l0Hv5C9Sb E0JKr`wEzGB diff --git a/.setup/latex/bib/quarto.bib b/.setup/latex/bib/quarto.bib deleted file mode 100644 index a8b0597..0000000 --- a/.setup/latex/bib/quarto.bib +++ /dev/null @@ -1,11 +0,0 @@ -@Article{Wright-1918, - author = {Sewall Wright}, - date = {1918-07}, - journaltitle = {Genetics}, - title = {On the nature of size factors}, - doi = {10.1093/genetics/3.4.367}, - number = {4}, - pages = {367--374}, - volume = {3}, - publisher = {Oxford University Press ({OUP})}, -} diff --git a/.setup/latex/figures/pdf/std-reg.pdf b/.setup/latex/figures/pdf/std-reg.pdf index 0f0bf301f1eac0d650be82bf7394902396a2fb69..77c794d1a235330a25a35ac5d995eea2d6aee17d 100644 GIT binary patch delta 127 zcmezLm-W+M)`l&NTT7KKjEqf8O$?(nx%7SWQ(O{DQWZ2@tc(ndObpBnA(Go~lrk=5 xcQ$cyF|=^DG_!CuH*&EwbT%_Kw{$cxHZV4HGc_*(ul%QnLL(Eu#@50AimaMF0Q* diff --git a/.setup/latex/pdf/.gitignore b/.setup/latex/pdf/.gitignore new file mode 100644 index 0000000..acd02c2 --- /dev/null +++ b/.setup/latex/pdf/.gitignore @@ -0,0 +1,5 @@ +* +*/ +!*.pdf +!.gitignore +!bib.bib diff --git a/.setup/latex/pdf/betaSandwich-001-description.pdf b/.setup/latex/pdf/betaSandwich-001-description.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0e74477f6e4275d3480d14c9fa1cb7d63df8b5ad GIT binary patch literal 90701 zcma&MQ;;r95T@C-ZQHhe+O}=mw)?bg+ox^Ywrzdgz5njcY;5dY%vMBIWZq?6yl-Vj zJ>-gF67@ei>%OmSB%q&DqL=MK*FnoM4jIw6-7Os{=%*<>|ME}=bcS=;7(#C4@L|I^L0sCl|#ss zSSVd`(Os;83F27v95k~9Kyzcc|*9(lLgC^BLeZ~CUo2HoS zOW{7?M%OJhZ6lIc&^0AXiKT%~js~F39Eq7G;m3H0>-beoVeQs29+H`9vE7_r8O5Sb zh&>nC?6Kylx6#+8cUvoYw0w_gPE=SPhDw6UKUglj=%4LCsmJtI1+=RHp03#sl2z!H zlgHthjtPdA8GLx*+}7-Uy%hJEXl<^(;W`LN7DHXE|Ds?i$#+8NWH}di*J=b(#KE+H zRqJD#alQ>rnJpCT@LeL21AdW)h7ewwBE6QqpR^=ArOmRqpP&`M*#{HFN>w3S7;h9` zUv45DcW?@$3MoL%ji5=RnArCEJDX~6VitmBh{cv6C7g6gjPlg(2_w-(B-p`fKpU}< zcs(0Q(J>LWO1ztOz<8FhDt0LpNrPsmy(_j#HM-jNOK|NSH`Pa&R?YYiryQcT=pw^# zG5caluQv+`Mhy|T{$3Nr1T_2Yy@U{c;ROy%hE&?3nll|bwHVE8bHiPq>Bz#ARV?Eu za^1~b@~go41AwkbN`o`wtda55?8{H{V)pCozkjFPT3htGgiElrdl(6rNU-MK%+7N~ z>`GX&^mO`O+o+g>vo$L#G_@u18f+?9I?og!KAEUh4%}OYlnB5r^}7j>NaIJDdf+CG zN>Aj$i@;FH_vFyfcu$?a*|2X{#T}~ak(;BUFF{T7-<%EG;8E4!{Y!2TDS*8ty{CW+@N3TI$m~Zm^9w z^_+}pg38z+mTm{u^uQ-9yFe~tE=_UzFK>-vguFcUKMV~XVYBt9+ErQoj2$@o0jZ`b zmEENZu8`&sF!(~D4C~DK{~>@WcQg*7uh^+AU)sjZEBUywb>=(>j7FAkDa(Q-aTa9_ z)UKnTQXsz;Mc68&IxA^6W%lwxNjo~?jW9qnmELdKb8 z!)IYMg%88&3fjbx-yJkz_hWBJxp5)gXJ@D8YhBwy_u86kYkt|tEZ(<}eJ-{OXK2<) zoi~w=(Az~$`#Vp5LpTtHcgVrI!kkniX{%cNW>J9sa$)R!rL|*;;5%bXYD8Lkxa+IK?C3SBB$p{pz4XB50Sy>hxP10 zu$B6(dCtAJNQ5sylG#8vr#VX$;=3u7)yhSie*o}d=&+yCNSI~(1NilB{~W}Zag=v? zca?Fyb>BOo-0Mv57vE>)WAkT%F|#-QANKQK^nY3x3)lbZVO;E7|F?w^{qH?2HB~0z zKMxDM`=a%vF*Ou_B3GWaTXJoOMj~p6drds<*VNUDqo;qqFPg}|OBA(Rt8Efzq~OML z(%*~4u7oD_(4ecW_t3b~sfE^1rJ*0c&C`^Z8I9t|VxgX>BOz>l)4S8?WD|dF>$&?( z!OgDI^V{vw*^5rrv~Hb0(2;O9s%!-JZ+j7-3SyVwx(JzQ*x1%fO6dH{(q%JhP|kSY zq`DE2O2w-2MeG-hKq1Z)t&K>V*ZD1-aeY-aFHCr%);=lRkuTp1-%k2(oHg2Be-z4} zMx37Y{A_gZYq$L?U_EawJ;aw)t@Uox=DrvSNt}AXd^^Ax95ohK(+kC}D`ia2#rwPq z>5&`ozHvjm)7Ej@^@@5_1vAUP6Zmuf7oN6??`}9s;JSrt6y8O)q=oA!EHQDoZgO#%UgMQ3y zWx&`CnUi`_qZl2=$yFYv+AJ+q4Z{sj4areM)wh*+fT^gmK@7nr09U_yRb^wjwq`R+ zWied?Ia?a4dkj8Rpx@CLme%prCN+Xu$gKgPEn$eDGA5SwJ-^J5Y-IMzL1d`*8h`i^ zUKVr1R&Beua`&{N&;jthSJ9cf{Byz46Y&?CTLnVHprOCm=P03A6kGA(t#l%g0zs|` z{$^P{LC&^vsM_?7+f62rFQP#RDwPI#uptU5yxamI1c@8YJxRQ@z+ebjhx0M=*oZLH zAq!(|1|?GDk2Vvp%Y#2p{LIEn94;|WsoCo$;dUo*IgH~;WRo1%`+%fY_Xc5FqDq!C zF+&G=CmsDtvH?X%fX4F)^PA|abep*>)&zWcVYq64H_|8o($R$*#Rj(`3q`S&t0Z;W z-3ZFdqsY_g&v@UHrHtiy`RgVaRLiWrBlo|yJjdz5i7;>R^6O=u0ZvsthrvrSW0kD+`&r0q(Kv|Eg5h|5d5XM9dsaZ2zL5b{zqBV*kn1PPP>j3@?%1Vut-lOR0^Ee8t&UlPm$`3nQ} zMS}HJfDsZ31tur}1jVp)K?+9?D31NB= zU~TJ%=fduT3v&TI_um?JP_AR#cbNrp%!30oZ1^&!fj}W6zw#0MGVljsp&&sC;AWAK zur7a)4uM<2hky~wL7!LHfO+Z+&+|=Z1fg{U`@%u@&klZhcMKN#P=yNuz(9qGGGb_v zE;h1OW^WrJJPRn14&hq7hyY4FNCk9na6rE2_w_&9 z!j6%&gSlh)hk!20-90OU(HgK;wZP7fz(OdG>Ae?fk$uDYp>03U-+#K4RMW7RZ-l0h zL7SW3_Cu>fscT3uPESD9)ITF$Oh!K@&5)!(gTB7LMI?tn4Y)wp@Xq_+et|&=wC{+N zzYb5Lh`|1JOd5eZqPY7&k@)WikV|v;=g<&D`vm(yeF3~bxJHjppti(BVEqubh(X3b zDc=KdZC|K@+k$w9@JvTOiG+fIcW-BR0T_rd&0)g1em{l3P9xnEJd+TQJUIcafOZvq zf>ZeWBMb~MM_8yQ(Dx7U5#XXh-@w4%*<#pGfEwhUV57AnFP0Es&YAG^IX{{IcM)jI z0Co`J{Z4nY0rDgm*!CA{Cr2Rz@%et__m}QXP~_)V^@n%rSMB^)C#fl-`H9fKO%VE* zP;egn@cIe!NVt zz&5}kGq3>)2r2^9kLiP;gp7y|?*1r1Q&OkljgSW7{!z#%G6Jbz)CCxb7Ypy{EiO6| z*b_Y<`$woK7)ZZ0AdxCiPoF+YhNRTiP^ONyC5&QMOW8=j@5vm{d7t@z({M$egtUu-*^k)rBn85LU zi1#sKlyLNm5HMB@4&f6boYAbplxW&v;^uiZBFRm|c>7{>;V^wQYIVKs-+a%JK&$(V z_BvTJPk7JT`M1{|@S#TDwp8xo+V0OQ*LtorGcl)K_w7)le-T&PZa5p8?2ql$N2>9Z zc?!+mKClG;tHT*kj70gD;uyj0RF@NxS$D^`2)15BCHB{*srH8=bu^}#+?Og=!pif5z6U?BqRWqcjcoh?lTp2f~nh_jI9GhVAQIVkA_ z_|dK!DGa51rEwf=z8T&8qu0*jJICF5a2sb~@IlAF+9Tt3Zj;mDkDtjDWz)VIViVnvb@nz(y3e`VMY5e5Qu?{Z(gO?f#mmNCpAooV7ht)^**|86-4QI zM`vOw0vYkNaW}sARTwoyi~5&+5vq)3SFPIB0rCSIWVVZ!D;t<<6@429@7P&kUL{V!A-zzZ0#ANc zLa7Y@GxgYx=2aTYq)axX(qt`D)ZYN#BI_Vm+XMcXmLX+u9|0+(Z(ny$6 zh-w~viAlgea?0=Ff~2!rO@s;Vr>;$Q|KVbk$d(J+@Vs?KbaE8|kLAZ7i0o_!L$YB7N4bC1;KQn*t9 z9;TO%{;neBD!c_@xxkA0JY=5adX7^ik0026*SO%i5fKdF ziz1GAF}UzEVjZJ}aUh_W3;l=vztCBd%?&9X`*%VJH#i?$5JAxw z-Q_d(q`@ZaU&QIQNE0>Wh!g;LTC*P3j%(=_5Y4(k?3AHlnKsMz*MycC1~^H!ly{d# z*9N*q3lV0BmJKzYd^f3nrTeZ&o5q0KFA&AmVQ|kG4+#G9l@v~oaEd@wikFKL` zno=jhDTdWldNZXfJ`a;(U8!D6KP2QU#sAAwE4$wNP9|Y(P*T_&rGjCfyaA)|=Y%l} zDz%^u3Uz@J&p4aPw8&4jNKG(?(axctGe5I|X@Zo(LB6!McDy^&?bI>{t0dV|UT=(E z^k$RNJ8iLI!&mRiZS?s@BdkBGezrWl+>AMtzU=~V7eVGJS_ky{tUGMLymbnye|jK* zd&(zUqEJco~IM5Bg_gDJ;rz} zXOBXPc@2=@%083-auu3hl&9^=SnclXCv6)1%zamd$5>e#bi@dPQf1UiBXquLck5g9 z6Q-U9>b8=ADQBf6#M~ts*ErspZ%7Z{M_Y={U%8DawsHoqidn1MU~XB-T6rgWk=?x; zF<~^p6BLr!z_K{_26enU78_nLTkc5DkBNhzk`hc>K2R3O2iGJt7=Oc9m*MxWDY?Fl z)}{ABFXdSULgk+(CM`nmkDn)NqN6DyT99}t*sON9(?n74WSJLYDfPZBp{y7lp<)Qb zwY0Cn2+>~@Y|ec;oFZegLvULm3LSIj%J}EMgKzA95@wa$ofGBXDs%Klu|K>KmiZB7 z@>dNla`TG&KXEI;pD8+FitJj{2L|93nh@)~w_&Y5zyw*VmD;QWwf5?c+N+~mUU_}1&nn(F7MZ7SEd}>w_>I9 zkE6PpTr^=$ZmTK7bcY{O^t=-km7`hyLF8_BL@m@kx-pB#Su(LFxl~AJG4xA2*F2aI%vNFM}GtZb#Ej+&;l~|A6-TAf_|V(;}mui21ek`iFF(5Cn_U8k7)LE-sT6Vd*l1=NAa%ow0L3T z(xNW!&3@LZ)6MESCc$UQHDWu6m>YOX5OfK&dYYDnu!UOPD)~SdY?qPgCi=w{e?Q`3t+6bG6EOJ=}{E6RBgT9yiaOZ&<}mFc!#d7!W2yfEr3b<09u;?iH?BG zCh<~2T10miNFChB$&$XU4l`9b*Yn^4D#cyqJxBG&Zs8jiLK1Zu z1J&cN4n5b&v_k3R=Fat>8QgICPdx-)=UG{AQ_;?I4bty~hE7v(XkLvTag~55CS|v6 z(2E3<5`!9+R}{THZHjv8C>Uer;Eo_xJBs#Xuq|je;zq#_GJEE-@{p=%w*!DK;w}gL?2qX`g zJ6{1{=2^vojKz$-S`8zF(?-%YguvigdsFeqGjm_!$945p$Fe;mp4#*eO39|`R^x(`)YlUP=iYVtn|JMt>x;0X&uxbDuFm-#`KxpgORZbw&C$=ge=z8^SFb! zQK^4va7$-&Nn;#;KAnn(WN_=4!l~dhSn_M-ND`a8(hvQaEEeRYMw}a_siS5bnk}S^ z2~bIUZtWL>acg#&OhhwTfM7EJl2=Z4V!NL6dYqBr%_2s3ej2Nt<$b)y__J%hV!&e} zDIJ3f*L|{cK=s)e*YPW3lyo$XF^*Gf#+ps6!DM{sFVkiepD$k-elPMt-Wt(99i<<0 zm;8yJtnw4g0z)mcWluwJ=2@A|iR>u|(LOWql24Isf;BDiRZ!42G2R|R?!k8@PmW-yJi3m0)kK&+XrfaYTcrBU0_pBFeOol5TQ!R<97aAF#=@ zDC;dYAv6nL#Z{oOxVR@lwmB&O`V0AjtY8a4ko~Xq27PWpc=?f3Btzhs3J%NE*)t;5 zx2=O=L)J{NFyxqslr&V9RV6Nwf=+j}STwemxF>6=Qyu}jj?2!hT{3u^-H3qMMNpX& zkZfcAw$Lx;8k`=%0)i%vgBxu0{tmv@8FC(!q24<`u5d}&t8<7_9l|~p@4?_Ww8IAbZ`2(!2S2 znFTAb9G~VO*z=PmrV^3!9+s8nw{6Jgs5*ou9)B#Ij>t}oCa0IqmMBM|=o?mAZn)5F zGxC@RObXYU+e1Go=9wbB2`uizhgK0MsG>IwNG5bMn?#KZ*xgn6Z}5^Tkzf;hxkkT0 z_}+2KeVwpNH~EQCa^?oO-?7pw|%ntZGREPnf$$S}re0y|a7E*>ok_&GAt^P1LiQIBsT1`)v~6uu>e$ z=VWZ$i1p9Qjt`MGO1N2@jh_}gQU;9; zej`@kAmpA}-m^_(3{l?`cQ0~&m&kE(I5uvzDK^JWLBbBv-iIz0+d^J2 zb!rmckHRE4jeg+PllJB z2l3td!CNgPh9|#PRbM-Hv)$+1Z1$oB2VpV&q1Mse&i=tINJhEsMiL!^q;AglGXt(D z8Yr4(ow>*!knaYuevx0OISJFJ;!qBGqz<+CF(A*c?;fl=cf3`7&89ve;hx&0LK-78 zK1qgl*)8<9xIBG*E@ro4<8BnW9`j?+MULkFB^8aXwPp>fAMwYG3%SDer&MQOW=1@8 zpS5SdGUb)a)}YaelbSZJTq!s^5VdViM<+Yn!q1bJ$BQW|7~xG2W^L(Sl`Cm#0DL*} zFg)TQV)l%KW9fX710W@I#4(=A!c-XrF=V+00>G=nNU29KJ91oU z(C}KfBLM^tEyQ-v^0j|f=O?_yDY=M@^oS^{5|Jzity+^->&7aYC@h|#jgX5wEMu1R zWqwVg89l>DhmRmHJ@!zu*_#pytq3dKr4Q!DUIkQb#(bwMEd&UP8^(lqE=$?ijGVB% ziIcgCmwLT?TiJ~G=oHPkCH<2kW3Q@}J3T-HEzjZ+(|312*ITtN_E@JUb)VLC@|7lI zDr}8+UvJ0D=Xaksv#u#uk@H76GpWFd)XZ+g#cTuPpml26oO5#X(NUwei-Zlu4~YLv zDziuZ4Mx4-ETi&(rQMt^iJ6j|I095nU;uxS0AJR*C{Edlmi*i!9dsW^$L!dV8u zDl@r&P@b{S-mpaz%kP2*hWhO>r2mruTIC$5-pCS4=cknI@z@3zhOfTISgFE)TkbsX z#9bPEX+p^x!|>3wN;Sj3>=TI*aj>k~MFRw0C{V9VZ95q16O>FbsQa z?iP>I{N`FbhR}obb6q@$4hj z))S0Zzr;o$^Hg*PiCAJ}(wwX(wYY-I>y}t7S;VMUg8q97hR_cD-0%{{NRe2;!}MWQ%i)$0!(9TUQSlcuc|yNtOrTVyv+k5=RICBa*#dZQiB zN(lp6VZC|Til(cc_eg3ZjN1)K=?Wa1`th^JT|2uva%IKqfn+;1xdbP&$ciF$g*l*w zk*AHCYXY8fWGsMu7-$4LO-4;HkGw=gMyrf8=@?o}UU4}?j36T-EXyA&)%VQo$Zz|f zD2_w`>aN}NRr2D_-b2`B+@dnA;9=lj&7kQe5EUkMo5#c@MBEU|NP)Kot91Ov@=RnI~4t+cRWg(~$dKU9>;|E9s!rpqkddmTv+ zFqiFhE;mcChG_Z2!KHGAbq^N$$ok?PCuNhcB?8i;Mw?Bp2vbX~EbbIG2t;!6XP`By zEyAV3o-efiu7{maxSqMIMX%I!VS#@nKG7}h%xt)joMNLuJ zTOzzg>7JJb0?1>U+bg|egW{~|Cv7$Eh?U!O?FnspY-VUzQBxWKfuo>RxYlyyfh8c$ zU;LYSn|05_t(Y@vcMG=9CFHp)JMH+r^@v*=-}tg@8=b|>hi4Hi*#<1ymmg_L;Z|9D z5n%b(I$x$r?3S^{A1;fRJUI@VTqjkU?YMy7HB}|fRY@7raDsWK&ZqvyRK;0x?ks|cg4o1fyy2RF8C(V=mxc7HZ_ zy^j>!)SFh7JLn}(c6}No=4F)I*WEZ+l~RG*435VbP1-pv?FN) zjQ-CA!;PbR^qKnOn&^Hq|^3d`nNbn00f0>rdkNn_Ll{Gg!-nc z7i3t(7KyJpn(RL^UznRnFGAGo-(W-bZ3PDF%&Ir1L~}liq3uG}ixC89q_;e)p5&JiDkv`tZx*qRM!)aT?) z>{!L2r~us)H)ua#D;yWpfRU@(cnO6E%$yH8-qWb!aV?$Z3?0(09K3XHVEB-u0W@P} zt|P%9(I?_Vn-ZEg`jGFs(>2Dw@#x*^jtt-2sC2s>mNn*`(U!4!_ej;MV9ranCyN!Q zmiBKZ_cBp_ZSX(I(#4ftO zyXBNl*XQrsw$GVA*UvfA4stnG@_id0?Cq#}&@D;%lsjjIBlNbHy=1k^uwG~AWz;1+ zwwQ5_n72e!=JBB_Jrs&|=bP%qT+;Gk8zZySy=WzFGZ4f+^UOwt?%NaS0!;_%B+3m` zZYcsBP^j^JhJ(=yjB_31^mU5#U++77RCQGuAHC^*04$rt-fy|~kaDr*MaDCQ@wJZp z>`B4DK2KQQ)|-o06ORbSejEw4og!pmi=oNPQN@}yeg*ODM2T|1-9~HFan$ZzzjgVc z%h<+LqV+(-8R-yh5S+KI+xzO{>Q4V={FtrjnNK&37FBi3;Il{Y6OvPHQ3Xy6>t(Se z#z;t^K0Xoj&lTEmH-2n@lC-T)Z&p|AYb`yS=~-7-wf1&a+5AGmH8OH}UFXec0F^k8 z6H*>VoQDDs5WX6E%STNTr(4u(ck@YY>bDHoo;YzNg6Oi4u;aU*If>dctN+k=(AS6tN~-9#E_ zW*pMf$I#FHGep#JhOL+WJfF^?e)DhR!by&i-8f+Ljf=ADPc7tOFxo&1Sy3#E>`c?s zBkr!-&6$IHkl4!d0Thl>mOQAguVY31DS3K(*h2_Y5xKK6rDg=Z%!j zebOE=%~z|TYMo9=o5AV(%%rSS_`>L*QW7}LXbv^Y1)i1}tI0FfpM`DF{&8d-R(cdr zV!&&{iW|2l^7KzF-9(u|@f6e9PQTzRpnoS(Ddw7X{kb8ME-_V89Y|e0%Sby~c$gr{ z%Uv9TJwDZBp;@ST;uaIHmOAu;M+K?T#HVBRR_>MXGE5VU^bn2qQw>fw#w>YDcDV9s zBfxBFsMcf@@P4F(AZGPZoa`NgQbE!BsYL*@eQDyyu3xo@Ior-vgQmk_0Iwf$`^$nX zwXc;2O!>x6f2XNtbe}eef7h;PT$bSoo?oz477R-Fox!k2WRC2j^3M6EQi-|8@znR3 zQAR|aI53|pWkP-!=5~Mc1DWHWjF|Ngsy%&Yx!`p>RnI%E(=Zsur_0F4REW&M+T`fy z)*Fq^7wXcqk%i5GpX4x!+QGD)Ae6tGhC@uVJlOz{kS2qF*QAa@f_fvNdb#c!v^9K< zmx&c-K}GEPEV*pF-j7vredGi`AB19?_N~U!F!P=EpYrX}`bWX?=M8|SJH1K`jP(H9 z8M1LDM|ew<_a?pqe)~Auxx?$mqho=*>(xC`GscsoVBXVws8olSth@E+yqM;Y*!LQX4|w(F_RY#AULt%s<;&?A~x!Dv}zqI4*{bARfLy&H5I9;U!B^WLqy_0VIltc<+^PJQ9 zUOa0LmKLF6ff3%C4av7G@0ztbJ{q~){G2in;vav9{(0TriMc(8O$&@_N!5gFm;2ye z0;)$EL9xVHepIjnk^bBE=q!@QBz{N7#C7QxPcS-)O2^Se5p(Pp=nK>xYs+s9P(wfJ zCf5NjBh?>=N9gA`2DO=zDN1)v?Pay{u)S_Lem1zWwrmHL4lWj>Z{w0}blwj#F~ruU zbmZdc$lL8djsS^*lTav);72v_Dz{X5OZT!|Q4(nPtsT6wX10_>&OYD1?ul{sQ~a}L zrfJ>RIEu7}?DzOWQQIb_pcbeTPSsL{XPpLpYff;3E86#Z6CsR}Zke&#QB&pOtQ(GK zYurKXoczpE*|zSmZYSeDiaVj*=vS~}H?P(0by(uJ$eukE9sChfucC%I zcPV3-^>`b7BbzRBU;VN2oX?xo*8P2=@(1kSsCz^iyN@#y(}-uA5fKGnw)iWc#szVg z<|gqv>IX9T&Y95-Ht7v978}KG6u$>WEOSo<@LXp7Gv~rNqP?ngdl=xQpPv=BjyJDZ zCLRI7uMMa|6~%uOjuN3Q2?P_JYm<_5wThM0-VTY~P~l=9WkOgs4X)DH!oGrgvZ}-M z7duqcr0nCTrilNw++T6XOANDWvaABiS|5T+#^wN%#XfWU2$Ebn3}gJa6%-%GgkEVJbHX%y45lM8b!?KA zaW>2DH~fOJ?^^1I8U;=Fh;7#( z^XVga5J5XTYdL+#JHD;yzV?6CPCvrB$%XABb8h*lW_NDi&p8&HD!B<<-?7Zys>Ml@ z?^SL%2Xg>vVRd7nuM<|YD-iG(F-QM9$L6bwH(j;sT=q*91m+wOo#c}W#`@&6%?<^q zCUV?3OYtLqIUm*|RZzugwpj?x7F!mq9ls7rk%hUgS=b$s>h*cgPi6xX-6piHS~t!2 zh7snUnh!489l&;PSXWb`JdG*>_Gogk2StHiyXvm2?^LRF-MUeJ*dFT|_UAKYaA=8l zt{JG?MTCLU`+M1^Z$fpri2XH2co5Ez_WDwFV2?{Z?il=uWgS zR5V;w8rJE$FIuCKz0j0Nr!8H>Cr!lnHeL$Ds!YLh1qqcuop&_GC+(s8P1xpZZebwo zY8;|+q<9D+@DDS2+n&y2=VL_;03JoDgks=CgDW~^;1_Z(;J5LA#n}GCQsWoXM|kmM-r&cN&An;RgO zIu0Onbs$zqL{>^fRMfz*sHm?1xSL#0AY%#pv@#$sh``t${CVtn-R0eZrHRGuL2$Iw z00LlDie(^kdwcnReLKK|Z9E(CrK=jsfa1@c3KRbXfe3n*uS;BpSk3M+jQbXN0W z#q=PhBmyF9Xk-K4*mFybhtkKD+L-`Lp&xiic<2AoiuUx2Xz zx9+4oy^AVS`D$mE^}@1GqW9-f$i z0pbA(B%r{E4Opo5;sN?qXZar?nFcwuR6Z+-yS z{k-{NmyWQBhnZRaR=ykLMn?8P_GjnCK?}_d&Vm{K*i3KHy|n-Q7IQSUwmbk5fGw@`^n@UVb_rbJu7BDqDem({X%X34U0c8R zw5>2n=Y^5lSld6^1!el-g*1qLP&I*Uta9Q=I?+?;Snx?ddN7QP(2+lZo$S~S`+iH*5s>>}BXXVIriP|0j^hd+xvLH1zvY zK$*RObAO;;4A#P8U#oy9FRl>Xel} z=k5=kO;YdyiAr^urOBKCZ(G54M-qeW%}ncQ^;k$rHjqG_PT^T^dv4#e?8m z2*LqDlew2pz_HGTW8r)wa|nyWQG6940AsrF-W))Ba#(~k7Ob|-#2QP(DB8`+;y@p- zoY{`B&V;Hv>e;9iH9@3)`G+jMVWih_LqUC*f_|fi*MJ?X6!X~XrC+b#u}rCQ7iUht zK(^ZjMNZIr9*K(x1#ff6&&IpKO-G;M5&39d|LCA-kzd60eyI${LQ3B>LRx56!D58% z&w*v+Vb{&Z?b~QcxiyLXa9fv6R86ZsOIG+`dwu|5{qDsKgry-PB9)Vv+-u^AG*pM4*;?pJXkFCT6=e%$rtw|L3XED ztqOIdnh9WOHoA3=Jv#DFAwAv4QkX21YEJ?uD1HTc81l){t5Bw7IA?ayXJdujifOEj zSQ%_A@pev1Sw2a6Jgb6HvA5y5qYds#t?uD!%h5$*vM4VX4;1Lv60SFy6)2Yc%XT3j zv);z+{|tEQI{5y+uV+|5*S+hF-j(*JB_exqFJ@)?=9=ndB5LI?u80p5 z&@VAxmFm)5QIz{R@HaxA>3_>YO}wn)&w)N`Yrn3eZEQ!nvBKS!=seoY_NfV)Jl|xB z9kJA+{{2l(_ez{wFt5Uja(Oz{9Fxyl>bipv;yU3%C`)NLyx$Y1FsqcanqsLLHztHv z_EF{4HxavEve3EtHKEb)Z0J+lNl|hVKIb@J(!PjB z`sz-crqJv3i$$x2c}<-tH^^2vN~55A(=JqeW^bL_QuBBikp1#rm7QhzL1SE4P9 z4$uCC6Xvsv6}%8pkS0nny~SAF=TvUd-yhF^Wjs2ISG}QMP}u>2EJhL5$E9+g8zKjd z{3JT>y{0w4M+?Qso-B=e`g8U>8kKSXJDaB4m1L^2z|UfL0dX6(B%HUXaMGJ zBJ+43Asz65PdZx(x9(zfo1zTE&@vOAu$ueH7^0GUo4rwz%j~j=rl#f;q+Tz(Yc54L z)w^3gxf+8%C zb9FNuK=6L(kO^>*|1;JfjTpvS-1Iye+yzd(J3WLCoo?XLbShm5- zSom_C%!Ia@bpJF_sy;fl`ijE`8T9PYn3C9qRHtb+Ca|=;XE<(+laM7PE>fpvp)z;S zTx@l6N}WT7$anqktLg0i>cIgjNy?UQQhK}k1Y5Aw|8^baYRadE-6g&4 zs>qSe$6M3>@n|?)HXW7h z$L-r`%ZT@_K!s^0f3GC|VK!h7V~oG>n4Gh1y6Bu%j}|oud+M3(&ViS=f538gM23dz z|1iZei{(GYNIUQ2FiTNr+;gn|?@3VTZiE4oRA| z{MdDNntbVT;;>Jr!qW&yNN-SGutlKd%Ap)$+|f-qtyRM`H(Hx)q633GaDvcl16cvb zFnJ@>Mh%p)I>-b;!rTHeur0Ai?@cF*%b0g4&q+^P60V=$0fkiakwLjVqUrKnIiD0J zfuQk^ACPuwG9B7E9WeqzFJuaqBi%g4Za#oXryWYAz1esrnK()Xx&zPcTQmG7$iM1-Ho4WUe$Vnhj4rW3kPYCyLC z*Mw_<8Rak8V|vSA<%o5VPB2|(wTRP-XA=78PRfQ!-AQ-!Q`DdjS`?Yt^t+UM!TJ-- zkZpoV^C=JXGY(Vfilc`-+1p}d_Nu$`=LS=%`g`h^Tg4n+(awG~?ZjXNt3zA>nlrNN zg;@}kRJWN_kC^t1i~SlR@I<+tWQ)f2D|;+#P{`NwYv_7&O_NhwZ{(wV^1j3 zauyxCl93*Ut^Pa(NfK9{oA!HsmI+oSNkNU$VG%!(2Ax_{fx~9=T35zl0thzXVotfW zbHA)D_o7JJA9My7qKusoHs>qMIpe^perQY@3oW!_oo~J(2gvwO81+0+*vx3ttTWOZ zAqmle+RGroAHxU2jH-^U_t3OWxsR%htkf1y?OI{qp~M$F zU^fq>6V@C}Q1&kmKPWZonK74|1_UjVN{y+maKQTA{)UYvmSS@1j>Ed|CbI@yrYX9- zD!THWX~%Au5icL&S*y&_;kx;0T=kYLJ3r=YDVVgdHhh6llcq;NBg&-GfoZho^YSGj zXlxV+?bFjPH1zsDEbt6@)=u4yBR(xF*8LMAbl<2@Ih%S+Tp)wf8GEW6Y<2 z$l^|&CY+g2f4`ajfc4hcTVdqQb(6|!QU6)&B0kH8{ep8fA-e#>aM-sgllqWpSNsfZ?dJ6 ze@t)F6DC&W6xT3s+hzzLbU7@wB#avHv$2U5N_#Vvbu#=+e=ibs!Cb4`IwVlZbA7Tw zydqV{J6^cwsYwXz_^T`EaUF}cArNc-*|WApUf<0VdFyjWRK^&7 zTXC%Y?rgEY`7ZG{%U7k3A^3iiDJ7~0=i_!q_>A}1hf11Fm|^4qfk92V+-9}rELfE< z^yaes>|sHGFZYE;Gps@qpgDiyDTTT z<_j>&hq`-tVa+H?D!Fn)r+K=X%{5lt_eXEfe)n|=47xgCl6W{-`^(7@*aPtlxHRmH z_HM~^4vsAOfk}~gb<+vqQwG1t;)t|9UVthL^BsWnYPto*0%=57IZV!?Oq+f;$WPVj z)zgR_Ag`n?SvotxOUMlsi?0t=I*FwXh8Z0y#2%2ax;{yT3wNLSSpYt(JGgOBOv)-e z|HHO3h7(4R$4WBX9z&PF(!^YKb>6sjO4X804=+V>H7VczQhLoVU_7s-y3vW!Wk6M%?^wUEig+W2w!hoqqdB-_sXbJnAp>^ZJXzEnif6V zgt)-t0y;U!cwGKNBDr5d2*}KeqyPP^Jqn>H`u|^PecX}-=ldC!t2I<`G4M$X>!X$steR#A%!Db zd{>6NOetz17|5Q+7ov*&LeP3TT+?|elvs(K^*-IGqCS8gJx$o(Br5FC#$FS=UY_b# z9E=lK<5$vU!}$q2ZEve(LslOf2seT%!xlZS&e5I+Ya}S2$fu}o-1Tdzmiw4zPQ4f`Id$69;@$r|K~kry1n+RkrQWmTk@}U}p%~h;OjTt7R17>MkkIIOb)0~~6sT}L*yy2` z6&5IjlK))>mD&?r^c9&S|$fAwsGZ8jt zB4$2<_RXB=x5{4I!-kLFt0i684J0$(-8U>U7e67pFviTlziz~iY+b-@utnA~SK37w zJc$YTI>6BGnU$GyTaXbvmh^(_3!Te97%qIAYL=9}3q;h4TGo(`RQ ztHr3SaInQAV2uhEdY^jkJ*^ayUVB&YhVBIYUk7zu{{@?;n zC~2zXw>GN}>~derq<@+;`1)87{v`YCCANj8KHe4Y-l`o-+x}9a!!vfi-!op=o5}p+ zSA&iJBJd|(Ke(amy$}Sh4^+ho5ysp~#6f*}-^V2myfemZ&&el4ql-M$;sL}c-RiNZ z4~A16BjVWwUGBJ@&?iQOcnEo3dzQcCj6$$beXWLS_6LQY3Ziy>d;L9-_s%uHL%&Pg zwF`Itl*(jBgXE1=Z6l~t>U9P%#X}R zjdni8yVgtOPNwm7qiH>Qt~QlbOh7!+v_TA*-@dU4YO&~d#j}-2rH|%k%>PRN*g4@S z2ehxtOjSR<@-=nz(T zg@~292qCcE0a4R4at`DdgaoXp`7|vIcjVh51m5QJ2jBcQfg7h9VluNnDJ?Bp$i9;nga;1b&9Gk}QVSB2lze%iqe!OPWN)WQ$3Cm&HX=#fJ?ib_zTADBNrWW8 zg@or#d;intNChCK*As*&p|M|iHP-zNOgp#%*q($beX)# zMdtH6MuDL`#kaFe0w;~Nz%CpQ{hDT&HUa9b^PJ8G{Q#S+2S|4Njt{!~c@q-6ALtY) zN+{7ROQZB^6_h)re@V@ZUQZDH6jb9m6|O#?*$Clb5`{wufEGc*ByyWGsuy}!q6L~^^zfK z@%RWXZ%KKw5VYW#~GdtQ!CP<=IRxU2#a@){qRMZZO-Tkooh*?L`1@b=q2pgP*5czc;ZmP7ltb!uSJwE{JGFT5p@No{1x;vg$v0}>pDMJj zh^Vr2husHvegls!%O>fb>&g6PexP>Pwz~7txKy(j7G{~Mj)n{n;|^1Ce?W~96_dCf z`Vn1$*r~Ex+pCDLD2xKjDTPvW;9Ti z9%p`4vq*JUDSEU@xJ;5VxCgUmtLDzdcBckDG+sha)F7{ssM{Oa0!a#SZS1Ap~HSkCsP7 z_ORSeiKFV?c3#829IE0HSb(_%g0Eov3)?-p4q{h=s za72ER5Afo=pUMaa(x4PlrX<=heqQgG+TTA|^olKbf{Qjvu`1hb?ZS-&?9h!MS?FSl zQXszn-kSqvnd9^NdIdbJcjjl8#1-wSaOQ2MHGNOO96oTPoe!;z%F9?h1ucdDamJ)^ zz}6xu5DJ+bCK2(Cq@LgeQ}N`d+TNhQ=1b{!xI-kzFd4LeLhxh}*$2b6%>RX+08w@K>ri;~C^KMv~L`HC5 z`daRmhE^z$UWx;vYiv8^J?mu&fa5U?&Hgihx8_Etl-q1D^Oqq{9>Q#93i~xu+MAA0 z`(@EOWpJ@c#|gBV_}nwA*g)yUJXY;54t~;u$WG0@NsN#ewn_O45ph**ck+$H;@--5 zwYSdD)A=fKQ#>4mBLgTZXi1XvN0!+P%kW)6HCZ`qH$M_^{h?^%ly@#Ll#{KzyJ%$2 zc*;$_1-(pZM5+2YC2yPw>^-Rkt?RW55+G$ELa)n-P4U6_pg+nLtFc9`25N+_HfJqG zTyFJ7xW5}!XRpcfg@S!B#k~y;897 zxMZ)5bv2?4t6Y{-Z;h{b)ltIRlxau?ph8S`-?&ECqEFyD*j;MaOhFxgwJvTbJ!8wQ z9oel{H@$O*iG!hB)0>%N(~nnV{JOy9Qo-BHxr5gG6-qx!d|*bGcn7$~3pD(y36PE*u@eX?CL$4}zcLyARx z8+qh2_5D~ffJ&5+jlQmYrwMj?PTX0`JxxVC5Y=$fzO6-8aGZBwZuMeenj8KENA^vQ z;s9ngC<*)NJcGX>itCE1%wOmw+6m6_@o8(|y>gvQ+2|#8U26yrOYS@#zO_=ehCPWK z;nz0%r0rB2BADeJvH3K`UqQ$L%7E3*M)WvRSI}cr3q-xIxupP#vI|iJbPFu?YqO5SbYOQ|jG+yadSiQet3{!j z+OH16Rw#`sY2sXpOSaiu*G4@JmlsqmSC0`IrY%j2v{y3`wmT-zPz-(w^9L zh*Chx=q;YaIqwru4lnTGCONO(lCz|XAFG9StRPHg%GFox;G-U!AYtev6y8S#vbTSQ z;yG{Qqu@c@gMIJ1O*HQ&nKb+}j0kZ*o1NvJz+Gl$!Je3;m-a`Uj`4SYcZ{!a?c$;D zlxNgRqx`b4LpN>lL!lQGltwbbzB=jCiKqWKd2vX2I#bt+rj5In3$_?+DvzkVHza3L z8{}9u**4%L#w>3ADtH+`lz&Rv{c!PWXsR`-1YtGtsW=+A7u{d>gqtVB3Q;C>EpPYU z>>)dB+7 zd00Kue5rTHRmiD1yK1Yzbz%+gbo)_R0l5{~!%+UN<`%Lz0=DM@LaIYNC*VAmX!Yw5 z8woYZ0ecHdZHqhjSW=kpgxcoo)NTslU~jk%Z)k&G=(mR$H7r6_&&`tK{!H!5mD=ek zu;9+|nsjNI?yVI>8fPci#G`^!E(& z+Al>ZI@K@i(V)Zb`jsKvhvEIrn-I)p-C|@vgj4MwNZ#&%vyxD(D- zU`X0N6@>?q6qub7Y|d@&CH5gaHoW-6hNxJ8Ww1^TF5Ee+{w@#@q~S+r+}`&&9(;x% zyLR^6FC3gCx6o!>pRUyv;+={ux&&@8Wq{9;BAw?uA!ekof*3<67j#*MCFnWhyH4+6 zqs2L{=j!@jPYnbi&w5GMa}=sow9B>VfYKB$n0^hN1xOK~9#aqtM){+^nON_bpqjhK7g zRGF8cCo~ietsoH;s>n0J!=zZAO<|V|$!L~^c7kq_VRkUdHV12q8dbY2sIW7V&5d-Zav%C=no+gm*H7RDE6`5|*PEl)Zds-?7F z>I38;F1+(=vMQ&VVZw7vj6>IohJ$%2E4!geleyjSolY!GNzUSZ@ddAo=homftdHNR z?#PSWktZoh=+9L$Ly87kFC89Jv#ecD68OVX^Q|>hIF=aPJI&fQWr{9CRJ<`%rD)@l zj`s^Z3&zH_Y>7fC5=Jx9YIW-McWl|Lu@A^zyQDN zd82><+oOLA9v~dgd^}3%eoUq|FTr*Rc}Y=G_S3YMP7~R+domj2k`7B8d6XSCa_ZfB zs9e$!#!mAbuPJe_h1Ll3Sv$Fd3Fx5ZM{Cxx%chz{cwda!a{ix0$ zJebqP!y0B}G)>feS4(hingo@m%n;#adnY4<|20PTqmGc5@NhnK1-t?BA^(gS3=X9~Yx>~}p?`VgS{EK(Bt{Bm-MZXWen z z3%!_n+Z&iL{GfzB8S`dPu_a1V+JtQb@174iNRGok7*xdHd+(l|MJDK*v#@Y16COui z6qA66{5JPwJqpI88!1T&@d=u`uTgS0_(N+!rj55pdd7^mKH|vu_^)mS2W?zj^hG0n z7w`~1+9{%DYTjw%80%z*n$Q_?kC@{7!4K&;bXq`vwijg z>$IP-yjZ7-C6`aPSZfNjmn>?`rL+Ordr#`GlYOYdd`6HB|b&k80|Jr%1R(((1M`3rquW-~Y-hANQi6 z)?OOQiLvlOweGOADt4xCNzuSh8H(OY`^MXzz{4_yxzcxqzP%-#lU5%Wm2l-?YpLV35px4h~j#Dv_?~#w~I?XoVrAZX)k0wn6E4G3H z>w)V~A(opGrtmCE$4@p3bqWjvj-Gs30X}w!&eol`DI;PN6r^Dg`==X35%sg#KMXV% zI^j=-$QB0dR3S|P%43#0oJR)UI8zr@PqMDBTqHFt8Y=J&u1LBM#qF}c7+X1}3$3h* zhp&~na9J^#&6%R76Ef`|11|0Pf z_m)l^kMVLiXWimAam&ffk}Jgq>jbF3>$fe zNIWF#jPU{4q{~V$jE`LRrRE*qY|jSJb^2MXs7<0IJGkdlT&2n)p=0s`E?z3rtAO^W zmaD?;DCh@8-ZkLPEE^0Gx~L4vC^?%jS(g!wJ~S!rDwvN>FPk7kA3fepDoMSn!j^}Z*|DLvVLilvzgAkQw1p<+}3dr$WZ>NrmaozjrWhp~8eq*>1Ch%^^6Q zo#IWJDSaQuCk!WL(%4+?D4VhHj!H+U_$20o!8$EU>uQ}I@*K|*n9j@`VJ8sRu;&4l ztaU_`+$_f1gKeU2n$OovTWy8||2rH8a(CbQPIUoK2=%a>9J)2D&z#=3!Oy*45hSMH9!BlIJBu3dqEq3y|Kx&$$wp(&=`4!nX+cC zi6Tyd&19YCRywR|^+A)Z!=LZHFRiD*-t6?#H(b^p?Q+=s#(OKTWHR1yTq!BWNtGHT zbKzFDUJ5Amu@ET}s$s~ooZ4jX;v^Bgby7;~_NLC)PJ0ZZg1NJGHo??Mt4pr!Y_n`kb@iIGiWsba4 z%$Y$Om8y5Tc+xyXU5h%R_!n={oxip}5dSC)7b1*I=U6QFK6(cv!oR>ZUfLzap?itk z+fwWtcQ6iRah9>=V14N_QBMu=KEveTH}q@9yVIJv(@J?&3oYzD=z5^+G5oxQp_txF zE7C$mH1@O8#))$w#x(6UU%{DSI>TO^`y@aiWtj-^mqLu;EM9Q#DZC`yMc=`J*`RZj zT)H}b1%yAUnRL=S1sH6&H)O2Gj{VGMmk7aJmb`G|AA3#Z8o4*p;Fj8HEKO-IBLo0u zJC(t46`_c+R2hmq=IIz=%%zleVq%MTlEAz*Lw%Xf^f?$G!^sgZeHTTt=W8nQQE4?pZT7s@=2{YKK(jj>$TRb+sayV|Jc*ykNnub*yNH_9hYhiF; znDe)nmn;^k;ieqsB#Im~Yq!KpEMGngW!jHgP%imiXN8jKHT`Ao+tb&XSi?=x3XIhZ zHP4Lcp_Fxs6ICYz^vgTu*qLy;ow)u|?OD%-eypa#k~$(Zl(j<*0DGqhRQOWbH*xSu z^@Uabuf+}(hA1!im@Xru)K#B9my0J;ey7)~3;4F`-$sm2?Z+`jW@D9*LCY}#L)80` zg)Pbm8D7pg4I1u20l@=>PWnCn`ZU5#@sbDQiKdoR+AssdKy}m0O5thkHPmJR zKNeV(>_xp|dO-gj>XaNq0argBAP7SRHohHGp$WxmrJe%pu@;$RWM@W+Sn79t)T!CvPL@eacFbZZL=FajZq?eejoqO{vq*GYO7q~~V z=Cri6Jk828=Bn>LQ*C8v?E(ow1js3K*>Z;$S22CLq($iw!24w6SOz?E@867v4EKKV5@{Pxv1B4{KI z<(6H3iT8;3H0zXCB^1gyF!jB9_CB^m^2(_nu>+k=0&{!K0=w3*gd${eJK;=qq>#x3 z%o`H_S>D3gy9m+Y>(%1B_q%)w{yHtYr7N9?La- zFi7;aVP6<1#vi>J88izQ;)8ee{VtjgcF^h+y`#A4^M7 z7ysPpPH1}A^|6c9q!4|hrJiHIu87!}yD*BuDp!c$o3n;^HBORV@6v?+HE~>5Oc;`9 zN+Hd9n?UhCK_-2hS#Ki3`{eT4AJB;BV#v_$|-|uCc6or z#xS9oY}ucQT&>xWuQ%pimXO}mJhdqEuNr1YVf`&7l24Yh*;$?hm3&HKz;eGAF2m(( zjvr1lGes36F6G~*lkE-P>V@rgwsOFKGscI$f$n%LBA`$X>my+S!Z2!Ub z6M075*b-@eH^ff;naOe8^Mh{fh30bt)t#eQc0k{%kWL7Pg6*3jf~bi^I6~VQ71e<^n zr^KU~GBVy#ao03o*-1r}8$Cz#8QXC#xdoi*!8^KUb)qLYq&jCr_ymg;y;ZQ8; zlAWmg%y)%&Bnys+p5RlZ{5Gc}KeNZKh(`0Fd#ieToI%!DS>P<>aQg3TTAR z^Ynd2X)B$?b)x^A1IxI5a?VL3C>?9AdL-GauZY$B&if5_E`wQNVBmEqw=|_MSe8SN z`})S$<}OuM)`ac{$|i#xdaz>Z!bChtc270>Jr!)s7)r3Q8jlkP(YKADL;vhmeU~s8f&$RF1 ziexNj?JpP5oX!=Xl~xPE9a2r`woIJA%z8M?yd5iMoujT&$uvy8L&riGS&sEsc-@FK zP{d!$Uo)`1*+ruHF@aE>cz{NWdql~3OYWJOTfy6eekQpQ+x5B_&`Rb&(}Nr1M}R7y zwkW^|RxU0jxnURIw4-Wq4o=K1XooM~pH%6HXJ{p{(1?`%r5e25ukja;2d(XCsedoF zeqRnM4>XrLfs&W^n|P&pIuA^|CjErvj0g_Ki!~D+q=1cgG{jKD3tLr+dYS=%s z%w8iTq+Ji7&RS3)R4_Ne)WG_~rr`rmtr1#XO!*n)m=4en%T_TdUsSH9idKo)r}hNL zJ^>Z`s8||wLnucaUefuYI0c*7J;jJ|uCa(XVOvFi9*g0l$r8<5<#b<3(tZ-glCz4|OeHJ2d68rmi&-c-m*z!rtqM;oV{4f_Pd=v$}#XUKt3v5A* zsP@(FPKTjAEZ#ebhr4FgmU3{NckC!=@lJ{0LDnyH-+WTi!oRayDdK@MdqcmR)G*;G zj9^;Y6LV_uK@BFCtDYvFpUddS5;tLY->EtrX?^?$>4nvYa|Br(Rt zr;ebp!8G=scX}n$o4AgFpyp_qO*A!TGdd*r{z-Zs8HqD$n&3pKkxdJOJa;I9FUZtR zq~88cx-(KLmc|vu!p(71w%ajce}SyP;gDxm_4{Eq)=b5(5*RJ;7)OqtHl=_=ITgOv z!&j49I@w}?t{zVG>;{LtR&~~P6BS`;_D$re{c@Q-ic68iAbFy@eG4xF+S0+A1NNsr z*}z>tdrNcF+? z4un_FHh$11IezO@mw8dP5bdfyc|3U#9OU|O%tkrwpr7MO4%=aUgQ z5}r2U_8c=*Oi7Q@S7(v-^~veYbmLf55v>d@ zI1V%7)^# zxNuF3lWxX_=MQoiID0fvs)5w(FJ#$I^yLY0oT-}WIf%`z)q;-QW|8|U!v2Z%vl25| zNII~(yX})hI2Ps^Ek~I+3WIKo?yzsKlhLBO=cn$=5(RS`xn>-nVMHZI7*23?TSATt zGJhbyQJTC}f{nN=@?U$SeNeXuHbx$RXs%GS%P$nRIbUplv_OI@iO|v2#6M$f2xM1je5^<0Y|B&JivDl znKg!=jn){h8*bMp;8n2^FN|v160CdvOM)0!L~~cAmqE~#UmLg-1k+ZL!W1%8N30tv zRATwuHxfGiIla`+`HYy1$`rFS;^7L zyfQ&>A2_=dp?AEy=7(jWs#kEyRM8uU?`AZcQBf$0vOms+=oL^X8-GxkP52l}*}b?p zo)_yfhIOpM_+TV*zqI`LzJ6HphHh&(9>QWC=7a22?cD2*vD7m--)0*9qwh`Wqz#FD zA{7`lZ&kf;)G{sFlgwdsTmiH*TOh(1Bxa$Hb9+kUS)CkRRa9JiLCKOQxSdRSXsA9f zZm<&**3c{OWEO=1@)QzsrRSbsmxWTpSX7E>0+oio?gy!gv1Fj7JeaXyln-^~ zlWf?4uk8o)4FejS^-Q&TrcNjpNl{0k!qb7Oj~^OHFu6M8AL^PU4gsn*3Mio#lWNED z(;Z)MA-!qr);th+p(F(LJ$A?{Bo1)WGFrl^QuKRx6Q9`2rcc?46#^RqDDWg!S3ggc zP0qNhM2MJG zl0KL(ZB%#fy?u^(b$zYn{w0*NwRR33%nP0jG`A|xAbBt5EC~|pOWTa>&>;bKqYpH4 z!llku2Ka=Mm5!K_*4_d4Z4$(i-93LJ+U1j0PNf4wroU0V2N6VQ5##<~_)0OJ_E2L% zVf8M?=aYx58jOQXRx;YSyJ#W&A6YYna1ie}(5Wu=Q=7i?9r^@s!%UIF3_~d@$2U8n zLR4*#d{tU`^QAh`J69TiVfp?5mrcV2QGR<*Pg zaL*a|gV~Rj?|#P0@R$~%=%KhmhHhvn=5LUjM%8p7WEK+;`%#B+UhK{hTa8Mk!L}Xd z(peor@?iV`%SNxuL>a$;p8b#05T03TI zefWlYwKUno${e*_iHWZgD#SuPR=26(p1bD$IyZ9n^9z-_nm-=m%(va_+RR&P)T5R3 ziCnplkJJ+DPY7mr7Ys5%!;I~-x5NsmA7W}@P1*wuX;BG6MFQq!5eFMvOhR46pdv2~ z&7@Q+DaFIq?s;mrVU7^Y>6_}`s!@P*R_<8c<(Y>%L7Kr@Hwf-48AoIIW5lQFrnboh z9Xipz=}1pZx|@JI9tbH=BrJq_%_rb&|`YbgZ#m_yWr|Lw8k`&>Qp+nMkS=IO zsst~W9z7o$mCK8F!QE4Sc)WAS-Y6j6A!FR2?mc%b|B*M`(q%O8b$;`hR zKkOy(NsRmw^AoebFVTU`!+%wZtJEu+HP#R+M9H+H zGZlGnD-d~(Mg%2*vdaUpOWek<1L57>Yr%T%*qyxLzdK1>aX5~vGF-))pqRO(st870 zH(hSo3^Sv?Sou@2#PrM)Ho#C%+{&3TEv!#~g!umiuoF-0{#W!+0QhG!ODsW4+6o0M z>pQC{|Yeqq=dImJzdAptJmSAPa)J zHs?XAn!=*os^Be#+9wa4+n7Jm9`LDW$E9KEvdCUjF+szrG&~Ov9?!oPTufV-3{RMA zDk{au>Zm7$e&>v{WElwo_$-#d&7WS)Diw^gbx?e$N8uRL?FWssZST5G{769Dw7t3P z22`nbYkrM)$KjjY^8yu3#yYB_W4*19m!(-+WZYmtFlNRD`pI$5 zjSJl?CE0EWa4cEQqcf`g_B4cCy0g({z0VGiX~}|Wbqh6g>YIH*=wCLu`EbKR?z{`m z*GSkNFP>amBIGhC3CDuzrlPf*LS3B#McI_dRQ~==pbBCGRi+6;{9+8`(pWZod$w+= zwPwNATls-3sOk?31$q-ssqDCXApMA!51hgNhHx(hrJb}2(=op8X=sTNG^f((|6xe4 zg0MfyxD$ffW%cAhNH+x#AW4Y}NVkBP(4`4pTM?Q0Sj>UFDA9CnRAy};_1jk>?QqiFn6E>;BOd(hP7xtngWPCe*=ma0Pi0sR@D%nBg_B#`-34yb)c$LR zCy^YUY*REb^qlja?_^uKi|U$76~(%BkEwDZMt5W=0tKgJa&Z}%Vu^P2E@qqgsQYv~ zkKlFtuVz2Sr{sAhwE}e={iiP*EO#}J5gU{eaFO2HVbx{{DMKz(i!ULr#UV%yD!(Fz zYyc=@M|yEXjy9CG?#03S(ZMPJ&`^$nER%zqbC<^r5VYPC7>}~08M;knALc?XbWar^ z3QZn7cM>gv#OC*cc5b(GuuQoiYc__@OxBARi=t|*#<7pK-LzpKvnDa zevEVqP%fud+(k2AuSCw^gd77?@(JIc|QOC zQn-U}{>~QaIn7io)#T5iC5G6%*^3uS-2hKh-VdL7&uuKmL zxI=RyK~`TdL)}FhW0E&`IBkKf{a+(?6iZt?FsGDb6`q_VJ;^-8*cnE^i(Nk20GIoP3OYc{ER4BL&CWbCLH_x}bvZUykC^H$#sjD(UFN>fi(N2!xE| zaRzZ?#ZhT7V&X$TlI;B}g=s{~;Rgs)ikG4LbvaPEuIyZwwxgYhU526fFb4>{W%mJa z{1w(GI}4zbG;K%V(gIm*qY|>c;5+Y5RptE^!QP37vOMP!_fY1d8mEpA`7}F1tS1fk z3$a4=pIwEx)1+48?gVU3X|_Z3ND3+19lFr`j~YJarfdii9u zEv%C%ku*_J65!5ba`J;MEJqBcV3W+RfyO+jT|;6*TgW z5aD@H;qjC`ho<>DL}1h?NFI%O&$c7pwRs(D&E}owyXh4NmFudOkJ7vsPR+V*x~RTM z|4jw%OiXRNS_`9d5(l(~^laNtu8)h?c*4SmXI*m@=Hc^>PEE-`cyGW<4UuUZs+AOiyDYKBf@<&&tG=x0P%8GBQm z0$9e9pniL*TC?@NqJ$ny>Gv%cXW{Vj8Ji$xUFG8MNvn@pRA<6*zE*JI4098hzr<0H zGt`*t0l9HXsOxiL&_E~U7zGKKgTbizlff}{LuMdJ1ru+7XQdO8Bg_yW_UA!yZB z>b{pBQBa-5kCif5abCXC26#$sgqLpD3v%#gVeYs z*F8-OS8i%v_yUIxQyX;NW!xBB*Z70EXO2XnGz%KHGL^f*;j8+r;sF>Vhu;9|B9)B6 z0wR*`;nHtoj?+d6pnnMJ9%P3Cpu@ISNhy963pvVG9;<2&lSDBMbx-_9WT4tjb#(+o zyvB!%yHfT+w-rYaoikP&N{etUoFnyM1|!>7-m#eK$e8YS%f~gVsVDUtm!1MQTUq@Fl9OPTTQ} z&979I2+>Ig16|^94BN@5(H+D(#n|^cRm^*mKV~IuO#6CDWqqykV}c{YA{1^tz$RFV z!Y>F^-~M+2WzlspU3|8pX^|6{|X?1$5aE0ngZ^e%O9EZ(lT(kwT5?!|_Wn^|G@TISW*2rCu`o_c;e%Xv^aagXbg6_$%|PMmuOux(3pFod!3wHh?1D{7CiB)5ZV0=si?HIp~uiQ74YYbfCpq!w^Z;c_RLZ0I|_%~ zNO>woPv%on^=^1_MOsf{)5@ugqA5zPZ8|wE9FBYoo_gPeC!wT!Zli8R0;~YC6%kQLTt!v{FJ@YH^@r?lTqQNhqyVwoO${Z3-VVG}fes9P=8 z7zW z&o1^?9+RdF0gtR!1rTTKn&#VMXE{(~ya8QN|GKC~Y1|gTQv?dN=+|rv+Rn7~zb57= zL0z$7#&K2-Z|aI331b6^sx(!I;fZ%tzK({S@7ecg6`VV&Y;=O^{OmN6jdDI*T?)^t+psmwml=U_S+4^}1mZ~A=Y)5^M~|F;0R^QIW><)ktq zPbHCH`6TKOm%|+bbXCv7{p-;?jGaS}C_tNK%Y0?qwryLlY}>YN+qP}nwr#tr-%L#O z^x|K1^fFTpnQ%hUrPDFwNe{P)R zLe9Ig@;M;1)-NH)ow2rG3-2`G`I2(kXq%1260z>>{5INA^HU6^)rSQInYk_U!aFd} zxnI>b#o~O0UkCW`XO|GQVQYiK~Lpm-+1i}%|u;yYQnqB3lioN7$XKkN9?8-W=6qJ<)@fU^-M z0ILttpnB% z2OJJJv}9McW!d+86lFQMUs;o1NZ=RvZD9yawo`J0a@#s5%p(*(I~iUSw8^@IDa;40 zE3(w+t79Ak6{*B7HU@FEh+C+Z0BwgyH{gD%`yip&8=Q#K4ysquQOHOJ#TMM=q5Z50 zrJbvZ5PG8>lmS87T4IdS6~fAUFRPo>gdpMi4yb_gPU>qR?O)xVom4gl5hG9$uU z9UY~~w1YBC#POEMpWLuqDCPI;luAuCL`~n(@w}t9KTct!LLk>_K}7>-V*MsnI`8Bc zCKdwLR!H)268Qc#W^dqEZ_frq3l}zjD0DDmflutkHvHqT>d*5aq@4{00+g9Av>uN* zXQEuUn9+KJHTH)`gBjoRzSh7>rVMfOwdUDjNOz9T)Zcxs* zC@+w|L!*u6T3_q3h(bh-nFr{qfl)rJs=Lv@vg*><5%tNPV`fos`9vweD}pDOVNzhc;Kn|Ip^j!1Dj=TN&}$nb`l^ zME*a^TsfE-nEr2?S+9`11pNQbkzvWcQ3?vy!zKsL4 zATBO08CoPB3W1m7xZ^nU`Oiwe+xnv6d3$;D=~MHmU$DAzn9%H84@S|>zpvG`#n0f^ z6+%mg2LN$&3I_CEm!9_2ZwGNk$H1CM0C58A;vexn$&U-x5WqKvT(t-1f=MgymjMpa zHwm|gf_R963Je73#h-WP`$t>P005Lqu8xL35G(Hl2(;ahX}q(|W3cZ9_AZq9_Z_ru zqYltbL?oEw*A9G)Gf+1{v@_!V&duH3 zUX!EKv9s^0c#R!UN3RW-AMFS>z&*eUuonx=OoJov=PC*-6Eg1>z~xt|=F|ZEwIRSC z01gOZ4GhHD_wLSbBS6nD^ay}Q+1W3J3gV-*{v#JG%dgi2c<=b+n`=vVrx(~i-p(aA z09Wum>5)Hk&)^K=wsYV1@AUOR_BihRJ-Yz*ZclId8o@o*JNOB9e$#&Kd$=hnF-0Xs zv3*^>T4iNtKmqTL56}SY?jaw5ghhk_1_Jo~etpH}TY!F*LGSQXmCLfB`JZMD@JgO? z19*NpeOG#20%7iU>zTE2#i4=feg^N+_yzK&2P0p9)6ad|zJ3wDT$6sWMt@uJN#G!k z;8-s4K7M02CNTco|4i=rH{#xb|5&zhTLC`#%0%<~-c*5&pJ?UGRvL+r(W(|iC!J_5V_{S^QLz-{i0hk)-Z{ANQ$0lQQC4ipC9UirmW0EnI5 z4SV%(=Fao&55<1@4S)mn`vt`#6!`J)f|JPqx6jx50mbv${&(ob^XvD^LWl*2ezl+Q z7B~d=_zCxOC<^2ckB@crj)8`CPd~a*_fl!0Zb4U5%`i?;LQ}YErPcFT2OEp!HTAcp zqACt$E!gT}PHdnSE28R@5!$KO>s9lDfk;!yX~XAZTZ8yq)~Z>5)|>Pa&$p9Kb5$(x zIY>&^Wb-yPGgrS3$pYG;6jLcDGZdo71@JyuwU)7Wyt^97k*Ut$g*Ps&G&oQv|KB9 zwmUK*ejzCU?D^|{45YDkOEv@Zy~@^p9?FXN8(MwzEaQ<%XAHJ-Hl^eS#p-n^E8Scx zDmftlJX!eJ_)4-;vfn>QLUrQ+>v)QPSxR7+28IXu3>^l<(JON879e!vMzuF~%Tz^n3oqSOWm!)*OoC$Ig6Dcg z1a~}jL8}^N8sz<|40*g|A+FIx?&=V73Z7U^xybNty(n@Prm`0|&bOV1k;)io(jIN| zY9dkJa!?l`>-4mQi>{*vTaBLRZCJS5uq8t{h^0@gI19X?Y=zdyd2tfkt5e?2 z-=dRPRiYFs`{&G=AiX;vpgL{VrWg?#a0`FhIjgZgCm&@=FYaI<=}>pLU-y(8 zWk6>KM%J(gsBMmSJb28w2Ae-?5aAPnO6 zl#S;a)*N&_HdnaHoXl?(wj1rmO}a1I#sEjd+B)PUW`6IH=vLJ`qhR_S8sqz>$c`+} zE!YnE;bnX{e5ArKz(qfeeWeQ(Sbqv+kQ%>`f74n-H|Pu960jN4&HsGZ2wg+@uzme$ z{e9|{sUEr)uA7=!W_mJ@{U0=A}agZ0`x_oMYkA$k8E{8HiRtvYPCpXHM<}PLe zL&b$-Gu3juir%D6AHOb%mp+hyBi`(7eX!w9@K)v0?^*wA5guNE(>TsO;c5D#P z%zrQ4-r1`J)(w*iagl_v*9gq16?RUw)Dd@~z9T;wUY$5?Jc;3{jr!h&23=U4MI1PS z-y!yZ*72%<9lXa;ep!h(-O&z~I!!h-1>E^5r%Y8J&PfmDkTT+ z^0&Ka;16l+A55?5RN3dsnF!*K7apXWZ%Yh)KixMYlvj)UIk+Qf3HZcqby>ny7q?C)C^*|lEBMIf^ot~lTt4C;u#R$Ms^#lmo z^Q6YxQ}K3)=7Uv;ax^Ho^7|4LR*2%O+Vc5kNMG^{C_xO3#&i6fljToCwn^WXW>)Bw z_U=(A+bNdJydq^KxHqS#Pg5voL*a5QALzi}JzAVh`QqoUQC!NkJR8C8L8_T!X8eX3 z+#^xc=|$xbPQqq0T}kiP<^eZDoAy?b^clT^A=-7KQuE;YpW_gHnYGP|vEpQhWR#@q{JLt9?uc?i5HL)|9T4K9R`bPU3kS zJw4JeSbWm3ug7EfhUwwUsTL@T)ayn3p7`k%GgK2w;l}n+Pq{fhh@paMixZETjCbs8 zhhb{v&G{gz$`4Q_7AhKtOtVY-*809X9tuX{=~l~)!4vpKocV+WV&>*16x%`A7;Kd+ zaYanf1Pe+j%oE?UU%E8eYtQyr>Qquw4jvFeAkL?4Ij)VAD%fKc^N*d8`GIT3&@Vlx zF?$7>JISz=9jlhIL!7IdUbH+XCpujz1JPgTEY1le#fuo@TY}lFeq~!5c;@&1JtMbK z5q1f5H7$-z2N`nTD3nL2*8$@{8_9v613L%?8Q_J^eoACf5|5GhDE+6gr`_r0$vbnN z5?XEZIQw`itrYf_()*u^Nmb#dV?gr6fS9#VT2+rC63+}9}UUc1;U-8CAk@is#@UZ zh&?2t!XN1inXd?5cZy9J&6Vk2yh|W1J+l!=@OdZoHA`K5difrX{vTHNM87KF|HMl+ zGIr@HgKZgCeVI`mE)1Ol?=8(C{;l!fuFQMINo4KD9VeWB}C%7;uTb~j5Y8F)DI3~sVdHW9J7n8 zjBXCssm>pN3T(ZHQW0b5R!^S2QcYLC8OckqRMhGpG%K>N2|@;a_7H$x>zY`x3C{E$ z`=rFxSZjSH2;zDvRNj!LphNI;*zBHZq7~k0x}wYc?pYnIK70plC2f(a(!Vm`P^GnR zNl^d=ZNOyPSkbRX(3)$Ni0@RkYcgUA2`M=93FCR3LoQ?Q4$vc;)|g9i3(%HAkfKMZ z9pT^I4{?AzSf|(!weAn`;*sGPIHSx>pYN3u8e5%!0Wpu~s@TsJQO2vEbx8AYi* zK)%3rNe_XepX=rNr_O1JvPmeUM)RI5BH*R_uO)6+yzsNveP0&_=dN+Ep(3S-N3!nT zP@Tp($@cX|qlzzI#=@f|%ubw)XyclQZ9lYG?nQI(@(1en#sR6VU5WHWR+{}33#s$a z7#-qUQV{G z&NJIU82>~@_DDue!@M~VI@pcL%E61oSd+chg~6@?oxAuX8l{+4c=gEwE<%{K*NKQ0 zTo)(CR+IDq{got-iOOH$ahMdFCW4~A+;+nLWL;@IHzI1SNn;NB*)SF5{QdTTcCkjW z6IHaCs~s$^5KRgr>0QfNfM%RnubcysCJfX+#xRZ9v2w2IF8Q5awg^6V6Txu4LI&m4 z$j~GeC*uG*Y=BVK#DYW$&5PKbhgAn0h1CH+Ip=@&S#FGC4Q&@K#G%&YB0n<=%2Jzg zB`ZC1u}kC*Hl#=Nc)W$ca=+n{TA5mj1&4zwBMVp3SnF1uXviWZME`cZ`8UX^=8b?7 zjdsC|Sp)6Q744ZaZ)-eg8D%t(SSA!4y#yqLik^hcBd9nD+j-x93&t4WTRXo3X$57? z=`y`qiL&VEvtKDcT%OG|L=kq#e(VWH5F{Bt<&~QJj73WlXM1Z)JVtyBc?HgN=s{Mw z;^}{>81?yo^Ll7>J|FqxJhh;AQ=1Se>Iz+86iG&jM0$29el733!f>D4Mp@Mb-nY0Z zoq#xYCkkJbx!Y-)(*Mz9tJuk%?zKJVfP@_lZK-GIGmLhGH?h#G%F}H`D($7WHdB!e%hzo z><@xm!3=cT0M3)q0&wm(%O2GX<(@T^=gg7kmV<;`Sa=5LChJY!P`tqzrFanND0f); z`8#}W_C)iBl71st9BS8%^-u1aT*w5%MMxURm-=%FC#j(3u*R#5jc%Dbw@|1W)T0s? zUoit#{kGA!H(k9_=jQioz#zahpIrS{Z3=(6Q2#5w$&#D%a|JH#Yz#h76K%FYm!Tb7 z*jdgw&5PI*BN8Sqj)yoyd^yM|d66#UvNuN9gOkp7C7vl;_qFMGMJ6FFS;}JaGj!Xh zdGC{x{`%=MD=5vq7Z21_75i@?HFsu|PEm#n$|m4a{pE?dOh;eDyM$P~LsB|$!K&u# zVWgbG2Q@BRA_NJ{0UDR8i*!_%5wxA;GSaH#N#DOTrAt8JIh=<*KVJflyKt|RDS{dk>sfkK$<*bVcfx9_i*k3S)M~!ha3z0s~SZkjMZXoCq%qP6+6-Ff1wrC#V-f=jE8norAXq>5ZEfO{9yG zKZ{9u>1V+_2uyE?=Yo`D@>i;tOu}Lco4tBpLnzcBZ6(A{TZtV`U!q>HSaKHXsE!vI zXqmp)F<0uBQg|*H6$$O%St-zqi&}YL?xC)AzDM5OrUp+e%)ePAlXTT?2(#5vX;h)H zT>(8PSur+DHhZPcic|9j{DW$6nQ>XMQLQBl4MejD(lEm7#cke>B&a9xcijnSPaGj^lxD7)r^$GALToPWrh`FqjXBXMLvV_ z%7%p#G2X@W(q}{zCt=gA6QGXaPt@A|3Uaiyk}otc0qsF$my66h@Ph%aZF}P9(*f`- z9G!RE6Ib4t+pgqkdb=_xAs&F>*eiBN+!mibelAw=a9T|Fjh_2Bg~W`iRX^bA$gT66 zMjz_vAMBXt>iQcfECeZHHH!-GDZKSPuGH!33J_aoM2ay{Mptr2h`S_vjpGFw7?0aT zRPf3u8C@i=SGeOuuJ8iSV;>Nh?;?AeI?eS9h%asH7c+>@r?wd$hg<8`SF^?^Kv~&W z+>ys3DIwrtgM@c?!q3_=#)wnlf?^*EyP?Pa!P=Pf-EcWbH6x20?&R&Vd3j+=anQo%k4Kdo1yoUYlqvLxn| z9W^t|B>gRy38b@IpJSekZ2Pf}Gr9>Z?=`@y4X0dRoaIRSbAQ}!Z_%IX4eva8j9IRW zVNHj3B$guX7QK^XTGMDVQj4bOu6Wt0C^WN%?Co4J*&yxX$w#Q=T|QdHL`%RNUHEL% z3otD-&Ryv6&=FNVcZ=Fa1S-{S8!K}qdW5BobOsW${y<;0_u@W3$~kiDcNZ8v|g0Pd?u~fX)tBep_#9vF)~wZ$)im$%`S@g$(MU! zt_Cjy(q1k-lfil2am1&aLe|ZJ^V3%j`WK1<7QjNg zRrL|>EHbbjX07_@VI%^F`K407tu+YB*5EES&^4754I&>KtofGO`N!1NkvG?J`BD!J zjMW!6*>6%7C)$D`43GS{VS`;#o_4vMSo^$5-^l{+GYD z_z@uBIutU~+f4e{0`>kirY+FUBk&0zpoVaq2?5x~S*RM8yfDb}pgSteTxKpW7NAv~ zW>N6w@!JxrK^Hu--uY4)vGJ$bHSEoz@LBH&&(ovw|KNO0Zv~wQqU)sBx{8r^CMNIR z9Z0x6tXyTHX!LH|gynFGvQl}ABa(_aiPEXdsm`4?vAlEkne4V5I#s8JU?$0RN7-lY z6}lNV7YiQcRNB^1`3yVxM`v6*KHh0jm9q35uJ3cF;~bSe{N*%#jGQD(6x9OlY0SN` zB5jO$Zgyf3zwJCL5D8_toH$YUM4a~ZyTgxd&<#aJNJrPGz)=oFNAPND2M{8CEAcJn zMVYR$X=v-M(upd$RQt~rsaoG`HsLCqJUD0P#3ETl!uOy;p73dzQ@4x;4B>6*hB<5v zi?$lXN78pM{|15>Rd<3{MNouB8^O7rN?k5ab=IJ(oU!G@3baUt6&hXD%u~`3oB&G7 z2!M6Hv~$__kFnJ}(H2Qh%jSz|J6p%93nsN44c=^E5W{CK5@U}0aT7^v20loZTJ4Se zrRVgxCZdQP8N<#7*CcI8eF0&ON%Kv~zt+gBU-cA9GSl#&78%j8 zyJy(s;)c-QXSly^FEWyL43ltQvQ(^M3{;aojjKf8fXY2R5$30%YHiD~L zKNr}QSs{}TDdemyAIb~&W{BSNp0vFQj@m*nY49mDMDd1O#_6ggVU(@Sgg0@?;hPDc z2Ow}e$pO|9_T1>`$&HQ*xd6x84gm1{-lV7k9qW|>f95PtWfF|5Es{FlA)snwbu@6V zGJsXzWW^ye)2`TFLxLB#3yvxAwuLL+Lv~`2?(xu~va_bZe8#z{AdX>ICj0i#iBt7S z&%z`;=DGA&lC7{2 zT1w!YAm)jo+2Rvi#8<=`qA|-9#)ZAi6SIzCPBMlvo%URpu-0d(45d{i@sK!POqV{> z^DZFfU~DF(;xYn8PJ0qNt!%c*LFO49j7ZT;q2YB4t z_cvY12Goh?Ck&1>DVIEC`H_;}D%)@A7debllf$bhAWGlzh~iR8sb}~Pv>%m1W`|M) zI~jKTNJ;&ZA=T15t{3(ilf=rIw-U-MmCi;R?>V$u$4dvY!ACp3f({xq7zni(_CEyQ zZ}==rKZ9EXcO;Y|VuI@@?vP`ZCcxNz?RW;yvCHZBY86jk+OOmXj;H2UwdUj#SZbha zwfYn1k8oyXd$+{0$*+tDMnC^3x4+&ZX+sSg|N98e7%X}nj6p5=xRYc6KagL|*}7bd zLxavMx;of%O-QD8h)J-){m$t7LvvIc*PiaU4vgj_zk;aO0Rq%4%yw9Wv225;w|*v0 zOdC?3=>1)h?s%N{J}gg8Q+wVm!B%CK0Fj#2_G{5(udc9Z#4=j&`@Ao_jCPv@Ix=D` zsld{GyDI*ipi`2Vn0x$zvpHQiY5Eb9fui!lUUFBOg(OjePkM zjWl zXorsJ+rx%UU0$xa^5>wSqo;`9nYHZnhol;59!W~Qu=G?^Q@7&kvL+3}geo=CnMTd0 z2rDval~SN}xLzpa9vh`>4_<@Y$7Q5p0apWr}?_$GYau!<2}| zO`c?-=86PodtWN-%aBk+GR7GDoUo(ZBgBtI~8B?XkVu#IFGR_b>6qoxY zUR~4<2LX8$M^E1N73N>|6pL^uQ|xH(MlM?6nThGaxD{pUSs^;Xr>IO&H+AKqh@qM}`Z}oGz$a+Vg0k!0#b@3MU4{*4e zaQ~bRZhp{yzZZ}7@D7w$ETUvJNJ>;Lcz#x!Or{las6(tvja`9c4EYJAgBc%9ua2C- zL=M*-L?*tW&<4PQyWYqY+-bUyeo$MnnWS_@Fy%+Qb=3cq(TkWqvXrk6;&k&Q*H9~2 z>HfRiP46E59~|f6+DaA)2?g}!9)!Y>_IDJmQez|Sm6chQh@gYNq)eAqOHJ|+nF`i} z5DE16SD2|Px`Zj7$CWmFZ=?QUdo34qjPfvW1uF$6PBvGa145&>-bOA(V3k4V@fi9k zAQ%Ay6WsQRBnr>M&-jaScx50(W6xTq39U?F7R;bc^iva9>Db8$zA@`1FAZi-M|37- zvO@&h^VC#5`c~r+b>Y5c4 z;o1}Dg1RcLoDL<_O^PjDO7N8zsY>C+s7IS9@%umZ-&6Y#TAC)Mr(;)>pHr4$)q7l1 z`SE%&3AXAec*4Zhrsa(f{kPLKF^awrj%l0XKEwbv$#z3mISKf6SQ4}z^h%7T_6?dB z3Y)sz>Cyt2Km3PC?VhCdY&0^t-KSq>J*M$(i#kmZ(5||Fv6J_Oj>Y~;)Ygf0#s0b0 z_ZR;lrG#)LFrcUw4ES@!#%If?ZUsJjiJOT!yicm3^LnfAzMUKN1bjQy8|gVMPtqdF zDlc0ZN9}ttvHzzs2_ly^V8s~{=d+>g5!uPq+Bw*m($b!AH}SYTImcr5Y|1pOv${01kG+vEE=`xzO7-@kC{R{@{_)Noy{g(MLv$t zXkLSO+PF_Gt;1rP;-+97-XtUTuVu#A9dCKS`M2_eAmbNd zdE~9I<%QpBniphJLt<(`5m}M>@0c=1I5RIlSAU3taVL?@aDDxEc6TrijMCNNYT!!! zGzu9`mPd$8#lrM#g*>_;UDC!QH|BV+TI2Fs!q*h0adKD8k31jlGC>8y>rAJ(>z_A51#3MIWP1<0a9+U+9lUP)}T zr`sud*Vd@XbY94j$hn8#Fz68JcW=dj=IErF)Q-o#jJ|&w1V8#S^`2ucEFfDTQ06&% zTBaT>Gik2!&AU#5pB-h?i7Oy7gQtV|ib8@*3v&VImG8uWL#S`0BOJ7fr`$1!^1|2` z;n7s`H<`{_1ElGCAl-cjZ+Fid!-EYk*_}ycn|@zuB!MBCI|uG)H+<>MoRjmjr}D+n z@+a?{gHrXmjv3@U#DI-YD~AMn(K|=2us-nc#;44uTSb@rZf7GhlMnyc+3t9?HO<*p zA-<5wZ$y$j2kb4)WsJlgxYWN243BNdau7E*;ajhq$6U3)+~-^~$HZHyXcl+b@@nrr zxTRYuE00bA4|_B5)SEgr7{+Z2T5x#-^j3cVNWFyw@l&oBYyAk$sNCG=GdT2V$LPXx zmJhXZ6tQls=YQ}8xND`;{txUF^M7Ke*qHu@37dhQmGQr~{}Y~KU|?fp|6iK0qyLWy z`y7=f!qP4P#FDuUX$vQyQz*|rqy)RH_ov0Sx#T zv2fl37$=)wKCG|z4>69v$;>Px1=Fc17YR8?-X0K`ogE3P$s~w2CIu{?_W3CuLHwUm^U~X>eJDjUu8_pbpkqsCi zc{+zC@O6$HGaE24bKVJlUgM~5a2{HNi%Scdo}r_oqajP9qd_pIMmRk^@D~5f3V?GS z(%d|X8Q_~XJ^%U??3<}^m01&jjAh(nt^-V2abspW5&RuBK;V==e5olMS{UdY!krg8 zzt9g2|1d7Z`{LVmF4&Y`uLtm+-tpW2W2f+a*)!8Kg|4rr@p19PQ2G!-z<~Z5?KE(9 zaxno<;iLA#O!vvonffxRGQqE1Z8!GgrDp;f4J`wh%!2+X=OnfhjqR+5FGGU-XcKPU z($8wAgs6!NUSIjao02u{zDxLH`=88Ozv_KDHnhN(VGUi<=|Kjlsr}Fn3=HSUKm$40 z0ZvGL8$VDBeu|lZI)UBQH8wszJOcQ^0_1hJvuxhpW#GQ_@g-sR4$q>zxvdLb1E$Q1 z0C@AK^qt}{(~&W$;`go3gPt8e+Yb8@F~h?8f&Q}(-@%%J2IPGseXIXz`aU^`=O@sM^_}`nqsuHv32MtAUd%=Ltxk;d>j3UjYik3b&f>lT z@Ug)Kpkw3fJN=iH&hY>FXE?-Dbq^y!?)x=unAQG}8>sP}&i$#~)&ux*r8YieGWQ4g z@MX6dn;EqE`5M0eoqFQa`uTV zl>!43@T-s~o4eHn?HlNy`Qht0on~zH?%~MF!FUgadh25U^)6x_!nU~g9AtOj0hq$Z zndY8b%MBkI9|XQTaMKZi&inj_Pu0~6=FQB~`kg*_0i?)_HSHpK4?^oDe*MFz?i~Qv zj($bGvH)10ediiw4{e8juS{Ry4uI>rKf&*T*QS0&xo0^Y$=}-he#L!O$4&0(#sKwz zf1r8sEZ^add_+_7eD7?pd+|RVHB^2BW=~dr1GoWNe6jdWfquXpxKHnEn{rkYU_R*H zuqWLecd-t#aG9P>Q9RH0DG#Ad{8_nw`Y_nI=t)~AG?oGFm+11|3t7rOWt>skU z7yQ@W8OZ;J-?3@kysTX>Pexhq(K(ns9Bc9<><;9*L>3V^a<$4Za*~GBfm_I3qp#tx z*zJp->}8;X`8#+GdpK})rxo)kZbYrQgzMHb(d@Z?nzSjG55hyt@pY)ub4*@Boq4#W z3lF=i`P+KGx4(sA&d1(vfAH`0NTPa~N=+B&R65jbOtpQ%*) zPB(pfDYu%cKD^@OqdAPz2`uCYnw$b24L3Lg(JmH6b8UdwDvs<{-;=DjmlUbM!Sw;i zKyzGtQ3Nk5#kTu+x}2m3h4av6m!`^Bz{oG}}lgYs0Ek`JsiO?VVMe z1ekPOso$Vj_Bt%-ttgfZ&4yG8L(Bsp$4%|w=xmbki?sY_oDLeIO6J!#f4OSqC17om zJq%5zgmha-X1<6M6dMIyS?(uBCszFVv|&^2@B;Ba1}d-oWwxlEG>$mcc+U2~`0^8N zv`sBu12%n66Xw0AJ-Xb}xr$PxcWC-?4e3S6g(7S})MBMF?M7LOZLcl^xj8Pq=Xjn* z4a!uK;}fJ+aUQ=PY;+4{EssKxOr|d=B3!-6OQfm-Gg8EfZEft&Xlx{om*4e=g3u#M zZyj;dfh9Is2n}n$EYcXOr$kSd;K~hxW3G+97ch1bWvf&SyD6`k5kdtOZJW-eoWzkeHmOsdFLj zqSb4eqLDQA;eoj4k5fyMuB|7UVZnLu&B@)Hnt`IXaj<8=r|3C#3qtvf#(k{6tqT_X~j-p>jE$)Z@ zt`_ADm6%rP1L|SrZ{#p6b2z>ZF(Sg*85cnXZt>Q&1>vEaBx95Xy%}^loN6Y@rD0K^ zrq4J@5@QgOMnsZk(qx0Zj3Y^Ikom1pxuN;S%?54pP;NUvy!aS~_-+c#aH0{yfAX2) zm;XImQe?!Q^&U|1s`#u`PG+z(;~)@LJ0juBj|JQN@RCD)+|AraD>68~ti9ZB#-;=pm`nb^HL2 zM8!#Fn@7T(Yixuh*_~<@l-hVHsm7rVNDHhrXvF1?W0w z#i2Jc$@8Q+Zww4S$l~hXB z92CO@J%b9mZer5FLe)=a?((fM**2u|SqAJrZ~&OclgDbXs-4HJ>5wY}cN~_u|Kr98 zqYJeD07s}l@=t5)s(3soMT<~Xs+eo0;``H8uyEv-LC1iPq1H*Mj9jFb@~$PTf>k+Z zZM9KJFLV0gVY_=v9W(bZR!_*Rew2>?JZXS}t>$6Jr$helM=G>n(gv99tj%2_VZ5Sq z2Ixj-{!t3-kK`Iy>KZ+nOt+`ydsg!6k&A#RYGk&cuCCqT;X(3u8+p$gGQn5c<2B>p zapp}}9p{tPLKA?yC&hQ=%k)wuw-P2dE5dAtYgZ!%T&;D>ad>>%pc#MW9L`N={qu~< zN_#lLj20L}c0<qs~dzd5U(IRP$nY^th z%-!e#=ye%0Mc{|Pae#49gODAE;@;4=mL3l(`!jW*7gXkjX5MvYnOkYBKkmaZb3XDW zlFwUz+g~58g4qSj`Cu1$Lv!6=PX?iN?{!w;=&g7PCBtF-j0lMgS>b__VMS)@r_}*5 znPn|+O5ul--bZ|FuA^zyp}{lfoFhHANmFhTjU-J17xcq!Hk~V6;tPs~sohvH=Hz{G z8WON#!*|sDglx2+hod=??8<4zPP7X@)E3LmQ-=^M5b%f!W|7$${P%C#uQ6*)Id~Xj z?_y2Q2s;QIvodF#e_%3vmj&}X0aixF{*&aw`tqpTuJV`uG5xe?Y{#WR$-sm z%-6fOZDmo)=D^J&@Nm_ZRWc>$;9;;)P}^mVpXk&NC9+2GJ#@M(Un+-S)Mqh#j)$0w zUkw$_6BLo5^!GoWyOLApo{oVmI71t$aj@ZMmt?>q*;;!oIy?zx8_~G zQ(Y$Jm^n1O$o>*awLzSZ`+2y58ux%4jzUzx_&9 zcQTVUxsHW*6D$eWq#OKf4BT(34PBKQR*bY#E%w)}mRv%PRdxBv78*9@THoQ|gFZB@ z1Qs}lk@5v(13vBrXf({I2iaEipOvAEYNldD4a46NrVXCl0&Fy^yH<+5Mjx#wI zTnpKEuU*emmzWJHmhnQ-zm$0y{1yXbQAJh5on6VxsuI;}Q>??RObg!wv*}#8hn3VK z`{Y_HQ}&FKxfrYGGSQ}jpF}st;SYYUl0`(UnDvGMrH*0B7sE+GEj0DcQVLVLh;EhE zDr3zKibP_ZmP6|-P;*$eVt1Rf%Q4_3K<%g63dZrLkM%I>B}Vl$^eZD2=Sv44ET^;* zvAZ$w(VF-<&hbz}7WuS=us$d(FgKfOI>d-s^<*vjo)UFXdo$U|aW8Y+6JS{~>3bJF@<^#OsMV2@bbyyq(v0wA=F2vuv@I-W*5rxNRHtx{F{1dsGUxI{6v4N zD@9H1J>*|O|3B!O$8CoB=)AE66ypSOQ=J%z>^$S^27M~??uYzJ6WnH5lveBGBFZq{nN)W zg(EBs%JC)q^}~>_+CZtX#foY?y^QJwtXPy8Qc;-~^MP2y;xD}1G30Yhy)#6`E?b#! zki+;)nIl;zG*BrTaT7UK$Uk2`o<6S3PIvZ3`MyCE(bo#v3D3EdDF1qC@ZE3C!S99}KXPI& zae2qmIa;_If^49Q$__O?!aNxk1)#L5-3V)4b`IsW>ksf*LwiX+zU56gQ{RjKt#M$iQL`cxW64WQ+dv4_AXmWzct|1y;nZU*R`j|>xC!O z?9XCj_fX-bpzW1*43BX0Ua-f7dL}i@)L^V986_-z6R-v0Dh986&=_u_UBv^{l`YzOEBSrY({-X#fM9$Y!eZbk-zNK-;|{gi(SnM( zN^_u~Ygpt96W|*;*cG6y`UGUT_7eE-ZDw&S_lq0k$)cH+hj#nEOA5PX8}2(*h4$%F zzUR^Zr!Cc@7Ppik-Qo8|VKA}UHE^VwOo6k49b4BH1&JDZvC}m>JL{~|1V;p=9!F`p zDR@743Abo>*DR>HG>^kkz!&T23S(I|!A3}(a=@-=b|sQ5yV_3#~JMDlriw9@!~ z*fSX9wI&M7=`8usg~wT{#ADnBCdk6m77Cgo6|u67&@(&91-8a6%Y`lv0=b-|SS8hJxREy}|-Ef8NpeUAO!`RWHPOU5=L!~1Z6GxI^`=Mk%BG|$QsjGTKK8S8!! zsUeftY=@T86v#s;o37-JaH6aracoEGCZsgyp+~xSiqjqk1o& zTeGT>1_hKWZK~|~qy@7T6Vx0==IMCgVP_5%m+L8;S$sE_Z(HP7(ub#eKa3db`ZIg5 zlqt$%yj?gRqCsMA2Zqh|bcQXNN#5Qu0}aE~5*mfQsnwzpowHAg1ePm7QVgOI2gOs) z;(4x`L_^@22!eni7{BAUvM9pZTY8GWN^-ajCt7?$-PVaI_F!6;$S(DqHPmx|18OZ4 zwv(H=PustxVCsP+YUe`5Akozrv}ZwJ&4}aSZIMFT&2|taS$YpgsjWyL&%|kp^=6vq zl^oLPu94cP4ystYjB-$*7}|b-ARBXAxPCLv>Q!8L4Gfk#cM;o*!fTa}_U{HKb2wjq z;7)FC))hu2Vq3!#0G)QjUYw)yeVd(_TQx$_8iVMq+h zmU>Xl&xVCk9`q}0IJ+<*2zW^iYcGQjQx+15h!c^Bf^BV@RN7lI0=i1!GK6xa zUm}GtuA%@h`-grXw5z2xXlII(uU4`D{;};6aw}()<;1QonUCzfN>ou$hBL7p-mq0G z1J`s`13(K5!DU*vTL|lXHeCijPx#i)6|ZRc#U9{)F?J3?!Zg5^ZQHhO`)k{_ZQHhO z+qP}nw(WlZY$jqN-eQ&&Rr|`wJoj8(A;7tS^JO~OG9pTuXwPf2=OW+uGOAv8Mkqo1 zQ`0&H9a#T9rDDM11A@z7$Udo;W0e-S@xrH&h)w}4=!?l&{ZO7s3>!-h=j>Nrb@83@ z{zOID>wXD?W*ha!uf~`{)BtX~U&d9^D^btI6G7kT@3ZG^DX5WsvF4)vpoDa!=Y6uk zyMUYy0=($|>QsbgpN_1lK=>@5?G17jTRHwgwX`ds0eXK{!2QDk^6OR|RU%SG=ziL3 z1TZ|o%9r4_ol*yWa_yv+JUMqYDfSI5sv}8PrBbRMsQ2|uw3Z9hYF~yIMU7xr75=Ap zu{tgG-6AaKHpLDix5u>jVU|w^PjK8jYYyz zhP}Ro#0Y{JrH<{tzfC}jrVof5b)fI|ZrZ-{Gs-vapUy`i>iF-V8g2XWUK?lo_aSa<=>XoxcwX{V|K^c$vxagVgfl%ilZRQ0bfz&r8 zX%Isg+vBi)U-pd#;COoV@z`Z6_jF875?qCOE@4M9>=?#^A;@?)9L)9;@;Al#v z_7L33FB8e$8SeoVwBFu&qDLFXtGqhYb<=;L3uz|9P72(t*GOEXJ${wQF~eV3@oHrD z1z8c;qDS15#9Tu#-N9D5WMY!QaQm2#F=HgS(Z;?(=Oj|7;DYz%CC#8fvkx<53%Lc% zsppOWEa_MX?eTsuoRzY2#{BOdK(h2TEly(4ELe@vgTxBK&&Avad)}c=}EW_kM?Fc?XTv zf?}w&vt`p|Hb@N_XDDdjm9?3(D;OrVX8lt($gaH|NBRSyq3bAX3GWkrMdNi?f7_9l zcu*T|J982uljVB8nHPG*OrxL5t^RGrhe;*hJmYeZ3$y2cbYwO%u3NF|Q+arGybW)G z6<8-SNV9KaBB^rrK&^bIYD!PNN1{1*g^Fz43BfM1$6HHAVj6^t5)l?olKz#S!+ziA zuOv29Th#}c%_}7}LGD-UtolQP$`Ynt^pjd!4wg#)t zu&L=bt^3~MTby&8XLyFx{06hUb!^*siU1@NRvE7rl%MeaXG;6o6U^vziSu@GOZTI^YgK>e7MPAD`MJ;hxI-ORbxT|1O6{^l zq+g$qLAJPVDV-MxZD^Uft!Iy!VLkJ6LOaXj22v>QbQDQVlx|ZTWkObN&4tyA)rfK_ z6GnR$#Q%vUKmPM_WucVqj|VithO~_(SWkdc z3@wz(R{bhyijjpzse(BxPgFgs;Z$b0?8)D%tg7mbEFaQR;KGPwi_F$knrbXTQ)gii zYJoXRcq9;SCo4fTj2^NJw{e~mL5{O+Yar58wZk$yUK*6Q|XLQy4GP_ z@QSerKck|IDC|@<|SuvdFdsjxT6pk>C;ZFDH)=@3eu zbw){8urIlg5mW>NIo0d2SpLP($!3P3kUPVEWVJ6=%Q;p-n$>aLvnc@Dae_vC)AGam z!{6oSmhptP>pIwtNs-^uChp<-)nwjIyZScI2e48ZkXrVIVE7hB!$sAPAVDY1Ns+n; z##-O4>|EA}k*(hS7L9?;bd<13;Km3G`7*ziC@EDIr!kP>u*?vkZW$ff=pA+mzPNuC za&S>v+kSZV@p!7*Tg+cQ>yS|prd`*p>a4K;EHdH=8tg=tplQZkV2j5Du(u_Cgjo{TYk{3QD|8N^yT%5@Ukm73`>&L;bH1*U94@0o@T0Ltk~QZ_+z@(! zC<_$ zF16kMf|=)T8cP`4?dG``mP|~RPAnZ4QR)ujj&LqF5l4TND~&47v}XwgfhJ$4sPYycJ87aA~*763Cks3HWt5 zjW^hdZvT=Uq)Oh4!5BVM_ z-X!c&H-WeLX-*OAwC=v}*1A#~d7?V0haKOJYo{W5uUw99tLKfbn9s?7&$n!M;7&RJ zj7@?<3iXbx0}~7u!g8!N3Ah+VurB!oJ8f%{Lz1qKmW%*vn$AWAa%aSYs)29RTU*!S zqWLs_jQ7cqIliwn0k!J7%Dt?du**u?%MW13QiG}rr0IU746{s%Svn0SH)S;oy+4u; zTuYs;f`?HjK~}>K$P{7#)dixW@|u`j*og5hs9^&sD!2Id9ClGOh~Uw@cB8fiJqkX7 z7+bte_DW<>kN#N#44af5rnTkhfPF8w8nsgDze===)#EFq=%#F1NG-Dc46wY6-WSuQ zY$g;blF7Hf@ zExPulHB~o%GKtTK{WtOkeHpc&t7p55u56pkRR+!>=(K;l;g)$Xtv)`X-puK!p4#~j zCup@>JcUYUnVauc!qmc4jVgaCx|PxW@+4htaO}WQuF~k=z;H?L4Vj7pcJ*!aXA({- zC#7y=Mq)Uha`~314gm`FQ*X96y%_DIDmrc)RK`h&GmOCj0IQ{!wMJ@}EU~?_U5P2Wxqv zs{B4gl1Zl4jtn+*%i`pt`{X#-RcAPM-F)#6=*ilWt4=-cMB5d*lW{Mqob7eMx=B%iN+HuQ4Rqt-W}MogV2-U<(=sK7%eU0!igbVkM;w90~uG2#S7 z)uq1^CLIyF=zBO~bS>E*V^NyDjbK;6g|Q^35y;MhZRrKZ6Rbi7ep3X)01)TcE}ob$ z@8%00F*I^&GKKn~#eE1$r*_dDKc*M?4`pn@m4Zm6)fcaXRz@rDuS_4TsDX`}Y8r1% ziwKsY5=RN1h~dXN`PJkvKQ5@~@~7_Uy9X^_`_XkUMEF_-gPEa@N7j`N(X^X^<*Ck! zWZZ_LQTW7QPNS>j!l@M!2}aRynHIY;NdO#Ne=;!~gMrKnY%RFJZl`P_KArVdSK!VM zmLn%4cGass$03g`l&E#Ok0DZ#r{(4?Z=>oJlc|VkDun%@$$3Gp=S`C!#qM!jjW)O% zXUiZ$ciI*w+j+M56x&j((!|6&eABjYOR>FonM_K?jpX%D0Ue*_ot7~d)`oTvt;O#X z9P8EA-7z_wAh2k`>7Mj@L}fgXys4hO5iPIRm}+M&ZE=EV*rRa5tl|9i2l#%F@kxOm0WhO2Cu_%mo%< zY7m)}&LqKTM34+l!my{#8DjEf`c25Cfzcb2yH3)LUWJ(o7jWQ5VBTWqykhGw^T9(O zZ*l&s>)~5?#%UA_oL$>glXaWvZ1|OciYlktaiT0$-gR*(A=PQ+ej=GYTrsOB-JQwaOH=Z#Byibq`DYavbVx?&^uOC#1ov<#(>-@bJ8Y8rf z3X^BmirFGs320vQ^w(}rnrh|6Wgmf>RtW>f)Y00I$UFEi0EV=b6_D_Yf@UYnKaO-jBiw zn_WjjUc;qZcRfvW|Kf99C!NLi&7wrQSf7c%s;gVca)y_%f&u|-tx$8VLbt05B#)g1ibmLOmdKB@?Ba4elZ z2N1v&!dvS|26efHqfn@2YftdtAHKlR%c{!^{~lkacOf##I;l(lG+=e^?Kd)Ib&N*dy#fL3HV?P1 zBD;AJ>wU4Rqeq!mLb|NyqRLQ|+acRtF_R_^99Vh6(EUL1RBwTd!WY_kJu~OkLj<^G zcQZoK-?GTKsBJIJl60-8io`g-(hJ79_TAiWUndcgw38!}fSe0yMb%H@gH7RBk!#;E zGZBBCm45R%1PPbbd(@!Ovx-J^xDLT?qXj*`14YP<(SPe%M~l|_#WwJu#y_d-k2Meg z8~a#bKt?caHNREiZIME0#Bobgo>O!KbTF%!Qp0}$l48lTNWx>AqMhmJ=h^FQ$$#^}F%!iP2>qP(ovyv0u!aRhuzO|3xMm~nl~t0bI=U1$>*`sjJ|{+T@|UlDPjEu}62! zq|Zp8Z>RY-tj_vAjNgv-TV- zNH3OGF#*f%;{P|^sA$O^c`5Gw7xsnLg43nWau)Rw3ZXi+0l+ zBjNrf$=_0z$n-{W%VDZk`{aV6PsOIBwzC)DEeIPw-#XKn65a?OKG5*>D4iA&Smy~d z8O*LtahhqqP@6;~70K~8DJnq^V=C=*>C~GL3>JBF5VRe*StEYK){8!>k1mCouA{|C zg1Bel3>myRFx|4{Hu9V_-j|)z8?`G^=qCFR2KfwHPSjoWT4{!Y3p{=J(NZ+nrS87r zITQ$_U!1$;JN+xPIi>U?SDXQp@xuSIDk1lMUt*sO94Dej9U!c+{L`ev++JHjo760d zo@oUODBwlhsF*h}HcDnwHC6Z1>N!iBC7Wr$+-9S%A7PZu5a%kVO+N%{GP;CZMS%M+ zmS<(l&#B)vKfF%I%iZbB3`1;Y)Iw&bQ&7!MW#H!b-hxLnQ3~fu@0Sla8+z#Q79f=7 z^ur76a5ppgZ(V_1ztDx4y~NabkGyV7uF3h!Fn`3}Et{4-$!oVgAR$Bpyg!tFNTk-7>yN%is@u@z ztUAu><7tZvS{PP9JPj^uTjv%woLsK26i@%2pL9q+D+}ue5m%{d$@I9L<-c~)f4n8U z$pR^5-XsY+yHSD|x?SBUbRk?Z&XjIJq#Xp(6lWhW#V%9i`_MtxYhxgfpu)$uX$Cj} zDek}%XCU>2-b`UTFKsB0+`dj*OWJNfaT(BLS>--yGdYNZLyuurSiWPi5LenAFADfh zvE6Go5{>stT{~T_He1Dty^MY z4C}chs5GxdC%%|b)&m=ua_EGaW{1J0)BK0Peb2NLlgAT1srr0>v@^g7&iXY$L7Hm$ zhMQjQ#Q}q2wfjt3F#_JFkjh(^l+bIB-t|(423*QWyQ*j$gWoQ(+Aj{=C)lW;;2yUw zc|Og$#S6VwJex%H?$y(e+PO;SI>ZXRH&27>h7{dO0!cREJj7`l>o! zBU+Xwi(1lQ1o&Y}Gt3Ay&9=%QBUYSH)|dNPQG1N%O4L%1mSwV+oO^F7M7QJ14K|`; z;$KI&N{YiQS{+-I%(YoDIoUd~Qyxun?qcrlwO6jYTAeWXsO*qqkyu2&hY5Nh=2Fd$ zDA~NPlWX~JcQ&6eZdl#}N2W*`*o@D+OYjd^9CsJlQp&0zw-a7kFs{A9QHU8tN0tQ- z$MGB^-~86-bx(c(p!$o?{|iUX_P=uE986I3(k8ZM&gM)6j7)6o|M&6#;mH4!b29$_ za^$c7apYHvpioD*w=lObSlc@~g7z5OnA*S~Y5D_@w`kjeUC7(40zqB6t=Ua)AHRK< zyP1_4ZZ37HFFZSTu&^POU{UEEMU>*33xLyuvy-Fn@$!qwMrOeE4GxWs4Gshg^X8gC zH~fDM#0%y@+S)a^xbJ@>@%Dfj{(IJmWc%!eiABKtyEAb8vyl3JV{@}ZbE9DU`bI}z z@Cyqe_yiV*wl;9`hM?ozT>jb#<|H^d-P+Z(HT`xjzfTbP>_!0fPY(|af0%FxP2e5s zSs5Gv$y>PR(vi4)=|&^&sl% zTLA!6i;>m(atzG4X!|4 zjh&iXKLv>IVwr75sg4Y3_RVeJoc=lqzvps`o1n(8uD81Vee`Rq0}Dd~XME#>n*-a2 z@R+Bzvi!8*R%Yz+*~fd??8u9JY*Gjq{WGJZqf-OW0Gz=5xu&Z9d{E||oB_YijeiEd zOZ#U>$LApR?n!`;O|1YuKLj7`ne9OU`snQOd2@ZZe^K%48-S;)ruzPrE2y-F*S^*LO$baQk1!&idrQ?2t`w&-Ks#n~dhD!KltJ#(UEYKeZnHat;q; za{=(tWNiVU!P&9>b8>>9`=4I--}*e1Wvc&fkMtTG;m~3MdiyqgxXb>UuYccQ=Kp#K zVEq4PO0M78ItT!M_=0NZMrTZ4Uq^obJhuN}KK|HG{ER>RaG(FS5}LFAGb{Lh_Cfsd z`67E+ao6=>+9h3q`ECJ`jxes-V{Ff!d-`h&e*y!yM(cTk% zl0!eY3HxoUO%BQ^`oNzW9r%IMKRh%%40(24vkS-GANp-gIVG6m3&R93cCiQP3jx?= z`2?iF(TV?UUw7LE$X~}V?VINYkpJ!r4+95K{-i%N0R~X{6Tkt;|MWxL!(KYZ9|i}= z{6Tkk>LnEGVh{Lh_%1*;|D_*?0|@**=zFZNf2jD?=&jy;jmnqb{?;eJ-^$t6AQ0|6l}(Y>p#9_imz*IxAQWk&gsc5C4w zUfJq|3~2War*6*CB<6P2k`M$>#& zQdVtsS+_QrmN*t-haIAV=O;&T>I-#gVBKNc!3Btr%-V5vMzi4Q0?f6jN{mz<=&J?u z@ItwMn!1(g!(A~q;N<|q2ID;&w5zC%6Y0B_C$1#!lGuSaoi__ZAw#cgD= zEZIC3yq>ybB;+H_8`jWwKe~-pA#ZT=M2XU!S#47^@o{{hkJ_U)V_6NYX|9&5xabg! zuFxe&!60OJUN5dzpQ(4l6xWi3$B%I3i_J6bY=hCCG_BbQJ26Wve;y1vA`TcF8etaRzn9^G>{@Qb zBH3oE=>)3jsYD^v!j#*nQ~(7+t3F81xZ8brTMB$X_Y#)7e;a_uvNN>L$5vT|#tHo2 zy<&?s&KyF;oFY||m4#xQ47vDVl;&8z;9;#saT?Ms4{$m^pV#UeQV0m+Wz8+jEp7A$ z0f-f+5*B0_IqlsCb=E5X9mZWPyK%@gKAe&$X;wduy*B_w2=Lr}i?-sG5-UI!paKpH z%yf-rJT{APQ(mJIBQkTn;AYZTC4OE>R^1g&g*a=^j)@|W@~CZ&2;c*lVS$R~1&>f= z4xiMVLGFURJ!CByGl>`GS~(l|#@Xrp(t&{sCSeA!fv9HMt&&>%1QMCYwZxTG)V z!H?{_CJt=of7RLN(u8R0=PNA0)3A%TvHM+d93A8Jgfet-l1+y!iv(Dut=_>awbN8t z^KX~PF!}J+Z7w?}!xdI<=C2FJ;G@grWwmmeA$!?|EuZf7RWuY%NR$xE2CQUdMNb12 z^ifC&CTN;WwN_U0IGd){vx_{N6v4a#}tk9-lE$O0;ABfcDX$VP~ zaNGPo4IyY8uYi97WrIIjU|X)vy*;cWQNIrj^4(7BxH5L_o_W66lf_6OVJapr@zthy zkS0eatJLwdrwRpkN`@l%SGA9~OYEcmcT_gb%btOHifn;a%8LD71^-f36FoWCT`s9s z)dDZTpAg>!BE+T0mVNxG-r_2{$u_xwLJB4>;J~Y0=yfJqri-eO-XsmRPX?}pE=R)O zm*;Ipj4SPOP2fH)AP{Wkl? zmwTuCuLT-7eq@~9rSV6Wu{TW z+QC+%t36<^lqFLYrzqeq=HP+`v)w^-67K!QDzJLKuUF17;X^iI`w(>hi|uUD3e+OC zMbB`ij# zmwp6NPZF{M3!d*mFXLwq8oqM9lEWg0ZimmI;-L$cs@T)J&(JYG{l)FBI|H0s(0C2> zp)7rwvB(oN;c5uEmwf-dFhS)3j3W(e*!-rkWi$uR>F5V?e3EK(me z$u_DzgAG0+M8|PX)$|WaY`BQBf8gs;qDOKju=ocy5boI`QU3c?m$oAom`f(&66-E$ z)?)U)+dbs*Ygs!c>?}l)q9qN|arsfL9!jRE9x0!yF3Y(Z2xNuRA^Z_kAy(@%8u&JCpu$shi9d45d9dsit#@1vY z&kPrRE6+E^2zuM-d1y<97HcVIj#CqJzfpgisPyV)&Pf_ybo zs;PZA+lmsy^%z=EhzCPz8r6&h7G$fE6Tx6Sp$9=s$J@pBfw&^Y5wr+c%eeLm#tQ<|BT_LY6VY&SW|CQ_)uO zYvkJ=w&L@%<;D(3oDfe6RECb-sZN}rHT4v6BpJd0?-{}KQBQ{JoNXm%%;T;~^aIJ! zN4)#hBf6_(fje^_9W~qHDZq1XGr@1|_UnA!&eN@`E?1#b5542(=JYT}>Bd^(=j3Fz zFo!0Z1zw}p-s>hXqb48sqmvwWIcRTTXhoRKLdUljp+VFL+3`Q)t3%=le^*Y-U)C_8 z7RV@-#)x~&y?f=&4j9kgW~5s+8@fxiLb;!o_G#NP?MgjqEurJ->}|{x4YEVqABU*U zCb%Dwm8qn4KXk5D1TyQ0-@`If4!*w0VQag^Wy}&kixtJAbzB>~t0jJmtOp9tOJLp3 z=q(m#neIC*iqdGXwB58%=PJJoFzAQmJ(ji9{_{wDNFIlXtnXLOfu$?L6~oo+)e< zQcM-Jl+!SA_SQUp(c45KQnG?=+y?~4~Pv%ho^u|=j7c>6??dmKH$_gCQK`RJyFeH;R+j;)2=toHgFA!s!vK9nlx9P6HZbS+e zjiUCem+?B~oTnbT#3egnkF=E~qPd}DVGH&uK$ciSi_dd^%bi6$=Y-=EdHqNkGZ<;_ zOjrXgiXz!esU*-!xcZxcxCq)mou{$q#lSQZj5}g=CH25hASN1M!0oQl5akFJc4iGvOSczEQ(D{P9}Ma^GHh7}P$wu~-^DG2X~3KuRRIk9e@ z5x8j{w%Y21+UUrtl{*y@e1Q8}g?qX5V=sK*{8CUPmzKJcAp(!f^3Vw?eainYR5qX~ zMRTgmoo4}SNEYBJzDN&P@}qhBX~73gVq9<@#S5VSIa7ZTj+kOXVdA}{yy{#}b(ZVj zBIP~kgk>I3F|RvzyqQXUku!AQxeKrLxadAUvh0H}zkv9Vq^CYj*nc5_%+a?jUG;^< z&8^*@+Es`-MN^6SEzw_u^KsJZoO*vHA(QbY|0VtKUsX&2yZJ2|pyv$Rfb_W6{q?5t zo9?RnY&zE86s#KlDKOWf@iJNJbz-yuSv*{H{!`@>&%eiJ_5;zu8S_neSh@bU;_iPi zxJq)|S~qRm!YL!+^^q)dPY6`a=wQ!2=J6EEC*v^LxGMu!h4%-8;b74sEwRNVqtLOD!bEI1wY@Bc|) zLz$@D;+p5VgoXh?SAghA#@*Z&sQ46YB~%%$O%Ee`Q`eQu zXsSE%%MpLYe>7Jx7gJrs{S{|FLE6~gK_w@CpQVCc`lsAJ?n6fGz{K!YUw6KGB8x^k z*tJYWBxRO3TL&Q<9a8|#4b_l}F6~6)!tUk>{6RUY8qHW5lOWI#BftPf)hUwmS_#fN z_?RCgWPbV&=dXkCt?)ic75vbu79RvQB}YYSy_sS()2G_v$&F zcdkQTn;(SYCEo<+)8GgZFLGoeqebvYUeW|1g#Kp2(BG3@#o{wFiRKn4Ulq4PIQlI> ziPrQh5&rQS^d8B!zP&T@N1yJuXF%i3n1pW77E+@&s~p|BXRlg~aU?M_A~+S_w&M$o zdf_Ymkc1id%qi?OdG{)OS&$v(^fgNap5lq%WvjO}eKSbEJkm7{(K=Xr`QF+MGVS&3 z1lVj_<>+$q=tN`YO3?n@rL2kW)L)i43yq@7S1F>}HUfJzmPG<5oz~S)0nFS%#^&pe zttLUIP5G-Dl>&?X8^Z(QfWYLFwY%J%IC(F(yHL!8zna{w1F;A_5+bU<8=|cUQPbIH z3>=QV9p>|}ViC~9uPya{?1T$lQ50Cdno2;NXbj7(mB-=n*wNw$Yf@^d`wicKaO+e& zCAsXsMx7TLWQ}9L)r8?3+`FsDUWgCzL#WQT8Wec(4@Q8#0ej82^VS3@eh7XsT3fw~ zM!luCE`n@>r3o|KW0b1n*7n3yAIJKK4MkDpF=0vC542WJfjNGvJ1}EkR$WpQP@;p9 zgt>}`n7bhnT+9m?Mxl$OW<`Ni+N+?13z9O9A!B0!wC9@WQE$_QoCM|Cq>CEMvQFPy zb~~AM&+1-x;oNZ=M<$agwc1Z~KFO$9E87qW#pYeagKx-#M={W(f#TJMoL2d;F>HqgTJ0?jI#yGnj) za4FgvX-9V#;E8=^C|qd4xPT-wFUFIGSN@TjsvNX)v!0H(rATV3GZD}>-A7c*2pAHb z%J_L4gyq1_pc_?Zq;M)@RtBYD^9=IiIv00CIQ;!mp^vV^BX@u@(AJ66b+|s9?1@-K z{h_IZ>fybdRm{z19GWC|(K(2$NRX9D6_RrALq}nazD?Bxdd@D|_6o0!CSsaz#6{NsV$H&IG{`1}bSA9=Pbxpev~%{4lTRIQGRC z@t;JL5XIg>^f_S41yDj>zO{bE?PD`hxWWP=s#xeb!K)q~sWd&#~Uag)YlDtCI_VDoZF&wiNYSR@fqcDv+l$3%IxCyl_aZ&#H< z%rYO78tI|$$C@(v;wPctnD*d)_WHB;C#(cjspAHtcIbIQ%Xp>6%5YT6SvFWWvJKLe zx@Ii3=pLFMFnKEFSXh(+G>D6-J`NN49OR@O(F;wVN6F$sMnHoJ5Y>iQ0qUiBaCMX* z+MeB>FwVG{w|%#FL~)%KAZbzJC@U43;z#Iv#c@QnjhWxSg7g9n?SPaPn?5o8OsRn6 zDwh(?#zIeB9-lvVzqv}FIcFfRQPJry^j;nPZ>{JpnnGy!9CVk21dYT##$nH4skw*)SDzf z#Mjlua(j>LgK;3CO9)*Xfa!zgjm%+-xTZc+lZov}W>-)0tHcO&YviyGoqyH-WMaPQ%}3fZOj&v8JKI zvI~0?YDKoK*!DKb3bipZZ8_q424L1iL35lgzAhCn<%8NQAD*sEsujJ8(u z&HW+QdeH43;&$Lkuz!?ZOh7m^v0g-qZX6W5A3_Xm2)`4pHwOpIsIiKgj2n^p)cnJ& zHip>Kh_w3i*)(Ie3^pvseIa4Fa^pZMdaQJXd=D9)W^`)P`c5HV_pxjbqdMQ*yCeI} zPVqQVSd&1oRNWT#VN1CLc5cXn@tG zBYUv26o0=;-PW7rF8zJDg@}}6^E)IxI`D}brw_MpV?k^~vwD>_@}*<4+Z{A-IOdcM zHJ*J0=T|uluGo^Udc82(+9wIVFX@lTu|0(qQI75@6Pww_eJ$1nZ-~Y*wr(x9>9y!# zA!s;=pZ5OE+jC`tAq~@*%@kknr!KtZWVAauSx%|T4!?lS? z7Dy#KUqQSjt^;OeNz790Y^!>rMR-BI8I{*Iv^ze$xO>7=3NdslWxGO#$t?x>zR6j2 zNGYnseXR2`ciJk=6`4RvPLa_yKARDPS66&nI`NYt9ybtuja5&^4+e6kl5yV;)YT*u z*SR4`~f&a8vu8++gyNZRmdv-1+$S6{Ys6`(~<;%XjD4n#| zZvMtl|0Ps5XQ9Q7Wf^K(iYFqJ zED-6{imfB6#Qw5#^IJn-WLzF#atRNmA%vT7AwSbHS-{#nho}6tqL51-wv7?!PAPIS z*{ApP^#H=wi&ZK*hUg26gJ1tOnsF=2Yh7cz&xhM#nyd8RDoEyvp!MV&Gznsut#2Sz zgfTeO^@xw!2~Bm^eL+Lbd^(f#2a@|T$q}@biztuAl_xoxhsm&&;I1g4b$3P<&8j0_ z+BN;XvJTeXbj)#z#H3buI#Z15c6#hUcj*H0Q=5vN=uPLTxC=7B%QmBfrwQ%sKaL8N zq@OkLje6^)EvD+D@}z>(S&+bIrAa@HiU8Ae5W?@zz_oW~X6AuYcCT&gU2Q7{T%?`f zX1{Ag?NWSTfvZY)mbd&BCkh`rXyjx_JVcAa3wtzG%qgBdn;1FJrkKyk>BWsZNp3Pa z+>5zfnX6P`erN-4JlnC+aO6e0Z!ec-C*Ezm4C3*sG`90gO5~_(%vPF?M=h~f`!xKD z9Gr5dc7VjMLFPAIGo-nrqCt{&AU-~y^dG6yLh25c!mcWiegZ$`w0jSOVzKNg7-?6l z+`Pd-CYn5jRAl%EXskR+Yf(x`AuJ(V4HwrRkMw|A0>MBygbH7BaQfmJa&H~F-i`i8 zY7^DNceHppzb)^YLyxz_$+SU+iz0Dm@f#o`%s>-AB`$|Aul1^DZL2L4C&=S96DfnZ z5ssMjG_Dl_5gDCJeVJBNA<>p7#P6VrAX|l4#z?T+WdiXQ}r=YGq&O()0^{VZ_Bc@J>))ho=SS+uIMO3Me6$Q9F1opa0+ z2yK1V>X8wa_$^e^JIYuK$0jM`3n81;63O}GD+;NwirWW>Gc^35f^L?xuGDND6?^eQ z)e@9zI`}rJ(ocniRN~&|o(>i!g^=rbn<}d?ov%kHh$|Qmezt|f(rO*?)K&_f@b`6L`HHwj z3wma2qHE`k{b3$kF>Qx{y82FvX``^6uq$Ib?}0L#xw!0l%Bb0207R_I%v_aWR01h} zJSd&zn7Y!&>8bIuvFy!Sr9g5n{_nc)AHhsdPu%La3YoYt(LZZMPX--%lZOb0vioDU zWYqJk;fk1xOO9nRwx~{RF)N8g8`(Bg_DDf5Xd(3Ac(7+UGI zM|RsGGn@e4N`*uBcU#^|VhC7fWkGm6?i)0vTc}QDM5evkDVfH37o(V2D)}9HdMKl7 z-;d-a*6<%1T2%w%$kxp?u=iN|(edU{jwS+P+oZZgBQrW9LLtYB61cqRiuH-jeC>}o z{-sc`Vl_B2tXV)vwo(Ut)dEcj8t2N{^T+LyOoA>$RQ^m`G% zI|nK1D8oYX_pWfYXf>y3s|;$AulME93UvZihz*fu)7WyRQ={?s0%& zXpJ6tWJQQJ-m4s7FlUff<#o+%8A}iyYAr|}KpxKiHVJpJ{F^h1lcXOG*HwV+P8HvQ&Nc%l|XR({{o z<@>(Q2b^nsA2KHv4{Alh{@R~)kS+dfjWc9qSHIjvGPj5FA?-jXJ3EM=e_~#L+)KeI z1QLybGI$%T1-Nt4{=>~{it0iqxW@S8;XD+k5~N>hyRb=HHZ1xE3j3NYPT&`R*Zscm z6~H)$%^l4DOvoW{7CS{~(uhuumFzhDrqzbEK`AfD z;M$8ft}CF%lc&p3`fAPU`ALZ7w9H!l_fhMBJrMbao;W}E`S-F>N(}rQO}Yk(W{OlDsSGC@8kMo-6PDDF-p&m4tB5f z33wP0PtTrr^>-i&@8V{prjap)Q1EBM=`Fk3F$xLe?I)U7yc?A zY;fW?oyqtJn8Qt&r8Ced<=wP<&H(owmc+C&^{k6C&CJw)8~sf{535E7d&alNLHG4* zQ2I7-Pv$=KiGECv(-4TeG((<~t4q$4)zN|n8?fz=>BvvSjPuW?!w{$;;j`4z`qF`t zrN%y_8_047Q#;&ei6t&vo-*bn`%Aw2v``1J*@lWf@w+k@RyIcLIUdWXXV zK>ciIP{}n3NTtTsXv@?~&T%z!@VM&L7}9N12vfcU=Bh}rO2N|168Yqq-J(HXaVt;E zI8|jV=zZrvYCKSs)n{Mk@ z2C9Tc!U{=RM&c?C3;TAIaeqF1#3lDloC9GRFi6AJssm_KZH$T%wDgg@kSB3tbe1hv zR6bVeU_eD&4>Enax5IeK>x5$BS>8X-zX?*}iXUk^#Eq~+zM$Xly~j=!Xtx8DKaMyM zr5>7<-;B9e^UR@Nq%VjIl8RazDrEh&Pssk6)}fKWhkzwkdTwJ`tGFEkvV!u+?c_Fa zGO~%)vUP7w1bQfKX4jOVTi5hYU4+!jN#EV#Tjkl05D5}`Co8|8`y+W85}So^JT zpMsh(Y)dAOpy;ZKIPV!XVs9koomFT|*t9sXGoEd2Ik=Hn}~pvlk?9xi3TH!QheVw%@|8u7G{+^(8yWR&&9tzm58fQFwBukOn$y- z1{DVEhY9zy@7bi+cMQ2%fn(OcTAGaKI=`5nOtz8D7UOF;`kF`jhFVptD|NHJ-`6@_ znWY3WJDOzh|cnV%Y-3uU+LyL9icE*PJ3rhAD6&|?ZI28X=mxqA-+2C0UwGu z2V z9w$?JKs7s^oQzgD8rJh)$CRO`CCK}txI4wJ1inyjKyax%Zg;M1b; z37*#%9(H}|Tdn$TxL2>itDnkXP0vLiP!HAUS7t+55FJwLw(v2i%^{FF5KV6f-L}Dl8=CyL6neBe_?}9KYT@%=V z@c)e-kMFOA)D)+me61`i)QxkW(P)Gt>o=P7*w6t(h3h&STg_^Uob6!w2#*nq;^7(@ zU?;Pl-Eaems2?vlv{ee8I~|RZjlqPHH=Kox zSEtBT-g0;Roh&>bw}LiMAcgV0^N)cc(wIR54)7FfEzPP}r`a+1FzaTQ2(tR?dwb31 zG7wATRFpZO+T1(6Vf-8BM3T0|Dh~2$kXb*TyKV_K797&SE+zN4RLeQ@q^%YZT~xhtwNE8vXP_=1Db}#%(1a{?x8a^*XQ$y zf|=won^7x>QV0`euNlICHb;E^AI8opNR%KtplkE3ZQHhO+qP}n=3CpgZQHiJc~z-Y zC6#=n|EB+^ZrAjjb9&ro=bsoL^trtyJ}e|WYxYrE<_|`2@@nj6D1ADs61HWVJSRqN znClPU*#VtxDeu8ySbQ#mAl`r9MKtwqxF*xQ%^dOnV@|`j! zmy(B1I7Y8^EwBYgDl?W)qntls_O%*<2)v^p8G@#2*L5&cU+T46*theVyVPp|P#M2t zrM2M$JkCn>;*Zd>97NwodZ?+sTf+9sS@RgO-tBWv*^W^Ygd3pFFO`v&Ug1u%V#W%F zeUrt}V5--JR-ten8VRhHL0st$*D&+-N`M7w0jb}{o+s%9-G*qePv4BK7Y zaeuiL8%WXg(%Rru(b+d!)rPnFjW{-b;%myQDt|=8bdBJ)?nC*AHn;JdOS$84Hbg>f zB;@f3kHlsrpY=<0uin}t0~vFoIu_<&+uHbW6Q?9!mf zv69sM#j8yVfo)Ao?y_tMP3oVZBX=m-M-e5~6InsrvAoD-zry6-q!B*~-MpM9s5tt| zpa5@dy2Wr{qz7qw%lBRiX7ExD!hOp-TVb^@@%*-$O$lcpaxzN9&a{I}KyWhPMai4w z+4v^3DgOt6v$S!2gSpqOqkfY@+SZOGsWAYm%7agavIH$!(YFug06xR8UmV65^U!}p zi=jrspv~X=1O1Ku4fZokMoqwBH^^cg#}{3IB_XK#xE4W8X2i^ex$hD;_t;^C;(qaF z!*o+7t;`lnbB6a3o`Eo@D4)>-VT-PNCvxS728G!5v6N0~rra6>MQ>N>lj_zj%`EEb zgWLvWFzdmBffTyg3hGMQshTKF_N~In$`)@mv-65#q}nK}xXCq8<;)S<)2eg4qo~`A zhW6Cu{o`}h$h_k^09^~W}g$00$k}$Igfhfm)7xEn-jzycr~=Dud?oxlsH-TAxVi4{-`5ECR~pW z6jpG_1&&nQOIuT?Q4=k1SHm$z zi9`Mr)Hl!-0cO@dzR!43W1z-+Ck7n7@CtbH{ed71pdCvlHWR3;oKqY7-`B)^4O_DJ|eeB|pZcIa*2c5oHi zP9#7jSclzBi|7W?5;fl=%JpQV365AAJ{!RSK{OM#OSaJn)b~zgY2bPF!h4A>#HvN= zvA;iG3^K+S_+0aLZ5WnVs=nZ9e-h07FX}TDT#!0+Q3gIMt<04Ow}5GBLGB{JlUxr< zpD7tU*K&H=lo$*Z3TIVoHazEeHjzV;2k&?aDG+w`;%^Wt>%B@#bRU#fnm+zP&qyM1s z(NmqY9Y|lP?!^{#6?6M%I!qNsoYhBOBb{{cL=-#-DTg0sMlbK=X`X*1XqplP?H2h* zslj$AE!@A8PoWpagac7$BRT|UFWrI4CO|r~${&1^4sPO#m4Y>~(vCLX_(yv}gG9Vf zr`_=6^zG(-ev)Z9;xGH9H+l7}s>g802+crRpu>~pX0YpXJfftAgM?o33FCH@#zL(9 za%=m=BzlrAku$ua8F`PbWW3$8)}I(}((>~zcfHb4=1_btE}AbbpovyTDVrH(Z&tch zMhc?=_<7~YatcPGdX-pV1A`Z&ok~b=E@GNpNS7jsx9Me7e8P%kOXk{x;{8Plc3<5a zxEIvTsa(*c0X<_I)M?*lFKj)oyf1N3=HTrDr4;FOO`@Sf7Qp&(R;{HTM-r% z3@+K*F*;vLrs7?b2qA$fMfUM8)`;^^fFbPcau(Gai`skkh=1W6}KL5z3*P55B z?e;fQ9$k?ksN4$^{dML5ir$zwSNFA*TB#E|+A=*3$n_2>o=c&B+g`xYs;!Ld9oL7)POb3-m{@iTXc-28Ze(80dcRyXE$vij8kQkbev0%^y8djin~OEwqQzY8g)&!!r}qQnf~&%>y=974H}UKz zlhNmDtouiR?ean4s2yaFPlriPEFyGB7D3D>T13WPknLhu?Rju(XZnV99D*KlZ3i5` z>>qT!F$B}V!0io zL)8#Zb})Jr9$=T!c^eHKRQfCbX7{t`2!fXFCJ8LzR_^V0shRuL%A@|>hd{Iku30y< z@ka?aWl~8xQ0WqanTlA)EFt$$BG@%DlhyE*I)n+a$~29}QgeH3mP5!l$%Vm$hwHAR z-mRG4Q4Li1?TYsVX=C_2B8N*Zjp%fjO{UTN)a@ z=BMuD%TQC5oxUnmX&E|L(%15&Jv`h9stYOdWnVxE>U*#yX}03giIk(&6=BO z9#$G0m}Cy^jZXT78@mrcQJtYZ!sNdffwd8+uWJg1n=vJGZqUu>CM<|Oz0T2J+(d&bVV_wDCzOvV+}mVj(WoV)+8MI`g&Lh(oSmd9c7c_1u2+Q@ z_T2{53H+mbO0bB66&;(35%L8P*%0_LQx7NyJ)kx&VZuPQF1IL}siZ5@KEvDajO$G` zhnPEzK>?`X997ct*^dHxWbP^Wf&-hKGG*S&5AOQnq==_G&^fk52wAa4FG5a?h7bZjuUKoIB~*||N`t?g|Z_I?6!dmrrf)1#f=%ALw` zL(_jDf$eRt=g>%Pl^}^J5JQ;M&^1nmdWOaaVB%zEmUVT&sw(WMs;Vn-W#vp%*_FND zwS=;r032)@{Fbj?24d_!{!+9o;<@vXGLZUz_?Q;(8asgX)|WN+S5*~&tEy_xF9HGF z7l1^5R0t%01O`5QJt!BUf&~B777q2)RF3Y<`>Y%QO*mZN$mrF^TtK)Aia#P@mtgP!7HFZr*%@jYDm}z)W20ac@-}1l1Tt1vD z2v?iG41iw~j6B$e|F3NfMg&y8h3)=Znh>zz#SxS<0I)913MzhG^`TUFV>RR&;GH8U zzmP0qz9D$acU09IS^(nRt381Al=W}XC)Y=uFlvh*7_b0-cnr?m%J#qtjJ~A-ELfR1 z6(d(W2Lq6Q3#lJMz)Ea@wK(hcWK@W-N5fCd{cd$>u=V5 zp_W-`8jgHmmv!LvuVQn*A5G1lwV{Fa6Tfap*}gO#ghrOeAG3JW*acKueIylVviSGB zjkn3F=h0jZt+hZEf>>0)E@}W$R@If?`)+Eqv5Vtpd+&s!Jlea-o3Gah#TNYVaXhJ! znPFG}PIiFp1a-aSp_yUOJ7cePQKY)fJVLNK`c1)XT|of4Z4Y2+0yuF$Z3;SYf00A@ z#k}x1@IIg~w0j`+=wA_U0Mt3Y@XKNFK=t0_Z@fvo<;L_cuyp|HJ-@xE2X)pu1sX@oB9eOJX zpbuEy)qj)51Z(^KO%K&zg(edC098F zvieAeyB9`Y^_*W|dYUd@Z0Ax|u`B$eyQcjwj;g#zwhB(f%tHHyXtg8 z_TNZ9Y5x2(aCAQG-|dHV7a#vHv~jSY?LPdXVGam!{JsXt{NobE=&=+FFKP2kOD(R9 z*m0-%g5`HO6oP;n!fn6leMxGAI%ppcsmK>a=ZLHM$GUnjf;I}->i3h_Gb9# z_nbok{leoUPy*}QPG&}kH;S)!iu-qMmfE{U;=9gBh!#j@?YiC~4-9KNSXz*|Z-!y5 zgH*GO)!`3WX069>3ENGZv00*4dJ#)63Qq*|&&PZ<#R# z2)k|z=kR~1C9HhRTKG0S4!CD<=cP_m+FtElNNQYKWASFw4jD(P$QnV0u`l{V=K6v&A<=Zg2 zqxJLUgnSZN9m*a^T+67_XeSp^^L179c64=J?d`CcX%m*t)V}u_E~+3nj%a7P*DtA( z@9^#-%->F2RZE@;CO%BgmD>*BgM>~|7IX+rFDRfymcjDG{(`cUsC;8_=FS&N_Co2P z+FisUxQ)_aD))S+a~HC0m$&Zm9Y{vA@5*IqD)O0n;!(z6HoA6NsQL%SwQs+<>EqHa+)hGzWK=UnQhZ24mHhce0L0P8DNhW z+2nq$yjj$~Au!)W$<&lXF6TK;UfV^h6G^Gp+N`eij7vru7LJ7WICQlrDqXKAm=(R$ z?w{v6u}}VkFyqOG1*#aN46FxI`g7_wOm;udMO7G0?%@(DFkV}GaNpx`ZV~w}h768bg^TVe-x+g2s z>ZQ(0thH?FSJf0)tm}N@^lJ(??rs1sc#`$dr*qzA#;TI6-+PEe`}^erGc2+mo_&aT zkaw^(&E^`Lmf8L(|C-l)jkO&iuC3?`yLSxJF-+j15Z5+V#T${BZ+`lW2^tMv@URVD z_VF%SW+sk8^QOrzv}SffdHlkHJF3XED(v5mRBnqabN@wicapr>P_hWt%JtDvPS-Ap z+Tuy?VKZogMMN2fQT0&!JkBKFi(|6^B0O5&MPlJJ&;r3qcUeg?zZ)>yA`AGp?cHc- z`|6_8@{RCm7<%LGEW8JGjENW-;Qd6@0zhQVRWN~xp3r)P}TzLOt2l&<5&=l z05BN?C(IC0b|fMlOC6Pr1U-vcCgmWZP#qkVBIFvA42Bat3nPp9flsZ|mGze3=2~N8Ze_d8JToN|7ggX*N z2TGc?qRl)qI70Oj9nqjR1(4D}G>R*v8f-KiC7%5g#i&&Hp zAev3jGOQbNuA6>#k)ePd8n!eQ%KSEMZ9|7KCEo=Xb%^@!_-_CAhw(6p^PE^tNtTbX zK*!k!mH8TUEdn3Wm`EX^G|E*y3GAy4i{Y;L$6^V0Ae4vLc#@c&tDjp9G82wnje18C zqR;~Rk^VjYkBbLJkri28#H&sl|M~M z5!WOrURqj&JZW(;6?KPT(%Od+T_?cu#z%QP>KBWz#ugh-kO9px|;#rFAgcz$Hg1<1&uvkI*`E?|IjC8jk!s&{AEO+*~iAzRRH3K=Wbz125oCe= z{rmRAKM2{x%pI)fl!RFpH=5oJgLz}TrnH$QS&%Qe=3g9~F|I&HIb3oz%)M4Ieg~;O z%zbBuY~GVckD(!@Wz$7LpLUJLA!|&X*i$Xt5QYr!!vjH}mFVus>;rq})Mwh8=^oRH zy=oYOw_5BR_#FxnO4^4ji1w&hO~}>gWFI<5!w9E7#7sbwzN_c3(E)e8v(hF~fN;6T zjo!f>{;LSe0O&Z)ZGB@_nTYcqFwH(0y8p|4B*@!Ui)A5{wEV!R$m!vtX>RL7I`e5X z`{*1o>83+olv%PluBmR!q?Rf+EV)ind3fg~W8}?JG5t@NQeT9BZBni?RGHE8rf1Oy zd;%=gI*Jc`pl5#D{!Vs8`r^G}++JNc@VpG44#`NuAxnMeQZ8q~Di!2QX#Yi>pjT5v zwSuG4!IIbRrv-FPy@sup^@IH_uVRaXFR+l>iZZZk6mlzu&PW4G&hiU>%oo+EpxF*_ zvm(o2NRt+((BR*yDTiy61nWxYG1AvIgS?#|%)}r(6!RAqmcBu2oGKoxA(b#&KS}pB zDf7f2lju@(1c}M;$IcB#)LCpiEcf)&XU!j4rXLfRobJ{x>{@DacfY!<4FelxnvU{?jI$dGtR!sTb$b>;RY0I!!9YbX0_P@aHQ{;hV z#UtDPSUA$#2_l#cp%}WxjvQ8QY4&J!&`GoWaz2|0qUQ!X)JMwh6Knl+M_s__T*JV`2 zMS$YFPo9f-| z$p}V*VYV3PT%L1H@OO4`z|F&!kxIcF_ZacG1`qAotHDPSEVH*02gXA7`5w?NY!?nT zSaqZ$Ja|0}?*+|UTirhgPu$1VANI(%OF>CW__wM#eO!F>)v{kcK^V8)r|}7o6OFvG z5QrK!{h-UfL}F&*OG5Z^tDhR+TEF-v9t|5orFHj@$)nWgjFk(NM;B_RHk7H?64k-S zR#IFrED#&|1M85ZgvIM_5(du0Y~vBVoU4eD$Ft76Ik2VoE7&e|F1!O-T`6kDgDCxq z6&MKpg=aEMwCD<#!X&&FR?MKwa?)m;OHHcy(3u*3(d-hD`wP|b=x7g%|9-G#XBPMa zJO23X-^W6A*>>aS*B-s-*5}x>j?8NK9P2*pF?tmy_hsa|wk79mhbem*9Pwr|zZv-g zPw8kC!wq6_NS!+$YL9y(O$zt-&6d1Gc)gm)*e#v=!79ngj1BN{5oeVJ6GKFcIU`sY zHy0!(Y@}JQR6w<2q?YgHU4RC^-qi2%qGufM8Gj=&iWdISZq^;H)^>z zq8tH_opa-0;e%}0vkGTlex)cBw|}f4wS<>tlUGoP#20vwNZ80(x@M2j-SBK`1q4TG zhzt)ZQL;ZYoq1WOqXs>vjVjw! z!7$Y-hJ;|}fDLdW@{0hA%_K}p_~~z+IHa#rD6ubL*{}27KfIqa;kK2X zzdAQxau?B=@iTmqw=$)!xRu#Rl|mNxS<<{FGBZu=YgqZ7qTkyr^stg5BtQ4sdkt$~ zoz;UX#jBu(Lm(vI+i$Nj2qFh@KoeCTM@x6DanH0 z)09)3{ahk>gkt5Lh|~XgpLAd$(2sKn!LACRLx$_ zLHnv$-oHdB(wM49TXx-aTmDL-z9$(X@GjxB$RrPyWj*c={mag>)e$Mhfzq@1#eeD?ZC+e45035$4!oH{*gWQu#6BlNlUl|54^>K;zcH# zs8Q9-9sHQ?811MK=QL@MDgIj2>4Q2Q!z@ca%br?!00d!a z>d|3Op|qzdtOJ2y^;hx@U!whKJ{@thYs%-KBOll3l!V)6-9YRa7d8D>G2e{0-mg{knJ3 z028pAZFJ^DOXf)iwxd(z+VVpKlWq8Z-+VCKtCVYQVnT^V^4qdaecrC3Cpk_C-D_F1 zU=+I7Cx$Z@DyI%U!k2e$nouOBVJ#N`8%VrLQ5FA*upC;lRzA;>u^Ze+Fie!!_<(2` zdt`0@PwXPe=$f~XbBz=o;rDakz68&2vH^&ZKQ_^zr#h# zuO@%aWqEyPd}0U*IF@*`PDs)Yzp0SGz;KZ6lWncLx97=Q_mkQ!G917ADwd9k^n>+$ zgQ4HDL}^z7&$C4t@iQT(?o&%yZDxW{c*Ip+a+ac34y=6sQykv}3iGB@XgHh;c;Zv7 z@r6S(Rr1MXn1c5E4ry_vp8v`9P%q=bhBcTHo~4x8VQj=?_D?t%u0RWrnbD>P3MFqu zU++iDzmB!JX>8Q$L*3zkC0b}WdkwesfD}Kf6~F+%X=^ogp;Z8C!a_IDBpwhf$XB+n z<*mf=Sz)2vVoChP*R7Ye)TKA_Yl$2F4As_;fA{XnE6eFA)loR_X!5p^FfYh6zY*UwI!+d?V0=C|6K7C1WD>An?s zv(;xPwO~a+E%-H%seKttFhOwexKZL((-k3zVXURfRD?hQ3PSFcVplvv5CO0rbiS8J zm=(pQ--T7v*M5~LQfQvey0kO$*$aP6N+N_Z8g+s8G8n-X80RGbhM`73kw!*@`w6} zhYrbyzu|9AhsgU!g45HxV*2$Vecs4gv~e`uL~dv~jIMAH?SlVOoxV=FeGpy3OmW}= z#lS;RaX+pa1JSi~^c2a9mH|W*Z{)jI>i5Ok6 zT1+~VfO#nnsqp5QyL%MjHm=@z%>fnNXL*mCc46+fvjXux#FT0?eK>i)`t>Ya!h|Kr^^QRKdGL$!Ca+W&gsJ6$(lCvPk zL0`yL#0zqBKLa{ju`U}#ZWdcIm2W}zI5?ZAn6B}@{0=Vlp2gI2xHO{NfS3r zO8t9)$RU#7kmo$894DNyZZMz#O=i%6W8q}*sE~oes6}P3nd0oJO6})5hn>o#*}~AA z+l7ieF%;xKkF{)bXx2g)V~2@llVKi7RE91+t!Gv-(*NM%9fs)HZ8L)z3XDB=S9yc7 zlom%b5T#ooTE__~klnVxY2y>DarDB)I4MtC{3Bnw zESI{RzcbL2ABER`Dq;6c;=m!vNHVnP(5mz`GtsnNfjiH+v-&h|nm5wUYJLJQQ}~_~ z!f$zG-HX_2xN7NxzzT0CN+889L1*%8me{*dE0TZZv{ECHCU3(n{PZpo%>o!hNr!N2 zlyGGiRFH2lZih2p;-kKvukYxuApz$4p#A8(n|SA#5{#d zOU)9AEM4VNGySYYG1Xb#t!17m-GUxQqbGZC@M9bTJ+3&I=r#5^b}KJ8EmvyUqZ$sF zV&7ZxvR>ZhGa9VC?66v{)`;HafNcKVxaNpG$D*zpY5vV8h3kJUjfH%#E7EAGVWLDt zZL@*{+P^|m6v7)unZ|(SHObO9(bMx$KkR-`rnfhbb~s>1Z&k+?6T!F-C^gYrL6Yt`Sl6?h=tnw91PutF?*QFQ||t4*Bb-#?CNL zew`(7{H2QXNup(!trhpvSuh05DE-8`twVS`xwvVC?nC_fw`mc3ZgBjaWEh#(# z{=GzKP9=PwMr-?lc0n8E4Vt1q&hDmaRg>NRN_v3HdwDzr&NBdEI}b~5*FKKGXd+Vm zgLASscbXWL`z$B(G~Vg`UJBthC)u$TIm7bVApL|NaO{-iJ4K zZ~MA7cAihxmoDmN{$*icJKQO+tOG$!NW<7712?OeX_pfxaT!^IP*L7=4gsxDk*uW& zo^c@Erq28Wx7TPI{7xPQf)61rI|R%OTKTIamI#>y?c30_j}pz@Nb(Tk?9)Rj=6)ds ztU+&s%w^jHxS4(ugbP@Af)$Kx?P;xv!CS!#6@l#pXS2vcMew9r-6gb4uC^((jv zg8XMu*MkGl{s3<6>ub4ITSe2U%Xemu9>GKQTwm80ZXa+mYp6>K@BYzOkdnLXq?Z)= zuD!&E7I`VxRN%-2DCin5!X?&4P+F;tV?y3{=GjH8ov&N52}mj8wWY6xfp8d^7jQ(W zfwU9Eze4AVxiKc-8p>Az94qz_*mA3>SJJnbDlV;st` zbMzWLfD)J4&B=m;;6Fg{S55jw;B)JW(gvic(W9T&>m!`Xc?B+ zF-ruLf6&kL^51#E@UtWeg&uSrF6^;e;`>bh(VmNtn-_;`abo&Mn(CU><)&ugTJH8S zkn^Ujb+ynk%n5CzJIf}z#j#m2^5_!Y9mGS7q!BEz<6bvHZ*G!y5^_x_R6Z`TTWTIs%$G6i*9UfkT`zd6Pn*n=v9V=U*<6BCVbn zq9l*DPQFFW_rGfoYtV(tU09wxUZ!}Qy$>08gi#k-;yFea&OrhyqR_u+pP!_ zDD%3CZQ~5e1mmbZ$Pj3T8aQAN^D3pn3$~0b@)l}CQ&ZWlVzR<+N28-*eT z(VKi`DxVkLxN%t8-gzYG57bGFv%8gV&f&5I0;bYzKDrtvYyZ8<46<<$+Un}r$y$>n ziDgwL$SMuexqpaf95EewYI@`5p1jZ8(;HnFAeOZYyzMSi=6_W;NjW4*EYnK}B4*nx zdx?|+VO0onJeqUkC3-6KYfgD80~!pr;L$|#%7v{RDlMAALU{WB1}2oko&H6nhWQ!j z(em8D41I0`rZZNDQJ?C6=9+m!3?NMuX~mRVqcHn)OftrpMS-1d*N7Ap6}*z6M-oAK zz`t-BNf1XVccm}fnM0e&RZ)(8g#D^Y@()otnu!i?zO>+j`qahiCnNHsdt+}oy2;qV z*`;B83vDi=ABT?Nce1HjoZz1QmOUdvtJj_G1 zF-n2?S?8v)7qFy6y$~d@+2ebZ)hMEnP)IrRNHPqFuDZi^*v6>r>XpX3p8T@;<8 z=Smnhg%9zvjv8V3aYbcU911~@XpFm$f(`CboC&vrCmeb7rM%+m0hy{O1%E(7({|Z2 zxH|#Mykv9q&dS6;!PQt7fMkAJKAs=Ul3@sT7YauN|Wo7A!qFQjz`IS+ld_pM4x%s`sIYb18$oq&R{}b6#n}s$iyN z{W=VvY))odE8)|Hf?=d6$wi&S(!O~%xxF-z(f&-UTROfN>!7{_@7a@&iD+jNNz&Kt z@n;*r%E7DynO|oD}L1zG|aj$J<(iHoOA$`#%h#QV^ zbbix)2}(}jStg{SbXqMMuGttxl67KH@I#6`rIbZ$)H8cc@y_sqPCQRUAt1k6c z6crT)N+!Ci>n`uPLqVXVjWlO0Nq3r?bNcKp5WO`A#93&LDTtHe0DH13_AvB$iS5XH zhTpK1?v9Z3XgEDb&nnkO5 z`N6V-g~w+VD!rpFMlZcegkn+t!yDG`_@KFzO0GriQ#~2YU3++znmDF-dp@j7P}enS z>|fj0`xteviPdLTI}33NTYAu}uqj7U+;=4vVSHjyr0}%$>19%_^L@qW)eeH$C{Te0 zeHT29X>Z5)bjv$Y+@-zqEnE>F|1~yB$qH#mrgE&N$-)on<6yG!xWpVd!yK0S`IwLO zINf*V+mQcYg-nWr%WwSkLh7RiISOf3JyE=p-f4wr6;pERc*?Ae>TVW?cm+hM5JHbA zncm8&f-BaR4u4;$leQc0MzZfzFsFOpJuH4Abl%DrvvLLzqmp7(;_|x|RCk6lui2$4 z-T~-H)Wcwq(JR($fs;rhZ}%lO1M9wrvD1;AjfXGm7X72nmy8@F&~gSp7BjTFqU|#B z3Uid4!2L854}8{O@H5>K)<8s3)6mk?hDAUPb~{jlGu`l%!j59O4%_;oyPe~oYxOWR z4eGh*K1-ieB-!`rR1oaQ6+QhjAezXhoA%q}_IgK#jYnV7tzII@7ZW7~L!%2hCvc`K z<&FY;aF6;v|6ahTw*It2Q09W$5#AJR^-QJ#udGCQqYf85@zCeKo0h);wPByCe2&37 z^juTAje^EZGyW3(PLixmF*8H*>(EKy5D7|TtOmFmblS`r;xv^*s0qo9;e8)> zzg(z)IDlkRzlPZ7oT5cQkLhFW6a%W!!%k%Pr^?;L)e4p>-AY>P=3RPH&@vV(7$Nms z*s#8ipfp}W1gtxY>m3n`m-b3O{lca5JQ#av<%_z>H%iw;MIM+A^R5o({dz@dMcD?a z`7j{JsgA&@_6k=rn~(tX63`1+Ydc7{7|q2ZBGKgLu4O=M*FY@p;S8!f0a8SWuU7iw zjLiaHhBYv0YSxJJ)K|-(sAyXmoqk?YKz?~&-qI~@oR)}ONrxe{rQ{{R3mXGwx$2oSr zt$d&pOE9pNH1r%YH(er~pfD!8$2E=q0r|OlCZIQ2RRbdbN*XX;&0M+MIu8yvo8Y!B zZfOyTxo40Z$DhR7T9t{NrE48ZmzSg1R|J~q9KimlRb3RR7jr}E(tXl_X)eGg91QKK zE6hyl-GD{jHZ0?#BY^BA*|xxiYHD&0bT+)|jfb<`;6>9aITkGOHBsNP7?4P-2`_9@ zXX8$+)9F?ta=|&dVypvE`v)ZLnZnFBGJ{nU!;|J};^G8|Mg3B)B|e9ra~{eu!h0u) zl3XzetkRzC>e5@GgxTn~{SYybna1{H4~3=!ep4UUbp-g_A6Jo14bdUKJdea@+?`&e zC+Ci2C!`P}!t3a~roH2bI!R5m6-xUczO2ryt~2+7zuu1Rj}(|9;+EMJo(3CGnain-lWXM{ptUj`gU}W=`Wij0uNRsCUEB)ekMcB6rcOCJFD=3&=t#M%^UV{=??0RPO zU0Sz_22FU4HqFcJ5F6m?bi+SkTHIgWeQN1bmULW7>A#8Ac9&3T8GUG3drE;(?~v_Z z(lQim*~KM=VR#*Z9-IGsd0L*4ygV~OgvRHCI4qb6(NDMoGkNPA2V30$g+_+g0@d@NZ`@wD>m z6-h9tJ*sP5gUE|6++@`v3i}~%*ToJh2bBE$Dg#n1_lG?&hjV>tvi#Sp%4`my_htw; zk2@9H>>Jzm?y6;pA^aWBZ5>Q7R(;Tp*B?S$EPSg<`oqUz``?vD%1GEFA}P1=ZVR># zb`aP48VEj$C4XduD{c=4y(7M-K@Bhli9F%Ap2{h=6Wd33QjW0e}%(Ku{5|GIV~b1!m>|k*I*4ofI?=83tVhgPJv_)x~3g4 zZ>;%N+Z`4isgD8xq|~&~_n{&vFC>vb56FyW+g>{^kV2Amk~SV;HA8m+eeO)Uuf!gC zie25l>9euR6%H@3~-#i?I@NYx5XWS^5_Dk3hc@?!Je+~MW)WV6-gtv|H2w+@*cRL z#JTnLSuYQ+Z*R73mF3m)`aOBOQ=a$3E7vpqdCNU?U_5U)=+s)$VA~PHLS_Yi|GIhC zN%m`A00;<l3{8Vs@ zY|QqF-A~#iRU=3_NTWwfO>9&`cBUN zelf?lEu7m2uXih@^Ot?HbG)k93G7{?>|T~{!a^c-Kd$g?f?@=tqJni0o*%+y8BEQr#v#UuC6wVyt zlvn+$eSP=D+g6h)KbR_IBmQRL|bjA?@JN&p?BMMu(fs5yQ8 z38`H=c` zgeBb+m*vVA(#q{qh7b9!GK5ZEq+C@4lw5E{SB@dpc?Oud8hlF7*sUtVxfa?hGRGS}cv28SeJxKbEWS$#Ne_ zZZCL>8hZ-E?-FM?yB6BlL-+oOsVem_7s4O0*na9kHSSe}etliLl~Tw0Qr-nflX0z` z9OS?*s7WTSxIvm_%mH$H)aft$y~qX2ZP6M`>Eu^W4k;Mul*J7Qp0d7})UR5E!)3J? z(%wh~COJPf9VY|bE!dW!_*s`KkZwCFK!X|T?nz&HD-ruVp(Y3>zpN2`zcbJ&@J?zQ|s5m8Zu?iRH-s@`mMn4yV-uGz0qqR4nfdh z*=2+b!2&1}+ko`j)w`Y=3==SfYGsAeNmXDp9p>V2WlF@!bV6YOxBY_&ZYUM^1 z3Akvq@$gI}e{x2zS9Ab&nRnM5hdgxbIBjPTIwzZWH!d6bydOW=Aijcw!-j%%#3yGb z5jZX3**xMIRnXK{IdfL^=5MX436+)TRgIUcxtNh9yy2f}A(`7_-zS5M7Xmz^l;#JP zMz14~OK0l)7OchP#UnL$^AGUMF489}CV1LBPT|PpEOf-Uf7RtQoBWhHje&*Rb7d^; zTUIU7zhs@)I)9Ar@$!Z|?CDgt8?MKGdUdWxWFHhB(rx|*X;ZLW-h!@? z|0Ss>R02ZLy@##(;J%_pQA*FaWT|bV>9~8k{wVWjJ@Bo-HjmTw=7=sne2H-;de5CC z%r+{;KS2s`mhooQ*bHNas(W9*{Cnd?e2Aza76cpolE1;I)nJn zVECI9vRBTi;+&ivp*}wxgC@9i>d7r$rKMMOw0;o6&C-#vNXQleFh$>yMtf-@6aQ>7 zwd>>m=fl)=>n*^be12HK1+-L>kO;lkKSCmZO&F!)ZIn__@Y&RU-uJn7^B)O=_9X82 zzeyMt`u|13;IlFRXFv%bABs-Y!rIxy5uZ-f+Q8XF*u==r*aV7~7s|=m(Zs+8%6-E| zMaJ%c9=YpO%^f~v19;d~90*0Q;gP^$%|@kSS(kueTRc7=q3F6-FHSEo%?3XI{_)LY z1b1q?HEmj0<$6YXKx{^Ly1m=EIHPE{wRG=>)@pKcp7|Tzh*Bx0@s#Xkq4{{^>55m! z?6TwrkJ@89IZVn#bY+#;X6JH5sSdu=kExgR*x^-dZ2U$M@1rBbK7RM&M_)p3hDpn~ zRpbQqn|Zt4Hj9iDm*cc0o=s%~*WeIa8l1wKGjenFU%u0G4ekPnKtm<%o8EEvcs>^# z)sAb;3ZrqyOgrtZjlI8~$`N?PfgEp0Ax+qZ}`b>j35 zN~H-Zm9a^Egxo&L1~93hWMB(*VBjDe3Ke|v-xnovwK{fn(sXG><^v!eWY4l;7qm(% z<@hNvk>gt%HuKYcphNdg@?M#RxK z{p^o>pu?%S|7h>LgPPjfg)hAf0h0@4Y+NhkqAyYW5m`^}j-=bQV^z4xy>H?wB4_TFn{ua)fIeoFRw9zE1v z@DX?Zm!c5ms09OXvyDBlP_3}Z>dpWz43WW>OI`3zfHKWkJL%Sa7o~wH~ z_DVW(yS_tZ=y>gb^!=$7O|gLVO2UqxE1LO)LwmkMwdi=!fOOdQUIJxCzCK%W19 z5E&H+w|1gbQ25shF`x`s_8*JF{)^B&3bR>(E|mTm8k)1i4J#<@XO~YLLR_z4s1Nr&6Mwzx5_r?^v>P}auevxBa zyxwq?j+TP^H=OG#6pKFilTqSLa#|J;9Y(y|Rtm`FZ2Mo!%*uv9P-eeB|0opo?tFUu@_ z_HFL%?zyj|R$UqJ(Idl@VK=?xpy8k-;8H-(P`N2tUeQI$eTNQj85sTjC69n`L1VH) zfXF)#<&?EavrR#vcuja|CFDbBhYBlI6#Wtb9mmif9w@iycW73mv8hj4of>IRfWH3O z#Qyay1yf5F^(O+p0O3L!QU#vRA@*TZb1%H-nn6}$E9Dg?RB14cv3RX^kP@?fP<=Dx z5Cgz0aGrMyz@6tPR#d_uR7A8m9(qen(^dL!#A9H~6&1VJ7=>;&V^Xu{tz1!I>y$`s zXZ9{%OfBX+JHyV+RGF(SO+brWOniR78|8wA}`B{|uSmG#&a5 zg%gkoOqU=aLy?iMg;%is6EgCCfd?NwW+%x96{~+EGgi5b=ivOx{TrF?t|n@fdGDMU zcCX;!-ykFLzXF-q|3l{gkokX7=6?zqq1XcBzd?qu>i92GMpFF0A!Pu6kus{9kp0<` z49~LG3hI3$z*cz&xW+{nAC=eEXBjzv|ME$GlWlK)zYy|3U=aWufg!< zPP_R@_0-Qd)A=b+het5ax#913k;R+s_;j01^=Ud%oYmnk+~H@1gF6Gb6+Gm}0E+mq zfg|Si-n68Ll(*iKpdPVFTCYh35Vl*^C%nFJ2uH#ZL5TU%vK(Iyoz_3Q3z&Rfd0WF^ zbP36F{A+iShL{Pi966XSJ&;8m7d9|EwJ46uFrSBt2d@cDjt!81ZPHz~t6nLVH-6ZH zEH$s_Rj5AtFNE#W{-7$i&S+&dqUxv5cI|*%5`Ctjl{r-Y# zH7hI9+|0+Vj*rwyRzUD#6CdTxQEbT)*$LZaE^U`1C}!5g$PfrQ+dK^$0yTbEySX_Q zsx6T7>m}a;vy!;BV|}Qb8it|sSo!p&-qeq0{PpBlTOVK9nbU?5z3V0oZ1tbBBO3RQ zEnGp;N)Q)aE>UUYq6+t-M!s}b?DEGXugtM8&fP`AZ(hE*9LSg+lMX}oyx}Iwrfn)= zKu%^_+^g>dl->a}LN^OT=&jLo5U%t$M85?MK{s>1Ij1U%C#BX6Y0R|me?!ZvAK^78 zv}pfbJxe<{@qM;7L`US7j4{mBQ=@i}syF)eEg8AIDTlkYgYVt5K|-wit5H5^^er8^ zrh#}-*FBpfmvq$8dw%Yw<({wv{)$Y6IV&%1*p_MD^99z~gV2k^CEG2sX|iuYcE^p=Rs*YoDRM7IAr}Rp#IzUXTwBQud#*hNl0Be{e%ouD{S>>iJ)!_q+_r<*2cD|RJ+grffi z%@F|_n*A*$4^8hB8>9U`9CTXxAF7$zP58%3#Sj!%l0`x3vFi3inMc9%ZMbGpy0}MP zvgQUyB0AejnaC4a6t2>d#wC{L>G`sBWZ8x4Yuc96+>)mjGMt;|@7_=TO#iy=5JHA& z@f#5IN3f@zuT1xpAJ?#!Bpsr^NxXDcsqd{Wht>$WG&w6hjYTxtY3hC^p47kC>d-G! z*7`oKa(qqcUgU3PqHIYhL_tI;y$`L|u6;zfX;54z*W@u}bJqF-(Xbvz={dBAyHijr z?yvj3!bpLPc3 z!X0a!Ygg~?Joj236Ed<7N^6z7AXm0}HOV$d;zUQeedigO=p#TGkMItCK}ZT|dx1*c z3l(Y!;^NSBl{Vg}q+Qkp-qD+6RagLMpG?-_YQclBOpDm!%h()&yIR`J6ri)!-|(`N`VdE z!3$yJu5N0+&0S&WOdYLLY_t@AIs$EsRCZiD%XxbkZ;n)6`+lOSKBFUt3mW=)q8T44 zxiffu>jkdP%&(vemrHihz%dfExgF zDQwVC1}9hewfec>>HLd~b3Mxg7)dbET7L=2-_RrVS9%C(mj8Wv^jloB#pxRM7-yil zxY$lDy!T7MfoqJ`9 zoYF7_2Y3P)JQWNd;CJil96ftPEB~xcL&HF36nWO_iLScs$40OCwPJfmf`0J z<`bQfBf0^CS%Zr{u{^ZMJnYF^ImXS2mHp@b0{^@>}36)Lg0i zSX~XRDS6uD!zpd-(P*_%KBf9&^dgOy3xh~4NY3Bot+#&r^g|T`M<2uGsVAJz+HwFP zxwJXW-IRcw=7-G>KbcU^dVS2m7FrzG&sx02A{kEzkJ$3)5cSbT;uUC&h|Nh%FKOQ) zr-4v2ZP?*78N39!+b;X z1!U*?Gu?d2Zk03%a>bjbIj!#>zYuEfi;ZF%L3=FTYA0R2&ML)|`Is4%*iDP4c7N6U z=GpV0O(B&gQ;qJo-woYoJN>(e$+Ve{knq0XqgRn9AuMl!O$j_r`dUGSq{q3}cJJpd zCiZrVy8h;Rm;KZA{?Hw6$-)ovD3FT z5&?-yii=7}3s8!wczHU&-ERqq={tHpwI#gkd09KzKJg^fpaegdC*hcu6`>2z$I;UP z=-`X6b$7S56A-&^>+1t|xAC||_>6xvbcDOA68vbuTdHyr;u4bL(jbTgSW-$#)|k-Z z0o>;Qe^B4u3W2b-Avof!o_g3)iapf7Yb2`X_4KK=m8dH@OKkHHHA4Q$;# z2&V&rMM07vDOm|=DX@rysPw;PMd&~nua={?E%5h91c1&6D^CXxTPvXVKRZf`N{WgT zLR~5S{@#8&JN|rg&?n3hD5hiWr03~EDW(mS1pk(;?jD{%umqv{N0xS=gp@S+-<7;u zk0;$HA=d)O4Cg?_BJ_t;H88!6K1h$21a|zJ3oIy>SIzon6zj`ZX#r>HWDYMAKA_T) z11ANk$U@XG`)g{%Kx+DakVvxqkP}lfzv@5}8Xt<&^xWs{jCC8SMH8k9nZ||8bR%}f1!Nuj_@BEUt zRWiz$ZIUQ2Ux<8scH4|5yV73HM_(M1IWZSg$};eI*B5PMSG3cQv}*wOFZNSB&`27l ziwltjT!Jls$YP3Ug;A@yYbGUKXR;&}jx75DD)}I>91Q{-HMr#w5?^6fP|Ag(f}JrF z{^a-2%*p~A_i@8ItJ~Npv5HXa@Oi;1HrvVg`mkS%I4Oz$>1QMTzT-?Ix~{UNyCC6{ z$Wal0v2I1W{o1-sl@>N`iiZsHN!miIzO=K0D6V(D!eahu$=NnB8Db^tN2m3vLF?Ey zCne!!HyXE|j9vTFE40lB%}g>We|TjN$wL+lnAV=vxq?lfCB^=md^dY3^&Tg6Z(VnL z@ax1jUEK$VZ)1aEkVop51PaS9ajwo)q+TYu)Bv?y^kuqp#F05{t@|23e73jbdEsCx zoX>5k=f_`dX1Pd-qLHR&NaM318iXfwlZ@+Hc2UJSZ$>R+pLfMz0H>A@6Gsy=_6+UO ztA`GzV-+1uvYc-ZkiKuJKRTb69aR=Y9a|4IEg0UNR{o_EDYIl*U!(SwrmE)Gxn*s4 zXfrD*7g73qQU3To_Be@qbyK#r1M+czLD|CPm5TFBOF3%Ut+7iIwt|Z10Vc|_B`01j z)}`ef$||?jhjb))-|*qRGQ;1lCx{2=<%ctE|5Ox_`1r&xNUnrzg%sJ5+QpBuV5m8; z1Hy&57^M?q-Ic4uY@Xg$$PMN@tC)SP70k{F3+sn@gXD%U7Y_FIbCoS5a!n{HC>g7~ zkt%~3r0vWtc^XaGVeo$Chiz`rBEVsy#|&=N3xFT2t;vrgcW}7*(#S{2kM^!6-i*J4 zY>b6D*Tl4!W|-t3Hl0KCU$!&QdGlQ=&r`f?B!H!QQ#g0Q_XGHauGiU}ZRwR3SBk)| zV73w_je_ypfC8y>m|D7K*bAZ>weUzxLv3x(H=O<6I`_W%;xr)Zv_Vf*U2^Hl4ShTJ zU@_fz;o8Uo3g5gk&x@A+3UC|A&u_ott$vU`36RE%r^FPGpD>aInFffGcTB{$eJO0J zf!T@UXL6ZD_tJ*s1t%p6JM^lXd!Y7^V2zad5vw(u&`ave&A6`mu@TlK2U>T?FC!EU z^LzrDfy(#3-pKn-88C1a5#UA{HvrI-cn1j`>@Q;C$7tQ0mtyueoUIhD0w!VLX9<2| zE?c0HkHT43u0_?hj4t!8>&4lSTD9HbrwEk!Dcc$b2I2u&H;RjAZ!Rv*`IW6@9;y3K^i$^&la-6!m;`P|9k;c;0qijpq#4s54Z?S%mUKdFPEHzdrx6DvVy$kHIgk-nsE% z-y8?l71r<5I3Dm3!xZ0sO1d3JYC{xTQ1&47d(!Z2wwwJcVOP7$}Lst#dt`yOWiOd#fB&(Ju!)_*}Pgx zKkv8Z>e2S1Oq5vRb?haJB{v3q;iwe1-n0-U*x8^?lTw*&d}_UAd68!6(NycSn#-B0 z6RMiT>XF`;tf~{ti}46H>9>)9dq2;@|5){e2 zlrEX26S~(5zdzgRo~i=AV>3H3eB##IzFC_UtGyL{Zp6nDqXm>dsLsiI609dJv1QI> znA8-5Q?k8bB6!0@GW;=NHsxu>Jos-;J9Dd}w4|?J7~E2C(1i)bfgo4;sUysbOK)rP z<7A96t9djrgROLx`U`-8)Utk1#a89qz1uyXI@-M(rsE{}e^qU`p!0Fss_hC>2>QTL zl*?{lmipAuQ3ZCB;0=rHm94(`sJ6rlIX|}} z13^zMd^Raqb3uH@{IJOGq<4Xa%Q4)qud!yD$ zo0y;H)9xGY9v!l@KkAd^#DX}3lcS>q98SBHrS!G?9Ep^K62MB?HCN*oplMEf1&n*| zMq@8nSS%PavMhCH+^6s$!+{NK{Vimm9+vl_AATfq(b}|I(oydu-}NFAva&XO9j-m2 zy0Uo%YIDIHv0sPd#73XJhIe!4@3cGuwCMt%l&z!}Q)Rk}?VT1D>>Q^-3@-cfPe%kU zc|0Gn+x4Gx@ELdTnp7LC#$J(z)gPD)N}=u-zvO-odfAHjV9AwSU4cpNecbq5ET;Jw0Jw2bC z9McKn7Zvr+<9-!btw?E%95f$kuQg^!o|_tY zf$HDqYz{7>crCOeHSC`|neU{~xX8yLH>MS&F8{I$)@{EoYVy?}(iYD~Z&8$-XJS1@ zNZu&)B#xe0==A z_4hQT#-TUP>u0jjr94MlXy<$0ay~)pu#en6-eCa<-Tjgj*Xe>}B1gW%RjM8Q8gk`=zv zLw5tM;XXw5?olui5itt+SM^-_&;L#Tp>Z0)Z0#t;G+k|Mkw6o1pft#gQcTa$&z4Z5 z6f*>xfPi4&?|m>h+!HAEJIW*McXK;9Q0lj?|9e9fXrdr1p{gPYhN?-+Kx9>=#nr&7 zD$?S2rNIz!2?;fEHK-EsKW{=f%Rkjzf)f94o5<{FdF?y84B_)tbo-(1zE>I_>bBc! zZ8AS=X>Si}rE@YSvsz>LY;zeE5f+jB{pHH+K%%m&|F1=jp=#jU_lPSZv5LM-wzryT z7_tEV@0>ueP_xxGYEvlf_8flif{jBdD=r}|OUcW7S4WNVKL90`<_`b> literal 0 HcmV?d00001 diff --git a/.setup/latex/pdf/betaSandwich-999-session.pdf b/.setup/latex/pdf/betaSandwich-999-session.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8c15252afd2dedeab121b10d497c0312b0fd8564 GIT binary patch literal 92655 zcmb5VQ;;Uiwys;Q>ay+XvTfV8ZQJTD+qP}nwr$(~_P_R7GvY+d8FA*xi;R(Xd6Dlk z5O0zyh=|cL(y>C5&MghEL30o?5ZW7ALG$oH)61CJnY&mJva_%f{yz(vUd+Y&l)tnS0o}ln z{qslditFvbRz=~kiH3HX6p?dP_m98X0JV3xImm7>uzwYsTgrLdqxHHQWx{O;XQnDV z*oM*b!!|*rHE%0*mTzpuv;Q&|y^DechUU+5ok7B4nsbT&pDF!Kgxe&1lggdNDD_(#6i`}Djk~sc+EE0<$`Cc)b_@L3G zPBu=QUMZL^Q&=^E6+Kx*p_wx5E~4UK@m8!@TGpM7F-rGo#rKY!xc}mIl!mQ?%mB09- z*vJX@Gu^VpT*hez=Hv@rpwNr$CZE3_L8x&4?S-%ywJ3=xjuE!AlTX)Jd8zD$>QFfgJL6pgOM*VjNRnV z?f^R4xeH;Y0{p7G>u#q5KztDIaf0J@38`@x=mJ&ZQ?#p%&$_fmNE7%&NBbACjo1AR zZ_Ix1YUwi24z=)>>u1dQ^M-KEOm)`1*05yryd^u&o1H`Ab_|OWeK!8$TQ;$5XWEX@ zGCIi37bR!EQW>Dx#5J|i_J#FDE@9N)EBMT+&LiI)v;X*kV7`qU25o9*^1pBXpXh(| z!pQmW!r|m#|F4BJtS0Te$%fc-sqU~A$)cR^5l46~Y<^K z4s_KP)U<-X5wXJTmx5C&aA@4+Rtt}{IQpCmkJZ{Is=AZRh?1Ne8EceYq{FjQV|?wW zAxXE9Nur>*xuZ71p2NQKM4>F+EQi!w5o5SqDr`)by1J&|vy*Tw#x~Na{&h3P^!2s3oa!oA)!{_`caC zKhJPa^DrHz=R#FxF1*YG@sMK5-{M?%k&VldpaGAcS0^M}NP+J&-fmb+FH^ugf^#*D z);^1ki)(%o5+*Y?+R6&{Bl_ou2(N1PB{u5?(H4~TVa7U_smu9-)Da=@w=URd>r!{h zC*$X%9<=y9p#@!|UTC!En^3?&o6Bs2A1MpCWWhcY zUS!{LiY5J(+Zt=RrWU1WBlS~SI?1-!qjy>?{HwKzU4a0tkX=EDXMQMbo}u;n2p-9% zVulI6ed)!Hv0g>8*ynYObmf@haPdn0C+h_2RCw&xJWA$o79&@8t|QkoH_@Lb+Fuu` z!>735x`LwjSmN=2h$iTzlv3-bG){(--p%_VCr>AoQ6-(r1f)X5Zm@eLX6?4EX@UFg zPa3~_*(C33aSWzA)T~(&7KsEYtB=FX{MWVWI9j8b5 zT{pT^9meZ)aV387_1cS`9_L&N-Xyu!Ak)Ef^X=#(_XH_lIR{8%%BzqZ_VM|u*{fU+ zp-gw?9{#}ag!$`?meSK+nZ(!Z4lo*bx90f1&eS%?gUYVIJ>eP6Htr2z1f1?qCHnRY zGTFL^b+J{}dK8D=XdQEprXyh5sh&tMn0fb|?OEXi5URu<3!^1}Z4C!Jp8OL1jn$B6 z{$m@E_yel##UB6fs9<9L52#>e`>#>)KRNavRCND?imgarhCzF!RD7O@1+x;%g$i`9j3Ua3n1$#mjM6q zcW-Z{;&#H#jA%R@XDS<&wEN-@U4><#2&I$SkrW`f6GEq55IcReabb7} zs4xdPGHrxTeUamhr9n{oLO7JgGoDb>KbJ_>7h)!lVWYIu+EgM)S!&5NeUu7jF&P_4j`!H)pFV;8b`76jcB zNF=NbUI+&S@Nce2e3}%nL_OxAS`EqkB(bl$B#^J|@BND2qB$$80!nPs(2dy@_<6Y2 z;qmU;wIrzIf{)rKKk zgD|P3ZMv?znuExqL?|4!L^#E$mmCN)S&|okkdRoomQ(W>u)gK^OQEfV3Ah_hiRnIg z|G_ydYV^aP5rjPz`le!RLIB9Yl5o_n9loS0R=< zjA-hPGPA~7Uf&3%nE?qWF<-|x6TJ^!2l(4W=SH3$qkOyIgG7KtaMDhc?kH53v|F_> z%(b4UdS*s!%P%t#?kc+K9Ro|81!n8J1ghj#r_X)Ry)eB(6vYA(h2l8Y1?alJzfUMM z`t-fUTZP<6Lf>~Z%9vbHakHhZil1|-v?dn^s>>XApQQJ8w7F)VB7q*OvIo#5w}{hNXt@%8T6n_Un}-`lfVPo;T{K0t z^qsfHtfTCijo&#gxlOn`RdV-a%9D=n)=d32I38jk)uK(h$+m6ArwCb)<-o5MPK#ob zz`X%Hz;XJk^sbXFFNc~Sj~ZgB29{IEnAI;xqty=kb!z*9+Dly`{RbAX{|6Ru{{O1C zWB-Q*pXyMV(l2!p6ypg#lye1=^Lb(@wcgN9d8AS&8Tw?D=GpqY`6h`k5Or*!IwrGW zK94872}a1~?>tg;IUSwQqo)_On#lc;P=5OSBzmZkXAhiFKIvcO@t;^A=#qa5Dk7+p z#3xA2_HZE%@XQa82XM6uCdYlvVULcL*-mI}t>&Xbr5iL@wF1^4g>n zR8%yx`XXIXd_6x;T0cWQx%@xDP1jfNZ}DuWw!eiH;Q-oQDGBW&Ib^?nb44$|*kN7> z%_IA|16;q6I=lrGXg-14p8A3y4EoCmfyFHs+RA9QrAgQ|Sk&9j4@ezic! zvyK8=tF*1iJur4O$V6MexGAVj4Yuu{)_3DsNAarNQJT8*8MHu^uSxecZn58G--eL2 zWph&-hz4)4F^~unV$rpk=S9!6k6ACHpLHDuNLhzqhQfzqZ&Qg%SknhyW(Evs*+rJL zM+q1dn3nRgJmxuVE&)Lih&T7P=~Sq9wB~-QP9NVOY7*1*8%{!jL>@uj$J=;jSt&CX zfzlSSZ7O-2x82EvT*;+y5QSc5mT=}fD*1b^^st6B6h3t^ow4AF6CoW1r~b&Y2(7GI z9{$7ic39UfD|u7&N&aX^ljgCML@ZjVBjv=_PyhVz|onKwslIN2V?5CXZuy_d&wJDO{60`sFbo@>lGupeD8mY zGFJ3_n^8?+^`Dw9*?3K-RUmha(iEiU7wBB-E@w8|d7=%F*@?^=GC8u9k9Z+yoAlqU zIKJe~BshLplDSY<+D=;8H6nuQv13E~%N=E_cwg=;v1hW3aG7#O{lcok8D~+p7WZmW z;0g`fg}3m_+M~GP!uq3>jihp1{1k(PanupjAUX$EmD7#8yJ_XHb*`J?cZa^8r_B%| z$Fv)69S<$!8Q|S1(trvQ?$AR2;8P-;<$AxR`S|F(zgD)5Jg01x;MXWsV$M8Q+e{gs zMC%MQZF#CW+Ec>NRYd@Qr0THFy5G7JELTDa_~kb=W2AJe|~$t@COwC zK>j;2m>K^a8H@}J|I3X3rbYj!)8K&Z`Bb;qkoFF%2z|aYHBVr>o{{5`wXvtq#<%#D z(4H?sE4i-b|DBKkH!&TRjQ>K6Ll}w7GsPoL&++m4Oui-B zUpz;fCntc=>0*f zu7|U;ZT7P7oW%j-%Mz9?yHDf8{_I08C%n1{lezW&b8}5_YhOU<^~#&}$sf{d4@No3 zerta)_ZTH`Ny~5HnFAXso2X0_O?<{~bKatwWH}u>t%GG#tuI_?=zR^^nMcYis*A|i!E5>mQi9H5UP9cBS5+~nJSd8du)0%$ zMp9NvBR%Y^-$zuXrSS{aiDBQzW<4aL5-B7=tk3bNXDc28WRjgCqdAHqEvPQ)_2r-m z&}-e=(uP?so!Lf;l;qRVnUjrqzWhv>sjT^|X+#SH6+uw4hMA5geDa zs_a;la=VH4>dfw&&3N&j6UCJGb-kosxz+mK5GTMHzyxe z@}?5OHs(0ZGKAUtt8A4iBa_pKH3U3?=F+bt`(RZlzZ95>&Xbyn!x?$# zusNARvyO_&2YAg0$P{aiY9pT(E?~uKdc<4 zOXu~cm4oJd*W!DiqBUl6TMi+CCR=8xRX2yd)~~vBv}(f5^LVgASu~%FEZ6*8jl2%! z?=J4+l4{^d>F=rQJL^U%_JKe9K$LdYS|=JG9|PyNb2&%-%W6Rziriz`szs}dD1?)? z(#|ednS5@Ee@0I9+*?KFc+pr&m77rrYfHZe1$gc|Ru3D6A|VHy_!2~z4S7Vw5V%%| zzKFI4V-h2b`fY_hM&Z|rrqk}jz2xwUmc5E*}8t&#y!G0xs4 zfA*c@Vsi2WZ#% zx3!2md2sZts`j}iME4+|(^n>r))vT&ioQ`V%GLXK)aAGuLUJ=x(e-r^$1ux7fj zW-{}YL?|K`8fz`-hVHh1I;2QA!VJFs5L6zRxBxLJ`qcWS@1}o=B3T9$74tyMk&H~vB~~0MPmPp)fbdc0?w>OM+%BBy z^263V|D*vMk!OMSksfV7+d+bm^KE52h<$&8@QgD1(Ccz9x%FRUUNjk;*QCk^rQ84_ z2iBv!5XD@wuTqFH=K@|cj(dP!2(ys4k(cnfii>?I&;P1j{vo#zdqnQWo+V7;%}C@5 zFI}s-*y5)*IEBe|_6EBuRMs8440U~$FJ0N0fV3=9e+pB409oG7#-+qPrs z$&TVLrkP%d>Wd&>-p=!dB@gx>kzofbwVKOSlCjS9=1@s2=Om39Eoc;kQ%2>{p&k@F z*TT|lcc23fkwK0jNVXQ|`_=oqNqvQCyDtwB`BPGC2e!gnj{sgI8FhlCqbs$VgOVVp zj(CR*R=D0|pg{wZUd5K9{W16etr;#2gLO0x+|&a?6h;2${b?%}XOFvsfZ2K!yDiwa zbA2gTDAGlSTCc*IDk(FhJMZA9V3Gni3!g#(`W+YD!ldM=i;V9pSud3}JFq7L*n zc{ko87xi~af%yJj!rG}RHB8c}^m>c^xAn;3Wu1!?NU7y4$H ziFo_o`@u>Y9`hX`7eP+wJBGn0;Plzb?0MW5^JV;7X5G6LeQOS@Jbgjq7%qaDR~Vi= z%86f{9(``k(8eBlr)Kcifxn^wN=lbt3*IP4)^FvQq7Vh!zd}Mz77nKWc6J}#1g?UrgFy$Iu&^+VDD2L@uz;5U&(Md+%;CZ=ArVGMv>ok| zsHT$$qG&S`w*o8=SGlEs6!q)r3Z0ETeg-`hVz2Op~# z$9%X0X={JyXm9sq3=q%_iv)eM=Y~)qfOQY)%PRmx#QhBxq>E+ajGHvh!-j=caB~H^ zy94$B6ZQNf(%uf-wY5d;4>_<`0K^%GGX$MC@=GB^uzv1e*t(Q#(-l884SEEP{*b}CYD?)2p5QpK^kgp__3EFZP->$s%j@)A;)&bHvm}Lnat0OB!D0MWBM%P(sm(XDop@P0*&I5s zmA~UpVhy!4@!^i6RwJk5r7&i#UYD??&lpP<{bNL{CG7JO*fW!sG4%lvTls*Sw-VTU=0F*xL(g4)+0rsNMHSqBM zZ|MNoH^7@<3?k%gFEM`d<;6oAxK-V#ZorRy8SvZea&jQ2#&@m!IQUZ=%z^?=C?E>y zpbF?7NZV3KhsG9=G@0wxy&HJ~6d1&6I1{%k4-*g^n)&JP6T4|@33&72;J11}z<6`? z{P~pdEF+z|cul#7h5`|A;21**{#2Ce0s#TC&lz=X0`dOJHv+;SM?HB+1M#q#!7zXe zHvZ~SG_(UsJ+WWR4a4Xw{zfEqEn)3?7a2LkLn z2N^t%?~mXa-nZK&T1|H+VAUzwx!jK)*Z0xrQSFQeJM&$-=Nb4FrAfFQv+TY%`k!Zz z8zihmZWN%6dY#aR7AJ^0?f!~SW#^RdY^ZFF`OTV?WkH_mO#Sz2^c%nH9H7%|Yd6lK`@ahQ589V zt>rkWhJFo$?%rNQjq+zW=-Rh zZRj7Xxg20K&x@heyiN5!9=yjM(WMpM`Z%puO+*8Am0R~Q`~H~= zp}e3(4u9e?qdRP6m;skcns&{Yv%-}lO3jRi&YuJ4??-wdb&R^`o!`Depk90foolF= z?9fablMbJ8mWq=;Yj?Ad6~RRPL~3hMBzS(6HK1`yfqlPVjQ1lpt=@9%UjIV8oBeyu zT3GsN{0T@425x3*g5mVjkytwR1o=RReF1^=XsTTB?Lh1xKFGNogle}$$r_P-z3V22 zvc=Syq`~E5P(OuKBw|Jl8D8Ur5P8x7!yJb4Tpn_#aLUF6i-)DyGSg_)7xg{J$RtVZ z_{>-m1m+h26@vq@$m9UCBnI&WQr5G#u|C!{UUbA($j!bwA{jzFCsR<)25#x?VK21j z&ewyVthx&Y14$B=@y|Q;;sBZKUMStAeE*ue&U*?3LC|r+=goM;AEe;k9gA0{%suqK zEU}13g#PKdXA<4U4qU_%d3c3|T0Cgw;VTdlP*~Y-=>9rU%%+>qAfX8tg;=FNzEUw4 z8l&?w9bGH$!My=-hCkgsSxDlhO6sB$N&P`m3Cg;pD}r*yzAd>mm!?1SQ6qM62#P*f z*RF)c1QgMVVf^$SFr;4Ijs=B~(Ygicwsj)xn!L=8)eVuZ>%Xa{CBKkdNUDAC4(dM`3!)QADoq^`vLG1Z zWJ8O8_jxa4pQb^tci~H(3I_N~(d=+v#14jCu%b2pbU8#0Ng0Uon2*Qxf)$Gf1hBn8O)9X# zHB04ay%U!-bpy|u*i9@kWX3gdhIh0OU)${jHal8{2|baT;)VV$UJRHMH7c}vw6)#M zQWVRr(wEI0e1G=T{OuR13N61=N1?t4*B6qKU58L;JO66S7PA7iiIf4A+rys6t9V&G zI8|dLs{2jVf(TNLIgKJRyJ|z7SvxM>k%|IS+cYo~Kl%jK=N?Id{YGX!iI>+pp8 z##5Kf3PqPuL3W1-YtsDQ8|9Cm6vvKUMfmZS-j)}SK&&g*d~BQso3(KChRdZ5}P zvW}?D7$AOI@a^tmN7`Z16sj$s#SjNpB$LO~d2$UB->hPD{wvMOr-tn0$2o|UURs&C zK)uuFs`vTcXLkP)Y%{53MRO3&0@4mO{1Bh74=;vwMXWp}&^o(Gufy>Q=jgCQZzN#F zB@7oxR>FiT1`f5*_V7bbEK9|-ayfg)%3F(Gx$eC05h|9wii&wIV#9s@D|ZL;AKmx! zZkxD-q_#dsKIjsz>-mi^|{4?EwjHT=}rcFOo7v!IRY~iO+Sn13B0M6t{_q zZ9KU&t?D#O+gVPANl8BIkD1|Au;C_u+WB)!nn2dxzbcgz$$Gf`9ooKl(>sC~+a9}RECuWYWIyR<#08|ANOhX)9F5PxrU;lw+h zP0nkf7tk6dyJq_^PiXO5C`+|tx9`(-G8oq&LUpc2?5~F2hNqd)=|H>%I_DJP{ov_K zz|6}}zTq^hbZMTDh9C*S9cfkn);2iW%LXrGDSa1ll7NE5d~HABUWSa+$Zde}B1h%w zhfi+hs9?zm37*tL=KxO^GfY8A?Li3qq!B<~=0vlG)7!d53#{Y^nz~SK_HsKc_0hjx0!OkB-~@YbPd+B~qp@T8>oDW~^RbC;*S3QY~MNR?-Gt%;1a^ zvNL!m7BVF`*rXY`R>{OoS8}Q+NM`%nlEPH_wz*wt@5{53-#vWUE+QeU6luW>ZR`6J zp&vwsv4s4mSu8taa7pevjIput8T?MF+;5sgVGQUd%nAer5?K^sq>OaFF`;Z&noo4s zM^~hQwq)t=m4*emZ*Tfh;#znWRtZf^lh{!}ae(OGN;h{_xa~G6PV?g7gVX3e;jQr zK|zVx{RI*!l1(otbA{QF2*8TlTRUyJe>J0tR4}=k*L5AHIb$ZqVx|Zmeu+ZP+HjB2 z6U-Pd<6m*L&P6cQpHRF6I6})yJPG5Y?@-jdbh3iwOLZ?Geb-Z0z`8Bm;8hUxbwB8% zNm7f3&0v4g{X8sSZUFLozN+lcC8y}P_K#v;lG6?L@j^1;y|@@Y(!hS2c+tp~>z@-` zCES#3Tuunh!2KK*Xj4kK|N3N0?7ve4dr6N4dCd6E58`lf3n!rqn-_Vra=dTF_?TYn zeKcL*ZOd=)s#zo z*P2|ttB*;bR#ZbB5SQV)l_P&7)N;AqO2%`3TdhQpJ z+iXVPa(jY6Nfgm*#TB+6$Hl>pcF3_!DyI6hY?ue}ZlGJ!S7&y4t(y+Ny?A#+&F=w0 zOmX!)l!nu{=D3*5M(XXLa;QT^nwW%}>YOsU!jLZ@Y+(Wb43KkSy-)o6rIylT2_^si z=V!hd+?zqS4O%8}bAlLNWT#8~g(0ckWV+VkABzegX5IVpvF?l*!b@tqmQ)$O&S@|U z-18vMbgv0@zI3XSXfsgSob4+f7ciEo_sDhH6s4DKmGG3Saz&U*EDv>1dU#LtR!e4Z z9S%aUo(-qxXZE9nY8;bsyVY9Y*CWIE>9?tFFUz!Fqn0o^YLpsBW(ocH5)4HQn-=u$ z5mEfz?zN$^ga-GdIupG~GtUBJZ*|a`6&k%r5F~ZiY?D3iJ7UcK-){v$w66tcglfKS9rbgg(z(x;3=|5i=1)Tp3u?S7T z+J*?Ve5b@S`3(tG+VUkAt=D>uK|d#uAI-F8zk)|V=vv3pfO`Xm>w2J z_a$a2`2nR|5`%*j_>l;84};zMD-am%w3>zuDo$S(lUyK%e8Q_+b7V!eBSc79C+jFb zWq(L9@XTw>evRJtFZ|zSr#EqTid?U6R3u%T3eEb@V<>lS`9+?{{LvJj)W3E}dyWeY zW`65R3}qkf_tIn~=9U_gLJrI8Wk5G=FV1xKm%6m;#=ARM3g)|bvCw2)t8suKzKD!-(t^m{F8VxD|^=()vH z#WT{OCuN=dbCb547J-z&G9OLGE@gvQ(Lh#D&{&i^Ms;}lMcP`U+6c+@WRT>R(&8W- zNDKW-`}cD=VI0?vjw|CGEyBb_6b{vFL3HMl8c?r6w8CCwq{o5ohJLB*h54(l8)qf< zmx`$EpT}$TT>`d;j2+?*6Y4CF9GexJECObHuiOr6tVS$Rs@_S@?XdoprU%?dhiRmV z9-C5#wwk*G%Ec|mR}`fK#6IcNUWyu{q@ z=TdBLuJvSvuy2|j>BPU>b}|?j{jyj=JJZ7Sy!lgm4I={H*hexM0xC};-erw-x&Xas<+D>h%U->R`G}WK`n&}B+y;InQKB*nboje|izBe?_ zwZ%p?Q#EC6(QVS0zB_uXh@UPhmkNcKF~T3tsj$An3E#)2@qw=4sjo+iOWzcAJ<;lm z`a+Cqfu}Z@zw7I$AIq-~#(pOWAs!h&;LVoAC~r@YP|>b+Ml1751%ar4-0Ow#*-QKY zm#UCjo|$yy@8h8QCezdY#0?VWR^!*LBr^0(&@6<*)r^tW+Fzf><~5-3BE zbmdN=OVl19I(DH_zup2NK39duFMN8-U$Qx8Lw0zMYs+P-V;nIBMQCHbes?m3FS&oK zg+MyG{yAlo4SDE+%H_KW4Y3P?yVIWXH{;^4KtqArDHJjgB?`Pn9kMI}VIY6EJF))4eZ6LEa^`&a##z~;rRTfmBBvFh*}_7zOG z7hKys`kp9npUIUyde|O-idY=+Kmp@eY5tot3;G8(y0PxA0CB#h`VKA)OgpJK(hhAl zxgDMn>&v9v$iiCPx3O*&ByL&7ilG=MN`$^)Y@@U8@X)a5k1!gv*1B|oBG>%TFSv{r zE{h?OOc*=a*K)7+IBb!9rG>wPT7t@rlds}Z!nxX$$U(Y}!kWs>!<{MeYM1BmqMY$= z-(pHNb6Au1gD00Rxjo_v#R?eZicg6KpwUf%4efSjgIa0UjQ9*(aXoT;eWFq}IO3n| zhf`1-}Nb^;dhu%8ARi2U4&(wUGJ&h8h>&eQ!|!VernXb zCu&JAH=vs8x!mV(ch4amF=hQLSR;$;*`P*pcdIkXUFAJ?sI*wKE0xfp7t}z@Ra3J3 zh8jz21hYHB%2mH%kJfy$dbO}9pw(2oAM!MlkPEOL3d<-?)EE6Z5wUjAl1Lqyhxa0tGWm>{QM$5lx|^oYEK94G@6|u@D>gL*kX;5Zv4#vI zxQ?^-@2R5P1uZk!FO-w{|&{bhV`&3w&jUfw00`}eWa|JJluE$u)+Vy?f*?O@O z^5EL^xvL!K$3;}$3JjQfYgZke*JXIl85dLCXx@Kq0IA_-sIfUZq*a8zpv>T|j2hyE zajg5WxvESXbzCl_#UMcp)mU;E0K5pvkWqrL4gGv-lMFHmAZ@O(0j);)~|=%hJ3gVbI=Z`Gw9`-TR<@NhhypGVv+ipRBlm&HaltJ9d0!3O&Ms)pWB-^-WTTg|?zvL)+#>OZ#&N5dglf3E~ z)58hTq*Bixh6#T=wlx#b0_Bj!g}atx&K82134Y?~J=VH4pN{^1%$aSK#O3pDW`}qf z5AojUZr=|}(XhBc75Xn=_LEFRm??d=!$^N3O4Lm?lG>R+e=Q-?rIWM95dkh>Wgi0O z9Irq|=u4ePo$KkY+38Qs6(4yE!yG?Om0TPx-19%Xi=F0}?Ry>`ma1U9NWX7+f6t3& zw_Qc{Jo!!5=!pIne{9kNTe4(gp@00t`5f#=$|&J;k~audz^$yGbF$}bB-Dg#xj){f zX8_3PZ8vB+4q+aWmsTSlapNF2= ztU0Ck%XT{sp}g<2ns7b3B7)h-Kn)bd3+pB3b^T%nLUCA)4!;_X=8YE*8xQc;WL%f| zwCf{1&nW#14}DZf3f@-2tf*00JyUawsM2Wz7Zy9>>)yH!br}ra;1b0UL(1*Vi&GbX z{LX@2`g4iAO|Dv@H9U#4u+=Ju?9M(KNt9xDh12Yb^+A0ewlTzHM*E6 z12yTx-U(@J35<$K6gGy*tg&HOq{rvGDa(j@H0`3+3Ta2NOY2VXqcODj^E0!dsutzm~Qf}&asXppE7Ys&?{l1uE7@2{Fbbr)=+a%>w( zc=|}eY#Ojtm&>sI*E?S`5uFIbAHnM}hc~01)lR4ob?zql6%llsZgV{GNj%*jVCa** z?S9K1UODwFI#8QGqrlaHGcZjH_i1evVe>Ahjqci9UB?Q9OFORS=XSl=I-FYKjH0yM z;_`gm{#v!|U4ot@T6Mo#Gyc7a&u;i|*9Y?Xf_n0FrVr72n)HAYP0qftpP=4t- z%1^<0gQIe$ zscf>fi{LL|&#j9|oYT!gu?m0f-yW8=mep0@lMguS!HY=aW+r-vZ~hYB0%;pAQVG6k zF9&Jn@^`lCvS{Vncqf|F_$RJ|ZfBl8katP!IH!gb!;0<+&X6?cs`)GTH2QC5H=?Ul zM2{aHgs}N)mj61Zwa4;=O60dHh2Yz*7brHCH$q6yse{)OL?a!=!pIivG(k^9xw$Gq zeE(TqO#&u1LxDY{phUWO5veA9Ul68~g^%3VWJ2n?R0StGK~*JLd3k zy0sI+Ktun!tA+A-M`b5*5}BY&`=xYGCq-T))!>(n#VM-teEB!W!B|P|$Vxr+rpXD@ zvORjb3(`Edpg_*aebS<~psnTnsqnyFu|!$pr5a*x{WUw4nyy@7ZIwb=rQU@oBptp`Ki5NRo~T zA)&L?$e?;+{(N315!WVB$ESC>c=l6mX5bavi-8f4=?Rc+m0M|lu?c(rKm+_bY6LTw z7S_arx~IntI1(wxETE6{it`D5dM(yCQF-!2(^`pJCVVA1XfSpPn6VE*(;GXDq_sq? z4xwE&xJjp#c+8XoSFa1-gkqDo`>5BDJ0(5!M~$KJaGODM2wHio^O z32z6p1R6;5zj5RuzJ13(ej4X|-$Bm|gsIl|>Yre`E;{{`7Z4|+yJW_2L~N+x&Bcqt z)b0wWCPjPTlPjir9l6+Zk@q@;FY8g;nYpJoOdL2oSPO~-jp4%IdljVS*^@iD(SIUo zS&b7f<#oyQUKSMz{GA=h;ueV3=b8C16W#b4W{-KT-arcuN%4{Pr$#UL0Vb9AmJ8CWJ|h`cf& zQ5w|$Mvd(R$aII-1$*$#DkZE~UwRO&s8bqcS`2NFrwQ18x69Q+k5m%s4zu3`8gYCI z(PrPEN?37Yr7dQmc)!I7UPVS6pOAD=;U@FoWj|GJ62QNwy~L<}#;bF#Mj~(6@r`?& zfeh1=+?E|$->4j8sMMFeUx{5HTEp@unFpR>qf7S2tHuM@ex_CO{b^78ML(=9V{3wI zH!WSNdrsd_QQ*-uQiR%`h~-v5FLJ78{9DYA(!y;?GUq6`S;^HjsS87ik4wx^6eK)?N3Vm0+ zbu36`#<(pR!W_H!a(W+~qcjKzKSc{~ZM$UA1@K4>b2HQgZ#TR}Mq`qiX_PB#74=jg zUKPY)1!k18JA&uJaWPh9IO|1pRkySto!SF`g`YhaE*Mby>sg8WV9)I|*NUPtGim01 z7N$AoUa>Zti;?V1P4B@?mz}I+KNTyxb}J4}hsyJEis;%OzQ#4t+!~B&mQ!9aVof__ zT2+WL%0jPjBnd4NYZ(W)HHNz7{Zk`_WP4KSz16|ADH8M`0g++motPkP_@(P&3N@O- zia(r9Ly~j}XvfZz-L7Kk&_*5~iAZjt>E`mxE*q*ZYGNdlvun5lAfn4-BL$VC_9LUd z69Mcl93+Y{0~xl0;@W5)ika6oDR-Z9ptnI{JM=ha+u+~-q>1}K$yKLd<(iR@iIIi* zUp^})LPmB*Hl}|a|KAQQ#{aQq{a*{#|F<Z+obLI~UH+kdg&x_XQC!oT)qOxQ6a^!i-XUEFPNED5WNSWI>uPwWp84rb* zgk3;HEBn=Cz{bzJ;CLV{->d49xI<62>VsjlN+hAPu>WUYacA7Se zKjuAG94Pr0Ye0BpK(aZKvz86UG3DF;W%&wdWxL? zxa!qZ)^-$bU;sj3bMddamGi;D;T6;~s5cJWJYrH9g*wQMA5)so)PD26UTaW;0`m`q z?cQzxqUOfW)|`&3m@_ku>KZ&6*OknR7U2;piQoBLEk93 zWyK_OM}=4Tu>P(uk=5Cm)vLXM>BZIM>$$&Wbg!_MY-sUx0+b2>Z10HuKeWt{T%c>1 zSXi8G8bAV&Ky%weLHh{Z6`{O$`cftQ2eGhS-B;IFz-9!JK;5*{0R;SYdU9el0s)PM zFms!ixe)-dIvE)tWoZ=i0LHnk1@ssD7X-$+EBdc_A8~2-0QkevD@I^UfX~lk(JP}~ ziCfDGzJDg5vKMy3s34<&smb5;iy*tME}OeAGA0>GV03B(%HV_91eX9|2OwK$Ve)>< z@Uu^CYHbF&_d&f8%k(WjR0F^Vs_>_WWZmm+Kf2~CL5Irw@E&u;TE~>->q+~`75~5t8HH9%QRn%q&^J+Hi=xG{WKfAJwz=Xy3pQ+oph?K+DFphFGR z5xeq5zddS|?(^QpmBlCapii|odh+!eZ`4BOR^qP~l^%^}aCByI1pGOFgfIkgXY{cq zs+{-P8-m#0wlhp zHGp9k{0kBI+W~|#2>ipnNROi?Khb;|DnDWbG!_0NZa~2w{)nrPrStxXFsG0W^#IH+ z{?t)_n>HX=GJv2B0UMdy3PJG~!7u7dg7E0+T^@g{DT5D$F)#z5pXocKeto!~%{>yI z#@_wV_I3U}g5u-d8yf$-Oa8Z?vuhn(fZ(g4(GS8KQr__Hz8}lrz~Byu#V0}}Li#cP zp76$EXy%_9 zoP55kGzzFdz7$s>=&o=26gN%hQ~DG?kRkBo_|{G1hdTR+6R|V;Me~FB|zH0JOAqv{Mf($!T)-t0fFv76WHYiI}@HDt8YOa4|PI#Zgl&Te6!^H z8fnyYUdxW1E>DQi$<(!30h^9@Ldm0j$ZNY|RJVdFM6X^at&Py3ZHY?l&tG2*;+3cO z+hLccFo%8?od`7y5`4m^Qx!b;`s(mi-Tw=CD`>Ygd7gs{C!%5j+JoDGgnPqa#p*=J z!oJc$ExQcdOT`Rbv|5y|f9V`~zH#ZLo<-0j^gYVOZ>BI$TqSntzl zmSQjME#{cVdC&DKRc5Ci95NhjYy$9G)QM>dFX5vUX{<%Bvf{O&CHGd|VxnAxy4 z$n;0dnYEV6k+#kK^{x}kT}*p<$$%hAydku`#QO4PbOT2c1&rEugGe;zdX_Ihf}<`o z;q{I?^yP@g@z6Y|)zZ-X_US1aASg?p0W`$7YXNvWP=WoPPD)D>+ zHq8ZAFkEg`W73P3dl1Pc?658U9wsYhm6GV+U#uC8&<*ggdgLmkKUc3-YmZ|qR3hFx zjimc=)Z{-R92h*nb!U3Cb5~g@tdDVQr~Y_Z?G`3H8ndm+5tJX^rR4UPI!Bw;f4|`huHe^a&J6)KPe&#ogh`=0 zSs2mzCr>2-Mdg%P8?wc;=p7+g%V}!ZAu7H8mX2Za(UpJi1Z|gv~vXr zMZXsZR2+LfEUCZxRR2`Z$^3%kJYM2;Bt!WaqWGe@8;LkuQmor=l`yieweS9RO1zVY zlc{iU(}q6Zd9w+b7|XxHq`&jFAKP3sHa{+9ZH!u6ZsY}RRv-JpG&R-LWeSYq7z$i- zq?};F8BF9s>LhnvbGj??vNFvRT=O~qe2@fLK|F?3)OiOaZ2 zP*~e6iJi2d`_K;nbIf%Z%^+dH;kyS<%2u7xlA&Ld!TvQ$-TN6! zVob)%C`?3KSR$trmXN?>l?pLJhBBm|S%Gm@J++2iN|B7r`uX^&s)a5QYfGmG`(zII zV>I$%7#9XdW@3?oncO_dxYjfDUU~v2{j-amk6ab=0Ji6bOG0{H=o~vuMmtRj!eAdl z<@7sO_hi|oz(Ao)5~c|?_V~~HZQV=rT<2;Ef%4s$p943~wos}kZk>q-9b|c?^131| znMIQ;3U>=X1&cM9-HDDk9f)O3XKHrw>`r|4nA91fMuhnU>u;XUh#3=lwesyeAIZ)h zr|yUS$Oo#sr$;f|wl}t!_3SG8Hvu&UuL4pQ<47(?`NB5m;!s%JO-zU|ODU!>sUAx|7+u+8hbbhcd2T*nA_D342r%uN_h^7V=Mx3toE) zr~t$?CU99-lX)8qNXw>@9*PkXxzk@Z1A@&O^C8vPMb$QI#^j94X^=Eeh8ZW&1Nn)Y zi4119{n^%?HBdI+@Z&oXJoe;{ z-r4;s^Xm0G?~R;uh+qU2m`?H;vO&au6D56T@gO8k-!(y!lUtmU7}S1U*8#VwdT;am z871xu^$FFw;<1vXPny352(hFt9IGLW?|rCF9S5AP-_(E6>_#LKX-6) zRxS_*p7w_Xo9FWB@@)x{h;Kc~h(D<28$YMTcd7fwSW{V>*Yswu7|&EkuM@W%Rm`W% zkLzx~J{qwqF=5qB_y8)ob{y1;TS_O20SQj}U(O1gOk*-_5k2F3VW6uE4~w`L@MUv6 zar9zPE-M`2B8m$t0$t@ryCUTzIJn59WG&w)5`~t`@wRQP**!o*r9Z`rD>Pm4%6!^C zQT$P)5F;dnJ?0vc=({mvT|jZz^q{rB*hslN38JwwwI4{)Q^4pi19-#1$Y8MiWVt-! z^2s;{w@(C?b9lg0NV0f7mjx8ogZ@e<&%JeL-I+t^LKH zsG#7MqU5h5NQs`{SKKohEwUp8qvB6x>N@{@N5(Spz_z@2(ZxOkf+Vi82d z41?8=3oN!eM+e9;loBV!i|rIU2X>}W0)5FU;yOvDSy(#m6}c9Xy?%?joRtaenMab0qWspx52~#sIEf^+yyZ+@xc8ot)uU5J%`rgH^^#{X zX`2mSk8`X=Ik#%m_g%IBH>IYd@7!iOgROyWGPtyCJ|-LtRf-_&x5K>gsSMcaCV2uc z8S$pg)l2;^nZ_G^w!eHZ&kSX23-w@Djf&LrL0bpCUcyjacP?Z%*V+yWSQBrU(#U+# z9BqW&&z+Ld`-ZNsY_&JRY0}&I%J0XVZZGXJ(TxSY;yo7NV2DLTh$6kPOkn6We6_!y zUJxEIV%frN8QTY&J1M4_lF?1;-qlXdWm3rU+IK^swjf!f!GCS_$!z32dZHg4Ncm1{ zHaYC+QRW&*v~BQB*t2FVG&kgiS-^F!0|pB0*LBD3Vrai6s8Jy?C(eA44Q$G4D7LxV zGBGqP%mc^1_$Mtv4;4M1-@&D7W)voBlGmjTKK;OmuxXA9aE4EZcc62{QF=Kx)fe^orUBf>0}XXQzBCZAPqJ!^$mho z&CwH@d~z^{VtJws3G1fL%4CE?H!j(M1K)esh-%|oVEL1dth<%$<3n&O3w&p(dqTcv zKQ$l!=?>R$A*INnxLU*rh2o$4Ylo;cgY{OVpasZ1dA5QwBO4)ju zgUpk|8|Q#$yR_%x?`$nA!jz~v0ATxpn+od?zc}D9Q|vFW7dhq0B%(swgI}n~)bB$G z90gNh{sG5QDV-v>G8U9wA(>LW zrQJGP%jy!X=G{FwaM*uS28FH$m?j=i(Mmr31@cHd2Py?Kr?p=;n~Nhueq>TCR@-t) z_?*cnygVVLhv%mP#dHrKy`F7Du|S;AQ3{c@sL-O@5AacOeDg431IQ_ANtDk|@ep!B zMC0p0luu)6fnY`k3$pnotZzm3lV#GbnJ5fo~1?4F(EE=zl2N)F#aj`wh+F} zVCK!TnUZ-jUNXE(B2k`#Qhi8iCg(H_Jx8Req4w(ia@W+{qBYPItqmpJ?@*QUMM+}j{03}wNcELAkZ*-&&=f7leqVNUW zFuVCYbJzai3BH=s#bb@k@hWBgI@tx*%-h7FpO&rH!-x2FU2i`73Gboj6jAMSHE5S} z9`%7Gx8zk`mqPHsDpidEP{IG0KwQ1+&0z`(lfTO4XlsB@f;(*c_kd?$PH?8Awk~4XPNx>=T>djiYdMM=T6 zIDfOBfv;a$l<7}0Z(m(0{f2GmQ7M0@?DmPaPb^z|ybxh?Bw`l8Yuzr0G*l1T95?BI zua$6NGmyxHerQ@|DtSh7W{8@Dd)tbh*tvw=VhyinsX@}U8a&)*5Dq}Gd3fR;_v2>~O>s#OJzv`U6 zIGsV&azs8R5WT(Qj*VV1C4^Qk244px3OS>|pU_preMYC=X)~%Q8f~-K`N^d-SL*T( zqjHGNC6j;?gfgHiQ*NY5w&!L(n)qEIP-h3sJrd7hIIz$ILW(Noy~7HbO}4Z`s>h_s z`>O?E4_UmY=nk6N&%QXfcCBdI&etk!?#YY8fuBW#SxntmP1e54z#hC|P(zmoK``8} z5LKr{7z=A*M~xXn`YY^s=L|U>)6a%Rm-(nABM1>XwUZIZhBI9gVmXCdO zuOpMkP$T(U4mr<=?CE5uDMkvP!7pSC`2mKFW#oN^DFx^2-J?zw0&TA2?L+#yFX1!^ z7z?jTW7}o&#%95^s~ue%K{<9LpQ4vb)joB2PG6hI$hE>E(ffwtXhbJ8 z-L35~s4J*^w<+@Z`(*5{-&Al_wNS!ISFvkkQ{P!9OV1AlGC_V)-ksj}Kl+MenW{_3 zE_|jv#B{=_l6WiH(r0KXcWCT~7`+3vh#EwydVJI-tnv&JEq4}#XSoNWW@P3b$t?-; zTT%0BSQzffb%gQ1FBXix`)mWZ&eTPv=f9@5wP_-GPnU`~MvPz$sg4MZ9Ko4kzk;O| zCL}3(^FT(B%y!7!&5};WtL8N$ir+u!9^$^<>(3>E6X1fw@uYw1`T9#4AgVhMfFS8I z$NsJ~_&SwFnXSY!V$9=C+7d&=a!sT%!ChfxjB>V0-r_7B56!?omap)Bo<-oOzTw}8 zpS<+ob1bo&5;TX4i$RbC^FR&V&3}o}!Er&9Xc~w_aYUSL#Y~?#Im( zQICKs_nF|5_yyLX{5u@9ie~RRV?A#bb-Tru#sZXoC#zYjxM;IQ>?-|IgDM!cz6#_t z9bvGooA>KyxG-(`7BP$|5zw33dpIq)Xk|!XlV{)D-6c!Mj4tf=CFirZH?3_p!&oeF zAA?Ny-snJZwVbb!l$r@m!=XVEf=Fr$$m~*Zx#jT6m$ETRm|ITl=ca+T*NM1s=zT1@ZrQS=rou%FD1T6XX&mrU=mj2 zUtyY@u3-DUJR*IC8h7rpVwxVx6gqT#i@>PqnXY-mnUHqv`z%BB74*|pWAM*p^^Lf= zEZDS{Or@YkowW^KwO&nbe29RRRRI&)JMyjiPiOM&Yr-mQTp9qW7g#^oA=Fi@*h-)P7HQEpIG4@cA(5mAY|!TRX(#E#YdTAszc#UT_}j;TCC zrcxq!h74i;-mr9508n;M-Er$Hq>0yvEE!f@njii$bU2Ia8pSI6ijhBRgeoK`0|zh% z)}F8$re-F@E|{05Bo#S&v1$p=wDvSc>As1NqKe7IFY0BC2#4?FlA(g={bnZTRcbxh z@i_pu(BCH9J)StN^DP`ET^aT=EwOi-4k7@te6svSWCz3LnD|4@%hq$;n_WfknorSS z_YBiNyh#<%p`>cBR4lKoQyOuvU|002p}<~2Z#uMHjVnlexR`n*q>o#JbtnT@vnJBa zL+-pbu@KzO0C}K7+oI8npwohu4?sA9|1v2lOlmyK2utK6@dziz6H`Grk`5uCIwRhJ z(Q~tBYWMJHF(|s^0V>ig$)aStvkyDrxA%Dh(Lx7PgaYBy_rY8c%iOPTZ`Z)%MkhWt z30#qZDkq*+TGLMiOrayUS_P0=s5}fMGmw(_`g11DBQ_RE{$TzWJZj*sh(q|=64l$C zd54o#3O&b<;U+KYR!1;3fUz29EjYdzM0Lv50j3GU8+}Kixu@%-X$48gBJL;gM9@b? zyycXZb<`(4T&mcCK}twJwQw23Ox`&YCo+ zjvdUEV7x#<>N%6sB4(y<))*RL1oOt&NfZ+yJb-dFH};+}iS9EBBS~q=3y!k^_AJ0X z|7V<*P_OnobgwiS93Ixj{Ej5VT6Y@0WuNRU&PKJQYKwERU+ZWsHJgmqKPf542J(5N z$5?VW3>ZVhIW46mBH7uaW`cZ4HvwM#x0iIXYgP{Bam%& zUE%KbVhfD5GspvPDe*M*Zaal>ZgP%>!^=B-O%&lHob;|SO9Hr=2=;LWHPc5+_aR`P ztMs-nx&l$;MXhKbE8mR-FuZIAS@LpDGfgghD4vJdZlTr|aoSHNNwhC$k1lPoWxYHMq#yrR#)GObuYQpGGh9{$RgS9>&!88Eu~Jl8 zi!*qJ4qOfZ_#!2In6)ujh+~^+ZMX7XGJ0vr#4q>FZc`&5?nv(0z}FRGpX40F0x^|t zxXzEx1;S!K<7@O)HK?BQ2%(N?)N34xNx(qKP+G$r(#BD}R?6uJGlA8h+Y*D{YQA86> z(eKLiYYxBLci0Sd$!7CgXRv8 zaFt5~Oun?m6+Txw)Cq$^q{+W1FC*snPs|Z6S*;xRppafvsX^G0Xh-aJKCcEO*BMKa z?w+cQViItrpSY0GkX>qjdkQM55}o~AEkF&X$4nQIH#nFVbqi5UAyZl3l?G{NP000H zlI3qqs2?6pkAo`5E;z=G|DCC}7?;%i>!me158kvRxL-H=hL*%9<2&X7y?wp>T^rh- zBQiBvXY)*QEhOk{c*4g1DP{sUX3)%#UILFyk87T~tnY3_CY}>`u}(t>H{Z*=LUXXk zw>IFz1siFeWqmcS3^H>$W2|l9GqBJ`>#EG@o3({;4d#d4arUQoERg|{$eY}xty>bS z4WEQk!41(rO+BQ+er-Dc5-X;e*dj&PQU@+Q8yXQzh(`?1T}j5ypQP7fqddLk0CIBh z%nT_OZG}Z62Tl@RU%o>lygjTj8gaj2&1qljz(8!D;C{oPV^~RKf8`;=o7@%0`zDmf z*mfqc$e}!x*lxMbn5OKV7pt}0;ep=BLcO2{3ABrn%fmqpHwn{-zpxhTvLR~ln!jfs zqiQ#)%aOK>9(6wpRMA?8IZIf;%>--i*J5||g z(P=_q-_#3Mic{Zxw4WXK5N(ZSPGD~9-gWGJ-|p)yBM=L+b8`d6fhU$*$4UNF(;{); zJ{%-OvKPKwH!*WEUfxFrd57pM5rr(v^#8KG*1919Jw^z{BHMwYb|r3jXay?cfv7?A)fQ+reyC^QXS zBXhQ7I)l8 z6{Q^w37@(uF`JhqZX5hAb9v24-X+8tQZspC(#CpBSUyM-a-Ga+0o>;i+K;61>bhL1 zNl=yfMZ=Ol@kJq>o6ne*IG)(thpOOeI|8jTXYtYWj7e^)^)uIxT&7AY?SgbZT-lsl zyWMQ-fz>3~RmoV>Osy!SaI+d0?MNPBidKWltYZV!@(=bzB>-$%v(QMX{MoF0TI&G6shLY0piVH zPhSq=z$w%Bk<#>|(IOqB#y~cHQ!my8U{wV-Rz&PN*ws+0_64Ia;}R6rW!TthS`nTT zc(T>KMrzRskT7&5nl+Gd34p$!4LAuQr8Ip(;dn&5ClGeWi3sU+uMDVrrSA;-?s!vy zepsvT%Zc(v1hPPa+dWj@wmzJl(Wtfpft=_snNczjj#GPn$3IEEe0gWv7uB*{?Il(( zSgK%cBgj=CZ-pe#VSjuN76WCFo>~=V=ls1^48>NCa}bE?S>p!rPSQg^VAO0b#c3;~ zonilKx~BI^D-M?q&DKqZ@a|l2ulhE!l3MyN!N2haaQ!T=YUYf6D+X`v1JLi#CwiT$$YVBctGI+ z3PR3)z243(8W}u+Gl@)6)~QF=sDE&NwwtD2abEZbv_%3N(WNnwmn5eO(Q`3$~E$U!TyM7|mv3tFa3eJ2xk&)bN0@u&{ZWdtE$RcT zjYJ%!6oJQx4kBe9LhjyV(2%WF*Tx0YhO8z-=} zDp2NML7z-!S`PlogRkcmSYt#Dw&(%UOJL(Dm^sLZLeGJ5m#9apT9UqxdH0m)|HxPA z;3i~{$wu*W4OKOFY9#6jzudvnX(_Aiap3cbC6rEY{3x{7!^u%h!H`>!iIWcG){~)$ zBvn+)0c0ou!I~kMxbjQvh<4Zbj|38}+cY5)(VXw*1>X`Fz58G$K1N!OD%mMmQX?K^?s$ zw4m_qF8cY~1HYGYSZl9}c8KfuQmYjlak%%%O5hpOCfI%W^4QWb$t4>=GG}tx%C;vs zHQ9@c4XeUdNK^p*pig^sx7l8cJPkcCJ9K`!()M6)Ag3B-8%u;9 z0gtMUR8$a_g|eODOU5G@uS!6}13YjskKvn=UlQQx_f1MQ74X=n-K%_0(5BP=g5@?-;ZCNms{yx>CvdD_QbEFwZ;z zbQR5KUukkqn$#6rcCJxL-yoP+VY=T~1^to*6c%(ad+^7@jI?<{3B^^n@X7HqZDXX4 zz6D(A;LOS-JDXm=%ceEp`dA%)>|kA1kcUl$oFacB3H+@ve!0N7wy(Xt>Mh5R7V(to zCMDNd!BeLQ?kWBFU3BxBp5Z1R8!!*QSC@pLbarNJVI6PLdSW4MU_gT%!n=^DWF5g< zc%O59z=k&lorYO=we$7o(Omh>VBYg4X3>={Y#$hR?-|($llR6cfuHi~F&V92txZ=k zZj}3Xnn)3@TVe!86Yc3KxL)mnqjmrO$6d~-n9XZ0F{+(}A^iij@@rKxG^1BTNFq0b z@t<1(DP`ioP|wEpJe3+tJe<{}e5%F=SQWY7otj0j-(TaqRDvU_CV}1c`%MZqnr}ES zP#S^P8o6)5FWwaWohNaQRQ@^aV@`Ig%X-=JgDK;sKdy8FJQ0l~v#O4uO4kI3!1c+X z@4qY4c~WJctZ|{I^_|FM~(zf>s?*xk9>ULi|lZ+0|}kq2Ld-N z*iOA=2_|+@4zxNguYE^}CG^Dh9QU~`Sg5+HgjVe$Gn!9GB;R?TE@Sy|1V-6>&{iP4 zc*e5kv=QkejO)KhC#>vmDB`Z*&v*6laP0TX!wVd$Arj-@mkrh(RReOn;pU_@7Sw@T zz?Ie8x7woeq?u^Zmq9VbEtsVY>`BpPea23{CAyA5Lb}N7*U_6Uyx9}>W?#~w7aM`R zSQsIEOh^j)QG+Mnic4T)?-onUtpD)YEm_J68106B5PfU-d&RZM^AG$_nA<1Sb>fM~ z0stPl#tBBq(ceF23!~ZC}Ez&UOV>uy`1em-E9hc`&3jDIiwnaV^D*%jw>!Mf3u1% zCE44jq?O5H`hL}vuUqBDU|Pl}W5d9|fd1NU62^F;KbE}<{kb+*G|lE9>8aV)_Do^3 zS#G^{4)wF9`&k&u`oeeQqNAHy6)QQIzucX^eYN z2<0!1O+{aSKnTE`e!iz%wap-q>t`wROgCvLOlx9He#`!PPR94C_!UVs0OWbL$4`-W zaFAs3TNcg*q@nRNWDN_2>t;FRrUX$N3SwTw>GJ3r9(?n~i))^@u}jz5vbBT9Q!Z?& z@s7V{oN6yOn_h0C@yJ%!p9AArG-{z^o0Qo7!h?5BGAFf( zb|4NSG-2VStWI!_XDVt^!a}EP9O3!HZZ0(2#-KDb(2Ab+^lP>DtADOhs^kRjaC_`3 zsYdGr-c0HN3B!5HLK}}bK@EPd!g6bw62hBws%rK_6RGZO+?@LEa~GE~l$d;+kc*yH z840J_vL5W*(>=DKWF?f7Ev}+Oe|}%+p#DIcUBsDZ->9Y5wtBtNo5(`~q}HkA6+~TO zWz8SKcX;MIjSej+RG%|H=VeBb!*)(CL7`AD!9_(0ydjObnh9CyP*tIxmdV-iaY*!- z0a0;mWn(F9ZT*>kT0mIY!d-zf^`$q+A1S2WGyp8Ie=<(0;P4y(z3QimuyvtMcd0<| z?HQTv#AmeP;E_U_>o$xni7z0!E6Bz+-0Dr;fy}mWDq|Z6f8Tw zrqi~}^J$rycdC;BqqWa3Gd@65XX#YPBKSav{UX{oDCI4zaGV$P5x`HV2w1ns2#6p`2?x`C~Bnz9)p^Xi#zV zFtX$J7)Bzfq$jICK4~QOV;FqjA1e2ebNp(RlcG`8^HYJkpUGvwLfrPA>$*HdYVJ)m z8sL|%ZS`_BBvqi+)f)MrHy=5J0nXBJUO`#p!|(e;a$}qs+OXIDh~hb-<7vKp8)~^t zHI=KODa@Z*Ly<(MJ3|FIkmZ~VHZd(0XtJ6<7)br&D@n`KvcsL()B2?-Q*^L7LvB zv%4nOW%UL$dVj}U>@155bBV)M#^4#zGN{%x+@hbxqkxMJ@w&v$H^-3*--W%P=lE!n zW#$F=(zBqjWLDE&F?VJiY0^ns`lTf{yiT>mc#CUqo$DL!IOFLaaq#{!DEKsAc|}S{ zVu?oUvg2iQYHoUEW9O+x%rFzdq%l5d!c+`au~0)|D<(S{)3O^&uBOX*1(Bt?C&))R z7XH8!p^R;sM)ert*tG=QxVifw`>kb`sabfcBo-p_f&O1fRKcJ>!_30D!>`i_pJgPW zyNOpf#M zoHtVgdT7qsE7UykD%z6z@w zPT-W2P*tfb?!_;LbzAD_oK+SqT4vH1c)eBT@)Y&Y!GgD(5Z#zGYl=HvnsU`u$I<2k zC+3=_ped(X6j*^(d#*LHA+?feeJ!Qp3BRUOhQz8i%mjv-Wd zi|yz^cy9lbc*g%>GEPy=)1mH(~9i&-P&QzWh9Qz==VLnX(&fjMaKg3@yDNwe^%qx+=~7)OxcVQT>6m#ZC%6b4~BIC7Z^Iw9L*`v zAfDRC!$<5fs$eWUrk^Cg5y{@HC5zQB+L)kOBqqj$&4OmPp2{=6=4+isfYF-RQy-Hj z31J*q5`MbWL&{@x=B>66UkIIsZhR%>ai7wN$-SVk??WY9m?i-)bT~QS%UVkfd=G4l z2$>@%G@fU=EoX(HocUSB-WQ&FPM^RXek%jEl6kiSt^SH?8-i&FD9gej%-G+hfaARu zTIKA2rXbgt9U<2Y7W@Sd>n1;A?dMFpr0|*Io`u1aG&?cfSKV~^%SkF9&70Y_L|qhi z@%kI5>CE@VRFTaon6xcn-){cx$427X4K_~DKwqM0l-tY5K)6vUE4$9mOh9MPyPy-6 zj&CAw5xyQL+f}FJx0`U@Cw*;$-Gz%tfejde8ne13BnGD#t^TVxQz?fe+0Glr#&S_` z=XUW{nH~PL&!I=c`P3G@no;U3=_)2ri4D7!#V0QfN?#1{J^F3B2fE@@qsi2{u3k*j zBjE1{4utB?HOZ-yN}Gt_Z8~P3GiR*Rzu(5Cu{E>F%wF^n6X?GC9o5k|4GoA_d(Jge zPq6*wTGEUno;-o#iu-SB1FK%TQuc|^0M{Z<-swhma=mv zi}ECK=K-DUDU-q{mxM1?)pU8V(=C!xj=D?7mMgqzxZ-3QOoccjQrWS%$Oc<33DS-rIvl7(n!mlxagVh=pa3{A4DeLO}m88hqOp)N;ie+Y`;2RkE?`NLl=0W zSo0$Z>!6(v~G^czWzn$2o(zy+K(+>I3Oz(oModM9#2;PTk=Pnu%B0JLaxa zALY|Y=HseY-(AEjOnnvpe>avTiJ?R^`$Bpd^+YxcL{{&)l$HUiz3GwR~! zf}fV?hfJDlkfxCHCDTLjyx8)NOy3f$XQ3(>s9a>{W^t=+kNMLTp4{FJQobk7T zOWu95ogw*c5l~k0ER`2C1nN^v5OhC7N9eg`e4_)MQzVz zwBN;FlAP?WTf#0u8$#}`l-cEg|2-@*mISWHSMdTnvpBl9vd9{#88%^KjHVPw;mE`N z94lW+VRiWSz9#{R@2K4>rEjnr9k`}Tk==d>PdX=%{|ox2vPIwt92Saq;N$=#wawbv zESLm$e5WQ}h-@}nsEO~(r^#lc!+Adl4np1bQ>9;#)k^Q*)=$Qh?+T-c-Ulb_r(gC`3hP30s!L^$ugQ zR$It9Zx8vStc8A~8uES(K=5k6xtz+DMd8I%i5_%L|BTz>TEJFw`5J7oMI+ZC#@TJ+ zmsfnlfRmY!!8c%-s=J!>n_Is7%lWrl*dK9IH#OgKK*OQj%ij0sHVRbg)Lc z6*AOu@VD5{LuqUC_LL33ik-Gcw`hTy7tkL5tZW(?0d2e0y)o)U5K)ua$>eq`O2atM zJhtG#9O&DHv8jklnISu^GpLgOh14b+P3&NzW#8QErowFfr8d|xRoax(!Ql2fLDmy6 zLLw>=3Yy|j_B=M%{N;}DNsNFk3OqCqQg?7LMHWF0Jdmy7Q~rJQ?Szx0*4J)9;EQ$1 ze24c9=`ONlj9LYLua1n(3Q?B%8E?DcuE!moHmxkf_-5r;gj7HRfHG%*XZe5^2UI{M z2=7Nt=GtgPfiOTRsrt1mKO-m8p(JJA>#fq7YB*|`ev$=R%RKeEJ%}ES{Ipm0GZ{*$ zM7n4jf*}RG^}tvrJBCl33M=(+4N^ki_H4I8q!dNNScqr}o7Lq@KT(ZX`|rs8=d{mw ztBf9Dcm<}1&0GU85rKxaFP*5{Q2=^aRJ0X0aD2T#Au!m2sTAV@eR(`+3k>R4^8&hf|P8xho^NVa0y!15d9y6wQZ z_*8>cBbd_!X5v3Btb_l4xnFPaPzv|i!Qqo9jFpv$y&wp&hkxbuvSJw>-s-^CTe@8j6%7>4+Jl+Vu>#1} zH<$BYYeSIR-lq@C5Wbk$o#GZ^htSD>Q=h?&T-xOnz;u(=BC%(%*| zm~U<-XkCvVw^R#eolszgKK%cfh53RSs^cQ5c_c|3(?-@po#KR1M>-U z)H8wpt7lp#Ch>KmwhuF!p4XA(oR}_$%akrP`QX&am({@Yhc(sTj3a~DRaC$zorJ2# zT8}#hhWBD;x3NwKaifxNU{x*j&NXAg7TYEo>E(-5OU!#{_f;(?kk z#sLP*K}2zeS^YsG8YDu4XoYj85s8;Lsl0o*{p!R*bvkZeO%XPU@AsbD@zv8XVWd3k zXxg)l+L>(dm}Az%s>-Am#_`BRCj+y-Vm64ov}B^}5H82;h6)c8eV5Sd2$De~RCQsn z9H-r|s7N>tZbG{jeX}ex!!D2QzF%$Ar&Tk+lEBr56`k21%jT))7@AiBzpcOZwm_2- znz%s-q86DW&4B^KFG`=gAE+R08?NGYCqVk7HuA~KV~*M$wt`C4VpGPwb#TBeh2d~E zN2lTdk?Xqb8=t;-`jcXVgFnplp@2Mk2}&uqWYcLr=0ujIm>k0SFo|=}`NDjOG}PVT z`iS$dBRM)QaJ4En27v6SEL3M%c~milEv8_ckQ3uZ+g%62OOk;E%t1c8PxpdSoDho7uYCqRm)flK{x#wnlzw0t2YMkU-Vo$%4(3wMzf^MfN zjJ@6RYZMm-zIX<|v4)LQbG&k_am7W4lM3-jm=qe&9&!mTZiS$8u-}hIlUtK`&MpkYW1rTBTZwapl>mCEy_<6YZ2)g!T zky4UzPngG@px#1QtlLy>K=mk;Voj7FsGwujC=4ng(clxDyuTL~%TgBH4>t*dEI2AM zgP3|RFY`71@>kq2*E2-dQw{m%!F_a|)%!_H5@&dg<*Qp`b6n8@ke>Bj!uB(Q9esT=L*=3o~vVbAQ`>A_PBj z8#HiQF_CB=`Ro;hQVOg+vM=~Q&oC0M9L8I>squ#Bt|unWuSwDcV7rP30M|CNE*JT- zNGVfg*F$0PFq{kcqoByoF)-6Q!_gfljjhQo?=>57738X0@+FYf4^b?Y`C+wDAjqd7 z=BTX$T_S7E5GyhUObiHOb_ZhD#m%LgOtEoK^ca$*9fHg2<+~gEqf_j;a1R3N7SGuK zCzS?j`3@R+GjgR-ioheBH)wkArt9UbHMz0IxBeBSJs!*4HkYnIlq~!!CT&N0OfMl_ zx+vWlOFKF%A|T?3wa#KVG$nrhUnUL)Biq>EtzRR|sYhgH_5WE%D8-meXj*{fabk|o z{wWc@uV-jo=}|Mn|0v9sTp#jD-ooODThc}UjX))Q_<3g5&R-w_(TuXh` zLW!ewbr%wW)Lfr%Ey)Ev`XOX>aI17+=FhN>=(!N!g5fYab+GhBosi{bN-th^ia{)4 zqr>@4hAv|}VhnFd+~ou_65ydwP-nXe2+@vg@Trt!8yWMAQ$9hIB)bNej%~Us`zghjG7)?z(V*v<>T=Hf5cPiJ1=j>>eJ9rKPMZg~cHivP!(Xc8-{W+oITPky z5}EdQt2Og}+RV4E8$}&A(5WF7Lg_krGfE`b(mk5ced>o&NO>06LM-}`ZTtvJb zE>FTzLr&Kq`9CEIj7(}mQoy|+M@iu|z8*WAYeZxsrvDEXH}GH35RvGwv+Gl9o)12!9Tcn)u?J*s|NKxdp~HU zsPOBK$m;`w`MZGIKBnr#B(JrV-$8RQ6=lK_)zIy=QKeJ3jdCtN8Or!%)jByps zONqQkPls395SD}9wP&rB&9o0s$xb0@yPF%PP)VrdWxweKDtUL-zGX5H9OS%wuvNJe z$dqA*WAGOIRQ6vZEk$mMD~=WEvGuf(4`v_NPmzk`S z=MQahORo+<{cNo=r6gj-53yND(0S)e%6Zfjhn%8@M)LjQO=sMPS6L`D-v>iSTR6=d zfp-z%t31A$O_&xvKqv|-1#mE%aKD64pC9d9P)bZ5_V4S~H5vc5;i=vhk2bpAz6=wD z3Is?}_rd<=!v|$y?WY#*8Q?8M>RNKE7XRTp+0`)ZKR4@Ii6T>ZCu<7bPo4%Q+96o~?GkJ3Mm4r!VH5^lCU%o&Rg~rhlmA2Smu;kqJ zJbbl-!MO%Xa+IQis#>(r*i;&Cc<&9K<1tCKsUEq64(w7XkC2kB1w#ws;2NlpsYWdm zFl>ORbvU%9!*sA{X^Mf67iWIGA_x?7a6o0T7^AtPAtl)S<}z>3F~ZhmrKfP31mR&5l{nj%FHbph<^p$eoU%hx?fLhkEtpTjO72h?a?(2vx6fwrpy`{%fGO=;3!QX4X zVr7H#93xv#&ot`}yAK&^BTLuuT#hTef(Xe|rV06SrrDV9COi5<=It|JDI!BbJ^>%O!$kOBN{N{MODWMmD;(SZZ6W$+g=6OUUlrVc zb`o*2Ff#xDSm9KxaM)x>;1>uPBwpwKN#KGO;20R-{w?P+77(eh-`jW~3lb6%Qenjs zVNe9QPCHIBpFaSt-L@AkuiML;Pv6>4!@|{-!^9Ss1_;Uyfqk9sEdfUV?oc{<0wAcP zQwWgv`i%6a0eh%3dPcS+BB&Dt*MP|HNdbI_#z6itwCX)XS8O^3|4c}*{z=3=bd*DM z3{VhYZ-M+XKR8_jBOq{U`FdJ`Ae{UY5bzFT=JBp}&!PSogu5^nz&m*TMm?~*sAvc$ zz#ejpE6BhAhx)g`5X=pbqwkoxF*xv9$C|&O{Vf1yfNCEotSj>V&fUYqL7TJ7sjL60 zWQ_w@&!8Pt0P_eT&?C?qxDN-yT#Ga4=PDW}3p)Q6$Q7Vmdujyv+87uBga`t)1_9>c zcX#K%5oq8ab_B$$>f)bD4fRph@R0|R?cetYbnp1&n|n)trw=rsz>h=whrH_Riwk$6dM=kGceSV)&KpjI9j4s@O8U(MU;Y?4c0r@NpJ0L0ax zyk`5B+?rR%11{fy9WlOgP@f!;_{z`Zg^)u42?`7*3I<5P76@r@B;eG|-N#OSjzDT> z_aF@6%STsN2iO%+*8gk3H9riowXQ3L0tzV1!~e?%Q1fONJUt0p55CzCyh7;3fcBYp zhG-POo%gnXXJ`Pn$9Wgv)eW?FdwR>?1nIfnDL}LXNC!Cd@=#G>i%E&$`ni6!$;r)t z1K%AVU;^3SLqC9sh>8FW1`7BC{KV&5K>(`YcLeIHM7xnKJi0Qt);8GthiXd@&;ggQcGy(IVm#BEGq z!QKB%?gcdA-$DLZwewg5Kl#bV2>9JpLyTcu?SJ)YskSc<;g1Pj6ZypHNc9zJOin7_N3Hs7Rsq z6256aK%pN&-BkdB|K|KHeF;!V{YBsGDCiJ(8s9-8K>w6*go;3M)4SoX0WCcFegk2+ zFMvQqaDMRU;#<%#;^Qac&!HGd z01_e2)jJj@&OO8EM*T~brKTl)Z4Ki%WhrgZsJvh#-T$F>&fxtw*2;j9n&C4pZTz4oej&~vb~{-4d;w5&YC zdQ?kT$1-f?+^jIDURU7z6!ki$!rD4#2U4Ry(q>&!XIL{f=cMY{|62L>UKeHFSJw4^ z=Nk2QnBzC_{{#@G^Yx{BW^?<>m!%E|T>Bx7>K|EkPGI_d|23=7$(!woN=#Tt4up9A zx*r2;s@syw#D1@~bC`#*{+FN896if?q}CflsG3bJy+OBr9nQ|M(1}h-41`P(c{aV0 zs*-Aa^!hM?3%DZCUsgk^q!^@KxyjZV-}9mkx6jF^i#=0&m9@>8MIfiPsA2Rft_8KQ z#KUVAXGnzLY>UO>ue6`^-D8XOe*fz~y>N#jDctnCw}e<$T70h4N3BNv?k17%dro~g z|Kh13bJisJ^ag@E_-Hgkwp7~h^rgJ3hPi~(kxE%uIQ&S?#mcf41Of6{y0Oz5I}Uap z!_v8uBXp@cx*OvM!X_ISwrQir2e);qGN+Y~{;I0Hw+B8^DQLlKy)u#~fu^ucgDM^R zepU8&f>jZ|$wc1jFj^{scx{E~-`xf=v}|luZyvmFdruR!G4SL)x|Y=>lK$o3Zeq6S zc_|hC%!xS6Vm8d0TcQqBFFLuN1SN!hQ-16j88>iL0KNp0?+pg*~upj*lv!-W;B z```A@S+c6KY#&en)A$U-xX`n-M?avh^*uLN zxXYa_ZWXti93=kqT(pk?kA}B*%1h1w?osJiHM^qW2OOIc`ll$4tj;aj4+W59eK~!l z!?7U6K27~(iWJ#?3T087zR&>atzsJtMed2Xj2RYiAGX5RFuv?xaBZLP1Gb%at8oil zbs6JK;0m6yUS;bGw>ypsqTH8HjYv^2HPaO^#%LN5)(yW+3S@Xnm?1Fm5!uajoUURv z=`zNzOA}-cBoRqB``R9Cc@llpxea^QRV*VC?CGRZiN<9&5j zd`%AOK5e#q4WwD}FCOW&rM zI4drz2&OwbAkwBOhNnRLUsj9`hLKWPYL}-HwU7^%pxZBcXaaqT;~ipts(5qgs6wRT z@fVVq9JXzRi-m)h^Fb{<$GSLT-XEa(yo_pcL~Rr8zxDRfBD2Km?vn-B&M}sV-^Hmt zEJ9aE2Tv~LGC0XjEf0>_+}AR7>(=D&PY#pwoO`^wxNg%jc(#RcOz&QH{xmz57(n`! z|6;;xPbFqKk0%QL!Hu%>E!lUnC8o_euPhtT9N{X~-HeNvw$I1feHXv9)?}ML98H|M zR$JSh7@t`>@Y>Q3)0{(#T_W!je2qoSE_--fhNlciy{MVRl1r18M{-r^DISC)kAuVZ zo=%f{u9}G?{dnO;z4^AnG6crW@FHE{1ztI#xZX+}+XXIiPUTEOps77h!odw!nN>6f zglnCrk%&w%e~G}b7@ZTH#6ZKpD|bX(P0@mk);iU@h-_VF5<;c0(GP3|5dNE!Y0Mh^ zv&hNe8`;J(9`wzP9g|Znay5W->W?H=Saf-XWvm`y9+n`3N;eQ8>&}y#ZcioHqgV`8 zqsY^u<16e-Qd*-(tm-Nhn4^9vFro)DHkr-|a7|V`4cjGuTbWz`qH^$vM&C}gV&M}l zFU7w(J$;%&KO2saZ~gcM`rWI;#atk9?iS6hTF1K);t{N#HD)egoXIm1O_Nbv0p%=W zKGU82er*wWGrZ|w9mSB@Clsn%FIJ)T=DT0|t2!sw%Ne?+FE!6&Tx8j-&~K*D3xiwW zm?I+jl4(e~ND<~)y-#{i;3I*!)Md4w*~o(u^}~kBjmkF)Ey7tMpR>1D1|ElB2I2L1 zjL zrqohR>yUYNY2U`sZ^u*7L?Xj_xhZ6V(1fdixKP}};t%C^FfJB*6>EGkGc3`9aw^Nj z_w1KGZO+=W1CA!O^pv9~R4|y!X?w0)6O|h7SmpdZUgx@5zZ?cj{ow*DqF=M6!}atnn?O95(;*tqlT;`+(k&+vrI9MEcrRC+34p z`EPWpBaG|7@t=*9pwGb_WTQ;TA{T#UifGBlsC)E*)40=~jEa<KVPo?DQ2(vMe0``^hl!e@$Ve(94T+8!soPTk5p(&4O$P9i|GW%|VTgG-2omllE zp$ef{+^UXec4de784^m@^vQ5y(biHYAIp!%6x~9RF0sw6M_8sz-_xUH;xM(R*|=2d@I zbf+uj<7=EKuTvRH&w2%;rb^EKv~r43YbKodIZ;U6QdxOhjWel0ol$5teSUO@!7&6|<@L@Onofg$r^huUB?@Mlj!*tPD772A+3pRrFWe66*%SE69< zmm<{-8A^I&f5*+9nPxhXo#re0tnc2{p_;>Y@HX;R>1x9(BTjWXht^a@aPUTK_Kg+8 z24tPNHpzr8Rr_WW=Frf>Gv9FD$2qiej-EgRifOI6RQEt#X=G^zTkIm%JFQ@)#hGECgS9 z8As|4ENe3o8JjdXy=WJHa4Ia`-drA?fa^MST-M)=AzG%jjzS4^%iMTJr&(%` zjszAIfuI-C9ojdH3yaMLOD|yLYhaXTuUb_-qVgo%N;+HpsxvJ`l%$wS_gg@tyn6l!ILT-?{Fn{M{#@~% z8OyfTgN{jNBbilV;n7QAVwl)T_&lci#POk*^0r`*S$NF-6R=~I5$pP#W9DbgGtUCGDDk74hinN9=fYBvJIFEx|?fNwre zt*+;z0KBKxUp+K`NR;%2FR+TGqD7;;x|P0`cV6Ln&h4VD>x1rF-IY(koO+T(F3LUZ zwapmdwAm|n@}~Rj&N-nG#>q|C)gQ_VjpIj_OLt=J5Do_0d0`}q9B-iQzwW81-xCr~ zQHOkibf20CoVJ3~={00v=spf-WrU3!BM!|Ai~fAI5=1c>|8aTRr{5e1hF-xAa^3*V zm(>As88FWo)ehsCHCEutRp60_hF(~B2I`^cOW9Dm!5gJ~5bUgQT>4S@dv5+j`-Yxz zBUBP*--ELwxS3MK48~1N9>kyabBQRWsNuNAr;7W_Ds66|NIke$Ek2=g2BPL|qknI@ zW~JWUA7I2N$UL7?qoOfIxLjoTmC$U(!}Ym>n0_{f6r_zgTd2?2fh*!7?~?9K>V*{r zA0N+4nklgy?3}VlA9~prE8@vTZ?}@boTLBRe7qu?n4ThSIr$m3?c1{V$;EK}beSET z?$Jj8Zl;c_Qbfa(6|GmC>59Gyywq@cVj0b01K{dyQBulPZO&z=ND z27iFbt?nul-E9JEFE#xuW7QzR=iOIPUFt{jGBUIS@Xw=L)0r*KT(x>R!1t#g)0EXU zu;?7o(?Nhg5zj-UPudJwgPH9tBf50za?K}kHO*DECrf&@zcHrXV7jXUyejdVJ7SX_5tFM4*YEwk-j znTyiYyph0=24Yrxc3iYvb#W;9PbGldoHJ2ttfO;;`FjYLobI9z@Qr-&yS-2p{;x;m*BTKK?@;PT5wmK~&_K)3ciiSvJBe^$<}JD!OvAM9v5r_D4LHpS}LB)(MC@%=b-R`*=m9OzPD?kQr!g^P46gn!i3cu+KFO zH_%y$QpIZ*72i|&8hYJmGBg#Tw$4bDVxvv2LA;X7= z@9spNb!AOarXqyIKNNSvjsrq;vnJlKm4%&`CNF}mb~|17SrgVLyp0!GFMHkM_1tf8 zZ>Xm2{eR0qIu?4^NO!$0<(RPf_!M{E6i}84^*j3OyprU0&(4)6v!w25m}4g!Zn;jN zp56K$^JeBajCG#TPvH2h0bgx6=lS6+M>(7a;P?25{nTvu)=E#_%8 zI7y*1i!mp+Y>w$pkeiCeG;hq=&J&jl);*qlgjwF@r&CI@0?yS($}ziu(81)|g^dUs zQ8)0gtZPE1R^PU@woqn3UfRfDBr_if0!7toW&2I&dfh0Oe)%3(68gt+XchbH3&*sO zW+cm!{bpWTE=D4~551{?Sto89Le*?|=IdyT!VFjHXcI!an=)bY{t~ZFBJa^p%t0g|d(pxX6B0bA%_G0-~2i zry=GqDv{&-QknnO8WdGqNH;t9np&zBiLWird~4nOW7_J-n_GoKnWq-k>WjPFH#w`b zU1mFtafN!7z4UNME356-hojdOs9YeOED(OltQ8?eHQn{&>#xOu7Zp3gNH9n}O4;dc zW*Uw^%8_?wW}m(tXv967JXMmI zUp;n-%Mq02WeS!@WR-K0WmA_^T|4dK`R5!nIqf_2>duWJ%u?%4a?d;~^fTV>+~*n4Bex>)l(9HgTD z+xgaDlB$Tg@nRlHcpd9^hacPE8%j#hPHxdbqns#CkTo=pU?hgt5?d^bvfbs=ur^y| z6V>u*4xcO1b$&VQBGq{Lh%PQk#d0Xb@4-d95!14#?wO5PBHJ>JbGTZT?X@V6@Fc23n7%o;mdd^w}`Jq|sbTyeAgXwhZKwCD-F}itM})tM6tfYi7Ob1 zFYIIg4L+6M~-g5a7FWowA4na~QuvONOnre7|rOW7MY-l*PO5P&8wG`1AYMvC9 zJt5ImVnw_$2D@BwT*TWVDf<}yBy%{+dCzSLXML91SVmon0G0E_Z0R#2{{m_b-gZ(t zJ~MFSv^S~C+IIUl*gTV?2|1=&{Fu=awM*-)0cPH+Z+J;wjiK(}L0xI3hWbq1?t;BLG<+IVIdrqCU@v^}j$kEQP;DbgjMq(Yt{STq{8-A;@&ycpD z9ZBWL*pP;aJG40E2?!29d)}dQ+zNXBI;GQ>jw^-1)>_y)oq?qJBfMF; zzAf>b-&dxCqn~i99j~{jx-frD|9u2!4i&!+#bT6x+(|J)9w@BlZe6a$W5VVaUmfhZ zC8p3g#wOb0e`of?(H_;scVsxNgJSwBte_Zlf`PP%upbsXjxXLrV%Y^t;Q$(IlN6^<<)kMRfsIcMZ0{7A(*9p{sVeN zug1v(X^u-Jm0|%=%jffba&YA$%njY)5kY){1;>DDa#r)q9VBUvyz9}}gy-*2C~Bu~ zWF@W{+H_om>lYQ|OoWqH`e#BU**rb|1AFg#YXIMouqh(XtIxEdSnM1pc!!?(+tZd^ zQ$fC^>gS-av$t5lg{}PbhpYy59#vYisO(fsTfg$^vNj#+4|Q6U3$2E4F-}zS$f=}5 zJ#&3m_+)`0cnqqx;ni@1`IHa8OjoIhM)yG+^iHnY#>6Toa~wu>2n9pi!6up2j%T3* z=~Il&D|2}`09TC$zU;$dE;ukcjY_cXZ-a6&N@urk%`42zQ8(M|@iuygH!g)@%Z&mc zr*Mul(-Fw&RjnKl_<#^(LT85OY6UG%$;kyJcN6gV-CSve%RGT_*37+kbn!BAdC*0} zy;mr0?dejp^T+;khw3gyT~pCLw~t~?kuLHhy|h!8gYZkK5o0rNb1;=&A(#(%0RI(>AJ#^R&W^|pG zhti@_vs^qh_NXLIEBgV85&`UUH<~Hnzq1E9kyW(T^6^-Uo-CYk_L2ZhQInSL4Jlgi zFXla~1ImU|*`GkP5j-qEX-a$ zVHGmBHAh}rk6wHoD=YwxRLck$Gu#-TCT=>BnThG4_!V6osp^7>?)_J-nBN)H7Q>6|B)rJL=HX@D?I1m{gLY@W_yeiTY%#G{4sgkc7HN7Fyr02k z?8CxQXkEc$N0a8gExRr&9$Ix6oyF{O%ABE_pI3+WKwsh??dCi#pxB53wi0Cr8c+|R z`AeifW_3Snd+tK8FfRdU3FbT)R|PZnJ0ECx6yV?B359r=gm~_xtyCQEi;{c^o!We! zziIYrGWBXUWrXv0Fuw`1M@_dAyFDEdfZu;$57Q{d7{VUj8%(h@(|{hjlYfGE_PW4RfDf&jAfprvO^a&OX5Ae8~@!?K~Hb3aT z-%G}N`35U07tymDr6j8sygqCGOr{reYC^3`k6nRf4*LsdK$sp)ua2C-NByloh)Q}x zrwc@Ybi0u)ywi3i|DdsE|C8Ds$y^Zm*4gk=&LC>`$Xc;JgxABHQcI(3t^e3?OH<3BYWfd{!Wbgqp4j<8KFCIE~Ky4 z#^qQ_)2!6mt&CK4k)|9`f^oEop0NMZ@IAE;rKA0)>~!pE@^i{6yk?JksvyB2HqlNK zoj`=N#;l_0Vc>SUHde_G$|-$Q!j}}tHpPDUDmRg^9!HYSlR=ru%%M^HLUB`{CqqUM z`$ymqwZn_Nft^-1ujlm3yw@zDeNnF&3f4_u1vh11_*h&;vaVjdI}YyJFhJsioC?Z~ z$cVB=C=l+7o!^dM(;9O25@Pf-s`QQ$97)u6X@+!UzFFh0$HmVn}S?bJdNMQ z#6DbAGE^R2;ED@0-e+U^Bbu|BjZ26rmus@OU+2x#69zmxplixQp5!y3O8s$q7GkNi z49Cc=+U4}hf&7YE1sb$!M#RI_Ik=(=B?a=#x2EUS#Vz!@O~Qs?qvSIs6Elp)f$8C_ zpK?}Mqip6E2+sX)+0uDMN!s1qI7}L|eLLgmA9KYHv?oJ_dfQFJ$^ty!(fme<^l{%h zI>*IysZ-W!ShGazSb~f*1?(*#w0hwDj%^5yf`K9CtuH|6_Om@YBwL7#}gVL z)87e%&FN19LfmC0Sq6eD4Rm{1d~j-0ISTgJHCp*^KaD$A*L_lil|!=s|)|t zbZ_Y7#-y~sVv1r5z?dpl1Ph-4_duwkX%~s@--d?ooSqOoc;&0Z)u5GzX>^vN5KJlNxX8coY~= z&Dbdli0gWM%z$>)OU8agCdh=OjL1Ydjw=naN@as=Md;!~y6s|~J}F%Dr`st8x3=iX z3_j?QsJRC~IBclQyN^;}OH6WYTIXYbX8($tus_3@X74dK4u~BHILn*^9dj>^xeRy3 z=3N)j&yFg_#1#mI(bGXfWf9S(rG=o&%6C%WA+W|irRKa1|J4c=vcS4!X+>`UOr;5d}iYK4kgEGyz z&Kb0Pl)#NoYsW+eu{$T7@P5dMrl+i@TP4?m9v2geKOX^cvpoqKYudAI!u+9=-za4N z5>Z>)%UDUhh-oT{jF0VT@=!On5nHcZ$J})Qo^$S*W74fOOv}3*1&#M!{Iadol}G2m zhrOAE3V3w3Q;J2>*oG_fd`5f0!ra-O!^y?R#6xvTd$Xl?ZLkPQ19vgWk4hXrnoYf0 zEYtP{9mM=W25bNP4;qy#2jrPL^h1$F(6KnF3le-Sf9}4^cJ9-`*d&`JnsM!qF zQ5Ni0jBoi-8>BOj+hF*d3U73EmBKgu8e{eke6F{kbJd-dD5T>H-ncbk79aej>Eh<0 zrjT2brnr`OY9)EsB(CKY8r@El&d7%!f7J%@wvUj^s?B|VqeI^gtZp0^g)nO;QJba) zfd@aJyEb~=|H4kO{5N)rnJhQ9K!6D2(@>#~1`JG=LfrpP6{a!6MbP#Z5kvVM zKNOR#0d<^sR&~lKi99?6_-`*R;C2t-t=ZrX@ZbOeAVj3!PXxqMvcCwej=>v%%N;@7r~LSUrwB2C+T!DZK5y;)lbP4xK^g-=ma2KK24>=@1FN%v zxEPSYuJ%9c(54Ds@bT#eb#!)icCyuGZn7EJxg9WE{n>|y@blqaA-g;RY=HW(AGR4}m6PJS_WA)9_%|Ixp|TvC-l@R$rwh?>uc z0eE+-J3#H69e}Kxx-<#$T247zYp#ytZBRt9eN-!GqlezJ9>kP)j2(>ZokFbUL02;Z+nGk}vcVMbL+K zS$J!p{fJ;7;K6Ue2I@d-kS4Rw)IGIzuy1WipK0$6K|uVN>9GAT4bb*L!x&$0gLh7C z4d`yM5<i2-NuqkUK^;7fRRANC2* zJns|!0f7BbPXc5Q0ow81Wl4*6?2mQ;z^KhJoWsL+)Lprze4O}q)c}4O&_|yN=v`ih zD(I#FPYz(U>d5e!15!zWy9{7UGOUY#0NOeq?CyUB2tSU~yF_(3%~IyB#nfCxf{hh`D)4t;S& zaq4I7;6d9t3K-%>k@}6jfPu8raYpJ;(f7dZDZiP%#RB6bPW!??743BP`~>iU(ysXl z`Tb!Z*pDDU+VcVaaSio;{o;+Ec5ihLg1NS~aiCw?25~*#kbqv=eggsqC}Rf%2oz|y za%j7*+Qh=UlQlfltUp_<62|*?+Rj$5UjadxgAYX1&fC{YRL9EfI}@$Ak0D1W(>=Sd zCtOSAsiZY4+5qk-u_eSRwDlMYXq z19J={J+D`)x22a9+BlJ!YfGP>I~nlDTIW*}A^-xb4;EgMPG6L~m6J>%3R{ z$JIv;y)C*)fZN83jKrNN@DP{E6OW&wuBz3AyB5$YB8zO8$k`a^G%D8pL8{-w1VO&LORea%Bf2#}u2%GHIkj};g}rvW@(Q5^ z$8|6yx8`DHW>F0}N3+Ti=4_+*JNLWato2>6qL>zpf^tHM%}xC+i8s4ZnS$?}sy&u= zb;i7}K7qt$HT`By&Bcv&r2+mB>EY=0w*R zPD&eiImpBFwj&${X`_~Z)2G08b;}RNi6G7j297fZ-Am6>OgW;R>(V*ZU?a{0z(zSh zuV#2>`TGSzeab39_zSfa33;F&PcYvE)e;wqe%pFUCc`_&`OVZT=NA`&*v@z$`;mLD z7IN1caZs2>5B0=_(9FooZz{Uh{u~xBHCOl;B)jaP*;O9Vs*v9vn;9r+eA~UCrt2 z9&if^gCrcg!zfCUJ=^8_lXAlI7eJIAiQm*f_y<&|NA6)@Q>dau^(a}WkAyT6Xqs#u zF?;4o4`RXTpDn-t&O|*JV$?yX@#gXK7mDhdQw*(7AkV;CBI2$4*+@!;%s$GAJj%5u zus@0{>)}Kgpm=(sVi8N4uN8TTtqWf59bMN&V}st}|F2sPcJC^e;rWzbRisNw)JBLacM! z>f3O0APm2`?1$O-CCIwG`YP!aR;WGnrT6PtkWg==?d=5%63q$(;R>5?Q85OS+M+Xe zURD~9idRdE5?ID8RLawCU#|l!G1&l;Vy477W#?7CrC*C)S8arH=|!kJ(XPOh`n%~9 zLQ#>;rgqq6443&HU7A$8J-2rsGy`35NK$y&Xo=bnlTOKDx{dm{cTAm)(IacODS9<>*)>6t6oW^ETv0wC1WH|&L z>Vyh+n#hA~v<#JW@I=&i*TH)T)q=o>J{?v9(;A+rzcj}8EOyq$?a^TCCZHtMg>2z1 zHEk+M;ZfN^x3tSw+9s?B)o4G{BZZj}Ze)o+fAfRFhKai(9fshaW&Bob}>oTmtAU4!riYg;%siB;b*WRo9_##tr5 z9l(tu&rB9=>aM#@^`k7P@<|Fe>`Cg)SzHcP8cf@7(`AzAzP99i>F801htGX_aEmVr zM^d615m^mFWb;vGzl_rEY<9yMm)hk@&^No@eZCMAs7NeZHd!-Ni!W?;1y}B8@gx~- zxy0ODrNFQUmgkU6S*vx4?i$}CBO|HF=_KoRN1}deu6bu1u3K}Em%?*rHPDECH>Q5; z0sf?Z)sTS_rM*2uSOxse_973XmooW%#RwO#yQbc|IevYEFjI1loJ))$88jh8?$Yyc z4JDRPu+~&E48@k8jw_8t9rfp;P_iH=T^a8(dxmOjecInmJ5`a`p)e_RAe#P?Hyu14 zdK9$dct%AOu9-(swU^Z<419v4e2t(QqO{FKwr9tl+yN^wZ<(h}<<_r9gDgY^IdHah z7LP_X+$j$I_wp?|#ON}6ZR!S?1O+SeX&~V|)*RZuyc4={f8uj0hKR)n)wa)oVWZuJ%wwCaexw%P_^z%1!5-gA$9X_i&wu_=Eun6;?Z6*rIWT)xsm!OdO{|}tjq3!zde*@JKag09$B7QJTSo$i-JQzQu^jB zI`q+lN*L7YG$aglqW0v>*<(!$;5&Rxdy1&cgdUYB!+ZRUv%~XTof@vc5z7Y(J|j96$$DX!qa;MKxn9njhrnDUH?H~**!?-f%**7_^Es^%BhXA zdzd#_tZtRWrC%G{CAl@C`|XOom=@_#7*|V<7Dv+pOWGjO!<0XvW31Z`O>&#} zS*4F~bK%y>@k-Q*EE~=PDbQ&$gDIc^pnC;)pU+xa-h8Ss0PI%fplm{fQhNIG8 zvzATFZgf&eci&<{0mzs&>wn~}#&<|B!ywh7WnHk>tK%!E$=M-_ybQ}cBADaUFOV5e zQ0o=R-L74;o_ugIqLX~48(^0Y)y&6K|MEoO5zwUQcc`bW;k*rlCFVB@STkfi5B36k zTt-Iox&2~|w)J0Yph8;24du1?f{C#bj0kOR#w+7gyI7XQW)Gbsghvucyw`HqLP6B? zwYRXbcCOH`kjQJ8lF8Sr{-O(Isc7t3CzZ8N)qoa7R=Ujj$#!^Kf$*t)&3Nx+y{CJt zGE|MIn}hek_&QQQ{e>2p3B!qAFDmPhD+8WSk#-2mtb>&FG_fJ=tMifMfBT{)=yYmx8SgF9Bqr((cIsZ%aq2R8*y$Wwpa z-!V3vT$N&nJ1er_yO@xM#9pENTeUb^u1d?yW%4g(!5vw4-PqVfq)3HGP*UL$47R5? z0$Ykr3tM2G38kAXD?5>H%yGB&U_~Z;MbO1NNQF8SkL$6iPs#@C*Rou#-I%tyC;dU( zAlVZ*hf7?bZxOe_U;;s+$JC&KX5we8zRS>8*UOl?wU2j$&#JF=Zu&z~PI!^z)O2~*tUIaVU3;6uz8oyM2kV|wM|4a3 z>do?XNM(jicl9PI^8n&W)2zUn^qJPqdguBgN&nLeO|qolOeoLOI2QpLL{p9`4$o{4 zg@xai&{_KQUz-fz&b(pPHSkhKHUgV}5q*dn{z6VRe6D56W{(Rqs}rc9n>=_% zH)pQr_*;G`y8U9z99klMbDw&Aezo8a-$Jxd@7QZ-MnH7t-IWf%w=0rg+%^ahS z;G2XJ@iaFad+x69OtZAtsIXt(%>btO`A~9xmN?r@*_&NEpEWa9ZDDWUK^HgVAhoYu zAqWAa4>_NYdmlIT9xK;A4zA<4P3`BKd|DuV(&YO1@X~asZ?!edOub=#fevug=XK6U{hbwtc!j z8Ps5^qsI}B@g6T{!J~7|rJ5>N_@^yp*b#*&Xi*9{R_uk_&Ud#TcyXz9f58EXyjIMa zY+~{)MLB3VgcESXlXVUCg}8-bvDs*_d;*)EdDt50`Ldt#4GUCM6`nj~#m;C&J~7>3 zYVJjdVCpg-N?Je=O`28V){N zvOF&dmR_506|nx*Lgymsckn?Cu`0+}{X?0o{ep{OgGkw$#>!*~llldEY{l)I0MDh@>CX+1dZ5=Hir1p0?eR-@!5GRZ{PTBH_k-C# zGq^%V(ay7+QPjlS=>W|PRxnuon<$n$6Yx&M}ld6oAOHQDRu z>;Ysh`ZAEastEU4{Xljp+~$#AeMIf z>~a|OZ?Q?IMgQz;b#QEQZkMtLVW*~P2%2qg_(GI{y0PBc7s^<0(aHp}ikgkr`48ij+3^QvkUVQ|34V0=fN0;1=Y*DOr{#xMS_h9sI{nryXJxV3>Mx;0XhwrV z?JI@M%$0|m;N$%Ip%)^NAlQ?y8R`?bRie^b2r3@npVUX!4UhBsM&N-!c5g0n5%R~O zU$M8g*QG6HPCz*=`;BpU&EY{l}v4d_!xFA@v zn+-5Q`L2F}nAgEjbo!W!JX3j}0 znXu%bD>D{zYAg%wRS5Yw+D-iJ8s9{s?wT~xi1yF&dz@*G75qEJJK3@Ju(GA|I3q#U zxxpJqx*p%f^O&|t!_qVR4)y}CPBIT!Tn)zo_IdAQ=I0J(@cGq^PQR+-ozd3LiLOJ< zmD1V80uCx?U@2w54?8DKiwc)OlLjsKu4jPWhg+@^UUYOl|Ha9&9*bXht0yaa^}v?p z8}ZKs*=N#MwcfTIg)WcjP$)*hlPlG6djArE_rg3yZBU7|MQ?0Kt4WY_bpd1mCxMPd zOD?WQJ4~o$tE*?Of!^=BkJuX@30$!HvRnBO$5i|s!D`Qm(h?)%;oez;CeyH)6JhX{ zy1xpoTB_bZ=B^iRDK#5% zBUiHtf@C0OwynI(er#HALa9$;sipIxCE=vcywn_}a&_RPsv(5>fn0?Fp7tz;#Qt|f zI|#ni*Ej8Akel?w)vO*)$^A;^^@11KVycOS*||>ROcN7uA+F*p0T@*P4K_k#=wMU zuA{nn->z48Dq;SXc|A13Hl*X&(Nry4wC-`}^Nu-}5>@M9ix)%ju!>zu$n)cv8KkF(t~B%Z+shN1U0rX@ZODQBe(ngyi5=ZSzOTBS znu}k^ENs~&&8L&U4Ob&OBHI(;=v{dv#Vczb7SKd7s3im4>y2GMjZoKWjVG3hR;aM5 zQxG(zy462WKnnyP?zmVU+toZ8rNwGJe=EGPu2)19W`jRidrA6oNtEay#umACbMN$x zV;MsR)u!b`z79RV# zWr}yT!n#Ndx1LHYkQh!4qYf9HjcI>rQvdWhcSEgHR5=u9gKT7X9~j(jzr3)I*n!LF#i>W zo_#eZ8@TkYN-Tzoz-Tb$#J9Rc*wH$QUOVfQyn8bB=AsgtCS^x0w9_06MUA#|OC`xu zV#thgFPA(nYE(3!RYB`eJ=7~=0B`)hO%I0ueNXOYBn%J9+Qs}QN(QE#J$@}QwYZ@i zmmv3;zVoWWq?LmpVge8z=MI+!y1LW()r{9`-wOGeM*iUK9?3>Z2P`+(cp?V(TtFFDa4;ZeCSoiFxrNP78LALDy46i zB-Y&b@R%}3Af5P|O0m<9h2Vp8jdjzbNxCKJBFM0H!7DZ#`^ zo#W9zdENSA{P1a%*>67Vy7LOD@}WV8?J3Ehk94P7)!_?I;2-1DPOnSAGm9*oCzE zITxHI?{GR-E-f=Nifs+nWzhl%@EhFe{H8(}rOavkrsNc;*ouLifJr#(k9_ax31j%1d8FYZgtR9cLP`Gth`FbDV&@EV~*f4++7) z4rZ44w5WMxnbyx4Bwo$Pt8;?diQ;fbXC8m>g6(jkCkcAK)Zl#9?zfb64)At~Z8Z(i z@h^T1unT6gbQ2;N##4y)J1WzxvqVF?pn2~E0ewNdrVRltO#zrI(c zt9K)?i)f6U9KTchWJrk7WSqdDbd=iQWJk#R?1Oq3u%F9z0YIwL2*>{gVc__02m>b* z+y9M!VP}r zv`hs;z&a3sT(W2hjE5_L$e_wee}>o+lJm?yd>w?jeNTJ+wnN`r$5+ zoxL5@=LFI|5mYRT3q%_5b^|aPkwGpgO%>VT^c1j(A+-0{PZXeEUm|iZHPLPIk%FsV zEB!36i6tCFCufKjh_yaTI?e{rB2h6B(c)E)2osdHNS;f;EYsHByC>fT3jeA zU?#{lAYek1#MRttMGQaY)k{QCV_eD6$ey|e=F#ER!=c@o`6ytPeHx&H6a>Ka%-kZd z38b@$BiP#K9O(z4p~PsZKOKof+hPA>sK7 z?Tyenm3yu3ub=R!3SuT0LY2G$pk>^-=2Ygt3ZB2 zxSvAM$#+TQ0`!o=;ipIBxI2MZ9$HYxiUj0r2jb!WsdBdim6U*L0KpOrBI}1i#B}bP z-xKD4?7Nrp#_Oj8oWrGeIs(1>dhl?Q@C`dKNo0WA@{|9aC8h_>u~1)#Kqm_24t&`pa;M|DPTUm;rZU9MdSzt0{fk#?v35u;8>>e?BzwLke7JuY00DS2Hq~n03Q-F5dzl5l%9FLG5xNkuZ zW9`_ejU5ceN#}rWt3J=s2?jsF%5T`$mGf@MbpK2%fI2NAyU!YgeeDozfhM>6Dwo@L zd?22wP_k$&ZyO!eJJ_nKdCZw!*;EFt4$Bqrnt;8ZVpa`F8L-QFwjIEQ9; z0^!S5&!U!k@G{2qVE+gdie%9sCZ2k4wLK9`5v=G7b3B$^hzd2>f=w0J9fw z-|v0I;LQ#Aa^E-XTf_^Ahh~;9o@Q3DzoWk2HZdaStO1F(e zwbd({YXS8+$E+p};?SnP2s7zaqP@)+3Ngn7c#IilowyEfNpi|+`k`etT~eFcH1Iw9 zF3X&Wp$=#X5{!?99hI|=`hKS;)0G|in7FgQh^w=E5+wbx;cstkb9*4^Lkk%bWHdvR z6xxRtcr)8kc*AjHm)pfohz@tvFOw;?y#dS0+m}~{tJHdhH{ldFPPbiZY&f8@voVbye2ysLh;eYDkZB>0!Ymi6PSUEyudA2anq$_6^ zJny|N1*iCw6}smNh&6!~IfUnD`8`qjJw*v^=spBwkC3HoOV)HTOwu1ZOJx2sO)5Ui ztgu;1j;=@>JDHKw@EW@{b%-tJi|pe?UacE2o@ySf^CF_O2kkRwg-^g0Ai4kcoe9R1 z%(Rbv8#Eq(I5VjIb`)x2+Qc+^2^|NWb=1n28xB{ScO*)aIErm$`@~4*B z?XZO=&@YF4;}IaN2@9qvZBk2eQsvd3A5_=(D=#ybuMh|-I4)E+v79a&47(bjyUMle z%S`e)IHt8952VMzW4`aNa(K_wUIJ^7|Mn*3RNAe7ay27=y7i1BF>&NT-E0W&o{w7D zj>4)xL_Kx>7=p~`UQ75Lf!1bgcXGobqYN~BPwg?jBumdrNuvoHDtr4XqFc{b6IXj@ zFU94AZ7$(b(wL>sY7xvUap^1OmJXWIRln#nkK~axvurJUr`GX;$(T7}cKAYlz2U%b zUUmLg13Eu*STfQxE?CC8Q-+JkKUwn-zKh``=`W)!M;verpgb_XhoU zL}@s*I&1aw+R1>ay(auHf^O&BLG@92b3rAS>J!8jhnnn+9m-Pcky62}qg>(fMoX({ z@}eg6qOEf5lBA?)L*6NrbbRe026lp=sw!cdBSzA zV~K9Xj|Z1kNK8$S*?5bsB`rhO9ILBJ{m+nb`rmicrlB?-@q9|z;JrFNQVYAlWQhO_ z+uwA`56w|=dE*t~-XOo>7vE}?WlPw)$mPyjFKlc)*8E8P5t-cQR|#x>&tcQ-Ghkkp z9DwImuFx$=392|6TE4xyfs+m`de!2Www*H=8i4BWiLvBd5H>p@a-sUbmc!_;Kw_qH%dcqy%{k?Pa86mNZvy3?%vOcX<`Q_xu2 zhw8DR4)XrpmZZFiypgL+7XE(Aw^Kzu^}^JUT1mgZH0U&M0==})wa&t0k>hejd^OSF;&+YSDN zW^6r~)$#CF2?Vl$??V8rf03qAVyl3d#wegxI+K%rN4) zgc0inHTtCtS8~dnL6UF1-Eq)NEKuusy*A#7sIRxzJuN!&={(KyYhXy;87eT?*XCL` zbu2|rc%oFA*Pwn-&`dS+XeJa-#?VtXR?Rqug{rEbM#`W0GPP8L^NsH4Zq9$eh0KOGbPm z3-420u=i7f-I8VDhy3I*=m#UF@iRHi)I&7f(YbJz#kF)6>YaK>bCZ-z7utIGpRSPymUB9A0q7 z^5kI6gbYohLglq^)uxj zIjO+6DycP_Xe)#X-da9uK6^W(*~p4D8CwjM;8PW>R)KTa9xYIPh2Qeqx$CFSQUa6j zl`zK?mBA$op7ruv?`_~HvJd?roDfAY2h@ICFZ09&1FD-3QmJp?+=bAbx_I23&;}7X zLjuz~;svQxQ$Se1Y7t$UCUxvYbJSxbwejDvgVBO;lt+3hY3zQ0ZHEQ3gHG`^zdXp} zpan-O+ksQ`tG#a95SVz0H?791$H&W2rj7S2?m7_0x3bWXE8P`(n>@=m_j*$>A znmyhwqLOU09;%$nL75lJABBBt(=vMS+9wHr|j zc*w^_-zsF`1qn%yJrs#vR>>i6iQF()j-)|O%5x1J+{2Fft&b&BX78rxUqZ9ZE+CTd zRfNhd_*ZBF!DUBz34@HqKEq$=P<$xv@Z(tE0}3rZC#@V?)f-?Zr3~*aWBT58AA1nW zsJIR%O_0N?6=`cZ{Gg0Nc{5lv*f8l{aev*Z^N~(L8Sz)n&U_FIRkEs=sisseJkk4N z3gkqsJtVD38Nk(}E>EU!D$m6wven^}P`1I3^ix`$XaMDsFt_oVYzr777Gc;>{0`6; zTRa4LUlyO;qm8T+o;my{VULT0L7UofX+-o<6FzN=n|P8#j4VJMTTsaUFzB6uH9_p4 zhKTU_uHmZ^qHlkC3xiWoZFN)=bH2&Jls!EN+a*HMkYY?72gUne0};YpC3k1|K1grd zhxVyCuVB{?9DDU(O_PQY;Rrn*~$&A zhWOu_H~6h8*+G!qD{?cF6Ih55i#aQr^Lc(nj!#=W0wdXa8dje7YBtvI-QFttzsR$s z0#6YYAb@IhJXc!wDj}h9R6-5$Kc`v_)yI~0m!xY^cM2r4^yKO2BHzJ9(yOHj2k#(x zaYY%Mdp}V(J~+nF$p;m%wk5fa3uQW=NwUGt!#|_$TOt=)R6bOgi+aOj-B+$ZgT3%a za5+60W8h5f+XLfO>=l4-C8bA}npxGG+45~aB`39unD;K`Mtmu*?dgm&YW`h_t7syP z>HMdj9b7JGyGM{@P&eli=J9x!MLtCDYVJ{s<<_tTCieC+^!7&VsgW7T>7I&C?oCX* zW(i98K0A~(G}s@%-=Kz5vde*E#8!nbZj~vQEa_;t_xizK@y_#<4sXFP?}M%yIX~By zFiwhEsIO*Vxn;povE|P;NE*%Vn3iHdVPx@M*lG0Br_+>?(1pd14P*X?-Rx;p&pMtbujodQN3TJmMn zUuA{rR%W@bnB=;PGG#cU#X&+vf=w)3ollp`Rim`Pu%gw$u^!^=@=+13%B*VS&Oh`D znNnGgBEiPZ#K<4==*j0bjL<3JNbkXU5nGljvUI`rCP1t?aE<@QlI)?WZQh##vI%N~ zN_Q{;VO!(nX`!MA)2D>v8WTxr+3G89C$q3o_;;n#$*1Qo(ryb6TuKay=hV7Og;51T z$SI5_nB4rKj_>K@rD0KgItzqt=)X}G<6ns6PjG^Cvkks3TsHIhEWl%mZB|;~)dV*V zO1I7~N)p6I9-9H#A+Mr;$@0@~c}4U631v(vOaG<=i`+CMOS*04DcIdu$DsZd;#Zi0 z(f{*@_UT1esQHRFOFA%kP5o~%_|3&|L#4R!(P0nhE-bzj`~)rh&5M(~!Ro^;=8?Sl zk%ZEu=>B6Dy!~7m$cjOUdqEm_;fT+kLzycv;?j$?)Hhf7=j<(YsRvAr)jq_*CFZ}O zs$aFYV;xJD4CL7afoiYGWg<+O!e9Uz0at?!DU17eRsUM;tc&io8_1{jT`PzcNl8e* zdeyJ$HLXMVuXyVDe`dF6$DT@=G}5*&F?Yu}Gh{$6uuN<3#%~(Tbqn;I4q1>d+xv|jkWYNGb_6P!F3i>zJxwrX zqr%c9@C#zgzZ3?$X-p`CG65XA2oPGS8-o+^D;U0TB z9L1-7`j^g6It{v*VNBdBKRQ#u8tQnHBQe>5r27k!8RcIkW(%*}$*GsDhG}`@`&NDZ z2djNVpIr`C{xl{m&YU=;iIw2p7jC$aYZH&g?6#3|?naSd{&1*zyRPO>dzj|igPlZ= znCuoa`8X?q_2iHJMG}0*#MLg)hE{ji*n3%21YV4O1Sppdnvx|Gq^oyYOI$~#oxFUp zeqLc+EK9;az|^*Z9e3qER&Yl*la?40_pE85I{n7e!rIolmr=U@XjLMPGsOF~co&R(4zLSCH-C^1- zQguoM=Xci_8s>M!-ZZq4tjsUn6cU1VY)Bk0C8R&(>wDyJBN4d0 z>g~gpCqBM-lr_qpBQQP9Bp69gFli3VOBkBk2Tp^_8RE0&7d!exo3mR4&vKu-Ba`f5 ziTMSMcE771whh58=<4s2fH7T8aC}%MP}N?@gcPWnCZ%*dqR*{{l0wtH5|~+^ydw`evgdKVqRzX; z8feQdYWLb_I|qOhxWQT}bms)U7NIRE2i&x-_m&&FW-qdPi7bju)<}PAUxo@1K)v4& zy+a1)CtP$^oR?fdg%*xMQ@GhG#QQ&X|C%aOcsXU!WGFJ_qa&n0lJMxZ9QTdh^` zIw}{P$J8jU!XlZbC(;Wigr}3P-6F*oLavWySZ;vWY0R4izBv@DoGv>SS|?2RkwGC_ zmDl6W4D1W{md697ZeMrmR-@6gDEt=BE0jLmw->?=q3Znm7~?sv9gsPy=LFaIGO(XQ zogi|w($JNsmr5~%yNN~5eW?Shq>qP<4SySffm|)5J`_G-c$NuPzSWQd6r!|$J(yju zH(#3ijt>J%5OGICfcyMxW3B3T%&g$83ghl*LRLa>kN_h;j`dy;B3L?K3WCjtpV#bndVF&F$hF3& z^QV@aH5kM_&U+u(p=!7uO?^Am$L7~iSB&wF+l#3yuK21dedBN0`rP+|HaMj{)$`p7 zagKulF$k&gHFOQ?gl8GF`8+nVGozIiN43V#rvskQE&P!Pt(dw@GYjO2@Qt-gp5<9r zdQB^k?M|~6hW;!XAS^aD6?QkggM@#m0Z54p%24J76!- z5wn}Cu-k+w|klm4UV1=%Io=1^JP;=H%E*Pz|*U*U* zx!3c-L*}nK|HBnrgDRCHs(uII)T)l0V4TJztSSB2zL(3ddTgr9dR`f;tcao$%^P0H zkT(&#R1|GjYb-8j>4NVmtc06;Ji*v+Y^8iaN#Ue;&(D^aK`bm2{bGsUs9$MPen`M3 z$hbDv43g`2QBtu5Q|NRLA0{q_sJZITpvD-eUj7SJnK;K7CA)kznvLvHDe|Sz*3`WI zI~?g+oH4twfk_TziuvOSi~k?a-^D3tgN~HW8ZT@sq;3*OAAETKcNrwSaMhb9>BeuA z>1j!yTAR*}$l_t&9OYl#M3+!VjN-bj6$~ zau2*2l=&^+8IFLE+EpH1>$KwLRYM+7Um^Afyd8uWcH&xE#gmU|0pK1JB* zY)HxmPI>&8%YQ|292%(xlgX0 z3vHQ)Dw?gVXYh4tm@G(x*Y9kgDvR|xlKu;9NS=N|22lk>ZthCn+XeiUU^p7C&p z`pK3JleCoa69z_H;y*MaCa<;6I<-{J7Nn^e?!4qIb`o0v)1fKxKq{lMH%n+G1ddo2WVNG z3K)$GsiSJQSi;`Y!E2G1uMWV%|0=LkRlb5QOfjT_{WSe}n~-eR)}OoF5tsOzJ}wTIU)PoWY(-oqB zp_YIp_EgUM2%$Sh(`{tQovMM}hc{D(-i?#xm-FMNtXAQ{o_JBmUMLN&YJ2UJ(ZVO0 z8@dO*pE{Skat69GjeL9yFQN*C9EWo;0ueQ-iJzKTRzgq1sXq6X9Av@7XXO|ZQSKX- z9c{^>D8bFjB#Ke;$i9-$j#6hx)DJ56dZoy*5DA8?pyzGt*iEmW^qqRdNPaFjuF3l$ z0W>ca`tQSZA9%DIW~oL4)z`nSP?U%2?Gmjg^n$F7WgKCv zS=SYZg{@qB$fMZx&sxev5YuVE%CZ-MDb_pLftD+HaP=s2M;@DFIj+veyj9Iac-&D1 zf5#Q?=7o!$Umu(FvT}|nD_M~*%Y#1Ze@VLr>RKro8YJ2Q^lHVGkgL9+xs( zCvjYpojpg_YON8nZAb@2s)(I%OVxuLy@r&+ zLgy$uXx4SIG$C#89(~0d9h`b7yH<}pC>s}i7cvNPf79z|ZH-2}@;+Gj+ zxdzVU*)2^Yc^VL62i@GE|9XYqe0TQD4CuqD{)gw#b7f)$xj}kc5~sHG(mJJg9X@`OeGW zAR~SLSpFTJddC+ z^}KS2pMVpgmNCxfbv@=H1;Q>#F`DhGo!yjSkq&#cX4e#uwv-(DA=&SY?B@@wNYw5P zbQ#N{k=2NW46#EyWuSFIjAF=n~|LFG-vIscJT~bCnKb>zFv){RWH=Cs;l~ z>H5%}Y>Y=WL5-K2hk+d~SxmhH;)KhGUsg>nBZmPt@yWjkGiEbfY^#RlH=+2*f7vkSl(EV%zzh$W|7oZrg6@ltO}*q@9eP6p)HQksjb7BU5tL z3J>76M^ZUK5%Xlr&`ZnlKk}Jm`nfh=s{8-aY)AJ3g?+3&ziuhe^XDO;qo^`>>-y=6_{O}jI za9S0qyGOhe{ycZV1(?>j*U3EsWoJyg&K{??Ml9e3HlFv&%UEK_y6w%?4GpNDqvG%@ znsyn;0P{SVbezLD)J~{nIz=|MxX&+eIBo*#9$tNT0%YcpZTX>xr|*Rh)3JR~%+~N! zM4-z4f{&qB{+ZusF+AQh-F)9R_AM8X@HNt|Iqm;N z{CTV!TURRXLgy(jc<8u*IV-r#)_=TUB_t_J;%){7XA0l>wOTcg)?hHdSpP1gf`j59 z5979>mw8!=K1x2pBBL!;o@=NnIKW*`qwFiWrfg)WXE#UPnpYv!=Y` zY*(qyq--v$(PZ(tdgw+Wq#)K@R9*P%^LI5wzjDBAXeZAEIk@;UHpb=y zMuH@;bx7g5K&se#!9AM8St&p85nZF>-vdn_6dLRBcLzdv@+f+Vn(*#a7YpUMDF!oH zl`oBV0J(tMq46lYJc8pQqJ$%s)><-0&kvRFhj%$%+3^Kyi_-4Ze4kY;49Js4+s1YH=Al@6XdQV0In#Hl)1B zXo#X;c?(8D_1mBZba?Jj3Fr86tB^(~x}INs z7Bnxz_f^~~jAUMc;hVG^YXg!sz`(~y0sHFTaZPW16H@VLij!F1rJoO zI9AJda2MgRnR}Ej30FoZ=Lhvt1LYxoqB0>jkGM9s)oTkB@p;`#@NLPCe>5qifw5TQ zp(hwLP&k#T?q4%i7fe%VLSG!%FI?r35Qpxi1u55@EP1IVza{!YyY9AfI10-L3q=x( z*mSqn#H3puPV{c2{n)E0ein9-nUNTd!aIAIb;yAeO3GECaPV zwhv#fgjfiK@;5u|FT`ASm+BiuA?3t*K%P*c5SV;F$$>lV;RN|BcbJY?!w4{y943&# z6&tG=xS>IxOw|dIH?_N{2u+ouYmd#{Vogl5Km`SgNe$y%YUU&h7Oc^x zMkpm#mk9haZyftm%hMnf$@=}wGk)Ur<-ki6jGaP)Cm7%*5XYk8oj#=-Kdk>`whjo@u;p1k2GDNmyxtQ$7_8nLGnx!d3lnu}Zv8VUir;KU1*TQdf@Z z2J>l!6aqCmi4n@Wu43uJIR5roSpjH}qEDe7Ok>#gsS^?zTPG8n+xXK&5D{K{lGhgU zVq&t+p@gb@`VMaZg@mII|YJ9hD%`hF=NG)i8k8-C@n7zF(CP zM82PQg4L~)x^M-+o;i*GMtPcfj5i3$4KS}9))QA;^cHc^KQhTb3ouH-Q z>Q=XSUNaq;wk{E-$I^JMxSN)pD1Wh@L^YTo_Q5A$Eq7OG#zJ-jMpU~$Yf6l$*?dTgKdK6 zsf_B*7-Lw@4VV?z)3Yvw-J9UCam+GwXv;71rjcJ<&`avrApZ;rxEBA``l%36kR(m( zX@=n16t;BSMa|iI#A4N%?K2v8iz<$r$jV0^`6~-L1AC^3f~6H>R==sWCa)t2hJ({R zb+Xg*Os>|Sdw?dxNKg&s3ZGLgm6|Kl1Tya#*8x+)jg$4*YnwR?XMJ}Sb8Ub^^wD6w zpGK?SA25W5*05|#C`J7fEzFX~T~|1QxeqHVBE9<{LlU`6`u5OkP9)k>D~~T3Z}%#; zI^$H=JvfR{|AAl{OdS!R#1)F7r}5A5T&IZJ zQV|#J&XK}!=`>(S#G-RFXWKa6I*(J>)XlnqP6O}&4TJ>_QwoP7GkU=XeKSvK|eAHUitct0Ly%{nS5#GWxN><}P54f?lix&=liLQI}Q z8VPefE!-&QS7w5RiFdYfSVl@oSQrsH(ScG|*9_1Ir+5?uEbn!Ocm><$t}7$R^SKHY z-7g+vC9+4i28?q^dY(_UG3KJ+H+`NL&xZg<7_F&GaEJ}~zH(e7vhy%hHxs(V$=jHw z+sE;wUUr62E1}eZ8Fys$M=Tk{mgNJb7>1>LRL!eK+FB$~J9iHNxRCxS3QYOKIwPVi z-wQB~II@9ZICRyjLVaUW`z%Ud-dJq37xu|x4s;%S@NjWF?9TQ)j z{fJ~{=?4A-e*&f;Oy}QGK@YuE8hje;9Db6d+AD0x;+@)NZS{C;ZDmuz*NMl8X$?&W zOWwl=utEr^oeS7?!eLs?OD>wWLBVP%%du-WMXqNg|irVkNsE?&eP}TnUFm$clsCt$4b4Y!l6ufg)Rv+tC8TE;- zY}d7RGa4+w1_6d4bwt4}$Oiw!%U#xAR^j6FMa#~|YKbUmN6EuhAZUk1zcM0*F$F={ zN`*$P>_ptNVPwRPQ5{a##5)k_tK`1RSE95HnZ~M=g%c`A^sUe=_a3jzfuCVg(YhQ` zqu7SL5Lc|S%+LNCW~O~$>_4s>VW_avd13piq$N+5mG&b)^|t^ zFNoUsu+(iUMHx1asNW?wq|?`M>1xaP?=l6*ZM5MIYqXH{@LmU}<|^!3?#UhD48zu7 ztjs_S^KJNnqZ5WIoeZT(UwhKijGC=sHv9W(yQ?GVbSvf4FPb^IVXgx*c`lG?K$VQK zf*FKO4A#)|_IgQSha|TtrG%1!1Qwq|g(0T}4v2DiE`5d}P2PcZ7o?q!~fhGKW_R&jV+RV=2H_qm|!!4!PIynd8JO(XG z9bHRzzgus+Qn}iNuQU=zZP5(zbNSx7#>skXeQ}qjWBB0ALdaj|89_aTW0=MK!#n%h z$O9dIm8HDBTIZuavdy70ByF)3G4%t&-|d48Yhg7FT90o_N)KIED}&m7sl*kfrS;*b ze4i|~$AJ!^gv~wqjtcd-9#hL}LG`k+AMRDZJ_lSjCU1>{IJwgA?MsIC`ZL+)v{AXk zG7a`YjEAL$;_)t)-S@1gFRQ63b%|-j+X}OFzh3eu*%#F(u3RR~`ANh$=YUqE^pEpi z-lLu)`j4=l2f=u$*JO5Rsd2A2Z>W~7C;*5r+`$b0#kIlpUtAk3>}>xhYLbPBnTwg} zzjp0q=4R*o|8;HrdjVI>+?a=eG49)f=0N(%oh1Kd_W~TUdyN4CM(Jkf>I!>(T@5X7 zx5De0w6TIh$AFP8Jk7FLx`~-Eo5v~E8D+{ZB=Su1{>>G2T@!96XW-) z(e|dH0c1r-*9l;6bUXz8h1C%-2?Qex#LcUni%L?|n$;CbI@&*voq5tD2+UU82&AT` zXA{!11)R?zBpF*)M=#X3x`tv7I&J<#IVv`>f&*vqe^Y`*`4u%Z@Ds8&WMtqb)J35t zWEBJ>(S!EFA6h{x0`mal>;Bj_dZZz!e!Lz4>L}f++` z@b>C5sL9_S--aeAu(a|`TIN<3HqdbMA75-7ZQeEiuPEIp;pJfpgTS6LT+l)>L7;zq z=-(4{q!Z5a8)(1|h;4L3BVQlBOo`A0ibq zKj>KylgL+I9t}7)03t+A59ug=?gR*dpc>GGevYs2Ss>-)l)#W9Syo(JGCL?C=iEjZFZs51!U1&*VRU5wFi=auL?mMI5 ziZ6xVan4gN_@^zMIPdKy2rygEh)zs!!VubL=o8?f7I1YBupI_O+yi)y0V#2bkxfrK zKRz$4PrzxEwa_vFK*R53c?i1`6vky&uJ)^^IK3A@R}C@?cWCtB+f+Y2ysL}U)KvT3 z5=TTy9m_i_i+yNi`SxPifKv)OpPu)%!ZZF+8?j2AnxeuuxP{UzQSO$16-4kvdNNSNU zDF;x)r0pPrLGo7=7to|b4{~bcr!Cm={Wm9wqta_suMV0oDHCRqFEV0k?-2u(Xslj2`LQ*%G(zBK~GI}QE}|6C+(%oc3gX5ZZE9U01}JCzrZ+yI~j%mjQ^ z0EKdVVcG`-rmbrRnjQ3@AVl|&ad7mYezUVp{_z#Elit07GT840jP*XHZ1;h8TJ-4l z>M{eaK#u<)IDC-~>s#_-jtJuQQegCu20UT-@;~|cru&6!eHX)D7Z-(gk0T@U8`>$9$ZgYRp>f4CXVG*H*Rz5k>&fHbRju48_?Sg(H#1b!v> z)BG`ojJI%&$f%}fr~BNqw2Sw=8(MS)z$1ga5S$0_OCZ=WKksf#UB?6h_s}x&ejbDU z97blb&Q2c2v}^Ru3#O04P+UKDFfa*I=E9%)QU*LQ;^tluW*vb++Jgx4eUpP;hbA=D zB^(j@_kH>_fa_08PA5nA3P$7UR5oO65hCnjG4zz6Wj@@zfKjUOjtKHX2#~J`5~bE| z*p5OVoPR@tnLWM!+}71w1}j%Q)0S#DN;~uQKiFx-YjcVP77u#v<_^Bxe)3thVsIO-?Jx>B=YpE=*upjp zO$zU49?R-LSc~wF+4s{g6RZlBriF-BuJ8@PI9D>Q4at8(gQXPp7hjjVRmiug!$2H72HPZayaiHsmRM^D1L(#)Te1dO~}2rp;3Ccmmv&tfb6* z_{V9y>z7YcaDR>mY0Grz`15D%$vnGLrYW=+zcNp>(r_|VD1pKK5d@eY*^f`rl2TTE z^6|C<)Rlw>Lv}?VVChi@hs_DgUVcHYF$!$G)Tg@9El10A&KIBwR5eWkYw?dlS@4!i zJUg*JOP0dEJ|5fHD9>|C%Yk=6bOaJZwd6%V{(-5Uvx^|m>(G{AT3MG|xtHv*r1(kZ zah_^HMryHF!yQ^C%NE7+szo;luXb_g>3XPCj-)Q{@~EVU{vQB6K*GQ6XWVz)RonYZ zB~M&X5#jO@Qqa(`^1d~2Qx3&mS7UMLAyo3Vnm{1vbKJlNA!P5i%djN-(G26A1%1uKkznJ#&`}u7tWJ7}v0qbTk|t4@;x%@d45v2p@(%%> zn*O}~yzG#^I7nPV$+3Lhk#VZ5NLi$Aj{UjY8q>|8$ojHI=rNXS=X_@0E=Ot?Wtn72|^F4N>qi4$adftl3@OeBkYk5S5 zw0_NYH`3tnuHP+sXhxxNhR)rlX%2T+yCMmDROomWg~@RTt1QOe+>1q`)0<1AbT9KD zonQZux$?WE_rxUAU7?C7%=%E3{4BIhn)QvrDwXD{KVJCSfEP()&e^k#RPWoh(^BH} zx}*-m<++q0_82L7Us>GXd~Ok3HEz*Wg-0c2)G#LgsI`~~nPGZRuvT>jzfaBAyA14I zt3GY5Ysm$dQqs0u&Vg3@l^8MEwt}tfFjWBVQ*joz{fG8Q4i-~LnUvW%jx!hCV-z>- z_MXIV89V80ZMx2r(?i3F%efJCX~LFQDPc_}XXbB*vLPyk?AtoI{->R=pN*z?+#x%3WJ4;RkPB*UQh@ed6_~Wq> z^yJn^8K?*+GNvb_Uvw8Z;0D1Nq>(*FK+&;UxZUotb!Kxg7i48Nv3H1+ZtGQXd#)IJ z9!{|m9ngMhWZFzQy9@}IbPv>~ZW%1OJ>(3PGW8R*wffGs-9869Z;HJi`xn~7|R{e@)!^QkN8M5iDV z7U^i|l{z7&JQx*H$!kg~`Ad)SR;uP;z~kKnKj&Inp0bVT>>z!X#=@}Y+HmgIR8w5i z5PTzc12t5{Ol4O@s<%~DKe`UfV)buTR8mXC^TlBdDmkBd-(89R+M*X85IdsSTOFW1 z6!}`iS4g8ty~_X{0`Vf&CtZR}!07mOR4qF=VGdUt$FNk%3QP-z!X& zU7Ae=RfJ0~b5oe{Y|a2zE0WrOW&hew3YW>jGP&o?tu|ri#iMngaY>Qe=#pZEy8T$8 zQF-~*_BRFIYS^EK*m4%rCT?WgNywvZPQ3xcYSZx$G@?2t@(QBCm+#|a5t(pgC^Xx)=A=SatK~b|a0d|E z{%)imk@cj;#}3V39^#lL@zhK7?WB{!4`L%>00weK{fG|%x;N%U8YTp0k-_wGAw zmV5PNZcN*kq5iHz5%gsVB4trwJdYoUk80OGzu~gUVwYUtMa}5I!4c}1}!BP z=GOkl;Z^oeLB}a-c6m?Ywmuv}jXJN6gH>Lwj(A<_I{+d=F6Fw-cjPKYOQ{^O7!<33qCpGr0_kxtmLyNIo&SY4SgQPO)R?M8L}z zd;jsHe7zSOuQ|Mh#S;Uh^?`RORU4uIG(M`rpfO$UEXBbhk&BZRU0~^XUzgE1xG};#q|s=m zx?eUnP>KRjx;w+j%RPs;QSFqv4dcDbOm$v}JjL>MKZ!Kz_=}RReZSunG0p|LC+-lM z2*>ORk&ojfK)w#aX?K1;JxQC#`*NUGU?Em#4TH55$*cY>btqRUOpd8*uiuTd{ASpG z+%jUZD{H*-YtebIIuwup#9W+b_TKvU_rb!o{tr-bcu#yJ^5Ogy*ALm6uau)&@j=%x z6pJBzcqT)<_CM;R49vcXjg!pFsn9@j=`yO({o)`?i=6V%hA^U5sDGw`Mk^;g!%!)za_KX1lWf$Vrmc-l{Bk%eZ6Cm$3}O^*w>`C%fKIWa!? zw7}!Nx*|Q1vA%Yy$KN7@jA+}x1#8L{x>4y)sx=OaoyAHf%(scNh0&b2gO2O`j-+Q3 zSD3PS>Nde5C``2jsO$MH6F3I(*#|JZVM&|xAaRTgZN>QT89u1@SSg6h_1e=VFGj@V z6GC_&0?572w13UWaRrmgv2%|I1y%O=5Ee6* z01}k=Cmpr}^m*3IzsxvahF;)D{C))!t;9yGIeg+@Pp=I+*;bF>W% zR+J;HKYR(FxJY@?^$t$u@veCg|W!{QcVg+KXjoIoqlgNH*K7p z$#kr1uS62Cu=b5SO^W5zu9Tk;3{c%U*FQ2t6ba4qH-zJylX2P%e7s)8=|5z?*lr0Q z{is2-=CW(?(=YxxJAD2G-G`dPI$<(?N94Y;!%#_fqnVo^b%NO|#sJ3CgVD@!4Bs8a zoG`n6l=K0UTW(`&{`@XzVW#u8PBp#w2X*FKLQgM(<|C8({29}a$|mr>{Q(e*h%DLF z-92{&W1fURWM|6Bf>6{xHHE8`P|PsolLQtWGiU9KLF6582T(~S!}4_1rVKnOAh@aD zrX6!6EiU&mq-}xmC8>yW*1~!AaV= z!GxI-`Yj_HHZJMG<6MtEN(TgzOll_eIv8`!zTYqm*~2t)>P`rM{ zRIZleW$-!SQNp>B(2*+$jKY#6dmJomTk$H&>b*(s=Zv(RTSH^iiwnE|`JTjN7N?7$ z(n86Wng?g-X|SZcf(-Ai_FR$M^HkKnXnKWc(YW1W70^&U~tOxX?hJ$d%H ziND&kNFwg%G(H+2RD4rl@sG^dw-4_%znok&4I9(2PP z<8cEdLQ+Envm|=!QZ;ff5)fCFp{t{Y(h6=)Fg#?8Ic(xyW?+fsrwt3{6!+HbD#fW^ z{WI!p!WS0eC)ghXO0nPBBl>8|!pZ9f-uHzve4n`$O+Hmo9wmiS{sjD&JfYZl0Cueub1~{b@5tt z)hNsB_Y(2Oim*FE#sQd)Z5#`6b0P%yX5UMay5jd-D><=ip$=QpIDt6566PxOji!Ri zAgEWT(iN>(9^#j8vy(P9;r`!N_$A9L-yinsr^$GitHyO#RfjYJ-dzuNz;zU!-Hi~} z74Ga+b+-1Sm00hgUe^%br~Cj6-WFX1sdAy>-iPg;0rO6}I>^`|{o%#5)hy7HVPKbG zt9@|Qvek@}$3p`{GfO9+%yCj@EiwyQXJ5{=3JmF;<5{!WXhr8yy*7&OPJftwTByp3 zEiLj?ru#5boTR#-vSUU^x@WEU3vV&n1j}kDq!=5@t=+}2uMirah-CwxJ>RgyrbiH( zd4I$2!}(RMi}}@d4&phrEP^6TPV2Vt5SD{g$$1Jb;&9Z_x0xFHjD~Dc%z-K5NynV+ z)?zLynaOx@-gz6xH{Lzmjy0H<()W~nAs2FvFAW0gG^G~O2Hm}NwZ4_^$_KCp{_@-F zvjliuo7xZBpCv}($nTosDX@jj8@Wl6mcMQIU^IW#8u@9rAG*i>lt#Txul5<}&3)~g z>3+v6_5JHS>~I_)0ow&}^fWmh^aI`!0+CnI8H0fM>u27;Ru_=zuG830Ie#}qQyuSy zF6=iH;)A+VB%rVb;MpgnY4Tf$$C}OW{rqp)y+va^rM9#=ZZzQ*Rf%MVljXJwGY)8d zU$H6E3Qcr7FqDLQ&inXrGF99{Hkt<{%Qfl{<8X)7p%}0kOM8s9>@~siit_#+rDO_#Qoc6*ypf?Bpge5%u{T zkeTu}|Gn0%64%}%GdeYt5g+Nq?0Gv>T}NGP5lIUq&N+`oge)Y*wKPM*>!^Z}hmZ7O zK^oq$Fs*xiQitix8#w?c*KU=qpTr^m{yUY?5;^BaO>w>LR}H%8-rAZ$5?a( zN{HJo6bv%#B%!wEPvcPpv_j2{f$}H@z5|<${`3fBsNXjQY^0lABRwowc!dh<$Vpfa z3V!L81INo`8<16y-+-%IWLbOsDvI_HQsDjFCC7Mt8Aw+NSNP*)nepW%=ochhZ+;UWxV zL$>;cE9{7iU*&wMh`(l;CU^Ws=#)CHDqgV*CD=XfF^v4EJNr0mAV9`gz)DfY`96MK z0RuypQRoGCE?)Kof;GhKT^gnw?+I0kY&7)ech!K2K8vW022;9LF$_rhqH>&7DNS3m zUXOk6J_Yez;f4bd#1vM778CZb?kcW*06sP6=l|bnl{f0hW5qV_$A#fH2btz ze>4`#kcpmEmi)uw4+~-kS9no_A;@PPnF%Zol+07Ya(=;vmm}; z|JpSd=^d-`-GNvb}eSwyYK$n@7&c5E1l=@Ka$4-S6=z)Fj>|uxjT~iEYlD1SJ>CzD zyf{5ACO2`~1UU#X^uE=x9VYH6N@d^ejsQ-M(&SfL^e@^y7T~l21SyVH?i*h->t9yO z9^O=DQbTXc@tIncuoncHvmq*et>1bwFmxl z#?g2!f#dU?EwDSPLDih&3AcBq@SO%^l_!Ih6Lz}d2p!w%ty*N~H#mb%TO?6bVnE2mPUXSvk zL4q`BBS~5No_vA2K7el&hYv#YFjM+<*?Y3qt`#22S4&T35i`0Z(1FevEuK?uKl!ID zAx!gm6Dtq2kX3n(F}>1bQRmXN%j7sd;y5**QBye5r#gRo4%y|V4Wiw!p$dPmIr?E1 z<;Q#OINI`BiyQyOfZ&D8*s<6Ka;DJEwpVjND7s|oGu<{KS{0tc@J%2eH&Nxa)mxj? zWN73PvU=(Qm=0|AW_RpfLIGVzz{$^2n3FGA1V^?pYX&J!Ekk^n21yEDJ-m`}eT~>t zL{OtVQ)^;BoCTIO-yPLzI;|kEfA#4`57_n9pHLKio^mHEK>lSOe@6K-ozgpSSLN2d zM1Q|@nQZ)M4e_&S$GNLNamZEQVDF53RFBo=SWnx(;leW(P#^MOc*Mm zBuw{XO-^iHN{b>UYk77VSVzn^(dFGK!dP!xe4heO06G;6?;C;JGsh;+%hJKu4TZF4 zxU(K9+Uf@fbC}43gO0&oyU=a&sHV8SWh|#+GDO8vVH;%?YCid2t>8>^(wlPQ7y^EA z)K#yBqB2w>_)W3Huku~QK#Dr+ZLvwayrN&6I`@~Yv=+jGk` zydKcxBqSzlVbz@bFr6y&cC50AMYMi0@Eu{Y#|eDa^VCK|qCyN+NS{Y^5|2StK!p!k z;l1cn9s(pbJst^>$o9o9;N=$3B7;`H{MhqD+ymzeLsu! zrOfVruXypw35$(7d#OUTTNumN2+dX#_u+lpD_L1>lDJL4hLoW`Ef{+asE`{w4-0N= zgLMdQW9T%AUli~r4mIJ`{)xDA>-hS>aWJUCwU??m>9^s`F2ryvCVJ%Oe#7@pwsCk+yHo zt(KKCO~}rGa5u?-+=d!RCSZT(nMW{EwhR5DvqeBJLK3nnvGu8N_etA4fg&(Bfx>dg zFYm&f0JP$i6%^59{JuzG{aWF%u~+9hB-vL`la5HlfHc@BeU8h-dCWW&Q|=SH_jDz& zxP*UMQ0t*q>au`qi_!)2wA1y1E_nFSXYvQy63ua8!|rh2SQa;NUwaE7oZE)$S`w#Z z#ZxE0r;78QOQv(cJr^PVH0nlVdiZcs)ZVCW4F!36^d=YV%7> zQDtG(*A@_ekX3R>OuTHNy6~0^Z?4&wdMzF6d6XX3_y8=yfaBP0=!V*wH!*JGtW@@y zXP=sE{d|qa^HbrvQtlN6KY2f`rNL^&sApLD-qxP!x=Xq;zCdtyyiw|Ch(6?jp@!W{Xi^gb>^z(3BHYc9u4jZZfjnIAja(w^2JI`xH z_R$ry-RG>9pjJkQmt@$c&9lPV~(D@E=S7to;7FC1}Jv& z30kK{(m>E)kB*`2~3R={CVuP_^LDGX z$Pa}kuXif4-90l?ct66}FICZ~cuA+3=cpxqL+N? zNec{6t{+r=FxdE>>MpM^OZFdninf~EtU*ugWso#OIRovvnlAg5mQvvNju33@t#=(o zHg<2VepPK!i59z|hZxJbI3?H+`}C#Sh#yEOB1a=%H?#7XTFy(!4iGg4w5bw zhf|%2VLxs$kl91ok{YiW{l>iL7&7RH0$*{x7#MT*^>uU^<58mf&fm;Yl2QoR*G^Ty zh|(ZNrxk?rR*ctSA^2|p#>kcT8TA{aO?`h$oh$qbn+|4`pmvmOV|}I3K5kRx~Be3www4pjfl5F$|;yAhakR5L%U%WCb^n!WCVfb1f9SQ4)_R>d6khI zXl15(5y;TGmxrhHA;B%Tb4BHwNNgvU38+cd&3!bEFikgYp(Wj#QWl3dN2CG7Z&xfA z44CUlor}IR8Ey-f>||@INsnH(T6G!Xyx;(ijV$jp5gmlyUhmowMw`CN5?>l1k$EZI zikm?4{Qm7MRYGfy#Ho|U`Yn+y*DbdZdAtH|JoWiIlwJ0@&9pahFIb*_+Y47e3r)k7 z^V3m|)_s|G5gj$KG!HZwSn#?Qi^42&*}{JXU{&Y9lZO>VB|Q~?0rfjo_lEs5v6>T_rmdPXt!d5bC=f7 z^86qyH@72!Ky$=k1N|Tr><%JMN!Z@iXPFa!3a+VRj^({27-HC~4~CieE#DkV>WQ^E zA>DlCsgZjXK((KFrCGP>&+C)~7}cqW1N)ckWNQY6wL;8i@)7S4@ry2cGE-x!jaKNL zs9Qs}J}Q%H%h=LNN~`D$TPF^;H>ip=xH;6Mqq+4`FGxekjqhSxVN#FKU%jtaZ+ZMN zlWq`ZK&{FA%3)Uwtx_xcHhKCcTo*V(_JE`@{G zuSaA8bnpi+57RQ z$dCSP!Fq;M)jctppN=yW~sr{fAoC2!JW4~0~>qsVb#kZpIMC_UrDhFDM-D*;w8W2 ze7+_tm{Zf_m(+OA+5++If$2q69OC|Ct>gUxmG+7D&tNv4K!i*LmlS3byUWF!x72X( z`m_a(3b0Kyi6MPRR(>i(FOnpdQibUjwp)t=*eX%5R8%q_HbDPhsBnc=3E1zS6 zJ~?XpE#~%N)3mEHcR_6K26jT2dx)Cxy`g7u@cEU8;9k361i=}q^Jw`pdY{T$nYX${ z$dw;g8umgEr!v~j41xZdu(*C=qgV=y8wnDMS>$;UN|6%B>RC2xsvlD*A8xV^UqL=d zp`@82XZeBdI~pHVOP*>7f}=`{czmmmNLUlP`hD%}gdOIG`^((tfoQ?TQk1$ zUs4ibVFkX-vJcKj!X}y!`zOSzTD9iHMc<(GsE_$sB1r_vC5zwE@Np-q9cXp?yc%zu z=6&X|W?5>|OY6Q?`b_TyL=!Sr6lW;c%Dp@ZP~#6*cxISGnW&9`PNZzg5nZAO$b-|F+q8WIxJ7P?@S#&UDejRwGxi@iSO}<` z6htky5Mt%4}C$VRs-I zg+ja|>0{uQx!>$f{iWRr!0^rrfRZFAIVd)gzbHF|g~Qx730zp!en-wzLK z>gTyL(zlqf?lQr2TwzE6_-IU{dw;Q(TG+rNJi6P@EL4R&r$!CE?gQl$ zRdG%+eR~*@Z>dAjA4e>SnfD%OQIW7J4cNqgG=&K{emhELV&I$& ze@hzC@G{gnCm;QdObXQ4=t+f4Cv%_*3Vdq*`IzUvzBQ2$%+jcIWg-UMsRIM~j%48y z$t%Y`^8L?sm)I7CT8bn8A9mXtSvL{wogQ3`HZ;-M}T|1ozSLDTHGH7fN zMY@lk7xIdh=n2T&UW(sT5Khk%yihuKWTt3AQxYGXownD|CG+f`OFE{cgcs;54#L%0 zaSS#<)ku3+w@8sO>Arj}iYnrT4UAhKUg-en%x1PGGZ^UJkGiAyb&$Chc?J}2TaVBB zS1+A7Y8HQoocribX3Dj9IdWWu(;JXJ_a&u9vP2(tC+)_oTcaG8m`hX*$1cM3d6guS zc`C(*dDJhslTPd z1@gIv<@~{77;_Rm@v;2zfgV7MnN*k1ga@CzIDQG8O_~Y{Js&S$3ik&&H&H2fs>B-H z!}b%wwsr}`9bVo5_>Md_>f#u>Wvu3u_z;rL#bNTJM&Ug8zVieTo-cUwE8|$P`a3z- zNg9xWZER}v+&oRqkF3(D5|gmeli-Q z@tI?~qT2;+@ezNh6jg`dW@W)a+RC!esU}|BVICPWTETU{83gwCzY%@$l~8TEY9}Bs zxc|s(fg4H?zm=sf*Z2J=k&MI5csE^KmWFBJ&BsXhdaX6P>^_Ij7auD=J_qlEVi1LI zZklsWl|yJ5)9Ka{2KHi$P?9Gt5_I%ckP@MVZ zHyu`-hJwkrcs8hnzHd6_+A}fy!_0ZXMC+^Mi!He`DJEHpbw**-&OXzy)%q%R(-OVB zMZXE7fFyc6c_=Ee-LTeJ8v%5U5HFAAGdc1C;+1^u45ah^JE95$A+JjH{;kb;-S1bj zkxQ?#A-}{(5tk@K>i1?e>Br>;yT299wh)PG_T4V6<}({?i-dp3BNl|zNq!z2of1F? zI69NtuZA1A6$%hEi$e2}PGi1Gn1mX1iHs#9_T3X^9*Ub zFjhqbYI(|Zq)DHobR$I`#>KNI-R-d}DuuJnLP)pVQ{}rx6y?=+-p;kbe}JAI@0PAkH_jodxV0P&w*wwJ z*Rxn9b$USV!NZIOv6%_JR{ggQqsGQdh=_!0L{04U!fmCMv~TEhL<|Cul!uxPH0B!W zv>iN}sISPCebUCkmtEX6o@%nNZbeg2_s|ww{@J4TCiMK*jLpbfNa_2JsHm^=5S9EiJvp!2D>_T;%WL8Onn{+v^WTc@{dUusxu`t#g{mSPv z%{^Y@I-(~-KJL|BZyPJmXb7*9?kws|I{9{dZ;^kb*F#J~j)&b#YC2t4nzky$8Ek2o zdb5H_rtw06^++p-&+AH$aZV2#;0g~q8`e5zI;V7dWEXUnN*P}Xv-OWjT{QY6W+g-Z(1H#el8%o5dpm2-;MJIr>P@+V$F8)zLp zL_g$6n-_3HJB18W;`8Y&d$ai{ZdwU-dW==qOh(qjluA?;%2MFq;K3?&`{Cz@&z4M( zVaCu({v<37jA~UaQcslAu3p=0Iy#O%`S75<0{^kyT)$MoS4_J{^sOEd7S9-gsB4-0 zOG7(oevYkX?W!;&JuxhLPFb_XW}4yf_P4Pf0j%8uup4ZgbeUCDver~7!uW6u1(Lqo zPjm1k$Ep->bD}>`jqb06P)sQ(p#g_*tbx2AcpiZ$VWjW zfQ}QCIeb1mh=8cy9EV{rm#Uwf*{DN{MA0UFqpTf?Z!memf)m%ge4o zj6v}vMWdmVjaY2hW`;U@iBfC)VbS#-yzhQvqeV10LWAFL-im~`eXjjjytZg~6 z!eU88&Hy-AVFH)xpDHs7z31iaHSWL7m8b59SwS`;zQ`e*=IGOfrBmN2hy?NV8|@QK zAG~XlSN~0Bv+H<|=|$G%K^Z*Wy5|vBt!7w$;W7#}${OiOWxbDcA* zOUC!;Pk#H7uZJX9h$G19Bj_i3rRA;Hbt3dpvQ+Va%x+!5ZFasx`{Z||g`La2F>j$`~TY8#|UkKQhM&=+dPFC4k;@(UC z%+o>|#UA#Xetl+z;o(732l%#?WZ}Umd`Ao)v`WZDaJ6%Bj7S zn@Xzvq>3N6b7g!8@pM>CGqAih<~1$_A%L?hFkO?lL|QK6?{JUfA=(!7fPd>zs^^_F z&spL*TJo@Jck<(-ZhG&8;#RJg$b;#Ln-!5zKOI{>fM@@N=8=@hp4ZoiPD1!^ zrtv}!NWQ#VZkQwT`y4K%UJ)}O%)@|gs*`~Vrr4j_qOnqslaYlf9_#$7MAXbbSc8v6 z>zDo1ginMV?sx*f+hNVA+rklCnI)usRz`Z7S)@X_uIMbZTw;8F2VB>!fIx8VL$ z*)&jsgw*Ql5bMCo8%}+m+R8w-@~r{?95t&Siz&PfSxaG+C&4z1BbQ&J%%KF3hn^0D zy)s~>h_(l9+Qt8C4s*rn=@gYztuvLF&NiobtdiI1x*X4jjBlQObC6(8H*uJ~TN!-1 z`QGP4kBDCcWaG#3X=Jl2z~+3+0aundJm~bFx!~;~<~jpS!V1tXN3VTY>p1 z;akVG0mKPn^gA|c=NeT9hK9dXEP8ebYE7qvKV#~!M{#J8H(LOw4o>!idXZbBe6q4w zr>~C5JioPiS43V0Wu#k@;^3M1yixFoij^@c{2XI_lCxI>i90~y)haTh94*^l|E_r( z7DSI=%-DHgBU~a^tVi?B^iicnmF8MVFk<<^IbB{aXsP-aFU1+o((8-&#FY(V72R#7 zd~lqrQC9trAfEVNI}Th;?X$>yn4wMb1-dzEF?J6=vstzAV${?{G!eHK+E5?z$thEG z@-7|q=m$m>9ak?itv8C&V^Q2uqv>ddpWc*>*DF4GF0@@-&G*7^G3mRRU%X(NZ5X2h-}j4l zD%)dH;$Lfm5PI(;RqRZ2=j-u6c(>;+Cg`wP5^fym*#y=}Dtnx^htW(qZ)eJVCo{9= zaeHoS{X1Z>c$h*j6Bb(b(Ig^3ZhpkCIOoTq<*vrhT^PFUkLzXOFrMzN&HH*E$4Lr$ zREJ}SL+IRGbUKYmlCUQ?n&`cD$$E~SnVfg?(o;ve z%TR0SyKehvay>IgBAv-Jwq%c9b{)!$&3bW>d(&@83h)52mWgRq0L*UFy*04jQWOuw6xp2z(N$VaWD zq1YE$Z9(ysRXb9+6G*IT&@B!`SBYBdo#RbCp1Q`kK3_Y{yzvP`Qv!eLni`kPR#g~qr23{Y_wEN8%<7u%;Qfa}lI ziv}^-a;wy!bEmf34T7sY3#qEK0GL)%!vvLX+`*co*OE1440r0H3nsaDygL(D4h{o8 zfJ+B)i1+#wk-aP$f zQWa~KE3})staXa@6n}2Y*Dw3|zV~ZLYBBi$4bFB44ssANrl z1G|kH+Nc0L-nk!QwHbgo1weLN0mceJLf(2YNAf=b_}?)HcBAE_zGe%jfp$; zq=o)-`%+9oR0ikZTSski6C(WKD?HK?w>Sp;ogu^3TAngZkBS?f+;?4$S8XgS*vv8X z4Z=biZxoM4E(je<*TZeor16KaPB>preS)h>JbpccuP-vk;A#U%v-7GO5-Su(j+Zzr zo!ADC&^i_aB-AT1_x&(N91Pm$f$K61TBZ*SSi?h6Cm?Sn!K zQWm{;K^i-=KiCz@iV7mEui=jLva8_Kd3x<=p=o=3vClY(LK_otA)&V8Kqv>pZuYE$#I7MWBDZmdtPbfGBomClx)xKq;Qdh; zkREL$7468t+@{0^Q*h|Re2XvAhiC( zGmiZl5X8bhNOPhth zFm|-4eXMIJT1>D7#;@^I1*VASN3b{+1tA}kWKQUe+g(KUbFcqlt2yWEg7CB?s$g*& zD0rUr@clhP1Atc}t3K)$fe5D4<0UdvDRuMLeD39M<2H-R{E>Qz$?&M!yXq7(DV!(M zngcVm9)YE86{P`&uv9k5a)3B`Kj^mF#b|q4XqB!Bw>jRCk_4wIwE=5P*^vo76D0BBA(!2L<2oT@ z|LILu(Z@Z;OgDT)`TQ|XZY18fq`j*Fv>|B7DyDYX8f<^51u9R~O_ZP70CqB~co8%B z`<6~9yPy)-=*Ok%^41Br+B1slJ%6%9mF>H)dF1S6}OimQH>c0AFy^*w&$e4wjf|Y zEAHWh+r0oQ+rHp_%`MCWRh7;AsBT9=BrFMj+O*k-W0E$xHzUfSl!2>u5M-otH*D(- zVwW8gM}_U2vJbrrxEQ^R{*u9~6&jfpN3TYD?WY@Hq^G2N1@ zCIQrgEd~d}rvx%R_Ty<7X1{*FsYGcb8KP75w7Syt@*{6twa*oqLOV4}wk}b6onEeF zklu{ibjlg&-*J&f^r-A$cDSpJjs)FIMgw~|RlWq9#p<$@6Fk|U={kKIG%R3qHa2|2HS zEWr!22wh18)F65ql>>*dZQT*uV$OgD6xh8Sx!>XUv<{~B?gbmOpr+AY{BcymiqpJr z>e}#5t^~5ypJT;ID!|9|IMZ355bIIm*I6 z(_(xWVJ_(Gp3feTruE(DZ2x-f3bW~WMgk-Obob2(R({#ZiH;7$U)(j2;4Bgd5_EA`UR;7paJR)}akoHl5+Jxc!GgQH1WC}vo#3`O ze4BIb`RY`i_p5Wiy7#YJx2mf~x_hR3W`6z1%=A-^t;vWD^*f<<=`zpc=oa^5#-2D8 z&S94U(IO8}6i-FqyMdcN)1Af(w@qrY zgFk7f zr+GCA-=n5HAOZs!>xQPdMscuanFKYPU= z`cjcmd4JP|7>n12j40+MufkG|*S?-zOv=AN!=Oa?s??X`+M#5o^(g$^q}eu5CWK9P z>#!5(RhN^@r69=sRfQ1HyJ5+fP^r6|shv{eJIbv8AZtL4EH*i2VJu(1{Dua9WKFQx z!uozjLFr`1pe157n;2i4^rDK7A&>Cr#>$z1b<4*+qfiiG8zs4LgVR$8hOFTIHp7u; zbM0lIQhi!8hP#@`mIYOZew=K>vk5GIKK&~z&W|OFEVq!*>|6vCGpdpWj>wxSQ5TwN z`OgbNWLx#AwwKjpfi?NcaX)qEK-=X!VfBmdm*wSI0dB^Y1lEcSL=B1A!;yDX;EH|0y~L=V|qJOm{ws{|I0mx{ksaZOab&ZG7viv|1)dK z1e?A0tD##&HbmC~Q=ds_5?=v|o2WxcpnzO87v;}Ln99szl<86~FqiNh(;4FcdUa)_ z3GR)5Xq6DVjQ)@Yl5(I}&1^q8ERqi89Mvv_oy`bhQgocKR9Nq>Sx#irs;XD1-qcK! zB;w(GjDWi{$n+IsAo^$Mva=`~y)FZqise9E1EIrHFV?7}b)vP*oaOXUM*QWsOeu(P zg}~rv?PXvj)z<;-)9%EW3J6F#SG}&xUlcDFzo<=e;r{r2$n9sL&(^IhMN0%%!Flxd zDaA1#-S+m1;W>6I6o#b5zn@;?y-KCS)x6abD!@AnU zKZP&LBKhI|Xso<1OPJ`op3oWj8e@Q4Y^_LENDG#qk67&tdrc8OnvY(w&lP5p^hKF_bbSOUjwG^_D8 zF_MCW>U>6ACCL?0~&OZxGQGWO;zJPv4dylhrN=r9TDxSm0W$PXPXDZ z6R9be7EQ^p?kuszj3J>1cv^){+-RK92Hfe)65eQ)=mWirFY5AyHBK<~{1emj_`T5w zteX2nB0SBvGsHAsS-J3K3j^>}z~^pE?(l!z=^)EhsXu90FM^_7idJCL17_jNe#>0aj84u+uk~M}u)eJb* z-#fXu^Mo-|v)Kd^I~MYgtxm`bxXot#F)^i};bo5~1C7+@LT|g?^?71`_FJI{`I9X@ zz}o?N<&4)T{AY z1GqaGwwq%zs0 zP(Wj{6O4q;DbC<{&*T0=q|wn#e&ldj-JZ%qd+7-J-Y!s??nlm=YYoy=Qr!+I|Fne4eMmN%!AB8}Yj5CuLaHj<2k#7`v@| ztJrA2qFBA<+y6!C8>WK#BVY1lN#qU;e8a*KMFUiS2C ze8hZ-Hma?i@kXnfUz;ICK@GTpC_?02((m@_tF1=-n2gl+i9H{9cO7w*pX}YRnX#PP zn>88}9AUZ)B$+xSv{;N*Q15q#x32Ou2FhFngEz(*cV~#3V{z)y7XdeP#Z47Kj2UPI z8?4B}^9c%pubp$1`SJ880yEK41!FG&++bo?9L#W5!ZMaMfeJT@-59G_36J>RD5n)k z%e(AR;;LP{)-tWC&&=c3>oDqOn3tDLsFBNsK{HGK}ra^1TqumULyo_kGyn@CXd z&AMFLm1FnKs)O%X+?6YaXI*$rH%}z6`DUpdUnF8?7i-)J7uFtRHXC)^7jD}3yz};h zjl7#%cr_)`c%0k&LW^(bjy8Mo#rtM>RHwmb+~};RHFj@@GSk0+hVw6=;THI>K%*II zzALd&{m;L%eFe~UV8L2P}W$sAE)=-Ivmevff%LA!5|Rq?P^{%*dq+2!&IM|H6y|uVg|52~3AnfwpJ{NpYF4Wb_lw#;wyea315_yTSur`~Hy?aCM)l-`Q3Gd_gwWRYWFQ7upH-M(5R{9TT^;G{K{waWM z-{I*Rebl0g=k#~res?~#7w@(qz8{!%QA@Gke&NJiGS%xcFDd0{{7_xTpBLOOMurvj zVjGT*b?`8~1RdL?L~gjQzQ?x~X_R4K4UNZz%U4Ij`o^R(W=vk#tfjap!t~`qR-ssH zAKllwI8EkuYijkdGSy_~5)}G4K_piGZC(7=o7kHh)K5c9j<#zUyJDgISO|D9`WMD> z`g=WMoh%0f%qb8 z@^WMh;K&?b6hy+2IsXr2s^G}j{ySuT({$}M{Q-`QUltb}8I0^=g*#!3e?msc+wZCj zvI<3;5^4C2%v{~h9Tjye-EU-u20L-04M*14&n`+-{sI}U{}IT<|1UECi_HI(GXGu3 zu*8?>{sl7Je}N2;VEMNXqeFu2yAJufK&-{kge&b`dR-(n?(gO|4vP&-@UV z(Y}x?a$T5NDC%M0R~IpW%JO(&DG(;&i(oKQ}|@9MjG{D-Zkb zvdj-vG{M@p0Jh9slfjG}3iDRb1@FG7!S!u5RW(%nrqKg9>w=4GDOB zXe*tDAyb7J`%iW6B-BVOYdlI}LqqERlzl(5?MZrja=wL&^wLo@d@74~JQwG4==kc= z76&Zba9x5UV4np#H;&fYsk&p?uv;mltJ3XRZCE=(r7yAj=;cvk_mtVqvi(?Ft8n-2 zPfZKGgxsvORDoC})=Pu+!41bV!d7I^XESwo zjdE*E%F~e+@fp#NI4dqoZDRNn9YQ`{XBCkrG{;E3Z2-Gk9J@o}ur%m}=>$GMP1Yxb z-+~6No4L@gNebMd;HU<5%U9x8e*1<`SIxmyws{I` zBqsI^pJ34vSgLs{%_W}`9^z^*%41^Ujj~|pcmkWlh53zrR`g98BVFgtaA+c9ZH{p2 z$8&SjkpxxvMuBiD@%AuyB!M%LF+nX$LE4K;V0)M-u{cpZOHIs6{`EGKf&R(Z^Z6q? zzhH*v z|Cbs3_J5c&)bv5je>Z0um}hLN;!_;xW%KAM?oQ^oB~ELOg22N5-2M~(WXJw(4puET z*X~7B0zS18KF9Bb-US@D{LP%X80Ouqtxu{bT3(N6huJsR)3qw|EfkdwqM@w-x6kw! zFs?*~=Hpt<@cF}+JE5z!=fK(EiGM(I1BV9p@(2Wxb5A$dz8r-~Ec5adhkEk}ZCJRkLId=pieoEN(#1j&d0W+uu48H0@zA$>%}bf2)y$ypZT z6`CBqK83A96ThtKe6%{a?}G~lj>zRN@5oIaPVMsu)my7Mqb5jwFc)r2;TA#P=ku;W zmPnjFtVqa53Be!<3e{*oHb%3zr-|aG%7g?`ry*{?=2*0?{4;w5pV353BB2y($Ts+x z$KrvgY?|2L=vhx+lmw-t^p%JeeH6ptLaGeT66<{(m2ytD@p^_9wf+p7^Ac46Oi-d2 znqw4SiFj7PB&DE4g2B1p1u4v#Lw!=4=C;ItVTB>G9o%F>@dEW&VoHb1hB&h@=l#?& z=^CkFIf4f4%W3a@oq znmS08kTd?^s5R~}95jLB!^h-|z4=GzlolUMu(Y)yg!y6pWA>A}@s%2K0K)!Q74l!u z!}G87@bYo}=OvCtw?jS$e)|RSibNqSet;L@Gjk+-!V{PI1{=6D;Du9*Y=qdKxR3W& z(Gr%ezYs1-I#azi8F!8c4;+eq!HliW=&T&w!R&q(Ry(^LQEF38Z_ccL=GA^K!9>reeZGa^FDJ>^>krt6Tu(d{mwVQQtru+6Zi9+*FjGdd3r%sgu12?e&u%D(5D z@qFy@aD!bV47X00)a_OXHB5Pr?>Ig=k=!f)yulxbn>DbQd*f@P!rT1i!ULt3<{VV^ zyyXotMpF~dZK8U-&+Y@{yT1j_Mk9JlSwn+FW0hT}2Q{xQq{HN(W=V2(<~j2<&8AaE zNow)=>o(IQyS#cLs!<}uB{S;4-U95PLcD^mAx!LoE|o5ouX;GEZe`hLrAAj)t42v@ zp2YXS*i3q5gi-wPJ7HXHBtvBVKa|ALaQSga4)lf0DudI+O%-E2Q3#tcNN&ASUL#Qq zs0?9n+XOh;1_?@GJ0l1-M+dQ+laK>H@}Is6R4oP$iDh!3iO}j7^rY#0Wa%1>kD~ZF z0oi)fhqCvIjE6o)ha@_A2=5NZC9>;NV2J-Ai&&?=>`>CAmdomZ&ma=2(#so9$I*bB z$ng6h(j-7Z6V?LyTYyHksNtnd{Fcl1RhFhYCxfm$a7O!4edQ4Vi(3EV57e-#WUf1`D#g&j ze|_Hh{@IRKad9+vGqZ33ym2zO)UeQg%gF}hVB_Lt!eke7a|JuPykTP3uy(bxfG^eE zOl>U8T;XdHE*2)P@H_<*col$$wJR6^_Hwdtaj~#uVt;4h<>BaJ4tWDV#@`BBJ32_3 zxLN?-ND6XsZ~-}ZIr+J`fxMiYy6_T;j^_XGObr(kCnpPY0K2q_9mE2YT}4Amn@!ry z&d$`t!QpqKHNe&o06hJ@@vMON7A_F@=>XhpoIp+<0WMx1?zdcQy#MGGyaK$v3fArx zfZr`)0@ym4xPl=TCII*UsL0C(WaD7M1c82EH%C(&%zqvnG~j&%uq&I|sJq%@vMT|2 zIDfkeT_COiZhjt2b_ELuEBKXw_l^7SgU7#jBp&JLIYRkg`d?SAnT1G6o++_KcJEBr z?ei#3^JW6@Vk-pG1i!G1wvSb1pTtL2%qylBv?5_w2TCP`hlj5=pT_3_M^i22tGhyp z6t)z!`zaEdO?tR35X%(ET?L9lEY-MJ&WclCG=$T{YO`M8h6rQ5e2YE)!5p&(8S^y_ z`6m6i36A;~jBR4|NQ?xmA|QiXOR;bfG7$>s1o$Hbh@KPD7N~=q5I;))7!)Z=lTuWK ztB_xT^u)7sRawj#C!O1EtqMkK{!_ZV2MaZ(F04g5ca+@nbo7Ji04Lq+$gXJj6ruuS zUu6bQ4&w(0mI_$=h9WbZ7~W|}C$azOa(>c)ig>&{h9 zO1IUg(>#(dk4L{)gvN*K0}q0Q4@^8`oRQ<^b%#f9l~$g=i)VR(_Y%JgQwXKT4O;Oz zMGjeqj1O@dD4~AbECZ#%&`^Ad!YMA(i%J+z_3c1+i^3qAJ4J*z!rZ~@9Adh6hfFeG z6d7_n!QqEGk*Qz3>)gxew$@0?%)I?ov_kUpOo~$=9&u-z8@9bK1%2mYY0JsfmVSKh zSsh921m{$q8{|LK&=lzMgc4nIhb9Iz()b&AH5Ros7oWqZi`xioN5b!!s?Gzl;I0cT zk8|PGGzI1%fx@F`rxIj)i`k)>O{k^_>#sK)qMOP$pj9!X))7(~l0TXWnbn7U7fZ&B z6M)SV)mWy~+^MQmzA_gVs9d)fF6W;dMSMxD*7QP(${8L$b_y&N?{-W5P_TO5@zqY! z(Tr;v;@*zl<<70UOmEik44q8(Mv^_j;GNTnrBp|%>;3fSXgmgq^t%L|SI4-p(PZ|8 z^_{xPr@#mFR-{~4T z`0@;sDo{!1l2xzNL+&7!rVJR`gN1fPSXpV1C(QJbkI_zE3U?+JbdYJ9iI^LqrnXP4 zs>Vb)tm$<)eo;S2Iy6_HWj72?<_}whzX#vkBBdl8u2Cm^mu9JR;KD>rGsqQr0&`pQ z!<$!()0g;EU?VfBp8BRBZ8ZNNLHA2tH7J~E(fB+~9MN}#A%Xp>4xJ_A8T$0)Ag$$Y%0ux-;`fT7q6Td78qWX>W_d8Oe!IaxWsS5G(Mhx zmJn=LMTmU;=J9zq;I3;Vu>$+z)IM;c+PdEuV%WpCVx!wF7>JafYWKCYZeIMhi{U-T%@L5*mD{D24DXIvwn7q0qb+VT~qojfYah!?nB5a_aN{{I)c=BJ>L_`_R zLfZU|c(Bjwr7z9a@A0*y8yoCCkyK!dY5z1w*J%`u{Rj-PI5C4pxgQ3zTrtrjGGjQD zvELcL{J&6e z8$)#yurCwLlre;{Pt`vE+PYdl2smn+2N4ibZa#qrTsP)p2UisH=ZgxyQj2{uubw%p zSO~=Jle)ThA#YjlR^alSn)h8GLc;`LhMUtr4~vDr*sH{fgYYtlqvqT6e? zJ})f6=`Ww26=d94DDAbRUbiqioKbd!n_a3uvv(-6M`EyEp;2Fqf-7v)PMNZ&Sw@;}CJS^aEsSGp z$UckQmfu7>*PgRv$K2Oqt(@-Uv0<+GmfmCp>=@l-OBuM0JDj(sJPs$kI)SZ7)vn^} z4pDH{1z$f?eod#=&SdrfLnwQ2EpL)c#%%m%*H&<(b+74u@A2ehMVfLMN3e`YSBws0 z-^rG897m9BW`^_RS5usJo`pI?d!=>ZN#4wXOk8${aPa%Vd%g;iHtJ$xx;?_1rw%BQ z_qxb4(uuuUJ;gv@{OmxrBL1tXIHtp5&T?|h726hQ>z;qj6Tyg(M5~s zjW*DEq4BEj)KQ+fzt}54p|mhTL)tB9Ztl+8<#vA2OO3WwVJCTa=>7Jd`~J?0XJA#D zsVB&Rd%_}h@_`?1oKZr7tK=7LQGV3}`7=a>X}S6pYbB*NeNQFyQHQ{&f3Bh3cIr7YMxD=Vq#{?z_SnnK!~^e@?=4w(*6Dg^|t7v!w2X)YlkV>YO9vY^Sv#OP>^P7tKO9#vra z3e|5*U!I%%(haiE0KV7U*P^S^ewn97#}J}(t*()od&=W^=s~!qL@lJq^Xql;+se`e zvW6I}Up@#%7ksrFGi{`F-+EiCiu&md#%rV`pWt7mcrX5i3j5D~^}lOn+G-Y-nCx;6 z<`$j+Jq`dLw*e-*y0y0jd<~Ob3!ujd;0AEQ_o+ELx&ruqzyDSHUEI+1yDGmbs`y%kO{6iJw@8d^37Oc~*$Myef@To6vUN3cCS(w| zHF7l*H8XKAHG}5ohjwvwHZ!t=_S~$^FmTx7gzew^r210j6f8ckH+w#rzi!>#gv03s z<}vJoU{FHYL*{A7bsOmYN-Fx($>%^9enONgnUp?~PnktA6-sd?@rCsM@5Ay%c|%l_ zJZxd&S&mq2v?NWcjFSagHRjml!;3jh>$2<6Pl?Wc>K)X(dTB!Sk+$c7qxXJgyDcT4 zj)71&4|3oS6Y@~hAFC7!l{A(ESTUbxH)B_A)s)I$PK=T6AK95^v&OmuCH7jK<@Ki> z&>vqN`j{w58gIdLGGUg|=DWbk`DCt(3+^+LuTePk9pi%0n0H+CxSRGvn~I+sWwPK4TZ(5K#GQsaIsH%s03KSC^g%q^=lRQz)Fk9i1tUrT< z;)!vZtYZ__KtP^J`_8f4R|8;}J~N`; z{X(WGMO3TuG!?t+s9x=^s$W85*J>POopWz|o9U|+OM87|!ZUh4nV$1McQzfOF$YQ* z4oxD>sl2m=p50*tiNQGQ=-722dr4JPTp(~{WXsg@t{W~jN z?$IqN_b3>hR$W#*{ox{Lwn=&rPGGrMQ=@HmUYzXxB&cS%5|do;@A)! z3Ac>eUA4x>0k7_;e00s!1k@bj`ZzH)=*{yOEx@LkEQ$A2`9DrTN zoBe_Oqm7`8nFY?C(;HQWfO?EkfOCexew#My4|_qF1UJb$(c~1R)9PRch_$25+muId zk~b`mIF#)AxJbBu=<%8wT=l9bvbeK3?h$*ygO=@f%B(RPt*N8PPw5|-k!#r5 zbX@tzG2}ceOn(QQ?NXf$-V&UX2tulz_43I~Jch;w*T$4 znbDMS+2Ta*J<~WpF07)3L`Wv|dt^bOnC-M(J7(MfksU<$pi~};;KToYzZMT^IWB!% z@3F0v24KS>?!4W(f%v)$95uh*zTuoK%ygY($(mEim|)G>-MrmaSljeWp z@|?9HSatZZ$nr<2=zaZV>MpUYZu*CypGz9a4lN#ajPxg?UB|$zwsF-Os)`6j1AmT1OX{~WkGLuc{{^s+&S>MR zOAO+YJ)y1e`T1B-gq_kNFWlLkL9To9qcnqi5YTAc?#=i^$bfFFyW!kLBsw|nZ?`Hc z4HhwOyX`t>t$|hNe3tIhsxs@AaU)5KMlBaYetVPwL8yGxDyFO}OLN&$p>f+9;pEaD zNUUc&GH1}HK8#E>{J6n|_g{ikVwG#}ZJuH<^xPUBkt}cuRts*Iar;hW(fQ^9z^ zO9c#yG0XOgUCSJn>KlrgP;!4)@B<`Qe+XY3c zpbO(Z=rE2nGA%855{ojkMHwbRL!fz#Mm7+M-U*H_G%p|Od_ijKd|}!YjEUhwOx+tm z2u9V7=)#OU$%r^om@X#@Cast7tJLe%Ut(&IW?vkyI3Ww$)Ouo0=98|un`CzythB#D zh!Xm~hQCkNo7?%aJ|e^VX!;YUVGa?uGJMQ#{HDpUA^Z(hIg`MBM-tUF4rPjz&!cW0 zC5b^X(uC>+kMDzVX@9LS`L-%u#SVh1YdIm^6*i=WD~p>35V;&2sp59j;nmxPses)- zxPGMrUxXE-y`h56fhcp992PNj0n3Z1+fue;AHrk(S@Q#_$TNlpD?tl@DBJHA5)u~x zRXH)L>ZhTW&POXjaTrpCtArkWGNh1B$uN!FRpLQJ;yoxR^gp|#{pesqS7YiySveft~eT!8RDrzg{x$JgyW_7>>DBq0_ zBd00IP#t6?wVWQPEvEAPW zqK!hIe(c`UbF?|grGMAh_(PLO*d~QRfHM~^kAb;+#a6_i=aXxebMp|ilqisyI$>M= zlC_=C;4PmK>l~FUyo-M3J8;oVpY5lFk%62K zn{1cFh?WvZ7q^w;KQ|~gUR-u)(FiYn#r{8?kTq9zfr1ziAlje^iKW}u$MCsZH4A~g ztcaLNl$^tD(b7kYiLe%e2}zES{aJQ8veUVDU_i^Gk&$L*w{bXi5eIQ@9HrBBb|;C9 zSYAYQ8W)))daVi@Rr=i}|JK_~%rDk&e#q_)E8Cslmqd&RDBwk>vr-Q{AnC9&2tzYt zcVTUGBBWts!6h{=xsdmG;SO|s$=erYX4A9*_JpD33kI<1{riai32mX0fU60b>5N>v zS1M**Vs)$)s3*mZ;zJhODmolaC-|Vd3zvGY6Pd{~S8hT?(LQ1Kqelh)<9uRE+(THU zbV5tBXb-XIp`Ie{h>g#DxSi|<3Q+eZ(m!&_vYU4AqjYn3>CF}UN9*xeVQ zl_eSxs3|@SoOLpijGKPQT@omX`fxiI?MP*f^fYZ|7tj8W-WaA>}) zCv=EPrbK2=g!dt{-^TLcTKqZgCu6!KugcFbTlt`KWV2@3eN-zU2l2a&!2HD4)XZ06 zk^Zz)PO?Brt>b=sXGYs>iY9CCqfjIxLyZ{0PkX6Rha9+~-=+rRax?9z4E}eYMt6A` z#l-DZb>rl{Hj5G#%;gf*sh`c+kp~OVqWM?QiHv>kaLEJN6meXx8c4HK}cMBQ#;3LLVP#16js-x3DhhjUltLW~XBJ#uX z!svPnQo(I+#=eA+xX^kMSIx+;n!$KDlGx`?DC0g%Qb1;KSRqRq3o@9&L=cqGK|6qd zIdvS8x)n?A4bm_nFH!@!@RxUQ#T&-F^mYfagSu{)poFRV_NojO@hHM<+ZYUXOU96N zo#jL@9wzRwm;}Cc7erRRbVW527UBvhlCs6u5fyF91xV9LZ-qR1-DyArJ^Fki!oRg9hRrstOLf-#FkQ*N*=knb^7hCuCy&Un5iL z|3juvjl0yMDq2hi;1UKMcm14yrZhHPW!B_85Zb|H_LRy8BvD5KeLI$k>A2c2)4HJ& zZGwRB=e3>v1?t0vEs`HeAAdL32k|ncQDzc3S2q;1;8I;tayHs2Lvt*@=()#Twz1}p zWM==72DE!0ciCJF*54+F>~3fm0*lIM2{Gk228H%x-XL|*g|V_;`YN=E7;EySb{Dzc z^XN`%DKPV)zObL0bk-~lne3f?gO4T}=~uL_x{~+NTI{vfhH0wrBR#jH?Du~O)vrm+ z3%dPYX5tYpPdmh8zuGwHZRGlF@9uiE;qS9_icWfH2HtDTx>v_>jXW9@Eyl{y?V5de z5Zmi(-Bb^=1ISr%b35F>+RHPvK`i@CTG$5r{eSJ#$2nh5YOXqr3F`Ni zeG46j;rFaNeQPNxW_k^sTDg$3p~o*JXi>@RN258{ok8_fzkk;>Bn;w3-_oZ^kHp2q zb;?rX&~u6v0`4rK249gZ94!_&>N}%Irxszo&0M{n@}X#_XpL~`!7`AkOZ~_W0+-;C zX2>9D$b;dF@i_%YCx8mbAOdH{Mo&QFl+Fwg-1HS6TPZ!*7HNO>*+%y9%&{)~|+YZlomToC-a?^QJ0S-ywqyzJ-r?5*uL z#CSJ5tuRwioP2J*gfgBuBg5Lv04@@)uZ{IG*t{32G-K`4*WW^}R{i}qrB_Wj`#JXM}((%jFyRRm9cwho_F0kZ~1h!ELFJjXHf7#&ih#2{)Ea+ zQOv`(4KdfgEZ|bsKY6Y!#`?y6BhbqB7Mx<7eTBv`Y<#s9gpQ$TRRQZNeKd`V_01xq zkemUzOZ~mh_FqVvaoW}hWW2QJ)4qIYt>VZFaB>DJyUFGa1sO(~&9iGWW0KpC@r}fA z4AGN&?WxEaO#^XV0kHi`WkGUSd+!!G-nHkW#+wN5@m}utWN8=WisL^{^I7yWc$E_i z3{lxp{Pf;HL3E-CxoZj`db=&kE%BacnSn1vstm*;dto5X)tqLmJs~|AA_Mvl$_Pq> zxzdB)RUIe*5D`FlJaGfYtxb9v8Hrnhkgn-TPSGYd#h60vWMK)#GulWmbUcLcvgvCAe{@j%>+M48 zdiX@HA62*H*6EUHrDmG3CdMt8lsip)ZBBCKPWB8*;qP-Wqi`N`u_lzktNBMH6KN&$ z_yj>u;<1GXz#gKcz&{gEL5iyX7Rxto2&YT>xw6`J2}!P!&DHW8C)>@}RMKBk5k zRp_q3W%@6LGdYKadxG1n&d}ww1PtEP2Rxl2I*&hbn;@hV$$-|aIirB9B);Ri`?7vi z5H4Dfc_rK51!k#9UIF?9bhM%U7F*}psHa?CO8gFtX)`{@z(4Ey5uZ;pm9JRDufdA9 zSwd0x-nb(PKZzh-xDn#m>`I=(Nc7S64!*(%R%58X;P2SoBN9i z*G)BS@PYERv;l{6OoS-9>bJAk`{Nb|Re+{a-EqL6IQ%E#**RnMofu@D@av2{n)>1| zrPM=e34q%aMGS_R-~XM}p1UWu2V(E9E#V|@Jio1I%`YpOM9cFSuTUBh0q2Pnp#8~i zh`VUP{^@{1Ty(tWuvCOg$4qe&;4|M#St*v*8oYLWuBiR0^j=o~rd!lrUsuP?{kae3gTrVt@eJlO2?o2b7lyoEK5g|7B&RZSpVO3?Y3v;#-G9XD6Lv z%u+Q}t72CAvd*cVd=LAc?UV#QW2$)+{?U}*4C^sXbAdy!L8r`$S$!349vL z&03j9B|j()y@!z*ZGpA@;+yGLn4%(v|L_+>;N)C#_6LQ&wA7{x@AVSbf%9n-t>L-boiVVm`oj1REK2Q0Spgn_4;95B&W!OsO#~_^K`yHwi4DeV)A5*m zZ@bBcRiC?cRR|ly?j`U^ds~z_4Nmx|M%+XENJ1^^oeX?s8Q6e|P%3~l`lprZg4Yih z8CkwUak_xILN@7xy4V7sq{y17Z?Mvi1<@EpbbXODU0#w$pUA;kk^_-gMfYS0MNwy0 z{T*BdS>VAz=FNgK-WMFKq#1gy{z(bAbO=*mLSMa+6)AzYFBs+b>C3t)AGpHz>s@UZ zqR;AFil3VDvj)J8e&i@PlfpwsP(KC;P;?%L@OansV}IVQ`nT*u6RKK9XoO)E&GXH3 zTPy7>$r5TXiS2gYgC-ATL=?t7kUY2e_xfUx{THFE3cT#U0}vPc{{%p+|NDkQOUC7h z9l7`OKbcWcl{lk5Xn#kE?c6Yy!k_HFdK;7S&IM%JgW<$z{JcjG`3f9>=w#UmcXvO; zz|j!E$5nlo5qEaN`T1ew4b_}|g1rB+d1|7l6I*8w0a+~Or1&IdGAUtJT(7u=8UI|B z$5E6i>ql7VWQ6Oq+>_zeJpVO!yq{C6y$Q{W*vRL0zrn59yYHVnjtv27sC9@6s ziRYjjYxUkI)Y(Oq6^%};7VB$>vrqoJw)W>Ddtpr%5<+{Mt@vobwtn7M#nUL1SP_(( zqpwHn5|f4!Q(i-bs6ovoxGpD)Ii(#|FQPey&^=)HpF~jqbtI{c% z`y9ddSt~;-N^Xt7tG%H}wBt}0P$RBp2oo~Q2HXIRsb_%WUt)BnniPtWR2~}3^!W7( z;b-HMk3-9+l{oGFIMx~Hx=6AGpI0AX4Y_-a%jU(-WKJ!unJ%QesR|V2Jws)?Y55pn z4g2bUg*ga)H0|k36;6#rA;oqz!dXSMPn|jzvB)EDFMnCERD^~m!kJ<}9#V$sbt~Z= zOGgWlHwDTYmW;DY?Jyms$PGrt_gft^$0%UleCue-PzEg*FAh}}OvUU75EB6<-L$8z zRu-)Q+8|Q+NN`6_!68gR-Pp*XPB2xTJGK?h(~VKW~lR+MY~A-S|z7QZeyW##E8m}Y&P^Pd}SiC>2ZI!a-l+mBrr-h zIrLiv`9Ms_`2nb!VXzenU6#oi81e~A*+V_}>lL~zjW$?&5U{b{b}QQ?umv~Fqr${_ zc?f+@&@TJ~NPgNsV5TYMd_FoSGN8 z0zcKNb*_yePIW^`_MT=gP7=*aCrAz^%8)D!qa)ZCH$)>U(Pj?s6YAWP4H9bg z!nNm<`obslI=OO9M7<0TyB$<5y#rQ30FTL~LSytl7FzH;ZL6^c)D2et2`oTZ3X;*7QsTq(^}32m7{ z4;8%CIXUz;l=MBf zac^QjL$5ekxzLOB)|M)&?|sf=jq=iY^xMN;A?!f%jyF@PfY!*kv4wH}V=t+kP z;mjpBuY7a*Xx*rK|BDjfTT)7T%sE(u0pY z_UPh^h}S;tPL27lpuc8KB_dP+5ObcQyx!ifi*#4%@rUuutkeKew^K@7WnJDFGcXxV zl0)B(WOv_Uz3Cm}sFPQ9x8!mbg|`BQw`EtKRC=4;R9zhzg?oJhphP#EwL_Q(QP{%- zT|Y5R6W4m@->BXJm);3}PWp#OQ?DK&rk8(ep|%}53$h#IKZTxXKI|n+aAQm|mxbAK zKz>(O9poI!=htskEdMmY-g;v7a(8dVwzfP%w?bF*qPMS^Gr2pU(Fzj;ZI$T&hP&~2 zjZ{tT)P%*^JshxDPJk<8L0)Q;WC0;_bOJ)KZWeQW3FuU+{U0jb z(OkNWjaWih$dNI)cX5AB(^8dY#7PMs%?|1Ed^;u1VZ%?5`xETDb&JSZn$Xpx zM3eo%tG;VASP8G)t|sILIY0Wj`Y!ju@?mqqV}WFgUN`Ih0qKHp&qry{!dh4RK4&|l zg6{VcY=p?UZnLH%h>}b$9Z~wJeQ83QL;zl6L%b?@6VrvUulR^%C-27x1l~*m3T8y) zaBOc!;S>@@6iKYFtIJb;&~K_>EUZ&cU@0soK33lCD__8%2Nr(-w3uf@mK{on-47fv z2yeiDry?e1*8c&E7}=Qqw^dqgrjE;2EArUhBh^!Cp*b<6N20&WmhL|*dXz4T6su2w zOv^|m=|^I!&X~c^KVzY2RZ1SIx!5rPx(pd|Sy}qo)=EQO8$fOJP>|y#9^i8iJX4gvw=z$`TOFUTq9+6rRxM=2g9VD-m+Y;n9kB> zgA)fE`@PyhTg)2?&YtRsz>)yN9L1!(Ij}kr8-zd>sRZ z3dquSdJb+l44eW2oPPEMriaz%d`yxN-I3Lq;q*ABFk`XoRq*ZH{#3|oRjPC-D!nX5 zYrMj6$>8_UCT2->29X&$np(SjfFclN3=E~DLj zr}y_2?dCad58YsJ`OBM|#qd4yw0jl=YM&%!B-(rTbf!x5u?c@mFPE9<$s{sR#99Y} zs22(e3yDdag1H$%I$MI0Y4aad)@;fC1Qgn%5YUrim=X{v+y@weE6joJR)Pbrew)dv zxkw`DTuXZ8zPwXii+AwIP(tgGqEl|SnI`qV;|mSR5|E|kN5}RyFgV*`h}|(*{zIVJ z1x5u9p{=Qn^n*~8Rn<=Lc`SOrJi{X)-MLQU&oNq1Yu&_sXH5lx7rq5UytN#GnVDTv zPBds0@EG{NaY>X7wQ+sV)4r~^EJGU*mhf8L(<`Sx9cJuTfnAX%VD?Vk%VZ3%M?zP0 z13C3Z@f4=qaeQ5FDzq`#tE@H>__lLJ?O_mpVA8d+*?%&+p!>4wvD~w{%=)yb!+z>+ z0j0{)uY`ZUnf{{ko+xs|=d*szr8ddul)I{w$!7h-Y^WqMRM`Q7DTA~<)iEAGkFql= zsEyhe?tnr@aqlUEi0pWxv0tih2RjQEb?&Fj+*-IAb&zP(`>@vXoychaiz}`*_!UiU zu#YO_oHqNynNUc%-($UX{jTsnxrb(Sn1~h&L;b=_RKX}@fqy26y}^B6>|G_n6&z-5 zh2J7ga0IE|3$2a#q^g;!@`k`nrTgX}B~xfRfS$_gyP%xL z+-iU{gvzhjwrc47+BOhz3X(`&2eQ7CcLpfbFSUh*G;@4bAd}FWTzWPZs~V0gmoQ;pd<9Ai^xyvn96yPseHk7zl3!gMbN7Fb*%s8O0M`N ztbp1_=m_{h4?qz_BccL}I8vslHAQwmL=rz3n#xo=BvjqJ4M7u|3qCjd_$Bnl%9s^| zrp+USLpJ*}$7vUC%$iPTSC+<0rM+J8dYBhX1$uZ017yKCNUvmw{cut4H&5HD`m!W$ zdvipD1+2f&e9wZAPl_bRF*POrK>UwqeY_*?;YdK(we2q z_?+tdtN?qHGgxqrWP~63u7u0X_Id^OHS-f*XTD|o9);L*r^r5XDr}l0UO_4#W#SDCHME7yu zGUhFj1}NVaZ{a}a+konqSv?f?8UTEVymz+~%!~>WZj{WJ2@76$ipyi(4vhD~1p1L) zD1+|Inc`SQ%;S+Ow|&!mW;+nAK87SBrjaAFVhDo|xc&-+%0zSqlI+1W{b6$EOi=hU z>K-cL7KIb<{&JJ?+NYPNc-5AT34DetN?CuX5YXOE7$MfN(XYQ|%3$&ggS!!ImjmVCeo%C~8Qs^2A7knu!*lTg7(doWP`)#+w;{ z1Wp9vBF#D8DoBtS>cXRt-_0S##Us1@(x_!oocbV*Z2p;#E+{i#T)O(YSaLv>dzUCLQEBA|7du@atRi^TQbDVTv0DCIY zBw>O%CrV&H0dzA~%-xQ=C|3?M!m@gr<#Z zDfR5WE|EUH*46>dM+mn|KX|l#(kzeV&V$x(6qT;f3vGrC0<3+W6B@lY8VZb)h{y`I8@#q` zpIhg#CAMseNv0d(zS}%dCKt*weUHi!BefndNe;o!z>xoqz>xD@^WT}`|F43odO4aA zGAI~ZtGL=hGsqJ%F*5#_4C?ISO32B?{{N|>%&aW`>mX)E+s*;E4e7_fFPLBpVeF*) zzLXJ|Qz{qS5@^Uds3lx+e34DbdIzf9rS|KSzqu>fMl70RlZ{ZwV|xb&K4QqrD_jPS z>X;B!x@&xlxA2WAqpNK)|&B~)D`rh}T^kKeHL9|DcG@mZO-(BR%~Fb=Qj-lPY=An$&~SoqFtJS0c&=z1TBR-c2g?<1 zlF~4Vk-sbt3xOuACew5@K)#?k5$05>!5;3rAbOk8{#ViyOo@qibVNW2ZbXVvk_r** zBj^&wqzSEhiY{#O9J*Bf2?J4Nx#;|?DCbyBJOB~2qJj0imRfX>TUA6OV~&6+7Pz~* z11iWP=;gaf=rgfaX;7Gg@nlmS6E*mAX`UGpJ3@Uzc*qQ->oh%mn_u}s!Rhpv08#1k zwx&(I@5<`qjG87m*ir4f>*?iE_lsmU?2mdb43~f#z5U!oKLL9*OeS6<%WS63BMgT> z@vmXzO0z{F5A=>l*IL)SAI`4n+g$a052pZbM1AkzT=mT}Lq^Vg5AVBE^JVXb9YW6a z0d(&{X!Xs?sr9RWKxc>Z&~5&gor}Bw!}ASyx71BcVmT|ne$W6u-wvBk)7jQFyzg$m zlHc%VK-*8w;`~$UO~p6fYaDDJUOhijoki-Kl)XYVIChvG~ljJG$W z18J#d0bmAOFKbh|;8T^bg6g@1F|I-}QBnC~*&E$v@+{d=hqE zWhJ6Jb4jcjZq+X$q9w$R3dx7huu;{cumKn=n!K|WBbP{=W677iQAT$=Bd3XX6t%O7 zjZ~)034a?0#ZsKA6O&QZC*c&|`})oJ0KFMd_POGZ7qz86j=F388{ zPfjKd8a5n;5<5Bt397<*A9jbhD$6a zN)*CUkW>yFI1kGJCS!t5z{v%k7NcfG!Cwh&C1n9{6?6bQW;n|+8#Kf7DiwOKKp&TY zsH*!rKQL1iC_Gki6di_bqXiMX*1dl4s89}n-yMi_3%B>K=i2R#EbV}i-x+<{dpNK9 z1vtIq_Z4iZMP*q0<`K30wbb7fnW%_dfovi{6B=8!zJcZ{eulz!&Lj(KoI4K!X_-UTeM-7dqucW%ITwpT)JX}T)c3>(|~v~ zgjjKIZ2Jqm6lL+rQy`L=f7r(j#`eH{v+c-H!9dd(fW@MaLhHsuWn|tDul14ke$A#1 zl%!BoXn`d#GSs%E4&>E?L>e5$;k@vm?J2h`gRaQ}k@ed)c{Rkr39~?CVh9^PFF^!B zQX!cY-2rfn$>@}4QHVM&*&w{kz*b#i#nIX9pX^7(mMwFlQma&FSD9SEQE6P8wnM#v z#O0A_p;O4;xuM3$!n_2>20(}9w6#__Bo+o?#G>(*H>1xPLN0>S<2PXG%OvKgzO~Le z1+JHEHei0+F0%@9+CoNa%y2kuqXcPJIBk{Fs2K;!S*|lR%eim#&1qnclz*z< zyGoom5)O3T?3FqjYNmk+1gRlNQny@L^`e+}OnyT~R0)THi_Vx96>cS$>K zlN+l1@9f^6Z{*Uk`ezs$m+zuLUEw|sFi0Nh*(p>)1Kra`*n?H#m2O!q=dlB4EqfYW z+IOK~verR95uvv7u9&H|v#yw#4Nu>S_v%3`tSJ~?t2Un_ZRzQ$f3bUqpV7~Ko4RjK z-Cb|J8>YU$P!|qIpP!OQMNJk%xTpQ!uWN8}qb3<9J}!68oap6$w zw5Q6a`BbILsvXMI$;sz4I6c2W!|`K)|Bif2Y>fXyjKs{s@xP6cay8}t%gFBeFC)9C znieu2^dcuk>d-B&ys6dZH8Bf>ZUC7EwK7qam;V1M*~nBXo2K-j^E;qHqgQKi4-?LV z6#0Ai^SuF{9G|2qQj?3CqbU*PQHkkfy0V9)=2p-}BgZz&r~gr=sh3DUQgD8{oyp=h z)$orK=1G;r=31?;Y?~*h$f$To5?5AEbw%Cs{=%0b|NE+s$k`}ge^DpovQXC4%>RAy zX`A#vR`cUmTNL#;6Bn&>S~q3mKciXP?sQixG+dZ38M2E4Z7uDRVi51O$yAfFFq}Ro zou*vMDxe{?KMZy+uk~M{des4jc#O(iJ~#Wf?dQ*tMUBRibvdEhpUPaSrGB>G*t)}- z(Y#SKsinqX5zJyH$7~b2$efj@0GH67T1bM7Z%XcK?OCP=Ll7IW_W^(puIC#H{=2`x zm$Tb6-#5Fu!A#?V`@s6KJTYha6=8#|v8>kWDC9I$(F0Ta3VxO@zY1%99N=82 zdp+4V8!C0O*&IUx#_4iLPT`s(=(vn90R8$7BoiQ_gGD-sQe>V$sWfy-C>XclY#>gXES zB7}icfkHAGWKc%8O)Rxe~)bgbI$y-Yj%v0?QMNO<=~y zH>#yT=Q+sJ^I8LHoG}T{N7H^X3OUdbZDJJrG4ZDCFf>*2c^CY1i)IhLcnmB*9HBj3 zyvKcw;Y(ND7j_^=Ay9nU8r(kK(cXyiK3j-h9`l9REFs!>q6nN}?Y zZkW3UUlfb(afeS*91w11+i|Uxk&<^ zmQZtvBkK@2nBVZX%kHLVg>b6huum_szbWpYr4gwxBaSu~B+@NHDY3-WupSj2Uk!jZ z{v*H5>t1zb;6?^c41gm>A*dtbmlhpTOjCutDgugc11xXbP2m(fg=l5$(a)r4X?taT zA-(1u7^u`b&Q7PumPE5z19BkLu~>uCH0TZNro~iGI2U642NEo0V)p*^5f^e-Bb9_7 zWOARKPmjsE_pws-KJ&-~U4}>U8|qAN1rjEr>WuBKPC82(VO?kllmZ%rGac=893B2z z4vs1`)&lMtsTtXpFKB@(T?J7HcHRPZ;E;?Q9*1U-lXi$Xj z*lQ==NX)Svu^)`G289EpgEq{R;;16jHXLQd-yDfg>6abEUdtkK2eFp2Cqguj;|HD% z7!d|)K2J7KvAB#@9b$lNrBSxx(@{mQ6zV_!GP5L}}-^E^c)>i%0q!&z{Gf&(~;E0K}P(5g7$u zpGWEWfFa3fdylL15E;6$L+8PgMF|Q^JvJ*diCU!JXQn(Y=tGVs<*H$~HAt6!liGJs z+tVkK28e9Xg$s6cMAnw#lR20qByz7|jQU!Jk%n|*)9KJuMiN2?~XrF+Go zeGoJ7e2T4_XDoknq;@PVXcMVIG5^)0A_%cX5#^T*8h8CY>8tzffA#P!c32DS|RO)x9*d}4-1 zHIjX>uKA8Y1@ipkL=X0zC)x6WlY*#=W3>4jqD1oD1n&f0XYXhQwfkQ2{7mOQThUQx ztw0$?D14EnjJ5i&h&fU;JK97SgggD;(vOccr7m#f>u(0HAzx|1=n)i8KQ|^E7~$&( z3qtn0D99w&GL4Lfl<-H~Nq~V@8I?}5Ma&I0K22Y2kbu8wp|((lWRCb2GYt-Dk9{lH z#69u33DG*Aoe0o{W%u}NedwZh=tcYa9(JSPl9cOTcQ^hyX>1~QKO?}K-l7Ap!!m23 zbwRrT5Cv<%P~gFo1lBwVoV~0S_D_`4&lM_WL1|Dh5(BpMhYo2Y%w>MkCI6#ZFN45U zL8oyEPoM?`uzKp)L1|&tKi`iCpYXL*K0rn^NV_T_%|BRWY-rwwf*lYTaD#6#VjFJO zechkacotC0EYJ+bx4);&7VoHu%PYf<&5^}vH0aAyGM!0+k))&(+R2K_U<2X13^^IV z{n-|z&jHNi&N`<8x;w|$Q(~FH+2zm$Ah+l%kFH%%&FUpvGy3~s=xpr=!HX^)_m}W5 z>+1XAcznutEu7qtma0Da#iId;WV>g(2bAIw#i_VIYntPfj&yAf(I7)!^_&1BhFC=j zBU2wEQ76PQ9NRlhTd)!s7&96L#Ct_y7;g&vbzfi4R{@y6d&2(%4RQQWvNa>y|5~=5 z`L9x~6De@-k%rapPLTyEln1EK6*vF5rQ^xecw;><~EOe?ZM(<(bBvirQZ{U{7Ah$2GFUkHet8Gz!mVsQKacpFmd#W2^!udhM zU0cCo(d=1`R`}7GTcu-`pOIGXC9kJsGN)2SOGSg|uauBQzIT|yRx8}qb1#otys}Rh z?MH{ep{mu-+_vLEPmnU{0)w2EA6>PKwHq6p_27xSo@-D^%VsBC*TWX-n%rTLw*0Tt zk9*NSQ*y(-#U=7;M=e;^(uu*co5@b=gvQEdl;onjt>yKa{#oN4nWK8Ta$t!VTRD?U z80wg3;L>O4k1JNwE%0!ftiHzgec+PTX(+fgl#J)rUG^uM@Fmwx3j&d)Lx+r=cy33P z#xvTV>E&@-r9sN=^P2p7!!ClY9b>h6AvMzs9_=w8NXBuVC5EGuacR1v*=Ok0glQsB z7VAE=?lI3O&oODU-A9{&j;L~g>@>o}P@|M!RS14PAzZJ5TQo5uCMZ*Pr^I!A`f zK-NBWz6Ly5V;WLp{ZV9pnWd|x>B_Ve{cWziKiKdXE@2PN@m_%(TZKCM)xKbY7P$wA>(s1($ z-2Hr~^<-yZnAjUxU&hs85llf<818go*yJQMEy*|Qi~W|Lh9&?j;{>>4s7|g2O07G* zXd_7)=xn~V#}n1`EK}V_&>o0mDVn`J4X_0KpLYsu^4g`t3-D-Z)cOY8pVi@Z>Dm%)5Xmjz_SW}z+%tTKo87SUD(l_i%Rfz>e3~|BUcKn`8O8FO8%IY zN@~UeMbtl3KiEu)G-AExrk+or1qZaW9qPmzF_fPUxD{iGhZwuRlDiPvjvV)nshFFM z;|H#)0o($k^g!&;eOuMBL`Ip-y&9Ye)k;XfDQf-VGS}zVsZ;!@4f}A69sNEDa|BO$ zZiGM@otVu5Msz9Syr6>v*rS|)>Lu&QAVOH;JZgwVLRM_-(spzN0R!lc@n-nl?=DNp z!ZWcRt25zaFL)-P>|FE&L#M5QeD;%!A}Wgj7`-@m1czT7R_EeHpJ6wLS3+(pkDThd z(UiCih+_M`(MU_J{f-Pgdvl5Jg~X%8dbDu1_2(Yq4Y15- zOt5U5vTOX*C2tm)2pheBnD{pVBa+&uK{FdaXHhgw7D!%7MZm7)Z*|yE#pf%f-07awj$yvZ|6Vd25X4dj?W4 zM!O(Am^N0<7pSVtm#d4BMmRY;iX`AcJJf}Tml?=UCtL%#h=f1wUaVhK z@>R{A3h~gWLi=;fgU=4oE#2^^0Hj)i`=5WXs*GES{FRW2mzw>rD#<=4@j9h+5V6&7 z9H-ShkOi~^yLm#i0l?)&&N1tmx zNed;NFcNLQXxu&ccn=oW;dG0X!tf9}n6>DVpy!@n0dEn|t`mmh=n%k06I{6u#5Pr! z?Ia^!Nzzp2s7Kd$aH=m-{1La_LQCl6%3-(v9ViS7E(8bj(=e zsw{97j`A;nYz|RDByYfp&64g8HiJMS#PlsvmblPib^92h8*#KZoFJ(aMfkriDgX$Q z@8B-MN8zpQIRE`%kviHn>I|(?5JfTD#%X!Ih1uKS$^dJ1Qns));CoCIu=PG!H98kw zBihUqv1Hu6H|X;aNf|rZRtwN=BRkq~NGB>&0PEdvTs_BFSU$>EsWB&$|srvRdx> zW(u+rQM=FOBCxkTsSZ)=Pb1wU8TXV7fD}xFnRH}+JVp&6*6kF}d$3m@niOtelTNrZ zpx$M6*dQM>@w7hpx(ZX6%qJ8@D`QwZ-fzh!d&WO#C=LUGUQlxLWD3KLhKLMh#26H^ z8LRIGY}umQsOvHWF6Vsu*P$@zdl#AD%>uvzbLHk;p-{xH+T^DSo>Z#DV8$7qX^fe0%ip^j@&YJ7bzPmk)?peeg=~h zXAY}|E?8@v&dw3_V3iQHxX=9LyZeL0q+fr#=+Rr5%-&dj@+LzLXQo;9e$V%zTa<>J zgEDb8MH*B{c_Ff-wJsrAlCWM70w3=S0l>$LED;1bI6eOmaH&xlYLR?mv== z03KdAN`$=;I|7;E9{q-(Mb&3(v0cyiYxTNzKSP!Fl9fS|$A~qjL4dP-+pD~V_QsE} z4_Z290K2|0Z_Xx%xmntMSpx34*{JE41iZ;PA_KFX<}I^{6c8j>bqt4NZ7n|`t5f?M z`e;SQ3~Qlr3ee&rJ{UQFuUS7t?Qg9EDTnLwSF>;l@4&Bm>vF^QfJ%Q}Zngsq-OI=A zL%Igm0`iJpw$N_@KJ1$GacdL$E9xpV#GpJ;@_^W=pg!TT9i6jyA6o3wOLrRRop;kN zl33IgPiMs5)wFEo(@mVHgp`){Vws6SE6D{_(%@}{F;v6efrX7}Y>n>$4}Qb}A{qh7 zSI7&B!ZKs);JgDEAz%^-5A7_1tS6W2ws`L^@Yx(fB-6c;&NK$QCq2QG{IF`fV}L&# zJY|yO<^YSbXYP^a4-}io2qwA{d<*Fiac1#-cwu>5ZO*mS>!~}7ebUhC&R5^p)wLX^ z3!nz%7qr+_qux!jtAEQL!2UBo?{~rxKg#3*cd3Lv8o@E`C8;HhsbBL`9=s>tI{JSWN5Ex!j4{GK^%TeASqi`b({Ay~fs}bthG63kl+< zyFM=g-+-EJz0PxIapzhwtLZ$dFoTK?!ykKsJG)}nErqLFoN_o{!uy^8sKMd1O|uU)w_=S2*S3~grH+KoE|Wxhz{H}!)2o@-oSM{om8gxH?)S&n1V>aNHR~@ z`b>j?a&g3Ir9kw%Giy*0n1SZtD*rl!zX<;AdO$Q{@V!H-!VtlE+jNu{EhN)zBA+k-XhD14 z>lN6V)X1HhQ1(Xn1LQ(k2?zWzfjfQ3uT7&1G`OH#*r06Q2>9I`7ug%lg>APsfB+NH)P^bT+$ocEu?%^c3N*=t2u54t-{DSV0xS=G0lj`$d&0`V zN4=ATutqKw$|cYIF%lc}J8L#pF*JRfz~EYWV4AC-YE&_|CO#CPo>B6ZlU1P%na(-L zCYQS+emJXE3PmFDDc6>QbG#tu3*7pnzCv(F{J#Zil&N#J_FVJKRV0;rv<^NT5S7)( zav7w#wafvF)3k^^?`W=iTkT$>_(^j!K>=kOpkzo}(FiO4{eDQ$%S{5JJfO8q3X@kx z?#%K!Ujfu7 zqRJo->3+wAu<1LhY8DIL{y;-l?cLBq`WV$-DJ}^tgprjmur>D7Xd+k>*b?Fhy=ry^ zTc?Q#M7cWioP1bkv6}=H8r4}`A%)i~xyKzp48NTPwK%XPA}M_YD~3@;weHoh**yt0 zDrv%mIX7R-AvMrMbD{v+2DjT6W{X-Vs?g#C;RFYbAi#9rK0)uJmBP(|O9Rt3%ZSe( zJ=a%E5$Jq}sZR&)CH!iS7bU+5N@gGQVtK4@b4O=byjsac)`dky;0*|pQZ7`>eI?F4x0p)8ED7g#z081|YR<^GWe)Q! z_)h!|U%$XP-TlS?A@MN%r%DPF`~SGF^e^%JS0%-7wsuZAEK3AI;O-)m?=7v^?a$$c z9rvGPzCIKh#!?AXl0Sz>v+n573xz_He92xTKy96E{%>yRJ`Fi{M;ek|?n*~LNs8cT&FMwU=X!$G1iU3oJmeciJ$6T)Vo1KfE~^z`XBmva^I znT@?UACc;)p?)qw%3^8V!`f7QGRWtdK91af-s{Vz7b@g)zB4c1q2b$SeIZL63NL*$ zD}yeul?A~g)6YA?EE5${p)0FY*+O^JJuAw7+c~qxESQk%y!cB>(6lla*r17Sd?&L} zm$8Z_yb7kV!UY4V8mv^?spgkQK}8=E$Fc%M&l;nF8M0^mfisAf9~vU)t8;q3pFVok>@!?+ zJk2&!mN&0|g4<)i`v*R^K8vPq(wp^CHEu0H+CiI%22HLtk9=poD^476M(PK%b+=T~2h=)t4pFgLUr&OFWi z)BCJQ&UB81n^i||N!EUXRgdpW_20}Iyskn-X-8XJXX(16iBGUl^WZD^U7FRws18Fs z_7&YW;LTNbs#MqIN5|t+*XN|psm^M`sdJ*SU-az)eH^w%#a4Ig66v6hU=i1o`yPm$ zgOFoQ&wPVyoeQ(|UJWcK%Du_kj7)qMG;?a2Jzbt>yX(4IgKJWebrQ%(49d5*2K>)W zM(r>)_^&$x>=B1mL|j7M?7!NJ)bkb#eE<*VUgXV!$czO{pi$rGT$0m? zb<)CQAm&}4{9-f%HB8M3f?SG`5gDsEv3YRr2S*z{bE`jTe{U%VmBH4Z3u~_n^w-7qBOkcQhW)i)4 zzy0;V@(f05p3Zyg%n>c>Z_|_{1kDZfbrZVH8Z)5I5Zs=cDk9S!Mqrv2h@p0}Yw%RN zn1fYAHTI&}%>F^^kNw{r8s4P&Er&;&-0AKMp~PBF&-86gv*Oad|HoPlqa7@p=O zlBq1MT5-V%Qs}|9;9<>WEbJN(o`zO}y#n{`zODun)Qk7D3Y?%j`OiqNEW{pba~aEfbHqR6>S?GjMj8w8uMj25Mo$M9~uDt`Z;s%qsw-;eW3+1;})cfi9Bw?^j}k$SBo3 z%|XDcSmDlMw8mLAi3K~T)oOgXuyTC<)5!K-qmosi->=G2E@Xz$<2vA(6As4sR!F!j zAV`#VBmfavunu3A=UiA?zXwWIP~2Y$2p|~WG3#b94JNnFl_3u}4kO>3j-zo2R1dU5 zT4WrW0l?3UQN}MK)UAFg)pZnOnGl$<@^%g;s)m{iZg+AuL&YFpZbomj(b}qvwjv}M zv=)#tI@nWs`Bl;*B(7-PLMQ#0PNP!1 zpx@Sj=Ps@;l&n{sI2>IPtm+X7z>7=r>l6Ti4?JK=-mmy`+!Pa6EP+bI3r*fU&)UR)+w*Ac3w!AqJ>&elQLcI?2GF#)MN%XelIZ z5N1CVKoX4R==|?F;fuZ~yc0AoQJjCo&@ZT$hU3ksBu;lg5Q*U)clac~Zr}WNONV9C zG=WlhU{jgT`sc9jFWlg$Vef;r?W>n=pDY+Z9fuffAOhWW*u;IOd-2%h2o`;H{B16r z$nOI{i+cGuTXy}n3^3Tu1Lb#1WA_e*1IotSs`)o8_10%=Z0po_&o=0%?PzX*@h!5A z#_!(Bmk;YAM}ag&IRp`+0<9EL8Prel>kcm}US|vpm3;+=QfPyw(blF63PGYUJ;3WZh=h>m77~uXg*~^)k4W@8)FO3bECio6@iV z+{e99>gMk;W1Ge`^1Bfy^5Nh2079EX`J9b;P$4#08ua&+*4nbMYYEA6fu^z~7Pjti zcxh=3%%T#+kH|p3h1IT~eWw<^UlJr}n2>jYUvD4Rw{@FQa$Scg{c};G zYvipAX2{JpSXhu9Wj8bdW#0O9cu6*D9B>7;1JFg)~FWxAxSwgOZ zNS{e?@Z#>3Kgo5r<@uv&W1NsShM0Xfcp~8!?e6*(K-mc2DJD|IzQxpIb_C-&?GSzN z)z1d=gCHoHXQ3b{TS0fh>W%V!`lv`GzwjsZp2s;4BLTuY9JvfK1SkQS1OOTIpt3}` z8M!-M@Awp#h&%s1H8C>(->K>Ufnakou>T(fo0Wm-e_BWSzY*+Y_)${xupC1|kUQyR zFbl*%xxki4#hl~6)hq4HE@gf1ufAr@AiLgF4Q5^qALBMdB^$yU`BN5;qnuseqBpCv}Oe+&TuTK z&N^zY1>{3T+K#d2P$N1C*@C7pNZ8KQKf+xC#|Pe01!;cx97`80R0UZdgqYcnV%t9oAgNU$YS%=6vF37jz#Tg zn}X7b%WW3*Oz*}R26n4iEdT|J2+7r{r&5uc5_RU4f?US*3EKyf8&jEHs&-#OBGFRT zy$_%?y1?TgtB!|yQtW+$wba_#ANYU%wX80MZ@K8;^(UxCmyo~{eMyZJW5@ePdT@4Q%-B~IuK z6$v7~M-(&@GwN6iaSZoMQr4uhM=Tpc)RZZI zHtR^Kj`ypeq-|~hNIS48Qi`Ze$5~G#V;aydcXYo{NX4UskUe;=cz7gTQo}z+pzx_+ zWiA#C8#SNuiT-Va0%DK4i4Uc z*}hoB{OMQ@U+yGf^1a0rQgvqqGaQ%~xFzP<6%o_yjK5Tsa?mhCzUsELsl%&eAmeyX zV#yjcscy4hbjSPA#;n9cRDoa%*t4#wd~X3+&j zh$kk2LZv{&3IM>2d^~LYT+lSQd*yQR|K8k1Oznp&R0_x19ox4p4M%-ed5 zFA7CM?K+{*qQE+D^Mpomf%(&x0SG2GkJJJ*XA47XtQXMk*p#6T7&J1cB&yQv$OK>& z(q-4HeWqu_Z%e=9qxYwJkl|?As#jm%21r-;=V$T<-u~t9H#B5 zQCZ+s6W7rBXGVv&Ydx=bV;GQePkLFwr{A|J{>~0tkosTvOHhoptJUmpIE9Vty=Lnl zJ8w_NmYrvg_TJ~y=g-IG$LsXDO{rlx!s&pQUM*b%nz1P(1%P6^=5NbYPrcLiZrK3*1rD$JFvRrB*ixoCUCYI< zRDfl-Il|)Ys;ua97y(SQlJ@Z23WB6GEbD6dFj*PIZW6(@+ps=L%0PJm)2mL|7BY9G z$cKfH-nM}O=~Sb|*IbYvzDro8FqM+D^R0n1ZEYgJ%%1zBmK)Gvpm8;c6jZzxUby(U z+Tz&Jp;ilj;8VP!ZunEY0@~s`3YI7|@3rs=#im!oZQ`a^qiy4+Ia*n+s1@bBw9)av ze004{KbNY_KVGKIFgQ70fL*1M6dIfU1qLL*#tL=n>bHFc^MEaQTG$)ZVcmsWt!#bT zxO??*ck198RlqbWmUpYV;kCMSp8?D)6XCk59pb%{ zm%Eu-$(JWr6B-4l|4XIp8L8(mo$D`m5Iu^gPlzD6(wQP5P&U}?g6D69{HZpFYHmZ zqZY%-Jh-CTJf^suxAO;=j2%ai+_8nIy)c%JP-cpg(79?I_tk9=w?8lH54nr&sGw*pl^V@gZAYK( zdL|Yf!SvcC&-_|<28~0cN#Z6U0LA-n16l8%Q`m#Yq*Jw$Rm(*sgT2@>;0-o=yK#b# z7`Lo^BSYQw$L<`~jHe(^<`fY)BlnpFYU&Is_L)&KT@vOKJ5I1slDF54WOn#JQS9z1 zVR|Cp9WEN9Ls^yV2)SFa;CFno_Uf^L56LRWnR1|kdxSr}2y5DlwC`Ba4Y>{*@hX@&E|ep5fkGr zUFho$Sf`E}+?9aiW5o*EFaFrWc%{7H{kyPnQk5w-4OfSbCISJG;l5hEE-S>(HxM4A zaK*jgVR*%)?bY7Qe5TAi^L}AL5I{w>^9;`GD!1^YnCn9q~NioF;?=kx#J-^_!L3&kPrk!&$|vY&1d9{Wfn7 z=OtV5$eZQ{nF(7(6mMA13L3C4967#y!KW1~kpB1B$i(&^AZ|uZ4u=0}Ed29dj>s0Y zol|v-)PhpP5Ox9k8xF~2HrpE$quY(ne9;Xfq2!L@6uA-qp3}VmmI|e)%UA%M00f7g z+pa!zcjz9E-=I7Tef?gI-ekYTh9#-awjSN$AWu59745WAf^l?z68=+9#ciCZ@1Al! zTJ?#EBiiUc=}S7Mu6j+n%HsFfV%K?F4&$L=Y9jNe({}FbJLaC6s?(t3bnMxMR2w$> zEAEb{tp2H=v@aqJw6`sPx1C6Rm6}>%Z4~UIj(=c?+hsYB_4scP?MU0^;e)hMZ$RrF zLN%HqXx;dF{p;U=SH?{`L7J~$x!VFBAt|=oO>jRh^9NF8XqAOzP&3&{tv5PZe^}Ao zzC&$0c#H$ejC7c0WWQEDooLl~nW!GlT3|uuwa9BRnr)d_oUbI1d6Kmv%YEp!TaEW?QAaQg6 zPKY#X>(hnpL8?%^{;+OqL71nmjEvz2RGM$vn&|9NSWt4n zUVvmc0J>zoa6>9CuDJ!5(p$_ww^a3l$uoYekcV^C;gF|~kgUtH!Z$VB)D8dDr{^D7 ztpE=<7E$t{j_x%hV8D~0$%Qi~>B?a>>5o}3<_UHe8HH@KoWyTBHJ@LOfAOi;i?3Fp z0Ix>j`6i5_%P~R|ohDr;S4R}32m1_Z|7Clovu0)(Z`n$KV5oeonzmGFvJJ*C<~NAp zw$1vGj{xcG=@MAQ4IwpDYuZg42}-^(LsZ6y`PwUJ#0nBuE4oD;4?md`lc!B!>i$;dJKhy0b0KyhYAy z_-HkSxb8f3CsO_-2tYdP08+#F@IFv5i{5_<-`kfx*Kh|7gEbAwmz5ON$st}ZBxTl} z%b-gMIQ1+a13ns}ECxDYxQSfjj!nT$gcF4a8D5m@um&G8C`Y1Wf-Uva-vXWFPuIgj zO2*K5^%z7+P97-8i9J>y<+4adgK15|v=obZ!4V3NAm;>?P%F8Wj3`RXbg+~W!|?}w z@sC^r;+B%t5hoK@#MgzU$x^=P{#&ragAS0En~H<i%-YaA@4^G@EY%$H+edf7ob=AvMU9ZG)) zGJM88AAOMH>}rCwkeZQFm_ncgcdb7}uX;YXBN6R=&H|DJF{n>o>fRFK0Yx@ZToU5} z85ev?uRYjGfHJA(qLO#=@o(l~s4~pb%H^H%t8b$%K`>~3Nib@Yr&tGXQ{dD&27MsS77-+uHhQq<)FNtM`W@1~xI!txtCxqZ; z0I@UQ=(_;zR7t|pu9-gUwA`xyI{^&37CZ=DzP zPtw1Y&XkDihba(N8ySd_rx^0rnK2Rpsa49S?P-)p=qLKz6L$*e#;zWv!4_ZGMUG8E zep1_%IWzFCcS9g4_v60nu4CU=>p}3I3Gc`IsW9e^%=9J;%*hvtM)xeY@TRVtAvpLm zZ;)(!TPnw7B<#4^-E3;)VVdqJ#d!4Bpt>8RPQD{0$S-*XS zd!(`aX4$(F9i<+?hpmo-@@?{8WL8cQylwv^J=)I5tzio`t=8CHMH>qb+A>5Al>p&R z^72K8r!x_!zKNqQ_9e<1Fq+X+Y#8$n61Qb*&})0ykZ=eon$8Wmygh-wJSv|L+A9M; zpj<$AE5mG`YHYUnYcN?h5th1pf@o%Jo0^+}M0z>3!d19VMBhyiWgk)?bR{hQ3T(WV zZev8HSBmY9Y>3AR6$R0d^0^72UfjPmKzmAqX{X< z<9@%~iUc)NEY}+w(To215&*tGT-kAEYs~MjwiUl5J}(|D?$ypR4arc?uO2R^97>J( zq+KUs0A)Epk^Zo*w)ipfD_UZ88!!DVwrW0!=L~I`U^el<=+eTkk@l1zjr z;*(U_Xrg-Ja$SFkoRv2{ODp9lDNhM@PF-#ch>1a$&M)VPt9Amh#!IC@r%)we)fzwY z)AQ5pl&;TUmi#l^a%=_g?}#d{mu8UjG_ZKO5GvJaz$@#^RJjo~8&(`OBEv};T9C1y z4;k^8QiLww-K5M>?%?XwrZ620Y&m9r=mw`AVCK16P@(X3b7%PmYEo$(gg$+5bnDPe zv>4gCckeMC>J&qt${S~@Wl9~^%``omlSkftVqSmQT=z^TvrMR4H?=d&gF+AdZE;rL z5wobEu~IkOn`St~z{c(VV~y#WN*nxP6PI>(@Huy|FFMuQ*RNSqtLCZCy1Jx4Sc`*o zpN25Ea_uSr?Sj2o^fHRWzToRzJe{2s;%E66E}lPmKOku)9eucTGFrPYLx#l&CfjeZ zRX5by*#1xLH=r$hC_Wv?o;aMDk7@e5Y-qs0_{-->z!@#Ov%hO3NqpL(-%?Jojl$v( z&B!0plmaLc1}VwY4k2BPO){d-$1B5=c5d>{V5V@BY5{0Ix=Ya`u>OJ)e z;AIF?`yo=ym~6C*E|5;@wciFZnKLDy!~rx3E?5>s@&lrAESN8qiJ&kq=$B`WdhELH zc9}2OGeC(SMtQo_{F3?j?yZa>KhX3)nn>4>*jbd$|?aD5~Ea`%6h-C`!UZAH1r80q*ZyO!3H<2VzI2 zNi!4>|0uhy&d%A_GrDc%3vUWS?AEn>rkaiPz%UBcR+7)4(D4FXRCT5~TDh2(nuDHfpBc3G;FHSTG#sxCW`0T&= zRAZ~BaGEl|mOY0QVZ@0*SkCvVs{2iZ7ovYu{M`eX9J~#x)z!lC;=1Ue6Owu9x_UB{ zR(!7g;pn}5Slim4*z{tq_oTdr-QVNx8y*q?IMMtJ)_Yod2O6kAzG>h&51bBMg09U1 z*a_3GCIhw!QMcyhyg6-(Ch#=q=J=Wm@@u^ zY=9Wls1nI&MikG2|Gzw@xBkQs2O+55w#{;I|LN?h?WsUrYBKwrRZeZGfZA144>ZVfU?$5H@Vl)r)?jNI7yc3v)r7J!}bK(VNa zk;GJrA}QqeXZ?8ol^CywP6p=hMW#~Lu+&V{@_ah~p(bQ7z8Qj1Z0`4+vO05r3>(36 zV|0)&%VrIr$htl~1Nm4XvzTpui}&v)bEhH= zqjm@XALw!zKed+LVb_2zDQp^e!X;yU6Tl9RtmJNm@B*aG=CZ6xPf6xdXU3efd)1)f z?VUo=>qG~6t#X^y+=tRi;BifwR!m-EoEWO0J)*MXSb4R+V5z7d{O#Z_w9K<)*XvU1 zD&yo64~)PdP_E5)9{5^*2nm9_>Boa6YHREie2ivq$I;UPSNOCc4nR*pq{5PlzTfP^ z@T&GwQ1vl?V8^96viBsIP*l8$GPFk!svg4bfW!{ln!kR^9}ptZiVaK$Df>D@LaEtw z`x-A2lVmqWlxO)VNHx3F0_l?D&Qk3Y7XGA)hgdd3Z!J z4-~5o6f!Mp-msSM2}v*<#2i26AEp#Qyg69drLY{^tt2X!WYRa70dDE~o12j`G6)}kliUEFi3_?EGD)~*GyiTtWKHiPZPtWLH_n)5^yrrUP*mG1sHj0xl zpgO{8imbfk^Hz^^mMATERG0NU!?vlh_RKRPKI}b?P5KG)qvA@|I@?~$(D8wJg&rIN zfcpa%OhTUT&J^@Q7rwE&DH(rSM35e+RK9MI>%vA{pKb;HWxnGhm>n=LgLc9jO*|S9 z2y^D=W_?r@3xoK-t(@}-FUwc`N+c6_+2NR~QcuZ5bab2gK3JsaHTce(Vy!zR>8@;U zicp=>S#mq`15Nx@730FU9be+HfS9G0q0XwuDC0b1Ppt`?U zAa955IHSDu6%<$l4~0p&RFKP|*ZW^Q;Z*XjUS*fx$#pZXoCH!}ot~*BRO}X%tH4$5 z3;K!+Of!T_#_HfoKaj{|jVx!O8H@*P#*r5=$iwj+Vfoh1e}#29q1K&7pA@>c0%yNq z7k|O8a>K+KB_56cF>ppT%?A8=0>EEMj??511AuS|vECd4^-h8D_4E=i^`xV^+e!cf zk!6Ml)MzN9hJm_U6qQ1Xy~D8^Y6ZaJ2Mivzu#9XecKHH&L+yi~)&3TJfnAn?#GA22 zbO^{K<~Q}NjHv>s99@iW>V^teOYLjCDZ)bgBT92JJz*6~S6yL|5kKOFxw32q2!!xS zuqs`zn#B{jp>6xD=<#U}+<$PXlnLK=Xq7?nCsf8sCqwu&N^iR3Ak!*23VtnlhVXl+ zp=uau1}lQ$V;6bG7=EEq2kl+{duC&1`cIjSnel&2OOurNO%2wV*fP4Si68m_wG=5n2xzCUJHsJt6Qg&BGhl&DCNa`O9TQu1lVzMXvm z`wQl7`DXYgjZ>Ifk`&Eve^a2+>>HtwB1$XI(TMkgpO)&%m>^Zz`mtnE<$|!onBwR# z)wYc|YS+X`{9+S7Lq0-b!~<_`blgW#+uu9e-&-b?=NH|wY-;8|hUt3^GDdQn>-#@q zb3Airc|Y=djFFx)O6-TIS9o@g*+iP#krR#m>{1# zcWx+oXD++Vo2jldY%O0Yqug>zmSzptgQ0iO>J1vMsOrfIAyyeM6YMc4m$*7C2m*h! z+cqYtak;dbNn*T0@P>@~2mSRJX;)I_fQL7kPzK93$m(zK z8#auIFD-D{bOKk!{UkF~q#8H~;1(Xc3$6T7{^0^q=I{>)G@Vfosv3Lp2M)k>= zW-SY}=5UNHM-y~@A}0Tf{)eVLqr`EbSw@tG_)pKlx<=gQT!MOk0nsd$) zcTnIQH>0LE_x7C$670-&W+QyHy-%Uw62uQ!T640{as#>Te zZm2+Oed&u%qr4bi^Q$VXStP_wtsS4SG+1;cO(G>;16mnxQVYO}&;g}7zNDj05(}q; z1LUr^Lx}8OPNCrb$Bh)~Oa6KWUE_yf)qQtRG|hRB)wj|iThv_M_X7H>JX{~jn7z(4 z40$SpuEK!|q&aVIH__Nw%he^SgoHx_%g3o<AS+}ML-YzQP{jTQW5zwznF}`K4Fqb}-r67d!qr#djvke81n`x-d zDHy6S0y2Vx(nJqZqDzQ_Alp^BUYx>R7BiytqFr>teAfnJ#W%?iIKD!K{unPk06K~3 za`>MuZ1sOz<4yToiUW{v@dNrocLrK;euy%=5CyflY96{iqU7R}_JRsROyWIr;QX{OFmU40{an7vr*GZkIa@6W;n4) z5OJHKrN9Ec!5-aOlS7 zZ@26);vNh%jo^mhrjj9;4!k-|+_+<0g9&?N7@p=lo{c$5O?Q5iZCIGaOKvj>Z$Vep zU7+%~XoOS(A$Es5jtLsBeEovV$r^B~7pKqP>&z)|J%+bRd zP=)}_xm_611=4IO4vzw>#GIgvmsn0MwdvXP;x?B2;OBmVLt)*SQROi?`cQbj;yZu= zXMm?OlEMk_Yjh;dg(_B)XOd|Z#XnLHt!^A+w+9tiAW2mp^=`MBo6>Y>yQ7HAtSW|Yr0D%gn*44EY$PZkPK2n&oC zC_x5gJXCd4rCFL)YS^gK1ub;Fpa5YG)X!A^O7f;T{JouSow|(g-q*C}DE;wF15R(Y zuI+v_D~tJ<)l*dXSC>@=j~1$gcTiKa=~$WTc7;;bZg}+J6sas}mhSulUlT;!RH2g- zhW=;E0dr*2m8vc@01UYcMwHUSx{x)>$Yp~kx=*IykH zg%@yP;Y@j|64qf4C=_9=9_;xnL>^h;L-04)Pmidn@Kaex?Nj0PE)iDsbphNX^& zk+<#phA+HDE&Sip71O_2A^&H_`TvuuV*Ni<)&D=SWjyvjv1N^ZfBZGLBPTP7xrPof zhuk)p1@vJKkS#EATW;tPjy9Ks)85PKYv%IBRdk7)ZztGHgwW27gIiio`YB<0MJP&! za=zA_5<-Oq=g|s~Ig~1-zjPgqg>ycL;mlcrV30HcGoN$>ShjE)=0&`K(j}45y2ZK3`eKTDKBLQOWO-BT*e0a4I;bHFre0U7m z7yV&Ng}$XAQtp&$u)^SR(id$(*@2p&oo+R!XRdhE0o zC_7B!SYNHXzp{+jWP*^$lpeOjDWLcj>*?cCa~trrg0RU18P?K}Ol`JD@fJ8SzOGnZ zBl@A*kYpjKL)4o5kFZ5f4|2lfow*@#m|Pfo1{i3txKs7TI8_6eB!cqQbTGW%RK@^k znP_$;nYD4278U9Bb6fKuBh4`dK&zIZ^yCiNCpY9G1*}u?d*YOaEullYI$x#S-eiGJ z9tKn=R8(GBhA3(YN`uCszBYer(2aFrz3}kIwS{c!9q(u&hr@XsK@BD*|>FMau zw%vbwbVF~(y}H-wJ8IcC)&E|1k0*HF-{^avUH$kp{zG2_{VHNm`XF$?L71e7wjrcc+Arh(;sk*+2X?~=58;+UE zHB%zJT1E56JgCA*aU7jgT+|~%lLdtNNj#Oym(O1cQt|KeKG_MGV%DfwT$qSr22t}4 zeG%y&zCW_IlF}YZdTM`Lrr=vs*K8k}QjCpfflzqC5FBWil^Zo1*Rz69^SIp@bH%y#>J^3&DZo zpOz>CU{*{id;hCC^n1BY_mkul#eRMm^8uS188Y0HwGO3?tuRla`I3rJ*4oz%5n&T!Gt$Mn)T7uim%U$OY*Lb@0VpLtez2`Fx(+~t z-0c^iG>z(Mm_m`p#dY?s!R8{*ZqK%f?y#hqFqm+v{`qay3Fq_n2!H$P?^EBqQM;Gy zXE@KhS@pVqK;$y(RqT!6t%l3;>RW!3YtOz)ujZh4_IaXt)}!6M8=n3OyvHeI3<$jP ziOK|TP&V3E;{9#+Xy@I%@eI+>`;@-?H~Vib`>ilOIcmN{HuultU)m8a9R9Iq#^ym~ z+<;EnxZY2+{ENAbxt9GOhwkG2+kLNsg5v_*r?WXA7yJz-9sFE%xa-OAQu!hcTpaaC zxV-Qy&1MmRyU3DAt5+_)TRmMu=H#Iv#u6sp;FXw^TUJSJ5Q1t@!^8{X#%2LP2su$t zrBTWxA|1dh5+Hl|##Bmo^=w`7V$}p2DET_%@)U+hftdP0MoBXP{yj>LfOQcYA&KXF z1b}azl0J4C`ZfGMiv@Vl9)K9KOcR3g4mTh#8LFF~y5Mr-x&V(auDfk;YmV z34sV}pp?~tSV8uGk0q6}ShE^mfpZrb{y+&d;5~Z89sH(zO2&F2xUJ)V~Eaa6&WYF3uEu;9!;+q!y3!#4KKu=;_(k zxQSX~g`WE1BZv*Oai4&}+j>?eM&_WEO~JMo%iK?MfAA?7wc683eUV;~%z@m;auRZo zlAtuv&ck3*0mddR01^`NY98y?w=Rq{wt6@GhIju-n$BHy$+3CxXjW_(-c}rmB#Z5F z<`G+wEJ$(mnoSx&ZZMbJr(Aa~z6-h1RPvB|fuZCfg(4>{7?p7-Xj4G_@h7xVA|!QD)w(^%3VH`kA7J_<-E~$T%UK0wLYUeIlEObho7!Co@_HIR zpD$p;^SxbfbIa0{=Qw}e)M(cSFe?A-pFmGvKxbSQwlZdLHD_^@69d+*yh2n#FS!ow z?$G!5aLfT~0#-k%bMn{6gseA|DIIk&Y26x zVa^MZU;DY&oTtC}iUp>o%O*qhMDFj*9Cu58^QV81n2i7Z5`Ew(CPJcg8Ixl8{)k+) zgemXz$ULMI4(pnkBE%Ogl!G*y_)md zKkMBsFgU~}iX`tWu%WU)S4KZHk}QYizw5)L8$OUptB7~D#c+d{S<@>039u|4(w*#l zx=GvxGy<7N+gr|r=Q~1zvnwRspVDIx?e)Eg87Q#+T++WM`Ly!jTi`!7!y6VGr&j%E z?g6YH_pDS4JORtpNvxVh6+;F>f>l~KL#l=M4*z@>6($)#b<0`nyUF zucir@dU-je(7X~i#K!%Agnyv({yusB@6gBm{|S9Ergr8o76eR8zqrf)vJIN6sqKD9 z@qd@p%K08RZ81TBDDCCQ#%=W7K3vLQOwI67GS@Z|N$HcAvZwQRsi4Nw$K<>o3<>}M zRq^#z5!p0l*N&cXxfS(xda`###z|n6Q7gx{he(bM2VX@ zAbpRkSvC1$T^iU{qWMBq{H{j-yf~LdLd3NGE+VrhfcG_Lh{i}$bmnj?T}yk4+P z`noC$XM#v8qb)~?th-rTZ%H84NG`1SHE5z~YA>bYYnUD@E3@oB>AT~fvP<3OYE+EJ z2s2Bax8PsS4Bnl~IG`=TD>Sim=()YIoCJQD?PjVVp4CA4!aQ_CU` znBquq#_8GN+Q)0u+s+bIRU7mX$p_jICRtu_yarxY0t#&#Ewi$~N&)CDw4Z`|0h*$k zcrJSJdKKM&CVftI>3!s{C#TfPYc~G^%N4*b%CK@;XN1@ zOX_H)HZWXoR#FCh6%VU;D!e{`#2kOF96ly%rbp_)Fm$T$4EomWM4m6Mxzr>l+)gprkt;ay z2auOvk?1=tX?9oS>KbGN?t~cJ_!j|Og}5%^7kILcaS}5ss!j-19wVxX>da(=(bR}! zO{g@pC#n7f>Nm@t+>&dkJMH^mrp2{1IGJ`W*fdo++DgiV;I^|_3*2b$e)0%}!??LR zYPb)=<=zqgYlqM z@u;2t-zC~!?gFSP%~e+7DosMFnaV~%F6C&J$M)- zD8A3}pk(EXAJ^%}`v`_AMfplhw;Q^?K1}K1Y73?ycydyA+4;TH* zxzu2yRobgaq0IZv8RZ!^NU@44H;{)5rg&XK)i!tI7vbzMoK2sD-cj}jpZHSbrSR1S z@eBNVM_h3@3yRu8qjmc6=Mn}Aky{cD7h95Lrfy!IpsBRZRxQJEt?4eXXK{%JfVQ-s zsGnAb)2k4Bs(Fr}3k%M6yFQw1w4edSOSX5HnBT-f+I5$p5%PaR-$q3C$_w0;NFwoF z#ujx*OaG&qLJO+cfQe2z;M5ngMq^?oUyMHV?O4?CVx81ufE+6aFe*7E^e z@0GP44t`1wmt(om3^;U4rWKB&jr~=)A4pxRmTzu-0NkB3VVCbfE2ixZFNV@uScB!b z;CBZXu_x$AS#9v|uV=1}hVdPHoVW#!7!~*YnQC+I?e>>nfjKJ+6jLxvNav^Ww-}!N zg@q2Dl`l%w5vy8f))~L3glj(mpCJ>d%Wq?~%}jZUkBI$mBeNk&A4H)-O93LP2ekTn zNB50JFbExajCc7FFnLV0qK5sZQLxw$m;;h;bDMNbo1&VEijb0*{=4Lip2m5V?>&Dx z0tZ;My&pcXYpyIeuLb(1ttN*Lr(6gQm;)N92R}i_4nYz@vI}oME(+tmg;=D7(8;Tm z73JUltWR4TviBt=Qb2SBU1(prR+V$h5E2_WeFG*yS) zREYk|rH-sW?iLSS7ykeO;P1`C6Y!YO`oO@)h4*@dH^`xcg`CYqRUqUl0v<+E731St z#K9xzVzbq_KL+L|r?`TJ)mJ9@GOL`RbrePu6gVFcK7VyjS=}_a+M(%4b_QJYsB+W{ zQgu;wk7yh^%h|H(sNL-p3}VB8$f%*bXp+Q3i}tIU^7}+mpe2{% z%^`c=Fq|b1G@J~DAuEj1nFt6U73!6OhuWr2GO+aX1fZNqkd!B}^k3fcE=*_ut_}MQ z{?%Hi$LCN%i{&|>SP~dWE`5Y>2nPx2@yqR+KiZAZ+iPlmAZQr7-8n41!VmRa+q|L8-rhs(6YmAN=&zDq z`)P*ub%nv&alLAgFkH`#qi%Xbx`R%+ai{)H`F_KO#rz>8_DUXsDjRpmuWK5F=Icf* z>bvWjjV`^^_jj-?`8nEL+4lpbVl8(?5$HMV}htQs@>w|AXqxx3Y?^#|Q8 zt=yBWY5jVe=Csn(CvBZ(+BqSmnLnuy6@8G5+o$8(XeN0T-PzE^DOKr%4>pMAEpo>` z&7zC0%iCrX+AxXUag3f)^Lv~HIY!#TGw0atT4J@c3gc7w6{j-HZWI3X8}!tw+wdBD z^`*q-w&LG(?xjw!Suj0SmbJsz-LM@--(mKGyB(*_=i~FCj9D`$ID16S_xcxPweYcy zB}-`=zJcl2UOGqL0#~K(x!{tR?>x$K-HUIOGu@8)$yoE2Nu>hTCm!FOb)RwD| zkLDXGo1xNBzyA)a;DJTnB5snU*@I)&DzZLP<&hB!f|U{6j56)AMNswtrrlrb-};2} z$C$I>pg(}tTFfk02#gz_uLtV~@Rdvx+zcKY#BYmfa&Nq|fsOTKDK}bl{k`Q{4SGgt zCRVdSXUIMyMjAArnas};tGxNGgP%!g0dZsy$Y41MyI<`L1jFbt9-11^*LhgcRll=B z6vD_GcN5|-j}W4HmmP78P_u3Om(N`*@kdq}jqY(aY9s<4hutD)kS)#*Tgk1?ZIoT) zp02*bopM8Ol$O3Kz-?WIJP@LJW>9iMrP_K&C_j7fWmbTQNMZ}u+nQbX7j%&R294+8 z%HLr7ZfIJh1=Dfum%S=C*;2 z@gQ)`rhwS7dr02^b&JJ2kb+pWyCa$^h&(RoR9;sm!X)zmkXjErT9>9D*hC>pp%Miq z5-|(Em!Z`zi!6#B$?+Hj3Jpdx;W=H!=3$r3m2BF6vxrUYYYFxC++s)uP16jP!BNSN z6AsIdB0|f?br)O2L<|ylfUvnhne$7d3^BuiE+sBaK6I=Ko{$k2Fch}d@F^EyOJ7c# zZr_VZjfb1vO~%~8O?pCZr4rquh+_R;Ryb_$)7OH%fTjyKQhY{!faA#CruiZnh;W`+ zQvP=*1AoY=&2V!{BJ?7WF=7$Dd@^w}jMh*~SUmxak{tnI^R20b>0s83p%SKa zhRO&5StI8lNfl!9T3p5_4r62)yJ$}(&Oc!IyMT%MwMZcj*-fkm3C!mPazg+Nx4dvT ziueL&&d7f22%w2$S@=a_JW!H0KUkN3!jM`ii!K7UT=BY~FM2-><$9_v)b)!HG{wV5 z=IKq*4*`^dzq6Pq;rfD-^C?T7cayJ#6EC{@GJtwjJgH&)z^@6hV#$ZL+#rD|2bKs0 zXH-_bus|sJkU(b2Y1Phx1%y)1&}h$`SC__D(TE>1x&dYG*o0kCnP*aV@N^-k-)r#q<0{PloWiv z$T>tMkERTl4qq)|_bI1A0Yde$I5>#%4~3nj z&DZ0`!cqXX-&>W0%)eyFyJr>y0T)zOaX@6hbR#epb0e^`puH2GpZ)NEUj|cGv(Oy9 zwsm;UWHW!G7sySr<8`!|l9_zttoeE6IB3$UW&UJ1?83)hCUin%`oIi}RUCnBN!S!U zA3Ic$ZU9fa-rj!HkIBg}E#VadPmti3Ly!_`C|WQI7qSX^pmN+R@C&YmLRE4vNl9EM z;lWdK;qBGB4Q1^)L;_JD=>W*}T|cvFASm@3a{25JX9Ltuz(XM0Mv4v5^k;PIYKmAM z-;zPIW}A7z=cIHDOrv`34{>{axPEj75kLcCjt|XFKhQWPK!5}b0I-MkcZJN1=TX!B zBVtdZrgN$;=y;pa6NW`gdnb{8c4&w*KZHUi1evgvx^}gAZ1hqx76O^KzceB!9zad8 z99oY;;;3s^mHhf3J4wD%n@iug=0KZtxf1c@h}i^$E}bUzJxk`cVbcnu;)Tl{OWZ6A z`8kV1N(v=5zkS3>L+u|=+pK$>v<=nl7Tfjnr+zlqnEyJ)A4EgR{{Vf(+oPJAoGnB5 z(EZ`}_Wdj-w^L{1cI*a1YIXPK)nqf_nqKb(f_)L88ZC(%#U%mg;<1$QVxEa*omC-Y zs~n$tyG*_k2#nD2N&l|Ce+K!6JKG{&T0XszyE@;FL<{$!3kWzz-txD6 zQauc}Js)FgFu#JqZAi$o0rC=Pb1T&IT}xcE^^xDB1{MWUgv9*7L;LcgYKyj7uiLb` zxs=`K4rkGYzqhWCbeQMZ5Mt#uC@ZhZycz-Ahhk>>YP!aiT(#}H=Qz0> zs~9Zk3LVQh-~d=g)y1St7T{1BdoGzcQ&H3)P)*hDv}kZroW3qrAb~-bor7zTytH_A zzhnFcc}D!C%OT;Qn>8dkI+0ZRD{7U2%jnZV!!)eW*b~?@L=}~Q37+$*T%f}hW`ufx zz$-nt$9MJTx~CMyZFC5rNF9ixCzx7|d)}|j*(z?*rX#anrk&a-NLqOaH z$%br`0cwpf#Wbi%qe`N=YrWmR|M0mM&!+x&>R@5`Pr_P8rvEy1wEhnfstxIXh)~Jl zS&alb5zvojrz?k&3vvgXxy-is7Eo;*X%eX=NseE?0vAwA%|e^b+()7sGy;J=ZJ!U? zwJ>NoFmGR(;smgLDxNwSPXBcmKcO|ZPbN9{-DOuf*W{u09LTR7k zV$X!s5I1A_=hIv9%eH3!AGUSeET?>D!xjUNo0fy!l<0>#Cb<@45`=o~v-YtpPAwC-7=j@BLz?1XV-ue5wH| zOO3V9-2mIr&tz$RHh0sbl^|F_Ye_0vu|o9{11Z>CuNwlYtvXtSTW=6&jZ`mMX?@UW zJb@W=h5&EqyG&;cCh1v;ipVam5dXHQ{z4+|h&JdS+5=ee#e={3ijDbb^+pAL!myDNC35rxR&dP>Vft11!{VqkYEf@!gFh4Q5O7@afky~!MI+NhrV z1DhOYIL1^PiAApR^LJC+0S2%VAa-Gd(z|bEc7gGa0CEm~*;ctnvXMO7Nz@J;JbhHu z`Rsu+&zR=8_3iqxqreK8I2@auDMs{?9eG zmkEecP#gHd0z^uczGQK)2$gC0>2NIZkc6mQigCNt<@p2?bQWPi8y10yUes*Hpv2@w!dd> zru%^S_T zFD69S(T>5moK@J?HksET_ANk-w0LXzV{tnaE)IboQs4knj(lOra+&O&gCxhFC@O*W zJ~NgQG(g&QtUbVC(8*H94RX^(5B(pEuuCFU6tl(<5?=X{qOj}McJ2e3+AajSQmi9N zC?u8eSV=KVU1Pmi3b^is&pPX{nKt5@hM3CQRZPc$s*#uZS5gU6`_~jShYK*MsY@KE z%z()p>Gj!RLt^YL!t=jgBBGaMCV6$f*?&m!WG-~D%9>!Rxt@C&|JNGlUf6|Fj2%F(X=L642QF3$dm zo0w`waz1DV$dw**L1RNN=<GS|{P=;f9r)LSaHAjM2KS(x{nQCWeJFFgJcj5b9oD96KeaZpr<{}mA-jF^u3^ZIV>qXw;Oo>2$Y&(=GK`TF0as_1;lIY~w68Jx&U zjwyFT_;Lhr&G>A!T~7z z4UgMvJA&u|xO1UlbD+TUpazKP{a~soC3CKbqeyiVPaQ#*NWlZ`fHbez7LYul_FX&{ zh7Kb}94>SJc89qv&b9ILNh}5c%rU`l3vfOz6vM0lwYW|MOkPnfrQ<;np~1T?FRD}Z zYST%zMxsau{BL6r6&zkXPCE|#OBi0=I3fcb~n%qsS?Dc*OME~nZ2 zNCt>2sXz020AkNAks<;r@_`wq+bhGCnyoB(EYV{xkmqKzMc>q4cWN1lw^@2^57VRY z0q85B9vX56veaa06)jBX)Ha&te22!>JaYEH3yTkT>c0OQd$o zwZ5b;)E8p>@k3vd!CG=hko?n!!w_%j^uJ&;MG^l~I$>t|KW2pfpPC3W=YLJ;&ehOY zKIB01&zDampHM;kn`ARtW`!SMm=PLUB-B>d=5{*}DSCiCI-?1fa6GBst_3GI0%BK9 zkfdc>x%_p>pTwU5|2eRX{*(Lc^I-ZUI~*KBniv6=JSsS-dG#oWB2FV2kOcevR9CH( zoqSjbQ|dn5fVzX}971gM?TQ1gr-jnx_QWlAoofB_AguqYBUd=Ie&0vFT5O+qaW#c% z&a_96zU|U9cUKtor>QEwvt1_I5V$14TeYV!vt_CQ*{gD$MqPIKh&gM_X>sYzW&22# z)2HU1Se8ExSCsSP9TrrO6HJ&+xcgs1Fb5GKpqX2JdCSbAQ`;98prpYy`qil3KM9t_ z0Gi5eipifgZ&Q}Xwzr(Fk$y`7x~wwUt6_bBRt+|=^()k9k zmo2BTUPmg)y%-*fN3l)d_il3Lb0^h3OP^!e>x1Yg%5dKrMYp{I5M;l(4G`4Tv-QS^ z9?%Tc0Gw7m#wH3F^}oDVQUJCYda^T29;I|`$wGgk#33Xoosf2jbPVS zTExX~m#+J2hzG;2K37_soRHUmq>*nL>e4wN86UuW6^NH>nEJk$pPVU5UeG#ymTKk2 z^BVy*Hfkj{Jv5m!E5u5{DZmbZq{h**n2j2uz;NDoYUm5MiWof|T^5TRYTrcBZb5)L_3Wm_JwCqDxJc+%G#8R|ot?zi8xG{!;DvoPsH90i;g2y5A zK)$Bmu@GwNF;7jJV!0XSPfeUwM}g@2N3YDHm-2vcYUw{KGbHJ><-6Il*Ne1@n17cz z4ahY2s?$D7e%t9bYfQtw3dcF2PNVIhT6-ZOX^O8JD%lZ9{}Gq6dQS4Lri=ZN&M2p6Jw(F}?=yz7V|O z+ot%Ys|0v!n(1dCy-#EjF8Ut&nZ#T8+Ost3u26!-nq>wb$OoPlo_J&NxV-_TE;!~f z7KArl&}%y3z@NW4cvX)Mn_B*P}6`4HW?nii_Kwyqhr-7Ro~#TaZldStD`lDuxTR0 zKM1VI8dIIop)YBKlSvl31(HbunRSFv;aS+bS{#j?g&y@W=Vx*Fvk+EJY^OphKe8Mc zhp76M7MN(+$k=_^&;pGVb6TMO_((;oeVut3XLsg1eQgzgu9;s1-y!r2kYCA~2oiJ+ z5V{Ni{*Cjw#|rF)TSH-)gM>?jMSQGYk3W%$6>w&PdzFT9Bpl|y z_vd<))e3kt>;$N^jrj{IaF8^gA%py8yAM>td_WX5+s91J@vrTnr*6g7avN^2VcK#ouN*9i!cxIu zve$WM(h1H5hTShe0NrX}DYo%w7?Yk7j6@#i}Ai;oMg-+4x$(Z_`Gi3tV5>?Kjc^m_XE*$WSHGh7DYx z6~+jQ2RLba7`a_huBp0X;Q$%;CRRhz9{Pki8V2Ni?zNtvD&XUmyQU>0wrGdG%J~>D zqeQ}doO%0LO_gB$7dHFC&#v5Yq;1B`n{i=7l zk%|n60--+T8duRNVa;H;AAxb#(Bnp%itLvio!}xStI3+>#a1s6-EOnFt~S~nd+1TJ z0w9$4$i_xws$C#%56ZQ$t=kDdy}|OfP}Bo2Ss3t%`Uz4Zz)7h>T|Sr`F{UlFRt)VV zxfBkD#-6L)Y|2^&nhZP5udVM;p_TNC5Q36y1YJnt1utZXE+mN2+R93hF{#nxlqnKk zb;)o;ra%|O7A(XCm~va`OrJ%@STZMZ2N0AFRT=~6H%_i>5#1r@i`-ueewi&0=HfX# zBWr~Qju}_MSs&Heqe--wYh2WjHB3u%|Is38*;E^45poN%b~8*zQnQyNvh1cf&2E>f zkLyl79rADRmWqC>wZ<+-^{xp!B=SXD&&=Q2n+gMW{wO#*hXKofavC1yD=W++XL5>x z$!YcwZB0vTeCALMfPELVW5MMEOy%oLNXM%T`OV=^Q~Thc(rGr|o*-$Vn?txE8t4+H zGdvj+Oa}h-c9t6T$w78XJ<*2V6Jg%=Ox;C_Qtt6<9y;h{=z<^w;CF>cSlSN$=UR8= z1*Vl_AiWQp<2ump4gk(1t974iG!CL~G*!tqCmH&w2{m7WUv=9peFkTuO2w2f zXny6{^qSNs*5UX{6#pc^yEoIed2kP&?NWE}(siBRs1N%V>ocml_)f6VIQ zN5Z;ia4EW|+8>wVbT5S@A8v-2I7DB|L}g&SEYwz@Hp933+g~)}*h;x6lJcCj%LM8l zDPS-^*Bg8W1Ya)(T=ib%a9M}+XH_U z5eCTrt|l=v|DQ&c|DTy|4o=Shccz<-;lHjnO>6Jk<8;FM?e+=9Uk9_Ih$<=V<0VY8 zUIW@XIw%#`CWOcKbUM$hv%0bK?n?hW`{m@eBAff_dXNPGZazjYI8Y?L^C`|`0)^%% zBMbxz(-M|rA>EkF_b)i;24R#q*sYh6sti8X6l%h0a+0uQ9NQ2&3PYzR3{#0nNu)WF z7tcz?B%>)&Tacn)2ysXTG9M;3^uc>cK-xs9DFLHTG}j=|b>yNB{*G8@0jpaiplYog zkfU{w`g3R9q6CA9>_E9g$~OChu|iA5b^% zvj`DS4N?evC=*;mWe$e?qMl2)s6N9qqu$XBl^H@e(GWrY*wj|AJL^?YP`pKOpNiE} zn!DgCcDDtMN=J%W3pMm_Vwz+Hm4+NlbzERa&*?a>1~pd40k*s<)}$7j_O=T_W=E;9 z2NH(d7isQ;{z7TR?4{J0w17iS7ddNiq<}$XTA~GNhS1ZQ>O&D$m8$Lt7O!oO4a;ic zZ&F|$u&E89N;SiDT3*6$Rj@|-lPhG)P}^TXI{+O5L;lOfw3(_i9D;mG6)F4|mw`c! z!7GRkD{G!Kr?Z#+`^bV$pZn|v$=hn_Vt8kKZWQ7-`&N2Vp3CfKf$chwgNhvcXTWb< znA!1@)VCPUmN+;QR44&rZTJV$eEOdWhmR0;4&}^RPaq=f_)pZUvMpWsw-O~?cz}fL z!_||^iZ8mJd4p zUA_E%{O{8T@u6-U{_)zaQ4efK_xs%J<1~Hq%?(k>-*}}*gSLJDiN%Hfj+G~(=hq`x z2kx@{)u5N#r(-i@{q(XOJ=dePWiwP8R`1uN_Zsb|GgZ*<)U9F14#D$y(tKmnsOhVd zPtWG-^4$L2*3psU-`xdS&+CXOR>tBNygIdN5j{4+-Dy5~45iz1)BJ0uTd(Ff!;I_V zrh;E()49!uzfS0M8!haabC4NwT>ai5|96}3x?8t`9_?CB-E;oE;JeE^3c7U}>%Yx8 z732_=M>Xvv(yJuLNEm|2oE; zsn`ruRcymDTziE|Btsbj)Tmlcp@5=e$x0|5j7huiD7Y$wWXA3bD0~SXIn{~MY-GT^ zB}6JF!a?t)P#hCD^#oDe;ejj(B4SmUQf~ilAhCfZJ&4Y_aR}={WN%eNS#ZzbU?4*= zX6#DKQaV5qX;mXKCk$aOqMQy#ctobbN~5shcJciC_xJ*)mAaLl_~^&whoK9g`T-0j zVYhk25m6OX0&zA$mhDnyI<)Mi`xR1xXr&Y^KpetZdseFoa4TUFU8VO!BklH}?GJ3~D^Cs>s3ka&C&qI?^gQyzuaUj*9 z@wiKLn{x_I5ugQXd~#|Gi2l%G6V2k{FJlwI&xDk?Mf4XVzz;5|XF@Fp0W==2Hm@98 zOu?h!pYeyFBK^CdB>YKelk(`~k8ca$n|k2h_CWl#e&`DVdtmyCkJFE5V15eWkFGws z!&g8i#{mOhP`|k$P%EoaRB22W-eo3G{;_$VTr&YSunG$kc}dlAg+@&V8Q!~O?rJiT z!W2jqQ73XW!MYd9buxfG;B>=^8)~w}giK3STrxI*dWll~k;q<$(mk#ea)DnLXw}}N zj0{{F_DzgKP@pF?LvVe{b*?}FriO=?FZA6j$`s(|<|4myY%M?;$PS^A2&OHY!6PqDm1FbwDQbR)J&R9v1Qyv=5fGrwCAXy*=H}qBWO)_jyt{BgHO- z_;Ex56by{m+*KNnMP$kb$Ppk4Ij2=H;j;Ze3o;217@F+cj54S2?)%eID70bQG~qyR zFWap&{!#T|gFPKFa_wMW*GqOM^0*2Dq+;mJeIC*1W8SRE5Bx1B33VRNgklr?L!NLG zhBejbIrW~N>Jf!z|CYsiTyiK}Db9;6%+2B7j$)I1j$4GJk3U0`;_*kgrse7B8(w~M zVO&Dk7YMfH)#>YQt4uoZpT)3$ey@`24@?gUYvCW3B=@5;R$ky6m9Fd_*bZfxatWrO z08$uU0T??;+bZN56?lj7}*PR|(H3%3| z8PBPRY1eg2MV+3m5f>XcspQz@&PZ0BloG5qByoi~c?8>iD@CQQ)xFCoTaSV&0~RHT zb+n@Okg*X}VX(lL8qCEzJ0rXt^Iy?+!AoklaE7{XgO`2zoa% z4zT_xe@vToXGJN+LC*7w${w%8Wb$jn0cQQfRT*W9o;CH)*2GC+Jzu<4Z0aRTxcGfZ zjS0a`@C^yVP4KD)a1(qAs+=Sr3aZBiSHP;Nzdtgj1viDWYvZDT8qrkAr*D~j2W>rN z3*igf`M~SS^LcQ+bKvc z-sT-5P3xt5mk9Clw%*(~+MIm(?}E4MHdSo+C+79z(CmJH*~+yQvvYrZf_A2-R!^oi z9>STsL9eT_q3Io79$+F|3A*fPO!N0$$kf&V;~E@uo9ysxEU=9IYM79~W;9%5;wAv} z-`dmy1z&KlkyEHJEZU6cK#z_br7uGHDdn!L`H@k`m8@Ll?F4OEPN7Q4HTKu+-6li? zOkK04<&>!>VH+lXmJ9XsR{fOqCJ12U9?16C_TqdNthyubyy#EkGRpens(zTq@lxRB z7(gk&OQg2LC$Il`0SehI(7%&>?xa1mcpjq369Shb4HjrxTd33 zuRwxf?VlK*^E4?sVas4NojugWQQI|^_p*Cioq|!&dzM+3py}e$BWMlxZL{6?>2Y^v zlo>SOM;fGU)9Y=SjP3FaI@L-;q*-p-5;!)i4c5D21D#X$!tS1mntHyWtf!(WsN^1m z0lMz|)=VoL7_#W*dh18rem=dvxY^~DX-wcJqISrpvhnuf=so8!oa4Y z2djg%RHcB}fu307CT&6N>~M|XnBnQ?k-;-$%i!Kfu4=obK25r(t>$)3S`hPqaqp21 z7HN!u$2rZul*od1_Q-<`;M%gH5P1=g%l*n>LGPd|Bwh}H3yOTu>J&6w<(q;pNIZb3!wiv~ z8@zeIgjp_8AZ2l|`;_|*N7H-Mu)4?mIfFY#MT+VEireuOik+o?juJ?k#N}4Iw@nxo z{=V5qQ_FIc3WOwsqoO|N1(g)PVvEN-ZtOd3tNN?E`%=3uH^g?@Svzo&3_I;+A^$D8 zeRX6vT2d$iG?*6A_kgG+Y76chW`ouVCuGQiH{euV^vy^i4gOqPEySbywygB_eRgkW z7B@Bv4Q^y@6qUVx!qJ-MM8G+*#5+tq!=FX%7Y$G(usq1d4XfIV- zItH$?yEkdg_%xoGK~K(rw$x3*t@p+WmT6C)#mB4)8ME#7@L z@7$HQ432kv;LI5#qo+)cN4%pmd{-2+;PqR9pTu-1?)MR_wt|$P@U67h9qCf&o~}~6 z?CKdUHb+|%K_YU80Gts17xisCLj+mN3qx6*Ba_;nx^f zTzYE3*w8Ct|JZ&CN_C=#M16B6JXR`%|r$1&Mgio&91!-_qwrAvt7%uM%?8uTi92cXFw37yu0O5$G z&LX9)_b(YFTgzdY=t0XaPMKkwMD{~m7oAoaY#K=M_)1;X{!d-v)z%M6cA15?!?5{c zr^4XTi-}7=w<)Ke9d_aou%knpqssMQ)K^(M|kgS=-&X=PZ;R5rVdvV{UjS%gBj@jxz{WhZSCXdl@s3!Ro^|f0jQ$Qu&#^{ zbPtSfvA`De;XqyFp$R!p*&g$(=w$QH4kkYn)y=$GzcqO~uvy_J>N3~a#RHWm>pg!93rzwNcWstR4vKmJB#Z<&tf7u)s5=OUk6@@ehx_df&&UwOs3QnjW)i|d-AMP zh7bE8L6o_E?u8dwA;17Ml{q^2PliW+Lc)S2hZzfLe~LC}Jl-S3c;@^E-n=$`0yc*M zW$ENhsY*&^!QR~D`FQce0(1R|r8@<*qRUpvt|W>p;h4E;{LxBMz$?0IGnmkPk&HU^ zFx?ER=(*DT^N1b8rD*M=5g?mZwr~}+Sb4vEJdO~EtZo-x`3ro)D(m@T^QqPZ^rA08T^F(tjP3{w_iV$`kD}%g>09e8m=R>0j7+CFPyaaHW zhQ~zS!-R|CI8%o^WID^YrK3#YrsLg`I$0tin%$a~v%1?jit# z3T1gi7byCw7h0#u-cXX%M*c;lsb6||U?*?ZBm4JZ5o7q%3{&w^Wk4b$916Aib`t8+ zk%EyKjr$#wBRkg@Jozhej4(wHGCn=;5XNW<#iBYDBNe(1CeMAE951nNw6l4; zC3-Qr>zmHkM9oC&mG%6XMHlUqs{;DWFZmr@GwfeXl+CKUk<=NVr1I3~z7oi0?p`a@ za1w3qb5M%KB@e&`vR122qVe?769&1}`Q_4O(Yd9LeV{O3q5H~DYS8?AUA#0OGJ}~y zkD?!z=YG3~W5@GLZDkj*Y~fQv(4A>eY|3%df0bvm-HaoQ9@>gTN)J0;z>6LBgy59Z zJ;z6VL+zsA?9r?QVM+$xZLcV63x>%urPCRk>*}u~)nf2Sr!1{1%X4Y=>^xn#m9)=og}3 z>_idkE(yp~^aBX?#2D}&(ijK(e@J7D%>Q*7`yc!A)~|hewmyS=Liw)+&G_mcK**ei zhIOEe61MIS0-m6IvynXF^>HBoZD)sCWDa*95w#8MUOwkW|^b$%-zvEiKU*==UziW1)mDF3} z#+I2)7riXD^DSbv7BxSsRb@5R=lbg9$eA)`ICA7pToYL2(?Own0~7Y;%#hSL2Fb80 zENocM`t1G+_o(PkZuE~f!qAm5 z!nZ6hYJg1a6=)=#=&(;>fkI0s-|#?(3y)D;l5OK_vKtnr^tSMYfv z$B$MF5l4i1gv8SnjB!v58pK||tY>Q%((@AtVF(ptAFV$OWV#p9Ch)x&UIcfC=H65Vlw&j5R^^ zGfgril|FzjiWk2}`c9@+TG_B{DbK5I)_8zo{+-CpkqFVNMq-tw)kR7`eNmyGudvu^ z+`(DqCD>d6+fD}&@Mc!M2aT_|Q}xO#UpouX#M42mR;?L;hG@R!W{UO8jd4Tdo*I)! z8XlX~2`+zZj?rmP77`h?m&{*Hhe!bWgu$mVWirG=$8R8IQ(g*NddS^4rQ z=o#&1NAI4^Tb2@zb23irXzzc2v-RB;qBkzAeiF~SyLxo37GX}kPfxjT)wVVb@#9Z~ zO{un7J|YI@u8}t3R@Pov&Tn@j&BzxJr77J=`581G57{ z{vdPR{;YR2*h{S`E>^Zz0_>In5%XXR9fhZRv(CP+rk+<@q`_OHk;4mpl8g`Te%d?u zV7^n(FQAO8H6)lz&V0WCwrzK9Nf8GuLihk^kL6>;;v>>U@p<_D8U3av_U=@BJ(+qLIea_>rOeP+o`qLIZ7MG)7^z~Lb9GCD$Xr|<3_155}F za$Xa|w>Y+p`C!C=QdzHk_85@!RR_M2ZZSJD=M!Ap1%3jCU=hW$%NsfldR4$0#3#LJ zSiT3aDQd4@E8PptR6m=SPckI+6xuUbg4;Lk&jc}1o(l;0IaC0rUx12&U;L3ldXKz7 z$v7~92L=0S@XsE(+|U*Tk6FRtzCdW_sQ@@6NQY{UH?(_m0(E1^?MY^Y#h7+6%Soe0 z>F&Rha~ycM%L#%j9~JvlS0WCDa8cmo8 zh`yX}z%)%zd%^q8?x9ZWPZChnU(&!O)I=$(uOn`H3ZImU2!~gEZN`+xD080VJTlWA z8S*6$$BOEDlTH;wYK}1{#-maG8OoX(+(Rzv#XDkxu6Ni8D=Xh-H{WIl9zL8S+}XTR ze4MB7Vjb=z22JrZdkTDsrfVuX!`N;i1nC{e;dK~S&qMasq7%af=3NkS$CoO~{k_ZiQv%NVt@Az= zgjjCW*F48h{dp6S0G@scc}Mk8ZcYF<6lm}W0^hm2G9V$vIlx+r=m5E-G}m^8vmn`F z4<4Ax-*m`T9)>>se~e}?H?7kz3#Ym5ozMF2mo0Y4JLRcbBS;OOeAI4|P+Gg1OFsO~qT8Xhi1!%i0tDvz0mXNG$l=W_mh(6B$TJ(|m18cc zd!|4ph7{B9Al07h~_hBU;#P>6UHV zwr$(CZQI5!+qP}nwr#t1)!lv4x!uY6(m5+{)=yY#WR7P(FAK;2R9R4>A?yB+kl*=t zjmwE}4zl1o$-s5?x@6M2rQCIEbSt!05N&H>xww+tHqGuo4JY8DlFWwWUKjuva6HIu zPDcRFPR#N746|pxkLQQYr`DGu-J?ob(bSb$;mK0=3lx`o($!Azq^n6&Sm6@R)i!CShR>SKA zZd|tNRjJKpy_ojYkF0j}nJDj>TKQF_UAtbbr%D%ujYjH~!txP6{a&mLS0=@~bj}m~ z%0Vfdtg;%zC{;>z4oIf062|skec9#kFYK-z zI;kPr>!m$&{5jD-d%XkAZU9y*gs(>%bLit}N!^>j2G%Z*jn%0u>lMeRb`YOpP+2E& zPvmKx&I%WVKkK?b?YaDPkW!P=WsizL9lAiCu^^977l1F6E0F>UP>qOzh2ca%fr<`8 zCRXO#`YWxaBl!&?lqs4Cre8J&GD@vN)0uwuy4Z4=HZ<4EjDIHkwFx@ zV7InYsu(8Az6R#E@7a4GrVjze2HVR#24EY6EH*{MK%^v>{p(``+u z%RsNq5eYo9YFnn-cBzC~h`}n>0>}g&^?Cp)cLF0YG@Yp(%_ zg19*bC=66&8nwvVkK1m7K-+)1REy9WU~$w9_0TXd3E1mT+^z{&mQ5X7NLqs;*P(*h zTn&uIJcI(lJ~`t9fW`fZn#iosyR%E?W0#?8sls_>4`=T zD$$vn%A93bzeM;B%EG_8ETvOxc!2!9JxfwIx95ksY?OiA2tG8`KxrfGou$A={2*u- zp7XRo$5{dcPJHYVGKQ!rM;EnvbzO0A@plMe0kf{esIJ%qq-NP&+d5%d-4hLOs(qqp%>yIxKqOF}2#|Sc``6kzedgIt7#U&? zfQSK+B*)}6qhp{_#c;3-++)qoJxve@aJqHMsS1>A*s=XxK`PF}3k|kJJPm5n_NOu1 zaEKNMz{=I+LsUS60j3C863#4*8{?1f_x;9(Dj3`qSJ2_yI)K=%V0u#Ze8Kp$y{nq| z=z*l>qPWa|K~jC*D=|`4+zT&1*Z_^adHsy)*!!b3!PPYeb1$z87a99!{x_T{wsG{h zOPzn-1IwS|SrtbrP0r%IVo+8e^@;)s|1tXLwC$^^*LuGXo^6G0o49j+52jaymzC`$Wdv8tLm?6d^k%2pi zkXr!bX}=r?xDLEm;){MIhy^p553j{3&mS>EVKB?ErM4N_Ar((nhf1ZpO8v{dvMg=x z2RtxtjN?Cq7UusnTw!8h`=5rEob>;a2?X5zpmKGTS3(R%6I@KC8k;A|9@5s`RN^o> z=Ti<3h7s|Sn2I0q_w883C*pi2oD&4ZlI7xm3i5Si+)sP~|A>6NUK;#_%aH%qQeTyQ zl1zPabfhHg6jMA6nSN1I_xo{WW$mtvIg{D~<&cut*^-LrH7u`BZGlXY5tRSlT^UoP zg21n3Geli(i29rc0*=zdNQyFI3Y~t-QbvSO9zJHv&xA1@=bAzk0ary8f5$wuHfn0J zbeof|bj{vnSjf&|;;<_8+Ik^zL#R6{53cNQ=O>4v8543nC{xi(ZfC3Y_DiR;D{GFW zN7s*7$sHVZo2&-|Z18;A4*Za3X2;YAe`3tNZhLS|d z2Cnx{^gNpUhocbYl#(Rxy3S0A)Dq0)$%&HzfAM{Ffu4k3@&YBT6u2k+K7pi+X%=Zw zv91!oUIr=1xdtU3ueqT8_$YemwGH;=*T977JEPRmKvxvqRS7sMTH7;BtAK*dz2v)g zR=0$<9BQ3#_$*CDby@-&>b|yRamAyd9hN`DA`^R9*N!Q`m;4fALgY;g*nnEDz(AXo z_h|@I?x2Ud>h;tNZ-uzPN#xT!aUF(QWj#SYxI2|)*l0x_-}xrrB)j!RjM2(1eF^dh zv!NNzBQG{w(VoSgMh-lM0OfJYRuXyv4g76^!a@d?>>SoPK#>KHg!Wt8PZde$i3#`Z z_Pi5WWGV$STgKJ?P6h>4dS&WA&2BrLK(ujWYGxXoV+BvHoH2;Y@D=U#Q!5OVN`%bx zqH%mIzM7}FE03dp3MJ9-c3VM-4xqfKE?2pM%iSz&S|T_13$kzKd2J;!-A%5Zt`=`E z$qlrky)@IF>+Np(g3_bhfZ1VgMfnYk@3MQ~sm>wlo$o-#;puEHcmZnz@8}C|R-Slqmg|I-Q$uGp9rl z*Bs6Zh}xl6o z*?L?(rCHS#HCbG@X0^0E(r)MRyoEz;IhWaLY%93&xdWQ3tFV`YhunfMC+Yg@gtHmF zzT*`5?b$&AG>g|5;Z#=SrZ{WsR6U-Dn>2J?|9lqJXD z@IJxY{mIf*=n?aoQ~Q~6$pkK^kqKN006-7U8@#YK|9rIyQ_bp}0dJV@$wDDgv*Ly) zQXuv;2q7v4O-evYfl1v*JSB#3W=hCIG$QW`NYy_lKS#uL9_FSK6F}I&W@tK;<5ldw zTQKm6#@4QZ$9jdcSm~%kZ#~n;Q|JdLwXq{~x8B0h7L$HZfmF5PgsPazm^ra%jeN{` zh4!fOz!|D$8$nR(BMz1#oQ~A7*=}}6op`J@Lq5e@J#?{@`OGdfMuH%K38Wv8A)bn+ za!w(2%sDx3(?qP0l$ua191kiwNQ`JYM%mDg%N896DMEf^{1M^}NfCwuC4!=ENKIpZ z?VRYL4o1Wqu`E6U3>AB9q8l0wx|F&%4l= z!S&JK9rXAeK|k^sCX|YAsLbC617-*L5Wu@TYCf{zGx!gxGM`RJtUC-!AG2p1CY0SF z=tASgcH3QdU|v)mvv&pYxgAGl|jCgT|#Zow;ZoG*u$O(Ad-eLACHkV^R^SO?bDz(P+-Pmf+NIoxyCdi1((eW=KyjU z`>}+FDuBBlHo5_bAA@D*fPWz1fHknGl$iKHuhaM8D@0RX@N&ux$G6F}e;QZDh)B+K z^V{Bi_nRx~Fdx~BTemyf+xEn+ckuZhe;!+u|0I(_JMz~71RvK(LLQeZXhF2x%TpO% zP}jQk?alTRML#y!V(a|d)a}(oHX)99wO&+>0qbb`n6pl5AWqD6L$`sTgOYj*JK(zm zsuum%>QMf2=iLqefPKw25|Gzh`Ose!!((Ih#Ci>wgdy;I?KQr-H~+m0y^m+c6UC=< z;JV@S^|ora)~&uEw1K=oArxrf>!Az&HU#ugj!Q)DCt*tCi@r_7W1t1%owBgOV}5;Z zq%la_*B_sqE}`Jnrrzd(8D&AVd4@44Z-G-kFP{JYaQ=<^V9@_P?y#_M{$E|v|C2js z`aj$`3+Mm1Ynsurwa5A2F7b)*qgm*1`ap#K$Rjp^t$*M`vtx`vYF(t#ms~qH>SW&? zv$wZXNp@z7+tOrx|IU`C69*38(=?58WuTA}tPayAipVz~_ynXatQ4v(v=x%lVLq(W zL>*xoOEFZ3$v|;#adI%KznYNQkT*(WOFUEfA^|;ZbC`P!kTYHTe!uVByRk8hsRF6` zs3??9Qf{%3U<6~OCc>*7%%$b4z7&G;T^Sf9h%A(e)dL}FWzkoNCj~1-5-mj)|73gl zIVM&)gx*|w84CKS$O`LNY-QD-3k#xio%sTJ8dR5bomiQAD4A3$uIaxt_g*VtIR!Y3 zTr?hm4?L*sMIB)?K%}CW9jM!W@>4KGLOp08LRvIiVexglA7qO^Q zW4rKprug8c6R5AuG2q@^y&779d}2sZhpNF1Q5pPF1t^NoHU%nqffnT8M^HUL`CKt*0dmog8U=ksL#roU&Nn+YZ%b> zs_Z1)oroPqq%3Yp5Ppi)9RsT~uX;FIhQf0WE0qVe$@i_4-)QiE z+oGzJzS-LuSkr^j!aZ9$No?9hdFgI(=!b_2}vkznqT!q5MpAy`y(a%Q|t}I!RUvsks;b zzBtRv+wZ&jV(FG*01ibj_}bd*3+63==Mhk@)(Bcz>2j~TOF7YFYs0~2o21Z`Y%o|E z8#nqWG<=FlB#nkaz$S*?jsSYYB&9}6idh1TKxEc&N~U=pDa9bArWD6ot5Nt9u&Uiy z@a6Q^uE*2U)2$b#)BogS!>(<+I_TQIuXFeB!O5*n8_XA-e5d)<3SD+?*e&L39E{N% zKpoTb{WKu_`XM_;nRl;dUZ2ij(Za`)dBK;PXAd;{<*ob3Qxkp~`Mg<+cCDLsweVh@ zedx`nm2>a*E5!Ei^V!K(bQAsRTEQL*H?a60s>qt3Xqz-zV$X9B( zT9{fm+s&3!d{e>9KYwp4oYU8tdnuDwuyo=%Miz@1yx#g5h{Ob#egThVFth6AKWPB^ ztEqed!U@f9Ll3`}whIX!Kg-}gUevyq?{yq$ishx#7zkDgo1o}Yx!e|oXc@{Tj)vnLr_r5^5~3rED}NpRo{=S9tzl5tvk1Hx z2r7tT1dLaHeZfC0C2~S{PfuR!v;q==5t`5BuBKKII?!c zbDn+^xcHN4*B+@`b#4l5{^4;tV5{2y4qUanhaPz9Hdv|-xSH<2|)A_*}>@h%1`V~3i?=* z7ZjPmbB0z=K8_1=LhMl%Zt0a&&;(n{Rc}cS@)T1B6XU^~;e_u^q&9LqdV)QGqFjfu z`q;+=Qw5F$q&0(0Ki(9~j2&TtuploqJc!6!>`qi0glWPhe0hZ@cX=oAFRYTg z%qyRgyU1#M%1XjtuM6*(?Vga^^lRUidE&-5q)y^SAY3h6_PSrwK;&DF`C@P-Hsem| zjqj}yj7cyhzqG~`--E@zgKJ7n?Ay2HY5x6dZ9FYZE!@omU##Pkd+%J410+eCd|^)O zXLv#3_=%Ci3mm~P2~F>5qDw|@%}hemX$e@20a2B&olM$~wXm_WdNTx0Iri=+g9A;E zvl^DS?-@~iw@X?P9}7}6#sz1zSFJ>UkznC-mGF1m712=`D+H9)ncFdl8|9%GqF;&r z_)YM8E2?G*=J{FS7Yr(`+$t}a*1+`k`A|}=0O~9n4=}3m74~1SKKQ+;d5c6d>Tz`| zGh`<&cwWCz!6g6G>mowjy2fcAXK z6v`1#h1XO&sz&ho%n~B$!krCs3#NK_O5S;c&Ty~XY(!f|=l#A9&SZ!&FOkeB0%!Y= zFevi)>+MS!9S!JBDrkoKs|XbWwI12beM<*LjpLFUR}`90J>DUmcqu(+ z9{r3PUlb3Dnh%{%9KJ0hQc&)TpyR9?{u;&sTKDYTg9KugZen zrCH&x4*KD42J>7DXa8DNe6Ya`HZUdi4NkDW(k$Yw>*`vA7u+`S4P77^0mWHc(pHJfKl2@oW0*S*Yx8tnpam0 z0kZLJ5DxG#AZVU~=tJ!sZ6==hBE;_E9ZIjW3$Fr-=9HU8zdic5@gGU+ zFqRjA;?ijCZW)o{b0sFV0^zR*3c<)LJo2I+!BPG9+#xDsYv%S-KVXC_h%X!d!1n7q za{oOqvi@fhoZ)}o>1odWFA}`>t?r(Zx=)>%h%!>iPBL?%yV>q(@fy#q6I|8ER?cLi z3g43H?-@7&g{E6_@y-n)0bm4KWE{T0YF>@m&-G*MZwybDuk&|SggK-%5#o$p-we{M zQQll3hmj;urq645+w#kf&TuZ>?ksv>p2r=A#I3jf_dGfuynxfG%!&_SE#~Kv_!H>c zC32%5LlrBP_V<%71H9Imicy_+zMa~JT~?;j8tg@{>WhJm%+jUPvv2L4W$TJtFxU$A zB9l9wvmAdnZN6&3)RECo-d0scj2Sds7a@|?=Vw?!{wc}_3 zzNfmXdYYwR-t~dXs*PtAl(e>PW z^{9aH(dpyNHN16Mk6l}R8qeV_B-9>vX)f|!pMMz`vEno1$5M^0`7WV z3(qT@U36L8ip|22L?^OIqs$r@5DD?g4pVXhEUx_FFfP8emUW|R$wXzRi+*!YXZ0oQ zEgw}=ZK)?WIkde?Wq%J@&W4S3$otx}b-|8#i`-W2>I_P0$stWdFrLoZjB#tN!3E)) z8kw+Qdl>5Eyw@%0Wp!{zpmKqB#JKYLWI(9j<04>0I{sJ>@Y_(NpvN##!RY%L++QWB zxbOvdJW={=K+519Ob$-IS?ZxmFV|_`QQwL`zWP#7T@v3QE`&!gVZNltktRYo*JFz) zqDgj+R*{c(7!%OcN4b2QBfl4V4twSWSm*oBS*-#4gfIdF32AnO{e+1aR81{nVaEaK zQPOboZQL|1=KTYx7B?yKrTyTno?1cJC6 zg9(7TSjJK^d=b|llVGG6NLITURCiUAs=S1_JnYrt!~7csOy~f!*U3q^MiITH>Mmq% zvt(o#L$R4^@pHYp^E1JHKW(T;ab)w)kr^e*a6p^B(_}#W1W)~D$Qa=lKMo=Iff7%* z!-!yXgK3ucB%^@W*8n(KY8?%u;NJ(|IFqNz;q61JB49f6!x!N?NapdUUVuT2xUqRK zporNZ0T4ZJD0HnOXaQL=){qQxFI_$Fs&ESg+>Sa)3!|9OZg^3F3HBSL>A{&GJnRyp z@S{oy1{T|t=&!(Q#Q61 zmSgo&PKh3+WO@RPnw#bAd7MInS6bY-d}kD&^+RFAD~fVOZtrnTK8D?NPuCx!qPTL0 zayvMCtN03)<)R{arF-po*S-Rk^zStXV8WAdzza)VAt{m@LSZNq32V*x_FYx?4Td1G zF&r?<@e8-wWbx^&9oZBoLl!y`{kkr4NVIZ0cV-7jCddN>5E~>VfRgkkjcZ`%jh0sh zpFr&^o_~^O07#mMZf3DWDOwAH4bXy;*k*Su4a7}#xkX+oOehKkT`Ph76R2|()ea_G zaBQ*6_(SZj!;owS3kxPwyIa}a7yPsF5T&(#HU(DMf$(*z=VxG4U5AA$`^aH6!fyp* zHB)Dy9%Up^F0Zx#K9ckKp=7H%tMU)9j#4@H)Z80uN!2~hXkUOpuvDA<7Yj!#3dsb% zvM_28clNW)N=a^tZ8El2lPsb3zP@Sm@pT~GHtWjQOvrtbc!c16)_YjjZIoAnzu-pG z!vp0K!J8-I`_aEgqu`V}2%3Yo-+_>53>eR-xxr0T>Fd(&Q3fh{CJ4DPj@z|GmZTkNziM;#t```S%EeeZ9 zHqag)*J}z%ML=Zz)Jq zTI+Kq-g}0-ll5(r-2!gIc4L?oT`JYLmhxKJ*_vQ68%t*FrEh*EkZw2HER&kgVJ_1s zodrw5xhiSG?YOJz(sc#DoSU`3C^l}WuewvJTC;}abz%lIuN5;!>YpZ)>%LESt5|N`!0#>5b;k%)qZ`VRT9b8dlRjUqZ zzz#vg)WF3O13s;o&+~W4*yF{^#B;{9*dI>fne)#h35h8tIx#ZlX-T^b=A~wHFVfCX?H#Laq9TyEXJB^U>S4T2|(H?lQl<=C&r& zo=08f?c?Qd0|v2wrnughqChxWWX)Cf@nHdcA%>d8-U;v8ju8BZh|>I&-lYm?<51ND zVn!1M2V$=$7KPJ>d38RK&Mlgc%tc6R0_`$K zOd?CjRBD{p!|2u8>%*n*EUR1>?szsY;#6HFW$2HuZY{S~0RWt4FB+R5dd!l$D4wiO zCVQ^gw%nFaE1fZar!Pw%NPQvG%JM=AIj14ie|XW&)ZVFV#JNEjY79=bhr21L_*a2O zf$|ctN+J1A2K_BYwa7TJWJ8!aqH0N}l3qGPFb$D$6uCpFV8@v+F<4-yim$OTxR)Wp zpG&*=$SB()6<+0vKQV|3R`7^yqXL?t0>NG^%fVR&k)h=QqqXsg9Iue-iyv$UOQtd0 zKM{npry_(+aSy|gy>Rv=M2h(^Qf;rMN@vgT$Z8vDIt(;Aj}t|QC{fKn!V@>!0SudY z<7^=(*lao*467U4>sf0V$Mw9{{^8ECF+R z|AO~05n|^C0Oq&)<*@$^bj+@YBV{5L+KGfK+E$dw&C`n@87@Sx zAj}1TmA!r3ImOFc;~(Zf>w94(juYA@`e~$njp8btC5Ja0%Jr^0MZ2;y{(okO{kL-a z23|sVYy*?Ay!C<2flQ63gM<}gK<}9_d~7b&M@;_2WU7gt9hIf_KFRLvh8WH|$J_)c zdR(P`L+k>spJn~Q@X8xI$aY{*p_K@c*yy?0A_#PYLJ|fSa2ja8L3HC2mRUoE48La} z!D|k7Z#;sjd1+Oz@t5Fvo*xDLcS-qt^W-p}Y#Ev*mS357Utnp$uq}(o(tx;%4Kvva zI})Ic14MvF3L^hxr(>R8sO%^7IDs@9pgxnRE&>%DXWkqjDITD*U%=+5J1*~lunjV{ zc|WHr=+BpL_KB)0@}mT_+k)dppNHD%%*=tc!bH}aPG!TXKxR{&sLzGx9e-ZkrPc1L zs*m4>|J??MG;tX}SAbccfjMEeMcQ|xCJiMOMsD`os{Zf&iBH1W43C%Ib1wRe7p|>( z&yDG>57_X)nqA?Q<(-#mn&{paz3^!C?t3R)>y3qBgI`9S1<<#{cOXu(@`UM5SglTG z_oc16bf2CV7B|o0dcnYo9pluN>W4@?0j zl>pfR&k4a*X5oz`7*Afbon*_@0Kg?qu)tcLF;?#cftb)iVzk$i3IaPgk@jRW${44} zqwO=wV>pM%GY-&^EFnC{AmO|b|3`eXcSyF-=w7-5hGzDWC=F}nypkyggsL9K&~!z^-%Q%5>Po6ox+&JGM(%zTGzkN&$3m4@d(%F4iY30erlpQkj@dwgl7g4N6#= zkmi7lUv#eD5G)NVfAd$ZQ74Mq+lsZ9skmnz@Sr^IegS313n0=pJfkH+Y<*F%7aSMb zI7)~jo)w@k)BTZm=bt+-b%|~WoaoLO%ZMU0IMM@^>RT(=Z$Rv;$N3`!U9QJi8n0`& zE;`D=6fs>;Po?CYrA{0PwUz}2J{u;~T^JSF**&cGuYa4cga}=%ZqRVeT|twE7LF)9 zgp>gWB9DYX!hV6`;WJQpSx^{!Ab7kztV3Vp!3?GhMyf#Kpy;r)yT5NJz3@Tal>I@u zXhlf`8fA)l(6eXjG=;-H;@Mv}R(vX18K? zDj@xj0uZ&5oUBOx{buPD%uK}G+US4~C;|jJU#r7Lh_fTc>)}2u@Nsr+_Ml#(FwRII z>+FmSX{I?LVygHjb}v+YCjAK}_vtci>R2R_OZ3hP5;4dcOWP_fx6>8w=~HFS7|pS+ z?54h?qL=*kbk{|@!9v-%o~wed2f&Lgf2g`oiFOxXKv&T@y0_b!J!SLb%_@5sT)Q_{ zMc3>1>9Mm5mm2_Y*xv^G%Q9{CpyhSCbDf_K%)gU|-%ANi?+tYhmi-`CMDpq#jD1aG#-|-yi#DkC}>pP6@Y(fT#43N8gX;AMB=3 zeYga!iyGd^-f?Wiz*4T;-d$6b`e}a|MwMgD%|Ok{W~Z9JV=1Btn$uDw<;RQ6I89)r zPK!&q!d_4(1WY09t=!yFIJSg)3#Y{fhaWF_{j)FBVfvPtNv^_D>-vN3+4LN|Nrf{N&#o>S$*2K>5nMb>jBN?Ti+_hM1~08-T-gF zc!%dV_ta}YSLwmP7ERx^Q|a)tt&DfHCg8yoET1~1Np$F?n?_Qc60~aB6dc@ZYl-=l zzZ7J;{XFHt+Mpy*vfL9iQ%Z(NqZkZjGy*(wLcc_T`Dh$ix0SIm%yUXvP@yjgd0kA0i ztDN{PAGup5f^$4Zvg<5pQ3Nf--a)+*3~kl}9khwch4hS=&I{|t>4^k^$dJ$aDr9jA z&~#_J5SAdgd0VTE!@cL+^#kL!8_IId`wAt7+oy^=FUhLB`r6O&aIdp7pzbpwtZ{{+ zzCUFfyvVJ-pw&~Yi$-T5Z=~L+5^ET)I8i4?bMpNV1=Mwmk_9RbaqDKSco zp=MBj-^9Y3Ue>TDZyy}mr@UW&fW0rKyltmUHryY6T#|vufrs6`NE5l&G3n|cLh-%r zrw`=2hWF66S4NO$L1y#HqI>1?-WqRYg*F7>VmyY(t3O1h?3!mLFPH;2=vA)#9oBru z`a}1rpMq#89DP843|?Q7ka%WuO*$rxRNAo{oUu=-??6`);4#S~)}MkzK>eb`hlf;{ zvzHnFKps-2@bIN84^VKHtvE&r9b|0v+gaOl*hbJ}@}&0^A6M|kf7Sg}Qern5A<+J* z$68n6C8WER&100B&e7)z{%NWxcqrf+wLcGCKsa880F^h+9zkeOARBwH(~d|n-@p~etTI!p_j}FBN5_iE>8wqUx3e0n<#cJ z`h>nv$*#1oMVME_EufWJ^5xQ|{qbVrfVMlE5o&=4;@&h&9zvqq5mjujgA5bHdAYm) zYbbd>D954n2v)`_9&L!T{y(8G3*03ee{);$A zIu|gt*XHGLfgebX87vKNSrHNFbJrq~CnG%qxDdIFoYNnDdLJ!9el1{18RFyVKzgMN zXm|rOyMjR}Gg>g(ae7L=Bt1y19)d){*mcY`j}7ssg2T0h-3cML>4Ac`c`uv^VKabL z;iCmE0Wn&)$669K;H2DboQ-FDzrCzuGKFQ1>dpyC&lm*OSXZxQD4jA!FZY0mmdr-O z&jh9THl8Q=o`(jRquE=u5MJ=k7vq;Q`QV-gkq3ob@BxV?I~bdlv*oX4cFpG(CGkFw zSV1$|;mtl|-aT0BT|QOmbSvqxv2jOfuDxg*Ts|NLA+Jb<%eN5lUja4JQSkCU_s~5?GSL&(T?(BilU3+oz08+Gx*?%4 z2R5xlIF4{g$%bqXbHFw!S+s$ZKbR2QzsCinsx-1n*-}pq%deQ^({eb7!$B77V~F0r@^uYVvO_ahX7x3teJe4ru4 z;_*7kBj$MptK8)g3cTe$_V#P|>iXTW9yL(Aaim-pBD3<01RQyZDDiA`)=>1HD8H!~ zLOdO*3=`2CdT>gR5Jc`uB!2pQfEs*!fh#OZ3B!2PgdJv!0O-H~<$kR!H4yKHbUi3J-onhWcvdD?daQEPBD z8|Hv-<}?(cAEv)Z@KF+<&+IVkX~$XbL?20516JRCmG-}i`@zK``-r;bqX?n@eQA{$ zb3ntQYg7lJz{FB=sXbF=#_}aJ?IR zt3wS<=OZ>GzdZc{a&%Qw#deR6nTPd?3|&&?R^^HvNjwe|ngXE&ExcThvpIYGe7LMe za!q~=0e4`adHmkn()4OFqsJp|$HKn{KRe%IB}p{XMyT?)_+%L{%7o;OSmByri6_U- z_m-851ol51d9yJI17irs)tQ}pkBRw|mr!wleT=G- z^J_hM4YnSkgRM2T!rwU`ve`H~^@)n*ix{S4KqSu$_3^ZT!7i(=OFQ3A|mA ztT{DXt>{l5jc$fJ)u&1!O2tNWAyUmUCK2fPR3$|mvEPqJ1Vi`-FE50-oujDhf*Kbr zun^!}vO%Fu#Ts7^H~H@xbyclZ)coJ(=jOQ&@8d3iqHTyUENd`bkU!y?vJvuUnRFl`^%p{lb^ZM?Kf67rU=nb zf(gU*k|kpG#jZG5sIct7Zxu|qI%=qHDh?Yyg!yatau?OXe-|{-@n;vPAo&80bk>MR zQQJfD&?fJ`ogF<~P_}_4pGy1HTV9>-)>66qRBjPbTP=0NAv}#d|MpkWVJKL)O;#mE z{K_b=w#$L@yZ{|bRvva(XJO(>;{dkpg%H6Nu_OXudq5OO2SbQqkdLc)2|;p zb|!e%K5E;L}l7g}nMJh2j9pElvN-$5c?sM~!8jjJJ*DvBljE+NZ* zMgnUg`p_e~eY^1Yy~zMS%du3ko`Tlca%nwgiyET@I~8NtpnE2~_4R=^7qRyWXD%QT z!fwU&_7oqBk0pNt{Ha@Qty9~5pT*t@u{k=R2y+3KtwnF5_q0yq@kt%D7zJ&G;KsD^ zP`D1X(mdqI0nC>xq9CY;YZ_G|b!rqnvx)${-VQRtgt_BVPu-qDEEWAJY39-USc}#e z9ZwZhR#)Azc|^M74*Uw+_nlq!Z2@U5unY8aO2J>ge>!ho0Fee}7cR%bBNe#~(HGTq zh5LpgPlAGDp- z#pa)yQf$75Y&tnm-A!hd=K>?9f*-(O#!#G|hGeFo9-74qE5|n&=ZdJjdSJoV;|--Q z1Q>4~6+nTe@ORtYC^<$*hD&m6ksp<8%0CM)UjE~W<7P)51j(52p zCDk0oC>9W@p=wmAWJ?KVkW+L9`-sD~0_*yFaCU3^4>}%KjEGwyOw5ZQ<~SpQseb`X zvJ~zEGJ|erXhZ6lJ5gUoo1+JjG9E2>sEXtx`=sDjUHNXXH(7PY`kFfd$I%08Sn%pp zZTAAd5FT@W2qpk%B`A-}GukQt^X|a3x>|mT0T5Exb+qpTXw+#wP=~<+X%^e-!bTlU zVMu_9wm!HkAFO9!mu(Vy{3d}*OoT5JEdk)Qx*qsGd zreH?Kb^S2KK@FCvMb*0AkR&AMkfq}LPJB?1crV_=t3DnQvy{JKv3qjV50QD!(*`lB zFZQFKL}d$K?+``QFPj`|@kN00y_QL{1WZ1N-wnOdvS8v!9yLx$6j8f)dPNMM*ui?5 z%|?KLf^I7ZvnzP0Vz23lW2L+@mE8p} zIW5FWY?Gces@j!Y@iZik>6;IHFTBI`0>a2GL-$ALYl(Uy3(AD`A6`Vi#XF)XU%;Q$ zue;WMfZ9NPNMriT{o{xMpkU?)81) zn_mqh{P%Ff%F6hE&5Zt^96iVX;pkaenf|9UrJeuH(fjoU;U~dQk(!6$G$H_TNbZ1H z1ole>w*E03UmQsw-h*^M)B1VyHFLlFPE_t%sSOZ@9iQ64P8>RLIQ5hui==BOITpD$ zP=~@hBtp)e5S{U;Bxb6(q!6Y79TU_&JmwHhb8<<%B5G)_E>BCULYxz!8y%*oXN|z> zXs2L3fbJaM@DsuhU67poBP3#N5olEL9%RRvCMq?eh(wY9UI+-fT%1S%>{<@ioTS(j z_PlEOrj1a%CB!DK{Xd=!Y2Y)K*7*z7x5F$X#-~;A~vSDQqol!R;dvn@kU9sir|6}YQ zdqj)2t!=n$+qUgmC~2K%h_Z|5Z$#Nh3=f@*+2JoD1XjUF8gZbVph@&wpl%d; z28~}kv?-Nmlx<3ZRk*^~so_QLSZV1ajs&h^%Mx@GP_vKfM>MSrm^pmZyr%}VO&WVUC_OONlxMsA8L zx9i+pDSWHs<=L|XAgD^`u|?}}!A*un(`?G-bLaH2!zO6j&7y9q>MHtf&Fz-sryewL zpAcQL{#2`RNQ$&A9bQ z#OiIqw@Y`sh7A|)VC2i}HT<=!o4;XioxJt{j!`0@uCU*$8I%0eyq8X*=#1amd#5Tl z%lgl;$Ft_=(N)!Dp0`7Lr%vt0+SAm=H+r{Cp*LX#leVf z&2CF-xAwq$LjWH@%OG%Lo}q8R&7dVHEQdsCbDf!%CE*wmF=#^yMc4? z>t^ONxaT)kp!b>^u`x$3t%d)iIvB+cnwyMTV))N5nAE_xAF$^e1(Wt&lvae>x$=`Q z{@wD&MlE~oCI-(zbqip4r+`7Nn>5}{;=^EbGL6o119cPI6yqE5LNR^4)PhP{k;slf z2f$x`{@BHBh_eyZBT|X}K@2b%FUrzF@_G+8FZ3bee*KqaV!@I$?<|gI(mlw$c!MT} znmwEH?tA1=cR)L^B0$+ymfoTKO2>fN_jrTld$NX_%bo<$% z`sXX`fnbb7?m%brz(|f}648Z6AmQfS1Lkq}7-&KQMc0U6ie(m+!y80`F$2)_KkmT? z!nVK(q*~k_zb-IuChw8A(7Cosqsohj?_QbL@rX|{ym`SYW5=OFSY?oAiu9lijrxfZ z_D91teiH4eAnsb_W91tFCiL4kn%sQjvIoSy%6oVBNP5dr+SqV>OwDF~+@#K{O+t4|>j4{<#yDs6q$mM4>NlsJan>LkXz%VJ z%_tOj*1>3LD4vn+V4)=v#IXjP3z{<7Vg2=4!$1~c#~F&O4Uhp3)=b!7($Aijh7RhZ zox}eOwq-TUa?T1=0f`18*Q@kB5=8L)RW!l($Or&F+nxR4$@_&SQ?m*WP?>}2!?Ka{ zSArmzav6fOk!#Az=>ff`)Y~SO35Ma;lwj3M=2tSv&e0G6$ygJM*#aT6ahixhPQWUN|N4{j|*m^G~&a=s40w_2}9H{6YhmV2VVqAayhwapAVD;XJWn{-?j_DO`PdeN^6b`)d6|4KgAE6$l4XDFVmU8b9(;C> zXXpX}(7aSiYG^XhhbT^GJH1-~JC<3(83~SXnuyR06FWc#ReE`D)jCb(I!bEZo(_Nu z7k_IS-4897*;Jaea|(4m1HB0Qg4ZojZZgl^^m+Mp&zk_;#O_RrGV$I*sR8&RDHrAXQl>#gFbfu~ghuL!Z^t}go-aCJ(gcohAnz{V;XmY4 ze0qU@Z*KUH<4(0>uEIHv6H2t3AnN7~wV)J+K3+UJ&3C$kYd@5b8kix7^py|%OQZE; zA_dzuW0S5?Ch4FEpXzd2Zot+S_2GMjaH$@z`W?%!>03A9Yo$l`5=SJE;r9GWtEYKA z8jEl(vp~D+OBQUd9Td&=WWI(erh|@fMXWF2&!Xc&mGMknJ2id!Yq+FWU+Xk!>}b+W zThj~)It9X($Z(eY7!Qs?`1n6!{jNW+4FCxWh#IZXH$lmZ3Zl39GMe;ZI)|0u_M*!_ zjM(Q+0c=4YTDA+qisXwgQYpladJFS>fg!HD*8i{2WMlsiSusWq=KmV(c&+xYpMnjc z=T!CVDBpw#0zQDmt5K1=9C@~=g*>$gJS4!F4W;}+KlYMuSDQvm5{i~Q(WNB&r2y1L zmB8=YWsE+wAFQ0Km)^0MhE`*o27#)TJ745xIPVM4ZhRw>RC$?G6Pa)vl=KvP$_ z(s{MSS|{1uzkT$;#+Mg|3DLru?c4XGp4WsmJc$Uf9bseBhAJu2xO9ASnHr>XKkIGky> zv1NNxAcKjsbS{^=)4EdRp1tQb`1erEwX{d(;7LKK?l@^kf%!iU(z#W?D8{rA((|G_ zCzBz73I_)TBU_lB2CSr@a1aFe7OOr`+Nux+nGG|*m=_TlYXK%UdabV1AHh9$yTg`7 zZ6T{f3J#~<$9+}sNGey}6Q4?t_I<)ON5VuTEsxAi6-tyy;#eXPMHHTxC~+dV8J-}> zkM?MC+z=CPDsISg<^O%IJvMr>4>rp*E6%O^Rdqyk8?+gC(a<>PA^|~@xSPr zR$6%O(^z&|$UMxQXBL}rJEW*=G{T;s0;5F(K00&{8z%pHS^4bqweXCrg{a1g>a{E% zk|ilo$MuZS+Xu65;m#Q&90&!`A_0+rX-uJ@ra=o9*;f3Q1Xw!>C)=%Usg!88RQyj) z8_X|lj3-lAHm<2L%Es0_V3wF*(xY+#n?0Q5<`wf+i1SK}q6um9Zfpvu(C&q*hVb&J zixJKkfp7!X^bp|k8FPWVF#SB}IR4q^kF%><;&|rOJ}?>iOFb`_Jq?x>S0B`71vme{ z1Lmj09P>iOWPC1nROjWzL8Ibhf&mOU1xpSzqxKYC0suiAJEU)heDu5w;%ANsQr>*q zWig_dAe=Y3*dQJJLYQ13rs2koi#Y^SU)o{)DA`GXe}Lk#n@1)R$j%X_9g_Fc2=xac z66>K|P%;D>15Xv+Nu@&^iT`97$Ww^$^3$stWK83u83bFzTO|W<_SqKlombBk$H0-gO#~^c^@%i1I)Xyd6&R;@N}e}%y+G4kaKyfCxpURJB$%2+6l zM1)6gnd-9F>tZ00n<^k2wG`tFB{3s5x|?dnBs1g= z8R+IvAUw1vBe8R+K}ZCS1nIi0ZcIf{TGdZKjbSfjCqYW?WDFaE>gzx^VcfGTb2DU! z#E7eBObVU=vH#M0X%I`kLZhpR7cWS&g%l;L?-%3XYS$MPq;y-$1eJBOC6}QDP1LXz zlELtEDnky@)0ekOxbu|v^uJF*$lvf60#ywY%B;b_gos#3?XG3Vcp;AoW$ES+t^osQ z3n!vY#nnsppcEXJmpog0U~`SHmMGFFDiQ>XF6rfmAq7vWIpn}lX<>vzGwjTb)a?VM zy+lb>b|wunpHG~KlPIl)%^K#0z^`Gn0h4pqdDb1RSH|!fvkoUNp)dDc5-^`xJdNej zO*wh&?BsS~%$#8v^`so5c!PDAST5`(Pk7)%9rtnk!Od6NMHPScCHZ|9Pp7jDi!Z*0 z<@FgRYBL~_#kr3%zMHA(&C?9#bDd7z;?7}g$YoZGd-WFTn%~*>U4KC82R}gtC!wnh z*opeH$ag_1ugmak1q}X#UgN(W@E$gFry#ObIAdxkOyFDu%vRYv`P-sjrD$F0!k1efwz3hXQ^0MTi*RzZ*z+q zvwGr;J*QQlG?%uzSpO9EN}Lj}qR&CUL#R5RH!SB(9^m&t%Tqy#N7@lVll_s9)(>wfYLiYG{vu#z=E#U%C@aE^ zeD1)8ZqBU4K&#p_sEpz{YsOJ#}Ii zhl*H}nL;+~vdQK)&^swTKbmbEJ$mi!$v!Eip(OmQtvh4ttK%b;Bz^)!M~}OW;*uiG zn@J7G-aW!7+bW{jXX!0@beXSHASXK6Kvo{vC<}w%{x*CRyF}?QoYjzbb@vt7gPZa_ zH^YP|Q`jUi+XHu~$y!#IZj59LW5GeRz&P%WRneoByxp(`)M(Zliaj;TezkpQ$lS!* zMSx>A+atl)zwMUeiY&?&wYlvdoaPpSK%=-$5%3oV4TPAwSb=!BTi$&R3?Q1E$Q;p{ zgVWbH&I^z-yJlX=yZ1TF$|WU=`EXGJy#S-($Q4MFJ6yyE zBT6HL$hn&Z7dY}DU@>?1^1u@7$( zWvEXc+E3Q*Q2?R{8?$c{aD0-F7V8aSB;Me?(_Xk99U!pM0t!Ke4IBev5aTf*>&ECf z0Si#(0q*Ma1Ohu{k?>LSwQy^LwO3_!R5MZ#wrdx$w=Hkon#>A;r)@von>|QGwjum>5gnnp z``umn9$t7#4q_+5{kRo!kxrV?BilvWZR>ZNB$EEfHfF75&i2Vubq`F5P;0+p@&)h> z6atY&pzkKIqAD>W6Q67_0GNJ(1AWZ|{;+(0NcZ-zbB?M@wQv^3M_Hh!CNn@R$7=VD z=fR30wTk4zQlNV4nvj}WLK&G8C$T^6Q=*?aO~$$|mTT$8ac=iizyUpQ$6$KgJg6hG zpj*(?QMfqvqVlz2-t)kfo&(#1_pgvu;>2l(AEbRV$<9+0^`_q6YCZ zS=YU9-t&t2dzGT0PK0WQZWCkzp5cI=X14NSp^G`yTz_BE!xT8BwtYCRfTB{2!-8Z= zR)-rxVf>&4TmcT)`f96U&D4n?DgSJ?-$Es44U=ZNQ`dQa`@U3Ht z77fnsDmd^R;ntQ4bqysK5uulZ4VRbLNrw=uTrTYKvu1_nVE+CgT5u0j5IH^+-wPqE zf>qWNwm=Nj^8)rrux+i*y;1q7Lwz=N5X@u@VoF55(EG+dvv7TDp;XCv3uW=jQO_Qs zCAXgxmw(RhVtKFRNJRPw4kfx)9THN4JQwosVDC)&M3?{~_Jg~@0{Vl*fHOK`;`LxS z34S}tfJp#mcn+DAH9*mz@-w44jTRB=Lp2~i471zJ9!0cykF?YPm=+50LewREG60-2 znC1;;=%VTgc$pSL`hkX`&{R+XSuVXgU3qXaQcF~9uBj_xD4PagAz!#%SqzVXmhr$@ zMZFt%LLPxX-SE{M@s*$1{1WN_p(Ao}rDO6E{2(gu4t(O{_&(UKkR+cM;|lYTXq3>f z8M`F7N76F@1BkluixFL~i9LyF42x2`|0znL9*ICKaMMP1!b#gIa`&}~Y4VCK%X87| zw>c~eaD*+V&e!x?=TYX6FO5#&lYR-|Lfumn80;51>oLZ1Qi4vmz5#gD518+M8PEzA&u?Uf z%_~s>D{72r-|?(wlS|@gX~LtDEAh`9JjMZyA_^h!hs2mKb^n-S=)SW+MH*I*vGJFJ7b=ya}t_(X)r7O);`EFF06UN0Qp8~KUnt%mH>1If=Y{?u(kemnI`4^kYC8e{Xhgl8eFOTI@U;I)>q#7^ zFgB+-oPWNiK&9C?Kp|(8RE(Pv-3_RG89@s@6vr6uryOL0lEG;9Jw-$}FUUu+`Wk&6 ze$uXb9hFRzB9S`z+hL^|yY@@k&Pt^)PH8>9%NxmG zWYpKuZi~x}DwR4q(!#w2dH1QVy+qoRlC-Yrisos1$jK?Ek1Rw1dYkIIqu)R+}~E_T-&0xoo7zAWp4(J8*R#4>w`9L+XMQ$g*L7cY@v1Wcd~Wq zLE;!Vzcay1?t!$ZN+zIVZTOP77zr$-$&WCn>oO`KP1N)?R`#Zmpv_kL*q3?EN22r% z%P*fYwhs=O{DSh6HhoU>T``hTOrH)-m@4D%s@ zwyPQJsfFFU)z=5yGLa_rZ1|fn4x&*KD0_%!Qav*1^~c3RLH$%A^M+|tm^l9Kd)YX? z>4Yeeo1|}VHeeNmLa;(RFGYKCFt`sDkX*wkaj=Bx#cxFWmzLjAZ0i9S!|niMtbGRL zL-_{jf6;XINGBR7*ThpS(5Yr$MB5(rTL>Q(uiK?ucv(>{!(<>hxrE%vmWdNxxA(?d!KfcH;fR7k-RmcX_Kq4CI2%4mo!q7&n@u6 z*CK^sxmK&n1X@Oz`4hzK64$Bd0fUT^Qbl5{{1z*^;6*dvTgLhb-_08gWRf-i71_$c z+E+3_A9x(RKouUHJ^Wh1O35dJ^wSmE#hy?!gNnDd#Wc|BZR;dX`};rhmB|}PYtGXR zTh=xy3j$-9w8T7-f4IWe0k%dg9yDGcqPgk?$L3c|>Cj>Yv2JnN#TG z2g+O;|MkZg_Iq{^}*G*_2fIv4s zV+rO-^nLpI*2~=dl}6e?RGIm42u~@e@k$6;GPesxVBh1fi(1wnbsG-)r#5dNF|6AL(;t#{I37}oh~P&1%y z0D1jrmAxH*_=uLKo!?LX*IE{8o>Y*aBSeURIQ7AA2uVs>GCl7b{HilX~a@GSg6q^3x)Gfd({n?p+v~KqBSmTduTKmhuaT;R5i8{cbF`m z0M+AAd5yHD4I%?-d&>Zbv18S-HZz3=m*`fFlaL$F==fy9q3?>y& zDa_!Wp(Q(=q{idUGfV z))QekQV>ZB?oQ+fBQ?N%1r1t@Ie8#L_U6F*r<#FI4zB!jtMLks!gIfSz%_=0Gd*D_ zT(Yq^j34N4A_;y3A%Q5PqDLx5FD>*Mh7Ht55z`%a;KqhAOwv~35Gj>e;}aSC%&vmX zT)R=yVn&`Ix*qzK9Zf7sZ-CE0swM=BlP=y~fJAzfr`DPkLK=d5@eg8fnJU0Q)9r8dV%6Ku$b>(vj9~bYtQ~$e5G)PnNtQez&y0p?l zFYmi+_&*teNCg~<=1d-TC71C=<(;I}e;WgJ!E+RZ3)FyOphBVA`Dosuf)&Tziax=4 zh!eJ!Zz}T7Gzv&b^(fqQ2cCV5#pt(bafg3whyoKENHfwcE<3Z{8E3e#QzQH}b2M%5 z%WVbz0D@O`X#Lb>hM<)CXxt(d%#iv)Wn?9BBfy4Yrt;ah4Zcl6yxJ6%kVJiY0>Dq{ z#%Wx)gNx>GKMxHLb!gk#HSAxqnwq1$IFzs!@g?CAsw2Pk7;DBWiU-YpirfW3B zblMbNC2&|ccJ;vu6N_~kR_j8Ur`ZZ1t@d&Uoy!KdltEj^U1L=HU}X2CAqUUyk_z*D z!%wb&F==@TMgl}eRj%5g=DSE<7{0tcc)45=2|gV)pWb$Y&zx)jydmPB7KLQBb_3$L z&4v(N+ctJ|ss$8Hs@B8xpdzhU9pf3~Sx2_>&4JPD)f74oDO* zBKSWevet~X8#u^h+u%Y>u)1e53?09=+=jpdD&3(fR(S8U%UVruT*6Lc4knviU4LK4P+F(Z6sPuPSBL8tHhxh&({9BGZw5rXt2N%?uOr z>U-y8`|y^&mSfuWYj@}S{0YYy0_%qu*XVK$2EC#502T*w(0FxeX5s+EnLa)zRPSQd zmdkJPd>4sK{P_$?%*OUD(hD0kxEwiorZ4(xF5YrPU#FD$aDFB{zds^kD57NdE72|U zIoD;PfT|p&RD7kpq3ssZt9{3^k#F{Wbn`bg>zZv04Fy**y)@3Q7YR??mSvPphjW0| z3NcV1Nn2n%hnKj>p$)431;S~(1^5q|i{(F}cbWd{;LtzK<+|B{xby!YDhj7+2>f^F zRVbt3wphmAQ!6asGmH2?2Ml6{xSymnKQo zyD=WFfP@^jovJTk`GHrjd-V>c>-lkLDR;jMO*v*28`hp0>yFaOs-B!@d-wQ>69)!= zhHUkdpptLDjpjRS)?H$>vHp_T+uh&Rxaycq1FEpvCs0~9|0R-0&>Km+HRWa+!8seR zv1)AM#*lCGWU;{Ms^ktG<=pFFLPu2k&X565!G)$>)FGS-C6gyw@jM_aED-5mBg_*d z{SYv|fL!IT?zYU5F0I^%*r+a*fFfmvG^RSl_z6%$q>^0ZnD7BqOb#Ln^2RYtUNckN z!UzpQ5b5XcKlY?zrPVoh|4@sX*k?)jwx1r+2Z~YJVNVGI{5l1jMDZVr?+b)9)?}Hn z-nW{Ugx~@`O(&~U_7*Fv8+w$k-$YxMw9!U0hP+G5AqLbwY?;X=!pE@Z|06;4-iK}` zO8GGXAd{^za40!SB=bNldLE4=!8*P8@BOhyJoxr|97W9Smp%qZ==a&paXbMzx!Yk7 zc+@d${ZXUydK=)JCW7JEV`+nJU_x}xTDh;EYyWz?=d9G;d=le1Z%2`z7L8g2qkG)* zezzfdk^rwdxLq71rOtoRi_pY6S;|J~uXs#w)7-P{_*cqz@0*{p~akQSd4)L_eic?I)tXP>W=r zasNrq&MqKxLm5SZ;2TLR2U$~(3Ni;+rT1|HR_UFhlM`S?HX;9=WN=%RYzGi=MsLqNI ze5aH#&YNfRiLMo4*85*9w}uM{^SP2JjApFPVdOK3T)_gXRnFWscDF=a!6O)L9Gf{O z?mn2{liNm=Gs+iC&Q{kNvKZ|Q<0|wY;nyVVhdHxvl^s_tKkO?nUZaw{8+f|7dXRESPe+X-`u1?*=HTzpv;^_p zjz2Jfgg@mBQ)RyBOv)^1+6K>EkFYJ>-0OxsMx{#{Q&O2oJ>Mw;vkJe|W z1$!Vz-n<|~q5^%>NjFQ#Slj{6nVS*&rXnN!KPfdXyw3c8Q;#vg$sRr zuxnFa0!=OEKulG%E6xk2a}buKvk;t&F%Y4SVJei42`re7Nt`b~q)Mc@3cB~Hq1#tS zbI7>MX{e;_y)b|Q3D_etmNSYXc@bM4Rw5L%83l0!wKvWm>Z-^6~eT$Bo

bV`%iIihKd z)#h=ar!@WznJZ{g+6 zB)*K*e0dBs#eRsPyUB={zZSBA0_HOs4)y=A}Sw`k@wQkK0 z8>8Ehr(h*SJ%n%@Q~>{jCxk~vm6#O+&R9rFogkra~_ z9w0jvxp87MLS2|uin%mWWTG{GP^79c+lf;$TA^|bQc&OU7Kqc35NL8v@f1a`$Y-CPhGNR`LCyiKSh0hF;o*2JLJ zD~ycE2u{4ck!yKBJOB(tLvLoz34J=Sls9&6LC+Czv+jKeYsZ!>+)-@4$qYO~r3sp) z(PAYgkmW?+CtfWFNK7*=R>y(Kb{L(?czBbyCz%K^#jx@9XhywFq8$OWz(;uC=Le=?9{=VpiH zWu!tYub0igq+<82{$OQF`k8Cb$PS3<7WLASV$(*GY;%nOI#^b+dtl`XWsE6E;8)WC ze>Xg|{fjbQ8L3tLAn~B$sn}IpCEZj4d09SLgcq{YZ~C@uL>b}IJ`0LMAS^E6k8|;}C;OD_W!!F1Ji^V3s#bWo{fSW|^w+J_wN9`qY zlWD38e2HQzHPx?{3^qqZauQuu7qnMzxSX%+kdAwBV`$x_m&&L&J*-+%2Gz)$-&~j6-3Fx4@$2UWv6xdPVU^Z*eV=S(_r( zvnfU~!YVh)i1zh#BIl~@@wxO_z>#?A3^4U!I1J#)-mr2*<>u9Q>l`~IYd zRHgvQOOKr7tS}VK)by3;-10RIBUL09-_nv(Cklz@@OBTGN}lIeD#YFBamvn7HMFFJ^na>qrX-Q|D_0Py&dj++aHSdL4 zf?F_n)yG$R%9kGQ%E#X|ByAOHY8g%f2A>Z#<1`J5_31MI$Jtew`GQn zvG*Ja=hdo{jp;hL_qQL;F?%nX6{v&IY`!ob_4&`$TJhsXfz|F5rESjWa^h^bu z%4Lri=r1|g6(N-vzWy8CfP~ljA7&6E{xoK%aM*PU@`w5p9)PIzR%$@X?|VJ8PaL7+ zLV)cSKb_(Yd2p*Hz3zND+`5y1GQxHqywIDuH44+le}W!VEk`oSn>am`QHDB%m=bx!O4MX`tWe2bg(#c``uEeJBv;=ov4eM!uCE?uoo5aI^6PxZ}ATUMu(Z4 zdx-3Nmn2C?lSJgA-CnTm+3L*tXFYz-eb=o5?Ky&~^PLE0o9($EI=bN_5L!DSz%{d? zt(;9cl$bZJuHy8!{f9$w-HLF}y0}<%GbDAxX?bKj6xCLaS2Dtz9bNoz+lw%vIn<-9 z*;>S+ESYSROsY2k@{)BBGUb+uc|$thM9Li46W8Rk+MD7wLz-Duf39Mvpbs+IfA#hz zz-xJdBUGhd--&PPGCZB%-?Tem3E2>$Ux78s9}S`HyY^fe#usGq&=3GTH#}WbuLNhrh9;@B#Urx~v&EV1OD}gkLTXe8`WwuH)qf zK+Y3OZoD689bl%DGw%#>u;hk{!;nFW&Mr8gXYW-%f{{)=qY^pKVx8Iu*{~>TQ(&JW zK7|H9dFt}T$UuwA5!hgktliM`T@ug>E zY^Et-I`foDzqZ`|uXnGzY8)@H6~zb2@;M`>{$Y2e@O-kSa-W)_A~VK%Uc4sK7Lhu~ zNJ;ssa;vT~Yd}DP@;qvh(z5&lcaO>Hr;c0>5Ym}LaOts3eG#dmi5-J30+JgMN4uYr zJ2-QRy$Qwc?S7xav#BdS`kb_UF|1-a$KPaq!85~uFg8n87axcGg3m=N$)J^3qD4`= z#fd0;V6r%N06h6Y6&fH13X>(cx#%U3(u8=WyR6sQ#N4BZajidvOv?*K{D7${5arXc z2WS0&dF+i$?*nCC*pm<#x80awHK*+{fbd$FAib>Pz-nsu)6+fI7Iy4QaBu?=M-_wt zT3H2mdo+U0A~4$A!_fikXkSWkOM+Q&3F-Bt-m)fOs|h~nq(czz(7>FCzG(eL2eAr| zhCUMIgbo8LMBMx_VkwgR!GL&^f1rS%9T;_scuVmfK$@E0X#}HJQjj#88e7dPK;#S7e z0AS(xVb7x^{#dz+tjoJPN*afb3{FhzalhSe%%FFcsVlCdX)<6$gRH|3r-qI<(lc{> zp4Zvxas$A6%_v$_Ify+_se*@RuDKcJS;S(~vj;kh{AiCPHeu4^TewZ1f<@{G3PKf4 z_2*wnQwHm_&?^1gA!_;Sd%BK?X{-9K#~1b&oknG*%#`hbQbO zxFn!W^e?CYc)A!m5&*J-5(4O8Ae>Q)U2y~?xQpNTt1-B_wd6HXigBRq?(F@~QDp($ zwwN!Yd)FXEqTZ2IiICKr*0MKI{Tu@Iep%_b$+eB3fqWdp76R+4_;RyS``R^IJgL^V z(p(>QM$?JglGvkwfEY6;RN&he3xv@ml{oVwge+bm#K09rso$YD-cRZ`U)w~SEPrJ1 zZ=5s?R+^+7It3J6gFODJ9rVyd!7MdFTeuKia{bvcXTE;>gu$2kFGm_7L)9Rx)WD=} zy&7lXf#QCoHL4NUJ3BFeUQw7!e zO0e~A-e*4+Q&jOL8%lr3zFlB6}YH%`{K1w)@I5SJda8A*O}I*LTLSkte-ROkN7EBGZkV z5MJ*=Xu_JB*Lx;7I#s<}|NZlS@d;b%lOfn^#=lyjk|2bpVY!%1SIRX88gt}p?r8DgR6iy3MaM; z>WjMfIESs+9D4o6Jt$_~Bl$c7a!w`K80kvjuC^pjVMUu@v~!XiX8k=h`n@bHE-|Ml zxbC&%=gM9Ht?>rZ|7#4fbN)xg@oxj`zchZj(`Icq+mJ?Yzp1^bjPgp}C5w_YJEUDR zwdo_s`na!p0;wA70X83yi(3SK-?R7S8nUSDH$ZjZ2sv>SQQr4mLk=1{F>}8^0{9eq zdc5nss2kO19Ehi{UKVN4X$}ocmfo^vvWd)9V7Cqm;z6wtEiTb7*7F5ZEBw770{ zpLZ_LR+o0@yQuApe!wpaXxF}aTURGrM`CtF)7J(06;Gb%Ds47ZawEY`_D`Tm8;+Vc zQF1Fg(o2c@=jUDkv1dBTA zxCS&Qv&hxCbi;&wCSl-f!8J!s4OaGk^p6K?|5+iRv(jo;FMISUlg`@z(7l>aGa$2X z36AE;bpiWy!S;Ip5}UBhoa%Uk(WvTPb1ck_BE2OSfOr!{z<6rC2J>%7(Aixz{~YP? z7QRB{`axqOaA{(xI`!-G)0;~|hW!i+eoIL@f7q(4ebG9{Hk1BMxE(h0Q~SXF+1Bk2 zhaaMuVQ)yw2ZR*j;L93&yevhy*#P?$C0i{_4&Bi64@v+LDoj42yPe(COb<aVGmlefE)$X3=5{YFn=sRZ)D`E`53h0Yp*=3uu7k{YN<~7_F8z>}5W+kt+ zL$^KU6y`#_s?X{C@)tWQ{nuoPo%wo)>7KJ;Wynap0&h?h)jx+Vd!QD)brjnCrxO?(h^& z-NR$+OWYO$dh06)1ZNNth!Jrz@#S}T4TXsLdV}`0DybYayb$&t3_D6io*Z2)7%t+_ ze+<_R(Zf>Az2>;R=0M+jMZp15J}8L--xXI~V26#YYAQpJ*kyfkFUWrMLM6Tt;dC_@ zQ5J4@|3Av!F-Ws0%G!L>wv9^LwrxAJ(l#pXth8<0wr$(Cjj5h*dZHt`W1{EZ{d*!# zoY;5mwbp|O-s^t{_j(57#jl<57&FFkgs8yPn<2*=TK3wm*P)TV`6!TeLBjh=4EM|S#}{syYW-_t8qGzt#zX(uYA1A3UsHL4 zRd#DIu7bl+^FRw=k!xyyCIVSjm2D|>u=Nv3Rxu!h7HGc)0EFfhalLkR`Ao3z8x95#UdiHD3-J5x~- zH!s`?V&(V9L0lHXE^#7i8l}Mq5vCfM;xwF#MI4wq1)|$&fbPNAjLTC;tn`IlK@7;X^-tdy00BGmyGPXf!k=f8 zGP@p&+`)Y=#OR$T;nEzB=5|^DcJB6ul!>M*nNUzeBmu!g@hmggyF>^|xYS&W;7REM zkY{`!OuZmV&dB^Q1|iq%$)@XbM*cY zG(q*$z}Y5(^L{e)IVqq$v4}oXVAkqs4M zUZ?%XOHD+{W+5>1Gvt!FbsK`dkjY0sMdq;%m{_4v9c4*sAPOx)pHa?NT z{(vwqL(`BpNygrSLY=y26rUEU36p$u*mBrz=W{~raV~7ZJ0*BLW4P7`gK#L zD5L!;QGt_)Bo?ra5GW6oe8;rEU>Y{#>qnt)=%l36MRU(-#YYL37qV=b|TqjsR^v9z< zh%-%2XC>t#pB_htC2*uHMdeIAnkpy4Qa4DC16}p0+T<1H0YQ_GL(*`U0t~m|r%8UQ zxhf)@ZFy5k(n{#ah{~nj)ut`gGHw>c#QwS#X%zu$U^AlHs4V2o@$Ag}R$Fe3>uGx=s2;p+S zb+?~e=}i)9!cvcYM&h0D%Rm<39M{oZTAZ)ebEq*REaxiI!^vuN=WMiFTv>q^6YiQV zEKZSr&F_SDPq=Ki>@PJ>GE!3_phVeg1Tv?IGsVoUKy(k8M8K6lAr!`!A28-aIFK4Z^cG6H zVy>zOqO<4!cZRH{@0@GHG2a^~6 ziZFv6k0PJ6`VG_4BgWU_9W<98{#cP~ZfLm^gxm%ejE6E1uzQx<I7>OH8&hd@%Y9cefTB9efk9`(M&dTG- zAeEJmfbT6&kl7-&+k|4lMDPhg>^=7BYp@Vgz}F{?p;!(Zh!!KyJJpot2B={HQYA7P z3R<73r&7Mq9GY(kPa-N@^}zu55;TbnoG!hkZfAo38vI9F{Ktl5pro+IH|Lu?dyh_s ztdW6x<7RoRSZ-S@K2={N+ue*0@o4uRtUDcvRptSMFgsZKo(ObNkIe`L8S}oGlUzCa z`Q#R|w9EFRgpxV+0FptZDZ8>@Xj|)n7wQa`;j}MR`U{b^=6fn9nk{UBMo8+O?U+43 z;SfL=XEurH5vllArJc0eByP#j{VJ{saq5wt`@9B%lt=|&3&I=nQsbp)AzD%cxZBNMkk^YXbMfAA28n@#**wtfQ0%QTonIXZN+=ezj`S7}4PB)!8bCL) z7GEv+g399{tG^Q50@LorAt&12W@Agcg}--)wy_}OS|nGF%@ia?f;c>@n2m64~? zK%Gq{pB+{NX|w@1U$Af-YVa{Ac16!zhs<-wRO+O0Axh!p{9NTQ`X(pPZxO?tQ5C!d<>n9Cy zM>4}TTjIF>>hc9Ex7iyQ+RgolrA^TGLKb*Glvv+Qb#uF0|=DZ;tbLoQ1xq$(c$m9M_9rj#7IcK{*@gERIL1`6sU!%~aSi zQ2kYJn`!QQy!f-g)_Uam!)PkGT;J_NtINe&Rwxj=4`Pm<>&H!a%0q*ubRw|tDo7BS zOWyiTG<~4&-Hn#@5Ko81`+2FdYz#Qt6wo687R9cI;%~B_u;DIW?}tvtGn%8{vaJgr z=Rll!EQ*A{&GDv0uMK?_kM0LU#B|XZ;18%@3q*e}lpD{J!;T>GV>}(qQO(oI`M`fmhd$iP@Gw!WNE21KecQ#-l8;fH3t#G#L} zz4M%=7K|_$;(cqb!y7~bJvd@Y7;a`{OGm3W2 z&K0 z>oM#Q3(OYcl+sZw1sNTRRH;Ws#+8N^(1~xS+Rn_)R9Y)L{E_5RXQvn;Hn>@}2#cJB z$MsYVf7p`Qw1WOF^m^c}^Se)yVxVgwNf10(F7eEjmzNEroKD_X=B_0XbhP)$A-8E} z@JH4OFQ`h=($-WkM^xn)%cq^Sy^_7NBwlZ@hF+HAQ6J5%}4BsYLU;O4J?c0 z2zzEXIVVzw0TDQJ*f@^=2rHkem|yxa|3o3* z(sjjeA02b@1HZ6D@Qf`=Ql96=| z26>6?7y)v?nTVX*+9y(wO#~~WtgDbT0cQhA8j-TQpd%~&Go?|MU4@=y`zjG>sRHX- zEx^6gsfF=++pNnfzHrt#uBo~s4+cTuz^eN;R#NPWAcF;t1Ap#OV3+j@bG7;TLZ*FO z%3&g5I2&IQ+tuG|(A94c?hG8{@eP47zEqu=*F;DuQ2f+>AKjnC;&juC+6g?Xzo@#9 zTP72J`Mo{$w|!g+12g$B?05^aG6=qA1Q=q;5x5xgqoq2#O||1d1UUMO=nJThWecco zlW!Li3aXtFwV^`2$%;7$osk&X;cC{_rP;YQpGeMEJae_1M-KEPeFm4$1G3IbooL0T zE4%5U{YAcCq{O#spsG=#cj*8(GdAT#T!f3Pd%|Vz_@OiHh&pw0HrM{ysi|6e^@3Ey z1lDiGh+r2^+SpERzB}Z>eMH=aLq0)*@~*ORJM>}E)}AlhPnh@qXQ9fsx7!Y@O*zdk z$*GCDZTjEiI7`M8y=NNso2(L*?8q*4L>}>+MpzRld5;^JM8|CV{FYwZ)c-RWY*^Tm zuW!-K*Z~zq1QpX;0Xzgo>;N%wVLD-8k#VY0S|eDj7|BVZO?Z@dzZy+MZYBaS)Lc6L z(WyK0Fb`puOLMn74q+=G#f)jr*ja|!xrg9xab~W-Eg+BQ2-K57j*jm)h3FTYEJJ=@ z#X&9N3?&cz17O!y!6ZMK0%R%;$mBl@&!^(sDfPg_cU=UpU?%ZoaIC>dw!w{Y2ucj2 z_hEjc1dv3g{y^LYa{^OX*En~AP{hb4$@JOTze?We3An!h!5ks$M=ULj=Br-W^|}*P zQjCTe+`_dJP}O1hH800t7W@&ngI?;9CHCgnblsT~5Ht}8b2`y!(YrKjklnNv+k4k# zNv;@oihSp|4St;a&ZqC6kxf&NMxyjnI9F0hQB1B*ahKq2>A!`({qS1^Hacw2sbjFz7g+~LViZklgF}dNDhdF)60KA1)Q}-12w!TKI_%11?J<4HJA#;uc#?V48 zd8+Esrdj2-l79o#*w3VAt|o@J!LV81ZDWzIfIlnHc*%6b^4ui2xG-WObOYiBQBi~} zN|w@b=oKrSot85`(>a-ZIUJwlgJDTl%Bw(SFJjHZQTu6|@ALyKih{w_6XWJ{ip*q( zS7faATh=a@H~Qx35A#3)g{g5lEPJN*s{9#yEVTeK`lKgj_p){0N;*LQ6j!MMArs24 zLHh-a$RuHUEezg7KuajwNkk_FWR-!N4}7ErRVMF7xd_yfI85Y0Ft$Aw?9G|^Ng#3D zD2pSPZ#0yB{7jGxB|MF3Z-WqK2}njy-R7-Z5O}AWPfHa(pK}lTdROjQq=gXe0F<}YBsY;@bv^M%tk%l0Hx z;Sb)M?NOY)we0~ zSzdfnL}go5#jPQNE{xCN99Q)BkkCmhI1;=5*pcbgMyX<9ej7bJ=qO)dWXD=}z7 z@tLdtP^3mbL1%(PT^N;$ne)T{)t>ZI(352h1Kyu@>y}^^} zgV^yNZS+rgz)0$uTx!K+@GQRfXH$Lp5X70(%J3cQNT}11)ST(G2;E;};!dfbJo~WW z&vON4y3qpZ=)!u8?R>84RCS>+j?#i%OTASXw3EY+TQ$Iiu zesvH3ecEAX{ja?{{~sn@P6oFBQn36_TKQk@YL>KZ>~KfmzI}R(_{a!sT_vVrG%CEc(@DHND61A z;5kE+l@;KsEO%9eQH1G(mpK+y2$yCpYfwwm zf{Rb%u_3|RV2{Z(FUj|twZ*{OZql5bH!0YWsd)7 zjRx4t-fG+_+H2U3q4jHrf3QdcwUkrKVnZ`O8W@j_u{u!{{Sg+jxQxOL-=pa z*yo*%=B`1NuK?enP-bu>*awo)L0|?R-;BhrB;L%W(fDO(LYnwCKoHktUzh&XTF#&0hQNm@!3nJgb^YG>kR{A@>UD#Kfz5E^PEsZgI! z{bVmz*uamg70IA5i5AsYjkPCV@Zcmoak2U~d|bPC;Kr{Ck#{C-}s6K_(D+N%Q zI5l=gHp+7Nk+5a!R0qeS`+aBmQbOL5utg?Ar9M#ba7D-Cju;|tk2+%%bIZVE;dj3G z5%I7cx}5lSyL9XBG{2QsvB;K=iD_eMJfl;`PHal;4X8!nsNB_c0 z_vAveyZFuNkCwdL!c(RA$qd!QNo7s)+lSgy`kk? zEuSSN(%*9*%(Li6SfzwP#($h$yd+QZo%63EOa$Uv#Ql^!C#{VpBEG_W1LuL-E0?2Vx5r^io zHz{RJqB9Jd%$wSHp(2Yv8-|R8~H!f4_e)FHg-DB^=CTGCFyAs>ig|?#2B9MzYW6e7uTYkIuEaU}*qu zEjj(jSC|T5&(pld!rJeGP-ZT54$25uM0?=H7mE@{v4LtpDUDF3_$QWP6XRG8F$ z{2A))Rlt>)08I^q5SJ{2x2rMG7zS7YVNn}%6V|YN~1LC_WLkdjfPeYzY3Xi;1b%(<4qA(FPC71 zvpbTmhV)rBV1iM8#Gc@Rxxi*cbgR$CLgrz6^SPx?5Vt~Tz@)xxS$pfW2v=x)@*Jx(yKjo4W+*!&> zt8p`lB^=nJE&x>rHIW{%bg9`a1}66|tBnAY0@94(h{VL%mXWHw!BOgF42apsfH`7M z1?yXw;xde#I3=#t(2a8XXl!GXw2YGeq|$(pHo3-LR?!T8-)Mw6zNH4A7T&pOhRJ2v z^_UX<^Q)(?0dIKmzQ9baFmn@SeLQ&aPE63uFiY=wY<6xGJv{6r1v8YTWPA-r7a-nd z@qKVb#}yaZNZ3LGFW#$B(Dyy>>Ey{g}Q)-#Jluw$qmcb?hH+Ep}#0H_>>nN^O~zwbQ!aKBei6C)wGVG zRGh$}#oBMp^~Up}O`O<(Sin?7B@!)fUNmy?k+w*A57(EA2`>&N&=@MkcsF^R{_Upy zmY2=cPbJVZgji|h;MZ!mk;n1FJ6_+Vt8Ol+U%-1E^=i>#lWNata`{9a9t=Hw02tcK zwh(maUG=M>ec9HGtxxV-R`jJMah}gi$X4-umnJ-@v07BY=3F*{Wh@Fu2vCtZrQC_V zUKAf2pvPis+RaL~@wB&+-Tu~_6cLH(>xR$UVn()!L!XBOB6bH1?Bm;xGS_5lAJfv| zUj5S0TX89`lp}HMhht<}@i0a=*EME*On7G<%mi!X z=e)fbg(_|W1b#Wj?hgwc(mNoc*a~{ivn1mD(C(d1iZ>6?1u$*-TIZ1Q-d8L5m~WWN z@8A_Z6*~imyswuoT$cKprGetS$e)O}-wMWJQOA=n0}|pX$2VOuKnIFt!dRV~6Q$XWH2l)IFmqCd&W#!CFznmYuP?ZfT528R$C;Z=;^%kZ%n=A$upAJgh6 zHMg~@Hz`#gMLpu(o;}Zk-7C#xl2#@aCRyK0zp|8`(A3DwkAGwqwGy4ZobYhbzr8cR z^~uO=JpTJM$-%+$KWS(GKUQv<8;<{)jJ#*mPsc=6H4&>xcFU`(I1WfI{x)cCG*xe< zdFPU9^rsT5lAwtnDXui%o`NWYFyW*QRd@LiS z>}WbWu@EHLHHsxlMsS*kIlHl*5iOGD$r_jq+-P#8(ZldpC6XLT7F+{|>*e4re4_(K z!2|lb&n&8O$|D6Prth7jvq$grr|v0OQZ33<&DTp!RyCTmjrO4HaI&{Qx*Ryx=H~02 zF0vPkP5Csr;?Q$BT|E}_3O&)T`V_>`=Ipc!V6@qDOeD_ zd}2)IQF+HR~(G1p&Nx=9@CmxFe@;J1Lm@Erb5 zxah2VSoPpBlvIt@WV+*KIA5l;PxC2kqcubCB;u&XeW0=E+j#eRTB%LV$Ld!p4qF@g zv>^}_Iy>A45{v-?(G5n|-5K!jQxjSfhh_rNxp-JopnC?bw{pDq zqhKQ}l2@dwRXJ%hcdT*ce{uuTF_uJ3wQ+S~g4qY@hp#@{;>t|W)+us9=L}CHj8h}= zZoeK{0D-g0S$L*Ar~Gw#NB5@|clgL#fLcHjF+2TB*7Wo36q-Oc=ni0L&Q+8MO;$?m z^J2(|X!9oJgV@C}a*N&)3|Cu#sc9SU=1-FA=r_dA{$S1#g-`JNjWT)XcOQb1;Vu$% zhULPpxK>O3Y27*Guk4k4KWyaSQ;Cg_w)u|M8r$x%2%`uwjt%HA%ZP6S$b)Cj{0%z{ zAdTNC{WF0N5(>D_d1-C=qrXJ`iRe!>C@UQAOVJ={tT!kBRdYn)6=KkVB3Xv69jpUU zeElhuldF)`JqG(OwXNlu*fXx&<%T?7Jug9yU5sjJsmEJ%)AeibX4zP)ry>-;H?G42 z)F1`*>*(jwe+5G1%Iimldk!z;958_Y6#D|2iv~AKz$OsS0gRNREf}@a#!~IfFRXhT4bOXJ2~j5 zx6P4w^3%1z`Nh@uX=VYWTIb0!IHMj`Y&T9o(fCwNRXHIZ!1x6v0zO4}!sHoR$XJylckXT)& zKcX|X)Ha&na&v%}2sTLHaIwh%2gihNkl@VJeoDOxTC2k&6EOh0X>B#PdZ zknVFWQ@5f^KF=EkVHBvsc!LpqagW#%4*AmDX7XAWu${(KSFkS-6zd#RWgyKiA2Dt! zJ6{*O@@XzvQ+0&3+;TgHl2`MM8`C%K=dc9?_Ep{@dQ5DnN*RAqc{6LbBAZx}tg9gxUl|&RG5YSpTJ+ae@JjK7I5shiX=i4DSwC zRtcrnAb=3rbOLX?z%uT;S9}4gH`wuTL}l)glq`PzuD&LcHKKpEStMi zvha~1)boH1ScPUt5CFwDjjt16jd$74;rB3MPdDzM?O02ManoJ>yoncY1PBPE$0UQ+XTGri+OcG9{aNHBbWPTV*RvU_LRRqK1!-XIp$p!Yc*)=#(eMvCc&%zd`g#v<p**gELC0U8N!yGkHCWQ4GGK)2j==k_=L z`7O6Gw0U?rIMphTo8RYp$Vf4VC5&$E@xva#n838`qhT`s3Q?^Qz_mGaLXulR#SQ1{!GsNjHa1=iNrE;)svoYkI^Ws zwiSG8TrWzx%I6b#_^>Nwn4fYm>CVnriK*<7kV*U-POi7jPefMZ(<)@Or!GsU`;EVH zgZh6U+;cMiS6bPBMyZ$>|JPz!m4>d{1{<>XzY=R@co#X)y$HfIc5c~u*%)oRD_c3X zD-ha#bfv#4lH+utou{8{kc$-?h@V(uC%Tc&BTUH z2^8Hekv0P?jJPq_38&b^xs=xgZMuz>gfb?kZll%k*F>;BYRm18A{)Jg>&&=I^=x~f z1_A1T(|RlG4Y`x2b=4LUt)+xAnS*({v$pQMW{QgeAz6y+#Y0 z)E9!K!p+)<^T$w2}p zTtLK)aQ?g>#qR~}QsDnB6|^%vIYA(w!(bRa2D@m|`P8R0>+k`~L^A2+1*5YKKBMEj46{Fnq?WRudn;BO7 zC$3PY7YQeesc7E3o9pc!Cq_!aCz34|!1a_h_^uJ4EDb<@t1|_Os6-}1G6QhHd1h6XVRl~t!k}#6{?z`l zm;B!2?UC622(5S>{{VB2(nZhe7%&vvSF`f719!_aL&P5iUk|piKI3BXC6rW5S`-A9 zI^bSeToM_q7*iRP&kTA{TTE_ln1X)oN5O$?_o1~itAR0q<0Gw}z+3HDhw#=FQ!;JHBQp7fHM*MK0`*VlKZyV<_%3(U{JxvQ~3rs5Fs z?J$Iti!Hbu;rL_UyHJj@W0{NVzB9pp>OpZ4#oL?U8RgZ>q9Ei-G9wbO24U*%<$aIo9Lpun zE+;Yd55HCt@A9Hb)GjL#qcTiRmZhbU3D0CtRygsQNtwM`uTD4~tIZ95bLd>WPSS;Q ztFwa;H--C>o!@_|xc@^ng~(>rs&rwRDi0q4c(bBpi8bz7Ah_t)LZ|T&hfBplG+%at z$!A_8ozke{gp7bTHjgs_4>UTS;~}_k4_YI{WtkN66MhEGHW`h}zOh+V<872Ae6UJfiNB#9s8i z+s2bH1^@?sLTYVPuT2Will3B}Ugf!Hz=iGU`Qb9?FHMb~eBHh}%Yy1AbiK-ehv_J( zxOzv`s!E!d#(#b@n0M<43-~33*7Nfn#)T7rNzaW4tfn)J{c5$O2L|#3KfTd3YN00x zBG_d>Q2`5M*@HERHTA^{MINul4_);QjtbkM1HU2{%kNDl_Jdb7gGXG7Uk3pT)(}n> zMai~a5QvuZ&RO?6Gaxd`nN+p}0gvh$f?h_U2g(F(;4c;47U!uM3d z>^k&-&&GoPHu|9MeTG}nX7{4O3J8jY@z^!G*jtA7UL0Bu-H+PeSCo8vIf#-n1A|yR zDdV}fg*f#6USM14p6^do$42>y2!=!`( zBTDvQLKF^R{AL6LMpU|H@)1J9w=^tg0#WWyF0)^2bE(i8@8=Fn>-8s;cU6+1JY*mB zNCPsmA#S*a9i+#rk{zy!;lYJsk9_sg`n8{p)^^xMgTe|0+9V5hFM8L`)o$3_dVx|J zLC@cK^d(3_ECSjz+cG>0Se_W?D5gz~-e(i>LlRz~+jhmzNuZr8$O)=W>$t<q7nZ5Xg)eQXYAfwhnJ4dW);BKiT{*6lpoh zQRId2&%e&Q*ks&c*NwDj_>W#ApzG@vm^yR(x>NH(9|3*+XfnH?zcfvMCGsaOMjb6N zV~`URtOS`O_~K$b6puw8i1DclMyat=TYQJo8I_Vu6m*=aJtasu%NsCG^-ed5#OCIQ<{G&SWc5SfC+G`HI*zlE;M>v zW#($+?FB~c3L!mrmAH={%EsFcC27m11>|;s$d}7@jZ4*HjOYAfY3m)xXignYPq4kq zZ@29+VJ&yOaV6K)kt$ES{_Mu&;LHn|nC?9%BG0s3+krzF^mgq8|%=3mQ9DkD{Uslq6*a}G+THes9t8$0gZLsV<<)Z3onl=-z z0H%axpOVxfi&WW-c14_uCaYX|te0wH!NrD+FqLMp^c&6;4eZFPnFD< zJXyz*Ocs9w&cQk}Lp3ZW)!)>9AjTX2n{vrJTL1buw$6Fpo}$|r*8MkVzy%gH)=Q=j zaTS%z%EntXUke*l8`yE+1$@_c>f_pbC8Z|Wm7R0zt3P>! zBNchaM9R>3`4dMSvdxw-kG_F6b5!-N!K!MjWXCO~346Tds$!d7lgENpF+5e8@od^XE01SQ&1aR-@B#AcoZT;jOTU&a$ zj0v~9Jl(NdVn|8#4vWx<& zj-(U20Us`i$K}Fw%T7G{jtKr!9xN$c9`M#o2pIE?Rkk}dn2VnkFAVrj!*VW)6} z^nPoN-(=#lf?!e539~xX4HGZ~#siM+PHP+iyaPHJQUc0wBC3bc&6(Uc5fEV*DKl9%9kqZJz3S_}6 z#c1rq_zLmfWBFYvSBDHJy1y*jrY&Ox z;UqO`E}#o62-BlhIC(&>VoN#>64kDO01Yq8vU|WBBe3}hQd~&;ijSnn+>cN(d>S6m z-cYLRd?DS5&@-}sI%RgeWAc8z5b{{!QYljXk_vi+amQ^tQ0Vb=c_oy|nZ&dA2_ zpFWR&KG^^KB;;UZVfo*_=24AcDv4GYY%&rh&diB^hqHu4v|B{H49pCJu&}~z(vTDZ zg+au4QtV-g&Y@u}6!W_Gc_R<|&vKsh{^hA@hP zy^3A}K7y2f`N;v43Xp^p6qEE66hSk6hLFOX!r#vaPME^6*9@RK=RJtw5|EHC7s|kS zw*Fd>90FSdSO8RTz`xwkzEVH{fJjhqtj8a+5LE!`5DEmO@fGMCl4B4rM;K}EJTPdD zJJ)vQ?E|CNWCRW%B^CbgEeA2$ArQ;Jjfk5ICd4VAW2@c>!U+P4=*j>&exgs>T8O7W zp-u?|L{Cre6C1(J4{Sj{F$HrQkcSI+M|6XnM*#-^#Ky{nbM*hjiXzAXF*pS{{ZJeD z`Q>*CNI>o`@4+?%_HNlJ^XwWxBHMRx^$N(MlPPe zE^!S6U`y`RjL(gmWD@OY`Uc+Vo3)^~hN)$v5*C7*SVxD@K9T#o<~z|qB5dob`vdZm zQ-_?RALja{1uVF)Z&v@eAFmErSCdDk>^Q0;s?y0MU*c z!e1W-^SxEb2g1K+vxOP-wT)N@Xm*2<5Qu@|@Hz121pYnhPivmb~EMHu6 zzHQeY5FlE=A%k#kZ?x9Kw2y@VIzNb8LJBIg*Uw;|zQrFmi9h_wKjrtnr0+kjh5LJ# zpWM?=7`s0x5N*Ag-rt0_X&3(Os{ZKvYB0Ay!RZ3u@zucnSf4$Ntf;4IF!%PJCqLG| zCUwD%;eams6l$cKUS?$V@0ii&;&w`$P_VJ~**AfT^%kc&3ZyRNMOz`q9E zAD4V&App?VKW27vA&EfmH9z`ovIB7J50hQptglQip#b1pzZg;g@TOl(A<+BP@>b(> z#S=TKz4UFmc*Wqm(NhBnIf!Ev%Fi8K>xp>%%Gdc;sg%7PVP_*@n)!Q*Bq?LY4t;Ik zK`=65Qa29k9nFI{XYa3%xJ?8YLe<0cPDn9IZHOebIYA9WWrU;MC4tp)8G#0A1u zD*OXaOH?x?C5FB@s|;4jf$*sP--BK9%_p)<4qi-h$-G_zmEVyN{JSH{dtUqvqIs_m zk~{Q8Awt(zjhBt4ERm@r#vlbRpQvogi)AHW&^u(M;=|p+Oj@!_W6iOCn zF9`Hc3tkQIiZo=JSWz;y3);sDrys}Gv0GBY$;za946bmEK2bN-EA0-lM>yJSaerYG zE?k9dE}%t=T=?8fq4|&F2W+<@*JaYsGxDY`uH#{G4=R0pP#$mBB4cgn#ybZP4rLp+ z!ijvE2^e@Pp+~$;e2ib+wU_Ndqw-?l9-&Tq(S?PYS2EpD_ zP3c>^m{6|9kHIBc=7kdX??kAh1_;TyCxa(HesPZ4j3&hMy=_Q)DN@A;h!6;zaouJhJAAdk4<7$7aPYy>C zL2Tvq8fEKfdr-;-;SjZ@I5JdN@zeNJqh@~A+V*$owMeC^AV5}^ms!p81N56pe=oLX z?yGM`roRZspPV}8zN>V=Yvr+!f$YORJ@s!%GWeT*q|&+vJGye$bD@W(%t#Wx6qyYf z-Y>QUy7D^@;x1_K%#oM#YD?*ALM}H?#Crz|rN~8RFwq=ce6A#5MaAmY^gH8G*5yU5 z=rLL0kZw{%+2TWS8s-LAF$`aBOA+_Qj=|V&1y-0837f`I0r&NY8>@{Va?Zv8^u`qh z*?!o=th6%ju_+=h0y|)blWths5wpamgxueJ0thGXgPbkXxcBuS?{tx;QiMCxhbE~? zmNTq2d7yt*OJKfi>0sjfZ-1uOJY8+XL-M}!=2C8xV5vj(BQ-uTqe#(=Mp`6cgLR|nm+)o!0+ zZ^CaA6QqpcKY(CWX=8mtHV)^(VY{!c@UA6mzV+AD6JbsyV^Po6-vj%@fK9^^)Kr`^ z>Dax>y^OTcl9@1^W<`c0@sDhS)>H9|QC+1AgZ*8JF8o?!GMwI?5ep}b%Dk4^i>D}{ zdORaPfl0G6?MdbSa9t&nRVS{{R18WVG6ab(hHHv#nX_s^S4+r3b6ed1NR71XRIDD& z-)#&Xxa~$lsif5OK~W?00ajkbum_dPO3qm_v?>R|1ZXbyCO*Ok*JUg{=@OP^6mA4T zism9cufv+msG&_D(K$wJ0VXGmb)MhTf$nWtd04P*Ydx`IgPc+6g9a^BI=>uc%pUu8DmPJJ6s$KpI3*vV$AoX! zg05~GaRxuSu(pmMmsRto>|rt4(nI!&DUJhs0>l*7nSedJ=qcVipYiGZknoL`#=6sG zMp+!_aP&~eG!?6Wj{Y``{I=xXm#-jKE`1TwUKADB;0w(92zxD45WS zwel&Q1S7Q22=dXdp^eXdV3W3>8j!+oC8anU*hg`bcqcy5wcj+;d0*hJ=T*r=ta=Ia zR{tB$PRV3-oCtySI>Ug4T3kK%TI1!etfljmsMZAc58l)JENo`2`XORc{3{>ZUO{Ec zv#a8Ez=c!*_whz0xa!odW|kMk+Q6m5;6lM&Rc1d;yK5uo6NKkE4?5ke@FeVcV~P<= z4j;!{{D^#8kVL(a6$-F*;xN~w_A?*@-bl~qp2T&Y3Fasp2n&Ry-8}qF-(lo>GYVB3ZyJc3K0 z02*L3=CSXzvx}R>u}gwoY)NwrRxVtkXXNHVa7HP6ZdEL9SH#&yRQjd6L;DqU^x%ER zhaj7EOoX+O+t-^#eL;Wjz7n2i={TSN@umS964ZSSwzL6+pUy_9#oRYkRk>foqBR1= z;3mhO4zKpBN8~lOvJqp^H{O+2UJylnahsJdrvjONDqD{TU&NTPqw7ktvft*1$qw!)+0BE@nyK1 zNiw{{++ORKl#}8&kU-x0&TpG53o##Wc7R>5#w&@ssp1w>oHt{A(Q|`4Jva!r992zQ zJuE_$q_KL+Lm@+q8@J}9WGin$jb*IWpbR#Mtti=iK3(TQV#|{Tmhj?Fe5Sm3BYTeQjw1AV63N#2|Ue!a5)C`W>8+BS1!|}UAA;dVDO`WIPL}S zYFEAV9UYIp!9Dz#3P;l`C#cCQ zBKnZa#2O<_5vp>xw8BYDI}i9}8&%q_apTQsJU$*BFEkB;HL7d~$U9<;Md?H1p?`OS z`K-j;TiIQHl+;-8cj2>L0-3yN*#LKDRxC*()$4U6Y^AGgX=g#+X82=pclI& zLmSpF<^R33Y%%}wBzVR!s_?RLM*tU+K_STEP|<&eIhJ?rmv2}ZUW}q}lhy&9mwSk5 zvmdxl&!qFXUdrv*P0%h>4uM@WysU#iCU(<7=*;fh%$9=LoL>3e)lWf#fOUPV-0a*F z2y@8rcjQSIWA`@aPQhc;b%RRj%czzZxr1s8cf-b^d_MQ)Wb$hX)zhunMb1*kl3nSX zW4|qh4dRr3;6!xh}cmIPba~$Rw+ZDN&Oy zxk+2q5bsF8oj_UUYanH*Rbx~4*$Q2_GpftO8W-ck`Uw&kqau@9={cauX`mYs-E{#r z;E0NMZx~pS^l_J-OWit+m&LKnRHci1Qf{uc$bq>Ne_bjV8yImhH%|Blp;(;YAx|a0 zOSw^E)ZqjcsL>Pt@U~Rx%Hk7iG7A>XcM;KriBn0YgD@y&Fd@)wA3gI%GwaolvnO03!`gyU4?2;U?%>7p6BA5pP?aOueKsat3BEQhf}G3M6#Z| z_Ji8vsSV8I#=EW9GPZo`akv zHa1h`(Xl@Pu0V&)P%?GP7LAcY?49=0qA&k;DLd4PoR0jYV6$U{=TNz|-}9nMT2u$V zVh$|i$HvzQ;Jwkm@Pl6@?PVf|nUBkt;6*1#rEltVKxf~Iq*MnivlMk*9Ioza^&70T z?vK02bgmw(A{7SN+s=C7F0D5%w_9<2W(|Dfy{-E?=vIgNj%0rO*QV zZ2w(ix@QoujwNGxLOGG2Xue3si6ZKf7(+dRo7u@qgEsRhwBlqWxV~>@^_p#({VrEk z+vG!o8&U9Q7)DBTObjB!q&S0UW}TCIBrF52m?vwgV>&XTme1Cdb?l$dbwA&}{?L4z zrEEjkYG!7XT=>1x$hyda2$+7Bj>n+aB>^v0K`L3JH!k3u+mfQC3I64TLs_(}R}22rmi3$ixB4*btGwqW?^VH-XkC^4dmAW`32DzOhF=+3cG=~dd%>KP72BUD;tkWbTdPmYPL{EK*wdZ#hT56i4_ zt6v9$duGoUhmkp_Q7mWS+t5;5h9N}$M3^RN4@qbp0csHWYZo0#{#p(G36rm!k7(Rn zDb+S=_JegA?V1HrB5Y^I*!0b#f&v>wOt+EjIY9L(rQG%Yk1sh6Sp9?s$_E6oGCA_r z^R4k`Dxb8-wus0CHoYdl&Z&lr+VEM*KWT%HM{w#IUKR-Q6G=o ztsY)EA;qB}om8}TJGC(ycE)9x`A`D+J(PyQ^Vtm-qeCc&cnh;lL}gIAyGG`5BjWR# zK3;`=3R@!8G-y>a7>%9%95l1O2TM0()tjID#ao!2e%3pXq1isp;zx-8^0hPHb;*HG zT7MxS!_iONtr6iY2di$+`!obkJh@)$@ok%`Z&2LI-tlrnAGf3+P?zfv#S!wz0?J|R zUM3`X!;-PwaW3m9Wp)2B#9ZN6jh7KSNw_kd#zkc`in>85-bt3-;ufUt1a`C-Ft5%vO6|_SwIRc|>u=A1| zg`Fh>^_@7u#$J*mmD+cb)*u3jX3Cz@q}nMK1(Wd)53l9b_D@Oyxiy`_Tb zLxe*;O*5C;1b0D%SEzK3IH9Jx8)!<#l@llBy1#Y5b9=`SaL;t?jM$Z8pgaD1;?YCQ z%RyFamG+1_XvxIZ8k)?iG|!A2QJ>7!HDu7__yZ=|lzBTH>=E%ba{;!p@*PuEiEdys zex0>!wKLff%3WUaJuptPB4f-O0=skKEzP&0$ZT6NPij4Jo_&puva5Lm3fgGbn z)|>%qD?#t}?h`huS~c4v)>65YoL`>&q)9S1TDWPuYdNZ9vg&{xv#@bkfb+C~k-p=I z?nRiwUbxs{?^e&Q&q(|%#nzae{TwkiTvM+fHgFer zO1YpM?lgd8u4&*y_f{h_ z&Buqq$7Sb0TL@Gk590VR14exH=F+yb1PneBOlMLFq}`Hz_pJMP47Oa2pNZSO=^&dP znbXNgrA9?_(rftMIGDgGn^Byy;O_}Acb*H#;w!9v#f?Yt#c`DQzDmApb3h9S;L>li zc6b?3g1jSrXO=XqpNW28e&I4aB=u!Myy}ae=|Xz|7fyc2Lh=@ex~aLCq=4 zR*w-$rk>RKeL!;A(Ai%b=!IWo#4Y9G*bloPd5=p2QyJvJ*+k*r=Rq}&@N5nN5c!`8 ztm&#%4Y8leX z)zq6ek2oKjeRZoEk}(aD#nEwYZcxGk zDW|c(T%Jvw(U@8D@f>l$dJwTIJ+)b5uz(nOo5BbU|ptbYVBE=7pZn z4Ri0Lw;0DG99`1O`GpxL|ZExmBX&)>=g354W$o2=@%c_7-49rKC z#s&ldt|+~SW5m2Syl(r!CP!eCqwcv5BoheBT~nftxu+jQQVB3x!PCa~;XwojzG zs@OJm2S(!`je%8<0D%Z#zVt7&Zj;00D~z zPO@O%npqr3#H+2`0`q<3GY;SJwciKH5}kW_Goi-| zWME^olX-fz7WTr{^V+}pb2)>Lbx85LEIs+vnL zhujR&as6`6Wu9#ko$R~u-ltGZiF@lx%GPmQhhyPuaU4yblOvMTO))v)lV)z$ccoV> z&OWLQucCjgJ*QZ@qr|WJCTk^SN7Hg=0z*r0jJTyqWi6}o);S&u*Lp5S4dMRb?7~Re z!5+>bjZ=hynR&K?22BX_r>oJgvy!OGLLQ7|65=?Qc-v-?g#zfg^SJ73s~HU1;w&hm zhY9NXb2*#B5XF+*5=-<$ss;DCYeR2Ywp9>X!j}u9M;$LtlX`>MqHC%N?8fEC4W%7- z;}^-39c+hUBelexZ6LmFhfUx1xjv%7-OQ7pJ1vUXsI$dJq>a80Y!twl+#<*|HxK$$ zDfMfO4#crl<&+T93#(AYT(4dH$GW-|qcG-rOEP5L>oYRe=*Zl!^{S;`G6O8E=9KoO2(d-|mhk3!`M57TPLdSm4Qn2UIS3neaLk z9ooEXjFWP?Fw8pC%rxs}bmTlYc~i>tHmploD}whAyvIaE#Me6mwL76(&Z zZ*4V>YWyEq7hij#di5$N`p3QSP2#BGtAdKhDHL|jOsaFA4vru^LiNCCau5l$k0~-~ z>n+K4BpoLkRZ=Qxl2AA6R7*P$bKV)2Gu?E`r3fO&Cv=Egn#acD*qj&M)6C9nQmdHR zD*{TC?0dTs9g)B1?UnI&yQU)lz~$O^o2Oi_rh+WpROSPc#j`Gy)nCsIq?H8U)OIkN zrKz)W$S=95nZKwY zyX?KRJTdprvtqYO)wns*Ewy|y zVOsjg8oHqR94EF-qB*6P>!1w_+Z__he2B%wKBxHV6+!fP3HE?sT3fnJ4uBNlo+MM@ z;orULpT3=`gBUf@Agv=uFsE_EJn`xdG7rX>MTfDgok^PD?;=$&HLP=Z^X=WqMCRWg z5=&kYhT5rM-TW*Pa}hO0AAujz#MYEghXOAtU%3iYUrlBgcHv!+$3ADQr{Fjl!0|*4 zoJ!~1L6Pg1MEc|yMGbK3L-MxPW<>c?*YEGrX;l)$s(W+X%yoW+bRH9hu7T=sD(8mz z>4+mQOAk3ebuZ56onTp*wjN#VLCgcy(=h-@6uZMEXN0q4X0e(_nTwL}785d#OXTV0 zwc^$33&kTh_gUX7JBPO%EX2pQr3wFaOL!l@DTNu67$3i&e9&C}1q9IUn)@GcFBba$ zmh$@#NARzUp6-8B1&sKtZ0rpG=k)(_1Z-@qO#j~;fh(9&;^qP?AwGyOf01}3xH#F< zj%O;Y1QY?k8N^=@#119%1<%Bqg`z-ka%KLc3a2cgl^q_Y z*{PiM$0;4#wc9PW1I4D$O@ZaT8#7)3pEzVWbyZbGcn}c(pmza$0syW~2Iy?)|^>TlAm8{DjMG!%rKl7=Y;(|P`92LSsnp0sECK)wSTX~ zp9}x(JYR`JusY!AY`wBxXi+<`CNy*i&;#TedhjKjU`O{O8#oal`%d6!W@o<-@Ul-` zz3g6qu0Fm{VB{mTFV!}_onD~+Enluc0{Av8psN`Fb}k?sy&Ac^o(x#N4XkM>kj~A2 zD1o-TT^8RO60{@e<~~5LA{g*8GK`;|RJUH{GKZM7DHvnCe`5f zR^E*n@}8;>B|R~60GDf2U+zgq+hF&W_fHD8-pvba??jz%5Intos5^InMa5VDo|2#M zC3e199=W)nmYN_k_%ncDH-QXLFDv~BeqL{MK<`o;=9d?|9mpJ@>YpXJ6M*4v0ABJs zGUPB(-hhwyuhRWoM1DDVGq}J!e-}BiG_Jkfd3%epL0!h0U-2}yI|6VqJ^}o*)yLXo zlobwGLlaku0$I>HTjO3)f9ezAseFFU4IC5}uaKw0kh(lDL-zY~s z=+DGa-#3d6u0H?XfbR)3S2^F)tM^clEML+fsJB@?4?Aq;eQTC1m?F9#LRgG5PagsbUn}|U`}9~d*OtHvVIDtbv+VwflnbFLw7<8 z^?Ga2v(UhwbXm8O1hni{!68Sdd!_V{ZI0%8vEC&^4ni(+-OD`iZfP7grv4fN6y+}T5BBFvo@@MJ& zCV&RpncV)u+q+EJ-sAn{$0dkwqxNkCOWognxcvlxd=3!=KsvMwa|&~G7N3+)CJaQ| zeaM5}SJ{Yfhu_u9XJP1&bY3$d=qKm0RQL?u5H8KjXm-rZNf?!%xjNO(EyhgIh#CXL zi`=LniqzhEJMK@O7tR$DUAf1KcAK42NJ=Y~h|_j^O)ntd_cldxJoHq`Zzx8Aj!?fSmt%LWJ_ta=GvWg zD8W&&vT3iev0m3Pn7%}NW0ZLWPtz98V^Sb2rASpw@Cd0wcwOo+pkBlJG)973AjP$y zk9lh{*~{2&7946}NGiq^ax#l+UTVSnwT3e=UYUvSDc{m`t~&ZdIAS z>s3dH_TE`tErFegn=F6Bpftbso?*TlHDF4n831%^NpN0UkX)~00|nNTyaT1e$zyXz z*y~^wnR)j5KATiOZ%2VIIrI43G8Tu<`Ex>6b*vbfjqo{T{AT~+R_x(UC;Jj$#_Kew zc^3qjQ!Fq~hPCzx^97xU3m_j!;${Dv(sXW@S*RxKgGSM_1#){V+kT?-%};~CCNkI8 zo^SWayBk6{@UBKSE znuImX@(`i_#HB7-ZUxWKd-Q0lj^#NJ1KsM{Xf&>l+ps!vt^|;OLW(xDe4^xaci;|!;)?-Z9w0MM4{o3IrEM%iQZ0nopM#FW*VofhEyFVIb7qjz zV(E4uS%4oU9Z-VF>>x_rS*eu z>tW8JB_8S4rq_*Y2&}21tAXk+nLKQ)R1r?&B0V#EUB(({buzwv*XM`Khq14q-n^jO zUDDS%uf#6YV%7_zGjG%Uk-+k6tGDjQys}OqZ0v*^n}FUY>j{zG!;fU4d>1E2M}amn zw9A;M-si!;^iLD$>Ty6pOs0aFEdW4V#IhNx>FB!)^LjG9Yzd#iN5O@vq|=Xqnd-y9 zuH173kFaDu*Gg1Ef3=kL5kW*lh)%}QH7L`mm8#<${}roF3feJ&dUCBRCSIM)x#P9Z zqx*L?Oq@>G+_f9e;d`dW2wrg$^9H}9ouMY~0urswmQwlHcyq1SSFp3YUCZg++d?ZONGHsl7@t1$$(~%?xteRk$~@7Zw?M?kusxyb$+$v z4~WFj#`kBgpNm!!B4G!emhYH5$y7$|q}Os?SosC%-Aj>&<075i-{@GHM3%*v4_H&2 z6_Me-IanI)MWLP(t+loEYr&2pF<*QIUO{4qtR6O1ChzmAv2628c5Iuw17#Kn(|fk_ zpFGOIOHyir3GmKkILHMtoC&vtITqOF&@6esug1BXR%q218IdySVlDej{O?45zMIWn?ba+DVegruCK=! zluGe>oK%Rolv9jnmcu|*O%l2q`hBdR(`U+d#Je&IcuWXNWl)D`aYLy$7zRCW)C9#SicpQreF-VvG3fZh|qZ(lef!;Ffjg@HZO@3okpoc6HJk+=xwj19;Xp_ z+0i z{B)7Ek|IRh1H(HHkM5u%1*4G>9^Ntotdc!ot_A1mj;u|b0GL`);(>u}oTR|>fdK%9 zoLo43fb9bEXcf{OLh8V^Uf)pmnDdQcozM#7x$ckBR%T8&lcTH8PxBWPs#WOcxKaHr zBQ>%UB#DYHzT8o2q?$hzQ{U_FHR@t56CFbq$eS}^w=y%?f11bId;G^nA~!7)Il~uN z0RcP%k!hq`K2DNgBXwrzoS1Dwa4Xs1pqg+ONZz=j6t$9%q}?f09+Ou@?~3$>cA>;S zJPtVu5$N)}_7vas3>LQShv#cJqNq*}MY5@+@#bqE)oN_ghvdK4v`EZLea}nir=%S* zO{His*orrTbd5@G$Jo*te^@_6lSeQOf@83&1cs(0{sq>#eZ>gqxd*TdF03TZ5^3Iy zRPFHB-jo~4XWr|`N2E5kuX)MI;8&Z>-hQ7tGn{j=e7tk`f@A8gg#)wVTU z8Az=>Z_-`;?Zp0M#+_$mbdPcG{kkj$z;$Qjw5TZS&;(86eq!J$1fjvkF(3*-t+cz$ zto5`^s)Y|tT8}Jl`(Z_^>A4L7t4{b3F^`@`iI&0$mz(1c|hMH7N6a($iL5( zq@k+g+3ggoPCbpsp_d^&^GxP%dWwh#GacXidFnhLxvd~uah?qSiw(?|UE(0oF!bxn zzQs2VDXXTtD&z5(i~X6>`KsqC|_|XhEEAv?x4t;1x?wUY2Ct{9EW2 z+`YKEF@<6y&ji`X8XWPe!rRJc_V4aOcw)>Hl+YGk!QG{SyNDZjce`7&<|8O!#G75_ zM!R1Umc90yBBHljK{nlybR#RqoFumqk!Hyu-n}edTcsm~n^yKp(Ms9kIHQVL=6xNC zF4B3hwQm+%eXUU0m;^wk z3fAIU>+YN<bUFr#akX%VYf;oXC(k)3NdZu$7qi^8w(c| z9fbskNe6GmACrr`mw?r5RY8Zi#B8v2*LGrN3Ka}7Ip-KMStq5+3g6i}neBM&RL(!% zY|9$xRr{^=ARhNk1RMTsAUp z_lsRaKK+=!gxf9hZ29q?lxYB1ca9?YySLYIGr}BpU>#Jxvh03i-X=_`!{g{IHSJpGcl8340HrXB_ zliYP8eo){Bs)~Ea{7gLFK(xxsJk>BiOf z-&Kp+a@a!!R`M=B_8jv_r#NMzpca|JN|69Q7BdAJ!kS|+-yqAbbc))(!qc4U6`LE{ z8~{v`$R^Bn_A@t68kyj`RZnAOINQ4#Tgs$H-tOn?sLO4)UIO80M7b%RjN7$i%nNmd z6S@%z7R?v>aVzi@;NFTfw;L*&F!?1K9etg;PHnDW5?b`lGoh$a--LFWd1N~>q|_Yt zA6v&tdh4b!X4d2oIUH%OOh@OTHc9(V)I1}j*$SLFw949D$*Vt?VU&0N}3K|p%vI-l8s2#UuwUv*7FP} zk8I#0clpkp1$WkZk)#HIXcBd<$>6YAFAwONU-^`J0m@5gpcD2`W+=gFm(hmZ1}g}q zb=~5I;h0r=q$o?##k?G;mpTuE>oc%gr!qt#+}pm};%4`M6^gWd9q_Lkdu_LfAJPb` zcwV;`5xc*tTx{GZnpe$G2kJ&lb=+9Tam=Ai{@zy8@c&eBBGq49hFUW2gkR9P9EyvBQhv@eQuQMR~V#t?gMk=Wr>S4&7P{>nGz!StW4y+ zq&QYI)G2HUESe)UT>fCN8D%yIWglP2&rle#ET+_e8IP^#NCPd?TTi4y6M-ng`X*?M z7G1|F?iMt4-`YBj6ISv#Qq+2M6->vakIN4>eii|kkCO@yyxci9`Mt6WwxQS_RtAqZ zGREo+aN2lnaueUZ=M$Q{7laGD%A#?{VEGdoa`)6|IPG017?keW^fhwfTchJ$=Oo?< zgFiAn3Vzu@vsOIZ>!c&Gp%XqOCQ>Ta=>BMM3^7w8P$~*<$1%of$oRCB zm1y#?YTYGEcf|0pohGds*1mosMZh`8b)xK++^Q-N=*{5*yciB$dhfL^n5QJvgtpv* zq)d3g&pW?y9x$6-(kc5psit+}1IhDvd$;YrPA|qN;qExA2C(j;Go{d8yk_3Iv!E#F z*>R*Xaucx)Z0z?fzl*4RLvy48c+si?|zc30tsY{Yj&m}W6Vch|wHdP$C zr=OD2o%1)37X{ugIS-yqkdS?#Vm+triq2b3jktzNCKBlKk7$=AiWnAPt6eLP2h%F8-yq_R^LJI*a?aWc{>6 z>Xk9!Fo&$gab3@mLt4Quz&4ZQ0%+7TjE=f(=2~c|0UjmZ zgSC3_oinr!_u=3gPn5)h@Fojeqd{gTgp2&%B(g3Yt%UUEJJvA{J^dQmR*<(W^>5Pc){Ww+65gJGGKf_x?;Jmsq+?FCu@>>fbIlu^@oBr;BfHOJxpsQs}B)OBHzK>T0g#%M< z#Mxt-if__Rzz{4uq!;vipsx2^4_{r4Nz)gxC#>edVO ziq0KoPV;P5WU3Ga*Rb2x~>M?{{5ms zQ|c{h+2yl9SA};8t`dtF3g9}s`MsTj^Hi1>V^sC00Iu7T180ea|(6#=UEQpEM=7cy*{*Sb+)`Y01s?HU|II)>HCW zyTb;R(ouu4@n@WDVOR>L$g!D}C%3(V!^iRmNJXEXY{(ANqyF1UD6a z$JuzjYPXm*VV@LB^QE~M?=vSv+->-@7D_Y<7w`JU(Ojx%VLrgS2lv?a)H5)^l^;;u z)F%ZQa-K|p?W&bY73YPKcj1$q?^cc|{B7?yZL*=bdrZ&MnFkc!L2j9L!kd1ig#CqS z9fEoA(v;V?g7`~H+?|1IyzPwVO=*O##eDMNuZHH**zjsz+h8ElH z5^f+!^<|u`)n8yjEZYm0k2wBlhQKkA^_O8Tq2nB0ua#(S)dkxDY*&+znFqa=t~PQ! zOMrTqJmMC~8<*>x$T#z1PvOV6% zZX!gWfR-BV%)#u(YV++5Qqw$&muc}99%A{rZ6hwNYzc2M5lR#~$Rs-CTxdTm7WCT& zB{i-G?zV81(J~j|+=pDAls8D_clL8Bamj6LrzVZy0Zj)z!cc5PeEy~6im(;CGA4X2 zBNC(d&`rbMO10lS?@Y3R0oX~owunClN9Py8jNYK%Fab%X+x|7)$ePJg!HSuPc25psck6=j3h&XZrAB_Gn^mpT`qt z>0rJhO1lV(n^UC)b{jMO1<|;x#EQ22-iKFcMqpQ*E^C{@E~0Dk8W?R#TWRxHuD|da zX{oo~KHK$+WttPM{m1FpczVvcp_PL?wde0|R&}xuJW)DR`;v#_)&&QlRP;0OE1H*D zv+W0x>i>2_F1sJ5E~`kdMfjW;O0vEjXSu&)JS^Vl=MTOAbiqOr+O2W~wl8mr=pVI* zswUbZ2z_YNJUdEhOyK72zBF5nZt^sw3A#y`yB8Pnx34E%e?Cl?BJzY-a}M8PBK0J& z7sR1*SoDZE6!fq@Pq}$>1EHMTL3ezXO>Dr<-SEj zgN|08H*0_Ja4sc^m=i-n5q+vH#Yu#+qGRt;Pa-WF2EZR=viPDoKl9XW_q-eS?;p0QFct&*bE9`~SgF^+86 z$4NhOgIO(M(bw3~;-VJIxJ^MIYOl;U1T(Wq*`oaB5V+AX{w~a)4=7!OT%HW0UrX5H zQGs6dpd-{^U)b&2N&5tOFjh<%5ez%iw!h!Xve|POG&kXLu(dAtMvuF;K)L*jX>eHm!L2KWHTfi;1c-Y(U|QlPxpZS^WpXx0{6z6| z>=u9LG$f5ev4fQ7I2<{krkLD48SK|c5!&f3>@M^5P;ZdlW0{s{z9D>JfLM6zT}Y^| zUB*C%7VsxVYK64tggPPP9bLud)N^!Q0fy)%xWz*UIYgaQigi zVxFua>3u?G9dCZ7`XT|W|3!q!R=+~T41sH&Qd;!nde2LQ0IUJg5vfPaA8UIS1t{}_Ef1=IMuz@ z2Xz7l;PJSjCkXBzn17hR^s3B6H&i4q^esyCs_<=+Xav*h)8wPFIKm`_6_DW6H7`Az z3APQM0{S(_NjMS|}~s{OUOZm3r`XyVijhIaYM7wZ4>sdNZ7x zYWiNpab57=E6eq>9oqN$+9!Ho3aW%HK1UM;3Ined0DW_VxRt$E6UY?E1riXH*RLIj#0^5$ z2IA@phq!et?eePGu=|_)xU-L)rm3y$U3ua1$}dt1>I{wZ~^-L@Aw@*vNuD^cx!3hBP+>YLG~8@Bc;-AOOIj$_0Q0 z<`^L zl(pW~6@OcCAm=?B`EgVQYJJIidcG-Y12R3ad9^Z~{ z1oYkD-}?Fmvy5#WxFVd?z*1x4TmFl&RSogc!XrI2P9vTH?HL#wAMYOm0N?=f!!c2% z?4B?4;Q0B{G<>rPQQkef0B`|NzwGtWuG>F>OLCBE6pj% zr<%NV9{8>f4fWvy*pkYq03dOpQTbiBj=ACEdHrUJ4iA0cVfqeD1W@+@^z^O^Zanct zZT}zuT=Rtn!rtv_N$7=H_ycU1#$Pr%)Mp6z)PM6ye%HqR@&*6SJoqBL|B@0PTbRDC zGG6Om{^lAZd0KMK`eNf3I6M1e1BlQcq5J)`R-)eB3RQwLx4Ja{?p8L?lEww%LpC&h zwnneaD6HV}JEB;kF;(_1KeTEezEU(c{sC0(n_20tMFBuEV*a&+acG*dB2W!w5>D`? z0VE(h?bVbBnCd&}jYa1|W9u6lA0I-(U^D_h0CH;-m?_|xJETJZR!bAmLlXxFP{^U{ z1G)Bf8u@l_U0LCQy$#)qa*!QHE=wQ{bpe>Z-4?SEV?45)7b@xJBegsl&(o~f&M8DeVUD)%^GjBHS6;Scog!H&LQs(;5I`e)-J580eNP5NIp@3OKk zTe;Sj&ttdoVN+&d0?7Lj&y3*G!^^jGiv?P|Nv9$18y=kMfC7H*{MLT*h9S#$PT;`J z)2{L07asYjLZYUBVj~EqeP*UWAwUIcLitt*XaM;V{r`1VsF{Qw{o&gDUN>sl)pl@; z@jG($^Fjdl7E{Wy`c?a-qL2|MfKS#4%pIMDFi#K6zQntJ-!>jSP5%+C;Xm!A?eHxg z|M^Gh0}5h(=6Z9m=c4^|vViUKQT?(sey{Z5AsGca{iH*o5szV**?#N(b^Lw-?D%G& zrxiyu9jpAbm5*cny{!?D@ZCXu$f|Es;{g1XV=s!Oz1iaf!spQX^^5!4_6e%kvOfLQ$Y0OVYLv3L*qB__XF||hzG!Q+-XU_ z36KEmvcU9eazX8OdP~Tzl$^CW$s&XMEJt(OP5}Y&oN`gGu6+lx^x3Uja~r{5PXb2S zkG<~QJCuDP!z_!%?AdPlsm=Oo(xY|xt(^ES@A(WH17bo_=XmQ}FfqJo0L`_3J#-FA z>oGN5W|Zw}t2f#UxGdWwP=N%CniZQUTMy)~B!^P*mO`_d4h+y^Jz(+J?>ilpSMqF%I+D6e>)D&&eB27;YO%mDPG-z?Pj=+F@pz8>~&p00PW(UiGX;lu=go zu{h$X4waZOf(_f1?AL(8T{UTjQZndRHfgL9!cN{tEOP)7%Q#g&f1a;*Ty=3$KYX9) zwS$RSbY54#*UVm*DUokbNgJF@3sajGpft7iWQk-vTKC&IAgGYOHb-$#)wz42xHm|3+bOxk?50mGavZlP%u<9UXNC zQNd0aIVWi1Fi*I~b4)2TR|2i@Z%*_lp&qR?Zks|J&MAVdztn0Z>rQ&lYFNnDWIF!V z|G4F`wt3@a!ZS}XXZAk$sFG-Lho50?(!`o0Lq*>jb~W$m^ikKKGzn`2Tj}DUb%aB? zjMY#)g_w9>`&i+toL1)$(O||d*|RXLKpIavkkg)up6a2+)Rz37z8;a&?C<6>46gz~ zk^adtX#L9B1Iy(IR1g1>36Stb*osAS{<&JFnOJR-qg&La5s@#prR!5bZ+==e&*4Ul z=vGneohiQ42)@X|z}vvbLf_1LYN1-BJG!a>1Gf_?>f0EWOPscPE6u6y%8v&3Yyz*; zU9m&^=9E=RW?cu?;yA+!LMr4p+t(XL#pI0xJVIG4qN6%u(&LjJHQuQ5G!ENJ5MAx1 za9yd@8R>zCru8n|EdiEpCnUhGxJNQ~`pn@Xu-p>j6hm3k{NQAX(p&5Zu;AoPv@(HK z_s4;(m7rrnIrJj>#lcYz5~+Lf6mHaxvJ)8HTF>bW=@N^Di5#7^Ka5|H{*MrTH^ zj4doMb2vkpqC4rR7(NckKhl!OE92^R-{Z4aB~S!0i*bo*xt5illadps)x z+MGY zyV8EsnXIX&SjQu6KUd5=gOcmy`uC*DdFz2gs|I)VPKh05DICN@Z`WAlYngJOC`6^* z3Bx?+>;>+xyzOiqvSw2>$)q}uTrE9@nWfT|i48lltoMw&dEiW-NQ+Ii?fP^3Y29Gn zAp8{GjZn_n%R_7!ZM`}U=(#P2yA!4J{GsTa?2UIhYOkxQW5@=O>QnWQG z+tqRCDz<3v{>^fI4&D@L8X@wNyS;X&b(#)1tXM8G;0}df%cAsVX;|tLDH$bwL1$IO zi|>B-X@1CN0hX6}az~S5+b8>FM`;8kkEF4mvMpVD{jjU9hQ_S$hDeqB&3uShEh~H4Lg! zm|OAbaY8vHo4@^)9}AL3{k4RR#5mVc(1gETV}`-JhJkPoSB6vW z9_sQ3Y83>!qYo%G+K)$MxMpnT?gBB&`oCp>1quCKn*{)DC%5)6s(!XbY*p155&o;5 zE;Sk2{uMP3PWz~7-ht3x{pgo>?6T-*PcxJ^Exa=*uSbeb^w!|hPO@uDhZDiDq9~ERxdb8T*n!z zGXUjXnp{$juQ47=4vpg_jh;J66vGw&3qe4>zXSSf4>u;9s%&_bgMNTgzI8{<{QAPd zd_b(Tq3vO=vw2h+2+b>|9TB1I^G+WBG?7B47lA<(#&L-gN?3kwNuZmOL~FRBG!Gx8 ztb+9;b)4v|zQ4MSNc=WS z1sHf7^z+<32rzZlrI8JnxFpMm7I))tFp08^78??!Yp>Rh_xx!|L|@v~VT~QJ887m> zGM~9J9Bs^z-<}Bx95cT2>i;@Mg$!=0SjqN)?PE=LevdKTM}VotCgm}5G`X9!0RP_}D-B>|bC9uwI1$=_F($T2mlE%TBd%0GtE&W|oII3~OQu$z&mag?N zjKFu4C7)Wz$2d5euT=PE_zrXE8E5+v@^f^yl^v2hbiojb0 zzDzeH)>;atX6JOrEVlDP*`}Oi*ZPH3?Y&K8*C%qJ=!4gY> zv1dtyY86swf4shGLdR<<`jSO!b=;H4T|*_nrMb~(MdQG{5H%|G8l^^gp6CihhPNrx z2YOEVY4?3P7u{HgI*vf!=Binum-*pWvpOGCZqJd2rJyw=a}UlQBaSEJ1KXz1Wg=** zYlWb7RYiu;W#?91s6KB#C8oFO718l@QMcY_TMdIUURDw8>Cj9rm~?zo?>wQ=c6v9t zlEMNq0wuu8DdgayAkrp^AXo2X4~(WFm(?l}d&^7Jt}GlI+NPN=dNC0!yFL^rrag zhx5fTI1SrW#5=}w8U>L|T%0uA8_x`pS?itdw}W3K+pKsXlvPuQU`uC}WOGWUG5yPm z;mI^=1wn`JaG3Szc33Zc8vN3}^6uU;_je_JW3U+R_3|uo3nX1LsuuGq|M4L!3w>{Kt>VGyFB6=N;9|2 zf;7oA_A4DMat^U`uDP@O?dvreee#J?J@{+3#Nm`fGcKiTz7hu^b{@GVv4^u-XBOC_ zuy2;M=fxg4s*GqZLVD%vyhCx)&fWC^{G@Lw`3$(RsY7q=JK`uA))F13on z6}sMv84|x0GqL-=?@?ovJ)@JsU(KahSOK@PeYAl6D+~cEs;LaU_Vv4>I~JR~;MMNA z95UZ!UC#8*b= z2cX4(4n)*e<@*g6QKc753aFsO@Fd|EM$5Q{M!^e~*s-;KnYcaC0+Gffm7|A6@?syB zkGX+e-`W>RD`M)Ah2nSZzNA;^bdjIMw|szN0_MM-gsMenug=dR|1)WpB!I474-)scWH0L<_2XAUi+)Tvt0ow&L$c$ ztk4GaR6`W3N_3dE-utOJJ$jmO0Tfkqq>HCU1xWbdB8d#(ipTJDpm4*3MY#N9msZAT z36ZbUV}wvLIs@zaC1h+q75d(#oc$LWu2EEc{TD~W0Q0|mVso zK7ALnE?4iCgH|12ut>1fkdC*_f-#4W9gG`sxp5*~2k>2#X7 zbe7*vY`v?&(MNuw*cmar^qZ?Ep=Ku?)J^C7W*BnqTHLyHz>3Yk{`h2&f#e zM=Yh;`sg?ck1O=Wb$7LkNt!=&?WD^qFf%w!MpvIITI0}dwhf8|b<}Ia5Px+*EYg$8 zUrBwv{u{>|{BrI6RpDlPY`NHLT&4+*pethQjTsq{#ZLhiBY_XL^>3N?(=Hy|X#9Ka znK5aG)HXUKng-|WJnu>IdE#($U+P>;i`SHO+wavHeyfmn&Cb)7v0n${m^x0c_J}1eF8QM)=gmnF z-sZzD0pdhmFkbF6m3(5vrdw|`Daq?^v|1nG)0-@GeL_^*!RM2YB?!XkQkO3_(WcyV zx9pGmrW~lZ4&xF2+OaqAvnQM^ZQ@h2%_}a2!V=jwvszytE0Q+K7%z!+ERB(lPwq`R zkqj*lUv&A0f9-UQeX3v*goo*C^P_U7 zU*zs{*p_eiI}h~jUs~T@Af#-8J~&4uvx4Z+ywNJ`gmsI(&cYLZV1^6T@9-XyIxs1W zQTKhmgZ(9MECewAT13@hoS1vG^u6D?M7YsypsB}D|NbL=EY9?U>W{S|B~y!FhK1(V z<)BP3Ia1_Yp$1a3*VvimPs<^b&8SbVU!}6gQUp7(v~N9^>Px`f*KE6+q@1*1tQVzi(fVisKnIcbE3O)FBwX=L%%mPA!5#BzPU(L%Gsji zcB@t+RM)}yNU?xlu8{P^Ib3+OBb){`LUVa=)p_$y3eQ|qT49=zVF%Y4=Zo}X-l`!> zeX--$PPqO{Xsd{B^e;Czx+Gt`f+UJvL|$@S0Wnk4vUU|`MTBhV1huS;Hx-*hg`Q?| z`=9*QfUAd^5^_^MNsW!#=)Plx;!a_Gcs=TUqJ6t47WfY^$)986ReS|rgpp4)%U@1V z49BQv*P%&W-RkcUK3o}2#=#O3!lDSIAhr4Yd<&4!?|P3a<2uRxq}u&3noN_S%F$;k z;6YIzMapqTsy4`9Vq=PNxIk6!A{T?eBJ?9i`ROQ~*hzCapo74}pt1qJS%_}^S5|wi zfxlhG4J;S9^_AXE&Zv~YD@G;iA{s2~;xPRxCDnG>Q<=%3^HI_^VRimPky)ua3y{m}hI$VdxCiUW_r31cTgt9~erN}#*^|hO7m!s420Fl^a-cY zj;-ze5F{;vt}*?JTNXv1G$m+f@lxoXzhBen4yIpds(_DPmem(`qE?^Wdlm=r7l+2Y zSI!wt?1?=ElUhsv=O3@EG$xorY=B^5SvBCy$94Gl#&21?18!8rY zLah)Sdr|V!o1MX^ObsHj$nvn#JkcBEWj?B-A7HjiZnprsr(VuJ!S8)PcPUJLRl^F) z=l8cLnX+##>=5Pn6+L~dhQi+Uh9G8Iug1J?Htt?7U4O9#m!yp76xZxv9^e1|2HgjK zz@^oOZLB9vbjRs245z$pto)H+P|mG`QJ&NX8tL?F@JNE@@~2Pf$jSFWRiDIccs@@?yB!KFKrr{7Hf4Q z!Y|NP(^CQ>+~L1m@6zFfMZ|3c8)7SwIhA$lc;yS`hfw1=B?*X{%Zk4?W(f`OMP{-A zKy!QP57?ce4?cvY%X1Ra4+Y3G5zH)U<*RL}gb$UAmPpeCcHwp{-s07ajt@%yVxJwA zQQ>LFs~|bl+0^Q1s+Q`nMh$ZNotTg~9?jf&C6A#T9OT6I9Ps=9+} zzS3L0!mul4aNdKKGIt5HdCyuIp$OT|Owz8XAz?Y*jyy{FqIjJEmCNGbbZ`^Pi)}TA zdaZU;y?U%10P6lr+hG|o3eyQzWKuur8x%=_s1lOC6gZ`%aj9mUw)0JM@b!&Vx5TU` zw0NBihbm}&3wh9glW`EuN)K0@8WrhVcNUa&me1qk8F25b%Szx!3QneQit^Akl8Vsv zl4-F>qoZ`Wrnms{UE;(DN+KDXU%AIewNry*m*^Aoo$!gT!__xLZ0hrvjO|n-RCu+% z6T^%4x<%9_!|2w~54N<_7O*E(9$}UD?1<|C`QXNWzRu8XdOW9`)2gL*$Dn;*7a$T5 z)4TwMCRcai*(xHR3*ut@o{>$x=rswDA8gD*y}G=KEFRii5)*Scc8(Oxt`}rD^e@@MmPOGQm@WE){oSG8m4@wvcfzW_P5b$lZbiwPeqN>EHi(R>g|R)X zcZ2!TfSXxE!@~oJl9~B>ys(a#!;<}6vF$Wx$-&woRFrmGdH3uBS*0-&7K}e~JuZ}T zY=3UfIN@R4jCcamh?cv5*T=BvrNLPbhoQ!BN(JCjcY|T`fa40PLnlR?a<#Xp_X!M+ z6?bwe`HX_YwQ=2D8tKnKyXPlBg5*=hrp6N)tb+2*VJPzFZDHd_-f`-}}$Z6=whG3mC{5*nX3iilOib#x(_39Z;)=zevw_ONc zEtj}8Jxu|JNayjjgyhzNv?eXF-Ts$96?S@pSa?Q8ySNc+;epw0wECCb2|)>Rl3l(T zv8?gk_}Q=`yz#c?J;FidNKg8nFuA=LP=SUizce_bf&e0wh#)zZ*^|3bJr0C9pO@q3>60gLmiP-Di z)eV13g7cNdTj&+9vF+78?VEkHwoi1Unyqr^;dT}1^@G~wMU68_H51za>7xLs5j6}% zfscJy6Rkoni$d$2%{3G^+RIvSSoz9sa1*ZkJ`6#@P73(!=0lZiJ%(3*y!-}ao} z6_x0e6xT}o$3x@hR&2;M`m4q<23M%?dz?t{H8bS{UcKzxojo)V^ zT@*B$$7sX+rA6#c~$xTh{GfG^^k1v{jY(v*zsx;+zYhVj0h#jGPiLl{NC?5r=rPX zqf6$$V4Sk(e_tmKpWBp@S-_G$XZYggF)@;(n=KVc@q!8SA_*?QY*;CrBCY0QSjl@J zqYjzD3%aPYoJ=N*Tx@$+SzphwPxRh70WxzEqI#XBX?$mF8PNV}={|}K6UJggDTFT! zM4R2`#aN8_gP6u|P?!=uJL>=?BdU&x9 zi+W!5OtQbQ+6-AR(85lu#@Y=U@G>yzjH64?*2?Qpm=l`t+Sbqs2u1-$yjWxS+!)kk zGk|KMvDS;GA-pzZh-^RZ_?g*fWbhJrIZ2d zhZ?)x&`L)%hwM`C`7ZoPt5|2K9of>Gt;P(b_uemx(62s-H^pG>g_ratIo&-1)qK;+ zJKbljiKK9i>5GPvRB-~vh}>^MsAl$G-+GM$Vcsd##=lFAoMddvRjJ~5So4SK2F1b zpSJ#17>T1k?ZpSKv%qKLMm$JLl=P_OAg z{%c%na_%~YK@>o+YS}u zd&_xk98<96uB(j-JejwBg6p}4Y3EEgkEu>-BFiU=BU`xm>eB97C;WXvn_+P9n6Gc} zWY_whC=6z9JGiFkF(*zjc}}6YI1iroI^$*RvZ*^}9>}5n+fGFkM&nn;Ej#G;YzErctEqwquIPX$QN(7ZR#I zuUyVUFqv1wWE=+EGd|OenAokB0=_>PpVk&c(lIZha}w^RUoWSCGX%nzX&NRn;rptd zu#uGaJ17?eqq(L(ta(c0ZU|9$^XiJ8@}Kj(*xSYNje?~#v2h4;5{4b2ykQE`2-#Ra zND@A`u!!T*NK0-;VT~#@Sndj4Q6Qc?74K&#sB#ElEung&_iJH0?}`Nf+jmP}o(bOd zFNuddVowp#hSI-wss>;*v9>rwYrw!?+8nz%o}8@6f|cT_(aj09m-$FrA?k-Oq}D#v zo<(4!a6T2sS6f`wI1UZIP z+R-lmN1K6Uqz(oA!^=}EAkpVq8e*{qVgI04`?`(Ri^C}D1&&cr#aO;y@n%Yc{KVW} z5-1a(!4K)&={8nq&xw_Q3TSm@>D4BWkPP^hb5q}S@~C9S3|66v z0!{%Yo4-!3no2kUtD)V9e^EHR*DbvB4pMW-x7NjS)v!&pPX6;?S9f#n6!}b$MS?UZ z8AgmH<&S-#IqYkcWc_s_>EeniFdKr$c|9TfUV8S}mmr*=C>Q|OzpnyFve|58_4%$bL z{zNoWKqmFg9gL7IRWs-qT8nVkRwU zNWVjNMLuDN64^tAD=%?gz@%~Rw+E~O#JdR%Go}$$ojYbRebt%V;B0O#oa~=N7nRth z(;}pGPeP%vyq99HB=o)&4;w|1%_OfM82?~OK^Q1cvyE%sCvc<^ocw0?jDy}C#BOYC z2l5rK^3lc%6*bk9&}2>nqeh0v&I2!GdJca|a^Cnj>D^)og>#yS$A^k8q6J z!^=ohvvD^>Q;+wyr_%_$K2@NHXgU$&8y~I;>}#Df{#D-BO$6!;>VhQLa7sLfN7@6h!L4RajsV?1GI_)93SH zS5I!YeJr@*;d6;t2bOAQd^IJSQ{Lzrk!PNS_%kD~XSb@qA`Yyq<|NVDu{*UHHGtLu z30m2)l3MRlylP=6{i&EVF>(@h5#7C?(2xg-mzE7p z!_BQNgs#0CYSO`5W<%p2K4mF=Vt6gM<*HqvCM^>_5FZ^LB0u!Xw@s6SpiV{c*ekuU znXF}4wy^!xxbJb8C-&*qx5W29M~{j}K?})~j9xTb=oLFHlf%u7=_##9GffLke8>Cp zqB#X`ykxN2>ZGO_cMiNy&=cYNqRJ?%ua{ZWv!O1(x&A<^RNlMCLh#%=!i6{JPtpVs z;;&ZMNp5JV&tJi~Tk8)ptLLgj-r}!+fPr`OSu4v*Nq&h&;@Tu>wI6w|eGk9+d9l%I zf2-%i(t6sY?j>CwvJHAz*(C2^dc0XAD&_sXE!zz^r7bbBh{vsqv}sTCG=l(7#y4b( zv8ym`jq>A0P}xHGu^6oQkRztXn#GT|RGJptgStBws?kYNBO<3(5t;s3c!qwAU)Z0_ zzm%lyHxrFWX~;hGJmHN5h*&-p`^(24&SDl$)qU2&2uJsb^}kA=7l_69!h|%fR)5}n z&0eX4Axaude3^vFV6m5mD5g5V{XIt4_^OSj{Y&C5PL{m@uU3X)5SH_f^492PaHD=j z>e{F-a*Xp(pLD{|&nMlIjlDammmj-6+?D?t(tt~gT6T zX0fnV^U*533U;h41W zN?OYa89E4lK4WkGL@ZLcg>gv=Oi;|^-7@u-ugYoE8hvh+x*oUwowfjBPch57LFHkT z*D69zPx_EyH_XrjjHz4-@@XJpXlW7c^i9Ywq z3vXU}PP|*jvK1x;T%@K(c1VL44?lbpuyuc^XkyhDq2bLln5=#HDV7kf*xH1+@BLE! z-hji8KM&I`DBEJAE#p^2`~W_8a4UY&UcF(-MV<}SxX5X&Sw%lf(KgAjlKzazRSe7S zE+XZMjgR0DgJpECHBiz_jxO7^>G##i0sJ||NVd(kkGX4wnB5m`22AgezsSHHfQelg zQoxEvh#y7Z@{qid}-|gks6$+edO=`>*3}MJeQOYSZjQLGLDK5|QcVJk<8}M9D+Y1mJ+w8)0S)Z=DPt9=I#{ zPjmbY_FlU`A@C9!$Yd?^*5RP&L#5jP0+)!b zG%M40WCe>izB}3X6j|!(9>=S;b=xdY!aWsub&beQy~}M9jK+C>+i2JK3G3n-7Wa0b zS7Nrkyf`UZxq7hLavMbKDQ2nP8R?3ZVIUKlJ1iPqHWh@;am)Yu6v-Ccaor{4m=dcX zc{meK22FivLM3YxJWy4&*Vg#qkV)3YLBLxQbmoX28S-0@DvWK#aMo7f5HK_ zXg{Hr!s!QaxsqI!M}XaTbuWxl^O_<1k=B`;S@HIB1V;iSg{K~rCEvIlg4wGAPL%9v ztdhiVc!qw9`L`T#T)iWmVxdDnJaX_S3(3V|BGkg>+y%DJU;+tWcEHfhL}-7TO^;&d zh2PYmIR8~3M=$o#23vVHb{VhqB9YHVNr*N2+_H!%v>(I6>~-shN*i{uBc%E@=z31>Ea;1b^Z&<`V~K6~|ec-bifiKE*Vx&FU50 z=;rt`m?@1zuiY-_&BPJLyNC_3cprOiYIrHT%CYBcz8&_ObisU`s_cZH)D8~jn8u%; z;G*_aEFjk+85fZpp{Wr0KKq&k-;QRo0N9&Ko4)fEmj~_x|H8;ixcZG{EBx~vU#mA1 zad-?D(F!~PML%I5Y;5yiA6DXwO(X7qBif@S2ctncP`5om8M#qgTscllRYk|>2KC!p;VgI9*?g4(a2*345Nh?PtN*QFG z^}HNVJkg9&hDs&@p`n3prt4U&qZD>|JQ@0Xv@XMNtIsMn*%O@`7X-I~is9uyJ-(Im zdB=3+bBbr-g4%BJLtZ_Y|^|mC#BU zXpAacHr3VVZzJm#xKGWlrbS@BB6bN0?w6(H@c4!r)_kmrbGkmTOTgK)jLPVSE)C$t zsJ67<^+yY%-pb*cZEp*TA?d`JFS(jUR&=xHk||OCN+0>Tj@wF{@Ov_blgRpqqL?Ai z*pExsNTd3d01}{vq2rwA4h2#H{Dg;VSR$2ow(g87w!p{yOIlLxr5Js1%|Wt3vqs~u zo1k1xM!VN7p){I2Q%w4T7v*0IOVD037puvmiHgrfnA&T4IreZDA`53Br67K`Xb6r^ za|Ke94Et+!7tVWUTwVKqb%AGzh!ID$&`c2AdplneV;zP(f7h8MBl&L5qhRW&Hz9!; zNA7wcb}{emXQeURIlRS{<3h{eyKPvsk$uUIYL6YplmtfjYtFUnr5-h?lU!OU)2iX- z-A|*u$gL_plU-cFg?ex(fJ5!sJrjczwgNp)^yW`$jkJMx`XyIvj#BAn&ZuUv-Be#H zAAF>IE7s|yu(D271M#ax8>w}sR;pev8da*D5xc+^tuAX=>L0^m)4-h@TbSc&4jv6I zr`3c2Fk-`22sOiL$wPTO&E*8+8M@89kaELyu*hXbXT^?QJxDrIh@%l^;Arv*T(JkIK#V|@ZkUca&gPlk-Rb!!K8A^+I4zh!LmDF(MLE{l^SVU zqcD9b`P1Q|RJ#qz1@PvVSR_CI>1! zT6b3u+LgL(`eY|zRf&C*yKkquWuhFzJ~*3Kq$MD{ab|RkAU(K+pPYh6R2)u1xWipj z>XE;I%B^E0NBCxkv;3(MYgIlrssQU6aTR(QZA&rTCrC%+mC8*kXczp*mYHzdl-pH6 zB-qmv(6Wt1f!0E(q?YI^D|Ns7`Iw}Er*$~{l*09c_>F)-HDAN%teUqjxGgW%i_%6B zcH4avVPH>)di^oUkG=AKUDi=Uq4KnfZfX3Z>5p`Y7bWDp6IVm=cQ3;Tycg}x)T3Sv z=`_(2{UW6gY)x(Z3O5`fm~!iF4>M96FxajYve>$rB1CG@=GpdMheU^xK5CjH*<7xg zjceO*a$mlDEpf*dhTSLsJZ(y#ol&k=@5{x_anBBH2^k6ehv8NVteuSdvKKebH-icli%5OBD z#GJt}HR@|?hy_Q`L>{c|GB&-O4`K_X7S3t9BhtG`{;H1&*M(W%q5aKI%XcQ-1fLa! zjOR_(gkssybiCUA0BAN7ouc|`K17(f?O=h<`5S^nfK3b6j`$>MTD1OJi9&^rPhDrQ z48QD#_fI(cVL9$Mww&XKTe|FMMIb0Rw17PGipS!XMm+-1cEtALhYlDCYc7JzjRa=Z zQkutJQRs*5y75hV5ksJ~jQ;HU`U`wav2zbv7=6?=+&AvrAHXie*x`D0Q^TJ&%^HdZ zb&#=prb9xj%|)0?Sji2_6bTs+X*+MUl!kc?Ih$}SN?9@yBCI{I7eujoYlb-*XhNsebb_o^b!g#H5bj>M(+g)EFG?_6 zFofHl|Q1Om*`Gzevo%a%X1_AcsChQM=q#>xJz<43**tL&#qrCZCOhDeKC2ci9`*m~~juz`pJ@b6f02=~j-t2)NmX z!Wcb%J7LjOzO9Z26rK_xO0} zGSEHmA73uRPfpD4ja1qzdG~zlr8>F}4 z1vKvg?Y!bWwdM>oh7l|jv3^Wo)y*w(;GRiz)NA)M+Re*|Rw5)@OExj_E!mKU7ley} z6d>;l?>^BSfEP^(m1o!SK-fWE7o6rC<5>T(FTS)5A*+M0tp3VvcZO?iQPf)c*wBb! z?;5=UU-DW4cX<+#_Ch^b$<<;3*{#Pleb>v7)aF1U=x z+s-!WdqTBTt8$?%f2^7o?r2d$P#+UbKjU#IUigCbVBGcTIo#qih&KaAk7M4boWeh+cT&biPT#L^^ewaWHq$`ZM7 z8r-7iTpPzVlC<0ZQ3(@Ug&rGe%tLrl+LZvXN+h=?Bc%0Utj;>5k;O_oemwzL%0>2+ z>|=|B39ZH-rpTvt&b2m~8V2=+U*AzZ1Ww{8z78W?nyGue)Xa-s_RXFq{>#Gr-Vl*d z#8L#>^+LIJ@j-E3X%~zfFuJo;*hxe>?Mv&;&8bN{0=YYHCb4hZ!*}qn`4!R0+N-!< z7z=o4%Y zzj*E|EHx^8*Sk(@)8#jGq2>4SHA5Y}+(jYg{8_Hw1Vg*qLep(ku9h|EC$N;swn}vG zf+Xy=t2+?b(^GocVb*}A8KXY?M1ZG=$Dg4Z7sKjZVTWpqRuBX4z(xJ-*yX%6ikmgv zLFXy!bJ;GHbglgIOOfc|KsdOm2kb*SG`w)6tqlflKFh|XgZ)gNtiDjsLfz$Y*VK`x zFCQ)PreBF;drp3=zZ@>rdRe1^v_b-ou|JAm&5??H9~GpRK4xvjWl=yFuZ%a)oC-5G zn8@9ZT7z0W;U!sw0xE(RupIdQv6S6p1kGSBsbt}kSb+1Z9B%1~7yikOYK^k#3`gW7 z*|fxxcp(tgtqg84NR8O~em?bM-=k;L3A*1a(r7uht5|mK;FeUz;z^NPTOdk-5>tNb zz2(fEJ*XU;o)%F{S|yLe1}B}|RjR+3lX$#$ZjPKBvU%OAZ}0|5*ZZtJ##qvJ-Aox? zlih{M0Y0V89nrDSBUwq!I!BUOfMxJ8t8! z_qCVRpfduSY@SwRXM}_?8x4S^9aqbO%tK&hm}`~?nNA7pnMSxD)Ry@;C{47QU9eYS zmd>_WJi%~qQ-39oiR9%QG|e+v&Pt%!=a_?1dz1Muu7lL zuxPVg=K_B<8b0nM`$OU46#30Zh7gC4m>Hp!80qe?x}0=Zq2y4`neTjY@`#QC1_=Y_ zdTh=dpWg!;v7JJka)YX>N9vpFD#*|TJPye(LMTORQ!taV6y=!9I58V1iqu-th(?P? z2=AID!Q>guC~rT0%nQ6XIYNPM>F>&qU zxF2b0DsK;t6j@c8AGpWaX+2S~;K(Xx)MJUr!!FI$y}rwXP#P>~DexRbo~Fe4md?yZ zYGvg;!n+RKzSaP-wo+KzF-W4!_BnW&l$`{siI+AhvqF*Z;$CjfNisOdvk;Tj#YV3z|0R;(Bg z-l3I#B;BgQeoeHygWZH){3{KwDxslQDvB>C&Vx=)@IYn7a{6duFy#2=Bf{0|8V!|G z;#obR9O11kqj}uo8P-9G)1vo#?EBh?ZF2}-h|WUXB!hhzZ?WQ6pE{UAFu&~b2{tQF z`+Kt6qX>~nWEG`_CO3S!M0H7aB3i@MwpkmYTFe=rCnBEXF{_hD3~8sP)*2Z|jd_vu znLcuy$*j38WKq7@hV=`Ja=tgMEvShs6q^#A_)vg`cQIi7@oFYO)m>Ky{782)WElD6 zyu{L@DV&W-IxWLqlNImSAk7{qxbHtHA7<@rftmU(h@mqjGrgp z5(CqB+~DuYds_?(wlgZJw>dd-_kB9o?Q8tPI&O@YW#orHpAX2MVbS*>e%<>&0b3-b z+ga`sz$%Bi2&eBHM0=-Ye)hNr@WkSHgY2&blu`<~NUdLozNmx(XUL0)KbB>6H`Flu zgnjJhY`GY06BY!O9T(8XN9KIp)eJ*kE7>*W0T8FtcTTstxK-*2vk97h55!33sU63i z5{Vf6Aa>(Lhn&`Zp;6sRJMuBGB2 zxx(gXmbEb8nJ+$(P0-^JO@LNVJ|~bVRl!@zN$znsrYWJi^tO6C{&9&-%omqy0kkPz zQXwZ28It#*rKHX-kxA>gZA6PyvC}9o)&jc4u5vL;8@!rnPfJVRR?+d&xgAdGrMg>{ z=VuX-z{4q7anRHyB)F*}q&%ckQB|kAhZy9~6V8;`i{-iwsJpN7vs^On%m@>FH!4MK(I~tMju(-_=RWRzq2m z!h*i3@E_rljt3~UHn*PPGH)It3gr;yALMwhxl)y?5AEpqhDR4MFNB;t31|&AqB<$8^DjNzwBIzlY)&!h$BR>E%r-*0@Y!2? z&AL^i)J*h)#g2~W;k^L!VKucx_QPlV^ysNBdWDmWm;cC~cW?FIyn|)@6tDUuwGS9Q z)+~e$Pdq!zQdg>f$^TRf8B0^qhc*`5;~N&m z%w(p9*Eo4(F;%Flu&DwR44dX^um;`vOBL^gb&W~R2SR+72~+I>6I|k;G4>U6@D7z7 z)i}RQ73%Q5jfsmGh8Cr>ltKdln4IG_x0K*zm9qk1f@^M?4JK~$wdxVjHEA}`(^3@; zq6H3Oq%Z@=*x;{W{&pg2QL`v!&sK%a;djPR%WcKcJSO^*o6x`_3Zl-^^y*2{L*Az=Z|bi-SDvp#qoo4@$%6?{xGln|b_3gw zEvubyqI0SO6efd^>EScwmTT`Q6r;I};qu6eYS}yb*F&`-q3lx0N1F1!dcl3M;qD4M; zpUN|yg{WENAJ++$ZDxIRc!k$)sre79qnCH8gdGBA+DOz0@S=eclB{n)z=Od&&W*i8 z$mxvgF!}-o9hYq?|6oy`j1NJzx2QeE^YM*&!C3G)5;%FOtx%v5*VK#G$$$=#k9)!8 z)i`JC*wP(y|C;}Y&CKg(0BX?W*%sOjsa2;fY!w`}!fIBpkCh@@Q}v4vE*8Oikh^N` zR-5vu;4{US!K(5u1VYGe34|J_>sRUtQ8UGvqNnT>J4_&d9*Wk>RU-KqR09Gd0Rc6- zEN%TTB!Z9x>K>IvQnoI}ha+n-r8_+rUyjq*Yml8}N88$LmL|ZV&#&l6cs~2TbiG29 zTdrQBTx-b3dKSM40!wJByfVNa+$`W>LP_tuPEYIvsF87kO9HQ@c#p=LT+NrVHPR9T zk6O5LPT6ENo;nT^a+2A!N;nDWi8x@z^QNH^h%bMTl+t^X{WjueFEN(Pq&&i)PAh6e z(`|oCQ)Z-jbTh5M7_~udREou=yRBL{(pOS|!5+Tjga_%^GHWq;NM~D*C11nI{z4E-J(#_K_qe?-)Hn?;lfS6t6Qk6-`DA#GBft?1BoE@utNCIs4s&CPxG zE2wy@u@V-=M=9aiqGZX<6X8pvl~mz85sS!g$0$)O$`9a9{`IMmP-N%sX*Kzd5l-;Y zupkY6AGcOhS=R*YpL%%|zqi1YQ^v!m93D1(@lbp zhXpr*_UXZA!L*TrVH z*?b|M#XjBV_ftk)V|xXlnwzX*QnNHsJSnx+j9J{f>0GPCNlNJSyc3U$Hc($MeR*$} zee=|12-3;##eYe%bi4Hm_&cnJy4XpK+$7Pf@V+KJubS1E=%#m)>`2X|AKWt9F1#u2 zOh0&+PYPW5gpPH%z|nGLQSt_Z9*=U5wV3n~ZU5M*hJt&5Z@_*w=H|{84+vT4AULoL z!HLW++M=#q^jD!7`8;4AqNIbSe1ZV$j>O4he<{q&U4SVk-#9q!vcZCpV*%GA6FY-*TICT+>Th{Ij=H4 z-!mbXXmn+jW(`mSGBh2yX3anlxUZkiF5nWdMS>}MVMQME%|JCCA2%T}k=|g3J0-w+ zKa#4w`@CcLnW?1WPe3e0=H z_3{B|v;4ox1B`}M8^JXZs{lil4JKO8{k?Vj+4KwmHBTcl7DTuYVbkOyN+J$mz ziJGlgR>1vL4iC?7R_D4kvrf26)jR7Kx8_=>SNpwKFHb^TqnuPnJ#FgpCS>AJo!MTR z)(_5P#*v`FRLMH>4Chy=ry!29hUpUGE?xmek@TX4qBtJZ5jNpyg3!l>C$hh8d=6*_ z*!B;irb4j1#On}1&74t)`~#;VgND~m){gWr>?Ae1RZ6-+BFpA{S0d23o!*SSL#!}N zxUIQu+qP}nwr$(CZQHhO+xoU`qyKbrIz2eay{SpPHLV)0T5CO^3u*-bDQC{uN9bh? zs^Lbof5>dzh6}5nLdFZWvaU?xozOs1STK4%HxXhPs4vVzmYN2*pzRT(c=(tYAt&wB z)V=O3k1@tHF$cTNNfxRht-U&iWlehPn2s+zWcV>{UsUq5$AF&Dsm_6p@i`rTA_E-| zCv*42kuqHZdKbuM1%UB;X3tG}c_%xOX)!)jaZpz9exW_8kd=kR_B01SO$9}vdf%bE zN(+j9!U?k5b(hxeJnXvJ-%HaiT3~1s&C|f=)3b%rRZ-4iG!)4x&#BbI}J-Fw3mlD#av+@iG zG5N-GE{5=?QG#m$c13mkWkBfd&f#mi&u5;W8mgYA?OfJ!_cfYELv~Z@u91MB_1zO9a_Zi0gB^l7B7ye z^;_vQz5$c)M}$V^O^m~T*qrS$dcAgW6!CocJ9Jqc$O&(aukBQcjBDl@A&eUcT} zT~`Ci(&RISeP^e@pP|G(Bx5nVR8pNyv?nF!p-~sArZC2z*>9A_%q!bPp$u<40)a>NYeW zjc{-c``LFXoXFuzWGjOHCC5OX-pnRNvAX5=nPjC@06wS+$q|wg+W&&y9eQiZ2TX#;8$CHH-6X&hG%3 zxC->g=!8R(@mpO`jg|H`94X`vU+8g0ktaEj9BUiTC;7MFx(XY912DQyA~_0}Y6i}9 zuE$mG`P^Foz_|8Fu{161C!Pxeb)UrT62Ea%{ZEFUe;hTo7cC2N%A9HC!*?3A)rgnW z$E9E+%3sYQxV2|NZ`uFiQ-gIqz4+yh3;Ps(JdwCRnSA@ zF+;Fzy+fAHRGj+|SxPjk^&vsHx@c)48sH+PgbED-iAP~~Ow5o?AZ1EQ`mo>qyDc7q5MSk|<2`i}9cer>^wl&|E`r_+1RV;=4CbJIxyCMj;|mhsbs^j%40Gfv$B#&&8q8*Q_8hhf@FOsrxyu0!O( zp!7{v1Bkb~)CXdZVq{lPC4A^x9Q!ROQtJAJ3VoBvUe`_IE0}o7(%_ns3ER;oVWk0E_P`o8*{)Fa z<_kK}dl%G6+IhPT@lEbEUk0EY0Tt_k)TrfV^N3v=uK23jOOb@?i#^Ea@^M;z3pwC? zYHRJJ!`rC(dalv(+8e31ZD;xfQXwQsWvKnfr!+#1fgAEft7B>0IAs8pzF(Bp zX6*B|LK+AqX+<=dPmN#C$G5N$k1qNyl9lcLJ?sY)*aEwUFT9g{GJmMNL z_Al;}4);!Vaf}vn+$~MP*ZP>l$DIwK&sKNFKErt&iLH_*Z*6yyyD(%0456mTMZ>HO=%uJgGe-ThNjATcNfBRB{K3V`d5D(C>`LsUA;6WSK zfb3+!$j#XbTn|*MXPURwAdZclm_f!xS)>G7V;QpLPwePxZ#%tOemvPH3+OB8_~0Bm6vWkNey74tbZZMt4kLT(*A zG=+WsO2dELgHeSlb;LgCe-)35`72jRd+)4@)^%!gg?MC90X43Tfz+#l_OiKYsGBx+ zFi-zF2@E9Y>^0H%#3Ds#2;#hNdaF8R+VqJZ2S;aBs{_qr_#|Q620gSNvBlySVSgwMk)m%=u9%w9#Lc$4 zpjc!_MAMxFQUN$0vCC@fhz1f_iJMr+6wvmN^dU#aXVoX;!EXSSAC#fU02g99i5}#s z#n;>8OR#%X<9b@C{LbRSz|x({aXBcxS_G(H2#C{geUQyX4S!5$Uiuk?dT(Gvu_FOK z9x+_F9p%Z{p+tn~QwqMeTv}P0cPKb+U>Pzu)rjG`f>$EBSOGWCXv5`9DX@$}8p2wO z#zy*|kISEGo^JaudU90Y7lo!Bccz}gYf%_f_}s8cedH<+3X*!V7pN7pOI`xJS=N5u zMRjt;eS)ZtHM*@)Ri2b_Dioe08*6ehhv5ujK0^GC{>?GUmtBgJqPm0;6a6FY$qqKP zG)i1_fgGgM8L;$Y7p?DCH+C-xV0=$>;JIlP-Kw6B9|AF>S>V~oX+&AR6{rZ1Hb_J6 zX<~e8%JjT3eTR^J;n#yzFU-e(^FH5V;B84kP!{)PgnCDheOU!-w!7rSbxJ!lE{gCo zi)PAWfjt9GDA!aH`f@>em-=dlf%YMLUbt9VpUqHfoE{>!$ndG}p2nW_rp!_FeU;xy zTs_5+`_NldN>cIcUbGr+d~7OF_a_$?XS0yx($rk8X{O1fsS;YYH#ow)(x37Jz{yLR z=;KE0ac7!#oyb-t=}9KQg}CGj6zutzAv57DF?miNB@}YM&7WZCiPRL-0yj+dh6zF@X50+Xu^}LY*l)^JIG`Y&JL$2VKczPzmHbuDde)lJ=`YEs;fs zjkb3uW=_h^oE{J-R+Ht;baYXEGh)5Tzby9P{v3Aji6(t=g#59Za@!3+J>ZBm21yH- zI&6>;M7U{Q@_oCY%7ceJF(8U`hDZkn~%r{UN-F=V<AjOl#= zuQufpKuRj$U{sV_#k6;8=6O!@Qm6Z5vE1;6+|coUme1Hl%P~1@ptb7Rxo5BX?ZYAN zzR5l?j}66PeY!5Y%jrCBW4*tvWHZU>v-|uE=H# zUMz>7R5mx<>KkaZls~l(%d!0l!A{6F;qFtwfKtUM6?`#xDEMG8P^TtM8(3m+L4ui)1lwb5Wt{i}#xHt*|fLdaZ zzxL3b8n<}3UymbT+>4ZLi5}7R({%OUpKxyd!%ZS{jPqRjiTZz#f$Xc?Yc~}cYK31A zNw~z(QWn}$mUi3D`%?ej1Dke}z>T+>UK$*bh-@AS~)Jm44#l+n~f95;vZ-B%{bd$3foj zLvf2YHx`^}(BS@sD4WVOdAd(4qNpso|AmcKW76 z4|~yCG>LXRVvbb`e3gta-c4Oq*b-*hoW2*6KaQ8kk#(K*jfYA3^yzmw)#Jt;)$)1$ zjYDvBQb(!J>AXgK3`;GKPD@2s(w<>u8yG^RLokMT;l?~dnr`Ii*|8@~z>m;VHe%5j zE4*Te6AxM6VFj!AH;C5MP5NkPWo}m79!=ylnpjXmB?5>UKQ2@}1;J#;;|om<%zQ4s z!i!_J#S#v(;eeeyiDr}kEKL%6i()By0H)9J{TxFsN2G!!_tScuAlYJ(x1wEYg%`b- zr2~wMS!N--PV(JQx7^%cF%Z+}6cU@8xluR^-3b==V$elG&5F+^QHTX?WaSAM=)x=E zgH>0UYqd$m%IU2;)So>m0_hO+B%TIZ+}iSnU)QfV_6wr@h(KSQ4nLoX=ZYE)ePD$Te@G#|lA^eLlkxyEdi7wZQ_ie8*w3i;X4U7};a z%U-~ufIrXCB2A$JZRdcjQx)JTC%wH~(Ti*@|KV>8)>XNqST`_!<8lpR!|yhK+#FlF zTtTT!()-6(iz3IEPN3np9FAo27K78b9`Fzroha9`ehnza+HDx9S2MsxoKGur)KBY| zpNTZco|%66?!!?xwxMT~KyO{>YZ)Un`PcBYU?;DrY{SU;UP_3&5T18Z!}<4Gpf6LL zaH7FKi*6ZaBdp&IMWs02wNc^>>laBudgA}a*&xCuu6^^I{T@w=1C$9kmGwDF|C0-u zvD{vMIKcWLW1-HFXDR~k)w-%6zRwWmPd>ljTcOT1 zim=UvO=4;MZ6ElF!GR`mefbqwd(W)rgXo54;1h=z{9$?OzOKGox)m5bXg9F`-u~M~`5+s~Z_+IqrNEDpp-wlW~jo z?cEC`CoVJ4$j$YxlXH?-|?4%PMVH)UJHx2VvoH*jEQ`4oc#*6 zNMMBd0H?;5NC_4n*MPpjEz_I;B8UV2#-v zDec@78Ak*l#xx>srmEO9H3sE19Oug_XJ)LsaH+9E*3OV)a&cOYc`V+b?QzVo@)`~r ztbmlj-p)p8^+C(a2)byt6=p7mVy|=jrt6r9%38X{P%?~=sFlo(Uw)J~sskK8r?Ohh zWvokVkeK|82N8mYyB+@f-+K%c$>y@$nl8oZL)Hi5!KYND4!NaRySXkxS6Ye%Ph-@R zwA)^)Q6cl3u{)glor}m~N}o~7(PMX&1aBs5#=&kQ-d^RUm-#)Cj7(z5E}D8Fs#V2c zSncnaD{w(1@JW0ntimOrF{#OgxAQ6MIkmiRvQQNDljDWOF&~w} zRB9@T-j9GuHr&vBH^+M+sUK5_V z4V3tlsR)k!7;(4B@T6ryzj78C7$4$NQzISLv74dqZO7_$Nzsb`yHDE#c=7SH!sS?Gw;I?5eGdAF0NQyt_#C+Q+U7bAe!l3mu~=&X8lEV%Df1 zbqloGC{~ej9>s+goIW`=jTBaF*c%*0)D52><&q0y>nAM&+k<4MN--cAb2ts<)S|jF zGK_RnA;btcI`^3m0$tvEJ%*PHp!FV~N8eNPbw1c%336NT;{7m`V%Ik3IM{~hqcgCv zwuDcl_?t>4dv5+?D+>{syKj8-I8rNIFA*Cy(LDkiop5h=UAqOZ%J}@IFblui(Ij-I z@896|D?Q4!=rFe*H=~~bl-s-MdlVE#t!Jn#7gcL{P@1};muK0T#vP;Lgc2&e5bc26g4&a_>aQ0wIR#auQk_&bg4;=;Z&4 zMIWlY=={a=kA`PUb4p#9x+#sFNCjU}?GFTfX1Ar+D@yB%paTmiYp)DJ$<>Wz6^~-P-C#_~Vs#>m)G}o<4Y}uV14R8Lj%O<-hoa+jyDK1O&VZMo z)rnZLL5`S5z#y#~X-j0NC@H!xfupC#mr421a#O2E7A>N79o>l>WWtj^1kT;TX~5Jq z>FGC$GLPsY3(XMI8jRd9c$rSxPbG*A!)SwFUU(i4Ih?p!)S|{8 z4IolzlY}Ylh;{h+C>C&eW2qrdUUCG2`oI_*AkJBcO<@Fm9T)Er-m7!vPyA^SlHHh2 z4NT4;&ahwVUV1_-XJ&F4XGw!oO~Lw6JfEcAsW<>0a!P~Y@cF#KM88ANWwJLXOQ0@A z<8lzGK>6~`eTSWOdBNDf^;jf`iGih^2mzBPcWJ_+_7GvJ(I5RDr=fu#%fD(m8ml;F zQ>d}bqCKi&H`v&?U@}`J-1T^`;6UOZJeCkNFuzNf)hnb61ilx`hn9ZZQFp+rZt)7X z|BYzFLcl;^Z)63p@fcbB^l(PUyg;VU}0xd~MNJxd3NQ6V+=Q-~= z&wc&=Y3;YaYI)yX-G2GieHj+5ul-AEb!`Nr>=ZcE>Ddur4Co1?qsIq;I6ead`e?|^ zcph|sIHzZ1OD2Rkg>wsx`k5BM18WN6pFpWOfOo^9QwYcc2N{@#KR`wLhl&Oa1n47B zaPAMIYhVNbN-f_&D-euba0&$4Y0Ny?-QhJn@CtVy&hqyG+OX9C=piZ^%K7I2KEV}i zV1P|cAutSe3*h88VPOmkc;2}YAn0)S2Q^4_2oT;K^>FXu>FKD=+3nmta9z5=0jOut z0W5%i3>V}XWCPfb4Q8Rm8T@-4gPjdoa0lS_r(Abt1pd|(6bJwh1hD}I;_82YAFvf< z5DE`W50(?qZw7pDa{9x)qrcY=99Zbjp}o1$!O^WH*gL4;9e|4g z1Y|*3={$_+AQynT^4eaAI-V+12=G4IM~1C+#VRHdw9EZ zYcO$#=IIyinbAbFqP91>i3t+gZTwd!4+sOi$rH1ieKw!$8r0<>==%rcW>8VPdq-x& ztK$h%V89NaP&K4a22XVDZ}LjOA%Fk@0u>DfAYcc8FfQ9KNl-JCz&)Alx(H+xM^b-9BV?8oB{=djN2az?%W(EB_qcC}B7M z{qWw<0OWx4KG3@d;Nb4;j=ve)YqLv$aPKeU&#{k(iV90iN({%}?Ymu0ZVnXi{^ST9 zz~KS%5lBQ-1YjsgAmGnme6bDaPZjhYUtP5#7h2$X-Uz?!IX{T^kIR3p-z^ySe!r1L z7f%8jsNr|`0bM|_V0JkA?Jx7fzvKH4@!LJ+4}1Ktoq!Y`;uxOw3jgyjerpO7=HYkx zAg~$l9{kt3gU1H&*H2khQKSoZ*)E+G8%8_9^)Cn> zG~f>upGfdGum@hU@V~iG=NA;;XZOEDAKt%!KUN}ac#P}Ar1#(v_@^)U-+y92fd~ZH z*B_YZ*bfZjTMe((R+?7yb+wF>lx4KV>oz)lPYrPK*gi8VZB;c1s2ia+mkZ)U_1IB0 zXH3v8{XTEnmyE>P$}U@epSxNl7jibOhV#B;SNQ(j^xEsDl>)4aio| zPUTq2dD-C*eQtmcsp|DiMRoNqjwD8A(&pV#=a_T07bNOAg4fXpZ_6?tYn%EMc}4@B z7I=;Pzkvi9eEk_-Ioy8oBtOuaesq2i~+14!H$%ap!7pvUa)iaAee$wT#{+b-d^uaNsY}O zVJkH;J!rpRwmE>%&0Dp;IBhdkxov#(*VPq$y|772!AstoRZ%>NG)4cRHZmX|)@3OY zt&8zYrt;TEP}1ncS@_Z!7famEcHzoKaFNQN*>IQm!r6;$Q3?_ych_fpU4O);v1`mVVz2WV2wv-~ zJ6A4O(9RdQudp#F4r3ld=dT<{*l);!Sa$Rp_yJf+Z0{i;zqpYToFI%64pdDSnl_yDy|&l5D_kt^ z6nC2)CCqv+J0<|fBRaa|CFlMgkm=VoyJKJnothH|X2_4NFRa-A2_VS&ar#L|V1kQ% znfl8VE3*9-$s#v@qx@yGiES|ydnDm7W?I60+6mu4`LTb)w12@4+I8Kp$1ic!XHGJK zDtO6ymv1iJ?Kvrka$h|+Aw)yf&Q?Mhqi96hG*Xxp%J7sjgQ4NUvzzNUU&n6KWlsJ_ znvgk?geTeVZ-2DoN%B?aHtgF}v5HJ|pp!}?oalv?JAsJ(DF}Fn-T2J3}Qhqz3^ zJZJ{y(uugBUg=7>)Z9~;j;u|dHJ!%v)k|7wfco;07*>t&= z>bWSA&sSdL+aGI8LqMENZ;~Zmz_nxYo1LVIeZXRuG|pr=n!1x@Y@7&{c}3&D2(62B zVv#B4ZxJXKqYJ{*SV-6p<<7|K8Csz6I_Cygk)4|?0*F*L`oWz*f@R55jd>#yzi2r; zBfB`pqyB}76Edo0u126P{jsD<%Wm)R%=KgRf2D}P(v5_Ox{G9{yEBOnNS4DjNb$(bs7RcWUjHn@u&87 ztLgud9B4L61iT3{tLCVulp{?YW1jQ#{E)(hGM1;FvYGBV*#AXnRJIm^sH;9gm0782 z{bQbAIkYwO-}6#5k;t@JZ4R9xFySgBDiXJ}G^5-N!NFv&W=$wzh9+E6PGgz+ng7&SC&rc%S1s9JpLjxG$|Fok~YLyJ2o%HB(bqv~3>mK)(( z-}a&7Jw4UyNgIm&#$a_#A}w9UoZJ!0Wecd-*}}Jc2<#iXi-~ebqOWUnWSQ&*VoYb?CvrW9&fEiBm5YsuY^X zsqTDXS9VO8Bc^oAn2sP4Z7Xy3wfbyI)h!a~7AwooN>2jld zdW#q3buLHh-K=EPRLMP@RZcZ(%YqTVAPlWvDX(a+bwTvxeLie&d&ceJn5bt0E@r~o zh<{=T;$|0Zf0}rq`a-dZ%sut0NUFuGwugxaCz6^yv;_Kv3o0lvMV+P4sFw=0LM&H9 zE<>2MLOj{xKrAVUqa#A*zUC8BwvIOn1T+i{VXZ06f0}TJu8wVu)T=F=d=74ZfKn4@ z?A1)2zgExGyd5h@vR2X=9JVNNtP4Q_een{6-sqWHvkT4ko%o`{)7of%BMjkwEmqx< zp`=F)aN6#jYoQa_Yq_S+{^?sEuKo7`+D_IcU1NA{#Hmi_*p{XU3fhFlzO`o9h^VvB zE}7V^>d<1s92Qn|?ia!Pw185<(HmqyKC88m<`JYTjVR54SU)DPe;DQjd9+EnC1yJq z=EEz?Ido2ypSjpCFFe6Gv{i!`|5EBJ_*H&5Z9=>LeF)eQ+hcl_-s5Uu=3{TGP#R&- z8A)S}KW*oPQm+LDhfSx7`cO?dX;{%xWbN~vm5Qw>I1^oU#f#P^j|TL_g8!YLd93cp zvN0!-xlM!JhjQr;qr!3%?hN-!L|A4*4X$4h1O%w%;)<%=8Kh9;zG8sLImrEb^V{Gu zLe(N1R;T?y9u@T3t7458ktp)w^DxkZ$+d49YOF*h>XoX0Fw&rPLArah)vV^vpSAR4 z4ZD{hE7rUrYCi~Vk$>45`X9S!ck77E-l0rpDksBnhLy~9WP%>)y(LFD(r3{vunQb4 zHFrMFINyQEA5w3lw5-}sa8*C?-Sx>Cu)a&jb@SaAtaVoFI1FF6+?{uPmZk3aSYSyJ z0CFkAv17})sKk7z>=H`87D{>kx=qzHI$uJbd&pZOOk~7E!&uch<;fYHfiWQrJH!ZV zfr427pJa&B@p{?-9e}!KL=NZpfqatUOQ5Q4QLZ*0Zx#Oe;@%7UP=vr#R_<6+172TY zu>2qRly>HJ5~0zM>geLN47P@K7h3XYNimh4_rNB3^@1@_;_)8X30t7Ug^~kvmR+q! z9h0mkQtPCmfMMO0h5eMJ9AE7uS0$bNNAf1q$1%2i>8!=WrLyl|J$E)+X zrWm3wxz7WUD8dxe=Yn#x--%c$l3ZV1$)~8#5uf0>E(6FKcYMQdHIsqBA3iUw?w8|0 z+~+ooUK%rEC4J#b%o3>>(P-};rSH|fH&~tv`xu*s;D#n-ei%>3Qq@Za|Re~ z_Nu-7*?#*APDr>(G81<7$MPcMgt67Ky*PWgqoEF7D2ZaHTS$lR2P*21#H2IiVLt%f z=VpB8osbNA4H+o9&wukW!bVP!|164%&A!|4qnV7&T%Ql=w+BNY*RX27vEjIj4Y_aCy`dWj}IG;cW)<&N%(r4_%5pk7w&F~@d#*BtdNZ=*O zl2{FKNnNH7yXub<@#3PlUrS`p)qiU_S(8o5NR_sl{tDmqYd!elVz_y}$_dHv?8gT+ zSI1E)rs2ts(JRSvL)`{kX}mhMldxXxd z?j{q{V*>3UHH(qCZjk8v;isrB^(%Q571sF|s~J+;l_Snvy?!;wXEuOt%IX$Wd;#y} zD8QeD>nYMNZH}nH%yym`Q#Nz8;hVIc?xxzCExlgoGrelhA7pOuF@$`MC?gLQfyjtl z3?w>44=>8ciW>&HDguWF!3FAr*nKsjcJJh?MRx0JG4q9O-e!`vptsI#TMomhm zGA|8!d0DRj%rnxn$^XQ+-_qobjir)9I!#~efjD0)ok1NQ-xJh_niFToY zJ_YI=`Anlbs3=cYFZD_b8`K$6akb2{hcF!E-fXB&^%d`h558gOpTz5n$<)4c8xbl?2aJ# zGVuw4^&xtot=HPPg!J06c{zvla%P|9^>1g>_Ilp*6euV6nkV{1G%XA~VwmXuUgSkr z))Z+bQb_z$aXK#j2*kxtzsZH+jj%-ddnr>A9pp{@gfkf*H`SfcFVUw0dt=Fa#Y*t1DUmir_JCrmCiiY zg3PKVwkJ_;CI;Q2DR(ztTrNcSWcmqeb)TP3DcKq@Pah%I{1QwDoogRDGJH(kz|*R} z8If9j*UrXLnE`QSE0dAbVlWsOS*wkWg23&jNiO5+Bfd1u%xQQX>--zrw1{Rb+lu{m zQCcomBBLL*xsX{WeilsCd}QwXc!Jypt{cSy73ujdD)*uig%>N=tn z9p}IU}pn@sy(!a9dtu2O^evi4tue!e(@=NeeB)6QlZ>S3v>O|L+*!+)x|!mgT}a0 zz1l%~B(#my?)%fp`x;m-h)xy&uXNs;fV_t8=IIS%dGJ-mo*)VYT#r(Ac9+=@N3b!l z&b$rUbqpa11k@OwD=7%aGzU$~nhzF50d!A|h1-&C&bLrH zD?afow~nJ#3?b(O@nv>g!D{?L+gDL9iufkwt)Xh{gPGa4e-9G=06SlmI2NPVK4~?Q zvZ7qU>X@`@L9%@2YNmUyL%iUEV=lL2k6zuSDU?}i(^>9?XN`W2-OY+uHJz?KTp`Or z;mH+`o}X`4OsyhwkNfAsmCo?3qVa6Q;774zbf=-#Wh-e_3SgUFx((2swjX>gNzHgkI#wq0?KOd{{kxtaDi-h^h~2A)90HH`6qoo{&qs^JHMAW)j46)k7*Qate>h& z4;Dzii{5noNzS^$uo(zxw8V+VJEocHq!Co@twgs8sgc`BUq>MDd#ORTl8!tW7^%(9 ziunL1yG{TI0={Huf?b={f-no#XR=AAwN@$J9}rOW@p@W#*IB^o?{X3l*%{aDZ(*U! zyG18d_`4!iA7OiO$Pf7FF}XQ2V1AQ4)DS0dYtsV<7$oV2Wakl*UW?p@YpJ%jElKkF z1)Vy_T=G_{Pq-O2=?id@8bNKchSXFehilzNw-du7an1(1;irb23DcHJx; zG^dDHvg{;PSSz28H$QOdv`>}~<${lQeTN)1X)zM%FdlviecbX}mw$z}2k%KLN5zFU zPTix#D^G!O_&e|pU*J^I^Vch#y>?zJ44up@tm`Z&B(c^(*Xs->FCOF0%k}Sw=Tcmo z4vl}osCK^HA?reon*JvQXAPIU4acFCecnqkf*&cY=j~i=B%nhVlw2PjxF@C3IK?H| z;r(O{z|bDoCv;{yZvvzHDXbwGbb$c1im?AH!CbXNH`qLvAfXGZO!ob$%5**{_!w27 zpsl~?m1M86NPRhS#H(=(Fj6cdI4+2p+Tg*#Z%0&(B7sTnuGu}IWj-^f~AGpzZf z7{@<4*o6=~zszh(B*h{l;S=lNXJ-)4iJ&<$-@D(mu|(_wJ7kZZ`NzwST~k56wfgs{ zsH?9;z?H4y?3c6_c@bG!v$*_BOk2O|`l>Di!i+jS+LczruLL_fW$aASv4OdvJ7T)f z5HuE9+wgj%(PGAzU#7cEM5E^@9&#^FZEI?slQ|x(CX}3^{b-xide5uKk>okn_KmqB z;txlS2Dbduav>xrCY?&KeY88GX22#0wJ?!1Nj;P~=&>guSQhWnsM+Q!SZ zcF)Y=>pzfIth%P6M_xbqh9X_mXGU3^m)i`-ex7aJy_Y#Lt%m~XQr$Hv?&JTr5=TDGgF z#sQVYS=GRwqC_D3!mVa1C`HZ?C!&hhMgcBs@w251_CfL=Q}nczM`NlM?5joZ`k=Dm zOwJboZ6puNZ@QAdyuXFw-cg-z^PIVIbE(tz8#z}PJ*wNo3ZFh&7X(e;KzOChUG1^A z){{41=Nii&N19b6lsQhUZ!)wC`bdW>xEZ7IVH;Dd54SiqTUrNPq&rF=^32T;nalKl%BW-$r=d|&IB_(o?Rb1hm9U>IEqewN2Lpb19!ib zExOlsBm1PWVK+_$_ZiwuMm4<5 z+A;>Sup_l&qweR%_F!Wb?{XLAxOJ}}=aatk{QM+En`vrSQAX-cT?px`wR1U@(X=SF z^(Z4$U#2TZmZBYRqb45yHvY^ULg;9lm7h&qPk+r=N7Np0&lDya#3k8lqT-8?)S6c| zKMvl_*2O9LLpWz_OZbrh*rhs*T<0YbG+;~8c`+z6nL9RVUn*|v^JK~hV*LvIL+{!-ofq-_`SHVd=6h0AGk*seJ?}>-GF$|RWB%^|GCp4n06$*m6 zX6Lu(*R%njzrxE#8$Be`(tEoz^xVx4c?Q0l>5ulFRUmB>V^ff;PN4C>oH~T5PJzg$ z3tDr9#QkcjctUY8w{;CQ<#J2$@$b5wc}9a}|LdOdlqdd5tX6-Tod;VfE5|l+uW>!Q zb|kx|R)GYro)htOa|x;JMoI-g_p9xFb9E29X_v6Y-zxn|%|Z{Sab$WtAE2BU)+nFD z0K$HtkS$wOl%(Cyi$|w1KeRWF`L$5&M0qw;Xt3LcuPVg#8!u>*$e8r2r*m4)kUC?n zfi_RVTAel-tXU-!VI8V1WlVM_sP+}B#En_vliM4L3#)wnZ#{UeaTb*vH^(bXwrXj1zDfbZ zm_B9ei3e-4U!!?-Bk6kv%QUqo?pJ{yZ$QHi6Zu`arA8rUffi0e(}D zkNK}d^@?!-o(ViLIWsB=hT~d;v`X0^M-j5*AKh*VPrnq7#q-?^gL`|-bS59TU3%BkK-R#TyKn%*xn|!9H#U$x5Gc!nBOP-ewuKCL<@S9y;qRU* z+SD}=xzY1cVpTEWm6fHS>)KCp&_Adjg|0c20;Hg= zFB_*M2C;i*ornSO$mZwl=Q}00!d_PsaM%_^mUQ3? zh8S!D3O;F6t{oBQ>QVoRECWx(OI;G<;Y0?sulbVW1=`c|U^`evjzG+3s*bZ@wW0mU zkJ}=gd)|e>=2rTks;d;e>(?5yf8uey2Vbb}twkf8T>j_n7iRIrTbV6s8Ey`}BW{jw z{h(HocT474O{LN8GU=GqJTW++&)3B|}5P={aWf-{IFN8dKc z?2dk?lmdhRn&{d9*x&&-wD{QU_y`aN;6R>#!XaFbfFrUxgQozXXaO`RKu$u1h{0Rl z96_|TIr;G)^YQ?>n7je8>FL=Q@eTnIxD$vrWnfGUD=1mfxmoCog10HVm;3;DT?1q%Qx zwF7egTdM_Vb9Q8L1Ov^3Xf|L$9K7Nk0yBbf0cXR2R!oloq}~X}@=f3QAY=pj&43M! z4L`ZJ_2>JM0}1>=vNJOUZm(nr@C+kJ27qm#fGH#=nmN0?ruhoK-<4|i7)P1XOz+cGouA=ZUhm{$WwQp zBZF}S&1a3?4ZohvYzP(DBUkhWfMFTh-*!Vgqj{>pKyD6zlM#QSo@|BR#?2s{z#Rbs z1nl(a0LK6To!Od=zjF1rhVY-mlds#~JAv)#yeoJH4?7?e*fxM(zd{dAOpc&{Ik>t4 zdwPFv-|Rw$#=sfDvpIle1kwy3C;8X&W(lMD?;nr2gSP;@2hFb=00aB^{r;Fd)6+Om zjW6%vzvDkmmr@dzQj*NSn-BYZii#E71JRkmzymXLpdkMbWA6+kToZk+$LZ$?0 z3IKQcqkQrg{Gi>xu7586H(zxRLs+hlGA+VTAmb6KvAeyjaJ&z{f(f6^;JKb_4`1kMf7JAYoL zIkI_g0w6|~UvC(La!Cg637t&q8~-ll8^0~r-g`~j3?L*hFF}5PssJ)J0tWsbc*BQTszf4m zGup>P$t>7dlP)oP({i+RZWj`h&8wGz*Kp}YlK5N=>1?JHbff5z_&; z?zEvHhH@875eG!S!}=QE&YU-Wa(OL>8?qeI1ybUWzCMg>-y`ydWcqN{69rAokgXB6 z?u>8B3r^V|KZo3b-`5ufM9N6osG_BRlrfiTer4ty|1V%WN)*;1L9I zN%Jb2&^3jhOLu@fdt!6aB^36XaTe$()MCSxincQ{UYC;XgIReZ%BAY&mE_uP8XH^> z=HmK0xP?b!x*lqL4Ut|Udl36z6+WE3BXakyjn&MxzSHNOE@OwihHP7%Q`mCyR0rv1 zG3;3HG|E{f@4~_S$ey$8P5%2gh49$p{Q)3XA5N8`aRI@`&cJg+*WO;u3Ld7%REZw9 zu-#_7NzV{dgxBH8pKFX}8d-64m3T`2 z?tcr&AExtPNiwx-MhL0yn2`enhtFN=QUQ`Lnj|#vvt(CsZcAXpDYN7vfY10VAu z>W3XJUP?>K6JxYr_j^L~?|){q^6f`~XSz!)YNaOGf(dfI zLDr>UdZ2=nQyNw{>xwuM)APO8Krd*ckO;wcPmvc4i=taa_VsNOXyV>AaV)KW-zCh^ zkq}1-Snt-f@qMJ7AYq>LTMWD(NHXVRQn4phF=-tl2r_&AA)m>!ud~ElLXM)hO#W0T ze(CKK@q=5T?DYTFC{V}4G^gGc=MU6;x4icG&{9 z5-XlOFj6==>ZP}$nWK&^=A4Vz$gD(Ut1f9f+^zNr#QqbPLpi%E zAFl<=K*Yo#%QO3AWTEZpkouA3IFDkWS&D~L@1V_0*(o2&qDMzs-5tV4+cxc5T|wfp zlxIC{fifVn^|g;){4qL1=90$qD$6FUU3Z;67J>TuqkD8mSSszy46a2;cv=hR;Yy!b zPCSkNz|Nq<6ZE+>kZ5na~fu6HmP5lgsD$zyBCjA#bYcG!qco=kFRU zXYoqHbUhThI`kdu$gsN7lo=6*7#yY-x*QjI>VJ9yb2ZN7tA4%seN3Yjd=+xvshu(` zlBw&U?}=OS%&q@TF>3{;BCG`*OHUgT_+9>rs~>1-a`hAX)y+v`Yx0au)I`fP>V8E- zuG-FUJxE5Ih29XXY_RHD{MDD=$1yCd{h;V0pW*@%@i{tcnn@9T(PsQ@`uLQSW2!2l zhS!ke_`9~$e?%iLa^b^YC!76BDQ`KSTP zi!H;6-h^*a>uw5xh~dAUMSG!l&Kq*J?hQ?}^6>S?^N<#*XG;{8X*RyaJNWP%`Vk)k z5GcvHH0F6~GTQSa4XDi(hS^G*;jI1Fj@FXv;r*eFYD*a}2A<$^01JlOJ+F2aPfq+p zWzTi5ANI2NKdsqIhYj*lPG2Uo8Mr+^1t+nOA&o|QvqCA5zHR*IhkzM*68N8o)Od+} zYXTVSy9^;EWP;Fvfdo_-`AX3|cOzfD5TMvKjU0b*KI1mm1bzQ%+0C)B&)c$@UPEl* zFG(8KYRLl%5pBQZCgBDWPfqYSRU{ss`GAW3G1C%e#Qg;PJuyFPuu=Vw&%wRev#mK(`&ec&w?zyCxBsG$DEYCXTUfA0>@29VXUkwV0$Fahn;?+JW2-4w>P@C zR|(knn%=fl;vnr!x&F|*+7%S#g*davLB3qO#=5#u;=EJt6#{1JI+2D;=MIE~Mv)%D zSFnGdBUiSGTu^R<+Q+V=g0$T4O?)WzE${$dx=Io8qmzB34n&(=yMhR=tT1-v;ZZYcuF3;_rcGUZoIJ#q<2{4FWV}zn!qf|eK5x?YFUI(P;t689foVK@qS|qP z_6{lIk$a}x?N(0I+-Lw9a!VGh0iW>3+$JLt9&Mf-(1I~4*i|8_mK8+1Gx6LZ)vtI# z)=M$Dojzgz0z>v~CP8Z_P&g8GpPzm?0@PKi)7++?>j*9U%aAMfls@U z)10<|CYtTSAPOyEX(K}A_zTIFEfKR8z1hcn-L_T5-_L&kV=XUv*4uM*Fg#DACyO5*{dND@D;$Z32fGK&%-QNA| z)erX|5;4wTFU+!Dg4J}aC_g+7CPk8thZ_3&)xVGhnTR#WdOp)pw3F3Y`4sP=6>kyF z7C?(xaz7Cdq|bgUNR)*rG&oaBKFNlP?(qjQJR?!WklYm>AQz+OK zuSsFAzI2nf$jl+=gN$2MK}eR#J+B=bF$s5T2EFteqjB`mk?cYLItzi00AZv`!q}zcJZX!xjSUKybs8ucJJo`hE ztXa)M0C3gJ%&UZWpuJouFycbseLE>x*w1ajLWy&cAPit zNIalwbYR;BPG%fEG-JYdm+YN4I-NA6>D$5PndmdMk0BFim3bIX z0Z3&$qT%tOlI&`KnZ99Ht|ARH-v_H=Vg=D(pZC&_oOg7AGKJ2*$LUgzx4VW8EQvt+ zE6xH}d{hHH(m|8&65yP^HI%}daPeQtr^B4cOCvHJJ=fUQ1`3c-t~ArmUygG-w3R+? z+D%{A;a(ZqsaaU#<r&#(Wm@-vgUY0)b`QpY|fj2N1^7zq~unmPrDB}?_1(8DN zPOsg5^k2bIu&ZHeeZ7wodw6al{AR4s@H!J+`b+@$L)_NnWijSkeZDHsrdM0V?iVsi zk<_rG%bMaXsln%;o=I8B$Bl-lqL}sA>W``qO*#d8G2!69CY29b?8npe9tWYdoz_9I zSr3s%H*YC)PA-v%)O3D`CnnT!6|%K=4)GW#fq8oOCo*XUV#I6@XOWxBo|Nb|4Etvi z)Ol6$yu_-^sYVdVyrxPlPSGZoz6LicZmiZ#qOwGFCC4~HB9#@vUa4QW%KBjP$q9XD z!bTB=(`EHo^@6G5hmC^I1?)hOFXfA41_Jq(67BSg592DsKhbc!st2kJ85hP^D6gJL zTs(;~Ikj!{b}ZQ&27-qwd!&Or%H-XYJ(H-{qy&PduyR}`6ZAmrh3$#^n~U*NKGdik zD8h}CB-Lx_rSOz`HYk|q-7|b>Q#QC&4YHcTEo?x@y5`(K&mNOesDQY^HE_flHg*~96Warc-^ULK>FhY z8bV>M<|!kO>8QGD%#XHNJbIB22o!x0=&f}!!6>lj#^WC0Ij7S(%;4>M>Uu(onY_>4 z%U#wHFe+vZ1A56nv5oGo+^s~)6NsEeOOW1kT4rN zIi#};@Sfr6cjZQ0n2Mqca`^fI@A#$VMWyx2Jg6gfbFFG6d%s#faCje)Cm;+vhFib7 zdl{RaDbwM_CZjGm_v~BYvhCW%)MRq2>&Lv^-At)j+1-uR{G$(1m#X)uuXh0iT&lP< z(y$k5PL_Hn3Xb*&Hu7ilD76ubXd$ZDuw1z%`M`8g6yxEN>Y%d;SK3)fq|wSfEqSYO zU#~KrvSMd>Dr-rc3i}}0af}MfJ z6zxsXeZ|Q24Up}UE*BXZ2Jw?CW;6r&cP!wcqUUq^py0Q`>Es?I zXxsmSv{KbMM|y|6g7_|FoW;#b$AG@1X6QvaVj##B_8D!PAMCMW#$%;lhCxI}VcYvs zd$5(*L*W>t?f59>-RbjPG6z%8z!hs&A%$9F!g$z#ba?R4fyaKGn|cx*dmNsO#mYkO zADs67f@ovB8wi#N?c`~A$V8R4PykGl{ByeP!W>nEu7BVx7f|ZVB6-Wx=z%$D@_GjE z2$d2Z?_kx$0S994_MoLYc`>Ad{M6X*!tX(K6qQ0W2ySlshRL!F=+O<5JzxbVBzNxc zl_Ial${(N6+Jsq|MZ$nkck_HYQ3RuCCMHB~i5Ik2iG`x6AOVffH5uoNi+I)fDYXkX zr+NRgMxLId9ch^^oeA0Wu`#-K>@?V~5El$Del(>JtbHFA)b%*1W8sMYI6S*Yu94OtG_fX}=&+sI0)%?~qLM1z zzmblT4==7O%~GdEvKL?&>4$VB5vJR<2rGsr!;m7}r*Wk?ogzKx7Y-prqu&EZL%FSx zLwuujj<_79(C9pBLz}hORSX3)ks1_JVhFEUy@@NItkL_?R!mR{&zw`hB)e7}mZ;_p zBTgLQwYZRf?(&VYI|7?2$BJzL*?bky&Dol_84F{7tMRfvzTJ~u!K?URoF7HCY^ z&5p;$C*J;ZZr5ZoRWARNyQ)y!>D5O?7|Xf~M+1$aM(q^CvEn(M1WzkwObw-@vz5?y zuWV1+ZqR+8ON%|q#F2vSJj>(sJTY_^qaPiRrwX_m*kupB6v90L1s23`7t@=}G_ zlDrh|M3)iL(>Jab@nY`9C5g!1uo*SuTb>$HC^WR>E|t*RAn$m-E?>)>Y7O4bV&tJG znS0`tjq9CSdw?|_x|%_m)ZRNYW?{OZ*7-Lw5<05BA87`OeQ}iN;+%{&}rn+{00g5=T`me9zPpR?j>!G~wgHXb^ zNZT1bMW0T|ckC(`2$eKa@Mm(cq7ts<;@gGwP7nq5y1CRQjZvzHBLhW;cNA*)P*||&YMQDdK5BYhwq@|JGz~njuT#zXgn^E`)_xr)gtP1lO z>}Ko^ZYEOPefHWR6zYUIKEhl^|Ecs_@@w!t^9<41dC`o$i7&>bs@*A*-iI@%!~Don zpP8;E(=pN9Rg@0+4-(`AdNAY8to3o?7 z0ka-Vg{0vnSQ-C8k~Ch3{N2<|Y#n^-xdn?F4UN>rdjE>6BR7v&Mr<0JVYk09(XL-X z!49u|i7JOLcm(6nGA z5Oy|m&lX|n5$2_)9A*tqQs*RqRK9LTR7wp}e4@IVNYZd>diT30?ih(ydh7~Z@#!I} zjN*yj8woMrw1X=r?Z!5e7sd=`bYi@YV$jepU>{hPOJth5L>th}Yz9YU+m6B^JNx(e zssP$QrX{5k>4xPmgIQpH>vbCe{^MWEa}8JW6Y!X0tn%KfUX^hcCIofbB5X){{qE@_ zwQp@d@*6i-jda$t9$kvs5mR21+g4*yyVoM!fn)L+T8!1LuNdhSE+oZ$Gxsi)!iKw= zQX=svkM7{?IdQQ&G><86_sgM?1sTtd0=Cj3P#dWs@3gVri5^2Fc=bfvU-qUVZ1yzBS%j3MxWR ziJ#&tS1*vD(k9Mx&PeCa4UO!ust$@i%P|n!PkBqEI-YnrY%Da%ZBL2Kw|{di_hq$_QLqVfi~C%sqUPONFgH{nU8#(I7mAKT*} zKiakGd&QI$WMK~>TqCH=W4toQk-qwA&7k>9BS{3E{asC8iV|fZTtdGKDn?%W&Vu7w z_xq3BZOn{bk%tolb1+*O2u?3ZpxaVE?2k4mcoIkFC44J!3K5sq z=hj5q*dJY@*3@6oAROWyhMmt+d0KmTl1++^&`esLgdlkVsFOtn2AWY-#vh^jl$osoG5kKieTqwx@)GL}ET-ofI z9=$^RYq>AMu`5mYicBNl*QG{|ekM5Lp`Ly4A9&-X9SCvv^+?LD3%KLnC&^mrP zX%}plo_%%-hDZ^?(tul? zjj8QRN)WBtwj2G-B>c^pqMW-=vvee7988D{l?g~3+pjOo0?93SsGfMUmzl=>bQYIe zJRhvk1ECB2ii?z03naP5TBGZO6REFN#n1wcr@`#;-3UuJXX&E-2#Wm8kzWOb!R)}7 ze=XuiRdkv*o7W?8{tfFW7D#vIwV92-K36|-K*(`C;VXvqy7pJUdiLYAI-PM;B8^;1 zy)s7Aeq3J3h`|g^WWp*IB|?@t)TUoo4E_f{AFX>uPvm)1fOCT-9mXFh_RNf^bkLLR z%v_7ATFV5gb#`S7*EHfJM+G;Yd~BOCWca0=Zh+;`MGyj;`)~RFEZ95p3;Xbh^tJ<^ z{Ob2;0rb>#M^?O`w1&?dV4!Yl`hbk5lx>s6ZgrF*2qY7N)Ge^LkXB}5Bh4i!71?H9 zR;RmY_{E=qjwvYL9%E!c@P71h+(sOQlP5EViaLt#q(Y6x-6ThN~N>sYcwB;XTUr?8SuY(qyqSPLESY;^?6T_gXUZaTnbhRb%l8WScz}0sv`h$Gb^=@9lu=k-Arf0 zBOk;`WwXx>zbwjNny;dn^;nxrebT5GCv_h(MXS(P(vEBntF&L6e<iMKr05-CuQN z$qV;ywTZnRzidTj#_Wr!9+LAQv5Pq~#&vzl@e|>&7kYIuAC~rufVk6zazmO8e3n)l zEoMS9hceeGx2kEAN}0woV@WOB4X}msYu*;`+=K24lT*8B*)Q00*zZJ7kv|*L%IZy> zYd+FUQ4BtD_BPTG%bCsa>lvgua&M3jqUV*+wPz7>D>AiuEU}nAXcSI6G2e+Lx%z== zjY&d`76fxII=r8+S6!j%i^y&$3A0rm4c7N$SSBc|m zwrtv=BZM}be_Yyq7>3&XCZ%^TD~7cN?aYYma& z;~+MhvgsZL{N{q!C5BDN@z_TEwH-!PIUTdUw@w3H$2%{=kaQbB8ErNK9*Vo@Mo%Wh zvZ;s!O#zi8-wF9*Rz3C48082`AlfGa+s}2#+5d=md#7gH9q*J?0fcAf=q%5_Z+Wc; z>E71lGb*4i8hQ#>5A~^Hu^{Etv>2^y&%8?gHTrWBvXnQuO~8g!Ihs_C3eP>Ze+h;R zAPQGqerZs5WzyYXT+ z>{#=H|78WoT3NEN&FXiRS)Mai2Y|#JV}}Z+ZpiVIViU>^;d+A=$DV}#0k_HU=>1Ou z8^`}7uraf;|1V{YiGY=pmF0hZ{h#$OHVzJ!|7U?s4OAsXx4n!c46f9aq$CqlNujG- z*$M*;!@$e{!wCSgR76M$RMJuu#L^N0ff5qZ5|UI^AdCC*?Qier*L$tYz1Moidp7Ru z+V}OT$NIevGc$^cyEu0r%K}9Wg$OJSxau-{0$|Vpl953JXJFhsY`|;iPXo{g%^?OJ zC^qTK-cJ<10D*{_n)s0$w<0FQ7=eKTssetrYcTO0*-$~g zfD$V#z!>-skkDZoHu@zAIPm-DXS6^9pOIxuRZs!sJbs`HP?Eb@;O|;wKrx1e!!Tw%kV4nitCy0IuGY;@@4lK*+3J|t;zk+|z%O6N2 zz+V>@fe7q_eOrH{KLDX(Z&CpRCiXd~2ndlvy#RU$8IEOn9(fqdKr}!h<*8nvq8uJ8 zAO0nnh^J8QJzy_XI1p=UOn{=VzrX7#&=5gS1D_E;!ZWA=n$?an$sJR|}0w?tTHPpKL2Q`o#@VBjVs8N8D z0fXj0U^Ubmcn^?)eU9FtS%CiCj{GSM~8~)0)RkHMF)(6nhpd^h~Vg00ON=FD33x+aad0^;D2US ztTQjL!9RLvf1wZh^~35L*dIa&@lBovh&89dp|Ecsv=vl3!0-)!{3rXgNBM`{?O*tf z5ArwX#p1)u>+cQf*ZCKY9wp)d_Ion^w1OUe*2jlc53uYXrZx1RhKzq3b1(W^u8s{o zYAt|ya`|y5E%I(b0JJ|V20`=h243}dea0X1A97$2cA+mqKOcpFA_T@aK3`9j0p5Fj z7<^uQzpg`%#jj@x7gU(rZz-K4r6mDMa3C1aJ@MFGNdO0gUfAq?z#a@((1?Ns4IgNP zJw3>I&=`Q<401g5&}XqfCg2}H*oP5=hvp9+&+oGTjlVSp9DKkqfHJbh`b_t&s{0;} z8ddXGbREo8{9~;K9}>!_tYMaKyye6qh`yQVKV!I*rBAMNKH6&NYie2N+ygc&y<}1L zG7R=ykbEwZ?3fxBK(g@q9$c@sLYyWShmhh&g3WU?Bfgs&o|?8A9FcFByYV{Xl{Mv84E`gjD6^W5cyBDHA*M{=FZ`Z)Aw0b>psyDXQS34dZun zUq%M%oyrPP;G)4tX^fOX8tLLb(G++dE@ky&rJQ!W4W5eWn~0Rh6zI;}4GKIrGdE6qOj1< z#9`v>a?eJD$u{_DPBdw~N+ucNt<2dd?i=&#!ee#;Wgh2hGI;wCXkdH)RnM?{9Q5AL zOJtX8spJ!yTI>)F7$=kw7kDdM-p;JcpcT*b#I{g zL-vnxk}>p*zQ$O`v)M;C5Z7lT=Pb7SS>l^LE0IF1&7|E45%BwKT){+saaDhW{5M+p zv0iq}Q-OwM5o#%^T+PrTNu_v)j4ky^(w|5)V6MLigVb(OZH`uBZ|ME`BJ4hA9{90C zdn`v>Elo_lK?(+!4C2TTeWYWPn~CQHFXC~(k-;cW7o9t>(H3I3?oCPosavLwv=Hrw);!c0*yklYm7S zDYLWHd795|^+y_d8DZH}?XXC%8sK3sq9oEn0JQsXGh?9)*hw@&;^xUL%qUp9iG911 zw=4MfEXWD&*=nI@2k9B`xyqK{{DtD-%_v5nJYZNTul8pH`V-Vi|3-=xmdzvdfo08P%oK6AIZlEMM9Vo8ToOt5A0&Pt}&N&gV+xz zJ^izXi2#LiN6>3}NN+7U!V| z&q=1KwcNDZ!-+`8B7Fw>rtOej$yGjgl|(rV8rY=PQ!`g?%8DNjuAFzXuyE$1W3aIG z@^j%NrA=9*FNV+Ij0mTD@sDqsPV{h^^ThZm!SGo!Pl;zVev2im*$oi1SE)%=-bxrj zZ*-owDS3NX;nux&z*6kY4$2F>`x?;$i*Ao*hR|%xG$DA#(1E>E;?pZTm0}CdjPrHH zV6$-O%t?!G^6EHiCn`f|%i!W4Qr38{SCGSB98ub_d~Uo-2%|BTWJ7D_wN9k>jbFgO zm{9Bb{OLf)z8bH9>fDdvDfLOSZDEI9q_kHmkkW5?bI@4~%^GM(uN{Sb$Z5Ld7m+1V zQ6T*=;-CwHiiK z^fm-qsm|E;o0_Qcog-Oz!$$U*R^W};M#*G=62OvbV)34;fn-2_V=`g$kPLo^yO<7F zb23*%wOxZaR;^(6jdIUlcs`DN>ziu==sMeZE_^KDApi7^-A&dHB@SBhF{!BLW-fj-XeQ$Ia|RD}etSK8|K)x2L0)S0m? zouAfR^EpcU?xP!olSri&ZE7JOj@jUst+kHrwe&U;pI~?OI%&sAYbdkI*wsr3XKV$) zG4M>enGhofsyl`|-~D zgdQt2euNbJ;kFXa1Id4TKA-9Fs@e0pputyY9OD=`jme*~okQ*@_tB)wOvmO2gG)0% z8(XY>+mf1`)XIzp*g1-jVLH?GympJA>9uZhv$>Q`O3xn3Yk4ac6L(gP%&)rxaWWrI zvRCPRf_S5OdEVs98z_Y-*@cwRrj~BTwku=hp)tySP!H#SCTi#Sa72Rf!St!JH9z|H zp@r5_4z|;DZJR$(t%BI?^l#;i;>=Szw}#Y~HY@nMO=aftqT0dPEVSNx8n+xky~0Kc zAKCRI!8F1`h09T!y70sz1b-`~Q3bk*JQq5oMI93x4Tf3jQJ0L0zVlEQLmO#!HV3}T zHE#J5`r>nZK%;)INt&^}K~K;FQrDtR#bJF-lfX@{TUt42$wnrNM8Vht*VBrw5Q4An z%iD=LRzgd+SLRgOrt?^uwM7!vhqQ2aJx7MD<^8yzEyIHmDcplM&5+y^q0k!T>`jl! z*?}JX4KZ)eMQ%ojmDOLqfE5&CuPZ<2+=2Sbw!a1$! zTdZe8?J+La=yg>;wF@FONxuh8MQGimEjE?t@7__o1~N^MgFZ6Ux}~{T3x~?t%UE7_ zLW#wpb88qr?+L{3aiFT33;N-VlE-;k=zL40ktr*IlDR38KO*-GN=B}* z+r`xBvIQd4%be}cKkWdoP*f6HgDZmD;c(lFh;`ML`DX?3_9e|Qdurl?#?n}Ha!^Ch zHI+{L44L$8hB~b~dekCvC0`Rh9fl}k8G_kEK%n75em3WWoo|i9o)%-vvCn~I{%64! z3$=r`MHLUSYkOlZ4^8KM-Z#}T&6Ka=f6GX6FLVS1DL}i2FvWM$K$gI9h~`WR@k3-- z#q{yLDKPd1nBR$QPZ0v1ZeComw1g0US>9JM$?~kL$ZgA2^*-4A=;U7pTkBV34}u5k zomw=tyQkg`dzV$kftYukBI$o7uwn9@%tNtQLY?Ln0a_TQ=9xi?pOYPZNQ&m(WwVgE zVKmv=t~_kgbk+Se;@3QQ+Zw|mzZ|`KzH=4;fLWHxrTjuItCR|A8Mcu;%zb)yjIu!A zQ(1LEV{19Lr~BJBlzN0Kt}^n^hDH7!&fEI03H!iFR(x)tC^BMCI`gaLQVs-hr#hBR zN#@b!3o18L9MdG;y_>u#0}k4Qj=eLJDT6}Yo+`q9CQ&R2JC53G(aC!baz3uYmo+A8 z_w8k!Jk15-AnRiCl(LkF!iB{mmJK9Fgzj3Zb5 z_SZ_724Q1IPuE)-vlm(@FblpGPwR@EVaGj#T~+Ww-Ae*@;x5%6Q?qYOV#S9Y>TvVo z5~Aj7|M^C#)}BlBW-=+1d9!A)P$!qYiUW#csKC6q3-R_j)hy7Cf$_h0)Qs^r9K8m< zZh0+zWqxTR|oE9NxCtGC%jHEqk|ixOjaHiJTS zPaOS(f*0JYR&+l8WtCXtP*-{jeufJKheC26S9IPiVVC%Nnw4z*9I0Ks7N9?>Xb#Qyfyo=g3?AEGbv*-LwhumvjEy-y+kKoy#u zi=Ho&%Hm&}mK87V;7(by?Ohz4ohRA7M$;)Nld3xaSrnD$kRYqE0lKQ=?kmQ5_H_eFHb$aTD>CH?C1ki5oz9(jHR=(vClpwXduq3u7gV`b$+2Ji5GRvV+5BC9tOMxX}e| zc0j3>w5sMGeqN)|+E%o4rDPUQc9*iQ*Ks8#7;6-l(BVqX5LPq42*t+>zs;%scMDEg zY33i(*~L>N)hzm$;S9PzlWmf~N(#%FYfO^vQ%nanL-1xi&xFiARCIr3Ylt@(uFb3e8li-N=0bFAmsE)-;An4i@$Zl-Jh1SS26%9ZX&I@Q`@l{hMAVsp2*ziH!;14JVk``Ls$vKKpC zWZ%#f>cqDv81s`GJY@sZXyMU8$M?-n1b?BgQY_AO0O?uty$;1eid(G~eA_XzF|WVA zXCkiO>c9+1-XW>3JMpZop{y;^m|ocdHtGo2(l_qX6Y=RH$GKAI;!F`_F5Q+{uTx#_ zvvmu9bN!uXk7 z4p^o-@xC_Vb29K+YWAO5>j4Qfjk-bsb$zRr_)u_?h$w;YTMUt{i)$?2b1|xK5X+UM zj7M-F0c(U%hoTo+p;vw>6Yz>ehjT+wO?A(;qEiOZco5#dD@}(Q7Bh`~S$(AQ6pCfR zSwXrsnh^kOeKDUJnqKN_r9FUYDv)k#ADc@E425xauDT z!ilr*=a-{Ha5~0(Ew=uIWl<^J|HlWAMiV#$nZA$53Hu`f?4HI`86ZY##Vo|vjZV9z zS7=P&W?jI5?^sT;OmuxmB`dSC8qJW$;hS(q*5Nm9;Lu=lI^~pE2SnNdrhVKXLwjtY zAwx(062_$F&-^v%B;j;_5EUz!>^V0V5^K%#v^<8NWvNQN)ZD5K2wPZf@tU79uy2#p zL8_+fs_hY z#EgG!>PY%2^(J8>yTs|Ad+LXQp4~LNY04)VrOiBCNSarS90Pawqg|QCdTS~>`x%y7 ztCJ6Ts3v2caIf?VcRPFPIYs#4Lt>a|BZYGvE}gG@-)k}IS(VzN6~J1~SgE8h9+(3Uq>t;6G8oj4ix#3V z?LglRJ)-f~Nn@?*Ym<|`^(pS8%=nudefwgt@^?`harr1=ZBS&&hWVRQPIjr}hzSc8 zuZp@LG)RIZF6G%jRWy$@v$N`T<2H%Ah^Xf?^%jUI`*{>&;gt1&Y)K*boWj3_`+lcl9gz4@wX zJPzLI)mKxf7PUbYm4EsujXrS(2ue$9#M1B1ku5LY2Nr>LinN0?0+x>TF5J^>7z#D% z4A|OH-Iig&JaY0-lNlc=^4mFG>j=e1%aS?HuwGfpyN+eUA|r_#?_k$=*ucBDmoE+J z4A^~j)(052Q_+Ow^X9782lB17qNqT`mep>(F5w1T1AH~ z&BDw38V?nK8|lRUNPBi~GSfp+*)Mm$E2c)v!O|f-$eN>Lg~eB8X!4L4u2SVTnxWY} zEkZJa{(Dm;?A3D7AT5&mthvh-eDbX@bLNt;3XzGeeZf+V!Lbv!&`hdeaKY^EssX}v z*X9t~xR6F-vj^|VCzJz8L;&@o1y1^LLQHvq$`q^tyu%>#R`Ut}>b>sPO2K=2|AgO5 z(s3(7?hHYJqI~jNaGWE+Tsv+`uf{_wJ~m3|-j_-yAGG>c)R`0dzHGHh9@woo_ntT(*lTd$S zFR5YKNBjG91*+waJa2{_Tr#BC-!U!MQ?MiLN8RxgoG+*%xXk(@ASD& z=&TIC-x?-AQFWW$Jf&j)@?|dAsx*5TLD1?8{d6La&TogDd{m1WvX*<<0_`-2gu5@% zn(~eB1CvA_20})M!LIz298F;B3NqiCmtXnHl70GaI6>Magd9Nvm$2273?8rYz+S+TVwyfRPP^5j$u}v=6|F4h|rJ0f3YY5-AM@1r!1TdiMt%As_{WGEm1r9Z&`!01Fsi zB*AflD2FGJ5lf4ue5zj$UHEPE5c+ zv3Z0~*->hby#otC z0`TeH)xXe>G`Qa%Jcs}>v;Yb77BFZFu*&fNv2_hWf&j~MxMSP4ZQHhO+qP}nw!LH9 zw(Ym?AO7j}v7)09(TA$a&P*_Jek}C!vcKqbR?~UU(CUY5r{W*SSQzjO3JSgeQDy~hIRgV0EK~1LqkGDfN~~)3)lwG zA4$8teUR^KkZ(pK(z|;{L3Y4u1|fbQ{T2Bsya+VND@f4%1X_8#y5H-!(+Cg{AoT%! zbAOVhKYz&HAH3;@#aeo7Td-d`w6MAEF zad-0~ey@{~gxZ0--vkN)e*Tqi0OH_}@M-WsZ(mF?u;?#sFay8Cm4h`1{-1uGBh}}6 zI9)#^0IzxucK|;bQcwW~G|2tmc!^mMk&uG)aC5(G%YI>ByXZeulfO|%zuWPNQ9(m? zY_E2|zx#i<2C=z+far@|1dKrPBl`aW{Orz=&G8j32Wt*!WB+beMgB1g#)oPfh|jAcsJ7#VFxjImNFA8Gz6eWgm}S67@m_5S4Q3g9Ry#1y!go)2gnD&4j2svplA93 zs74S^)LW$_1_CJ5Psj03=))%d6^C^YAY>r?oCcIW_RI03!i01Q6BH*MgO3Lra5Wil zF(YZ5vi;iigg8OF%p1dO3ymu57~OSWw}kIi#dS>eGF2I#%PD5M=XJK9%F1wit)AV! zveN9=E|et2lxlF%u+8JEdi*-8f=Ql+957y_%YE|BaHNw>dp==O;$G~c%ZvVoMzBNF z{cO*4(umV!>gWTt2RZU7)0ZyR+!t8|ojGG6Z-t!baRntSMD#d%1Ggq~oT)dz z&@jI5+Frkz^GEYt-wK9HUwQ_I|2;C^Y;1{!D{z;mYh38EBkF@aRb5#mwBunFt8kAUZH+wT<%gA%r(v@J*s_}h z=jAIH#(r-!KJQK-YAo0GT6PiH5^P#p&;rAOn%j&`1~=m}xG6IaO-N?;Ku!-sqFbe4 zhr?}#hL2a34ih`54N}~41=f|Flh+Z+2*RI?Av}W#NO+x7<>Zw~6z776Xjgt$td1$T zRWi2%kEBB3m6~hha2si;5R?~nI~zM$bdVC~ui;jQ-4^dJ-J>@5*8PYFbVp)@QM~Ze zKdlE>?qXVs)3N%jygb#Qj)shLr)nH7Qv`*IWrvwE!+mz<6VvUmsCIcsEuo~A(ZX_R zE07xPo7Dn>)4LYYp0gV8QIi6#eIWjgCt5e0xnuOvAg!^8e#Sn6i7K%GZ(5a?%-wmd zH-<^exe;EZmow31M;u$%{4Xw|SJTqPx!)ncdRq-C?K;a ziqi~kWXGH?*0%#z^dw<-BWX$Ax8{@y#IGSq?{vni+v<4Y4?z^WPNyPdeL#GHS7*=C zLnGPNWV%`OnqHo`ywUQvhNLAK#@&11Y`k^KLI6bBa9y6{n7Y>?2O>2uh&VTp*a6jW zn6i9eNo8YI^M4g!yS7m(evt3(5(mZh;nN3?#Zb2l2yN1n)8pHgJ`FUwCFkWJFOF?K zFhFd20i3Ddt>7+br;mLYKjCpD?-;o{v_+JQO(czT;xOT_RTx<_jzAUxjy@pkOR>#z zIFNf+h*ZLkQm)F(qwN1l>e+GsT!rIlF->?0W&hQ{S$iP(06gc_{X^o0%_mbHTu0CQ1P1+$aF3ZM<7<82xPR76` zZS!_J3xOgs!h(90s;dRt!|u~CCk(`rUz%X5mz8(z}Qdc-6f|tyC8Du zr1q8IRl%y^@2_GYyRk|SnwY9i0Zi_tIFF8{e7VoNlq~w?EwF#|IF&tlW$}KZczl-R z{|u|KD2$Iu4b8QAVJP}EjC3nuT|;Ee!j5QncQsnNpzwU&J`-LG`J`-hgGBSt|akw>P16-Z2w!#;l9GGV)GPL%Sq&*{HIPdQTSd_{N0}QkZ9m6 zaTs<3Pfcl&HFyVyM6zTS8ntizmPEc!99dEpPqGFl&K7Eut`o_jDvYMbX=uCgStH(| zpXeZP2AX}4%E&mq)&|u3;$sLLRSVN_Hep9V1&C-kjkKHU*YX}LH}(Mb!juy&VJc^N zHIqlwP$ZJ)D%pW@tWX$B+Y!E(2@n<8JnqwpTgjq*$A=Lo$?fB@QX!~uzu3Knve}E< zKo|G*kJ^MT)6~{ld3WAd18Xjc%iH#6!82RH_~obi5W~-(Cg&xQa_R2RR&cY_r?k*L zE-Ai#X8Oo`*Vwfx5KnDc#B!%Y9NiTL*McgI1R(0~WV<$~itT3>xX0wKn)IeP;J$~D zxYccU6`K)ac$#qOWoF~}tj6VM?D8=WeBZ{-Ad{uB_L$Fc#dnV`K4lPxec#60!Fy*| zx(izb=PQSL@(e2h(&#G&Zs9YRb`2&QiJ<1SUIlr$Z^P;Z*s|T^<(lWE2SJjTAF)R- z>0n;oTf%IVbK4h2GGtHnliiQvCZiVNI-OVHa5pK>WwH9ieA7_iLIoId5?-8D~ z@t*1kQFC8Bp;(uFN|?B8imdK=gQ6>^ExMs*!X~3{@ne<6zZE^lM7v~QIz-0OYlEta z)5v&3$c+Y1=1fs@iCb2?`G594r^4HFyVJL^GCbpt<^!lmzJcCciYL{bkDJ4ha|H?T~^<^8aMY+CvBMm zK<%Ddjv=)=5Prnk2rV>>%rc~!z#P|;YIu-Q{_!}!Im=nb7iA9WB2=D1abFs&?4omz z4_in?&>L1#j_=$_IJ7#|bBGk{AZ&)szr)T@wS?TGKaGd~thGh|Rm=6na^>(P8*Zb1 z0?2@n*p1eqqc(ShjKtEXba&<+t)~nFPf@MzIyQEfat>AMeHy1&b}8rGLR@;%&{kVf09olrZc?h4PNuKwIW=pB2}48vB=u z;>Z`OO99H^pS$Mj1M$op`le}Av(X`)9j=pAyvCxh>!+>Nn@yS1x%7hh#c>KIoZJiB zkj9!Z<23ap_~-4*ANh4%rl0MeF=d7)5Z|0;Xxiil!|_xI6PBp97i>>VjQ+Bsbxi_t60TK)F;0~?)nlg_ zK&EuT>ylrEBZ1dfB95B%=7+tVcSNR(w3tV_UqVNVZwB8!aVKZRE4Pb z%ESD59N_BQyP~=PJS5jvZ+%S3iHi~A>U@CZwczJbrorJp1|2i_ZFP@vS_&+ar?uG>dcVDIAoUC-9yC_w*>D4zkrT9(owXe>G(ln1@6J?doqEP{h zpjJf*#!eR9!*!Z8cTXpIW>`)K%H|QSv>_2Ta9Y-@ry68?sG$Th7&%WW{7hQjK0HCg zq2&iazp2@yi-j(nI{H;$OBCkB*>>pqj7U_NH0Fve@b1*T{*7dRi$-36QX*nQy`-Cfp@@*u{6O`3Up4CsoT`rxiN|BwK3@h8pvit9&Xt zEJ&4g(`LlGjfYmI$xv<=AMDp>xZ=(R6f;{-X;McaAJtlGY@}imC^{T^29a8@4aX4? zBzsxmXv|4^_1tmt+Sg>;onRw|X*@pJ;2X!MYeR96s3!({H&o!9E+o@ib%nLnULuoJ zMAxh_++iX_Io^Bg#i$mgyJCWs@E|SFz>)A6PinQ8hOroYKZ-pV`F?}&Wfi!fqu;f78j6H~vf0#XE^-Q>DKq9I_ zOvABS-c89l5HsZoZ~Qvp5?`=r_3G@kW96B{HcLl_(bzcTvV|k- zWjH;N4_cQlS(Xn${U>#AP@#`yUQE8Nk~}r+wA!VtB57l1*#u4%=mH6AQwWVaxwMT< z;1lofYm5KkR9LHrsB3^0Y^yC@1~fBOT4m;xg~p;%=hS8#EKUJCr5$FH!%D*d0a6?` z?(U5lTgF+v9c=1;S&}KKchQDKP3uG**<{sYdE|D<{=4rntlX;eV>;E2(%IydTv{4- zE+4gEB9EAlhBW<)<)#1 zve%I3K)U;Hf!>mGQ~qTmZqj*ECS+@QUYSx2_q=yY;tm?!&X5KW;=HiQR5^N_ueN+| z9aKb{ujq=?AuQoqQ;dXMv0_tNPGjLaQp#Vr1Hdf~R^En8p(G;b&@YpbZnIO>8D^i7 z(kz7OlkcPb!+m5b7xjJ#IM0t%_J{MXKldf|h!lrz_WAF~k4-z0s3Ci=THZJ^UX?cn zXh@TEhk2`F4pz6*PJ5$&Loq8N(5o@ZeA}l<`VogMub#ItFf3n7+~s{QU=ynXEY3xJ z|C+%Jr&dhd!^9J)VP6Jsl~I^S-^H>*yJYDDOHV0HRvc{dwY2GytkK# zV~uzI#P9|FTHn%S5(6)cz7y_2)b0p5;OJE5ciIuAQRF?{5k;`fjsQ9JN;k&18-~z> zq{O8kI`DmUK1oC=z=&R>cD^>Tn}WYd_&po@j$rcToY`j|Y>Oq@NbWATCv{~o??9cQw< z6mz5$o0z}!_*Ji}C$0&e+4bPavQMjJ!K>kcex%OL&1hY&sKKvYI~1+jY<`a8-78&gcv?k$Ps2N1 zVsT2e<_T-4W7ajk1i|q9C%-o*Z@X7CT7IZQ{)~!6zR$tiYEY5r`0e+%w+A=iD&}Nwi+pZ^sqQTNt$<+l!q}s8`i=2D+pkt}NSn0h8cq(r4Vq z(oZ4HB1OiJcf=&eI77EOg0{8Do#xo{bs>gjeZlBIUAOMWTrMi9^p*5$Y#ugLRhpCF z>tV12i7MGRMmBUR6=e?>2bR4TG5`jVplP`^h@!Wz3d|7c_WsU>(_03!3ood=Qg8Nv zlGLohF6N-Xs%D|IR{YZHi?cNcQH9@YXh2FhX`IAFE&b`~H$a5 zR~&!Y5x_~G7abvKREN0~0pH3?^=F=>z*awgd- zN@XerEn9wD9tKzBQUOoO--ns}Yb!*y4x+-W8cO0+7izd`_}hVr*N&@55$)2 z<(L1Qc=;G!#rPRUj+Yb`OQ^G94L#li zd$x@+Ki@exlJJ$PPNS-XP05hPktEl-G*pSKN=&Iv7&+j_PdeGZ4-pCl zd9ZI{s(`z5V#;+WW6_&u1CX&IAb&vdx$ENkizd`ZHSrz#atMF+dUQV(#R;ZQwOnr_ ze0b*`6oxOnx$BjX|Gvyp&Ejz|RhoJ$t=SM2)JhvQP^r)0(ucCYOnD(bC8-@%cp+W7 zPKL2u)g2FOB@M=c=?(AX0>xjtYOwT-ThZ3y8Dlf&wjVd1nRAr+Ddk4FB5;!SdbW67 zKk2isG=)gFY_YP5d1|#N)MO{87{7?$nrRwsR3h;5=#entsD6mem`j$VGVshbm=Qn# z&c_Re5yO5b%4i%Fs72ft#M$q$q)d&}uI*f5VpwE(F7(!3M*wU52wy%=a<@7!er=@6 zkDgv;0G*t`<7uJ-D*Fo1UIxCaXEshf4=pZKZQqbt@=TJ6&KWHX3=?#d|I00C+_Si@ z<4Z!MMw9ggCg1pyoPzgZnL?P1}FG640#JlQ42>XD(2s&SOp$zo0}GUzT+P zs(#ktzTVq3?H_lv~R zW??Fi*H!EI#}_mTBz;s{rsnb ziP`Q&5}U~6czblEe0FZ?@A^uG!^v3ud#IK6 zE|7n!>|vuhqd0+J;JDNS+y4d+h*bR^V)mw!=?w9yU){w{A>_-4vrj9VvN7d_bRnv& zDL)077(5ad6BQo6wt`S<3`+mR#K6?VM69q#i2-mU*pFJQa0#fhOOu1+(dUrh7K%9} z&?K?6fWD9jnV5fe*FSA_;QrC+v6tAm6qNp%iHT1=Au=^y|KN(S7*PHM4E)n0aA%=H zL^sD5*OrFHKLL+luL%5BvS9j$$3A0kcy9jXz;nx^TT2M}=8%nlIQ^M2vo?U2a;9wj z@o#@21gP|3fH)o->fJp(8M8Rs8Mrz$A?6u?xNZ1X09f*|=9YoY0pF^O{SzyI@A4MX z6UqTFS6FTRsFrf51#(Mk`2p1R?TlcZoq@aBxikTE0Qar{Tr@!a8=2K<#G6P_Kgtn3KNh%@fLDk;md~8o@S!eLsOxdtL`z(#$si51Z6Jt>iWMN_X z#p1CR^uCC#wF6G}dcB&yn6$aX$mGO!e+i|q#GoeoChG0oOy`}O9UQwlgf zZ<7ezhp4l$uY3Hme$9rdFCrlgF(sjYlfUW|rKiTB_9ll1K=lnz4MFQ08k~T30`R_m z*{j`66ZQk`1e)Q13e;E@U+uDBPa$oF%e(`!Lf?|4J`B3+!UBCkB_~#+Kp<;hm zm9gGl&nbauthaD}>QqsUA$$KQh*8~%GBr3bHaY&#v^gX--UDftulY~a{O)A-9cTJ& zXZ6Go$&ZXrpVYBIuSKOi|DN@Wnc9N+Mzsg1J@QfFzlHv=)fE?YB#r2ejn0g~(7U*> zJc|O&Vn(+E^jhy#H3N8ln`Hn}PsPgO*Fynl7xDEkjH8^_4LCXhstf-je#f)}QXBTo za{)xX*$o5hC%nbD15zjc7P?gfpjPaL!}Jq=V>JM)8~YN$0z~~&ZHLfL_>Ae-KJp`? zM+?~npAxxe19DRM_!mn472(#WrR+mUkGik}IVpU>3g{^R71gK3{BP*wzoF-UA@koT z_kq7pdc%OGrWbqAy-9t#ZoeD;C8qyoC1q4qbl|{$JvV@Sr#gL6{eHUtsQ5!M|Drhr z1Z8lo2eF;>A>zK8N9I=Pce{>6?}PDg>=_{i+59aRl+@ z$Nn<$%C`Cy|8jB5+BXe+>K{INVQ246 zWBps!$o@OTAJ>mL8p`_S&rjx87OHkj*7t98I*jy<8_=CrCaCc>1a$}pw@vk+AwFhE5Nbmxw@tpJ(5N&fu$To=qC-XV|MCVZRnro zF{9`bBCyo>k3!zn%tCkac&;qLD!yXI6y(EGjcYcMw;eD&>2Oin*Sr~* z2o^>&Xrv19`K=m%fLH^ z;Z)NZ1?3SD?R%_Y_EeQ=G5%ZqL}*;Oaid2>QWk8t8n zy&*zlqs02lMJ3ss+DrHDQgz=0G%xC)Cnn1ckn@_SB1ykC1dsU?=Uh4a9JJ)S0PZ8s zc|I8gN47CG&B<7sg~ z6pvhrY%zVqZUsa5>DsrPWm2BLKw$>R81!O=B$F@HkBW3;x3JGwma{>n;FUY}&8n&b z_TXRcH}?qvgT}}!?IdCsH<}C9v~L>Qcgs&%X&y`vpr~7{IQfr5EnY+Gb;Pi*irM5% z)51#f3|e;hS!OE1Kqz*TRapvg<;k+R@igtu+a;nBS8o-si%6hlN)u)^^ID<0Sw}5; zyuvh0WD=4D1=3;b7rDGI#|2DGuM{{oZSSfH8wb-aHD`(be5jxB2eGw!$Q6gDx zZ3NFo$}dwE>F*-r7B{DG4odAvDu7c6_z7@muOx(Y9A4YRLy_;Rgp$V#zdn=xrq@tj zcuYGoXc;FxraDm6&=BDjMr370(aEawfN!S+_PqZAVuVH@irt^ME4H$q0&XMhz8Pve zObOUQqY)57{zrV}21HWw+H6?!f1c!;0e4)(ul4agpxU}o_1#R->6k+c?MhKCvu;fP zZZzb)6*eUTqz+y$qN{@vRh4|v^hOiAHHl}#HHWIl6F0M=$l%){(~qb-jDeiq)@Z*m zcse`zcyb_?lk8?8BrEax(mcsgr_@&M`Poy2MYtio$Hh|~kr)&Kp_6lVYr8u#)J<2b zR(Y#2vEPlN@_P+p%ECypo{&pR_hi=1FEaOHN4sR8Mm^(f!IM3yFm{Zor%=@ME zB%_Nus4O^^;L4t<>^U~!T?|@E-i6H9L-VJeaE-vLArai5LpGu9gU2I@~XaypUo#7#=MTQ zZLD%8(~zuU^KWyVZ`s9M;Qq`XXr7-atG>uW8h9d;Ob{2sJ?f66v;34vT%}xvLEBh? z0fwha%Ha)FJY#R9>e%MJdqK&`?j80XOOQ zaMf*UkE{oNch;)|#3A5a3%4)DRAVOm3`@Y`Pc}Dl%5kj>(C$-r$&;5`I||d^gnl~! zc`bhCM2qN*jTD-c-@`AlhJ<_p!JX|A4jHKZJg#!!87VyMt>yntFpO}EpPiKtQf|WJtc}3>>!~+>Y%tJ(Wd-<5~3EdH!&$1 z6bUcD0^6;S4F*NPxcywwZnWb%BEHPoUV)5SBNFv-O(`B+=L1b=_=zRYzWllYvQ*HB zW=4P|+{iYwUdT40zVcL4;_oYJvzGY-3_UohWz-yq2`$rwX!Am1adF##-$nSxiUx2( z(Fmr>Fyt_W^wlig$_Y<*pQ$L+p9+RY*_n0N0glF0oawk(MFW zFm=T3i7*1UtMHUt*$dgSkGb!QFFHB|dC4>Nu^Se~7xQ`Z6=f(;_-1V1i51#S{1wcf z;XKvA*0%?xRzBnTH-_o1kbe%_)D8kbZet{oNfH6*afu3xNiNt{7Iu(P58;Y8f7Bn_ z6|p5YC4;yrLk`ZzsR7FE#ps(bS0JY2(w`+@>zZ}16Fq#sy9Is-;oOVK|tY5*q z;FEILc)sACJwY!u&t>MSVau;-AHUn9} zULk%s{B@Vu&tC%~J90~Jhd=>)xπ&;Q<$YV$3@xK*D#=}FYAxcqblp;Ucu(=r>H z>cVm0n|A-h{ID?MQ-q;nza{6MU{L-yp)-_mot_L#b%VY(M(~J*!Fbh2Q>wT6Mq|fr zwd49w(0MVrRBGK_QmH8}0|ikW{A{>rd+M+B_eJQ7dOBQ(FzSNDA#~p`8Mb!*4k;Lh zr?Z8lc5LTS>x&P_hRr!iWI^&VfBBCQUxW{|R6WS#TS@CLmBopS3hRB+6V$LN*Z=WoOdj7PUp}784h(=QSeDvB(2A;Mxmf zsA3NKx@hzqnTZne_4V>y5LPu=^1~E1T%oyEyjsTr(U^^&p40FK`fke)%?KXTL(21W zFJ7Pd8a}-{^PM3vE#g2y{T7vHM#fN=02s2DRh05-XKk(fd_crs+1pf}OsGECtUjMt z{E-so4n$oi@4`S?YW}V?9o9s~Wukx^2>;0*kQG|4>iV>40oRnWvrP@a@6hLflxs7Bdo(0Z+^> z-9gSHS|CP_VG@9LDhy{|hPt_x7t=F-{Cj1ss-8&lCCt&~+=JT1PS zDzj~q^MPta_>NrOxGBg*!Jkiny9}DEiJ{uK3X}qQLYjO_{wzG2~5f6dvS5C^;1UI6241A~&zt3u6V* zXD`@v6pR~ZO=Rw{p|#@OihmX#-Xh}maYHqZAlOxy-CN0}+D{s~ab*D4dRTBC9-s3< zUt30b&XE&eVwigu2r{u~3DG=du{CJEv%2XN#V!gLHAn9=<9L{?TL2BDD`PR?CBk_e z(Q025=`Uy2Tv?eI-)=!o?hca#?E% zL>+B$@cPRwvgnJr5fi;&P7WDfJ{#H{S98&aP!%XlAjs zbDMh0%8&9PiY=AVTF;5u)9t8Om0ue?u}ntNE`i1(EZQ&y4Dp1elOe5HUnvv7q*|$| z7-BilxxVL>rIn}yot4sTn@{nvgac+pfNvPhwsO~Ufo-96$zbAp@(cLpjszfavV zZ+cduMC<5LvU0b!I9l+UuV>KB{_48fE#Bb4Iwni5Alixu@b9%6YwK8jxfgrE4k-Hf z5ID(_FvaL&q!^={M@IRXU~^tIY#>Tjpq@o#6;q$}crVM@Bm}%QtuukkWBu{N}?07O8;sYqbyLwa+wqg8Zih zZN2Kw{w@9QBY56y24*CWsuO28;eJP4jc=kzTZft5nO4`EDjF-^2oAnUW_g2LDj3qaQ>8?pPf0_sc4rTsv4Nj&vvsZzu9q&16}n7#&q~N$x^6s zNY|8n?o`I$T=NLk6()ZX(>%o5?UJkKxhKk+>7e~t@##_+92mj%?7q-CUr#E$QWinQ zeSO8zV`QE!GY27b6_$kvMe{yn94?`!HyP?l(GIkQQ*#39i4PKFRYi0;TRag>_B8;H zRsp^DM`xcmpjq94JWljHh+C`f3H8C>Gn_TC;f`Rgb5&@LQMR*^*2bmQ7us> zgw$gyP!62&1FCY+o9GT_?(*g^YtF?{rin`@M!*KUJ%q@%w`VnE2d2LC4B9VAKul2fzu?y?8oV=GKX%8%)Udz|^<2W)oE%Bv(!n42J`lcA_)n;TH zuAmDJ?l$rqyo+nV_?`AZ$0<>Gl{icFFufCw9GiROVD=Ex>JewPPS+*$-8t8XK06i~ zwz7seHsxUrhX@{z$SORMh^|^gZ=)nC&dqcdz>){-mCx}?64g^U`;BI+Si!7^MrYdd zoQm1fy69;W)LU!`>{>njjRt)McE2f{R(PK@rpcQ8-K}Nl8b2-vbz)*e1h{`RXytT- zFyN|VI%R!j9`@ymR|~Z8lELr1*z_5+W;y7XhRXUD{6etW5uTPOe=5dtZin;vS>9Fd zI!<8kGCF&9jF^#!w)?h5YDkOAf)!lKL@PDbYos;?n4wxfZHG)RuU}^ecgT0-#!L%z znNl;|A@L4d7?k}`!t+C{Z0Q};09WDEv^LR=9WKKZ`A>~EQbBTs%BEopC6RChAU9XL zYUXA=qdJ=)FDKAMK>NCnDV3AX!abGo3)Tt9L7hXnsx5{QQY0+(O~H4Ja}s-34kI}) zhNeRwpNWV2fU{B7O4JQFe(aqIIAnujsKpvl4|%KD8f|#Ai5@=a>5NIS70I*`%CSe! zgBv}1im25bf2#Ice@ysRSZoY*fjA@Sywk&mYo9}O*n#wja88o%1zN=2@Dy5~@9%ti z(vJwLwb5Fv!g4VPZ`5NNKj41_{iBfU-oZz76goOQFa01PiaQ%&1gxM?TjZmi+4E^ z`$w3lChhp-Aj5#Ir1XTL<5II5%dL{W2qm7%RfW*yfGQV23V8WgyAyYfjYnaL3W%s? zBlk$??bZFXFk)Z-j$XN>0k=@ah4}FBF2uynfL9pIo^r$i_GvPo=z@z_1uM7GJE% z9fnXRWR0L`m7J|hQ7ms);Ni|ZP1)g@v{NkbX7Nqr?OGt|-ptLM5VC1>1I!P3Gu5(g_LhcM1ryvhy8dkJ=ZC zx0u-hEaN$dObj;SHHt^D53EF;U8x100UEJ4*oq}Y;C+lK!3!^#A$U(h24CU@Bc8fa zVm|`ku6AG}0gtm(CeNG)P~0Cqu|W7Z7hS| z=O&MvAvbC~gA1FZm`=)ot+=LatNe-;ny=|Xlt~6zK}JD*-uNYw!su{$@@DT-9ce^M zi1jW{UIz9SEa2&zh+yv{KW(=LnNv~Q3?8Qho1v{6rh|2gysh+K?E?z8_OMQ`U>s|llR)`Ik|i}`b>rW_k6wj zYc{_v!B>*b=g^QCr1i*?VWJBln}5C5#}aJ#H*lYUR3vrQe)YY0KP#;!FCdb#&~kD8 zz>?U+ZAW&)5Df}$QI}@$?hRtQhpONroqwbBjUpkWFMIGZ&bd-vFyz$AXCt1}&RucH zX*LV)#2-8|%-;HAeL=rL_6vs<+mUb|#B5HhI{SwR*Ywrw!nb3uxK6|y&j;7GS!y`h zd$BoeKTf6muHaWPTkWloCu2=53i0F9EF@ zhCm#2={h7Be$grPaIZ6 z@h&nexb+t4)`6aYWymPd@iv28cRACAmjZ(%7F2D=_EKSAO})V7Gj!Ob7&I`=c@~S{ zcSI;Do7!&cB=Nzk2yhrFq0)G#ib;BiGrylpAy;nmxc4`v>u`c$UDW1IeA=Pt*;A)yXvm>og^_N0yw>N z1(Vx0BgNKX%z9QYPB!16C3I4Y69Axx>mrA#9TgefhlpR-hpapO*4=_&`W%du=RnyW zY&7lP6n5~BIG-~JP|8ATQki}ie@Zr?LPPYTa#cWafxLI_T%0%-kE1V3n!Uz^A!A-a zgJ;@~h&7!{!epcmV2L*2UhMj&#K(dMuaUyxY-8byO3*b`lN2RSv3zl+wG+?3Gt3(l zJk~BdxzUqi3^l$+kCI+%zO54)KK=PDYWq&%U9z1bdVM>N%P>)Oi0D;2cOo-$2GYhb z98L6S?5gI{INni($H3i>DvYgT;Px65k=ebB9nV?&oJDDCd*zus#qW3B6>ETVlgYq> z_Q-feXTXN;{W46LD)U%yQTIS_d$a?iyd#8qIc$$w(}pd z*I+V$*W)X2SUJlc)7ly0C91ZNsW9o^XjM*V9m!?AtlTQ%VmOLgpLHMHN&WOK-9>?q zcbk$W9yfvbl@;cA3jpO9a4v0uNWxDdksiJ{FSRBO1b*}>%|$qJ&AQ%6bfampZulF| zjL=zNnX|9;b&;f;^=Y4$+{{f>wHCUVPKceyWNkDP>!3SdrKq2qXhxmPKU-91T`@4_ ztXh03gA1k#K*!+eiVN3xBX9v56fGRLVzK+wgtx>4{~v(d@xH^#+WU-?yv;3Nxf zSspF^gyUO#Fn$7|aZMq*4PHJIY)8zV3xqyQXS`iw@SgX`Q<$98eq^X7fn~9zAWrT8 z!TvT`Ecigm5FY?wQ+fE#gRImtpeKwmx*Ag01OUM5`dT+;Ul;YMhzv6=%+RnYe>Q+_ zWn{ZjMGrI3xu6)*3}r_QyLS_ijatHHYg!%0P02=mzg}PmNb6+*f4JfH;(aVxY3CnD z8_U?Y;|SA$&nC{Ut(s<3W1Qe|aM9s;WV_oCyit^jA=Sye!MQH|DNCt0v)|s%1&_VV!9FLN0qhA~1ylFKG8$<&UfKFO=LGAw8cjc^cSJy?4r$COS`w>O$Io=W zG^v-FUHp@Qm-m&GphhHV4Jg-8<&k%d_)3v??G1IbCkgG-+d(eec*~58`D21g)re=0 z)cuycUm}kq#aPf??M`SRJD5I^hAu6g8Q>FFRVUE#VG*3^8*QBi?{I_u38ZX;KxYYe z{|p^85bX8-Om81tZE~*rZ9nYh^K^_3@YF#w<+^&m3ZubGcZxZ3q89@0&zNmWWp^}s z64|N05;|10EZlP3UF!i+G(?U2jX(Bi&_%<;fxlTZHd3!YY&19avx!;)_ z_F4udX@t`Ee|}@(OuVSBZvgS$r0|$GcHVfn#qBSk;WI>%X&VvNLCQ5h{Vkhu&35m# ze5LWgimW5#hJFti7bYZyN?2MXd|&}7^PEAU^oRLn!Cnn z>mn&en$yJFF4w5n#~bG)3LjVQM>(mi+Aa7NPO>{@kno%@2)Xy|m5PLGLgxBXyeEkj zPaXQy3`Y|L$==zZ=O3F0|jF|Rqjgy;`r|z zb0v2~JUgomsxzXmhh{VDZk~07k?*L?ljPqS90|xe?(Z$S2u8EIe`{H~bE7NCS0dP_ z^rFd|f^$3Iie^94Y%Is}M@~X)wvn|=n&##9!N{hBi;Zm$}pquj5a7j*`aA_`W{P{F5gkco+AP>wKN&>EuuiEjP z38m_~vQt6pNoU53cwuY|=`Pa0?$*(9GX<~4H>Nd67FMjzrxuG{{JR)eT5NLRzPi*D zLTY%zjWh6bZ|`;w8DpN?7^RGZaqYP3j`8Adk`S^rn5p3&&i}|zm>0T3 zA2Fx2)N${nC&OMcw9gq}2U!yqm3j`Y7*tW*gz4BZ@U4H*c3Hx((EEBlYq!C>TfP~8 zvpZk|W-VT}6Pv2hzV3Tbwat>t_UF0b88{lwb$V-E+xHid zkhjgjQduU+?Ew|c_o6?ne3?j&uH^-&@#^Ix(zgaalN(L2Yg&pXwSWDR#;Io(#P(}O zb%L*0f^}I;Bu1(%kQ`6D5LCnLMp7-VvbuI}Z*u7J-c#w#GqO%C(-gQO5EHGUgRw zh`{Kn1iFvQBZSucK@DIQ!>M`7eXZIjeJi8gKVSlf3-#HnqqJe~jD4E`;<|!05+<+V75`8Pd$UL z7nXl?6yA3RDp5f^jk}OUYNOysqozz9$wPJE1{AQuNZ#qZ-&8ZfG^zOI(hV14s2gH@ z-G~BVrb|MUY5~5BF1+FqxUS~AD)ZQ&IzHL+C?2ncbYzp4Q%)9MWizihMo`7E$~|o# zypsAv`OW}#Pq_wvAeJQFAJCi_UcSM8Yl7&y-6|}IL$n4O)<`jY+E{iIol;YP>KxJPM`lK^`z$zN!so`}1!#JO*v`lJP8r?9ZI68Hf! zP(V4SM{U(2gP*p2Fv=&_rx)&`)0$RR7EkjA+qYN%8?&%eJmir@wv9M(?_TiSFvv+m!p4A0upr;#AIz^ybvXF+*lxAf z@C$g7DD`P*aq)#B@qAG-TkqD`K8KwlU;MHXn%(lKtIG(1Uj#6(;BX4Ve)H6a1|iC1xp zoc(9O3!zy{C{XLRQFr1H)_bFpMrOPj>18=mhiv`|Qs%ryP^}>+m~j-F<%H$8Q9#BI z45zOni<;08rZiQ@Ub0Jr7Ev0*7w(2aF}~Heq|Re1h<5SMz#9Hu<+RD%dOj)5&>vm(rw5Uo!8&)l1}Qn_EwJYVFUde% zo-1eE%Gcv*lBs)wSWf8{btLSKth>Nc;pU^4r!Cr6hhvOBxoKcnLBhRZJ>U3`IeaV# z3vnQLUH@wqnS{{zL1JL5CiR2W%Y*!{X$V+#0r8n+t+^@8k;x|M)o-FDnVVw5Lz0pa znOH38Nf3~T&-E%>oQ_WhQJZbXQ`BHeQH7=+Y)=#h=q+6r zGVgN@Ldg$cJjtE6{mdjjr?yzXg5g%*V*TH{f^#0@qGC>qL&8mCJWF7Lsq!6D&$u)(4EBc74-&8o9YfwWk^p(DST#+mH-?8Nbi=0>d@=+kg^|*;7D2fS6GLnw zP~#|G7_zPm;(acsoeb>rx2TFFJAFZvYsMdF7nQt1S4@Es;pFuwk4NIpqO#s`D|ytf zvg#8b3>y`Y{TCq-Fvn*X69`!pUoCB*n~`=q|7dQ!vwSJC0prRi!%vWHxP_hLYn`() z3JNgB;IKCu-kSVfQm%t<(0C|pNK9_L1|Kdp-%RH>Owy~>I=p~$)gyzj2Q};nR1xw{ zh`t@MvVvVfs$`rn=QDMfb9~*ET#mgh?PAqzu6L>m|jW zGb^8A_*^Bc`?8@SGtQf7+`*p|HshVOD-nJw_gr``ZM-wYkVBKCIw;~V#qgbszhAH@ zKI-pd6xI`NmxS=&aH2OKUgH?R^=VST&s1U`^7FTo^k*HX5^&aSzk=_h2sD*PD3#A7 zc0iZL;< z#1G};#$i>>7BEKNiILsA%I|UPj|1a`CZC;+fX+}4>N5TzBbn!w9r`mY%wqcB5&W<> zQ;Z>l+k}YtV877$D}xzu&171`$@(zo@eY0U%4p^sl`<*~7s|E@=5JCJHeQ|TX?3fl zNblV)$c3FFHbR)2fCuNp-L1v!euSV22WMJuF`h?xDfAJqETh{IlQc`3M~s=G5e#BJ z;tHCn=HxF2LOjoDsG7v&`hHrl-hRQ_t`MXDMaMRQyoLT4qadWwI6)qsHwFi)n8SM9 z6OMwJ7Oz@OV}u zi4kJ6rs4rwRWn~?qgPPlUkVp7YfgGLZLHC#8iJCgvUT5r^30BC1Fm4-)@kaSn1-F9UMA~-$$Vi+UY%`Vc3igE%l8&2?v@1)5D12ps!Puwq7Y*~M+XF0 z&M;OFUqr(U6Kh>clubN-(HH-zqWI@nbz#uaB4RmptPo!Jj`(~o;_Irm0`5W@A~KM{<>kCF^j)$hURa~BsQXC;jD2VWF9E}smUAr2xLoe z?J}ID7YJDdeU5vk#{#ue)Cv5DL(r~h7iy#xCg zR9LalO!o4o&`$uVnn)3N1km)9l+F4LINl$~>OaDd=Ia|Ir?(7yef@?K^8y|FVws6z ztux44r~nYdf)45+3Tg`eSD$(&!WPl_B2Bf=4d+H2J29znd>}N=5hZ&|@H-7>w+0 zyn*NX$Dg+29VBb#==A?Evy50gcRZDtx;=X68wOhT9wXF<>e=0W6_?7=Opi7^b^w~4 zr9|dhgR1>VP?ST->S{=2Gg?Np?@# z6nG@^ltL4_-&9Ek=( zyDaAQ3}UpS8|rJ4QPQYyX2_X89yA!Y@9>V4``$qmbT6fYcm~@pHYD zY4AaDVacwLx&_jGP8P=Qt(f>y@P~4KvgzlVBc8n2@fmg<7nCv(cTqKX}TS4bM~z#$C0CdRU2R7(u-R{O7( zb~d9E?BM8wDGCdOOl>g0AGXzyfz1Bw3eg6#>2x(>_-v(JM)&O;O0RUqX`SFRU8ifb zt=lGfU>9ofoil9V|oW2)h6}<1P_=Q5T>pmRyAXNW$3~~mEdqG4|d?Ue$10CvM zeV!5R$azIFZyT>lEzxDp%7iKtW3Q5r!e4c$dEGsPhDfwiYds?S`Gha0w1Ux%}{ zl9k4~!D>8(LMMA-QlPMp(T-an(eP5}?NEoim;0%=pdoVBfZqZaI*vw!DV>QpC1ISd zn4|z&pEM%*8)=9aA6iCGdZyaY{>I>IIOkz-0J6JT$6_gPFA=xFyQ2YfF@vGqGI?d^ zOf?5yw!!3BQqz0GZ!J_Bb;H-irMeAcwtW(8i~}XUfbM8xx{%0SePdWBc`&AgfARk2 zZI(~SXuIez5^=VRW^_uBnWn>k9&fS<#c0>Kz8Pux=E?B3DD~S16}y zdghZ7o+Ltfk~Vo1$}LK-RILsr6hLJz)AK@OaydIMa`4-K{1>B+ntvrw8+`IbErd}G z5Etz}q;bYR>tK__i#l$jw933zEP()_-c&;}FO=(6GjHka4VJp=>_KGd{w1mj_5C9GUdTEQAa{R1zb0^2n}5FoL9%ZFX*q6RmG9vG!Ns9nGm zkRocs0gD(P`cIjNDtD+k!Oxo#*LsH-r=OZZrrhDMk0CMQ!8mg0%QRq z0jT-9h!0>uZp|o3{rtS#?cCQd=Q`7>z?>lki3(I_nH_czAB+(pXcXGmCoA2IqN)JHI4dDC(XTqW7OY%+j z1fEo0o`rZKEeMFprU53CQsoK^LN#fn)$y&;hd*DLDIS2_Cme5s zjw6M*TbYRUPBb$k&+GwFl#qqFEw$Q;kqo{R6n)xN3ie^cN8ha#EkfuA-kkf8?I})F z$ZQr@RgNlmEk`3VS{q@ATORHHO_klgGjuokkio47ce_dlwri++NrT2$#ljUR!H!J4P3_t0rvx_lmF zl0{ue)LnDk+L3Q|63MypT<6Uqto3WG?=M8`Q(Qj?(M#!Z7JOM&5$_<-&D^CT=hCcl zldM7fl-{4$2nv?ZaU9R*TJ9U;xT0TY5u$4(SV7xv4$+zFutd}}Ria&M)LKKjC;xH# zM0vJlmK@C*O*(DxJ@)lkfTVNazDL&AH8lK~{c#pSE;7nlCm@iV% z*|lQvjs9$yz$BskR(4J5ugUPp42D+)Y8To}iFaUhZU3lizX(C(P~B+@R#Er}Sor5( zoWb+C>X#F}`VcDBx#g2kgmD)@O6zcaXP+NW!PSkW`1Bd_L8pzMHIS|2==nY7CftY7 z(Z#EiucDf0%u=aj@qs2EtVoPmlAI)QDY8$L`Yr&g#MhO|2@}TQNPh{}0wB58&0h5- zk-<%nVI{Y95Ei(b42soj9|w>(MnabE!DrpYKFE3YZXj1KHS@a-E-568N<6s<)Nnuo zC)D~S>UuNVP5D%TU)t#tiO=*7SZ(EOY|8}soIn!38sUZ=7X9?XR~TBz1s+#dM6|I- z49emLAH3}uOT9nbY+sA z!W+vxmzbt$%O;v3=hXDtxjMPe*GlJ!O) zYK=PV(|SbjP6RyPqTlUW5So3d1xGd~?&bk+X_HEj>y%2W153gDLPeB+hbR2rh8)r3 zQcw*xWRS!SJ|E1>)RN6nW}=pY(@+mWd_Hjs-bnNowLCCgmGa2v#ucI;)$WPzE&O*u zls}rkcfQ1dFHB^KasYIqp1|A#r8cQ9Efr=$(tcvZ1_DNy3T(n8?aUcIcTWOLn_!;s z!Xhzx8I6{rr|)g=VB*su8r0#LizMP1J;0eZ?+n}>gj2u1SG5b#xR~)tjCqVe3%7Hy zI|AS^mp3X&W6mZp1~+tezqEaDz2Qgc{_a;QK@J${{F6B+CARM{z>umnIzYJ>CCYAK zadjAbh78WqyjJ2>+VOo3zDLm=V%`;b_;-4v{TU^%v{Ri5p<_s=rllzeVKI;uU2f&cc0 zwX#tDOwCy78-N=eHVrmFRv}td&jFN^4`=ESxtRF6>Q!$fC#{wnk;>V8J0mIIC`;SF zOyWxRbFye%-~6g)={QabjIRQZ&aF%aCDNlg&X(`B>3W!cm3iZubyAD))3M<#78t-L z*GwLDruxj(uXFGC0Eil@6TOTT`IHF#<$(d)?AkYy_f`}!URtX7-mIWLeC9e`c?V{J zkYQx}POf4)@Qv5X(bJ@v7D|On&q!_TfN{-l_Lv5DzzlL~ zTe+y6%Sr1J>qPqCFsrV=z7Cx^4wR1DaVej-cu3*@kUDWy-=#O0me}(GND)lWDhSSq z{aWCr;k79(z>L&L61CV%iLH`YqwGJ+cKDs+Uu!fyMC%4B`vDGBHc#U^L zvN}^mb~Lf8F*tfz$TZhTqa`6OFN{3VAp@oZ^%AoZU)amJagnF>+RG$qp^slx85vt&9ml~=_GCFL z4JM*IID?o$tm?-5j5h=( z39j!X_LIYC+>4w4P7I@>>gJr<*;|<$-b0r`238{dT+?2d{TNNC>z^m=J>RzG&d|*S z!VE`lKa_o zV}{z&F9c0Z-X`|f4@W4us^ktt3!u9EOv)>TqSF&)$5t_Z!v{S7!AX~!ogjQLWEK;b@;U7STBg{fEV z1ZRBq;b7FA)SsuRtj8BusHuhcCKJu=#b*k2~CNv zcrXi%D;uBD1%(-sdy^#>!n6Gf{pY%Wf&5MJ4{g_Ig!_Dc8S03q8y`U8YvIt%PC;A* zJ&qCM`>^4L#fv{L2c$%v4ScR(LoZDT+isFr=gNLgc+2UrZldvKi2{#pqdot_U#%dOAbmZ%q7}f;xz$g zycoiT-RElq`z6AaxxZFJaji*mV5jbzYH%Ng_YF?=s7`Uc2Sus5E&Ytk6`?ld#;a|= zb58Eq9X?(;o1iuWOoCEf3l|bj8?4s@z4^>BAwldKj$@Gx5*{~8bONKjv$%qy%uW`} z0#2T8m6V$Mg8x{_E1vMdE@pQnYmp{Ow>*FAM5T`KGXE`<%~RvPtMLC-c3)Yi?B8JW z434(jXPUbcrq$Xqf5up%!hso-atPNf7w34o=~bIPlAuq>r{&4LEVBC87%z7_Kt^kz zM?m6ca)94AyNh(J+$@AQd{Lj89-_lcce;p36FnY&-4y~`1n$29-3y+$y(=G7WVa=e zs(DZrA~9yhb=pSsA<*cS@s7IHZuMxtCFhb?z?CuE&LE!o0u3Y=@EJ(HIkmZ3Na4rkP?3aVPR+ zMLD9zeTKS$^AT)=z6*{b^7m#K;vUsu3zu&eod^QuK2^`zw$S~-Y~MgO&%`M)h;w6p zL;?H9jy4r^o!vjXFFX4Njck_-eeUP9)u`u-wmV}9AYk3BP{6flAG%D4wfKUPVWO34 z(Vv7b-rb4bv5I=-G;3ERf|)HY{Z<3ve-oKDjNtHn>>~qc!^)19bIaJfHX9 zaOrfbP5IDL^#nWr4r>M+0#$>f5b95oYSo0dc4|50 zkq#&4Pcw;_{A_~g`DoE*<)Qwu^MgAG96hDE)5H0B{+y~$S008t(u>;X3uAviV5J`h z8)#zYdIK09u5AC+)Y#{@L1c(x%Y6w75TR>z#o_pbs!mDE#vb}ei1R}dG9LJe-u|j%;x)`aQtLl3k4xk!` z`O$-s20Icw%QDRM*Ua0hEo8ai$t~U)wNx)w`#ZoXOK3&eVv#lKC`}BJ)&?u;=p_a5 zhLy}KER4PsTinE}rrOvS<5Xdy-FUBdk_0fx9Eg)84Qi$_*`1A(QGZ~hI6rN7T>$-AjhZ)Bw*x2zXwp@V&SP@CEIGu9yYi+Z=n-m&y3g!ysOkzz5 znIv=2Am|=;^EZXPugL>O`vY-4v$a1zewno}8!75Q_vU6ikc9KdnQx{==%x)G?NOYb zKv20l=*u_#I-OaC+|XK3%pxoLD)r|{ei}hvd?t!fw_L50;1lgD0C(p?ahNHRIGH|D z<2B(AIBNxd;_vX6W8oTE(wA=qC0Wlif{w39SiOZMxP}xtyv!Cu{vaMY=_i)r6*ixa zVW=C&%;mBHIPG}JjFg^@7zC;V;spn-wqv_t5nuXy$f&H>s^Gnng;s#iA?vbOyV%0#SLI_~x&8;6&zp=~lb#zlmBp-Fi z>~TKm(nVFZ|?^B>HbLMrr%^IwKYdmgt z5hXNnbZuY42Vu-hD=oqrrhQ?8r>~ACCwzIEOt!; zC#}rpaXY^&USNYMnFAnd-C{A=a}$zPpLFsv9rhX6L3HAE73i>@{o~drFTZQFw+?x* zxV65Kxt}u7sszA@SC%&u3Xvrz8oR$>h5Ti!T0N!X!1o`SnoOI1jD$;-M_cXi-+#MO zlDfNMic8`Bv`36|T;3E#PXrB%jQIlfbiJ6N&1;+#L~#cw_}4t-XG|Lb(+Wo3SQA*% zSH%NMmQy=ggvq*8d%Y3*!HX|94&!ZVC_;hj%1zzt$cFupOU)pV=CvXpBVnh%Y%F%# zc$&E+f1dMg?*8M^%)@#ge2=~poz^SSeJPP5i6k}a)jktX&Jq&ZTIUtw;Tvi!S{;Up zC<^pRMUYPXO`cwLAGqmwc(LWTt7>cRE*4}Lc?-K+F)-S>uMJ9abzTU6h8IW<@+%e7 z%@C}q=9V)IQzxtpjKK@gnXCZu{|T+J-$)o!KJd`{37~Ayh=OO312AX6t8cOkJ^q{?CuH=eYoY4G@SW!(1cP zLUS|5B$5{IuurJW|5^3eUMpc zcWvc^Lew%S3YlRXnmFlT{A;n~ouO?Vfuty&dU6Lqm{1%+JSf$fneo zT(tf8(eUWo6!Nkz%EQ2Xb?7)PB>v+o8j}^MV)ojCL~c#{eJetK3nhmtG;=u{XKTlzt+|Uu7rwhUZN%ku%J9!>A-=F8>v!EVwk_9_a-ujVYd)QU|dx zuP~-6h#+))O-UwcEbbFN`E0shQ6+VLvKN2lbY^~uW4y*V+aHX!4ms8K&SsmC6-6`u*z-u6X?>cW2i0Tle+ZQaTX_idD@mKr#bFtZ z5OjBbc&v)@*aq2HP21;(gkcCVeU`HCI%@n!2T;?22jq5&U1Kp-0gYW&uOzR@{XkzI z+&4Y@e^^0XMyI{><1NhbZHI(wK)s7AJ?MLK!7_70#MIehVj-7$s;Fu?P^c5#Z{XDn zmiD^ajIKj#`h3X+8B#1y#c-RpDqh{IhjQql5L0BAuZ#_&USrpm2FvyG0ZBgu!CDsE zxYb{Q2P*fKMK*gR7XqV<+y>t*bbi37IZk?fRj#Gr?#bp+bIZ*BU5*iE9W-KqzB)!$ zU>&(!r$A6@e?8*~o|Tc*_*q6^8u{TO-nEo*r4HGGW)MJ(9_xxlsKqVCVAj<~cnMG4 zoL$9D@56W(W~^2qfN?c5$yQ^#-kJN)-gB5fy{a-O;kSc4pi|0f>dwG+z>|d`8a5%_ z_zkpj!^i#{$hVc2|NE@Vv|z=rC$Dd3f#9u&-7b6xsr$*95)%K@#ji*|@-+a;m>d1l z>icD_a{VzOL~8s02hBD>kWF}f!QqKsEk zS6D7AVs@bcYoX$uo&tV;T=lBXbNsacWOr^wPX$w7S2TLyjJ1fzRYQ$sw^u(1TWBh+ zZ>+OEM6w#kU9tVfNM7l2$rWDQ*h#ZSE*>^Uz+mrF&S9z2QGQ_I^;?ovL!t z@NF{cXhG9~gRB`$+a;Kcr)>%NoS7yIaQF4R_Dk|(&?{qp#r7>YFE_Boj5Hb!YwJf( z(3D;(am$4S{9RIr84HBfsFBo!ARF*ilJ3SV>}HrNR%XPmmrF3IIJ;!0Mg~YI!mSx} zKR^6jI`Ym~d&Xc#nsIwD={qtE`TlmO^v);=L#jyu1Qp>RH5Qg%QVQ!L7ZZUBe`vGd zT!1{rvMcKm2xevMvib7ZePzlniR9Ol%j&;!JD;yJ5sb#e_LViW6HMd2+cq2_rh|8z z_%G0oSO>S%d)o8M+7_0w5)fVm$exoM64HQgmrdEeI^d5py;^x@<8y6eo@k_<82_f% zv>oHSK`=wzE-#WtP({RX@QH@kw+t$Uoul+f+ z9$NI3RH1)jco%4r0|vE;>1P=2xapD%DCy^)*ax6l7*U8YGtJcJ8R4J()}FXr1atlA ze}fY+jfq?=gmVh$QBp0j^Z1d=>@9lD+Uqyf`I8X!2e*oKE?kl#NW$7Pix7*sMK(UT z_6w}CXEVR3;e^M|8Wi&OYnXCh4*A|uPM32BCWpu*hiZFcIELPld2Oll2GK%X_W%I8 z$U+dhck@a}9Whdlc|;j05$|^_XfOv?aq?lC)HP+T7VSDzlDbzD)!6{qr1S0dQbe=M z$skUa@t|haxivkLWsP}}0$@RwR~yd9t+K0%0yNz?dPFhcWpGE&CJ#VsH-dP@6|cZ- zkGP}OA*_Bp)99cSL5X6~i_elGrl7Kb1+X=4M!)e|_&u0M^3JffiuauKnPiP0(#}-JC1zG*jSCaqlMNfjDFt?yq1;}B`Ekfbez4Z5KI#>D4yLSS;l^o^ z_8iVo9+tK07yU%aT9}w0W^7h{C!M{RGz#XU2x&L{3%|@ zMhD1<9uVv)vY-v!rX6Z-z1yn%)AZY3uQ7$0Y%IY!mHTTf4x(B;@(B}t~=L@ zJr_MXQKxmVmr%8j^C9b^Yh|0MH0yzyJy5JVSiE>VhoRDk0kDWS0}xY~2em?na*I%r zK9twD)(gYXmLROKRK6elILP;D7hpP|o?ZTHRdQ_r<4NR#MX216~VrKj-osy1@!%lHo)3Yv*V2kmBR>p4*Rq~wp=s433o%O`v66>!{( z@XRNW+4R3*=?bipR?;}gFg^#SfHUcRuU@DcuMs+j;J?7vv0wdLNj_xDCcawMp(vSw z9Y}d7S~z8f1ty$glxd;HBPAK@*b!yhCtL#z24ceZU+L@sbq&qIJ*D7kzflMt@S&|OlS_T@~q^Z+k zZt5$N0gWSO(5(p5CG)q|f&Ip%8>rBuw5y74`<6EZXWe?kP^>WaMVH_Y)ye z%yqfTut7n-{u-F>UV42W%pGXhDH?7h4HR(W*xRvO>;y`&bK_&)gECyvn|67jLor6E zSRKp?qwaNJi)o^gDF-FdvADuSZA!Yi&|WlEdCYDe)W5*SNTwlAkVpcf1hO%mO(EsF z)T;MEAIg!_gd3*&cdl)(EUn7Ku|Efvt3xh-+mEq}vYl21xt9D9!>6wH82;hL`9U?a z{ixK_9BnEuaa{@aAN{i|fC~1bRp&}`^C4)rB=G+IF_j)^L7odtnci!*4=flh<>Jt* z2ml)?vE}PS0dHs;wFF$AnEr*`rDp7I$3e<~Q&&3J7XWtuA z354m)`cJO6--?4-S{;WeLJ<|XlJL&o^E61`#X7D|BoYNzEM2a#>I?->PSDCzla(>w zQ=ZTxn@ng6>4d{&`Pq;7vhQqsiXZB5RDC=F-B0N(4w>AYWW|iWW(a{qhbz)uvfk2c zf4oz{_)8p9+~Rw?ZFUh+Gqouv78?P??{C<%Fxx)O4Fj-1qho5|o2g=dzQew01fIE3 z)5%WYjZOwq?B%~?zcUm4-M__A2=CZwh(0iG(U}*h_U1-EpHWz1l;+apYr4@I#N?@% zoXe~L44dAaEWHIY#IMR~XY~(Rmo52B)D*&l$RW&$FM0w2stY~ZnyL~!b>CwhA;|#Q z4_zhUSFwL(a20;4Ut&sP;}Th_zXA(4AA;HVd5q!Oc`c~w6bVh}7x9$D>AX~>Ql+9L z#y@u|*J_yY9@z*tk{ojyxL<$2(9P)A=8{vrsR+`kbJlh5Xr$xmU0NhGa+EF>A^=N# zvz-iXP(?6)?S5DjTRge_-^r_W)>gPanf)(dR%Ew2OLX5)0YX9Ix{?p~LEJ6N( z@TjW>*s^0Vh}V;U{eK)5522pXJplm``se-ChO`?j{^Dcqg2^@UKMhn>G4i%ZYrFax z0*Y~5$$W-qoltcoW063KRhyDZoG09`!WjcW3XD0+tzWZ93@`D9?#Nzl!b>g3J|4+s z6Fk+Dpcyv+1$F>AzFaB7)HmVteSiwFbHKOyL|U@o?le7MqsGL|W=Wp0v5j z?nlhD)gUhNw~>saKQx3@8wQk1jVVzrq+93cO`H}%3pPDJql3P*JIasRsI5K$$kZAr zhT0%+su0vBVxo#}{VCcC#$GJ<8kKF@CC;YsdT!jBaMh4dt@x>@cALM}>Sb{;?Zm-O zTx0mW52YmZ2LqFp0kaC@7ooBGP{KV^I-sgPOU{jCuxwTn76T_V$O{^htA>sil7jw} z-hPc10mQKlg$TbYeX7eEgnk$nAG1LegE>*cd(_1kNB%mjM5UJ6J*d!-g4Hn0YvYm- zYdxzJZYzalhR3Ky^wNk3-my-h=l~#hdxpi3K;By!8;YB@>9EdH=us!?v@X0(tD^eq zJhWwMSj_s$wNS9sFXG_-8|_CrxiTRZ0T)=Y`2?5q;S&OU=`0 z1)A4qAZazst`egcUExKT7DS@!6Yo(P?+rtx-XmG@MTST@Ta8+dt7x!PwqfqRWv=hR z%;`=iL@|0Ro@16q^!r8dpS|!6y=IUkt4BGD_g0)e^~FJ$ZY|Vguk67sMKa4NKT#CS zoHcfi5(m({YhcsYH@ZK2BUX$?T3dxxZi+zRa&QKTDv%HSCBEL>7m1v);uT7P3mLG1 zy-pZvry2G{2XfEKtn3t*hBr;}EYv`^1cK~tNilF$Y%Rex#+$8U!=>o$oIowO($Otx zI$GuA(q{~ZLKeC}-&gyPE%ArnyDUqYPdvJ)Mj~_^%v7Y76*qe|VUQMZ#@ht+6Jm%y z6c?Iywm~;CI7+{#g^fW{vleO~%cVVJNw?;i2A0o+CaD+`k>Dh|>MY9y7#T}Ru`g(e z4%0_Wh=2D_ zt({ZhsetT(0*|oXo~FMEfQj}1RWe1GYtVp^xmRpbtU5P`!)uugdYmKaphtvwrI2u6 zb#{m}?w+|8v9NehMajiwSY?1N^CFBpr@Ss8rCg8VUKRtU&#Iv>B%;)q;nvR!{@R~J zXhlD`UQGS$)9aexG`G<@Jiszf=rU1R<_x&`8nyKphUO_x@HPy>5<5)ese03YuP$;r zCEVV6e>f>V$aAgk4_gtoG%YYBJHyoel@2dN{dzpA=OPTr#H%oMJnw_tjISxZc+@4& zdVmcQ$pnfY{|0+}>+O(L$$Uc|l$s{8{R`<$rt?GXka=-yMlP&XxPM)3_8}y0XU`5- zWOY^x-r`rr{Xh>4;at{%R^9oS@<$=gA9L=6`bK|Rk@K;Zgyw&K1yc@m`?Ix=0inkG z@IsFGZgOx#2<2%BAaq!RyoXFO+9)lUaV!!|`qz9U$*xN?+RQ4OI~}CH1K<`G9fo>! zzHd7V;X^_yjX(*geR=(HNs2^N8lCrgIU&p1*T~e@>BWgeogh%`-_Mmj?Vo(MJYA@< zUH>QtFE_4%h>g+B<%-ss3AOXQ=-L=Mdndj^}Gx1V*Izql@72ZoDyJl4s zyHKS_FJa1i7w)}VuU%|O#pvkNyeWHHD?=1IS6gW2CVghUM4pmytyfXa2ol#Q5{nT+ zn^m3MDhmep(^k?|mKvmvgg5bsb^$yRQ)F!-WH7C4dYp>en`so?`Y`+6Y8^XxR!+h> z#Lc739^ujLJ7frwO~IW)s6pHRI{~)|*hP=GlfHQ9%msMH{`r=w(ZT~@fhbAzKAQGp zqN--#|JU>~RgKgwdxkf|+}~^DvR~X_oAS*2!p|Y)ci4Z9xzQQg+t8W(wyp#zm=USM z@mGq-AC?5F5|5vc893oceXbZSvexN~Rni5@Ua9RZqKZ+|2vl*FSLbmLCOUAh7SFp4L>X1DeOJ35K6e?*!$N9i z{7LbzxgO3%g1ONtbvmA*D@5j@R9z7|xeuq_|1({X(oY7W(#iA+DK@kC_d){{M>Ue0 zx{u2F=BrjVyb>f+dkSdQSl_FJQhHcacS0O52}M*~RAf5aTFBk4)GM2!M%f zSq7-&pOkD7A?sId0c1U`zIC1Zr5fW_f(zdRxPjX{j&S`EQ?t8_=LbWt$ERokwC3x6 z0<$F%V`YBdTsl|nT=Ks>1}A_Ifue6jA-rN+(ONzJe+3% z3ez0Nv&>lnR5&}dOJ2#F7q|2S`EnIZ&%NU-`dFN6(0c)Hy-QJ}YNYn|mh(VOIX+~b zd*Z%%7l+qkdw2~M&_0LcD|hr*=zK?+9kkXHJ6=LV_0qUeayVe~y|wnFd;;f6RSMTH z0s5*|Pu6%bDG(Is7}~?k#6uM-gE_>fpQX!A1QmM908Eoc$K$Y0XwhkVqdbo+3tN&5 zsiMF~=VuWN0CJQr1TzT`BZ04oA9h0K ztbZmn{--i_rvE5o$75xp|Ns5Qc>jCJx|NcY%|0Dc=ZT6dY|{FlA!kt_Wd8aGe7jXE zrSc_heEKcX*j%{6s~(*g9sd+7*xb8^SGQrD$*q=@DM6*HX~}+(Y3-@DF2|y@!kw0q z-D?_)iHSL;FIWQ#g{X!T(&zc6qv6L(9xaoL;%i(gx2?nw2_xa<6(Xzci(!RY*bX1Y z9+D%w7m?AiYkA!F_B7kro%3&9F`a2f4Z{|pW0WtZtv2fnQW6~Yljc}frF9&=11w1} za!ZczjTNaSX!li^b0B;*rIar^`<I^STsuat2bJ7{FmpvvP;DwWF z2Cc2mh7S!hXLASkEErG*G+1Ry<+QFV)32XZ9Ow-1v%7J(4>oj?E!EiS`l`vdMrx@R zt8J;;L(idPp*jdjg)i2W+3+pzLXzb1lUE3(Mu=pFM%7_5+XySbguLSZO_cur{ZI%L zunASwOfr>PHdT^TNqMGyAZ{f0(jh0*3Jb;9NfDu=8!J}RlRcmbHVla|16?sEvR!;V zXfDFcKO&8Pz@ouBcm}4esU5}fwPYCJM_zR^-|v79CSw#LAADX3OIoY^NHf9U_o;xn zRud$BiS6=a*kCnhe6zsPIHDi$7)_BKp&>%35Xvcc*{htePNGbr1zchWB5bz>fq(ox zk)vg@r%FHdG+mtxi+otLgtp{~d4< zv>#a zWes(XyX87>08xeY_?;kU9Z|V0#$$Zs2PQH*Vwcw4x?KN%N)7XWriO)`<^Mf3ivN`w zxUT=38eAej2>dnhI5ta-B=aT}QAt(=G1bU z6rALuqpZrjJJ>rWP{8^5Z*YUkn~kTp<-DC(`At|aYq>UkqK7wz7#V2cit{y^_D6zvj(j>aWDuR9XffD%9ZLN=5!b1XMKE4{; zbm)}nSJR1(@Sb!>zp0$|lC-~h0J7gS5+>tBw3K7#qjHL=Kub*Tq4|pD%8!NbTe2uY zW-3~iqBxs;oE^|1UIsJcH&f#bw6b~8$87=sInVG~q;xAW)JB_25(G`$z|W> z?>#IT#VxBTBG1Fismyi-%aBTuDwYOoa^hOm6PqAXF?H{|13Vr)la| zcdVj$J;#EvzMItSVXiUT-)r@&3yvUwZvnMiv+JSBb(aoTSeC`lHlG-?dHRTH4c_>n3KYE|)5enw4{N-qUv{I~vQ^ z^lsAqw;PjWdmWyVl1j#cokE)Tf_Ez3k>}Way(VaJ)lY_m>5wz4Jfg&rgJ%$hI%pXb zbuvA~roKk6VQCp%OHgeiTfYAg9|mLu;?XZe%>2iQ1PEzn1@c1FHC^i3g+azV6&1hM z9#OBjGGf7l>Kim5v*blr5+n!ddC*L}JA2t) z4xkS9alc2&Z7g=dPxu1aAOT^Yi4b+gG*1zy|Ew_Tp70q*A8?Igse@<*^y5baofY}?C;3}rz84i*O!^`A-(t(lfJlpS z3)u2=5JGd$5d*O$gtEc2$?^T$^ z&O||YSuakW2n+GBQarcGh0R3C^RR~3=jV!O{leq=p)mXx9{2wT9yP!4u=wBL@n2kd zahnhNg@;!*!!JC*b4n!Nxs3iBJUHFGp2{6|Ho)e%oBsLGmUcIHF z`yzmMLaX3%`Fs$9LBhaxOp+4v`20fXp=cZwAk(R;lrouol|=?}{xNe*oUd%A@WjDj zVwqzEyBK^XM3<=ghQa}C5P*bxUP!gc0pJC)lfZv4!B?e3&C!gFa)XVOF)@yG<;k7% zZznlYiNuF2MHBRq$We(y3zkiNNl4OrGi7%P2{CLz(EG(~qfVXXbra=H1-lUS^h=n8 z`*Nk{F2@;4kf);eF#f;x-ZD6nUELBjGc!}0nVH(mY`2-2nVFfHvE62-ZZou*nVFf{ ze${)Qd+)h(&cwWlH-BEl#443Cl~Sduq@`4T>r>W8Bul!Wa%Ku)HGI0SO#I zikU9X3G`T>>lR)H#}x(iArl;YUwf(IN&zsYh|C#ZG(MXccq@@*Gzp@33?oSal4LLC z_oD+hedQY+Qak8YRvb_HP;l9JMs?Oq!*pHj#5morPJk7RP%QmGFEQfMeWJ(<@x4~* zAOX>WWT)yP1XnR6vep_>Ml5hj5VH=aT&y$ecK zgsvCstJ{yulKvop_{<*%Et}iL)I{Xk&ge`8da+`5ZoVJSzZ!q5Ai!9Q(8!2N8>4Dg zSd-OSaul#lsHr<pvNw~pxJ+lf?Ylik4UlNP&%ZNR>+~E~XNGWBQan?;NZi1jct~W*= zROC4!*M0c`ygPWm$fYIW{&v{-J!0YnABr(|an~bg%*gx+L7*~gc;8xqgNm=Dy7d0I zwu|F=L=LP-w8k8{V}SJ?`!}-`XN0XAZ?6Bmq|_oQY{{wjxBcqT^<==3uC&YRlMaSQ zg$t%l;R7$>6xK_G&8#uGQ;kH$_Wiggqs}S(tV=JFz+rb8d% zPo2mVS-GOeuIIJK@7Ec#9AX zNujU`$A~C6C#rhkx_@D_o&jhVTaeZlwHHn0 z@u{`r^^6p*Y`}@g<=?%Dj0aupzLfYH71tGzec3M0*J_m_)!t`AY10f~NHhP0K&&Yg z4OhQpFDlteGx(xu-B?~*0B2Qq3$xO+V4L}l0`3p7f?v8MDtGb_6&ppL#C?Ojm;758(uCV!ea-&Zg zeAS12U;A84{MX(v;An^}RidZL$@-*@H$hzBT1V~^yL1efH#uS~|71Low<~8`XL`_G#ni#)WN*r(L zh$e5LGw`d4cpfAql>n>kJvMz!sFL%Q+Y~xJCqp;?Oj)WUkA4?jX+l`5 z>lW!1#hYG0_%7P`16DvSB{6w!Cizh|3<%q)V5gF=`sVZ$TqsCHPI zFfU#dL~&{|;tn{33Zti!@4B$Xc?OS2{MFM29TZGb;0k;S8@*@os9!O{*h2a}fRv5E zIazVW7xvOWfhETX279QOFgFKD^(8yB6=r4`=r<8&kKd8oP{ma;Y2NeRsK~J*XuM5b zkSHSS{GOX6w}!gEGnsT4(QtV}<6Pk00(VDB#Ac>dT{G&j*(h%s&7x3(H5TY{7A2bM z1T*OS9`v~J4KIlj{ffnhh!NN_s~*eXgO-$oLC?8YqOBtxuht^(w=D8Ucj1TItFP@d z%P5}EXkXPzBo^kfj-al%xp@Z7XZna;kNYYyO8eR37+8pOWv&%6h?T!vMfaDkC-JQ` zTdh*t~i=tDJQlS;ZA>oVA@5pm5RsBK4J`=T$2d*NgeC$ADB8OKY0Qr^#Ou zovfB2>$GPz#a(6g^WaPnXtQdJI2m6?v*1{gtb&eN0&Ndj@{ps>c~eH+BlA=(tGuJN zMp@Zo5#_R4vL@$6;hP23s};D?4k{I6z2Ap>yw!*ofqKEds$Ia9OG_+P#G0qgi=jgD}UhdVSLr>17!;vG#}iU#^-nK`(1*bNsHLN*fEuAyq0la;BmS;3!lCe~kH}zb-J)=tPteeTR&vvF* znrl9@9a&EruW$y7ju8mOIl<|VVzaUscv$$Ab65ETYp}2Wu384D_^IY2OKW-cqIEIf zsPu~KY;q$)W8aSZ)11f8A6AQ}R~Pt0^3UFXVvmK+0*3K|^M()b4PJqd`{(Hkfycay zjs(Eu|GgnJL#8fGj>1!|A-9l0xkOGKF)L*q@FaIM`as7n0Us5_$%$($JOz)OO@pwo zw7A3fY5Q6pe%yH({Unwe2Hk0jYMwV)>|jl(gs2~44DWm$o-^7O2ddIcbgPm0S3S@1 ze*1p(R4D>JYbs@s^12rk;$GK_*bRNXR z^B?c*hGx4ap{VX;>CN7v^X401$KGt`uAF>74)59tZizp;1#XbL1h-<%To4(VETrs@?z<6KO+2oR%SJ7d^&SwEb8YC)ezi--z8^3*=@{W_EoAV z`-P&7U(rmmOgz7Nt1WtenDjC{n|*|kgnbTtmYXH*11YsY=ZnYXcJjODfS8XPir-5_ z@rBmrJk@PR5JskBhDW$rOy~8$ep&JZ8THmxn^_YZ-X!GpzQ0mbnyFD#I#d-+2`i`S>zUR|Rds1myuV6&WzbW8;MXoHyCEZ#C~4l2 z@8TyUQcF{9Q|lGAf@C7hOKc4FmxMTH0@v?zcS=JnM`GM zY#CV)m(M%H7YGs?Je7{uX&tmK18b`-30~jilw>H`$6bC}<;_mAr@5^j`h`orhC6&0 zOEp&|SrEmdk;-i_(&4LIs@!9zKdXdP{8>ct?&`#t&F16?1e@&-gzSTyYkitP$xYU{|F`O!Lq7`v=PWCfE%@(HE4u&)h{Dv-I ztObPbX3r1Ua_7|bUvIIw*g5{`7F))|*38+Q=>LaisrdhEmioVDssGe8{!f{uXySip z{yWZa{Tt4(GX8%s<-+}oDOW_2^KP>yk8qoAl|XR!@cK5IFZ~x`&1y#VN=HseTz1ED z0pDXuPKkhT&>bN=lBnP+TqN4shdx>%-sMg00`>k|? zRol-E&;boW-2*rw@wO50?4y?++s@7w1LdfSFC)lzu=p9}EZPGd#CFksKMTA?D6cK} zQ?x@O_i8|0ZOJJCrw)Pp^m=WX0xx;RmmRtzGJ{ru)O_tDh7ECncaN~*8}!=EINZYD z+Y)uRBLVpY@j=gx%T<~jPWS>`gxFPs=DwP*C)NHNu2u-HQ~0bb0M&33iIX@t0r-zK z7a#>Xl5B}^y@10j26X0|jU^!BsD!#~(d?N`i5JNErDYb$amv$Ca%d{qI!m-o!;Zwn zQgU#AUo#hNo6dABVxqyhJBo6foTQZJ?ix>`x4kufvdN8p%B1+xbub*9Owo|fn-P9v zY&epn2-qp+%|PEDHXli1N~TCs%9RoGVCLE%MoTVDR?b!W>LEq8Po<-MIre$;&Vau` z?k-+aqw8_u^+@zGxFFzs)juE8(K)EI+C%+$jre@m0$h|v@&x4($5A%Nm3kYZY>&98%2?+2!W|Ie{O(+%~NsTrE^0_{t>!<1G*obnC>8rF4-ihh&fEP7H zaq(x<)Hak?ZNt{Bmh;K~P8x`b9&a=NX)6Da=11`P*Kb6m6(^2Z;sAG%HOcOs^Ffc= zQduYSAX0~E}0hspnt%)ODqBDB257Q5zp~ZfAjB7v|<3n^E!%*aHFSg z&ih^TXchrEgKWPY`Rtu$2;Kk!5hyd_?jRmXaCH>SJLtRaaS%q&cq+%KpfSOUe5)z@ zAt6N_P~92Ly?l;b;;;)MNCuFO2&gyM8&#q_-jX4Jcn+L|xb{appJE`>F@jJ>hS(&& zpX-J$GlR;GpBVDbHID|$mK4c`;#8FL{rX2eKf-p}34%yb#D9u>!oE{1M!i&Wnt?tn z3z>{b<>%nO15hRp7yo(fXz5UlCJ(pD$ClMZG>CxDQ~Zy5e!I$h3{cNQHxGuxYdn|% z0*K7ftuY3_Jo$|WGeA98E@8I{`FS%Uz3YVwj{|9M){~^uW77PEoQTI_B)CX{}aH;RV zBMsBPUTL@(|M#vmtK3NKr{8MBfR20E1W1+W;XsRxLAmZgWv{NPWBd1@!%c*n5uYF9 z8mzKx5`?4Y?b~>G@Iu}4eEBE5yZmBVZbc*Yu3H7pCMQz;A;$=FwyuIC>9oU%O1_%It1 z?GDi-WHF7netaX^wN4)qFdla~sJzA(&G2g2hIXrGaqXVD5wU$}_+fOi%Nkv?^MPn; zv48E&*)Cd(RIgqoLa3+I!}|JoP9OO!4!WU~yMd@^{-QQkzWR9WzU1n#5?fQJF4cxI zI&P}kU-xMx%d>Iw<~UxZTx~rQw-9BiN}D2A#|$=yAqbsM(wz!K3k2Ey3J-)xbcF#A zbgwe1#p}=J4-bss{~h8-<$NztK13=or2h#r(>zIEe&{w10k2fb4opXhj6+>zyrM&> z7(6U-40&Bk5mBy?;jzJC^{Ex+`BLrr-q_ zmtvA05O+yg2Wck4w!&6YZ(*i9Z_w148{Huy4U~|g1n0SW8)Vc&%NVBpP*oCn#xNAF z$hiK(SVMG~Aom`wDIMtt5VVCzqq*r!qqF(30#eX*sbncg;bjR*j2Og-zX){O|jn#)hLl zT9J#%dW!s3s)iVD*XW#_Gb6a^i#m;get1?TJv}Mj6kBA2orR;9mJ0zlpk8ohd*N|S z$+M2pP7YSF$K1A@5P2^glkSo(Pod>!el-oB9m5}wCJ$XT^`9N%ACL5}n~TezUrj#& z3y}$(AN&}XKMTe_5Q$#}SeHLzh8tM-ZNz@=J6Bv!;v-I0hd>Uu-C;uT?uc8*>@Y7QmVeM zZ%1@I*t9i$`6bV>{Jm@t5^{re|5|$)`krrSDemVr5@*&0Jl{{dHj;0I}QSIZo|m zkDv2#xISF}+=5e+{x~_o9AWjfeWbZwxP`{1%ZlGR-oDdRQn3{*q`ZRlnEF#Jri)&h=SoUO1Zs*1T-e3B&jx@l}szAgyB-OvUz`qBQ!kU-HB)9 zE*q2jO@!jJ*`i*nQ&S)_LQKgXa)07Yw?9oJd_QcYQ@Aj9fH0n7v=2Rn5#3d?kfA&Z zvglQi%gG{*x|wfIFZU;;fI;Lc-WHf863m5=KLouhTpcOx73z z4$S@9M;4WSgR?_6PXf_&4aal`!DWv8LpC^HFTNV&x|m8-Mh**_>A2geB!3a&LurP^ z6baP~nr}a_)c_9_;zD>@1IH3QrzBr(dL4TUTelL}4IPCXOeTGn52&SQz#FL!SG=cV^{PGAWGpY8vxA ze6oGg+4q!1XYFO|N-GchdfrUT_dY{$!_0Ks$5iN&1=S-jW9fB_wqtT^sIzU%KQ`<7aCpwj5YC5MzUWukN4$U?#~yTn z*{NU{zPdP@+c{EFF{oHLTblr4WfwzB6C-E9mawCVfivKki~*nsk(&j;=wS|U zFK~1;F{NUVHt}$?b2N6M1boI{87=H=MGTxxh$uz4nHiZ`8QGaQnORubS=luKIb`jO z|K|r)91ZO4O^k^c#0;#ROkfxkR7BP3#ayhd4GnB<|5RGV+`@?n@cO&*v_xtqj!uBn z5wXxSu`;o7F|)I=&@t1q|Hroi6ads$#=_Nv=ub_kh^*`loXwp~42WF+QIMUUm7b9b zhM)h>FK1_H3B$$C`A@^m|L8=)#rz*W6kN;zcZz?^%h_2tS^mD8{a^b~lxS-?t#T*& zKGsa_X0Pl7yP>EmE93Gw@Ydn~qRn%kTwZ~c2&9Xq>>Y^m+0zqPClXAc>rFcoHk2|4 zS|`Lgg3W|k8p{KJrVUThh<|B_e{SHE+R|f%Ez(FdX`oCuxx%WoPX#qe7Gr_%OG5H| zx{5!zLIQhMB!Fxn3bs>+*i+o<6NW>i4TZ$x?+Zf{3+%y;#tZcT0>}n3DBk)FjA73j z7k$OuNI?gbu{&QB9Wa?2NSs;8zy;~qb2oEqCM8F5<_V$AL2EPmmy<_Ds48WQ88DLp{;Vq;$ zl{gS*B&lSM1>(kid4Uy>+GY~0x&sbC;wIuj{*gf#<_V_2DlnZrkblD;9uNo2YwCf} z5TF~vFRZVy*lSBd2nGilk4q_ufQ#n_+$UW%7pM9I^dIljrLeaATg~sz6yL^w<}$^L z%x;u#O1G)dFd5ahKg|n#J_Cn-yuF+swy=yVu=gm4VN2a03tM+9xDFw`atd=C>iKrP zM#ITo_aQu8L%wZ=<>qYp=Zt-F@_fGJJ>QSR*Rp&X1?I8lzXf0W6TVH|?h@XhdS~Z7 z?+;v`BW@i&=miM$D2QOg1a1e0O#2rd#TQ-07g>D}ofOGal!rXeetFV{b{A?W_?0)R z%J-^Q71JOm!C7=q_t6xN{=x& z@M4c{W`1!P2gXo~1BPgR&2m$(%bx{WFnCy5Qk((Zybj@y`rV~$c;4W=GWR~ddz~)u zq$YUT<)bKVw{cbeY-2k0x~jy!bNS)tcMw9^f!kC8t6SY}ht9w^eboyZh5EtH!rUIl z4Su38)1frb;Z~rc6IK6UtEGruuWkEL@6!wPLb}VpUyd@_gy}C18gp#?WeJ-Qr$KH( z9@CKqm*l`W4OAOyx`g@}M7U9)jimbez(_&heWPc0tCJqp!~CLA5Lu3QP7 z28$!AAf{5jr1*exBA>1lrHi_I4oeQ|L|nJbwJNurrE?!w(Id^KA#^^pB%}=0Z)_pA zodVWCs^~QJOdZjgj?kfXAG&hP(+qPH(jX~39y8`g2O$XB_aA6_#7o$qKhvjF$!gR# zBB%umEHBa6w;CuTZOyOpfp$p?bX1OWqUzU(fob&<+q%6$VGiTzt>d`NJKbi~T6F}k z_F6PBkS^kPexi7{g@)NFfr81Hf)R0=!4Ub2>61#6<1&Etriu#+>Z67NTT5BY0?Y)K zQG5ml%$S_0^_;)$3yDR?M={kK4R^<%QSqoy5<+y0Xw~JR!^RT5YWdt@2ZxH>f!}S5 zDPLG1!G;GTJt{?Jhak7EPc6wJMPUg=4b2Iw?v7 z;fD6T~Wv%TW&ivS%VVxPd(IB6IaM}Y}0k8uu= z_y6%!j`U+oBeqIppSo%7C})v)K4&E$PpRCDkHZo}B#d4=R7vLECBhG+T2JvxH}Ja6 zMoW?Jbsr(HZY6u`;iFetrCNYY?;a;~2MoAGbw9{$IPI{W_8Ll^#)JYQiC@RxElP~2Jq(4*(&qaK*~%@RzE=qVE0#bx zc-YKe98u(^DmDPm|Lc>@><=r(EQjbT<+bPH;9L0N2EE;?P(rJ?88gCFway9>>yXV@ zzW;NEUMw)56b!BD;(;xfh-z5|roB-5BaL5Vj6mv(RAJRyM!A$%Z}BzhaQ5Yc7B5*m zWr*z%6_(BRdSfedM_+e$G`PoBpgHL}&!Cg=yqYXDMftg*D@L6x#RSnPfrC#L{$f20a2#;S9 zZ49lzk?Grz@K+L%NGCudSsi#!qgzvQGx5v<#)W=~D9y*O0o0br zNUe`3j{AcCYuf@_th(w0hv*V#HKGwDv}WItiU#`RET{bEa^54pvdEbfKk$I+FOZ-w zk@TJ-4D8W~RK38+fmku~AJV@(k;>1)h^$rvi(h&ykK6P%ZzQ@s3Jy6Ed+w%$Y_`}aZt|UxFDc0N9 z%Ti?4FOj{*A4XKyjC#^w+MBB!#bltSi;U~tpJWKLj@6g_R#ph#*Tksk@vvnFf!62> z>=A<`5>CfLeyrQLI{$)~uiBx2M4qRnR9Q*TV4nCSWB?VOk@MZ+^kYc4SmTD;5HhjL z%bcQ6RfA(gV|DJ8%)|)aktk#}Fs6VH9cclyo#D3*EOya($^?#2wc3kH-!X|_rAMi~ z4D4yQC}}w#oyz`t^A@Gss=$fRDpfZExD(t?AVjKTlRprub#gNdlH~%qNch`zD&)+8 z2^iu}P2_7L?sBcpzGrdu6XL-ie!K8k(;(UI=ffO78rVlejlzh@ATOMG9iUBH_S%^t zbZO1OZ;7`#I~ zXwtRg5~pnmRa%P>BuF?1!u7>cjzMQ=+VK1;E5Ne4YJpixu5weQ1wQut!c+x$A=l76 zDzsxi_TBA*UvqotxTsz0X*eJ!Ud^U$#bZ;YO)2Cq78V>qcy_F3X-#^gL58(#-OJvz z&-E8yB(#!E1QjJPzcN`%lWR&jA+vE2~yNQrDw-_8-BU2~; z#KuYNOHiryL_!W1e0dQqDD^HJ2IiCVEqYM-q<$C8cG$AGv3*UH)yMXEXy?`Gn>2-j z;)l_%st&*sLR-<_yWjcJHlw(noa_!CU`n(eCC$t_AxrCNBR|PC0t*F z*x<=IxwdDhX&m~0K5$(e!Q=Vl0LO(72%wI-u-ug>Rz}NCy+K2=4&`%XAy!K!L)t0Q z#Zx;AHS%y0Q4HD}ItfN=MH)j)^g{?;!5Az_aW2VOww39LEL-nqV*VodmHi`5kVBX7 z&@||9nFj1f9;q7;@;s>RtH9z~mL1@azxsV}6Q;ZfTM7};U&~;tsVpcU9d=40ZA$IZ zO`|1SdCYb6X%vCSM2|mTrl>#*j8Nb~Lp;TVH_j{5MS9F^mhT|d@uI(-=y@-%WJ}?- zdUw;h?8Qx%05)&#0Gyt_U|Y=@>Ii2A%LVO9L2COTn;I7rl+LXQZgYecW}H%C2Zh zrawLAdr9I9F?4-e?HQQ?Vy%+iMhV9O!;Wh!^d^olqdm?nU2_BZezQHy~dhbnq zaoH1lGMb25!kFf}tQPlL2osH9l<3xq3> zl*j-ygZoiyD-9I|l$eDP%ZO?{K>NMe4av@9b05k#QLQyzRvC&#;jnXH@An5t&1I*W zd?pZV1d3tmYh;PEy`@@r?xX0NR?6tOX82b_g-2(LeHtupcN~fd)D%?#(WYJ|I9}+w zV@#U{PC&6sePs{;g84hZ4md(ic$gP$H$TZ-_y3UXBH>EunT(!MiK{{3R>S zDtftYIp^W_u2QP(R-BkyA~han`C+eQ5mZlp8MDQ;ZgY}nAa6eItzoXay!q|P+!-bn z3@C|Sgrs0D2I|bqo^5Z1Qq@r>Q@B!w^&+E$LJOx~VZL6P?g*%tE9!z{@{*5IEDU)? zILwRimXt_%Q+&5w-V_Kx)ljtgd5SI);Le@q*oKzEx|j{!hR_O@Q}tYg?%#^kfqE~S z!qASyupwUwZ}Z|LjR}teX%KHSH@-(uV8_3`Iv7F)B{;$SjoO-Y1GkTp7=&fTo^cqw zrlY1LHWqST0J`q-JKB^sh}&ZmG*u%D>n@0ty(-LJzQG-_tztd1VFWSLT7gYwL6Z8$dLiMsyGG^nH^uCIPld4XKTE?G&#dT{n z@H-;aIsp`_b4r_QyJVtL%(oKPIj5~1w@fpXoJ8(I#Un<+Fh`vW+=pxX^2&}n`4x4n zMh~_&_8!@Z*=^+fDL-iy9*-@!P{c1ub%7kts8P9sxA;JR0(Bh7hMam)4LF`3CnJz& zhA}5Pf3o?d!ndRqQ%Rm8T8=B|Nw{t_U%(#8ZnPNOhD_mJ8-%Wa-){ld{7 zj*qg99N&hLfO^xxo`^~=?M3fw62p}r&UIFHP#BL$ejytH-Oi<$(u)4_B(%suRoqPljx(Iu1enVv@#e4a37F2WSk`ZlTAi&uPJB+JqS2r=CW>dUJz7=}O z{`3ODNmx#|XITT)-+f{Cb=)vM>m{pciJeZ3yf49{vV6R=w_vp$yRL`B61bP3uYU$= z9{&Nmts9cNtYMI2Mx~yK)UiMk+}8$+!u;gx{93z9B67nL$ARXLVAkHb-UEGRL+YM~ zA~zzOOHKb_Yeo|7@~&u8(+_usRaS{mJO6ku=+#gZ(}^i}(m|1LrElMvZ-ol4gSH%^ ztPl-#?Co#EY}Li2z^x}QY!5LIh&7}y#j2>Er%tF5*MzYh5Ud%b?d(GB1x)uYK1{yAz~5WesQIgHE^cs0JA)1oU#p1++A>-OeuujV$#sN4#*}6DP0|xq_dY;42ux zH+GQgaJgTx%kXL$63$!{f`o7O-ERQ{8@z&>M6H#U?7R@>h#Bb&IEkX|OZm+h_Ixa9 z_Qg3E6=JCH@iZQp#5 zne2N&g7{H5MZqf@!_Q61@==Kdew5~U*Ww@MqYbq7)4-SVLebn?C}!107qZ?PJYi12 zjk5S?S1+3W*QVL0;k~Vs*li*lF_>?47jkRb(ju-~nX4_P%#J+>vT^lFx}P_QvkYP2 z$>w1QOI$TiYAZQsjZH~P9qg&7xlLzEx)4}~YOe<#K@1StO^=V|n%Iw2UsRuNUBIP{ z&MYq=m1ACc7`cF_(;*krn0B0GPla?>qC9scgg^EDu$ThA7_ z%abZ)`Xzg*i3`g&YkO!o#&Z*boq=NU$Om^sY~y!k1xSwJZRu=jHtF3VyxsQG#z~8C ztd{D{K8iM)MdFsnmP)2%-3CV`Ds_X3dxK>)wCTv`z+BL(@k|CySE zmQ{LExU)7@Av5sT;qbZ)cNAy>@KmiM8EURY+n}gxVX-C1^LJ zZ}ud}Ma#-bHTvE-j-QH_Y_>jWOFoW1akV|ZQ%Q{(&u?)HxO$%mhoeCP&%j_>R8i?Ap;j`K7et;OzpiVpRU;9fpiYwBAv6l5L9Pvl^-95KbKd{ ztvLDE$QreAQw-G#U7P!`R#lC7->!-?ab#LuR15Y@O=nF-RHvOU6?9CLJ+Fy$&N`Lx z6K;;^(WYFNWX*1(!fLH{+j5=fS%P`dq?y8sUc|NQu)I{k$eD#ki*8?Wg6!$Raq?;1 z$MOg(wG%nUZu@bDTlB>7eydaTd*QX3hKcF5A0!Qx+l#EeEuT(vqjN=(y19Ht_jE4+EvLaxz9Ii`IRL z{4fr>)6UG!%kZL)dn?R2iPRJ{SeAW)77KdfRcXti!}6{pX>lH=7eC5^s?J*Y=2^8~ zetQL{$%U@;#$Djb;QkhN?gc}wFVam9Hx-r<&gq3A$DR#gP95pNf>60es!@O}|JcHX zqZiLpw0ocCSotKVCn#X!Zzn!FJS+RY9LWeY9OgNl@nf4r^raT3K9*G2`YPnko)fBb zKS#zWghjK^BKPjsnsC|mJ5$#BoZitR|NHQ^7dm#a>@U3%!-En3j6EP0+~5pvAQobQ z(Ip<=a*LZ%{xOkI4^u~=vErSKcUd~r;0E63sW`LtkNU=(RVb5o4O4bfmJpw@*0AVz zKV53q4l`4C#@sI~cF@ebw9LDx%uWdt>JO)OMzWaWS`g7w8tsE!=Y>X1(|u?kS<%z(P_-n5 zX)KJ%ngr4g#Z%iTU+#&vy7@H`NNCKB!DA}(6(2%1j8OYD0!U~StidCz1nba`YHj^? zBwQ+7tTp23PU}qgn#=dz+PF&Df00I235H=p2v=J?G897Kysy?ncC~qcILH?e#QxNi zS^Io4G<&>@n>v|X@-9=`nZ0akwagMqeR_@j7FYPz-Val$VLkYP_$C_4`)}o_e}2Nj z-};KWl8Gq{gQTsoi93-NBVeT}8@mn+gR+IE$zR(r4Bv>fn21=2m;k9tc6QExQds~h zjnbb&rgndJ|7cu)c14J^co{`Sm^p-mzlsX6axpP72{ExVbBb}XvT`s9aWOFobMh1Y zud@Ko^bc`|nVJ3nwYWpJB>6+{8}Q(@*M?Q1Y3^ZhMiRM4hTcJ)MUp8&rbq5x0OilA zKv-4#-Vc~{a2xGZc65xSH8{pL#;C$b8q3tPTgu8vkZea9sE<<5#J%Sa; z+C56iyRR4<;2j$T8S54ryW70S)C@&e51CgF;;4n?spEv3?V7&S$6qj_V%Pt|Zorai z1gmC9)4VNfJ*ausO>j2Ae>Mn=*KdH=_H%o)Ry-mk?O z+~AIjX^)&{5B|*o-lsmx9g*Q0@36Oa=i58G?KbH5JkpVi&O&K5{*v>joS2iC>VxkWT!@yUU9pjwBwTr6!>!i6o})H5}_t zWL$ey6p+PG#85<@Hde%#ewn_Sc2^{G(7+-;yq|SOazUyhbU|`K2Lz-|v{Py1htIE~ zB08d?B0Zv#1JLGQEdPN_CKyr}(nw+)qTId<#%%3bI|(91-2ViI;-5Xhd9Lvv7dIUO zME*ca?C*G2RO|Px0q5iV$4}3QmGG7D`hP$(>d#grASE!0IV#YqdJ%29-C#Ug7J2-g zjfpjH@4x~%FL--JMW8Rg3bUYMq2a30yaPUi&4$&6RRe&YzqWdsra`w(^B$r`3NxB5 ziY$tT3pHvjim+>r^EJ9ODweD0;QONDURC?2`lnRZc(F4PGQl!+0q-Y(FqS##k))fX zJ1aJ;i7J6AktC`tqAb$j%i`VO(cr=2c8kGr>7E7Gclfz-Ir1|8GM@B3qN1$Kz$8X@HWlnrCUkG0rs@xfH*L3&bvJiAMkpfxF{XO(Kzb~hdSr%r z=(2h&x_X4FdJLO-6o+@^3%pG)hV?+!Qb106w=LeFVkKgq+u#fQd5^AjKfm>FU%YO1 z8ABd~9V7%J%-Ahbxoy^s-c@(VLwkbD9gvG%`q+?dNWD`IXFyj3Npk@7Mu~)r~ z*8^}v8C7S~Fg4kV8Y-ZB*)siYUfOqm6VN(+oSqo+cots-oLKQ$gxueQe1GGO4g6^% z+TSSFzs1Jj`Zhb~`U?#6!pKP+6T*df%uesfQaS832J*@|z@=r1o&9 zB)}#o2|4^S{37}77}!`%R_!&ALn!@8+OMgzoISBPQ4oOmM5#n6r5X|Bc?(tKV?`(i z{^L)|0L%CCf|FfsGF38#Dm_^>GKF#FD%C+@&i6Q9U=0-w6-iYaKnPG_Q4>`WRbc|8 zh^mCB{(1kiEvf3D3atXG2Cec>n7b#|cAvYH0#OB-PpUY{_l#G?SNQ`6RVF~G{{lXs zZ%*H&zrijj!g27Qx#>SyK3U$DfB!2yQRh*Io?t7wsJf`aYqF`l=Arvw+o;$8 z&MhBm`3}hW^wL|S_YMo_TRBJe2fsE6(^MUG?f(RI4l>Y0G68KSEh!7udcQI{?l zFfAB?@_zZwUhp~52Fk+}01z|ymZE%?;#%x+w1nLK>NkG_%NXJ!0EUZg#@H>&*lkX^ zKO=_C)4Ssd-o!5TMDW#k#D@@I;F#DUq2Fe%-Xh-!x-YfeMYz}@xCpzdihI2$2)>$~ ze?KySBK+teTM14z-823eH24|R`n>QXR0;xzy0FU-)6(Bvc#<)8zL^FmtIG(OZ>i-G!+K@7YtiSLjQ*0(|=*cFN@K;&ZExb z*pGgx-Ta4jKyl=7Bmy8{{R_6Ewxh<)1L UfnjE1XJ=-EAtMu&7lZkK07G_jnE(I) literal 0 HcmV?d00001 diff --git a/.setup/latex/pdf/betaSandwich-zzz-tests-benchmark.pdf b/.setup/latex/pdf/betaSandwich-zzz-tests-benchmark.pdf new file mode 100644 index 0000000000000000000000000000000000000000..09e29ba6c175229ccf1455f4855132f06888ba62 GIT binary patch literal 85247 zcmb5VV~j6Av;R4^&v?$*wr$(CZQHhO+qP}sAPph}29pRrG8(cy z>?93Vw`aQN&TW{}^0AegW4`P6=fP%ly5h?@nX~Z~{{0nyRy81EF?9(17{m)-P@{4& zj3MDX-Z-ragMC|Y9LChnPju&<$ zY!KBVNkR%A9JDaUw20&??v;e!30J@pT{UOVlF?61nN!BoS-*w*?$5bTw_UY|6KnNI z32Sz1A1m#((eHZu=l5JN>U6XE1CZ5Fpg+-7B8nPK1Rw<=m<*P#rxMe& zT}E^(^_3cFln0Z$(5hWt&@lS5zXN9YwqX>HHSol)VowjgEb8l?hNLrGWo4aXM17=t zxIU2&9r?0zjk*H>i#l>;Y;Ymk$SRpY$U|H2%PL#=%9NgdAg~nKy#E7R_Wyw`JM;gZ zt#Y^BFazAq3tC9?MlhNZqLdaBssxOS^#ScHQj4TQL8Bu1`I~y2&VWO@$2~z5N!$^# zIAIR(p{9X9zp7EEAq0~Wj+#O)LBg}dz@9`f+$!YtqpPmPlt15gS>NBg-`WjzdJyB( z&_dh!d;ZQ?c+&$QVQ=xc2dZn~w#z$BdGB!DjGwO4v5%mYsEID;g)Ji}!IC+y zMa$_Ux&ZKK#NqP)4w#wwzXN7x`~Lx0Ro8l(0o8ZD9tjr?3tLn_?S>C-%NC0ou8qY8 z(GoMOm;*0zXHyDfJAXgbbeZHv40cwXh(cC!iX*By#e_%n!|dRn(f~!IP!w`0P_E$gV7Ymq=Vt(*kLf(I0PeuSl|o!5 zQtBVUc(nQ=!zp9l?1s;+X<%n~Od<^*t-(_Rr?y4;WYZds^J_TbuiI=4f2+K%>aDe2 z`rL}C={(o`H{>HXXnq$4kd)+-23WwKW|r2*&WjyyBfuhNjPpFJ&kVR^1{}VBj7OBL zGWu4YxNsu$ciy||ku}O(dWrOo%~z6S`sY%)Uf9XYl#T6Ty1VGV+dgetp&imo^C1}?gUCSSjf@QiW zI*b$fW~jj}R8|LQUz~*Xag>}dV>Bc|>D2TwFOs_M#uh_x zGayJPHwn)4pb=CWBmv)zI^E7?*GgO&^3(x!vr>1`fGFT8t`V|d1MKCoEtx(Tcl^o8 z5~7%=-`l6OutEvuA~0^U;Gd)t=LmnTo~tc*4*1zHA*dd!O(*x+QHz!eDW%oX2*n`_ zDe;s?k%kcDdcwmTraY2(>^gnmvBjy8x8BSX{~Bu)6Q zM!E$keX!D6+eXze$Z}dRYFbhL#_XojhNkXfUI{g@2JQzy>uho~sEPL@wuM_cx4V|o z;vMErgT2;_3k~t?1{m|JwYJ_9v?4q*?$cR-#*h*5nVpu6FT7&xZRy(kHz&L^W6pV% z=Y>C=v^gFWm_v2#-%Xl8$zzVXvubdvy?0OQQa=`R5v7fg6jBPvf$=Qhs(7lv0o3|| zRTg{a|GO)(u>3byVkBT>XJY%WRLMlZ$iT?X`d`ccc;0`R1dNPK?5zKHRQvxB3ToyFo7Q?VxZBOmGY?>=IBEK_L?E?(W391O%}tC`*L+dCs?-XL|ts ztFN`1(V6DA<}2U)AG(Zl7FUka8eH1J$2bOcIXpT$#ekTs7D7b&fb8t}=FBGH%XTTv6 zH4HMHv)5N)YRhOKTxOOftw&U1PTlS z!g{IGtIMgNKtY-SvY-OGxcCPGcO)>FCLfaTMJ^};`ciNpUb**mA38OMh~#S6bXc%Y zZ?S_rmiTcR$mTRh7YCqW9o+`MH*(m(;99)-UD)^alda*uyas##K{lj}*4aD8n%$fL zFNTO_91Y1=`nh80EBtKQ4K#v**;!f=3J@S}(1AQPw}E|dm)@KKe-2N-Y<%?x6xbzyhGds35Q_CMxXjmp(DzCMC`78SLEw<{p^C z6WjxchsTEqh!EH=VBi025lry+GWaWBgES+SSm1cx4S)WEpSBxN3Y^xD9)fni-?@T| zp9%}n@J;NZYzJ&tJAXAd_ybQ$m-OseCN02 z`d6=o0u)@$#W~2wPYV!-XGbSs{H;S*?KOTre7cwn;1GzPe%3ENHCXev*54khK7arS zEIhcUp##5kgqi^8{?JoL+`8cmp9%t~(;%)co-kni@EeFN&Y@=HzcBp?QhzVU z^!HMXIsF@-pZCoBE75t2I0dUu*52lhYG04tVAqDgECC+3eJZl}@MNszx6!!!-sbv0 z1m4GFBM7EtGUn`tI1W10V>sTtSG`JA(^pH9gA#@^a=|`w z988nf#6Pr>nKpan4E%DOJY4%>V?K3)MevBnGy0X#nGuVYemEL&Ke`zpkUw6Hg?#`Psya^Mic zS)#y?)pyZdH-%qrB)|B1s_^94811eyjoH7**ksh>vl!046)+SMK^96_u9Dhz^tEf(X2y>dFw@WEOLy#>RZ^sjj30451whL z=67$Rjm|;H!%xN0nz6cD&WU7WyeG1=@QL1B=L~Kg(foZ{GsgK5npW?+@^7rnI1@xa z>a8V>V&M+idqj1&^G&(>A&E>icV@JVyn&eAS2BZ z#x>{OUZ0&~{q->#8-4q18p}bG)IFhOhLEO`lygPn;BUgYYW{ZJrF)7yV|lgqkl0IG z(uGv~3SPtO9V6z=|dFf9{$<)|7Y4RK@{(sBVe5@kwzy3#vWk9EH|i2&)=Z>aL9c}7niP$EnmpUW z{f4Mv8`?7@;X!mWeGp!cg|A~CoOb58 z?~_>}>oh9K>=R~7oIZXdgt>BkT!X;Y@gF}Kv4N%n)1)Z8T_NSzAVm$fmCJ8sgSgG& zC}%}Aa44Ohbm&&RGSy%D+ro%p?|+z(HS&B=Vt!WtpSYi#VKpV|H>ZH$S2$!AutJ5Q zc^GBHI8wRu>Ibx)WJW_ybXMNzy5pFrE28A%>Y`I0QvPYE_*%7WmILeL=an2}bx!-lzWkLLdXbU~B|T*{K6PD&pkXXunM!E~J{jJ9Lm6Ro_BTl6d~wAQh~Bik zOJ*w$c>fxV*QeyZW+cBpt^2Dq_P~;8;@EdI!zlXEH8Bg|U{Jg?@2556)k&)jl6zGgi=&M ze-3OVK%#B#Qi0%(G5*H3R>Y*9yL+Oxzw9R0TkthR#&TR%waE3l!(^}m7|$JzVmj@W zX-F#R7?8xHYNLy5mlnJ!%+J1@CTR^FICAqUl&88`-k9L0bJvz@A5stLWdT~`D=&ZO z?905R*R<^JG#Rd}{AfaVM^VN6LmA=RXIRz(!toALrJP)*rsK6_I;pi*){0N`=dsH* ze+4p5L$xsd9)i*Ha7LhQRjX(;5v8ZyBN&o)p#Mw@t0qg9Em?stHrZ6YrJlc&#>?S~(6kW6Rp7PjvsScd>h7 zYL&DI$VF-$Q&uE}Rpl4viSCA6Oo?F0r)mo}wDwc7l&i|bBBE+`KHDSn0Ep!E-;l(& zxOZb>^a91MnGB>XdzeYVSr3JCq`eHQA!a#~D!v*=YLuX(^Al-4@O~a$ zk*HnsN@-2U2DvanXXuiS%9&2{%pA*Diooi?=|}Y&JS*(32ec--smc7-iY#mUE+L-< zM*H9`7xitNIgjZV%DuGeZlBz!Ufxky3-crd&8BG1pCJj}`Nm&mB4hHP$MS#fsfg0g zQ5XNvI+#5&1IAGH7%jhrdKC-Jr&MWP#A#VTEtAVl)p)X`s2{Gy>t)v>_psv5Z~SVGud5H}na=s`ceoxP|>?C6t1ngWG%P3QT!oo=m| z!NqQB29qjMORp;R2i%bG!Ad*&-M3v)tf!+@%+BWy-$$BFn91>({otb!k$!y4)&)I3 z9Pr9t@2i|KdKo~?11|$8_3$EP_@50gT8G98yoDLEj-_!ITYVKx8*BG|7Uq{MhVrm{j@ zGFQDj?_b1i*i2|HUnIPg6z#*s7aKZEI3~W{c}A7uLN+P5^Z;7?iShdNN;XV5f5r2r zaGaoxr`claM$WibEi5+61TLuXwA3>BTypYtPJ00P?a6gjVZzIh_oPIj&O4PLsSWRM z@260iOQlq3k)+e@udD@=sGR%*yqJ8ojBLxa?16H>af^DL&PBdW&L z;@uKL+T{y#WILCdL!zbk3O&8Er!tZ874lG|)xr;}<+XeUvW5KHwo$jhQ;Ki8>{KSR zkkz`=m(N}lLh;*lAx=|%9PiA`IG6ubVgcjF71KhXpEK<$p7Y`5-EJ<9XZikyhTju} zbo`bite)#-Oa6tW;*!7=5mtvwb@k&Q@!C&r{^`;ImvE_Jit_^N ziOjDJCM%Vsa;gKT5vR+=ko@m7LPXa^dxf*)*Gj#zY}#*Z80fLqIk;dASLWY9fR#}d zZ|YfbNAu|X^n`Y-*__&w_PY|tL^`20zs1{QtR=+Gtk%(0) zNmS}jr`MLu^Q!X3^fk_#XOgDc-pU9)krR;M8w%#){@^f8z4Vp}&cd+JL z9G(EA5!)|HU2_2GVWtisZ+zA^TvS?)RC?V&F!l|XIp1YzlSeq}Yt}y6Em>nOPly!} zQTIJ&DftP-Y=*F%DEPSyWuMMs_a_KsdR|-87MY+wt3fW4BQfRWlUde=$`wA;EI=p4 zPz||cQ4rIMqMnoPCL}IowdrI0t%9+)KQh8DZl$LG^90D9Uw)Y<+SG&Sf$q;R)524W z>GDw%DWKU(-q;?ZO(t~*q0cGX_AcBYqTh+en$?p)EvHcy7$udIg_nk@{b{b}2Xe`VILUKP?MShwO4ledxA16Qg@Cf5KiD%R*v~ zud7=zaN>~ug}fHB1zqXd221cR~B6P^4< z@UG-};gHYtZzv3MUY*T^-AVD8uNU6LKkbOVJZ}_jME+Mh>9P<%E!71+{lYWHdVX?h z4{AXcC;yf|J^m8$#y>lf%~FW?bWA2ju+cLv$I1Ts0PVNz-1eD5o$~ig;r(f#*~@rl zt4=$q_qs@gEBTArpgDkoatZPds!4=%qvJo6+S3E^zGy^Opj1r0q-z6E)5Gm}a~^D5RYc** z&oh*UIFKx|-iyr{#AO80?!kR4>A4FsMda7IK^LEs&2? ztJ~sy)YSI^ZK(K(awI+XxJb-f9?`mcz&9yxniQu5o$npVEUV%Dhqbt7JW(qI~MH#M|6_=IE>|it$HbW$jrmO*!QB)2Vi0 zqy8p!s)hfK+Hzc>0fAP4{AWzen^bQ3dJP<_~R7NmhGlnud~!w@Fr;IXEnQk@hLBMTH-+ zbF@-x3ZFJ-mHXz4=$}eLOpdbH%QiDEl2C%vML7FHVX=8+9qPt!M}!if=73@BqPLJddNa;Ti3)TGdO-ZDay#-Q_5hxT!mdWwH7;(N|3k{zK-9{mewnvpi z4I1Bo^ME^@Nt9UjbKxdU|{U(<#}kbMSQt zHz$HxXB!QvJz(hnUT5|ko`Nfxb1XIy{mBc^WhTqiIEHjjX9YY$#jh}5C^hf#?yOtM zf3#XD<3#c)o)LC64c%jHEUpN2On%db;CQi-cr_UgI|?7t6qW#c3F{WrK*;< zw*RfnW+(?1Q$Y*uu?pM67fSB-Y0hy_^7(H6 zer_N)R+60J$AGR}Kv~aEig5fO9-FM1A@b96gJYY^N1A?Uc>dn(lE)Tu$Jnw3a*?>k zyFD-eBxqlo`sXDgMI(IrA1B19W%Hh~qx0xw@UwiYtk11eBNwogRc&X?r+E)sr_NYL z2!`tQC=05FIBCr^?c~;}vDGDbtg$NInpDf)-JJkx7~;9*D6_xleh zGWj+hGvunw>DSVha7Yj33zw6XA~2$o_SUs~dZ?o&@#$K&&E1zq zv0knKsAiR3JDU|5>6aH@eAwVaYGa;4Xg(`eNXkAaQPf_UNauDeZCz?V$|s?tj10YU zXWcBOC$Pp$QFz`}L|a2YP>k@0D>dr+su;A#Fz}|7ieWT_u=e#|z)n|O@MWowaJ$=D}H7Z4frR~QHhr2IA26%7U!i0x9uCzUN_cH3W zC#&Hi_@NdVDr&OM$)g_nvXdHxU(*V`^{R+x6}iEP9Ozi;mf>?t@TLPZiSHQc_@^7? z#BLRhS>4^DHE26`y;$EB<-Zo1ihnNU$J8M?)Dg=|T&ZeP2XpG%3n(+rs}>V%PK?8J zEqMtgO_MpA8ubNocKu}6i(*EW`YMFC6^Osn8ZUQ@h?UY(K3+Mz;Iq20M=^$b)UjKt zM*m*!)l<8`u+_D8w(ARr6_-N$VQveqzs%TZ$eE5jp&13{JI$q}!#84(O?fpkJdbEd zXoR{IB3c$*w;i9^;t$ab9g`CK1@ZITn~-|VGDYPKk)gR*G`~98F_Q4ex%b{SRARM? z=9^#h?I)_F5FFGj*nMF_yKqZac>Z3UC-Jqh=TqSp5SWIxkUg)Na9jxxooX4+H{FF4 z?*XS%bdRXm99Wf6Y_xKIZBCuI$1->;Zezt&hgIx=(HGfoyZIThHhTp5jD>Am#{k1&_1PK4(P$CnJw!g zgR)w?OY>x#SkLNgBL7Kcz+U1ClpfEgYUgASp}*s1lR!d?yj zKnJ(U`D^A1-K^tY7w#lg|N0%@;TO50fBt2@rz|rOE4LIVzp#X`%L6YRWm6>r+t8_( z5uS)Wz|qPW*ROuX-{2vOX0tlB6Y7{1!R-ri$gSMKhFm9unEWsk`D%oo+mm0@z%=K% z`GTbyZ^a$DR8%>Fn_?ReK?}Q@#L#veyGNoR_>);yr$LCd@c56)m$N9Hpq;vAarw&| z$;}4g?rrrdEQYliN5$+nAPbDRi@s(}>-RhfYB>bz*Zio@N8(Bu4ve&$DKbHtiG5 z5$$7I25n*+%?btniKNa>K|BW>+;a=+sGeGFqYx@zsp29qM7|NDiC3qst=XNmh6ky| zLYv!ETSGm49?B#)UhiVD?%cSjPiR6|Ib!wYj1ya4V#iGUO}#%Wdu6Z4H`AwQ8u$$N zo>oZQ<_QyV+rX8esn%OI8pVD6LczE6putYgI*|ssgM;Ubhivkxr6`SJ!m6L?ro69Q z7ePm#n;yO+UN}vlvCBK}yQDZ)mK7r|yL3P-#N&o|?B}*s<0Qx+JSBL_zsu?J1m*|f{`o|RIj|f0P6n9HZuF6w9CFPptH&vN* zP*rwGGYe4JZ0<`wl3@pfGt%7;UZf?*ppb#gS<09U9*jaFpr4~?F6MnR%zlpEnyBVa zJfn6l4HJ7E_4Nn4V7g zeuj&gO=jGk(g>!S^tpMNQZwiZv6P1JnNuD6ZscR5bCu2XP4Cp_?ZkRw+hx zQU6}4UUZ2Vl^bh5KNIJx?fQSq7CHg;l+n=w#m`PFqhe8eafoh6;>N_*SFo14*Y~Zu z?LqY)i(_x89OVQJ_Im7|&0j~S-|ZqF!@1Jv#a^mm>@B^1*&RibR*QKjtlJ~lMM}LI zO-hC#x|D4xejjz7^T|JT3<~&w#-84Jc@wh-F4r?grk1rkj@6WyDE8GtYKC!Llz zFZN25&?C_~IYk#=d{~_I;%~$*rG)9*I(j-NE#aO+&C+nrdMVrEi(=fv?pGKYP!y#{TVlxoq4ZxE%(JYVu$@?S2)`>9^y@zP25 zZ?0#YJMF;-?+=@K*LG25P2FGiy~N98j_q>@kNsNfv79{PUL@_#U!C9M$<2D15_XB` zE^#0F8aGQd&{d=Hx5bBOp?hXA_+-9kH#SoiBG@F(Dr5uXY1Q`mZ>?*5&J||GvD>Bc4lDrz8p+yDzd$G)ZFFPRlBLiWQ(h+|C&> z1U0;3J>V@zps}pFh#9BOQrslf#GDS`oqo_mH>Aux*k@H*zS7HBTucJK66sejS$RJw zf(cnleGF3@^pXKy#Onkxituqr<`ACx3BZB*cIYwD`Y@E19V{rwQ&?!JjIceGHk(MT z%jd^`2~tb-rLYg)$H)~jheG&iu~dGP=nfBw z8v`>A@eWc`?qmr=XO-#`?`QS=a49n!nhi9C~?-V+N6il9^NlYFNhEwnshQ06R zqOO)-=P}?++ibHJq{)|BNUu&czwa^3$8-qQ38`)1%!Vbbo{dIGswy7sm>-&M}#adTtbHzhJ)ElAm%Hy5Z4ZvFlQ_9E^NN=;qC@9td&W5_(lX~Y z1Y7BpTNFPW=`HISp*@9ys_QKBDMH+QJ?0w2AxoibVlo&A%3Vf7M|glF2x7*Y9i*K; zRffFi^H4%E{ZUBd48e0P9&>(gyF;F27Uo_KMBaqWC}lCiZXSZ;wa>v-ZJz#%=AU;=KW!hD%re$R z+MJVFY}Q6JE*`R&GMDTHHuLbK?!2Y2Q{Q3{IZz%QG2E&kBUME~^x>Gebqva*V7^h5 z^4>ihwun_t1D071PeYRG>|)9Ge1xq^NQDHNXhcrVJpE~(X+K6QT248y9Pz9WPG&2!GYCO7sJN(|5Y2aiSjLoG-bq-f`jl^Ie7PlLaJ@ zyWV+|TEvGb%wY8r?#ap4_=7jb4e$Stq% z0b+`2$kYVbkW2$_$TwEPdX^$~`FdW8NK{08TCvZ)FwPjIEA0)IZ?7LDiBgrv$7p3^ z2e8gYNeu5)yhSd1C6j7<9&fS6STD&v0`sGPCesBfyB0;efBSCt$P;Td;k>b$Pp^Ht zpNZVx%1c$t5F#%>C9Mr@A;4Eoh8Dr5O+0NfEac(!>Y-I5@D$h?9cr88aK)HJ#ryww zMJQs?DUB4?=VZqga(soRT)EARbnDnQ~qOr%-6z=hP3#c zHU1o%huC7y-AG^jHxUc~U{HIK-Fx;$j#PprTie8tnhibIC6PN;)%7Klk}KlK#E z%q$*${|qR!@(4he^f<4H2G*aB_l5-RmO?1ihbmybWa&0d3J8z1YC|LWt&w)SK8f}c zLvh$ktE%XLo!0I_Nel)GYldtB4rZW5HNaWkd4mFP-#1gWm zjiti7OVVWl_YdnhUJKd{j*oy7W%$IBX!QjL4ttut86zlDd*Ko*=QJj-7j)tc;0;lg z_ynPU`ZngQ;^*dL!(+3w;H+h%m%{TN&S2~bYQ>bTkHhzkn2=ukSQM$dctC4LsZwl2AS@w(baNUensH{>1 zwV#BVR?t)r(IG$;T<`3%Y~eEjMzz4ObPF=L{-SY3C6sZ?E=H4(ndpCX!8 z*+eskeKf~WyV2NDts|J<_TZGsM^j?Mfhk)sT4RJt)anTpG;sgcS;SK0_97(-ifa24 zRg&SBc#q$R@ex|zyG13EcD>)aFz>|w(9N$17Qbj)$|tY<(ZM-NH0S%y=TGv|YCxw2 zGD2!{8WUKrwPC6nd!u^KF#fACW{4vsBEH!MaG6Jz-e3=YyF1}O)k#87mT5Reyc;IRe~&&qpmrZfZX`OpU+;L{U0RAZ2yA}MQ;gw&>njiUsPFdK4QX9}1OQ^6iww0Kc7#9djKvFz0 z0c2ocP-bjk5JX6-%I4kz_NxsiTm{qO&d}a?`WYUWz`HQ;AWUX+@NP(MYz&{^(geo9 z1d6%Yfw|d=Z`oB zs5ilZuz{r=Sc}{Hy+hM~8a_bz5FjZeB|wjD0@wU;qye@9pzrRsKrt>c0O&XSyMB;N zZNT*Az{JGZ)Y`y*Ucy_b21a(!U=xv2%bZdBP2A779dv*slhIST)Z-#gE zQwShMVDNxJ$U*;QXND&Bc2}1IXNLCgXrdo|L%u2+BU>61V^i=JHO{OEhvbk9tchg1s0ednF2ESww~DF$Lsm!j_C>f=wE&huMcUB zgb#SSv*Dk5=Evd&cmq-V_Wn%?0K}16KQXon0FCAouA3Q{GJL)pef#6R_;-E-WZ(4_ zf9-{T`~RT0Hnn`GXC3K(0^+v@rgoNY_95_vua4gvftc9vtqp$qWmg0I>1*K@Hg+a2 z{jEv=!t!54x`ZwaydqWB!I0NW8%6}m|e+mEju>2dc5%^pcP!O-P@*B*-pD^f;^dxQuq1J|P z{JyUGh@XvEd5Av(UBLc{X!NsywW;Bk^5IWHL*p-5Q}ZkGQ~moq1_+1&@;bU zjSH){q0UiZmK@|unOzvG61nh7oku*&I+HU_668`c8eH_Bs*z|;cW<`nT%HekLQHAc z16QmG-SfhZQIuDXyMDcbnbY|Y(csd^2xzw`UN+ei5|32Uh{iJor4EjUlkFiT$wXMW zq+aolko!oAo^2hb-R_F^6;IpFU`Ki~6cougmcV9oJ*}ez_DC(!eq&MSgIZH&PF-&p;-hkLP-G}Fnr>8+^n9Y!XVho~oToP~ZI&l_{ zVRl>x!a4((KBsG?T(}OE*g-BjaMw!rgGoYZP>g!NqE&|tw|?!=<8wY-&Z<(W_>DE5 z(4gMrhAqeAvA@H>K!ZLx?qcHIZl|WfT^HkQRq*Mlb%nsgi`!B+L7n^EDL&2IIVVb^ zphNtry7qJLLfJ_8l+j(tTCAePRFqGBw{Y*Myc`QDlaa_s>2=aB(z#BdA9U6bX}J0MNvJ?5_N_IwCc1-oJwljDS^QxN36IaPWreAC!vuf z$C;3t^bp-9Fx#{+jrdn9_bTg>KfoV6bN#{*4oWw^4D6}P1)M=~m!EtBpQUR!BBE(zMB;yQK**c@-1aiVgA3nb-i?Z19jit*W zo=niV|Aad@BVj|ySlT4U#4IvQweIj8={UpEC5}yxX%&VS!!CP{(bCh9nMTFZpAxE| zySqU8e802n9E#23tLbzp0rsMizqvj8Yke%UZZ#zTsCQ$tuDdq0z@Wh-q_cqLy8Y!=K!Bj4KA0;zliMVi2V6<|hg^V0n8HfaENwI`e z5jq=pzuaqWfbK;Or9l`=Yc*5rbS9)M<;|?Cnn!lX9@r~qA=Qo0RkUicl9*`91r&HM%5!~g zr(^eH%Go<_W?O8?Q!xyuPKMOc3RF;1%J>f`h55}zDgR8NOzii}w;b0!V%`Lm64>b~ zg*Tvw#t;X=KuQ8bAKxqJG(`$u-YSn3Y%D8xf16O;pAw%~5`$KUH!)<_gtdHx;cO$^ zwUIkN&z)-LDOYd%*&k$x0*%s-dn8HcLlb>w6BH(H!sm0iu0tt`nK??;=s&sY!p>A3 z^{)Cd39Ue)U~e{EH|A7`KU$+9`ADiVXvre2Un!(ALHNj8TCDz!CVLyQFMbz7#_GlD zZTKm-I4020?DiqsRqSSYZ>hfm^*}DmTMOy3qCgotc!?E~W9@1B{;G8rm?MUB2qBw$ zwFT!M*c+$$t>oN;{&ANv2;pljg=AadRXFq`6pP;n3y#Io_EFv&@Z7?cHvKDGPv-sC zRiHTsIls!ro&lwkODoK4VPTCuTw%hW!pabJ|O2x_1Sx@Jb z#ReDq0P`QTuyahXWUFVpN9RkpTuDkj3v#aCbCR|RuhLH?4K1})aXXJXlrcHwHhfgr z@LBq)cz?Yt28aeC7n{xCD9m*lmuqe4@TfsWI4}ITrJWi4O|^?Xz}tp@>0|;l1Xu&B zb4}w)lfzsz&ET=sFx1lwXsUG(>xjkVCW{DdeaF)18BC&@Z*L{d!n25=aA~R39Y%@6 zcmYKGdIadC1c01JI63yrjmMbcuNw{pjr|+*d^|x!Y)!5B18S(_2jyYz!$Q-<>=A7H zc>aOeW`yn%gAFrooY4{Japcd!!Tb|*FHQZo)zo}DL2;m>nFei6%^+DmnpEF1Vsf4& zU<>9zL(7p4Ze*Nw2ot|rJN){m6y?bKF4bANdD{x3qr-^M`Z{9pyskM)CAJ=Sw3zUp z*;Q>TNhIrzy*}QT(gEy%CR?FQKJ#V0BgdjHw_^Ss-5*|E|C7Fw2S@z6e6rBS56#}p ze=uw#2}cL%cRS8|L^%{CXFO1dxLt&2PCQ#qDNvhK^bpJ&fi||p7odKz+ zfSTB|eAON?tyvjR=PB|4@z@nsUyud$jU0hAtsPhL;e98GsjEera_wt^OV4SB{4dj? zRbw3M*tr^vH+HJGe{%K4_moZfqV}Z*d61;kdC{uHwZY@xYl|o?>)b`@d15(s&w=-c^$C`J-II`bRhVVhKu^q{S z-(5oF2D78D>EAX;vDD9`wio}QgSTaJoYlk~;#C^}v?v9M2*PckA&6-CY4L`KSD^nu zfFW$RsRg#lB|*NCj1YINuR1Sdx*XZ8@fKvcc|FB&J+QOuYE4Ara*7gMaM#bJC)0uq{GA zvUtb3nm(h!P76H#zG~i;XL_i^`T{>ifkGoR9>ZNeKTh`zv~{v9+I65G0~sudUS=ay zUjv$EU#XG0kLCMUuED^(>z*3Ll%ukh)LB5VK}YJfRk(2v9*p6?X8d$OqDXSMY${C) zUYyZbnL4gDOrxv&+2Ci@73hZf zibZ~EL~Q%-DLl*CC?K{k^k+z3w&&zI`4GvK2cK}MH?$NL?Fj-=_GtJ-ahy^pDs6&a zFtf|F*89Jw`b}cg?ed>R?#@=dr)$8VdxURIR}=)$g4D3~xhQ!v;Dzmhb=BzqMMv=?-rhh?y=vCGq@c@WWV2y~kk!mffpxyF{rNNMUDU;fC&3z8$ z47!xuS4bAn4u{Z-40JDnBKh)fy4PJ z8DoZ-)1=8JYGOdhw3L4HYzYDf?LgtEuNSp8rkbVef~$IghIuKy)za8thKG`=+F7*C zt2A8TzTv&>qzM&N0hU9HB(WpQ`ULSI&IL#c&RAch%^Mm@CE{YCM60vq@ADTu zLDR-aTpWE;2{CT~hgTbFB+Mae z9v3WOU=Us&2>jLd+n=W_plmb3V%O^HGrIw0hK7#O2|e`Pa2Br?zjfA<4B#%j`s!t9 zRn^Yq{iN!(8n2GYq^ihIICUkfI)KI$vSn`~JIgQGVA=1FZlo~+@2Mk`Nglg|n}>6Q zfph-|a47sTi+(#cyQ^AFXMWbeQh`G3>} z?a4~>W6)r4ks?#c2vzZtvL`rX{PTzv)RjG7ygIEdtp1%_N34Xtt zBm0MA;l&dzc-z37@j+E)cRWV!B-*&miB>!vHSawnvuC=35xd8(^^#p#4BptHuN+>fvRQ(>Nw1$O`R`E5L zpOBmPQ2nSmK~CqW=htct{d}fxZ)twyB`U{<@JJ+Hra%R8jv$k|zwysArHtwqW)km-rJ^{&+H*zJbYUvWKU%5%W$mP1gnq!!@Dai)Nu z>Kv+b;yMZXR->qT32^os^C+&yv3FBSJlCVjiEI0|80i#l^?z*xHw7(?vbIVVtIp-5 zcM04dlyAGcGPa9>67NX(nx?vEVP|?WRHeikRIVJSej=7-#yH@qmO>98GXx; z0qga%QZMC}?DcUaf5B-j5+=t}-@HQn;b^zHcoPno#EZ`dFL&r7d@63(yKWb3Y0#dI zRFS9seiRyJHlAZHCh{4^9%4(`!py0w*&m%P}MMlqdNq z;Qm5qivN)AWTG)va@+lLngB{4OwQl;MtXHa2O^yz1NzOzk~oz^?c=@j?p428MlWZc zzdkC?=>nI{tk9pvyMhmJ1J_N-{+?TVMHnLElbk~BNf(p}~btB_!J&nrUElh!9 zkK225aF-)bSOFn0^x_@LD zz9WisMc)-v%)E|t{HR2f-1*fioMd%$TxZu@$RAwyTs638hPfWX1X*?W+W!l=fz)%9 z3TSIU^HRxYE9f2ybC%0LVf(4EcgT#^VFAG}Q{_c`744eO?liOx3q^OE9J zaLA>y!%cpvY%Ng=$UR>d=FmtC&zpQuE%U!WT{P^Uc>BOE5BZeMk@T}1V_Bd3I=*6N zopMU-ny_?SN+;~n-wM%H?iEotwCwYgYgPv2a93xeMZ%o2SjR^#EbI#llfhf3#q9A?}DPF!AUjyFkr@7Gdz ztjN5$n`{a7^VOfh_Iuj}v&*f7lAiM>Yj3L}_L4=1-Ux>^grR_kguxxmGU)S@nv9oD zcsmS(AkMN)?#d?3i%^}j6hi3rU*a3_>s`x@1|J><3qFwxy?y*Hg+Tas`xK7uo@MN< ze(s+uML4fwfX8&~Mrs#FWY9;ZfOSOG%pk(0O=|0w67wVT=Sre}`@;h~uje{k4?eA0 zUIyB9LwzzQ>gFCCS8sYsj8QE+j$S*wO{sWG&(dTte&~F}t_-5< zGo@qxEnS3;5#Dsyke|BJy@qM!Nk!qGWm`!r@Y&j&(Gmg0o+(JhT0`~jWBGpVgGi1F5{&+N z1I(5vo|L5m+AJ0IEpTsG&btVc%)odWRIvRqo0K?(h_MhS;+LK(6jPoqMK!&Q!m!xF z%~?l#3~eNocGcRV&@BH3%n+J+6US!XQv3bLpk!cVz1TgHiWjv^hz~b~_Xe1yejAr3 z_`CPqs1RuxcV}y&TAMe+2yt{k?0;Iw66+2OGafUB62c7 z(o<3$qGnBNYhUp~?Q972O<(hbxu}nLrz(^$`KObtVq^;Q8)4xGn5Bs(y28DX{wVw+ z@zHVXGq29DQi~tum`W5E6_Q{GwCV650*RJ}$d6qDT{Uf?uStElH=&#%17?^nQ+q%| z2tqucZ)F}j>>m)o)M*{Bm1ii&D^?oeXpk)HExBlPYe$`0MGHMXpB||KnHb(e_-^}a z$b+$!napvJrKOZkUN3er)}M^AylqCCoC}7g2$`EAxvj+gmmC`;Q^cG-nG#-TS}^V% zFaz_B?f1@6<1$wMx8Px_Ap8-LcKU??55g1qlRgNWLeA^M5f$FQ+hRQ%DXz7iN3U-4 zbH6?86hK?3sWzz4rYNmZ!#5{3(0VH;8&j7t;H}j4?~w55NpYaAbybXTr3O`NA=&Mc zIBR2QLH-LuxRi?Q)vklqEJY{4dvb?8vJucoSaVDRh@MeAL(z`nsrzuHLDOV&k*$R; zyVn?7JiOV@(DZGA(5#V6)Ef6!!!e&Xi!p?mmW9xX{X*=oX2F?e-o4$r!0{Kjo*JWd zAzxIuZQ7Nw1&tG= z;&UyZQ-C{K+1E*TO@gv|VmqC8%@`9l?2(mrTtT*KAy=q^p=CE^3TH;nGqglMr0LEX ztjM-qq~VBH+8@YggLE}W&!)mfRogcv*Tz_5FW&F!WPo22t{#TrIy~S0z&+R!V zd4GA{#RvqQ*&Bj(_qsrae@oUAZ9@N~2)cTc>i0{I3t~NaTVRTHqIA83%Pn@~R)#YS zMUV<4Bpw%91edFV&ses#tM-J%Fr9lTi|856M=KwC)w}K7?(lG-WedyriMN~($`|f! zBZnJZ; zMsRNMbL!LTAxVp{sUZnyAiKt~9NRo=;&lS$y*`=Dj8*OkGjm0~1ugMLD^%E}`zx>6s<>88_=CZac$L zU&T?-)j-0kEjy{ul&!X4b|Xa4bajbZFIx?d$)zvm6`^|y!!sGCZW$&ayysbJ zwfrM4VlsOg31<9ei^~ye{Pv+8Q6+zDJy#!mAcVv@WX632D#nhO;JEz+ zngcKoc@OKqn9#!I?jP^Q(wSEmtY^h?H2BHdW}!E4wlxlEWW=KQS?aAPvRDOUojN0EYr5#{ zb#!O<>c#!e+d=)JJF)(@9?|&1cLA4x_2|fY(}0f^gD%ME40YmX=X`LdYrP1~V1XpHLq2Jjwvl#^Mc+bB`IK?aXtzc0 z4#hBz85ncw{Iy?I@dSYIN#E{#2#(J@xlI)%-Dl_pTg&9Lh^ zlBN;{QegGBZx>JyA6IP{N|`<4nGz)hT2xm;%9HEexBK}@Tvb!SI(FjSXSz3!x3!5E zPa%|8ki60exApnyZyy^0?yPgiI=kzPJ~g`DmmU{T$zBRP<4gG;iQh3WmxGXQtR`Z6o}Ona-w|n4{1}W zg-&Qwb6PA_qN$z)vkKbO{dfL$=E1*nY;Bg53STG2>{avGKP7r|PyA483OCx`^{g|5r~ITVUJ!-w?*r<)x{2hK z`|t-*DR87-R-SvDQB0NtatDw_MjEY%*eD9Ig|yc4bz&cK(A{n*Bb}TI1{+}0pU0bN z+GTFz3M{3UL8j_+xXuahd!_hhE9-t?Xsf#xK?AHsi0((O)dFYlmq9}OB}u&D`|zN& zuYYo3iRun4C~CF(^Ch4Mt;|JFv#Q69NXco=rJEHbes(-mf?KXSsh+X7khldb`K3%f zxd<&U0k^-H(*e}2g8a)R;53|ZC@3nasXbNxq(c*3Wb&*zQ%puonV8&Y*u5cu!Or-0 zbB2^cGMdi7T3ehwsTHSVS&HPczS%1@x9OLv$`whgZzQJ6S5+SG#3{)ZD+%x2tytGB{?>yPS(Z#Q(52%QdLAkz*Sc{l%7NjRjcJ3%Jk-8D)d=#itwgMe zG3G(-B1abNrWZV&m;4l}95fUT=g^lGpY!Ig5% zc-m>h7l}wNiVxud%c!B6SL0o94GhZ%WP*s$@4SkPoSm%Era!M-ERq_}iy#c*%!C1> zj*K!oqDBOmbM2ArESM;T^!D!4#$5Vz2Q*&EX#~b;n4y)GHg;zF%BlrW_;FQm=R=N< zFjXF!{32QWy+_0i538H#t~igByb*}qB8DW-e^MaM{WM@aW5PQiVly(n#?_e%wq*Gf@-vA-HTW;(cm73`(Q&_@m*j+NQIjKM@f3F z8FDXgi)$NP5cX0E>4}qai6Uw$1>=vY7vJuza=c+{#^Z@&lrrUAKd(!=-WHmwZ{!dc zutG{+7ZHRvCEk~6n)e>tAQ#L8rDP9YacXEGC4NL8j7Zhv>RSghV9?bf7clYGU6MUA)w&)W_@#bF9%0<&f*ZLrBX#In1R z4RF!|@RR4p=&j&2SbmvjCII{yQk9N7&qGkS8O}SMl^&p(9gUTupuB&lQxG}@!}Zf3 z)9m}v0*_kp+9)8O;5fEoj%LJ(_uR~oa8hE3VYZHur)OCSQTvrO*IEX&YyHO!7q2Mx zbLkut3`Q)vM?R-cM)hp{8m@CS2xkXXO7?*|26`>Gqj;K%3D1$K6Bli3<=(W%RI~LK zLP5#04w4MO*$Os}TZ9SrMj*@w>My@9AJpMIByL3e5Ty)Hxm{I9&U4&Gt+NU5^EG_xj9`m)ZV0ch-#4{hlCHF4~i zf9vWq+=lI#60ZMakd?w#PhhT3sw+Ugca3au>mn?g%}J?*Qw>TBHtGMgHkETzqcJM| zfw&|%Em!ao1j__=9tUttSf0cw263ZXC)~rGSs%@#(~1qD(uh=mgpoBX@P$QpPm`o{ zqy)N#St-$#J*UM+-#%b*OI6ys7kAG#fY7s_!1OT zzSA!Y5*ZI({P*{$7qQ&}5X@BReq1kZPxh?bCg;bc_}ae-EEt{K8=kHK2lfh8p82 zqf>-p{StAs(6g-CSE^k0Y{Mhb&lqi0Im*#zvfH=d4S$d`?f2W3VPu@Eir-9Eixa0C zy@`n^#z(TJjdP2z^aC`ctObSIF|RrHVKSVS=BawMj{O}ywp*QOBY1?j^l4!4qUUUn zIMjy5^;pp!HWhM{e(^=zs$y!b&o+ooWDM}Qm z&(bl%thzEV^(Gp`q?70T;df3Mds(1UiXhi(%lt)O7Z<1p#< z$%gNs=(uIu1Tl>+o1MiyiU*A4>S(Z$2bUv@U@gkdL-mMqi`V^Vg zM;S%4MM_m4TIhLlF#~qj@(CE1M68w~tRlc?USu57HAWOP?fQK_()A#JUK)y@-eRux z5OiDaNTMs^+x_buq?bW|vHoixILeulCN=g(j;%2^)^QQ?k(}vFd-gVDaWgQxc9w;y zrD%A>W;th!V3&f}n1_*$MaiV2CE3O_c6{*YIfkQNske!Tet-9%z^GLz@Z3JuL~QaM zcJd0t+|J_wvEd$lm1*IFE9W?dG@-0`VGfBaGpq4EpT$4+DfJ&+q<+rV6jNT)ux})B zghA&72n#E4bfi_vo zx!N;S`rb6SlW*&yX&TcUDidQu;>*TGUx=3maTrMCU31y}oL0qF^h)Oh6RJ-MdK+C> zvG#)H)I?ET(zOs~tXH)!6y?WF>O{oVrbcu4H0R|yrl+AZ+f!Yq5>Am8IxCEXnnn9n z_MYQ40@v0t@H7d|iLZHcmZheE6maJh`R5*+Y$dQO)Ughdo*|o>tkbRrOdz`gAXM=M zkL;UKYykZSNh)JqS=i7|iybIPb&Yl3H3J0~-I?o>{OSh{*$!10Dn@ zns^ylTaN=J<>?(-(9;M|L-BDv(bbq@;v($HFD-l@J6JEFUQ_m1q11T(X^6pp2%WGS!eLLRUxeZo z7Oi(j9c7BmQpOAQa00_F3;p+0AMDygim1~xcR4CpzQk{i6inawnd6plf>dU1`t(+P z(iiXK;mP&|S0Mg)`#rjK`rPs*S~A6*BKJj^jXn%}3>L=vH$YI&_w~t{@fGW5gQ#dV zZSzB*apKVaV$%q85Dj>yIX+T#BY{luWsJ0T4;TV9Ug%We_Lrf2tE(*PnOCOwiN>>C zh^9;4!ny&?+SSuYay*@CxXT;=t)e#Ow|20;wx!_CT+sOqx~>fELSn_s%UmTNM;t*X zKOsqulZ7#$@vz1B?`}&J)acgvNopODJH5*5h0^*7Ff~4|8M~q+m}4;s=xT`Q9KOmS zOYot}e61V?vv{T<85cj{w)$havt%0&ys_Olq?Z;=LQnH71b2tE^FSVJM)p=MIVAr7 znxUxDSr#cZu@dyz=d(KKJADB#-O>jyJSp3beG+j>L@#F#_L-^HRWNEp&EIdwqnK>J z9Q-E&$_5sf^eg?@SZoh%Ihph)weE4#j__+dJEbLlyCt2N(P_$GJgrscZmlZ_hU%P; zsiH7a$q>ik)?sP2=neSq$il(#lkFmB1~-W|o(+#ss@{3sWoV3&rsz@9x8g*#w1=`e z5f0POIqxs`mE~A!LGQ2DGdXo@K5)dVH*@Uj*3sJP{m>y_v|j6vQ_6CshUDWA3G<>K zOHyRGE4)wTvAyvpUUuXoZ6xf@`AXhOkfU1O@$JEIbjPSuiME!=n6*4DCqe$jGIBo% z$cHw}4(cYtqs!sAp?$fMd}T__>U@!`tMTF8^aA`}te7edRf$EbcNX8qkB6B&++mX6&tM!F$xg=05kg!PQ0wioz?Di_*hi3w| z)*?NvkK2IDR#lHN@<;Wzts0vRnTDR9O!BDW31!IGj{sqv`zsMmk>z&Ioo6<#M8>JI zAyT#7BUkk>H+Em;2Z$iQ^UNJ$8IkM<`oWfLGwvcLCN!RLp65$9tBjc+EQu7UZ0~eO zO3bQ?NW#&;4u^{>70=H5b(Jo)GGxZd5eo#gy}CSol!;SySNRB_HX-DxbCE zMn2GL0KV~7-ouFPo1S1n2jA~OHv8q>?C*3B4YwiQ&eMkp36(=@RqYpf0Ny}`!Ji^m z05;=k@SSCn=g7cJNmwE^i2I%YE?_wEQ}A@IqC>b{>rCQ>1V)+>SP@N!l?j)&tb)X~ zGLCnJ!m%2TM@Il^d-*1(VhUWh^-0`XsTt7kZ&m)kYJ7#vZ$Ta=K&9 z1%KT{Ykr&K!J-Ojc-svxJ07pgP&I&$HEX}A(srUG`GtaY2L3cPE{mKfMeZB#8J>EW z(Vs11yq!{o5~6V7U6f9_`#Tzj(Z5iOS|pkge2G-R^&M09!|m11#eXoVvhu^JgNU=M zK|X-rZwf>?eVvcxdNQZzkGtB|_20ih9X|-x@DAK^%S3QA3bbmm<-9JnfFT@pK2+Pj zBFW{BDOS*_S{npWOPqq`KQs>=U#;5E=aUDYGyws}7ppK{mJlJXea~>Q!61R24M)Nq zTVxFwP>v$iQ`4QHxd^L~M@kyquM?dj6(l!V^5Nc*xyY!(n0O4hJcl#U#Nl`@lPL#% z^zz(&s2iS}(?)rVttW*FM3nQ=Hm&TQ$sYBWF_A)3Ax}+?E=R{)mQ4&ro+|6Kc1R!e zk00~b9irOcw8+Ua>fsQjPvgTboak4$3~=`&Wl2SX5MLN6^x$((D>;C};xkitAdQKQ zP3mZZHBh~>kz)O*YS=Su%oXtsh#?^xAgD#4odbxTI@S146_LRrBtRKsqWc&%LrQ>k8#Aw0GgVd0Bz5;fHmcXv*n?R6}t zav&raXn=7pF?chcE5nUAm~zNbgp?eZh-|G|y#o2I2FX$c zw7SRftrW50a-r&1U6H0{k;A4EYn}PzO&__2Pp2fTZ+z&Mf=&M(67}6Mu6#32y+@b< z;1(i%Jz_0e?#-TD3)kgd%_MH0zE-R1kw|1CRHyOLloW$RRg?2`@1S^GA7jQ9hIPq4 z$9u5cvHk<-%FKjBF_$B_l^Q($Mw>~Rb-Ijjk~$v5g$}2S(OjWCl_EW|gQv}|;MAH{ zLv|0uJ>SggrZi}ZV_3{vq1Y;%lkkvN5IMMmr>biSjedY^_j+FAiEj8`+D}v_HO3Dr`#%Q)dKaYm`b4vV&|-7v{9WJ0n#kc_ zsBh8G6Q{U_-Q8^%;@<7p1s_x~3eZ5?@>B5;yWUvjjdNGw8U`{YZ3IU6SsFQgwtQ6W z!q=Y^q$q>u%Ev9p|HZ zEDqt`Vn6>Ko9&Up2Q%g`-darKM)q(91Culk|-jGc6x9;sua$|HY%L1h0pEFdW57{s4g;(p1kQ;mjgf|z=Y4O@!g?* zLU~q$PD;?LMovtseVbW51sO!)SQL*Qxzki2MO>{+&=_cC9^UfETMUqk5K;#c2U$Q7y1a z6vxf?Hc#m1XVOy5V$SAJ)hANmo7yv~vq0g-xOx>&`bqJOswk4q_;6BSlqdON;8t$} zC&duwZMcqqvaU!RJ}JSsbA6o%v&1(_Fg?y-6ruSv9QsGb9T*z35V9rBit@7Flq=Du z4v!Y?9Ud37j6`HZv0r?oK8M(l^#v>b8R@c1X@za*oba+E49fi$`X5{?{tb(u#1GnL z3J*cfK z#!?65dvJt0;+1N0tSE8%EVbx7AZ4u{cQH5NgvXBc(*iz%-G7LlI;N2_Y2`#}Opb^G zOZO*VlU39QeRMBV6o{KwlJqMp%)25#&Mf(h0fQBtG6Tw|KZwjeI%a&MQq96AL1}QH z^XI0}L!5mO9rD<^{%0j6kWG>PXYjGbN{hd0=8i?R7(TPIXkui?E3~Z5W|{Julrt5x z-cPJt5&TT$a>0vrs*bX$V5G(gp-klLXgz6{oDF#>^r<7!INb%qDw}WE4{js11avEl zDBZ%S+&$HxFdh?}trLaG+hrHK?;CXeC7pme0rAX*C8d`RorIn(`dJ|DKR?Uv;$75CmW3!x(*^%K05`BWbW#S$p3kd$0i#Gc>zH9l<#qJGYelV7+Jx#elm44J_5c5raC3XrtrhX*vZ+rndiFCQ*5W{&w>L8+YfR{e_>Mh{@lL)gyvlLJV!F=T8gtl=7VNn&D6a3`- zm!kzR9CkJ|8rERx#oW3YS;*8TO5TWFty)1SDXNI>vbEq+6(bQYA-#=#KwnFG!t z)!P4+Wvs8@_tWdyIIm447)vvquiEz{dY2~It``%jiB9Ir==7}eAV0^6?WuxE`|%+X zYg-5F_FiU*{#7WHS3SV#fM{dE3UcDo7KKGt?ft~DmUlb{esHXlP zGzVD`5=j+hBHqE4lUw=$Js8lyt_4b^fvX1vbFVwPGEiwR&>boF+~2A1Hyb@~bKDB` z2qeO2o&ciYmWqcnd;e64xFcrMhbd2Nq-8b#jI9q-atBEhc};MgE?#WhuQWx4cKFhy zQ19#1me3@M8tJKpKPFN&izwKLUyD(sguoVXZDx7jyzl^hRj0W_TyE0ERU>fPP_(kK ze|Kn+pqt^ea(j>D)(sAKy8O0;dbD3|A%$PAKG!7ju1~l@*RteNPWIb~GE^ zRhbqN&?BSkB|oqm#m!;=*)dEV-R1&`WhFpTK zn(%pA^o>(-K#(@ozg$9m$GwQ&r5QytH;^};`FD7Hu6h5OA-y~dto!fq7RnfH*&+am z-UWm68i}gZ$XM)OB>R=TY1wOi2g9B_eKjpa4X$4Zez$g3><|#Ca%I82&|scJ+#0&A z5|D;05WHE?{ZG0K@e4rQK(JN#lT=_udZqT5V^dqGeVcFt?o=ip%bEB0RQTTq3` z@pZX}eE)sx^ykgV+0AlKD&&y_Gs>MIVxjCVZ2L?_eOt)oh~2@;orZkd?$gwTD%>8?U5wd6lq zUa|~c=H-pYr$--#Fd}ZJUuSia-dNTA;fCgTie18M;V!S>HbzVdZ=h>5iEt3qdj*II zTk-1a6JtPvLs%KNi^Mq-fCSe0@NWvfyU-R(Az8M5P^8f0UlFe{`+%r1+3w#a>|e0- zU2woXW*~@!f766Z#@Lo2{32(heSG}YkNSa=~C%hB}-TAt-uQaszN@l%KP=3|B8ntZBX+lwfTzPZx=479}i1IWSW zsLUhB_SP!Ps9OEXVX|hzDNU-v|0n|5^8-P=D{nJY(i3&9sl=fMhRw*795oeKCyqgQ zj=QMIlvs?+!1Xnu8WmuC#ei7U-G&oIdj}ghjLk1u`eWQHbIkeM-(Wh4`9ys2wF7bH za)T-p4aL3PqC?RBk%vlQhf*a-TH;8De$^oeG1Xg2Q7WDkfBE8wk0~xt008Yag3ohj z8+4TMXzD55$&%h@GdyXDX6+Fq&``jFlT3tK?)EVs&LFC`LC66TKK?fVSl>Vf{L3B7 z_X|rZ3z|Lc$vLqPl+A9O+eG2W%%=90{B)D%}ms zuL}NN;EbZlq=*(fS8z=s1K)jl0x|_=(muvvdmTbIiNOax_5>f-^Ta{-{zBg)YgLo4 z#@3TK@ZhACpTZ&S_y`NY1PXXKLG0R0uzN--?<-UruQyJj7~;q8=gzc$T=AO^U=5z~ zju>%Rp{ehNEc~UCy-BFEz0_N6nxW?48CTw4mDZIh+oM#qy%u{9VTsd_{fcS%R1dta z{o(E1>?6@WBjGu>Ys2VG>LaT_W=yoUDh>bPa;w^PpsPO+M7-(Gv!H)L@)yw}FnuU8 zks-f8Fh6w%MkFnC{J!rte$-1WzZIjd_>!f8a7u4r#S(bh`@Xt@+@4m~d^fwRzP!4b zu2G0s0^XY8!F0Ctl&cdj`Ua43`G<#BDRtEw?+5JK!6ITiC zT4;?GVR-P9(SX={5+CAJqQ-X|CrW_QYpZH(?6acq}#8#UKtg262#`0i0V- z0h^na-4;(Sc4CM>{F)+F)(#F#SI?eib*gFIbyP3^V@Hd( zrZ{|sM!9tlW`3#lmellqWAHw1qM)I2qT(5N5y!RGCt)of#1ifGnFwu7v#)q4o`-1U+>?lz=o=TH4R z_hEq;NxRRv&qKUlwd{;~S4gyafImzESLOFN7=ilIxwh8`^3N@cq%Lf;N3gjX$hBoU z0FJKJ8G^dqrMLbF%`sPTv62C2{-c@gFCOr08Uhw&7xJjFR*pRCSWgg&8bspIoIHxQ zsyyZ3cXLe@9D|G$!I!o(7;Z$JTc;3i!$kuoe{f~?M~<5+Ct)ZiO|Z95ilf`HkXl^)w1o;z^~D8CUe`j0r+k!gFDak~f6;r2I#Cd7jyy*BfDCzM`DMz} zz9$HOJ7-BrdWyv~l_YaNG0dL+1}$Xf<=`H#mS3AX+~`a@m3lz4m|cNzx+xE6(pIA$ z0SoG%FoB!mh+$X7eIn%V9$Y0|&2ZWP zqGJ?jdj<0&`^%0cy(Xz%K}{*G%@rp|IpB~&udE@0vW#mBr4|L=j z)ofYQ9daVa%bU^DK07kL@*dfRw>6%wuxL#X6i%14R>1=;4pvFL%j6v!7bNNw1EzgK zy-1rwjUKIo*t)Dd!>SJICTE%=r|ejw*)%m3gyNKp^h%QlD>jhp(f)z24{jr_y7fvR zWg7cIXK`w8bv!0p2LQYBBD3wAS18nIYo9P0Dix?^$o%KGzhr+GU01BIOi--<3#@29 z*1X@MYzm>uj28i%b>@VipTWE0aDRCnq}&CE9kYyDEyjD+Vlm-$OS6i%XmBvB{$fvH z=ecB4lmW&$XN%rwZ4IO(79_x zMRLI3pJlj@nOP16cQdPF>Emj38E#s?DsguF5L^hJ%{{&S9MZ;C{|9f0 zdHtWpS56kj|6^JH|1iF`fU2liW3$N+!!8jpNW3lV#JU78!7wnu{I^`nS%9R%DRyvy zmLw!3q{2%i!Xf^XzV15Def|Dv?X|yZdEZ^#e)-jX85XVmJ4$MGZ3Lt26gbf7*%n|7 z=n12v#|MBoJ_7^#XvoZX9&~^>r)OkKCWJVJa|?|6nHInUYYO6@K&jb>cf+Dn2*?5l z8JLFOM@2e9MFR!`^bsgH_lMCnFaiLjmT#aH2*xfr1p@6fW}fWs@ERU?g}V=D`TGEE z*lYmw5ETvO{Br=G;0iV{z^0}U7>2q9aPph5Fa`xY?_3WMbh!J28l*Y^2=9)1xcBh% zbkyeTcJ3ayE?wsU)HCP+7C=9S3-S!I0qn;Hv(VxU{=JUD&W0?w191COt~)aVe`^W~ z1b_#ESO)`f^}oLl*bFiV2tNkkRdo$WqlWk_Z~V*$%L(W=1KvM5{o&r$-|YtuEcEBl z-dOM8=++YK9aQiRz{LOpvY@PV9!7MK3qW0YZ7)O}**O{9n_7l~X>9UicrSLM4oIqj z8@MbS?B8^54-C{jxZS=rn7Bjp^b7aQXd+rs+a2A&1PSdn{;QJ*gaO{*iP_0Mn@@HP z>hciu{R46{sHok!BeUVv@q{TbV24kr8qz0&C%X1Gc_rWwK!5;&iiQFZumeCC8Vfvg z_wcn>U%;2z-8&42`}Wn<)d6&amkszHbSnslZ>#T4C5HeA_YC;<{i}Vq51E~YZUEgH z0Q^Vb&4BWie-3Yyu#^9OaBpY;vd?)R=-mUbe|L7r-wf`x(Ir5*` zhU4${-7Y6L2MTz9a)=J#@BsM;BqAyTFcc&Z@aHeS*aq~c3VM&Pu3C``E$}>VgkScY zAH@5|<^QkWEg1HGuaQL;PXZdK;dl4}T|ls4b~yU&FZ05`gl-7^ z;}NgxK*R!US_d7l!}%v4%eVL6k^~176567<-`{G1_76dU{>0xJG}+|f*~7npiT@P- zOAcrK%2YzOIyV0H82JSV15jYik7Hnb2$Av%2>a7t4N+|bBltLA_YT6k`|xxD;jiC- zZgdRSd*oCk5c`Qgw4cC`Prx23e}X^&c&+`35C{XsKkP`TVD}n7!6E=W|NaOR0pe%( zBHjX9c?$do!*O2!g5W^|{`0vK3H}E5z)KeXw=dNBPyOn%^WUKl?_ab~r?z8{k8#dOcH7UA>DViIJJKdAHO#=A7*XiF%IU zb@cw*vdqW74Sk9{qk&Efyhi@tK!Oau{tT}iZa?|*w2{CYe}r-UW9zOdbpM}G^Gcok z`QGTH#HExVu$S+L36SRcZMiJ0j~aW&MJOARA85_-^Qod znAD`8|Harjb!Qd^W;C{K+qP{^Y}>YN+xEo9B$?Q@oiDaKy=l8vd(ra`-nGuf!G89J zOcQ%D1IX0KG(Gsdo5BSF2o09ik*X;N=~u3Ewa52-=p!BT{uP(c)L-Q7^JWn!Xszm) zeM;*=t*r6!TO^s1A-LP)u?4FgC;j(0;(g!#22L;BqDYH2Q}vaR$jeI3b@{2+Y202X z3w+IK3>RKJHfGP7rk-9y@P;0ZX33Y!2An=ucGt0%aXZtfii$=aDY)5K*MlHHKFKz9 z+2SO?&SO}+R&#|f)yDQd_M)cN7HO;zW$2`~a`D*JljlT|_%eAcU@`I6|0 z+cjx2q3>4Zsgi6;2uvpmR)^8j2_@^R#Q*L#N}%Q9sQL2Ye>r-as*i!E?lH8krjQOS zhxU+gOwY^w63m`Rz%1p!th*uZMD_WpO~c>5=|*vvTI+RCWHTgYsdSY{atUKOtHHNzI>(3KSfF0B=rL-%)$D`SflIKBP(F;0Qt`-vzaS97Sz?D)m?*uyI_2l~B{7Lx zYoQqjC}1LbuD9u2x>&+Eo8!I2#iH7ey$hSYbR^@vq6lW&(*G?8#7<^+3kChb^9bEq z=^QDlWIOP>f6kTz*1rP=uHRv2fgP=lxB%D5Q-}L8`Jg~?aSIR4h_S=>vZv}I4?a6M zvW7QEXMeoo&2Py&_;~iQY06SiHC3>+?#-ymHgmQ{fu^2p|2WaUr@ zN#38^Up5jOQsTobK(0iY(b8IL*33hv!r^a{qG^AoQ91OAVF z*X?S;0#8HMI19Lvx4ciq`ohhQvywRPq9SK@`%j?!dQUCOlCB({$p##;|2Y)M@%S;z=cm*hQW z*NZY<*dBM)WewqUS0_ZqH0AIV=)m)e@xd@sI$QnnRI)bm!4h=GMK4{jUumLK+;-BgMZn+i#-W_-g$M!AFUCdQoYTDe-CYi*t>6%m$q6Q z(}$zUQ&;M1yA$IxO9wt%1`%3wXz@!F{lYKth`AN_56ke>k*F7Sv)Bq5vWiIVzj{jt z;V2T|aD1mT6rO5kqRHN$`BAUGY_N@h@v?l#7Wjczjwr9TlE-#|OI*{rQxNFtk5h2* zB7e;)oBTv-pJ$MYO|X87!LS*h6Q9IE!@sF^MggYiK}PFce!GcnU1bwNrExI+*$N_B zls?g%H74_qQ6Mn3k7qvUpBp=-pjqT;1nDvuNv^W$_KC<^J;FRJLk5*?Bu3Vor!d=| zN^(T88mdK6q(>)E+LxxbMUh(7Q!27V{ZwK`4`psPn-k)hta==FNd2<0w8f%v@`^>@ zPPh4&L#`|*xIR67oI*bvj#6xU#{&K8)8%0;k~;T@2h|MUDDyN8>@`AA=U{Q$$iMX=PA1 z-{!)4kgfQIPIH8D6+HgEkrwhXxPxq*4O!wAs7e_t{Sb49{^vB|v^T3NZD-C$TDM~! zf1gmjo!ZGpZvR6iwKmFP45Wy2Wjt*mzjv4-+XT=0{0moY*iU52D;6?K5S84qhwz5E z14TDpqeP@iWEQWc^NCZ{DRG9B+C6hJl0>|%+{MrOy(vwvSgc#3ydXP8Ll^QKrH@=f z>^*BC=LOmKR;4AowI=IRUizrF1d zzl&?Efd#aL1!pbcfhm}mQ@s6Q?1|pQ&6c)-}TUPKe<``2G*BYf? zS2X?@(tZb{F3H@h^>4|gk)?G#QkZO`qWfpavecngJ_y*oi(I#8_&r`y!!Qj-Et_%*| zgu}V9V$_JNJJ&9q)UD>&V#*pGUVP>s$^S5iR>{>HY)Cn+J(unotS5^s%Y@u8BDA|7 z?hJjfPQ4*v_b1$!U!HsLjHV!KzF$#vjCpXQ7CGUm%uo0qIW}oZzxufk+!5DfcA3%R zW@zr~V5d|TY1kP>XG1t??~K-<4S|5mpoV@|Lp^R(*-~ud`&g(WZz2 z^1w#;S&((4;q=cJAeFUAhuepC5dim#?JB|r;hTiG+>{p5pfDH&SliVNU9~e#voS*Z2!B8zjBDJ-7fjbm_XSznVa_PHP{96Y5oX z@Q+Tj)gK)REhqy)FJwA(Y?u_6S`3z7z$n(isLle~)V%)5zZ7`~eKf@ zTrioK6T@*sjUnc!NDU69L!FOS(+3!UG_)dfxkvXDla-%>)a;7$bOiXT3D4$to;U|1 zg(kA|MzZUh=B+@mAg;|<4xXjQTAXw*jCYM0y`&~FX(V-{>P{92kR$DUPsDW*dw8(7 zTI2?q05bgM>c7Os;nVF~h)V|wI!XSd8ORZOlG5o;nsGDDMyjh7?RN%uN;XTLXkg9& zc5r#ab*N3{c5P;XTJaNn^AE&Zurc7w;G6Rj6g{%si@JRsko|8b!Vm*QjjQU=V9Bdb z#)0%Xfnn^(L`aoe7xB6eYY(_f>Vm)X&*ApjuT2w792TvmVAd34K5~jHGg=8`YJ3Xt z$`ubbaS}O?tnMo2=y&ra5^qdo=k@}k8=5<3!1`h< z!LDz_1yH-cJez5XCFxRl-xG@_PBnWhtT6u`i<2SC^V5@lh<+dT4VmdOgs$}>PDySzKcN*+v+{Vq)(0xX<`c1O~l= z6XLo7S}3mz_x?5{eMPjPFZC8D&l9H32m|ESrqEg%XX>KJ~<;>KTZ- z*NuU_>AIEQo`FBc%)+emX?4Fer-+tIj6RcEZ1{LSRuD7K#{PNBF=vYnm^<;r+!Wn1 zeaU>VW8f1L`N^`SmP1|B78%1Y`{TvDc^Dm5l34Q$URsV<bl3BfHi@P3uh@#Vzomu9=8ZvrnhUY=OVcMU|pNlSJ*r)Gf`uj;%U#waSk z(-Cl{K#{{AVDf6X%fK-OgCILnGHpSoQ0OJ2=zSL@A@T`lsRTy_u)wlI7f zL_I^6Q-p~`W=1Um5g%kk6c=E}4+mcsL%@LI0ry4jz8q7(b@tPyxc1bgk8xKGVmGg< z_$ZzSgYOUbS&(%}`^@l_PhL#tbkZ7VihvnnsDb+KD0jpkNHGkPOv}X>)%T?YuQZZ8 z=FRw2jVgekC1?0GD+_*c(Vzs%H{7!>_#m*`(&U4S^DCEplCjPcdA3eAlQtruC%6wi zH{PDrey_q!Woq77Xh;(=Cowl6R-v{uoZ`Fshr*IOS$nLrYlQV{2#%SE;wq@iGsjy0l&w?(SQ@ z34kBYwg*+F;jTP-xHm8)-iqT9pY=yypu24nqAu%Qv(G+$2^otAM!z zI~UHmmeB?}J8`;X{i5<)xX7YyxV3Hvm^C{A$;|`s#T<*L zheJjVk=)*jJ?Y7tp-e@INWLrYMjQu)>E%qk;;4$cE=^v9+U$0@@3SYZPxzWFvS0Rj zBb{WX_sq^!rn05)XjNvll zvX}C;8J?suSj1UUShvLWBq>bAVp=xkZ5K!?gz6nnKEN#R3Nomq*Z}7n{A*TSK?@C<`}t9$LjY z`@}UXrW?tz=DePlRfv_=}dV%1HUhETH@p7}f)qqM-2IogEK>7h=Ve7+OoZSpmy z=;t*wA8JHJ<3rxWQBRm5;PKs7>MRq6x3x;>m@4pN=JAZ!Ur=oK#0j|AvX0an)GGby z`9dpk^dF%CM3y09^xqowS;-}nCir05&ohmWqdZ=haBL2qpT2N2JyRF61D80iYK`#a zQbP2x={CmwMJ0BgU#bY)T7#l#59{FsUsF%lCiS<+oo{QHf5`YJ3Gk>=s_@pvUVZjd z_@ZEUb;$0ZGpW+3ag-enYh$dcm*YS0tOAkaU_?&($h{l>3JKG(Dq}M`Y)~fyL#k}mDR6*2O4n? zw?K_F4y)H8c{z%@vO>xFh`f4Ex?<{bs(YtHvhbX1Ca+_MQNy(i<{ z-I`x5gP}b_Dce!$!Hs}XP+(d@y)tWu_v_sCIA48_XgSjeJ3rM1U87iU8fR~;R1bTe zkBdw^aJ$eJOj->wKT*Of1;2Cs_V9fhd_zSA+QlO_WRx4l1+tFL8I07(R%(lFQNE{g z8rE*BVxm?t!|7v1wjm&oQ>+%h5Yf#orBnfhKWbY3)HAyYTWnjdX%0`@x}zTD zf#S_KsEIgU!;APu1su8AUSzJX#(KZpM8#ZZ2cTEC|isptn)9^pus@ zLK?jzZ_?f5k*X(SBrK*qX|*Zy%ML9|al}Po9`*6a$A8^9e@MARvDzr3vUY#IMjZPy zlB9~6>*X_Cp7S(XNQBu#rO$#r5{)MoO>0T|*= zTCkn86CV~s+e6m@cb!zt;6ih>czBU0M8&u;} zK?*7-6TtZr9=5n$d`v^QEmr*&z7vmnM~E4lmpcXFKh8%Bb&RkwIk1OCmSIG37AfsL z&ug@jW@p!utY}c!se8nuXubS^pJ|&hhajyP+$L{COEbK`(rtV_HZ&Yxqi7Y`R*vWj zHBSc1nUw46BBvokh|2wJvGkEucmXvB zZ$BxUm>oQF+LzL8YrjneHqYX0N`d*WJ!rf{>((}Fh*_}eA6ZsVXQcOckl(X&f763< zP>XDS!uUvsX31MY2sQ1srt^krk=ryQEvl9ps^YbfG%>w`Zbs-p??LsSqBUKln|UXY zf+8plS~IKbYGJQARkDh0E4k7}^=!2Hj$5~Vykam9anMuZmHyLFM$h6QDGBJTqJavGg;e6l^kSM~rL{ZT_=XO_!4D5k&C3W{MD7)Yxa=V2-KvOT8Z`k53NLwHq+ z-&b{(%W>h`UnMH~hVx!&&RWZ4sEpi>AL|w;E#*y9_R->>r+u+y%$rp3kr6W)W%k~i zRjH?B{qmHQg5!7m&A--dq(S33BQjqtbmC=gwFE@phc`*={5r1jO3|fwXqV4%gtN3y z=AZyZb#6XLOFSBxG%JXD0l%-41Av<-FLb9@6v+uT922VPS=|$Fh_og0u2)ktexOsa zxPyVQjigq1^Kl7YKum}$F>XP*`Gi=iWoF_#&feG79|C8h=BNUnezV3>iF4f09Y)qK zZ+lKHCB@d7?}Os5zEUAKj>^+-@;cOc)PLM_#i@jjK{epAJ`>8EHY3K3Uemu6HzsxD zRNCn`>+kN!$s!~0I8+@Yz;L7Gl%Jqnce$8m&p`t8PQLoa#40yy0!D2ZB~$ysCb`Xy zcd--MW1QU!Yh~mQo;n?T#kjd1(lM%7f5t{(ro7nqr&9*&#iZS+oGJWA!( zYo(vO;yLbYXCRjs^~#^%dxQ{E1`B+58)!vpZXPIw>!63PmTF@>)(M2O7T&$1i|2{U zgKj$By<%BgZ@0P~bH|Szn%g)HEoIOAe#$jvhUoXq@-96tqED43jLm}0!I+MhdF*S* zn`S>nluqNggV>EGJUwU=Ye@sy*IH4%qZs}*jR|mm@jDPG|a~+zXLTcG+s1LNz|LekFQim?sY)kkncM{V}m(y@Y z&vkhyBPKn^%}aBSM(VVB;73_1h;!~*D-E0~caR(Tm-bpAK6}Zdl`HOE$`4D-q_t;b znl}8iW$)@ARimlg4o&6OXZz|dcWow3)SW_=gk*No^VEV_q!zl1B@;x zy1s#kD!H4wBOmPtAA!ylwjZu^>nIotyg0vRUIww5iRq!l6+K*;+MOR*wv(T<_%o4Xr-|-Lx*ASQJruH$V>d<&I<}lQ~0cmm?~+QCefhJF?Q zM`#7-uxJcgcj(yBq-9_0uG@;2b^}INDW`%eclhQ9;Ls81Q}VsTlFtnk2QkQAs^UNs z>OQ=1iR{~=;d^b*Qv?>~IS4Juk`Dt=G~>AQj)qSO{so>?jE_l#?@881!}Yc(Es)fu zBj8O%w^x^~U$-eITDXJxMVLEkww>JL?Ti5Y_6>WOK{>`0asSq6hOLzWbl;Qu9m2Q& zH8L&n{+*u?45wN1%v9w~A_nbrOWiIzHqu#BlUsuVKJ-JudTG1Vq6C$rY&Qgz%yb9% zmrgbyN%uLfvEO?g4T{`ryI^Ed`nSJYDK>Yt2XqgLj^6m0x|c%Kgq|m18>NF`2MynpY|e6K~Jc z(e@eHjz|A~nzmyOVdF$;$3@@Gi|fI~DcR;N&UNozLMZIS zP;cjPE~jfzY3or%s=3HejVi-9+C)#<|8D%6+K1BBF|Rls15AEQ*+kau@lF*b8OA3& zXrU8|k=0pLHQ)canXZpl34n6R+?4Vs1F}zZ90uek6aB`OX7FZGWwCH-(z#IHG~mmU z6UO-#Iz;XCp=ji!moMl&{j}_}Na|SBZ-IjKF!+U+wl8`t`AfRtw`5NO+?7#~)H?+Y zln1dfb)85s9Dq~MK~T#Ua`uuS2jlNPg|`07jgi-OLFgms%~XGk&$JSGn*@iFLQNuF zz{SKqTumxe0YmVL8#Mk$Q{@AitA(9gm>G|Is&7Eo_0%HG_Cv}Q)k%iT4!sv9K@^31=k_r=X4{Hk5bj&P&wBP|;t)URj!cH$MTB&SKxeB=*}7UwV3NiM7-qEOY10z$lh!j;XsN$vkOHh$&xhT+4j0uEP0RvM?#De-f? z!{w_Nre~{_uuK?JHy-$K#``s!m)DX%r*O>Ddg8y81PPXjtC?SBx}`k!H0=`Et!wtQ zyKGx<(v%R_^#xdeI@B(i2M}2xlTxyxli|1kn&j20hPlenrH2gLrF{J|c$SYhQ%oN1 zv6EQ>&?7N(_dk)a;c{<&D#5LBsr4CM4+Gf)D;}bOOlMks$Go^84j|xcb50DbeYlo# zyj7dG-NfHJY8Vp$5K806gQV&b;!A5QVYij9l;A^{FVrJ^%<9L2F{rANglDnQ460Z8 z?gnGj=|&KPeP=%}pKFtY4PS+wNj3XF0dlCq!}Pb#d~u#ca+~=l=Vy;qixE|ie)$I# zT60}9XoV=j8y~jL$xITrF1nEekWtN#Igd9g?nS+Brj+LIK?$?HNt$aqv+bgS;geq| z5(Hv%QCtix0_%8q|&!OK&=0QPPH<64LM0xB+yV z`t{gm9SgdMg@a7CframMzW`3iGY#m6VvC?-2{IR?1b9(_?JIti1VIjre7KI*QNvKP zS!$zfIBghTilcT&XI?j<@Of3f=o-I@Uk&O^INu3)UPI2+c2;7LjxYEV)Ow9k?s^ey2{jYM}|753_nV2}a|DUP4xHfPlT^$St zxIcO!vL(R5-Ty98&^XsaoULtQA;;iwq})BEtvn$|*gxCHNn5nUME`@AhfQjLesR_hHB^8T9;NMNoOwCPAq>FQw!MayL0WnEdEkQF3 zL{OPOgb*k*LaeKpS*2N*F?lFpaETtxkiVUP);iwSJzur7fC06&zCSFXTo0gR(_6yn zK;-6ud|+^{!sSVUT;ALvwRXA&3!j(hLKeb^hKGlTMxTcWNG?D;A#_s%K;*0%xP?Qq z60od3fe^zWV6IQ^4M?uR9QF0_pLBEt1O!v&2nc-b`Gps> z*B^`i!(s^b$&U+!%evV=^mX;civ;yKx;`}sa`3O5_Y4wL2dqxyLnI`wowUBZn1*Z! z(e`O)X?_FZb;s$#3A&z>)sOXAwFO5+Uk<_KV|9D;tV@?G9AD2c#X$72OW*W~@W5h5 z{ksfo_zy6YyPNR0UIEz{w&fj*J7apk!U_W19ni-oe65h7Y|XB`W*2vpWstCfy%6_! zzr4QK*iVucs2;FxZEY=|uP#s_D$tpg(a=3_Pk9FEZ9?)@`)e7f0ik3h>A*!9bRpvy z%+9nsXCAhfj@Zzr;U7B1ZGhn>t_2QX)*j&Y>5$jKHH^A9^zQ(M#;3;Mw@%K$ zo?LH0eLwi(%W#h#=(RsiX`nj7K)wO!A1q}7=z#B+x5cks+{b^Rx-vK~VtOQ@7s7bl zCg(=&9=^5jf~@b+F)K-ALYfb`JaF#a|9xvhJJW`uFI46!2t5H zNsPds)nAaWt1~pf^uqQCKQ(DC>^|$D%)eW|`bVLhlm4B7UQM_jgCij6n6Y!^hP)Xv zD5x3_J77(^@3;IVDGNxF)+W5$X7l>=Dp)wMoT4}}dJdL+vn>gcI=Z<>a~;_P-u1Qp=LJF{L#$sZ zw&V{ovK!)E1@60zq}*AkLvf3o=jAE#X35tRnMSZCOH37}Gmp{8eAmFgu{YmFIHr_k zxf418wj`~+qBSTv(C4i!AvuDU7oM@t+*@rt~af{LRxx8WeB7t&>0ILa}IJET@*#McUWz= za;VnTP93wqq~thT6!xK13#ZU zC4ecw5|!d%H%@Kz!XLn=UeT)fyGxWOa5bWy|d%Im!nuEh+z zM_Z!*0_i@MAw-p}ept_J-3h;Y5yV$FOVNjaYoQZ~P)?_z}fHET&^At{O8fn+)>Q%`hY7|;6ViCt06 zepqhHlW3R-=}9(LDErn>bl-kuPTEg;aKonW?MHoOM{=6P`M6CZ^yqIvKhS?4B*Db5 zUm?>qO(l0d`6|wMN6)!p`j{C5`PVa=4!8{lv|wQl?YQQ`*TX3{b8@!#a_~`|+{%#D zU~>Fb>h7;L$($-KR|csWg5-)i5&6h+oR}Q9*wD+9dS!qXaF7$SD{LF0Ll^e+DQeQiAvBS~r>3chP z93EL_a-wk~CTyjE6o<2EUUZ*J8hjXOHc6Hv`(W$k0?PFGe&c~7+plCk5i!CH5>C%H z*g>iW^94eewTwhFRPuCnWQl*tDqoXd+n#KHvpIS?G-oRWB0{>1Sa#9#xM)dN+}%Rs zlQdtQev`K@m550yHv5z@da~|~r5ymar!uDpbig1+#z${_vAQ_)bvTk^MpYC+G_WPvZexUQ~febZq6nu3^uW z)!JL~fG%2js8_d&0Tp^f9?%g;YdWEq{1Xmez?*R3et&ofHPOS#huBzYl&mpDO)0`> zGuSLb5*FJ5_Iq9@{nJdxn1XJDe9JYOW>Je8LzeO~n$mYHtHtBzzu#+ZA19~K2*b(& zB+G}98U~Va;n9bcs5~m`Ep$UBMK^A?RGGEm2JTdPy7WDZ$+6nwm6>toSp24EdR*t( zDo?JKvu_7-Z7<&Z*&ey#9#Sc{?20+wkz6sj4ArA?3_g3U1v826uIz=}Yp)v;C@mi9 ztINQjLiN;2*1vVeRunk8sVP?LZ;>VAt{x}(0WyhRG0)^vw{TK^Umbln;|-3Urmz&@ zH(3|(%socZCRzyZB+-X!I~8JH4E52Bw<|kLe9%EFEKO<1hbXQ=POytFF>Xaua&Jw+ zHldLvp;$>h^vU?!6b-`f!Rt4|9Yf&Ow1q8qV?Ngk75@78 zgR<^RR#F$!fYUWj&%Ge7dhq0;s!H94cUE$N|yAd2BSX|C z!i><2*ySQz_pJcY^wg?$tEZKr`{> z)%uw~2G`JyY|a|Rw%DALG7Y8pHymWLL=*BbF)s`^>mDt`mkIt6 z{;Z0)YhcDEhwiqGLGawFG|MS`f|b05So}#1*(qNgfs_X|Ky1PilVw9sv+|hkwmide zsVab&UuL}~R$+A9jNwfzYIZ2wrog_2pJ1L(4K%ge;t}sc<>c(7S0l|9k{oe!><7Kt_b;wFTyT>4xHD zm#H5iZsCDsxMLr^PPh8kDC3h z+T?zqU(MqNfA}%Sybvcp4L~D2w_Dp8fi^4|_MnIGu-}8a(ULbkcvk`Q;z`6Gvh1f; z^IS3D2?RW^b0@TE=s|)H+I2>4ZH5&85eU)|!o0jBiP>bZXoV^XjG;^RZ7(CmpNjFby z6v~!RUD9+?%X(gJg3CW#Kh1N+;C|rm!qG_KHN&wjyK#4GbT8Ak?l92D2`xWk5}@lk)-z9PSCd4AvAd7}fm+|g4`$g1D7k0eWxbr|w=81nu1!4TRJ7DAO!xMnm+w*(cYnG}} zmmT29BCbXu$_zQ0IVtf+)VSN&ICxeV{U$P*r)9`=Dz`9$^M0-AI-raSC{}|FJy1W% z-Ix;iwTNY3?sEt*jc!6*U-(l$9dwty1MzoWB0($aK1j;|TdJrgQ{F+}(q~jfBTW3n zy)MY$VUXzva!kir$B!QWQQOzq*U1ce+!XLW7xnh%YWirwn-8Osn`I=fV!MI#;Ri@a z2do(OFzEbMpoUg#4E)kv2MPcVp;D*ZV$F%K{q7>-T673(pcjx6DG{$~?s~hYG#Dd! zXTZztp|j_?9w;SBijBsos53LOsUyEBBpYuly5Om-X$&?A5!7oX_7mbRp!|AA?{*XS zawzkL*J$lk#ZhMUnl+npiW~z>eNMg85{@nLtdF3Q{H&5kIBJ*P+=xLNJlUy{}6ItKW|aKEq;2PVF-tq#)qtS@%wMAYnAXjqoic!aQrjqr3x4+I{pC zyFG?4Us4;&qFn3r`O)>%S@j`P6Li&An1kL+O}2iCV$wY}_c5KpI7BLFMcSin9EKqN zg4=uy(`wXr`kg~_mO{9yUu_KX)LpL={}IQ=ShO4y)b{$h4(ah_N{x>7dNL+_>1N3t zY=EWC+&|++xy~uj%yq}Uwp_Q22NZQq$6t*twnR5bLzV+FwUg`MT4Y@)zSpcz6+o32 znt@dH(^U?Lz>%U9$I)}3rl(q~NbTtJd8}C;IVb|*4ul*sCt4ZMk zRu#P|3F_*GMzoAj(oG5$##O?It?42z|H60RSglP zk5E4BE7<3|fre;}SgTC96H3eySHXW%yOOH=A)f~YD%Xv|ir*io%Mk?tk$;alq7e+n zyA4=C2*`MCDk|m8`TIw#Jewcwlzkq{W&fs2?qAfEY)%S2UG1WomVVf+4Xa4}$W@=u zeb*w{GS!rkJ8IQWO#f@rwlYP}eVuM7ky^ljcy*JO<$&OWtc_42MS5jLnJ{P=dgn3< za}(hy{q{K`T zHIK=ZP!^wN2ToGbLp;9tLUi=Qr;~P{&&G{n@1dzE@{UGPBaYjJSZ>&{9M<@tp^Oj? zJ22aQjLJS_iThyWfmf2#5H>xCiPA_sl+Uj;WRY)L=qp|Jw5|ZAUh1QM^%=qQb^&fa z=gbHNV`lHU+B1r<+&Vjv2>)|xkmK`f41qS(G((mn%JBpd8{Zx0V@gZs-;86HPQ;3S z#C&E4UcCIw$~0li3wBoivFZ5E61SgV8V;NnAW@FHHXk91=3-m70T!G#J37KdQ(Ba^+tUFD^j##7!Z zo$+JYMPE^zl7Q|9ddNFZ?@Fd1Vf5}O6QH?f|AbdL2;xNLp1?QyJFd0{_(2gU;Mh0U zU6Zfc*3)bdnFSx4DoKq!{JIsNUSy|2I80zY60NXklu-2ya)U9s6@NAUihQ!7hP#{g zcLoAwz-FD@=nvDxaLRh>LK6nkcUTJc3@%}CHC6N43z+9;U84Sk*$ zo0?360lA2$guyBM;JeGxJY}|kAweqigVfnd{IML9cr$;Fm8tA{$uDyoHx6Lk`I0_5 zE1x0vQYmnzU>eJ*CPif02BWU*c)aQHe4KY_oTIFO1jbE;VJMAtc_eXzC872Vo5FHb zDvb@|6QxlV8~0fO(ySxPcQ`a7u4~uX4`GMu3-5`)HEvBL{_&XVb)zFM@T4BkGuwoR z+q@CcY1y0IPPmh>^J(|AeV4R;LUVA@(+WQFa$eiv=6$goDsNK#kGu+Zk*XCzP3Dsd+)yYOC><3Dd#H5&HT_dQymJ00l~V;sU5-5UUWx5^R^A0 zdm-TB(5{fS-_SO1eDYnC4kY@|J}jdT5oF{OLy}nVUU-zjtPyB=j5mUjD)Rn{z6*#? z>VMH`B}3sSx35{PD?xAFU^#=>a>aD#jGn0q{H&i7GF|U?RM@4B1`K$yrc(amkj}bfPi4>|jP-lYQ418CU~-KjaHpZ)Cb*gHkmQ16}o zRZUgEWi(-T9Hl&vBVp;!MVyA8M$uwmcEs`sIF?*a5V|$0FendL0yP9Dt1{w#W-ZKU zzyX+i4+HqJL=s8BO{ouxR=9hk+xd(IrdBVdc`Op-jVgIl>9 z3O}(?*4MgE8$(+?8P+BPKB?sC3Zv}%T`Zy&_3Rw!SMEO5Gqw#SC0w>N|0dptVf`Zv zIX8bv<$oBc;kzUGp5<;jwD-Qi6IoTKBjyhsf2H>G(c-V#a9;tsq($%=_?&9|LezI|&rtp!pg_Wj8 z|KW;NtW06qmX-!DV~OX&cOe~u0(jI z^}RQ&v>lLZbv-BqU#;}2_F5>Ie&GVBa(`Elz;807hW7I7>xDl5euqp(F;I>{uPi=F z`;~NHyx>v2r-yX&5qa&G$J%-ciO6<<)>nm3Cd22VL*NoP%w^} zD}3;*8mx|06^G|o&ARH?_5ov0(t^u$6GYsdeSpG?0_hZt(gMBK__!s^!BB!Fb4(MJ zLMm(r>N2pGptIufA~D{hGL{6ba`1;%EjU}<3PbZlsS!AQm=26gAu9y9^enHKwqDBg zy;e>u*%0ykj
k?SoA$=^luO&z~ z!$8Wk$&lS(F&x95{oRqT@EaW&2^HL&0l|+%NwfVqjDcn7!+D2k>4gVxG_g37i?zqn zy+yQ^VUXadG=#v>>D6G4g{OBfMA)0B2uV+YU5k6BdyR@m2XFKhKwcb z$5)m1;f1_Xrp^0o;t$rWkP2AW^x-@{9fo~b1hrkeTtH=Kau|AGp$YoUEaD?z)+p5w zrI=0qO}_stj?gA*b#K&OxZU@PY=lxo!av9w811xfeL;0McI0npI8@NnMt$4R^ASNt zJD}hAqpyfze}NdnWO5+chLB(ao)U_@NMVyzPcSYNN}oZRLHlVjJ}yDXgp2;PV0sbZ z_CA$x@FyDf3vY`;7rGw3O;qlIAS>)|Ja~#R&y9KFY_8{}M4M{cx{3G5%F;V*iM7Vo zTa>#IPrW}AT!#tKO;9cxiu(ZL_Q3S&;XGzy^}AeXS(Upo&(VR%M;jn~8-Ph1%(@ZXGz}^dSHoWBB&zb;ZrQE*V<3 z&G0eKGeh^BKA$~(Vuyerzj`-$qL8>Q z@1Y@!nqroQuSo2lJzsW?ZCDEWKtuzZR@6{^RP4ZB3+h_9Em7b$WqBJnEN92@*r1M& zMI#kYeF2xbj}Yw{SHSg~LDpJgx&OyOe=)A&GI|CXcW*b+)WIUQdHvZ8lIL?&e=Kgn z?u@8ONCWC5Q;C5cKXL2dL#+oe53=~$bl9MgHipMvBOw>Ri_6-dsVKQAXv6H4E3kn_ zZbT$#XnRPgT-_jCVluDho7rwyO_1&Sgj)o<_-nhOmKYuWk_$4IsSrXx>ToJZ9KjNE zb;|^IMds(G*G2a&?zBG4;RYlePONJf=)H%8`9oVJ5pO^xO_p#MUnV@w#yDF4H6von zNjP=pC8bI!)kkBGZ>hDN*UAq@iODk3+k-cg+}DRMhql|-F6-&@>6r0mc)%d~IMVM# z8JVNOqLxGP7?};I*T?t{d;Npm(e_=!^Z{6;6-T?*d)Q#o*J7YV=BV*{)LI0Vc45WY z$)+V5$&nuK8fJJLu0|Yrcjs*GsZbKGZ|r`!kYu2c%AFHePkXDdL5eX^BU)9fCriJq z@6T<)w5@abW|sYnR~-$$f!jCAbUAD4t*;HOdsa{879Z+TRCya+W*?KJ_DINQ!|AD7#?)%f`;y(e9U235E`Zf1?{^|6XKvY1>+DtdA;T1ovh+%}6unkIaQ}4n zN^I|5Ci^93iBI+CKPbD$7)`=9OxSJPwr$(C&1u`Vr!j5!v~AnAZQFWUJMWi#o89Ey zWcO#){jZWj>ORivly694-a!kR@uiB%*jF2?`VQ5DE2n&J!vLvNGs zBLZWeQCsgu4)Ur9g(nwgoQM6Wxb^gYR#g)es*J&*WeaAN31A9hY?nj6D#EKy=7E4P z&*DPJluBZ?rk9OL)t^hgBTNYOv_K`WmBi;cG@tCMgz}R@?+gV(l{KiDF5x4Yz74a^6N5%x;7X&gOBuO$=)v|43) z53Flo?ag5$w6*M|$|WM&Ge6CRD)?U(k)_f0>hMMzC{a&ZITOyO|9*xmdHebWpf+9g8mg_H_9G(z#v{RrZU zu9O(pq8t7nvMepKI7L@ddHEs7@?F{~mB6!Bi86+3s>=k4T}z1;o^;Dg=x$~kVyT|1bvn5bzzNhvId;1QV7`|1D2 zaUNLy$XvD&FNTd0=!JD%YoNjNyDIFa@kh(mn0j0#OZNN;DNS1KN!k>9sXN%={`>5P zF{ZMF%qHh#DUiBmG=j$w@Cg$x1}1g7&G{R#rWt`63!x+8nJ!}m>C-Y6)|8Se=JP=v zu38z#aqx*^l!QXV#>^sd;?(MOPP~q9e=q@Gr7`r^a%_Z{0&qzB$qK(}87H#xffsCZ z4Fid@xOh0uI7>$HYU5J~(?X}6*;nM|@2S>SAl?p~DYz2`TQwQF-Lmmj*$8C5zJ|I< z`m8`WY4mTEdh=gi${p@OE$v4pA^e~#%D&UGM2Rf)BT3X4hW^zM zO~zQtmh6@(@FM_Qx`$`@k0|KLNWB_g$RV$3hU2g-5&~4W5dYl! z73ICc8A>fm1%{oT6_=gPn8bxYV+UEyQYO#LqNuyTHIltBFIHow$a|2&hy`#IF&jgZ zBRLIfKwq|?O)yEjbI^B5xxH_ToKy@e9@rqtvYng60V8;mQ$it!cgvDk&_Xit9lj{M z(Dz5FTdg;;QKu%h&juEr*Mx8RRi_kRpO;zzW!c6G;C4lYb-4-}fiwyb3##<5;O{`| z@;+aa=nsD14yJ(O~2rTJ7^D?sRj3}c1CD$=RMiGU!UFic%jJY38L29-$EpU;Kn5pl3n zFdW^f>$G}sGjllB{krw>!+Iy9R04}TLFZc3DiheZwCip9H2Zv1`VJ~M=3yrSAqXnU&=R&5%8xUH;@9yOhClP=105`(Ourm zNJ$BjF0W}FE|e`W6XZG&FriuU+TR)_j6mkKD@0LKT*hPC zW(ZNeK7t>S6Qa6|cS5^#?)7?`K;ah!A+PdYI|H$@f36QGAIJa!0l}ZaA83vM$d$d> z?1wa{BMbjdk^GeKAdR4l?~2GB=rN5W(16HgZxXR0qOhJ73CPV6#M|pr^?nyBB?;9C zf+Y+@E)au=>Ei!$eJB51-#c%h9&jF)!PzME-rM2hZPGXF;1rP&ZtH(spNTuVl{UCJ z`$@0vcdLpB$N|iq(eVj*o%6jj5Epm5Cy;|7g24~|X(993EzkEpEh0w*5ZE`(>v8V4 zdc)%`p3$3+Fc$C+zAW~`fF4oczM$CZ;odQm-}}L5K*>iQ!%qO+59!2D%GrQ=x-ln<vr&w5~AUp$iJ93kUW3?}60&zV8$)Dqwr z-N`rqB#&lq65-3kz^aaV=qld)@ZcB}i%^buL&Hd39GU-J7Tk#ZPE=lkhv&?#bI{hTcDQoD5 zS2XlV?dvkY_no?}^CpKop(RK#J{EUX&pR6iT%XNXcj@E*oZBF-&FxE&3?xLozqilt zgJcdbW=)dO3{z6*9$Ded?!@Aa{29O6DRD(~zOQ+mN~`M&UQyY(x;9>;HYmD{qPTUv z>(*ey0hODxcb7ulm1KR>X9Is@N#{Z+k5Yy;A9IMy8PBnk7^~D-ntZMq@SyCMt&vd8 zsp>(Qb!E>t?9@Aju2$%IQoRf*| zDp8>0X48?Wnp^aF@Us@2=2KDZ`8VHF8(4`$cwvs;2bJGPl+d2;LqP5rS=ym=T_3|N z^RcT`)`n?H=|y&x&02D7RmRlSf}Doe)U&x$Y^6Zt059fx!-(-r`*4F75v3#afH@~> z60Q)*OD$kF3{NuKDdBy{bP(d)sP5ZEsF`UC)8sW`0(8zrr$BxrN@Kx=C_~~n!Ap)x zr+n42#V<67T6V9~0h++D0`i?lfUq_)jHawvBgIvn*KlD-(=f22+)|-ZAhhtLNX5*0 zrhF*!dXVn=uVa69ivQsWtKkMncK%OWLD35l3FxcyMyEDEsLxQ(8vR|_r$UsJufAVHf)64 z-J6Jh17Gc*x_c*SE>~b979&CFkXqP05Q)@(6sJ`CI1B^@0{5cJGpy}&R0yv z>`{xOSL&NhXMW4-3mYxyG!1ZQ69F;(S2LS(DTp#vnbh4$n49DLP=htIKBpsi-;Pu} zjQjXzPOXYGO2`TO0U*MlR~uZ@P2R+lwS1ZywUU8-r$^en6#CwX1!p|mX-HYWpY91f zJgWd#9z+SuXk)?dg_?01nE=E`RETZy)hdu7zpZ@i)CTckxxqf(u=8<@T5mrzD>mAX z^5i}@*VL!(KvI3XTU`?$9W;tR85^)0ZKHB@Xs>H};P%)~8($vtE82g0sWfH-GU`A2 zQZ53Txo#hx4{^FK=#f@B5%cwA$1PqM$WdYhKn*2hE+d;YSekyXFsTjw@OUtGLvkA+9+zy9w6lLXb(3EN#Tx^}X>vE8!CM~?Ub zC1V(Am-V`FA^1P|Ahv z*YlBDIfkT41YjsEqOhQG;K4uTzmLW$PxFKX1FVxA$HTBnd)f@>*CU zuveSMra551yed5e|68?6wSApD{^kizI=tjthhNry!C-6zYPc`Pl6Ohi;)=+H z>JM81W4NAoZ5^#?mp|fDLt+|NGWlKoLiaYSR)X_Xd0{pMHn=Xn$Avx9)tM`0mJ_Gy~Fe z%y$Q~%i56D;<)?mUL0Ynx1Er9zhkf30fsJ}hDwj)sTK_C5f!=+9Q`5jDY>`?S$BJe zZyo3KEcMcqV$J5O&doKTjfqO}r-;U`{jCx6J2$&&9uh;&$|Ly_+}aktwLYzIHU=F& z?69MANX}NgJQMSW$r=^2PaTG8wlJeJn^~$T!T%X*b%_mH(=z>Ypi# zAztY@8-z~nz^||Do_Ax?#Fy;YcWs8toT9Fkm(Y(jVc!oYDr)7Xfch#>c3k#1! z^P;98Ht#;OOn9zf#QH!@q*UNa&zQ4F3hZ_|4_k-@>RfKtC%O;~4fcCxL`Of}W>};K zhZWqQLc#*5f0Xsw8f+@*-(Cl?D5AGN_7Y2BeO9gbqI#Y1E}ip|3Jke=XaX*HOvhPbs2o#yEl< zx9X6&em|6s`o|PKq`6}sq=k8=%E1o@DqzqLMbF@8b6RMIYk8q_;jD=3=q)z5_LBZx z0iR0E9AFy`zrYBS`Dkobh=;-~xdAa5g%G6JBA~$z?J;*zXCS!IhpV62@%8`6DbpqV zSn%+i-S;8Rkr{v+Elq85x_<>2PM0>d4q59zj}HpLb5iS48o|$Zn(k(cZv+7(!|yrV z>akFMl8rfh;Y=0C!CD9znnj5Y|Mr=;-xe!&t}Z1aS4m)y)J7#tPNiWf|C``YWFFFW z8xj?0^`Nlu_Kn1x!HHps+C_aG2SU!QEXYLd$1q~%hR5?|S<=`FG@5ZLlV!Kf`8NIO zlp6e@VfI(^T%}iDI^?}tdfh(G7GaXNj?a$I$ne zO=0Kn#+jS6z!abg=7gdutaQ<*L4ga<4vr%CH~_*4Q4DiP9mw^%KwLPezV#@b{tnJv z1kI_B$K3^O6rDFLFtaOOm`*hfge6sn=-xb~=O~(|884}e55NvX3&l|x?X9A5T)z5p zUbHyu5?>F@hdc>gbg^|9JVU?U?{Nr+NtAfkX{vsDx*B8J1YC0uxhSG)ptJ6a=5Ith zWUK9`P&FWx*1vv1#5{D8Q+OE#kcuJrH4V?4HNXLH*a|fJ1MEqdlzM$Dt8}iA<|0KV z^WVIm+tTa`sUP}6du914#TQ7Ek4b|T^MP%tU99ORtvtdC6#o_VZ!C%7* zrrPBnH=Aij?L^Ww00(H;2{Cl|tAWx2QOR}gXe-C*TVrmtU5`hhyV#j!?kI|L*!NjC z(jDwHWj!u25U<+3e(s`@Y;)e~oGYQ(mn$Dd{Teegp^KB>_4P}4q?q}qiOfI3{y(RT zA)+hlgsU~4M6KZAADjJakVTgyB)v{hBnCO9N4%x-BVc)wMtNy3wRCWgyOwwU)=b%b zTcS3E7F*pwBvES!Ron1y&;o)hE(#JxSxf!KQs_{8C|>XrSm1+-t^TKN9NRUUV5ema zfYxzCzxt1T2o+RZ=hJ4$5%tQ9^*nx1Mxp#!EE;T>Oy55?UepChXP}JutLNwb2*#>8 zH7iups+T_K{qcqJqITYrcBBm8nz2`>Gq+V2;u5)<@F^%e;Kzn(ZLTyw6_PM_iP~(7 z7$R1Y*iih=(3jgh1o>Z9pFLwutdl-@{HKvmOGE#DD*eeIqK}>QZ(rKNlN@Gb0qWd_ zLJopK?+U36Wd}7zgfH-jT9Xic|J7F%mWJw}r=FbmO%A5w<4xEh5uSk*Z|*WAKJXTT z5a}VgH_P`yde!SGK>gE=>4d`{9&Cof^;U=VG?(<#Qy|HL~z1m zh!Ic6Ir-zHPnj{y|K766Z(GFY`7( zsbT-_PATYBfh8Syny3%~RHyT$%DPV(35}x)YMB2e-Fmnop{%DgQ-``sAeE&zUr!(T z9xjGnBSScB7s;0^*3{DPnY!uG$52a&h&v3Fka<;A^3JmW=xrdZG(ja-_CPtN{5JL-_qacFQxVU zea2c#%(aM_t)X~cVZu{ z><~_`baZk*V&ZjcP(r}maL(}1K;l8822SZ72aX9_HNLoQwtT9ji}C*32Y)4i=Q$JJ zieJGWT|H)DzCCGz6t&1u!^nEuilcHnh;4{8j@>0A&4|Lp3Q*K#GM~j@&PeFa5=e3) zldHuKbRs&U4&|;D9@I3it}nfPQ_$r?cXN_e*g7h3!WAvQJQWwau5zQT7gxF+DX!S; z!#8!^xkFD+{IA|@xPQmpC3nixuHmUtSO zt&dC!7)@x&*R3GcRjNDLmHHBrn{LXqk*ro{2~`O;u_#SGeJ&5JvO?p^HfNUxi1Vu_ zCA4ab>e2h4h-+j@6$6SSdrvcyAjsoq|F=j&*Q8^EN4F(xIjWelMTgs9v6hf^{#$FZ z$L970KMKfZs7)&Up(KPIt=H$p%3e(WQjQx;B;^&`uRpulMNPtLRj#L>K6^-etvqmP z@gzRe8}5}Rl?35uFxp`93rBhZXH!?k#fh0L5DpQ)$5>3I5Xqn61nK4)1Khdn7YbN_ z$CcV`b--%~Zk?6y+}xEVh)uk=f^);)L~Y0lGVXXq3xWt`%_+-lGJ!>I8&f4cxAPSp zZ|&kyZG`w0r(q0#{i1z-)fZ~H=FO1_30v2+DFMH|9BHf)H$6V;1>J+imxiCDg};4u zRWMq6yu&V|ikF9%sQD)lPN052N#-*+zeAVyq%wUhqliu#V$men{y;k z&30$Dv+8Yzu^1DUDTQAYTai*6>Y*{C49))GDEJg6z;&H`E;RjiEv9iK3B7In?NkNe zFh@xA?Ccg16nX!ofPDkVo2lBr5KBj$zWkcy=`YqO<;&-I8QN5iot@rggx^F~k3awT zJ+p^V+{-=wd^Cnn`}{kTpL7OvDa(|&Pho7fkTt^PHcw)z6G>kRk{RW96=o~1{OOsm zoR)b-6JWcc;e*vFy5BJmt6&Bb7H3`@(#%%y{tGus$fKD@Yi`FxwkXpWaD$o=iQF}jf1?WgHuI70Z) zWajN7HWTFaw6b!n@zUJ_{!)Vs@eN{8s1w?o;kalv zQ~J9%x}t{0eCqyYBw1RcN>`rmWFH072b5Xl9ZzN9{sh_3bxdR%JSCrnm2jb~oUD|78VNxMHYAR(GSV;d zjeYVzqtUp1njIt7r~UzWl(i~8qcFWKBp4~rFd5Fw%NW|ahps~_S>kgSm%E0;TXWk4 zFY=%Iqf_jW$pwW?j%qcJJI3HvbPW$Fz?kl*IQ}e?s2Z7y{WCNBW)AzN%5CWOg4=u(RNzq*dFSX3~uB7oc9?16a_%0La5G z?D<@8s0*G6M!IrKx_wT$Zo%LLp0KuxJ$a#T#c0ba!MAN2eHF$Yxl8Q6B1>XZwKCtj zR}n%4P=JSF0AyG}(q&iWMd>wEMA0}j^&3+EUju*V%Wz7DdLxr(v{2Gi-V~6WYt0Av z*G}MNl!eYn78-@6IKvXDcp6 zc1bh+WKhVq6%Dwvg9pNW6^TIUJ2zeWHE8rKifZEdMKVVRPD0q>R9!Yt@jer}!P#R5 zu5eASg9mBUNg~IqjotYM=@hfLTUhkmS9-9@hIrW6@ORM|$TdQm!%>sQ=hB}Q=zAIh+?N-7J9Ww_Rfm`s5*1e-rUuZ3D> zVru5-jn=2zr;fZG7{mh(pr7nWJ<5Qlp#$n;>ub0>-gMXV)!YMDd`+FcNlmWdFQBj; zPI+JbVy{x1<8V+6LV98yU5h&DMHX!#pN;I?WOda=qbcI~kSAgre>7SrzCPQ+3VAYW zbNz~EWzK_M+ZJS}%c7NGAcqDBi%mn7-P2*V6itwk!8P5P5`M6Zc(I^n=9X-!>GzoP z^{L1%*lQfQ-LZ<4wM|oW zvcXMHwzLF<7%=167qg&loGWay^!d>|G`D zrP$uwvY{4*bR*7~Thz!T4>HaC@r=d)8^>m88rrBct*h1-+ZL&Z1kxWLJ_sO-gcqfL z`z+J+jWRPM>0f8x)frPV5|F1N)kAazh2$cKtsUVU27A6rIp%T^kNe_hKsq!*ZXEWZ z%t2Sei6Z~Vn?+gB`km$S6MmAFl7%Jkt^Jd%`j@XVX^NLzF_`mMo|<&Lz>5MFANy52 z{Zm?4dz8KNq35F>pqQ=Qb~n!DW9O~|&xMRgLOL3|OLUXpf{H`Bv`Wy5)hLV*QOn6A z=bW(P@cxM+WBlx%=!|u-V};QDp-{VhsDCz_2UoE?Kk z--z7*ucJF{xwkr+gPc#;OE>N}AMm@>EB{n3_03m~@A|aah4Fp4oqdz~2 z3M!w*o+QcaXBQEhTno+a2x);4Vs(&$SnSdSU_WmqiCGe{?tgey0hb%x1 z(T|N#oOtjmw#b!P-39jxdU{PNI=fsc_HpK?1cFTjSR04jgGKu`i)$gHX%Tg7-8M_)dnR}t^2+rgSd@(-J5|*i=;Aa(IvD-$y7x)R4qe0ft6gyk zo7@qWna~2%X4l? zK7>VfWchlY+}Rt#BWLmEn8n&d$I2e1tKYa}0SYhk<~$9P$vxXcZUF{~69sV*e9!Yp zzj;%2?IGU2abAR?7C8@ng#35VY;xdTJ#6fZdQDNT#_+!=BHcAFPo9%Y)|tV@m@c+O zk*CEYuAb|ZgpUq4>vamO>fd9+N^4w)t-`k)yl+(bl*f+QSGjYikRK){)>*zjiaflj z*&>l{Ld>B^^J-Gr=w#nUSJPP0Wb)$Nnv=}iXZ*bh%GuXRDp}MX=;XnmA4;?ZK0p2U zHh=ozMh;yZT}F5ZKe5wo^&gBtC+na$q6p8dZ?THKC^zfPmYb8_YdmWBGm3(r=o15! zC$KG}Vj;^J{cd#!e!J)IP$RnVZyXL|P{`3xsSEhdTvMRwjI&80#FLCaVc*o3|Eo4B zID;&|2p~YzXPKm-<3T6|jj0vhLONKxpQ^b#nuFil&jC}Exe`y&%xy|Vw_&9i_a{a0 zCes(9f2EdyCH7It{|Ki$LDO$y`8!<;eE@Hv0=@S~j$b~IpRz`k2Yd2W6ML~Nth)WJ zOI8P;WPbPo^kMo!^4bmP+C1jzJ*t>00&)V*-2_C`tTu6ac10OI1E=P~PjZL_6Q7l1 zTtuaRL~g7#kD?SeCz~i<**o`ILO1qbbGBhg~!EP5-ji>le)@q)?wj%y5v+hvE?TIo7VDQ$Elv004r^r|tqr_!}M(DZOE zAVRaZ%r2U6cWP$36sW)1ctBAeX?94ooze@k zHkETkuI1cR9u>85?IVw2H@xVm5JAjj0ISGdhNRi;=7w0W;=whb%pZGijpuo|netY* z5aDsh7TQcG-7g52xV=3!8|362Q&zDeUsZ&DG^inY-Ef)_Rw6xjS`>eP41pIj+e7NF zt>le!pF(-d5g9>)jEiHcZ{13p`6C|b3M=E9O2`s)gq`Tq;yfMf&REU7o#**0ZDV^qaXxuqMxO>tPyRCO^Pe1mos97&8>dev{-nES?*Lpf5 z9Y1`-Z{9u<#d?I%A=$P+{S+n`f^qgXDQoh#homm;UPwdh788Le%Is$XvQ3`PwA4*}-sMIUiN%#C;p0b9vC~+CVB(q>$n=$Y}!7j#V-O>b<_A6PnC}3%S z78rtmrPVB`bOs8z66%=ZeBLx*E>R%tk^GB{y*WBg8yD-b*JyW71L;c3qaTr}W#ztn z*v6ptY@*9r7muz*FQ!(Hvk^oP%xo*&a`?(&`$3l?SAI#_A57PVqEzLNcI4vXu@?TDdrg(Bw3m8F-F=YQfe%MSEtxzY@h((XX_1%-X8ySQmB)aM-r#h5Np zj`l%s&O^^!4(UDj)Z+>=M(ib5NEet}o8kzyWwXidN*wxQDpVO5(`z~Qv;L#B3G7#u zh6rF=guO5ONo9%X=Wz7r$*;bpja#+!B)N}8B!3v%%R9H|)>s0$`SsDXgs?L=&P1X_pA)%68UBmRA zP^vXok>$E3QvZN>FZ_Aoj{9R?>s2rR1eBXK<1u%V*%rNs7t(amryy&MA?LY2Uq3vk zd4Y<qkbd-r5 zfMT(Zrz!%?SCey4k$D#n#vfA#$|mxfMDC$A;L#+{wXB1QT{NXS4N?I^WmsM%CsB0; z!uDL=_J&;-H45X}{}>%yPgxN>H={sewBu*cLlM_yY=XsMao5nWkL?-ozIkB1h=i|| zal`5KJNnmC{rHA*NjExAMd4%TCCqu@Rj%RFB`YCGc?x$6C^%EpuGCuf0$QWd!cqf3 zRuu=uSpmj#(;)k*41J7zl0{Zmy5g^~w%{Ol1C2_6hnsRi$P>C&=kG_Feke57k?&4~sMIm^QVrp~>24Ov z33Ci)vg!aDzhH6!&m+?@b_E2NB}54qES>dKj?h)|i(rka`rd|^Kf6>BRx+VZ`>WI} z;Mmi=g5cw$PIQj%>E(jr7}L$3&84S7!@(uR`u6yK)p7}0`=F)>z3L_9=)C`~juErR zn4dA_WmaP>{px!d5^CTk^-rhIK9z7@Ah#-MT(Wy6rwdaQkw5`R;|O<{-GU|#gB5Vt z)RXdw$2qRA)@B~ROms=OEA`#jeq=kp(qfp&vn``6=BRwAq0Bcu`<7dVgZE=H&U1Bi z`nbFQ0JgUnj1#1Pio6*Nf$pb3%RYqN{N|UV(r#G#y1J4vu=T8HVFJ}1)32>yJ8ql2 z+WXo_kC&j^hu&hOpN?O(6bihBv;_g_3j?zw+-!P=XHKRTIWUr1dj}{VHvJ2`EE9Uw z)7PcOMs=Y1Spje2wvi+YiVWYR6Az>JgJBE8-2A zvnrCLQmS`u)fqEz(4bLMjy(veATnYiWV?bXmjueJ=JdM7yP0;b*leLz<<3|=;)+oZ ztd~4ced1WH-(lT^Cl+3@`XpRgU7R1(%Z-#r^vNoO+&tpC+_rD6P{bGYuVHtkyFqcJ zkVd9rO-DXp&_GdC=K3}k>h754(1ZavuwS?;qv6gy%Zt(;c{vKw%Yn=EMUFk~6>t>R zk5)<~RtcG&ZOJKjJe=q~$_EM8vHUFTBD16M97Xp|FdLAA8H5l3Hd;(Ow0pt!w~j83 zp9FFo-Dlyxq9QcaN*=xT_e-_$EdrGkC}y>c^Xb`BER2i4iI_cG zPhY73NpFh;Yjgltmz<^gO<-{{FURjhKL`{ZnmYY3hElwluWUoYuVOH*WNWug_P%?| z!GfaS+6OR0`!a)T&DDfiXZ)5yTb6&3b7v?a6y#Lt@<@ckS(BDuFl(nW3w@$NU>?u} z_ci?b@mR;%4Xlx=Nq_RqI$p0kcZm?W>u;%*yFx?UR5e9*=42L{B0=W{gd)>LtO}<5 zGPYq&wzMKBvARXzS9t%hKes*)L6K}c%)a0!-&_s8#^Sh%O|Un6a{ADiLkk+B>h|%1 zN9+U%Ylgbf91&pmH#}iIQZciM-_N)h{`!PQ&Cs#jz%%``zF;r^D0?5IV2;icckv~U zp0qgRQ?l#m@)U+r61(k&oc|y%oe={X>MAPT=}Np5m7X3Ql*(GNf|8_2G0dmi(Uc6)fNGt+cm0a}j(V{fEw;Lm%H9xC4KasazH zLW&y5k~v1_6aaVQZse&6H|w3j>p`#{Yn6nR5jf*h#gNT6A|_ljj1sHD`xGY0BmOlF zn=5_oqG_~{QA8n7tCt+DqVFM=DU1{3l#>&T1}XX+;mtIT?UX(#k+pp~xwV5oLj)1+ z%O`nbr649I=N1755L|@s94*4dGXrQ0iH8WTzpPEG$=h{uUjF{~2^G&+t1x%i$q`|j z<%L3d|3Vby_3<9sIDm~z>Z7tfZi)|4AFuGH%!?KIup z7mld>3|b5vE5E5$GbkS?f~Fu)I=x+sf4BYZv(7zrmF31-;(1((NE>x6EMLn2T7Qo< zn+~`xC5Qp6W4%6?||5>_7Q>REKuiL<9sAL+y2_FhgZ? zUtfSFjXOk3^HePpd^G%0S1;lj9=vPkA*^@n{6a}Zn--B0nv%O@NMii)b)&S5Wi+&t zbMAdfNKnD_vHDwv7xB|`^Db?I7A6ZD75&*Y+-Bc|EV1gxjLj#QV-ocV2(sCe!n3T* z$6=e{d8%T2vc?%!{szy98yMIX!R}A;*t_HyJGU1U`_U*YEgGbBZjyh72j7T)>-^gx zq993`G0+ajwJ&PzypNrC@J_(0w>V%l?GaU)Fq2b=ISx`0bOZKD69vmC!K``LXiMEd z5{v?;d+uVV=b2h-xbOx|g^{2d{wsVzwOnSYLKDKgZ(0vb2{%F3>!fSpJd*R>UBa~q z3eiu41vrb-d^lu?h^S@Rkx-8PEn1YLfV-i14D%3KUQBxbL53u9mGbRv(2`8FuTha$ zI?>@OzBD9$m*<=%l(uOaEosVRHWV{AK~-uRe}hPey%KQw2{7 zVN@c3{?5j6CT2-eCXn~uQkRgM)N<7W^Oc~HR0dUP=$E{zE9svcTk7NS?fM$WTsNJ7 z7H1fbrA|d$yf;q@!==}VA(4R2(UNQLcIP%hVP8Mz2|DwG_tQvN=sc}>Br0>moZQmm> zIvH;E9Nt9u*T>3}a$$8gOqh6g2Zv>}jD&>|p$i=-eQn(cjc}SrQNa2^ZX4%s!VCvH^#m z0D?b4!sO>MlZp733pP*h&Q5h`2XK z#7L%4CHI{|B-y_VlkBkE+^`i`xj(V?bUsbf^sd8LHvgqzOuKCC)a#Bg7 z4H&`?6R^B_n&}SL$XE{gETV@BXvT+vcsf2K=G#QM@f6U44-XVoU9*vy>afy1opWBX zsGj{t)bN6+O^?ex4$_p73y6l@^22)ljaMEHjK8nafIP<<@3F>;SdSj`aB8n3Z{(l7 z5Y90ijK<52G%(*s9yz*Ts4~e=nhkZQd@QKh8s~DquXnmTQ_i;2J_F;JQyb?yAyel= zmanu#h62DaJZ)lxvv^A7;Yr8}Z%`S%9xXlV0D4xJ9 z6&&3=)x{j@@vAQ9@7K8<_mgc6pCjptt%_+L5~}?REv`q_HtIaRFDpNGU#|}7_NNn9 zmX$R`o$-CLIGltyM-aC37Pu%j;CfH5tcNzpC46{QOMMQyZ%*BrhH`RcJ~)*Q?+;|N z&Fi9aM`jxxfS8U*4=3VXu6XU+&0N(`Q|c4bh_@Hz>VLf!OtCL%PF}lDS@M&Jan1v+ zN*kW!zXD=kq6dz#UWUMUsn=z9X{m8v~TtWQIR8EG^PeApn#)`~?9q-5H>1IT(gldHT28;=`Mj%)JT03`}7*K0T{ zJ<$L?)xa?L-u?l~w;~Z34M+lL$EG&$5*N?}5@j7NL^s{gI;^#YDXb6AsbB!G9MLbJ z*19^PO~P{^D@mp$1Ta^SGGOBtqtQ}SVIjys1TZtmaIY^-XbNUstSRl#q{YF(5YV%; z3E-d&DW*nXzAK{^AiFwRtP6w|kk1l0B}ks&pMsGfVZ^!SW|yzUe9-!EFQ9y*zNG$s z1Tc4JKN%;N1`ttT#Zpk$WHn%%8KY9c5cMB8BhXKFJRnZU*WKgqiEsU}ne%uvA}BB? zR|p=jb?$Ybs%yMHAb4bS{K75Sy@+$q z&JaKQN8fh-2YaW7a83|fg7ZKh>)IiC{!G4lK{rM~a2F6SkMFIAy~q%poP84rV4zyT zc30U<-{s$C5V}86c{haCr_fCM-id^qftRnRw*e)JFpa@n+@4>k-=pX*GMCsk))x)m z;_nWnzv2EfjClsq=yd-W{O%D31S}LB$p1%Q9M$qw6Z2<6&AA~QDD=nn#Y*PKYVC^= zoaw8XU@GvZrWnC%fgY>xDSpb(>E0zMx2NqVZ}?ks;wNt;K=ZwK;xm9(#nHv_ZE*I< zqVH!E(Y49t4nTV#-D+P~imw#HXBWKq6OI%3qo>DSmy(lp_~V^o)K{vX;NIZ$=9A!F z1LK}+L@UpWHTHsN_i45A(QSd?u3#h|S-E|i2HrO_J^U=#Q+f>2?eER6mq+#<0sGm+ z`{P&8g$iZz>@)891`Z@dg?1L!|6D{y;O`%Z_`1lU6U6_6#2lD32o2&R1I$>R2Au63Kx!-uM0rOz1i#l53L;$FugF-+enrT8yZa(o z`|S|H6o~r736M`&yfC~g$9r>l8wy4JG+f`(;{#H-?9J~(ZFv8h6VP82Bv!oM_<|L1 za(ct`<=MR_d}|`gR`|ht8=5}1+6ln*%(Lch=hpew=!jkHUC0H5e!{=!T8n(A48N)^ zy`Kxa0c!u;IsKS_-3Hz9|8e!-02&iC-8%+#>}V4fva*wrGBGL44VEy2l3Shp_!}&m%vxXvM`_GCQfL+H*TgaeYwY+_`AsTP$8;dG4Nd zlI6D+vng09)!pTN^t>+LR>X=)BKtxO8(nboOFl!p>QM3Nd1dGU2-hO(?(rs{yXbF) zISDv^?JjRrqA2xu(PsUMUykuYSL2h-v&i6=l!yT_Efq5*emjZc z_3>gCO<=v3s>Yj*-uFP6{OBL`3^~27<-To((I;3{aOQC~Wsw<@4W6flAj}9sGhYDD zODsrtyAONSo5FLvEc9FIA;o7aC84O00V~o&m?Pg$D|GeGyWk3e^QoI_ba$i6*0#=x zcfuIcs^;fIGdQtf!+g%XhL`wjC@G>{y|i_xwA}6c!jYE15F5v+9;awSDc2PtU)4It z+!CpoWwvs3L#p=~xuitpe+BIZz}T=zU08m5T2svCn)ST#y70YWO#8VA4++vq&yI_c z)JmVHk`hD<&=wtgh3S@gOCrYuR5JWZB7QIj??y*Rd+dhnS?p3iWFt<|bwEUnhG2{+ ziXtKRmkp+{_EGvQXLbSyQSe67Eih8p|5VD5i5;88RGFaFAS^Bspw8}#FBiWu^vFm% z-qzXgtuwCf=EiW~N#KeT$z-321A<`VEXGk1D>pz@~uE7Uw1)*SHHMv z=4pD3mpKP}dhcXLa;q&G@gU7ym!c4jKT5V_nelT`BG#hgH)eM@KV+qeHK{d3FdWvA z+<^tcJ_|M!j=S!um{l0HK$sQa>%k`8@b)YN#9(IAC4D!3^n@XvN`d2T4`0LicOg+an8eVJja?xefS&~9M%Rm|tbPa-_+0oML_ z$qxJzG%s6oXPl}T-R?yE97yU$#sxg5Szz?RDQFLU(c<*2r#&Ov$Op^sMta<{H*0$F z7f4n%0gi$;LuC1EV$;_jf@Rx`=J&pTc1Q>_(s=o&pClULf3WwCL6$vVzh{?i+qO@+ z%eHOXc9(5eb=kIUb=fw%Y)t(g+;}3M|HPfScV120h>SSMo%`gDIG??8t(|Lqe`AH9 zrM!reLdLQKp1vi^ZOUr47Bu`$9irH%#%mk}+d>3aUcgqC zj^ZnFaB3m};2$Dzd2#JXixRbs+{Kq2Yq{{C>}PxVDlbDP2QWL4#ig$-Ju3;a6vkCA z)C`MoQl^ba#YT<&r59Vo!h$q!NCFt9%Sn$8+Kb`f@aAjIRjsRbjASdRRf1X zY8)tDN-|38KIQDd=*YUsgqfqFX6J^dGMK4rWo4E!<{Kx%T(S4P%koC()j3hc@#j&R zt)Gkki#T6Y!Nl@m~`xbWUzo17!{d9*>y8QF=ru4&{(b7k0xjJ`mkr z_ck7z;`NsjvV!PL#Yh&YcPbVb>Q>L zCXif8yscE8HGm>;jUzkhYR^=9JmxSncr~szIAxrD>q_whp&kzJOk1l9BzQ`)dlY?{ z-+~i9O>=4GdtGuKxpq*!k!+zgi_NJ(LvjS$+R+*gYbAF!s2bIBxH%RNso{>G5w`wv z?(q%P?B31qT2v^u5Qmm^!+|B(A{;3-4%xB|i5s{TgAyi!uRHbrq4o0|ZJ5BOikHjZ zjlC7YY(I>klAR8?;1dCgZAfktTPiP^+Fdba5y;ah(KyCBu%0j>DA2j`e8FG>l|I#&nN_ObZR9v`-v6A-t!)?^*k%^3l%GDh2t$Ij67W<>CGY6U)Z~?mYd7e zJ~aa?PNl90!34+AnJB|$Oy5HM{p<|L0rr45%>zEAO#`z!100y2QbJuCk-6%Jal{Yd zNBLb(iPQT2T5bjJ>5+Iv#o7T$UEEsxBcEAa~MF30gJT>Lk4Hq9gzs2Ab zv02u64uQG6Mz4bP`8Tvy!RpFJT^~2@YYIyvFG3difC3I^J?i9~PFLQAyDP%_nOGNXWmpcqZ{;W;Tfff+6@9*mrstuTUOJ?|_VqL4RCL%D} zA6~^5d@V`dEerzOvRSZSfM1piSgwz3Ryp@mdA9M<(p@0PyNZ>yTV4I}j>)8S0pSf6 z97oKzwRf#HlZI+n?q-5x9`8iv19BcXRGTr7Z##-|2wmB?hNcaDC65A0B(4`@z~+2 z6$t$Hw8)wtcNR zX)GO+pi>L+R!7H!^X7A6ZIxzLRfHC{A+ZE5)X5Vw~ zO5;sof)$9r8ESj1fpDhR;9rf%_>=pIs@5S%Hbx$DZ*)IJYm)4GHn6tMCC0h(JG(mm z5_{GMu0fyvqPjEdj7$qrAcpv5Ek4RF;zcR5*I7~EwBX8W#xDJlJ>@SNO4T1gnlNK~ z^YnNFCBTpzN%0gWTZe1hS3C|>Sv(ET)2p8DEsZQHKsqm73pg%TW*3ew)gwrcT0bJZ zy`ugJ1;*bPZdM|-icl#}&skV^N`^TeQH9d=cWmo-iAgX#lApU~xdam?kRJ>w=D2~G z^*CwCR(ul0w4Lo7r8i2VH#Ur4QeSocLsv&n`n^bUtcR51PzhFkMm z*>B7}+LS=9Oa=6)uQt$Ym>bxOW*V9#2Hhvm)CRAw6+k&0IGu&;5!{E;b?U@BxETa) z)*Sto?b|&YUw{)sm_@-jeQJYFuA#AHI*(&mW4qv1wdX`l{`;4lP94*x)xO^;cH@x#;!fA+^I7 z((#b0)%}T;PXt>FZ)UcC;alg)OO3m4lsEiXqC|&cPdV2lThfvi=okwHz-KF+$iu5n zOJHP_r>-jZ*ayF;n+Q=^H#dX-3#*-R-b1G*QKx+>?e3zj1;JyY&SW4I>yMR;6zkU~ zVXFvib!Wy^POga2)=W#XDYb=Qor_RLLDR&E=?b4bSZbF25&mc|T8=ds(`ZQ^q|0Iv z!bVx1*NKi<_H_|G{ZqY(%?g?brbcB;tv`lLw7QXwZ|M+5J*&xE3*X;+T^qEwJ+#6W z3T`U297|=yPad)9Mi=AFSvqcS?VTmL{W$F$q2>BMOuykTG{TL#o z1Dih(aD#E6QjuKvS43OlRAIAB-F$ISRH1aP6CR`aB6u-bm#F07Ze(q`YPY^eGU~Od zK+=R$YGX*%q+oZDQkch?LtXVHKIA_A-5O9pc_@U*0YzxY&0_`dkALU>(@L;YE2qG$ zO=0ZmsLgd7#2iXEF8Kuj9_?ksgP=yKVa}i@~iO-2H+qJlgQ!={zWli>C z?I(sWN8L5vcO@DTQfqAzW`PF&0Rz@6$>q>Pv{d>dOtg>Rlef0jp7g3!-}3c}5rDj_cDe5}f$@8JE_Z(|M znhKuRXOPBU_clMyrsY0bP2k@EsZBF}MRp+IHB$6~E}-_}z9N@C-`c~MXTNuY5rh+& z=9>DXgakE2%WgwV^9gty9v@Ucet7*Mx(SS)R7=^g7G zmU)C3qL+jtx+D^+oH-7+6MQ?4Oj^&y*D7mS|I$P@+os0g4i7NEG5d@#V_L!{vH>9f<5&iL4R#UnK;(THj#Ft zQr6%z@fZiJ$Yh0PoznEK&`}cW>0B~{NGwrJpg!sq(@zi_nSja@R=_2WVGM)ThEbPw z>o2m1bBnT8gh*LEmB102BUuZE7LLI zypT9_*m^AIFxb4k$y~!B652?MYV0?VR2k|alY)Dg3u%UkLb^(Ur0-Wdb?iXvyc7CD z&FIQVbyXPc>!H=|GXJnUO0_HqTSHen&#XX5WUQBV9dU%*3oeDZQc60W2^Lp54Iq6; zEX(P+N=3#oFQBUat_P zZ1jr$Ne9Sy7B%~bm_#n^N(aaXTyhRbUC0NSvj1XVJ)r~u;1Vi0G%4(&XeA%%lBP_` z*-Nb>&2**_pn_}7g+l@K5^WuN}hRf zN5}Y1>`54%P&!U^-8XBO^hpWN+v8Yvk`7NhF1ANRl6S8)o(gKxmq#u(-~~o9lgrUK zlX4dWRD9?>q&FC<$&BSN9y{eCa|QL|k*y>8!f^8;#OyOk*~#G63j<-_Y8uzkzwmU_M9o! zdNS~xu<=!CY~v~%F_Bu5M1DS+bc*yX@nD`o!4Y@X*Z&n}yAIj37y=dtKQAN;9^y77 z@rPnD4&oE$;IJgg&Bw06d{=(T+Nh5N9_72PIylLUvaNMI$PCrMPyW+aJ-+Qg;K2F{ zH-#|i98i2!?(I50G|0RuSFM)0EFs!;>?a(ysUOpqT>>kMUfBl~E2z*N#|AoUssTQL zJs&!M(g{y7addYt_oEn`%6Ri`z5yA`YF#_*?+pV;DI1Ilat5qAWwc4?D@y_E7Qrbf zSU!Q%A|CiO(7w1<(8w{jmV&E`pw;t8V$JFY=r(A<)MFxTotsI096QaJZ`9o`zBN>8 zjHDLFRmHl%hdBIVn3-pI$jc;E^iTcFj8Zy!y%pO`zfEMlE8UOwl#Ga3p(Y$09N*OF z-%B~{FNo8Hk)VTyHK>1d008Xo-Xye{B;W}E~OmhMnECyIlNM3=Hd6VZc zu(Rdh1)2>j>*ayrlgTdZY5_6=yD;1PBYQX&oW$Jg_*Fph?zibrv|5<0i-nd0YJJ3k zs4A(CGq^1Ch;`%U*qD)VTw(57JmH?Xk?B8y^xVedySvB8_+33)OjEAbxJVO>Qp%6! zNoaFdmW5eG0vM@To5&mBP_)?H9kk7M+5@LEcb20u8jtO`^5}i|4<(d-xmaf3M}Hb{ zb-C@BHHkeTgSqZV95~E~Hs`uypS#h z4(!vQ;;_hNpg9!a@524}>}0s`)ZR4{9p2@t+do~zl4w=&s_=@dhX$R*iS#?sZAuDP zFI!UhwKTIs4wd<@BN?P#)S{yGOC-iX@M zNN-w?rwKwjBMVk8bdTem)YeZS<6`EV5h{0XE|xUM?y2E~1^PhM)qp%C--mv!P_>Ht zAkm8TYvqv8%nQ_K;`<)_%@G!F@gsa;!*l*=Cfq<-85!LIhmirv5V%sq+3P~P1BPom zPuns*rXbgz?RG0;s;UyHt~yYSEE(^^2@o&(Ep?vtfhJ)h6dG(?t0o1SxH=K$_4Q!(3*m zp0ehX)`#i6G$z|p4$2g2EgT2HIpybO+IHb7#@M=jL~>|$U2-b(pPg%rbt;uk&mQ-C zZ!u2(`h@W`u*pRSqaK>Q2pe8vh4$1INn-Ru( z>&WQxPSe!OT&&NSzC3#xzBxlp2sG?^$>8zibM4Q(?X+{pV)^BrP(}M>yEu>~iNS$| z8qbIXF3-2=0EX<-GmX&SQ!}m@$Ue6uPt^=FQC0AcjU-`wu1vot>JB5Vi`Ajw2RZ7) ztE8VplqctrT>+v)?mWUE{`wy;%b0x))v!uu0zmv;)4o{4NiukR4K*C5A@q6o;jfAY z8QcZ#?sB}xE%yei&HH7iiIh8Ps6XN12(yHa6Q?!ySIFfC$YhT4i`mj|m^&NgkWy#+ zEUOt?A4gDiD*zmyD?G+0@rb0yg%yDnYOzs)()x zRiV<`_vKUF(m4`(=EzR)kuF$O{XMeqWhBsT+7=NWkRWaN(OopDByQ)ut9#RWX|TLi z6hJgh!}3D}wr4(}k?lMbHifWOPVBc$fBK~ozy+X|V)bPkbccB~#_%{6Pkm+Q+^$C8 zUovJ>$UDGDRL6hnr%!=q@06U-ujOuIG{>XjVRHK+T?QavQ0Sp#M6Cb%)#Q6pO6t=Q z4x2sQNp9z~gP)=}y@v{a#sXK-Q^#K8Fa$B;kIIM0IqO1uJm#KpL5DM3>5tFXE6QGS zS!s@pG{T7!2qGB2IaJ%tsCsQSolpMDo=7=$H6LBrle9E_X`P62(`ITJ0ToZoJab9$ zTlLf+IbkSg$ml#d{BbvwHZH;<;SC8?ly>i}hriWa*jTjs33b1|Wu|`QK%$W=(fRe& zm*|KYle9IFmo!Mt)TPgS+Y+<6cjy{t@g!jvrr%3ZtQ7Y zKqfyLUTqe!S+UsWhXh;9BtMwSY3>Y5`eoIdmqD}izT_mbA;{9ar_YlR1l(xlp_dIV z?bk#zA|`SgtqM*mX}8Pq#Ns|AB?8^51|0J(gkNsvB@=u5ig)i;*Sgj-&q=$iEgB0 z1n)_oWcteG=>m3m&H@cP<-bPqH^le+s7%2V9f*~pQyt=tgM>e2WmnRA;`nQ!jBUb} z`uu^UMyRO+eRR0&Hro%-skO!e9SCN+XwotpghXz?6? znN*n{H@$U#ANhR4zWKT4ZAETo$a$m3(!s=6=Xzj&INvkXq`R$Nr^Yn&?P8psVZ(S z$8EFb`S#NpVNfVp3;P}Z-tbj7HK%(**;m36UUg@&Hc8QPZC_~9*mH;9=u;58L5A@+bgUR@1)UyzHcmFfm&J4XoILg;bJ zDY@9zz%?8n){E1+>!T{IZaLM*Izml3ZOtK~TA67CM>$PsG_}&sW0>|{N3zoLaG>lL ztOprMX^%~=9PfBzlMZyt75~*AH)`+Wq;dg){j~7`lefZ8Z@<%NHy|t$GXt(dw&_n4 zZM|T&Ucq3V`$Bks5wc&;o2BEuC(ZILHNZDr#$cnpkAv#KMp3nEHF-Z*OpQy9gNuKL zUiifRJu)Mvv-D~4_4Yykb4k8SRS=grVE{NwZ#9*MuPf4Rw=t4hqiNz!j?akbYl0Yh zkN7|b7{aQh?Z{YWiP#x`s8`wn=rYQWPcc9`4bwEGcN!d54qp>YIaIpOZ4B<02%EDf-AWB2+C}qdEDyr*!$Nk_XhV; zROm#f%E|od8Zew$-G#akoP1zd-+ZHLzBC5fG#S-xrrOLtXBz>4eSGuV(I>($f z38+d`F_<_0kNhj`1!0&`97UQdp{QG%A69z;-W#j z`eQH6&DKH9RR%Yr{%X|eptED=MEBpCD0v}18LxMHS}}_ivH3ItR10>|#ti-4wxFCl z@eFUaYr~zORoAhk0amPV;Cq_dgicG{V6kGJ*~bXN zJJak`XmHSn-nw$T{5bO4ww3p)h?mp}M#JEweoSru%AeAYN`sWz8x9dMd8}`lggQiu zjM25r{JZPr=cA?jw_7qT->-6h8B1gBHxP1?ma7~=@$<&bGO@@9`ni5YRLoe?E3Y-J@$AA!eylPt~j;ITHwcCIqS~@G+F6B~`n1zR)W=RZvuE8L_3|dQwj>|>2 zqq*u5{7if$CbYB=GfNSRoI^`QW^lYjg-|bt%TaWpah*cd-`7$CG*Z4wCcZz$h3&@P z0FkJDvU}?UsrFyZeI^}N_ulN(yNf8X4_|SjXRh#mlXT(zstWfKCXGqr^SPWnJ}kfG zl_a<+GfxBzGag;6ppMAh-dw&#-;Praoj*Nv*sWyc;QhU{frFh=ByUr(j%c|q;`H1{d zUQo1%g(|ZqvDr$rf`V$DPWLYf!-ENH{1+~~ufI>?AM-v*I6|Blc0OzMEMn);jvK2FO=HbHgIhiPM*u z&Ed7X``bRK*3RQ`xEhzDSrY2`!3b>@y_k1}H-ppOjaXP|l@#O!XooF1fE8oXc=JQ- zHFKbj1|zG~j`sx9O$2h(tKYHy2GREj-O;}!qyn8&%n%wIp1;wxNBz@`eM zM)3LmY*70gx_rEA@FV03IN%*y-qpnBE&f^wV>sDmkk-bg!hAW}CXIALy^(1GI;g>& ztngkIWGU6nQ_{enlceJRoxQj{6R2jh-Bat(Mdu>ci?m2gEwM})Jn}=NhXl_K9F9?F za2-q2II*n&rm1R>UP{g5K#-)(Fb$GicqcpOrFB6!<%t}G@Gb}8(Jk5W>_|7z6s0qa zKpWY~V5rTQ-?=PfPgJ6uCliB5XS@QWVnrtSETv9~Daz~!12435fE#cF`U>z;HsvqW z&ZaaN(=^(7gUV#13E3#NZpB8{KF)(eThWDYWDa!B0Pb0SteP|T#Yp(0(1VSvp6kg3 zwlkS1Rg7}OjFRqVAv&{wQ68MA49?joCO_@|QBOrX zhbEAVJDj?jTYawf!WTEkvJTu<{Od}mJze6nD$G3I=o4q7T@>&^FA=c(Zk?B2qng9b zALK<+f-}Koe3UqiA*PGC%QY_+vlyzQW-H{eAD_QfNP>f5U5xS3uXW|yeY|-bRo38O zi$Ny0BzQn@OeJG08(W_+g-QEYQV|CMhQZH50e^u>0h)+SirI3sHy0@v0O5D{q(3 z#Kv(5pOwj^L)NUM=7-R-S{;6_IrQe=PKb%RFR+95kjl?WA%5rxF3Roj`EgfWtHi(MEY*^QFmW5GUka>7z z4-TZOH6F7W2qJXo8{hI2$65=XE?=dn6TD*H?&*4M3|mhhsk7pJjsES#i_hm)LCl<4 z*U9e6!;V_sG$_(zjIpW@AHH{HqAO8k2HP6OGY4gowO43=xd-!(f2T6wrkR(s@EL~7 zSeMu6gP*$Q@q9(Vu_8wZd^&1-ARHQ1)LQi#)^B(8KG@3KjO6vDk1_YpKn>m%G1+F@AIbeL1qb($ zHk#c95t&I({ksG=%zEcX1d&;7nz@Hk%zRG6Y9QMJT$2jNxU!{c3h~C~IBc^m z&Xx|h;&0^y-Bmfbs3PHb0gy6wRNlM;%X_%EWURi{hCqm~LAp3DHa-r+sq==TLgo~D z)f+?ngD3Fn&+(174o{b{NeZK)h$eAWD1A$rtb3+x_~lTffOTbmBc=#jN*wdCDTrcl+?a~eRqRo?McR~iA7^&%*`1G7e6*pP( z$IE+lqg>p#?p6ddYqTcH@DasRR+MFlZ-p+zf}&4gI!KWDs|P&NaC&KMxS?0IiWXN` zFZr8P`MbgqORQ4YmaQz!YGDyK(P-{D(m0E`lJZgRgpp*#)!L`#$a85@j)r1h8{FX1 z5zG1dbBSpaFM$tD?-*!h369p4Yk)1aC9j%fvB?u8CIer`G171Sn}eW>#SgG%VYX@n zzJo@xI9G_3X4DK7g!G9K*d1623TBm-@4XaUbZ}S}so1j}$&!=&e_FYfegrGotj9#w zZY-w6p$g9B{Tgj~s>p7$WAkpZsGRW1T#kxVAXjycRw+Y+IDqhg4{*QfM#4d)RSlmR zov_kdBW+-5T^z~PQn6}kkmeHRQo_T8YPgdX9cA(6ku$y_p>-c5q9Zf2EFLu|{39xa zF*)svDEx=mA}eYHmn3n+o1%)&UNWvajeT+n9kj*(X|V^bfIzxz*uzD24Nw=+-T5Y#W&v_pnrKkv0Ln`NhatFNGy+jrw#8b4P_ z2~M@96EWtQBfTGZHD+ijONAJHn-;8|kdP+;46%|O^G^wElsqasiBc z+jvlI8PXSlZs9VT=j*oRe_0CmvM&A(b$-!vg zV$|)vEIwuIX^mwV_Wt3V2+Nv_=|xQ8TeaUUyG_r=1zzKr&m@&UyLXv)xp=0BJdtMD z$~(=Mt_nmCaG|4&i(>9>8}&+?Q45uOXiYi89zs&AjqFJcOFD26fLu|FVT@X%@l2s) zKXZO<`UO}ZlT>51OwYH*Dwps65gu__IMGku085F z_h~fdoEeG=Gm!~Hugp$;ekf=iq9ttUp9#k31ODuZ-MZHMdvoWOzNxHwdhsr%CRbkj zLS-F7>3M%i3wGNR=dP!sn8sf@# zncxF20kS9aoFH8#OHM>xgk=`i)0C>&Ou;KL3?OF4=;~}$iok51b7z`2zX*`;5mx_2 zLInGNONb!k_>VLPLPBT;Q44El6GuV@QELNd6JZl0J7W`QK0atCXGaqQ8))}68xNe#0Sw-0A?Akgjj zrn@++GktJqQ>|YuDQ0}0c3JsA=Z~wIbv8R2-n1-SEuA>C;lY_P5maeZ)4MLsKfYG* z;WB+sZ^k{|09fRk>T%WeRg*7`bTTbATQao=-a{!Obf~wCimZFUyr`a~LoOHJS15lVvQgWF;E?R1Jky2&XPnra?D60&-z)f zH^BRou}V>Qe$ON&tyKXOSrABjw4gjIiPHXL4ta6_1nn9BY>0HOm^(rib2Mi-=uleZ za+)2^Di_@2XtNk0x43~w`z>M6uRw3K7`Yt9k+E=+fU(eZHRyJmlhlN2CJ6N0xT=<=G z|FNhUE%FIPuU*3T*mg1MC6Re z+^tiN^T}PI8J`^2t;by5OrorJ&i%%*1cP@@ zCCaZnMGfcKZF=2rMf*1WQl37K<5J737_+=BS9t>{Y8*$e#JOuIs%_t8-$uURqjDm5 z7(8vu4gUo+9RC6u7S4am4fgu+di$I#22S+K>GmDqEZn?W+$yEPom0GW9>RNxS zqIoUXilx4r!s2eWF(=Sx<)h<;w+y~(C-Jgv6+wo3cc+_UV9T*P)3kZm)^d{W#pG3K zzDZ7+$8p*w&-}cSyLW&pP1m{hwA6aJ(ZvsGpg9g5a_p=ao1WxJ2k*i_|K|0MHEp1L z(?uYo{xmb22kxUp=^0U4?{)27=B@9_E@?IW;l+Ier&OOuonFJnwK?zMvy&5({bPD3 z`S#O;Rl2>7P(?*8bKXHI-FMzMjquQWY_47#ytwKsQ_6hEl|vCl>d?tMm|7FO43;j1 z33|g&tJk=+jIkxSwh@pYI3$1#6Nz&8jgCd&7^x5m{U4#cP)%*Ox^_{pF>ht%kJWpO zOCD`~EHNW04_MkVcrYH)$^f%pFgszcJH1Q>%g6N%S}@s);>(HBgG_vwX1<-hfTw-f z{XK%uQ7SvD9jIf0UjP^&ghx^oeF^OolxdJ<7X4!Z)0lmpQCv+houGcA$X{pB?y^>R zBOd#0`+x9IuZgobkotNE^@{crOC}wl_r&#YcOR1jZE;?U3aussQ2MX&6y?BV#d(G7 z1-VGzcxTCg0f}J%B!Gf|Zypi#7>4I?*7KjZ17!$)BHtK3s8eURGQjDe2lcK~LE%g^ zw2$q=sWzLB~84`gb-k+J%pA@dJSPabo@ z-^lpnFn=Qhm0KeH%470hkm2_9c_??4A&V9p7QN zxhs|b7svqqe}PQg|3T*eAoD-0%>P%&(8QH${tIL{{{=FvjQ<-}2KK*M8DR;){dP?* z!7kl8{?Gm6o4Y99v<`xr_4MksuI%90tgh8O-lwAMB7Qd=d$-i4!x!Vso7J^()%lC- zLEX3JjkWmAl1%IQh5aBByNp}+>WjhG9ODbIO+>IqgQvfbPnA3mf>V#juYjegD3GTv z{MeYgO;#s1S0y9gF@|*nmvtVdn^8`;;LftSM^O9_ec#!>qr`flP2~>}*!7^spW>>E zhwfM}e{T=qLD22^LuYf?r}E$ueobv}956oS>h20L`km6OFHb>q^e7yeHXm1WYs&Yz z*XlNm<7*2Ye|WgnTYqNv(Hwp>G)TYJ{Zuj0TFqNeZr)}iU>67IH55`V1=y5-9idjQ z5RjKUDtG^?krz8BjL#cj4gq#sLDOeuRab8pR0rT1^z9Oc2Mnj%h34=Mw z%L~=jadT)V2eag)qW-#gjdaDY*2fARR=mZm9pw66m>Gh&2LK>&cj0mEqgI~UE-sb> zWvTvAK-$CPW0bY%40I6PM;(6Qe-BsMSn{Xngh1-ofV|$3RRl^I1@r0m+A#%M@ro-u zc1K_asRFJM7$AZPc7bybx8fb~+D|{;!8_OyaknD|{sQ(v%ZbfVoEeKJ0V+V~sX=vL z|E(w4ISgAX2-_`mQ5Jw=ID-fv%83X1$IyJQ%^Zn$ggIZq;1mM7f16FlBVa3sxa`mz znEesUll4o@D3Arn(NS_}D%v`Wx6Q(gN5@cda20Qui?q#VI2JH{*T6f8beox>l;i4| zN~E{FGk&(oiF(eUAn7?8`;|n|@S7(+?AF+DJW=8MLm^K(+Tob_cp_60MWSMkw5SI& z=iwM?Qc03hj-r5vB-tUAj`rWluiFm>ye)Efv6>oPk1MYy!q<@{e&_4K#ptf?5uNou z>aQDwm-`l=f>h#Xm=32>r~l3jJLA7#hVB0?Gl*UP>CO<422lUIJJU?PXjv1NW=krb zPm25ccbP@#y8bf2oX3~Ncg7d{%D2r&v%e?s&8 z4GsMLC7+XoYo@XK{luftCi}lF&2)(E${TqDqKMM;N^4()ujDyY{B{Q(d+8AqR9rZ9 zRiEkPuK0etzi~!AHd?^j#F1Km9KZ+1V|7X-gS#5(Q{s3juwm7qU3y$Wm{DeW~%X+S2}V5vZHm;f9z zNOfS2zyMif+Aa1T*&;D`(+w=sJvgU1QmM?Z-+FP?z&C|dBGR&$P)w)2PDQ_$!9Nw} zSWFR7%%FG=16vJnQNXW+W;L)a(XxwvtIlp>?O^Fv0=c0flY>g9&GUX|$P;$`VcGiy zVe263(L3^M=C_>m`%N?(MUMT9raQmI=|^GmQ=+ar|LLDM39&6Xu1DXwwKs{xP}b{N zjLWc@&KYOla~7SA*U4+GT&$Z#Gg04%bcHQ5(_J4^!M`jh9=Yi&ZvuTf4DjL9>1^Ht6^3ju?F7!$IW$yZ__Y ztQyB7S6N4M5cT_RSnj8i{(~Z@AJFM!4d}n1hv~o5!_L9{|J>pz_t_ROB6i)OZ3z`U z#tpLrB~V8gnH=M}GS?&FxuLIJs3-HoV#Jau-c@71?;JU8_f0%TWk9oi2-~itFJI zyb|lN!$@GSwQp{3UaHw63fHT4rl@~^pyu*9YhyY`-iL` z1Uvu^^IV(Ts5&r1&`>7Y9Spe*3iHJyjSK{LSbh|W#nR8tDu7D_)&YpCEh>P)7!!vz z3~-I%uTa7|Dv-?#!Aq=N*q@;hM$Ec&y%-GtwBMCe-pRx)8v5^0aJv~L;MOA+#|RMA1| z_$WiscMA%^wNGQZcDhwSJ1C$Y6Pp?nqZ<{Y8xzAzjP(@YJNxCmK=o3}a;v~FCe}qv z(DdEN37UuqTx9vq0=*Z=Ud#b6=AbX;q%Y=%w?nkHzPkh=eyH!ewXwDn1?~4;+cd3> z_By@!=2=~rP1To#Fa+9R^WY&hsm!l1H8Q_O{>A_Ozd9xIj&{Z_M&Ge6N_%5dWfOHe zCVEyzdS-SiXa)fnXLCD8N-73r3ukMS?^h)kLrW7Q=kIqy-*GVK?>=dR?;(V47S85` z<{tJYj*cd#R18uk9&UDy#!i&q=lHh+E$nQCzvF0xl)_xhjLfWz>`VY=7FG^M7R~P? zWbBOp?>m(p4eaerjK2eM2G&j{&yQT>X9Wy=qe_qx1fbaQATezAK{xcIQLMwX%XLBbL147sT7|2e~ zO3z63Pq5F#*4WO_5}NJ5+#Hm@uaS^J&d^fH*#??HmXM9{pHQKrlQSU;$NwmvLdeX@ z!SU}mkNmaa|PI=U8pBKv}DQ!%nMuL9*V2yV<&mbYvCa`CCHWkQNCRQbV@e zS8m3i5K<%NpiuFxR>jzeo|m`8s~v|0WB?RK8U{TbIYpu`=~3FUSjBjb@e(aD0n1`` zrm|0n2?BjY8<7MnT`hxZByfnNRvb5F=tmx_BDiQ^k}GRCt0I$4S|dGk^eOHlQ*MK6 zAz2O+BTpa@yr+8cO>Lk>BLp&Z7Bre+ZLcZmfmk2x!HRhr(Cy9xBuTX3kh^K6KX80H zB5A`tN<2{2qJI5-B)%pKjs>zgIWUm{JPHt1qsx!bcC;Oq$-EzolP{%xpxo*+jI{lh z@IB^zR%xldC$twJ1Dv5|KNtW_@&#hCnEVFs7A~4hpJ_I96A~;HN5LDW+ddp?uNq#V zJzpA-by5fQB>XTWCmxc8r1hk8&P8YgIK)oG^D#|VEUa!4D@3>5=Q7OX!t`OW+DO%; z=t2*j*|#eA8r(=DI|s#F*aQ8sNyc6Wm&UJTUiSTb4HZyD!6dTKmR-+|`%Mq3=sTQAi8L49h4jITbrTj2$1HO0d{UrpPxS@%x)bO*;IPwb5dU z(`sw3Oo&v#n!he+&&W!G^MY87MZn~zdqd@A?UT$1<= z*q?cJ>W+nWJjWtR`_abQ4GD=xvm;$w)ZBfYlx#v7=(5Az=DYoq+>bNU@1P?VzX{nG}u?Fqe*h^yunu^bK5oIA{AWU9oiY~e&r4HeDi0XsA*B3{ZPMRq0 zQbt}R%DtjgU3{=Pyg2L#=Xz^n19gNuvi%k87UdQn@SLgo6f+CAgj=vw+CLC*H9%d9 zJp0w98|B(LyV=F#DTBEmd4~}B`p)aMyt^AaA=e<`@$Ssfx;WO1L!b3s4#GVXW2_`dKRU6&~M&OT)lF^Y&nRD7iwmsOFZ zA7q|T16x`jnLs8gscg-#nEn}_ZEC(nRFA|;JAyOm*XRr`O&HGhtK6l@jvWGOsT?F+|qL||t565c&E5Pzk5uU;#(DC?E?p*)M*f|c)x$=WJYNa*az zX*Z~C`UAZ8=IJR?n{tddD0SAin~UnIoJnz3u{)FP8aT`sZl0Kxa~w(puUzZHjy~3(lD2?Wn1s%-?boCSFDH&)SNKl88ZLu zX{?UNET9uOkpy^Qe0;JJH)&Mbia!vp*WsyM%~PeH{Iqv!I}g%Gl7RGFm`Dpu1m>9E z5F9R0V=JNw%>tF}JUMyC9~FmW?mSB_*cvQDyTP=EZUCJ;J^d7H{HR)BZKnglE5a7Q z&oMPWmS#0H?U*%0f~gm=u|8ovNqwW!s0XraP*4?bGzcoe%UoCTZfd@v7E#AuPfd4c zMVvdzaGpB!wVOMsY{4t0+t_#HEHjHNF275;T6~7)wbQ%oasN0VcnkI7mkf@XxOquP zpR7xjMc`I#z%!|{NIB?0$DejfMd1=^g`EDl+0)?U?)k|Euoj)zXdx-P^I+-Dl5ssg zP9;NGk>WU9M7UlA?D01TAp+tYn5r!@TZi0U`26}~U#R>BM&5aIuc;VbAbk56e6_Tb zocQ($UdVd(oOEw2b#F5mJO=n}%tj$tq>ZJ&qMpRi0X!ZK?Ow1jxKcMJAeaK+zlF&@ zM}NHPg4_FiG~u3or4j5D-tzJX;>qfV6Fh6J7(pb9YT1F|g40bQ$j~lN#FS>OC?0E^xJ4PJW00^O$c${K z^>9+UvHA?(zTSTMYocSbvc)_2IFp0d&Fh|N?H77Slu346a6ZyAc>hRKJR>?|tJZJJ zf*C2@g!`=K9u_mgklO{|l;(Qnc3xQRIVoPubhpF1#N*Q3TvoVu*$5Jf_JS9#c8WKQ z$RZw@lhIS7!OuVM$>sU@T!eDw_3>3>v{(mE9K5-at2~Ke-OLE7sXWE!7sia{VEv3U zG+YYq&tH7^bjq&s47=*E^X1~=BHNVvD@`h|Gtb7hN!O8cq-bj{yC~~av@kF~D)mWC z@yCGMuNer7uO{m#cwm+m`}(tO;4{&Y&bpJZFP^PZEyL!oT}t6gO*e= zDpRiEb7A=eT)|d+R!1ay3U=Pqmb*rAN2nG-sG8y5c$uEupZnNG^$;E zJG1#CLy2un|RkkS_@DGd84eR11Nvr{;=MHSEoEF0_4gc4C<<&V)UrV_*rS-@4z|K3y z^WM*iIbZ%w|J3WBKl$$d%)6X^%A|GU~WcCFj${^He3t@QaH`u{n*DMtVQYgfzj;`i2YANtR< z_kW2qmWDL)P$i^o7!j13#-;C>my%kc5N)7fZV=0*ADmg03S@EVhbu%IDi|vm0>y&z z^Gg)WKoe>~AmwTK3TB{IIf&z;5N%`NVq{|G=4ftVYHsRg>f&e$B#jKrfX!w{6Bid( zS33p5N`SWbq~@gqo92d=#81-6UO4UR6e!aAaI0S2$Ht}yzgwAjrw$wQ`fiM*$#SsTVR^2HovTN8cLJw`jARVwH3vd~#aOSxZNXl8qJm{I1Cpv>XU zP`yVtSDMapGhO>V?aEBk%3iDO``QC_U;kHMl`CHVlArDGkr%p#|9tM$tIBrfm73G@JeSQq7zNU`vJWiSBVG~~6-u@{DyvMB>Z zDvJrS~>%`AQ2B?h5N4+wM*@jCozrIMSKhToK4UKLmYqDmeO zU{c zZ;4(tlG7~|fd>kLQH;yj+jF$mxIDL?^h_wNnrQcBmX1Qjz1pap!<*xC(8~1Vlh$dn zo4&)bAeKG~{T9MbMkEgZR&(SjJY3jLQ=y1#t?#Nezi)a<JLuSU3xYV(JT$QEWS&b>R=J zgjjCxlJwnM?zsQb__{OlFIXk6aAInl$17iSYT%JeVJbH-OXOB5>ALk$ZKPK(@!D-2 z^IrHtFXO%ax*3Ub?r(WzCo6QM;^Q3Cm63S%Ko!uSZ`qSe@tX6peEb6Af@yt)GPN`L ze^vRP(f@4*Obq{nJuox=ukB$(WkPO<0ioxN8mt`!va1!DTnD(ynd-Y}~WemU{;P4iY16% zST9vN&KL!TgF+M)ouEU$1YhX$Fy$!#Ux6PgK%5cQ2XwW6y=#X$dFSG%_r&zj72FVn zF_c(HVidu-5+h9ELuCY!1QUi^{A^4FYC|%b`f^u@+r05;>==ucAbUw;lD`qwzqN*G zfGTk%YB)Z{s(}i9C_!VZy?-S9gCaWTBAX{eXzxn%l}|P=g49mZg{^k&Z;hnJ)B-ro z7lgccG$8l1ZuQwsy@<)htYtdYTpP(XH!j`eb0TFwwUvS~>ryhp{^Gkv@WnyA#X&Nv!<%wxCb2l=d(t9f6Bh&sFbLft!vv z`SI|y_b(~yLnFPJLGx%mwxEL91MK}0#(vUeZ?ogZcIgcuNC;5d+$cIjPdAmHvfMlE z1*{8rp|>39LPQ1-5(AB3!dkDe z+b^iWP3u9ZO7K!zOehjiF4p_BGYHL+3i%C+~68*apK`<-e*N?8c7L)#bTcy1?cfU33>hwUyDIo>6bNBom zF|ell0K(qlu}MksS5iLEkPOmXlW z;ER@PA!_by4nna>Tl~1V!4f(T3Sv=-J+e%Gy5v=_6imIpp=d`18(uO7K?+of0XkSd z4OCK9HoZl@PK}=qCHtzYVYW-#jk)hIU5uZuQ!$Ug6(|WV=LOBfNI{a>u7yi!!@7T< zQSd`$|6Rb$|AT+Av;F@Nu&S>076Xd!Tpa=~3?`PSe(DV$%%&|SHB2ju4ZI~rW)TNo z#P)_1&{p1Fis=%`jTrQnG|7&4jrT1lct|0T;pGNGUYSP~BRmW#PxOmp}oXSXiHH03I0me4q)Ha9E%1iRHa!ihWrSJ}}rgr4fa! zIDK3apPdQNSNvWdo3Z0FZ7_+Ph~X#N&?UDaD_y|me7Q`0%F zxo_}CZs5F5bO0&IMGcUD$W1IQ4ILNT-bQ~57}3sitUlAAlIbw`{?Q(hvdU=)+U-9KYA zxp9p)>28xC*%smr%j}6xnZKCg2--W(KUH5-nL6%=+7=;Qt931ZJo1<5B8{upWI?7& zJTzAfmpJy|YHQI?241f^5bM!iUCyBeAeLCpZbAyRP_ zW=jYdL7_nu@LR3bZ(Ve)z?URR?^84{bRqMN{x!liMDVANHaD;()eY{5J26#29Ci17 zb(a`YEJjld#7-FWkzC*$=Aqqnx&g}xHx(cN)oHbE>pC-H(N-p^xH1|gGh{9zmhd3b z7!F%YaFj)pPZWh-ssD2%8Ury&!ZE3e*@NVXQ3{CJjgRMO9Tz4#K$St-nB#h&Q-IPB zHLbC2SP6k7zX7$b0RcC5H+O0S{@aeF{ z;W)<(ynXX#!W={vd(eedi$(plb6Si1E{_c-Wt6mlibn>7cL7($Lmlc{vDeh=S@`d+ z#KQF7&MHO%Mm7eP{|aQ72sqf-|Idt>fZ@M32sqgp+5fi@PE0eX3ic)v9gJvHmvUei zNSlzOJ1ri8Ks-pGuwxhz?MQ)wPGr|o>fx<|R8&`2iufGoTekDvU){^@q?TlFhP~O` z^sgE7qSd8?l;#l4z#~IBHhFxMI0``#nJvUI=>7e@25JcPS#SO&28eCW&dz8jr?1b?$3UDNP6PX`NYyw1^5I#y0@&A3q2B*$0Q

f$!HH0Q}SG?_2so{ozIg`4ndupM*L+h6(f%&Tj?44kyOQC#;)1IXxK#1Q4w8 zM;45&tsnD<2ZuO>X!IfZR^);ppf3Rh;B|Xf_peoR2ye=wPNN=vaF5&WTjGh;gtMXr zc6I_1-qB(7TO)@K2&%z5yPf%2JK+*A%vIR?Bfy4O-aK{3UcH^&_EHFs;?|ISrJpT= zJi^bSU56#;9~vSip#TEt0_fLMbKCBNpMP-!`#S*nW#fO{Kf8i)23zN81$+%!|A+6- z;G-*uXYdbu8~6I`%YMwC7={4B0JgyiSR>GuP$AmCkw0^Q&Hr%hD@?c>V3a5B5g5qB z&;R$={Ii_F8e@6k3;z>eeY&QEqU3Aw-%nlYpPQ8QP&YttHjod1oE{(n0K_peAOz$+ z!1phA92vx;Ixf%OFqNRK0YC!(lyCNuztroyG%$@nEd=#`pL4|!UJ5i={Wq}-G9Dma z)foN$U(@y<#K)iV#~sa|dcmK)=;Li{tpB^_FUhz6HvxHg(VKp>_(^9MuU!DvwIh1| zpEN7LUq|O6gZS0o3uQ+Dp1UBF)z$kO24U?Z0)2f8+3?Kdt$fF~<=R(|MJxh^2J$J? z$4@f=M*t7c-;wt=9d+2)+0ct(l7D-D+|<*a_@rQs!D?Syw7LKSK;V$zE(TAW(jh7W zz&jBB+5*<~OIRe}wvIyjmNCSB11JAKSeV#{FEP*%fNiEeS$`r#fVS;DiFEY-njiQ> zaEGhk7!kZ9fxrAQj;cPyd&P?FegA(AJ{h!FKW>pjET7m-?|l>b<6S<9IpB{-JR~9CHTkxmZR4z zrqhoO>7t7=q&-eHYW7vXTAsHQ-lscP#Y*y_PIWIp%&T{;lky8GN8wX7mrPvB?Xs88 zZ9v5J+Lh1HlR!3#;8`Z^*BQTGjXt1!V*DOQb>+W&{>rDWHbrLz>_o(3T;v#7W{;_R zQmSRRuC#S9>TvLsEre~^mM9itp`8xuN^i2!>2Yy%@kqAV;1elFbaCP1+7`78lW+Ij zmM3lrh{r2XsWRKaGtUg$tz2z(lir7u!?s-{#@e!N{?kO~}_&>rJ12YQC@k{Z;6&Y4NDVy^jh z*H2#8n#wMJ9;9eL3+seK_;FK_QL)mF}K-AEmm z29SLliJ$Pb_$=i{(osJWSlJfxU0h`is~yqe-p?Cg{k=!u9GCu#R2%w}Scc7YrJpBU z__e5EXQv+-*18;xsOwUd5_#Yola-)SpACQfP7Dd$u(9#yZCd&lm~&+7w47{}Ip45RkWkTDtJR7t#CR@5W70 z+zpC~APK{mVjAeJ=R-<;m?+~0`i|)un8qU!Wo>%P>(NAGFgXgJ#<7_esrAKY^ z@-JlgjqUr0q)Tv%iT8L=DSc^S-|LK@57&`6GY%yCu7Tr-mByK6v)v~HtyJVT1>KBU zt;zoi5ruxZe>RF`r%dEgEtbNdsU+rHQ8&OjWnuBXUv=uE;mlZEuL4Ev`4soS6+Zqa zqlbJr3$rQg-qp)K|Bf7e=nnC%SJBU1whFqV)?Xp;tg9bVm+9hlPWDw9Q#+KUr0^Pq zSNQbubvO#~Qm21aDLY>XBRXOUJ+QG}U<^lnkjeb%nXbXQ%N&UZ=oVuARbh#ZJ&_tbdQ>2r`y`N+pA?-l%sh*zlLU<{u@_B?z^U*{U6;DQO;*69L))*%znqPXa z*FwrsBFt7R-uMsV{<1i+r>PD}%oJQ$I6yFeY(j;GPf>*gW zochXQm^mYhiS=7RWHs@-x|Zn3Za1OE(kfi(nN*dx3?#+5Z(dX>$!f}0_bz+kOAqsJ zQ*Z3)>M3pkq-NE!|JzXUHXr*REiJerz1UZw{xvvG4dN>?3nHJdzJPe5TJ_O%t&phi z5L7DyPz}ZmvWPwU>q$(b@ipX0XE8v9F3NHlHeTB6_I<-e$TR}6l`N0iFI5(%8?3qT zlLWi}KY>Qa?pDO0cHP+NL~|?dnFrdwQj`O3dG4uMfDvoH@N9hxhaN_|fTi3y(?qrh zRN$9m+{6YQxITJAjkcyZwzh#6Hn_8;)qJD)4x~vj-@+taBg*yD;EozfhoyDWq6UZ@ zYHP93u^cJ-w?wbHoC=p8?6Bo`WqCO+w_mN$5}=5P)9>Z8XViUkDjP8Q&ErC3&O*{&HM~$0xOSLQE=ph(D?qjz&V*eXuC;IuKXgR|P+viL1!AHL zrXXe6_ArjzxCFG4jLT=TxX;*D=}*ubcD4dPch#8IgtJt@pdB`61i}Ya;uJ&ykUQOsfy6YOi@CRN_$#MUbBg28u zYvwc?4ph{=u#XrL)KC(q!tR`-ke%vQr(h; zjit&4Vyb8GwsO?!MGW012xgPWK!$G`%->QUxxtpFqqYJFEN8r%nDZO5YQcV=34M~% zBWbR`9}Gh20XA7JBGl19-Ax9`2RwNqfRHC3N4@htRi6f!f0sv~JjMs*T*?HRdWAX&{xX8ArkUS%^mU}tlCJDa46U6gWU8DitX||Af9A#Z{0qI1?!PjH0y=kJ3hI^d2eSQO}7I?U~Bx zeZs@s7Tz)>c_Q-0GYn@BrY(fvbf9#S`!4TQmgZ&4lU-HiaF+{hD!M*U4x?V5*~)d@ zD~cYX+l2DIWkWiz;v(9&khlNAiCx5lcCC@`VU(M3rpl8xvJ+9r8E#QgLc2t27Nu|~ zw{!k0W!gow>^AB#Bs4p*N(~)SyWEX_NOGdiFI{{KK9Qyy!>OSZ`SSA=`?@xo;ey#0 ztcoMG_ZMvu+)u>nN|G|RaF(xw1>YfJ&-2%FFIm44ZB(FZn=gAj3u2g+wH@t0kI9=i zp)$Pyt3;oN9R?Sq%)Oa&(-ql#BvRezWY*|~r0I~U5QpI(L;?~4pS$Lwq{E**TEV;S zVq1u8YB;5M!$3aHi@yxxqY+!0njq?5Va~;qIi} zVWpRqlA)nVQ!m4$+n?js2qQ&qho+2wwE^;O=@7Le=2} zBCRr6gss|?`q#V(gouEf!AE;Qh1`P9H}6(t@m3^VDZKb}eBZN{4M1$5?O|iO^`FAd zP~{wI;&$wIA*=aEQPmk;8P|{pb*nvlMEinH#vrK&dnxcAADUD+oG)CbS zIl*qK&xGUPi0EE@_KRxBb;jE{y_JYJABSJ}$0gJz!fxiBft&(^UOA5tx_OPaUbUT)op#HmT@hzUq84 ziKFZ5PQ3142{reCgq^^%Y@BD0_2?H~4%T8dtrc9nb^|*|!>5N2#BWtb!>vee-1jV6 z9YL1?WhkZkjQy>)BffrXwQydJXtgBU_Kw!!Si?GLv1a6A_YpxP1~8dDU#{7SLv1c2 zs39*B0f+RWf$nOMVi+i9bsRr)M6#xM$C!ImB~u(lyYtUN4t zPXK>Jl(T-z#OQ9mNTFE}O1A3>LI-U!1b1NA>f#scO4~}ZCaTR@;%!7k*!_y4O?-nX zmCIhr34SDl*`cx8A_N0a&upt(A>#FCFvz2`<&$5$oT6+dC)*tBE9x0_R`i zi8<+Rg5g3|oIb?e%X2?%BEoCoR_M0=oC3YG%`I|A7L294X9U||p1CY_S^I2gaa4X5 zmvdq+bkX!OF_c`{sQz)+{seBVnW;;kuGdX_a<{AUYIfJP_tINZD=u?h;5Eus zzQgikgoGbmSuJ@uM|42nIQU#*FmbdLxdDvp1tA4)?HyduPj=$WP4W_9 z5YM%%BMWIvgJ5bp3XIxraYfjHIZm%ZjZ*CK5NeY4x@Ot)x$#5(wT%kvcX{Ym_yIR{ z2Y>Z3(-3Zle=OfE&t|nY7ncF&E6>{!y%AHGvUl3aVpz{k-`CHh;~MDnU9TQAxj|vb zX^3V`t)PBMn6}n4T!HeN?N@>)rj`8`UlNE;D`mNvLociSnWCc0q>#b!>5$~97I`&T zFr}{3bmts-%mv(LdP`N5;-;(c&eR-(mO*RsLh=&?ftcXHGE>M^+tp#WD#uk17!`W) z4;D1L&TdrYxc2$-n=ARpFtn^V7fu-knQ>B=@WXENA=L7T{%lVdB>L znhLnh_s^5i`@k3jEu6sFufh%2@-PD3c)^)z779apl&C zL<#wqqziqXr8M*AbCF%DH8vOjiArP@UB$?Vesvsxw!aB)+zby-En!H?%uP;b3`mx* zOM@kCfLs)0R^w=Y8+JS3_}BsM9&|#tgd>ck>16YVmW|j!cnhT6F{WrA6NCJxFamXvd$x$EmYfhnN;> zww7pzHkdzWuf9eRo^HxczXz9`T~w^YqIiM%xCuKBWjaIILW8H*lk=oOaNDL$z%>;h z;+S}W(;pmw;#>v>Wmn%@t0nuIXMR>%`$=Oy==)2CgIO#Z{e&&V{wSp zDW}jYFUe_?Jy?>?hxLL^*crffx$WeU3)RKprC5nNs3gY5?-Dd-3L6zE0(c#ez<0nL zdD$l!z$wYzj89G9QZI0*8=kqKz!6oqYJ=Art0$q=!ECw3k1-{B<3*i(X>rG4GwiTi zweUasIwqTF)Cg%@^r4SlP*{w=@cWB_k4aboS}qt*PyOZ0=>}6?JVU2VN{A@gox1GI zt4*uY_%E91dI9x^{Sec?`j7+8D9uV1Nxy{ zv8{F^^x)pC2%54bXv&of63;|o-ABl;S?mn_g#}QaHSp4fj9hh+NZ715F7py%Y-l{0 zcS|pi1TEo%rY6u~u7RayX?L;7p}oz%GBA!~u*TABXn)T~CM5y43dzuxYyKoRP&pOf zY(BkuZx`Gks#2~ATA+Vt*ZB!<^We8x8~19dT+!gsa>W4?;O!C>x=R*&U@ua5&Ax$% z$|L$dj`P&6BRkl|a{kq(qEtL!J!TSYZ1ga{I=hck%sf(a?@5_2r@yso;+u7(S)CNk z4PNpKcY7D$j_ERO%UZ)s>sX+B*?TqV6~4Lmy{h$geCj1sNX0dVKBbMv-%qgOpH#~q z$P>(}{=k~A>b1bDU{Hamth)j%Q%poG!hR^IA%R$*x4;Dtvb~ma9FTas*nV6Tui+|< zj~6_Eq*jYeunib#{6^i?lPrh(L^SK=4l*=zON&>{wrM26uXN8%fNjc)X92T#lPDc| zwgPR!NJN-Q@X9c~7%dmXZp;Hy9ShQ3Z~EL8S1v%wewCMOsEJ^E_g>)6n+3>)DRQb# zD@5X%T52BsBb#ZUg|n6FT0V!!6xywc}xQ58v6 za7#a9oxZ_N`gyGC;V51+7LTZ<`r!JxB1I(j#i;Cq8)NW1zyGL0Sis~ND~ z8wML*nMT+?`H!rTW(7ZGquF6)S+^)j0Xln*Sd5XHM$AYSo%SX3^={*6TZL8wJb9u_ z&N+TEJj@G>&r8?8UqFW(GPx^=Cb!9mE< zdy{!2o<}S_1bi$hmn}mP&#!=lZS!zwR+@oiQLk;9U7N`CENV<^i5xSd#g97~Llz_D zTDF~97!>?Kt;Ehpsf?QfjA^%MSub38tK&grPo+eU`pTF@B=^cGvXBuwT?%`ZzYre& z@rR-f^5;$bgpa@Fk6pQbAwGw%(;+Ii!f8tlC7y3EhzwcKkT<$g zs=fCXKhNYZr7_yQYYEv;>T_Pz`px&us#NY5WZ?B8!3-SiAzZ96DDVI#CxeqoAvR&L zQ(ZBD!Fb#q9VL@Rx4b#-?`*Vp08_>RqYp>or!sT>6h3CYn7hI2b^3a?&4wb$Ob)4C z)HRyeTX###cK3`oX=hF0veuhvy>}q`QX60=nqJ{0Dw7_tDECusUp1e#n=P*~=VEZg z-~CE)*fXzp#NZkUq9$vKPLEFJc8oejH_f%I4J8ofgxt!IRYK9$d3%|f=ewjm@zzog zxikCCK16Q8c*O2+A}R2&peimXp=LH?bRr9O&s2e6EBs$vy#Zf7Nbgfzl~-Fvqu#GM zbBopcV*d`li%Uh8pynqB2-o?a14ojhkl2fyljkpbc7q{HE#~j z0l6C_58lWvCkQ~OV+bZ5)&IN+SDJhZew=myT)^tlLHFlG2DYhn1cQAI769zq7r+bL z5ZvPO49m_lBXI}iqj*4is%gqwO;O9UD>uS2(5Yx=ZN@um=Z@7r*!7wOF2WUsEN;-f zphsTPTWva7a{&=wP2LJ?`~+STJY~sFyder|I(tdba$rxDWPCypCOFM4eu!EcJ_1_)24GLBzE@2^AcYPT@NK@rIt44!stn0vi^e6 z-{HNyf9k~2p^*!o5@M71SC!3$8aFc{gNtm&bPAI3oMp^5)3n8;^Z- zKS>@*7{SLE_c91#2afp$RTh!lz8xA{*@V~a>}6FC?eOK*PmjD+ z7_YJ3Ch`dpDor~~I-&)@gw=I%?wyQsZz3laS@v$av{c_JbrtuH^3hE@0?`W2O0H!Y^i%t(nZQ#_K{& z+WS-U6IGaT@nS?Di@;<%_p^rIMk@(C%+(Y#y|&I30XTZSCed%FCB_VR-Nu~alM{+n zU43z?B0SrIQox^!)x6`a>q1V^$Xt(0o0-&3*ng+P>4@d1)xgZP@+09r?ki|+1Jdn1 zrwii~oTiO!)~S!JG_mO0UJcoF?wdP5aX;7$?1`v^-OAA=*eRA>=ImP%sJ`<}G;f+U zu(kJ^X}?0ttTX|4IM|m z&ry`giMfKBf%Rj8`0q~(C?bjWdgz_;9D5ZgEg=OiU$)HiO;eI)B9lr)Oxqau8aI!uT zeNu{PdjOsyn9b%P43jg%wQE+hD0esukh^X8te7|RX%HtWD&+uN z6=!91G8WHYt|pE?=4@lvb3L1ayoSK6uc&PO{D>Znx#D7lC{w*IvUq{0jJu!@VH@+2 z;xhAu_>o3rRboONPnv^4WEfXw@54-KeSEgb$NG9Y;X2|H$uj(t4L2s)-*G*7{aI$I z&izbt_Hh8pPpaytwacyS;`i3t@pHr8vLTfs1HSfz#3MU-eMJK#dBZ|8f^t(0SU&B` z2#AeAk@A)6ZGDH4)if7GK7dbl9n3>+A{msW0d034#+V)n1-&GWH>TQjAVgxx+1x@JE z+9iw#DggPQ;*L~t*hzg}q`0@RPdm zg}X`j!2QB72<_&K)HIIY1yHa?^&su7^!vSbpeV0kTvBe z>(v6~vlj(&ySM#O6*!Mb9KN;3N~D5?P4%k+M@tkdbrzlYi7w9Q4b=Fvc2>e;rF?zA za4u71C*0DOd{|SYw>%OqD;w_&(~%BEyJ|PFVqQm-KituVbv#qCf+a-v3Rf-A5cG>Z z2#XSkrJ1jS5;sO{j=YY^pDhFjO!867LrK z4ctwv6Lp zXvVJjkut)oE9}j&T!3Ji7!JXmoTl@}|EOdu$_Hvc&P%wb+0+twB_*_O0BztFDa*J` zbV|agDwk!uL6>dU9PQ>90`W{Q`?TGAHoU!g5<#Btp=WkxWup!pFtWMq11)RT$AniAB&$Rkg1-vy4d&0Z+FS> zj@{c<@9k8R#0#sqN^8-?WdvjLcej$rjIZa>BNX@T!+-%=ncFk2t?BlRiBe6DrwQ4} z#t~ns6XNbQ+#|uuZe&r|HwPIM@LDHEld&KtM_D?`7S341Gn@Lr0=h&x6W!iNjI-r; zt;|O6dxCD+QIck9y;9?SwMsOT%=YUDR=FR!7!C6+B! zkX(5;c>6$}J>1KS^kF_d{0Sc3s90M!iTfXT_s&G@|G=94cP{ontQkAw|3S)_2v`|d z*#8SK`~R|LY>bRd|7+IF9h_&`|GTfJ=|AvX3X|PBH6eG^HR9~fK{WR)?(F#Fw1nIE zq?#tBlbcjIiO6_)d`7g=BX^9wZ{OeF(Zd%n58hdB-P=>k?%mndi$`{Pd`3qz8PHMS z@<_hpq5^^lD2KI;fgxZB075to1WT>Bcz1y%>lwu|kIse^8D}Gq_<- zihx1DKtKWv_WTH7SEYVZP!IwK+X2uL{3NUR5dd&mU@``~<9j^;7{dV2?#X*|$j;H! zbO52EKqNuvP_ZIk2|o80AV|>hi@>K~V*e`Ok$#eFo|6bbzdLaOpaOr9Z`0lk2~a-6 zm|@_?JihwpK~Oef9Yj3|0hM)$5$F)eLHp;!g^8x8;DsN&z6QP%0N|p;L&5%h@9l>HLVzGpaKPIMb`&f^ z`4=S3im&8l5&_UqA=ZT@pn`$ohx+_`bx9&%0tCGgf9L(XnKbrh$G26~AKmBvvaKu) zfdUMa)GRSIH3b9(F%=Zl0EGT7UP zGYlj)MS;lwBz6Fa-~*EQ^8d^S{v1C3F1{Hi|L9)+Qj4SB9zO*+KB6A}5Da!H=m+Vc zB)dIuED@p^iya02(yU^>IeSMXK%nk^_LPBfqFE3!E!Y#wOA4F_!nftQC*{#m!$r~y z930;8u|6zYd9pd^QLrpSAB1t~FcXnM9`l$N(+7AZqlV*1X7I%&7EykSIeaupH34k=EItF0 zQ2`mQ;gx{;>HOoF07CzQ;H*K3e*+Z&qQ9Xh0Swms^MN2caBC$NSAGk|0S(^#^Rsy% z5q-8Lqt4)iOoV?xB~Lv5)4h271&|yB{k=~n>MVHJrwI>q{-7o{cMbIV3o60-r+|=p ze*A!<0x;atOHAJVp_81zzXO{}d;t6R`}e@(#Em4buEa?a@$TAx8?zH71W0fUy;FeI zdTkW_I$fP<$@T(VxXYV%q0+d+-3L0sNa`Iw5k%4<|yc<*JgRvr`mcn)>&G8F$#+8sgnxN9;kUn45L95=a zM^@zFny|+WIE3K-*|gQ4TT2a*E9g2!?YcNVCo{e29cNbbu9ZAdvCw~QHWT6{G-yVL z-pC5;55wMIWU0Av+97V_h>LkQ$Bu{fL@yZkuh_TWZ>UjKHp8|~U3VbQSvDuQOQevY zMAG{tQr&FfvKMx{Ns0vj0`uEfXyX`eaC}%WPQL#PW@HfKcvF4FG&KwHsG44DXM)ot`TE`c43yWit z(@SdN{lm+qq&ZVREi$yvQG)YM{`!}}D;Zu+qF!z>vy4cNOZ?J&prv}939}QlzSWxC z$tG&r0is}=|EbKLmpi*-#Q5i$hK{P@c&ZWhyF1Bo`rYM=lqWSDBAVr8nWCuXxPr~f zq+DqaEWRn-o1)A?Jo44X_j0e^1t#iXCef(RS*rEP=QCq>uHyJ7`1-r@Hbe^E@)mVm zyNCa6kVTUMAsXSPso%3}v@+q(2Hqrer(#ZbP~Gox91sv@5i*cM>2PjZ7~jZ&MMP$8 zx58nXihn83zIh@&)N@jXy=h{_m`x$Ml4(vQsM0Rj?LV`Bniw4P+#dqDQMn0;{QAIy z$}ZAX3BN9dYWCJ6Y}n8k?y5vuNHRmuywAf)&nL6kZXdNtb4n?iAe=9xL*ooZvXk*Hd&XNC2N)cYQXTv;lfP(opyL4rD^Z<$ZpTzUJd%g>QtS{!1Ki{Uf<`YMduayO1&ma0xBXm%Lk??gR zFr#eCZewlE!Fp2s>S=Bmk0FDGK{ZT==FU3j`|`B`GRHHxb1uBvqd`zNEAsC1RkN`a zG;aQ}Uq>gT(1Kqc8~|2crz7jdX3HomK-oiZ@Gr9h&8XkxJwZYWuASR|i&AK^_=mHH z`W=e``!cevJ3{mHI-`>B9cJ&WUsjHlG3YYW`@-YQP#0XxlZ%U${;48erUGkAD`mYl z^W4sJDcC}Sg0EI<_IYMP~wnC+^2@mGh{uEj@dc))%EOco+LJ$4S@angLY$2ZbZ|ZR4j}v_ribgokzO z71C?_up`R4Q*re1j5#yx5u!fGrkypc<>x15L3^%-y6S@o%!WT3E#lrM%ff-yVl=#B z_;ua#s@1tEA!at}#K2SjkEwS4j;F$E+Z5f&=j+R|J%`X*zi`!5v}xAaJ&w~JgB94? zag>}@*L1+u3wf+&T)cQLWunu!>wY1&I?7VJObeLn@#Gcp=9pZbcpTM$XrOmLvYKASbQ;V&0^&22(CxBC5^o;yZjdaWkPMIVEg2B*mpvs1U8mWm$45ajrH=8hw=3I?J=;z4EC6I7UU3$!Aw8K zm^_OZJ1WDxrcZcwAF+N0Vq>kF9eJgDQsTI>+uM3Tw0_+{pq})%OQ3zZS0Qytp$V_q z=?OF8>@vV+A_r>7vWxGk*S+k!pEK#^Kmn^{QFg;KhP#y>hwIp8D3Al{ z3yrzZL-+AT-xAhm)ZNZh4sntDBMru>{`0ynEeP!ifu4ELxT~~KT2RToy>r@5sz;Fr z+0#jcxJRq*l%vRm>ATVI+3)mA>Txb8$ytBHb8otm5HWAu5UdAy~HO(f&hdGdgVFcI`-S1f@AEBOlg=OK+~br)=l z^@=a)zT~->(^DRFuEeOqXp#`g74au~gf)k$-tF0`SYKxuHp7-JeTkw)X!j*whFHJb z8-E3r*4C9h3vJ;l`M}U|g(0@~JaY~wQtqe(W?(yR=^1BGi4#j?QBQ7s<ZhfD_JMz? z0=^omsj24B0NKZ8fLO+c(`j4<$fdRGZX(sJ5OC3oZL2lcG++>C+TA(h@}J9y{2h$l z)A#E~VFFu=Y6T@OjBCTE>>6*K7E|hi0W^jVE^!KyLVn165T+w}rR&KCm_;LEuW^aL zLS;;nnk%IzqP!ivbxAUnF>*GXK@BS|+ zdXj_SF#_Fxl3-Q@Uq&K4I%bwKx6Z*w!*BQLo%^r(#=vo|T=gN5W_x?~Md-J4ygPgD zOysVfcpyfP(3;3?f{49Njm|OJIO7}4j(Hu3qZ<4qW zY3So2l0E~uN+G0TYZ{gp12R)YXw`ZJmt4)}`wA;3=kTGvYj^SFsR!0^=2#ykDghmB zWk=YY9)=)yZ1Uiy`AI#Su3^U^=`796|GV%I%lS$5Yf=6rYK9qIYB#IJq93H=#V(Td zRvi>)-9a4OZcPH@bx``5GA3dlfI*e>0$l9vC92X)LjQbu;XG_F(L~n?8mjG(z*-KU zZiX@+HyjN`5@yF9Z$kCMI4&A8AiFS5*5t)9``$`UfA&$gsw83)5hJ9x9Zf=8?>TVq zvk|o^VNyW97v(j?V zBIbQ`869!0{`Yen85mWFajH`Jq(pMm>FA|Z!#uL^c%Xf;trClGUO710#R%OMUcOj$o1LybMAv|FXElh09u>(~WenIS}}l)Ry9t z(l4lWN{E_pAWOUpI-`p0*;IxZ+ImYyugNDfl>lp-U%@R^JBECa#!%i>;Xb36ASjrU ztKnA0$JR%CW7#dSZfvR3uuPR`Q)0h0KFb9j{D}efx5Y#**r$C;WIZ$=`r}xsiiFOX zygfCRF7-}$)TBWUc8`sHmW8Cjl z^ro58b-Xug56?BXcP0&C(7CRLrslS=kda%0{n}X5$5rr5_2o?(kH^bh3#rOn8v>a~ zr7$5NRn%(b;zPZR!&D#!?LULndBhaxB0eW7~oa5ZlH|}We7hR?z5?LhdOo&gj`RaSVJ2FdeS$tI* z9h+6-GKg4#Qd}zLwyvf=uW9DLjI1QcuhqtaU#SpFz#g`~e22%-duETa%28#)^Bs;O;0scKjD|9nPwU0$TF$^d3Uv5XEZZ)pW(i%Vxeb!ufU>pUsm$Le3y zoxSlCE)#=_8t3j+6`O`sK}(VGK2__(oT4;pXJ@x>ze&-AkGWquMbdd!w*-uQOC?Xg-E9 z5z|KN77K<`(y>KPJ9f3O$P)j;l620!;YN z+qP}nwr$(hU-YCWe?&h)&N5Hr+It<(5_P^#5Ubds+VO>5EzIO@becQ5xYxSt{oQ8G zkJ%%OI2&xh%Y>k(T1wDGLx+VSq=;Uvx>QfEgpkw3H@&E37-q4J4OH6Nr!&widI;s0 z(_W6JeBTsJvbH8&b=?n^DiG6KwgNB=H(pk1;d!dHiNM0=>F6h@a^4)T@Pbb2X&Qti zmAAVVp*k}f6bCi+sb@aE8j4L{u$~3kwVU(aiwm149zbiePHq?m+-2Ch%F=p=vpq}4 zoFy*~lEPI}dg_irYtiFufo@vIt zQe;Z?g1Rgxr%uT#BT)SJrM>-1_-M{Xyr|Uw()*X+B17pH?**#)?tJn;w7_QgPQAu) zdZG@nd5Kk_uqMRjDtvz_-u;gXm$7)AsbjH@1Tq^SxJIj_ak=!5#y5-bQ#I|`SVl6| zV<#IlS$MJZzUAY)Qqh?_=~KCfuk!zXqdfSMM-7A-iXr zw|%$f6`hRbTU(+FOMl@t$lv-6)5fsOKnw~hdKfoyMe`d)6Fr029?u0~7F&_qoCe3{ z3vwok7fhT8wT63wYkS%|3D3JNTN0KT#AEz!H1%9}kHU}4up4$*Y5A!WsXMr=K`od& zM(}uJO0hL~M+jnPcf*i}IQR`_dCfe8BHGu}g-l*9LuKkFvkjr6LhK~r@2f4o;I4CS zEBB8w;_1>@gH5ZryhDRSse>f01L^u1ps5FnY2cnxT61^OOb>J^PjXB-w#@XKVC}4} zpCZujA(cop>xsJ!ErfJ-B#7@S@al0X-bW?e93$C=T+4*jBpgo_<~sql8Qd=>tt{m! ztpfW_gPd2AC)_+&P?9JY8!j(b3qnaP+uAgA( z6JK0Ae%29!b0Mno>mtnq>~3TUqdhg0Gb3#ZPcPlKsR&y4-5Z%J*&mRg%8v0+Grj@g z%iTZ1W_VNeIlL0nuf+3a-?&^Y(Wh%AxLq3^^zoHi-h&Z1PsW$BIz!9MxZw+H(np8G zHG6#`{1Z3jDzK_r5tvVR@S3$6!S9yv1z zl6G#+YEl0&)WKoqDm@=mpJ9kYavPFT%rOr%18-aF5*P<--6Cs^KV>z7DYMtRdZ0D6F%DV|bl|BxkGwozgRT8~ zFFESt61ya7DaCFdiij<-j=sGvB5DkuVvmtDG?eS{kHRz0haH_fMgp?%>A5ryt?Eg} z=7TJ>5#$KQuf-fiv^Yr+Wtq*~RoW zXU@-*MvFtSbZGBfYS1?MZ{_``(UH3YZv2@)aNx81w*P?@*#1X_or&@PmDZX5gAB}U ztpAHEFmkYQF#KPz@c*~;M7IJv7jLc7WjoJ1aJecr*tl44$%*1_sgAYUxNJArY@OE| zotftO^e+9^B;_CNDH<*J%&TC{i+Dk!Ea*n6@o$JBlwTg*Oh`?L4S*&fDH5 zHPY7)BqUW~b880q)q)YOglcwUXlpqA3=4?oo$r4TCbQmuHy}4Mf{k}>1YuwT#@J}b z*yzB(0FZ%!$^J7kH<|-QV6$gq2OFOUB(bRufMX~YVr#X1JuNkj#UJ~gBlaH*N9rG+ zn2>v-ck}m0o!{La@5drA+BXMl{^VE~??=ivHZq2DcK)hEK;bcsjcwI_ex{?Na|Tm| zb7p%j)uXfkpgWB<1rW^#p5MhZhk1`;5LoSpdS_?m!cg>Y%;*@}b0oz^7Dos6BG?z! zx3C3ic74CMZ~RXf0?Y>oP9Z4)d~6-C>W3};XCnao?q&lJ?Hv6F`DS<52b7`pH?`3} zK0Z3R+P^uoy@{f4XbTB49wD{F*~zsC08<_F$HY?aT>o*;ZqLTh#=`K;@UC_W2A}{4 z>OTNJ;J4(&(8%8A;+*fq(Dofg^rL6MS4m@NLt|`Y0^02A?EgW{Z{XyWzaYM`bN+XG z&2EK_ZWZSTjO=7(l+-7I!M(9qrJl9L2}m0JXY)uH_(9AJ$_1p3iGi`snE@!k4KTkl z9{pQ)KWW?A??;LGhvdg_|5)GB0GjR{58#=R1;FpC&w~S#9RMKiMV_BF#*g|JqmO|J zIC?4;3m}|d(ZM>McaCqEKe6{-^znLH3qTthw_yar@cr^Jmoz)(j=80-)%nBtr{;HI zl3bh⁣}s`i-BHpC3crACwvbC@?kr-*@`A)%ZF;UiU9|ba%i<-_mIZZR>lu6t>2W&?(+bJ)rme6Hxm4`q1}^0-Gv8PrqJaA0oHE?m7G+z&!LHcmp%Qx#%B(DL~IK{xDE} z+Bf{+dwud>P&&YKq~Cm4-Xi|WIp>Ryy4G0=7zd&@`oP@4UL~$Xncjg><5RodG5>&;J<~2I22qR>)(TW#GwoP`y!6n|4t6p`CX`h@4WSk{i}BY z-~7Y9?qi!DpZE=`JLu{&mrAW zlP)NJQE#<#^Avi|me9yK=(F%6kLTEaGOAQ(R@;Awx3==eRS*TRL? zU035MH%$ukq0B0XQI42@rOqXuVV%w%BMEda9tkQG>U9>)?&`@Boz3+okB=@1ec*~Q zrhA^>HjMPlcGIhqH+4K8BpO&89tQ3b#mgdlLg0}~99Dm(pwz}zceFX6BpDAalhiHx z5po+&*0rg{u-#eKy5ecw9%xTXf`A|y!xY$vs-v|LT4^Fr6t4QMK#x6CpZbOkcUv|f zYTtD&+q5xEi0&HXd^*Bq0IxG}J>1&9dC<0Nf{Q8?xJt&oPL2>1*!9pOwk0v#j>9~=5>+ec%d+(hT3-N z5AE=0`kbnfa^^ZvWCyxv$6YPi3nB@jK{D+5ic%Re*!;Cci_89SKC4Wj;x|%%LWOvf z8?qRS!}<;d0S^4+xQmW+y`7u_byfFn@3t=PSQ$lklYqpFOQ&u|l*~Go0@^mPmOhOE?;dlLWzN_#Njjbu5}M~zmm^J$lSdBbich)sMH#%uUOlejyaey2M)f2NBF zGbwRpl-6VR&tfG)on}gnws%-#zwt~;BO!zllbn) z$pC!08m{2T&rjwt67G!0dhsFTn=%~ZP5O%<=*(!F6zsAEen}-S&sOV_22M6sN~c#o zL4RHzfYvg6jjmF!4Sdn(l+(mm&Glft5E4Q=IAn=tL52{kQB}oSoUtu{Cp8F`jPK-6 zUO-gjKpCf-;Sx$|X%;z15W zo~W;1`rM7-$#{>3Dan^9~M+aIOy0=)XMC+F3HA-%g9?&4i+GoUYfre z!KJ<`HS4+EW_Uo~?T)#ZY+=8l^KQ}7f>%FQ&xUMSe7Pmne6pnTRqo4&#lZ+MVzxd^ z(VLLqn>4m!P>vSm_NuorB%?9se+J^)Fx!GHLu531*bO2zrkXRCSg4US_{A!{E*(I? zPIzR1KwU&ZnX(KU7<1Ap5r9Y{g1Xno5%rU@siT$?4u(?PZy9ttL65-igV)?(%32RpxWBh~qaWo?uK}L9>*j zPghUq(n>$3S2l7aF*Z*lM=;q=Px z#D6Besk+X_6LZ?wT{m59puE}vQNHMTluVBy;=(uA{d za;vchxEDE)24XC!(MYM)9+$HCXKGd1G`x*3#o=f02$wK+qY&NGD%qVr!M8&1emy}5 zjG%}yP@EHUS~E{DjUCxJ9vW^e=cn=Vz+N!}u4ag)tXYGZ$V5{nAkTYImg9Xp6|)yz z#@=x=(`-$if^IN*GN^`{uZ)yj%D+!3%x@-2i9CrkzSlk1d|dm8aT8cVV5_4TR*x1E zO&kaXE(r*Ed@rxv7$JOlt2COwzNFOkZA@{0N_=8L3|tk~$dFYX+WZlUy#;sIO78SL zd#aVIRJG-6x1TNwFhW1(o+zCMN%WaTP>`?zo5$g@2B9Ek>L69E_vE4jJzaU&v*N=f zvfYiaI8R|JdzsmlfV5i3#X0uK)0P{yeCB=)f&4$Mr4G^zGDpropYAU-lCaB08 zkbl3KonxFOOD)SSDo?`sN>b`skaO*xleATMg?=(|aIv|P+iAqUl*uut{-fNQ&%#&P z>+5B~Uo-%*$aET8ezwD?OmkhEM-?L6Y5vDG^-Lcp#WrRiZwvONgXyo{-wIHTYYJDI z9O|NR8jr1-p^m0sL$#e)TP!*!NknM#JBCJAe*(p9Ycp{MmPG`KOH;Y_AW|I4^H0RL zTYyeV0KjROlVjJ+Xp|}Ly8b}W$gd&S+XG0%#>A4}znVI3;2+d|Xh^D<9h^-s&k=}C zddLnj$PnZD86ANxN8St!)RCB5Ny^b?W7F+8#lEseDx?`TgJjuAVqNpF@p+~b@;$}ZBwLjOdak>5#f>PRZR;? z1nah)9^RMYK6JkZTY*d-^JSd_$AS*GLf#!6GOv!`NpJCk1Ac8DSxCc&Mo-2O6x(q8 z;eK2*LvTp-D8(h02cKJVHzb2kQ)G;_y^2ehjk;jwEXg9F>)WUdU8_s)W$4^6bgXQT z)+K#G6Z-MDT%hSrHK8))@cZ(ay6N;kZ@oc4rWaW@V><0hFcz~^?!K!v?e3Dib7WAG zYsKJe7j;C6w^i4I2QAULCroqgle9G1%2tNlfWqzJ9p7YuWG05NS|Yhzum*E?Lc||} zl_Q>}n%4t9MV63v$OR$nkJsKDi(&x$#Kv^jLJQN=RxgiP(OIP#3Gi72dB>j}Derfs zFVq%sx{ct$CBm?ct$|=NAYX|jfOZ%io|YE^CNebiV?}AVb>Ku!vKHuMuC$l@03}Yj zp|@`zqK-oAxC8h<;V)?GR@bJ3wmL!wjT;JELVZL)=g6F_QCrv(int~GVF9n z1$oqj?xm}?@F|T7|5^``2Z+bc(7OCgsBh$Oq$#b~;t#JoNlYD0(&TF&V_bSpQ{>eQ z`xf;vtYfDtFy5HSp1z5d8=q4)rHh)EYUBZu5~l@&0*b_UgG)Fkv9d*dDs1Bio?;Pf zHZ^*ez7lNPXZ62FG5)2r+S#=LO;!r|2~eAhH+M);*WHfzU2QAgaifSn0~x{x!G<;@ zcYZesksHkR-p18!kRqv{2`x|lLwhfaq*%-GJH)G20BBJP5)p*k00R)wveTjsch3O7 zet!elE)#QX<4b}(Lm46N8Xq-Y#xyyy8KW)8*zIWZ2%xi#!yMf?hi4J??X+bH8z#o{ zTh&7xf%+OX@^f8Qq(ofrq2V*0H89YRi#3<68$*dYu5v*>Lhx1Z092VpONi2nDW(H6 zjB@Z-9|dz*Uv^U5yFI~;JVk1JS{o4bSn9(9$V8?bNKCxA%s~<4?}JtLyjf{cHrQsN zA6dL(9S!f1Ajf$gKOa@EiZfl*Aw7Yg!T_OR8uy`2?;pqedfHl97Oh&)kN$L)1W(gp zs;_UsHZMAW^z91ii1zMlp9)#^0s(^NINuqqF7ET6y;XI zFPNDnTC4rvQ@utp>b8HMg>FukJ*R8HpnHUGjaL)|(1O&kb~z}y)8GYd0ku`=|BaGZ zYx_ANd)mZE~-SN7>y1SVAodHy2RzNHlZJx_Qo3(`qKGvVgKp3yWQ=txxazml_y2M8$X0cfpyzn*Y{XNiu*t^XjRU zqE%Kok@u0R)u_KZB$28hKjG9CuV@1rQOK6QiR>)BWPxS9Kf01e3%sWcPb9kU5^f&O z4g}1u65vqyW)%LmZ+2C-m`wkyfu#Ti+uGW6Y4@2`C^SVwJn7IACVs<`o9v?X+AU?d zGun}r?Byb&We^lEol&k5^DTvhqg=68IPWgWlkcO2Y*Dq zJy|!GezE&`lbVt_X9|k;(9>F0`o}4#-#3)RV43&8jHs{_^GYZ&K2-i5Cbxu!ja2eA zm7S2AbyNMQIzmomtL4>b4*q!|mUHX(P|>3?R( zo?Udc!vC{R!I87IB6(GlyjqKpV<6KNbM0BK-m%>cuDjxT%J|0tuTus=#gdYb8_Sst zeyV+_#)<1F=u?HF;wiw{XT+nh63gC2De+u~DkrYx(`=|+u+{gq4cr*GIKtW@S)?+X zoz^LEe^9pV=EB$}21>jm;bW5GmWiF=!C1BYul0SiTAuU>Z{ETz1NiP?+6{f=W6khe zh74G@kCl2cr+BZIE9nbPbAd1^j{4>m;txlw)!B=%-#AWuE@-J;2jNp;!_H+pe@mVA zbhwf{_4lK|Afw?Nb0LAx5bo86+R^$9$u#Q3i`J;brF^&PUX5N$;u1KCNlA_wskpxGO+fo}{Nu!`mQ*jxOn($@2b@ zW$2D5!UcU-P$ABN}B})zf^@6@m18X)JTSex^E1$3;S>x03V!g z?Wg}+YLfr~cw@@2_|!iAkCWeeuWD}$^iat=B!Jbc@%79JaY)Nov5CJ~}GP@Xu3< zQ{Fy@$`&{2rJ|)+(Ld*WU6?~XAuM;|L8a91{&c~hZ~W~8yDa!qHe1ryVw7cl_UrhH znRU`Jp>y2AVKI%cQ*SF+N2y0dIk8IW8bXH}>wQJOT^s=&t?J(0n0X3FJkfsn1iT=J zmcJlgE#AW}$=K;lay|Phxjuz8z8AU9P*sw=uSo_a5C5?wNG5SFXZMZoGu#lPDpHbu zULL=YJ6|Qd2i5vwkv(m5v4#24>)0Iu_?|t^}SD1 z{;@pc;%=fj#Meh}8r%167tA)N0!n(;i>$4+lGsxg9eN`S)&PbA9ufw3AXC5BS85_o zI{xi26oNR@CaE)vG&fvj)QUcuv=4s1AHe zrK}XR@rL?jR@BukD7Mbzlo+E*b_~5{Xq!^umY${2nDm(9w8UVur4eceN$t?-h+PRp z$9q!S>|44J9V4vqu0AhixoZv6(u0b^FVm)iR^YRxDZM!yiakTLZjts!{#T@;3WQNM z3g7tV@I?w3yOMH?CXkI3#8b%!z6ub#0s_$5{w|}d%h)z+A=E~ObD2|k+9NIMHzl{QWLvmh)m}L4!Q=o!vk6EO|$wZ6=IN`taR3VuE=#o{^N+}GA z%w3(dwMNl~Lugm5%nMBOZomwnnKyB)_bs&EkMxWChu4eTBB*##ONIDwlX-7|S?acN zd4j%s9>0puu2SR&p*p-}Cr@iOBfUV<=?l^6QuH%E-5U(in|(3ZX-E1bOwH?l1jg!y zdxY4zbOxS%JVc&@aa^wJ^|SFL&^em@poOb0GiyDEu#%i_3lfO#K|*>f;WK5Fcfunk z{3Sgk)gY?ZG`IE@E>zD3LErQ=PM8aOiFYbP_>z7)$jXN&F~1S!e}GvUX`;&A3h0l* zE)pIcwmx%f4JtJGQI4rZaZw=&20{@%eN~<;leG=EHW| zUV|TuEKOyO11&71v~zo~i?IG=jQ-iAx5_zVXo!%xDv;Yq+<(cjK{AEU+L0;Zg`@`I z-T^Z(@7R3r95pOq<$VhtrU=3x5ox7e2=E|0kw58yu*qk?J{(cut=<;tT1#=Qbw7G` znVtLYVJ8FHKuxwng)~NLju^Z-vVqoFI$E1Jj{O*vo;2DUv7fs%WDGrzDkCH}UT6)&`8dz;#y} zt_%5~!fn$okIuVC6AHIsc_3hoZ$FDNBOJDOI*G{&tC~Xk?uQr0KiuDmyttR0JC^B8 zf)DXo)|E)Biu5Z29ykQU>`NVO!i&MMS`;KEQg*58ow%wwd}08~SBlD)*)&K2U!g#0 z{Nbt#o)saFZll;7d4li+9NO)NwdVcz*7piS))CukziUJrvtbV}x8Vx1RSCI3OP8Fa?7tyQ@vB!=nKLs>}AXf{&u(4*F6>w1TW3oTnv%1^xIh)_0v zZxb=p5ZIOH17FgIp-nEsn7Y|8CNU|k;CQE$w+(yDzVR*LTa1X~@>(a65D}u&D#ZPrE+!d`17EX9bK}XEYsjWygH&q{M{M2`zJ6540021l_d%3EFb4H1! zGD_J>H|T~EplHl%N=wnEV*hXYOMRKn>s>Yv`%+VzX@wEr0dVh)@M(V6Z&hVQBPo`7 z-3!5~-q*2LvzsI}+=g>)q`=m6xf(wAQpXI!>w!;F=Rc!AryZ78z1!{TzsGOknQ`V3 z&N01LFKVJ%AGwm$N_sx|l_c@a$LRO!nNA%hs&K0u#2H{F#klL6en5YTYbVJSOMf=vRcUNequ9nA#=T;x5h|Hg!7E;qk8SC)?4+8|v^mZO1B)>d=f!L`x%4sO@phv8ra^+_)Dl^-sz zBE1oJ@+TpZ>y;2!U#vqiV^dvD`8sf5cZK+ETrctPgvv&1qWp0eON2$_@-l(l)JiQ5 zdh!bK34x!?Y*led4~H9C=opmPD(#m1?krl#EW7PBkwENxQ|M{qag&%YO(8I@*X^yd z$+7-4$E<=7D0fEV!L?em>rcrPI?UK=K&u~UKx``<(unW{@w1d$4`i`&##%K-(3UjO znd_*Iu9b`XowtL!1vg^7ZC#?V`R{x#0jrVW^~Qd0O9mZ~k!k9L&yKl#i_^{>MyU50 zA|au!9sy%k%}|I?qj9g=o0d8ent^;tYKdY7ujtgFahLgwnr%a^Zu8#x?6OIt?2#_> zo*jxI98)mnl(}o)%A|+9#V+8>#2LbbWcf3~{oB9Rb3S1Qv!CH3W-DkQt_qVn2 z7Y`wn7?9kOaM$&@sc&y<0q)Fmhg#d~^j=lEo|kTCP{|$&JmkTU3}nV6#tmSKTu=+U zrr1@p*}MBx-&x?}iq{d#6Rctee4tpfj!~fhoUr83qP}~WBK24MZ>FEKs8;xzL;$D| zo!=VQ@aTfyT{f8(vzmJKxBtkM*Kf%o*D9oq^~YN_T8KGS=0Wptl4u~QMBC@ExlR9ld%!F0+cYTmqdIEA8HX6&0@-@g);3S%NTuqlF z;ZEsQoftls-vNr6`2@OL$RJfa?cDxQ17n%QD3rUJp4^=OzJ6n0B8lgI4Yd}W!3crU zV|GhWpfX`$Y5oo0ASpJtYmR(X-W zNzo%<6qYun?4VU6x=Bt2JB5un7f2VFj~p2u{Ng3vFeMY0q%ZuP=b$oCWjM3Tp&oT? z6DgfNSIB|fEZlvrOKoAYi_dR8mc%5a&4N5tR+$4Tn@6jS$Tfhm#v>RGwZUn^U&>N+ zDUGUyOG+?I0#&fJ{SbA}M+{j-cB?b4t+`42St**6cb5BSJ`P(&E_Q+o?(1T@Wz!rm zb+Iv7H^nP3V6j=46NuP<+&Jqgb%xD z5eA%A4EJ(uh4P>NLbNCBOUQ$1$_@;Q&I}-vc(6XIqsCO)62SREDX?Ufrk7r_Y>ohq zE1kk$oK~I(_#Z%MlvtoscJ2O>uZ3;_@|yn$C{v>`xcNCQgU;s zNDzP!PiF6@cWw{XtxJBMr^q8dgU)^kX}V@5agmTGKr`W1i2^@r#~QBZ5*Fv5z;rQd z*+H>7^}v+p7~5DcDi*wskJ_o^v42YRyRe61QVbH4-<>?cX$1>cJY zrFH$214~qUU`|n^*_S5)Jz!}jdYV}^W=Kj-b1vN^FY&YEt{l{S)j{=)y@kXrV8JhC z;=x5|aS6En#heD9W*O*LCIP4JghN45K~3$U{3jif;4G7C#hGk8Y{JCkO2h620StD= zx0^kv7@XdC2G-K-4UC3I;Z#&f>Q#a-D^As{9FQ(HkEfnK_4R?FUhjy4jB?fF&iK1JLl>n}otrkHy zQa6E@_Z#?}XszV@ zgvHZF8@511a#3^$4_HbK)wB}ljH_=@)-MxCgns8)Xz1i>55OdH$0Oaqg=Q;}IR!4iS@{{w;U-VBxn? z(Rv=pc61x2Oxhi1<_JewoK=Ut?QIq#fDu@&N$Xa~iirmIIMfRp+=A~63qmT~2slF0 zea(<_d0SLd?~JgQTtH8pm_rm^T_G5EOug`SXPNB9Icq~&*k&FxbtnkvFb(+ zaULtU_;mq6cvIqivASvRu@!ROR8UIx;3Yc?DtTt(zA1|^*Dsbo%I_6{>}ERt%*V$v zHe@5wsQk!V;NFSe>by|};RvNnB`-u8*M|i4BSfCx*pa#e0j(-IvpiS-z^g@;IjK}0 zXXCjmbgIo)a)gi_4+Q3gmkk_(^{|XOm%neKQ(@ji!Mr>#XOuxioh|AURKbq^wgk4p zzAnw;3~)LlVVP8UlHvAuSChr^UD9?-nL1&?rbg~fYg8pm zcRmD^Eb|~yADk_Jpz;FQ}%W%xYXb;K&OAl>JQ z%#AH~_l-w@l2hLgzmG=1t)@guK2}9EEU~c*)lH=64S{TaqwIa-dh#Q@DY@U)YJTl? zDCZ$b0_wy|wv_NNxjVRKiJUbW%otOx7tMNHzw11Et|jPk)bp44rk%2T5q0=tR7g&$ zZWpD?eSPzF^n7T~2zuPOgQdEY22IcGpJ8LhV2(-6EQ3boI7)BkSrh<`UDBa7eV+!7 zE%R?}UApU#EmQpUoODqMY}GjC`h=Q1fu=+?mzU96GJoAS#VWIY=m3lRRH&RM!+q za(i-sOQ@wHUFmabOw|3u^BAk|i|aUUT4B4&=JcC#uX&SEV~yJGLGy(ke|;^2&91C` z0pvUVk|2@Mz{P*;Q8#?M86b$M!tJY#7sa4LGOX0O|6Id`RsoQZsXe=R17>3t5 zGiCGPvnH&mO{)3mO{KdqQI@76z1PnCb*tY)wPM(!KjV_t$=Nd=n}8S5P^w=U_Y5`K zK}Nd}#p)&eXuf+%rME<>^x2w6qK`4kvSNgz*Lb&g-V6R9d&>8>HQmrCM+Lu$t_CMo zCu$QDQH+mdPYdT3VetoOP)QRCwS7)w^uu^4HPu7qY90GKYIL_M!CLSLZ}C&#&RN&V z4soy*jq9%tMqY zK#!$;m|15&WzPVNOS_BP!ML9Kb!@q?dU{SbRx^axr|w?2PoNv^Ru|nmR9ar%g2#Ts z^OFtVd-u?g^tZYMPyNGd45bqpjko5bdk5YndzU;RXi1h#aAYpGtKlMxWzMw+-RcyX z)>{chqghHt4_fGXVj&%N*Ww8nmqe_FBDCD!dro8w(j{6HH1+y@F2dy?Z%!JDpWb}7 zj=sB9BPO+zvhkk$eAm6Y>G2q-T##n6P z9d_ah!_3zG0I~iaeT8ZMgDd+unl!$&Xnq!nDBEG) zv`A~-VsgB&Ht|{rGsd&Z2a59JCS^SQYE!)_Y>M-89n-_WiS4PjLlLJ?6P*=CLe;$O zDr?W-8i8x;77hH%Kk@fV?} znML#6L0gGpvxM?y-5VgN$NT!k^w_f1vwmch zs+QRy&=_$@Uy(^TI*2+v(<~pUnxR03_!35Hn>!4FDlc@3aNEmZp5;|0_4F&#`*_3I zE=1!cZ$WLpM$O7;1Ua5|72M^G-&SEO^IIEOZ|h=EM-J%R23=>mRspfXKF<7tn(Rd^qpRRm@esq7oOy8hhB+TMWUCp2fK_Et4bKv!KUxG;}J}@ zUk?5g0VRF&OZw%$EG)K%*6a-WlNz_!DF^s9o}H3n-`(O4%&1hQFP@f4GuM`71OqkB z#}rW*sU(QwFssni8uWVncVyw9xQRBAGyR(cYmfRzC>5{Vu2M8cNfY!)>05E48rnnI z>~Q<3=j`{F`-(Cw)xh^xtLg08HE%fLm77_1HLEBswLa+JFIvy_$4Mo*5`+J|s_}E8 zAB$3CxXZjxWidT*C!V(C!>uIjPI-!6ijX6kUU6+faCFD0lLQv1zYfy=@&`&_ee$?E+Vtp%-azZd=qh>oW{IKAHZZipQ5CV?P3fcI+>QH%64%I(3{`yATl^r00{LV4Ai={`fALs>HuuZ#(7#q`g#Cn`B-mEZYe6S=?q_Dly z9Vs%aC?E+(0oxxgD3?Dw?blW~*T|3=C56uu(Dvx?^o}WD31f21(PvJAix+>S4Jm)t zj2U`Es{;7MS$Yj2wrzTV1s;6A2U_o!b+NzGJ=EU@dpS)V#>ZC-u2r^OE@iO7aT@Y4`tWs9zR3Qi|L++%r6N zGowG7M|(M@2*pR@!aFOTa`&~@521gd7B)*XA@~p}gX=k@?1$N@o{RrrQf20aQ3n!d zRe^i}zu)AGa{4$O%XMc=(jRxWuIs&jfjWE;tl=HF=9G%ysOM|eV9R-4Y63$zXn&}* zenpVW9aAi$Q?=9!q82*_{rk{3ba=IFMW0I=c+vm_99yWwcv(b*xb`{2#Rh`}dNvpi zb7+>;XFxfMP)kX3g61NuLLM$|aJx=$jF6YyWXXejN9H1<3T5Ka=kgfJKof`KxlE!Q z@YcO&o=F-RAkB}u52}FEhq|k-WIj!IT4vou5=7BUK zHZrcI2~tP(%tDUQXA_VI`Z2byuR{5IY^hh|9+q_uizIn!<385O_G^5&ARNf9)KYoE!S z??pf>SM!`<0m(I#bllT^HT!L9G zp6UakBR2{Vx%8#eV~pXO>(4B3EVJ}C1t46XA z0j=tGcq>7yznri9Ra2m;Uf{5aai+uRWHgg6OQA@MXy<9Q%|ErG zRhQiZamzEcyeSEs>;>%zR*R%FnK|4g=M zk;zdT=*oLRC)j3$vY{6BuKllVyH;C>KiN(_trF*c(5R)0aV5Q4uTyaOipczvm%lY> zH6BR|#S*;DLheP@`Z^5LOQI9@m--W#L5=Z)%D!q(K<|t+SC?SgA5vuIl(*}%P#rP! z3-v7;a^e_Uzq`8)L)^0+Gw+QmMgbaNQ+6sIY}*rqym9U#T+KkHsD;1?KSLv@$Cihx zRq*M*fw!Pn5P5cOzP+=NL-`a8_{GaZmEeCeg`G!RRbp`)xPzNuDlGQa14rjx7=w8kOHn|252<25)W@##4QHMMKGx{C-6P9 z0cY&}9*RRK%wD{~&5F@{Z-L^l#9B$KI)Dy<#wV&K2@7jizmBL8bOc~6`Kv63>wFv`=vA>bA- z0!M{lr){|QRaqA#4)5fk+u7a@gc;%+MVM|UFp7{o8VU>z=$!Df!wgD&=6WAo%YO9>pu`Va zrt%MgZY&Np?esp_z0?5---cLz4QE|9D6p+T?ShbOqkup?<#YS~GN@ByBBb4PG+k5J z{dAK7t!P~b4qvdMOKpkvje?Ec7tz_1HNvUbHBIl}UeFk$1{WD+Aj8rcMb`|c+hQ2B zk491lH( z6j;1J`I@MtKIo-;nWRA6ypp6}US{4E`Eg>&Tksz!?~v(NI{iUp_SQD#8brATnyP5;dcffQ>3`?t7_&@ScBm`Ba0?RcDzi>+GLvXPlIy0 ze8%gEl`EW|sZ1_tp;pB~HU*5-C_aRVoE@z@^^&tb7ll4$I0~mLe@J=r4g0}$xQ2jk zc>$$M7?r!b3KYhDoU>)TAZfewV)uQ6uCKTQP}@I_xuCe@(!PVxqggN0ok9swjV}3Z z9&IjGp*ypqK*kBnu2s2$A%z2jEuUoB;N;0!U$R9WOH4iFM|m6HR_zX_CC!7^Z)InF zO^j3LWJeE6cFCYUxYaU=JIJ!hLG5_dl3;X(^D!$T3_-#>mrGHN^1i_~7I$wTvb$h3 z?6_vZd~sGk`4tib)SEqVX}DC}U1T1?53}szvxn5yZkAPnf?tKFk#k>Sq}cQ)ayV{8H|1fqA!J-9QqCB>F zk8RtwZQHhO+qP}v9^1BUqwgR5j*jRz=-8v$<29(L$d%b|>QhE!j(_G1eYsNssussk z{L1UEoj{u-1~HT?s0JcJ3wYs;r`8PaH;ynZI86?`jgmE3}%5(W?_G4@gs<#y8%<88l^@x6e(7zr>hC2z;l!y z2UUTZUfB;DD)sz8lCuv~#Hz3EVH53RVDba!0|^M;ve|bqh1Q%x$|wlJE~DQmxJv6E zEMs*Ezn50W%5h~Z&QOx!blJ8m-m@^ydNrRwMR+`0N~>#`3;8ihWJei9(uW6;P}4F{ zyZby%xKb`(R(TJn4Wfk!E5Lz6Qy3aix%(ZSC#S&#U~XWF10IQF$_^{Yu>{ zfoRsGkU@875`ur{z`$jHt!Q;pAMD2Y)*!zW-3=eK<$%%TNtsPy3s)C?1q>{7pgS2o|@V8J+d}L!4)V)=sCuDGJn2)x6~LJ((Xf@Otq(7 zQ%s#8VyLSc_K-l?BrI<&b|p%l91NS!xsmC0{mc#YS(WMraj`)gTZO=3P2R%F_SLRQ zjBbkE!sRubQ#&x!;r!Da;@)<#i4?Zp#=m}+7(0XYYfC?Ic#{Jpl68->`@Kr3U*?=}?|rKw_9%t&?b;OXce-}x1kU)? zIw`KU49SbxvI40BiD%a|y=U$HWftb-kktsjm+g{nRJ})pW8>EphH+bj47mVZIp+O1 z?-Q$Rk052Dcd>x@hI1aZL;V-cOkd7uYUSYQOylk)U21U%SZC$n2FeI+(cB-2&iN0= z6%u8Mp^@lH1ly&YN$E>nJN>R3T@?*PHI8pEUYAy8%peenQbqoq;6Sc@>?*pA#Gu*o z;{4>ZijhYoJl^~RZ0xz9s1sNNp|PS(W&ah%HhuM(@|R)ZH1~nhxX#5HGmzm2oc;)~ zNrnuYv3;gr1h4huEm?+jgd7`1qxIQkwoVB-1c*!!BWHr)ivmF4@VW=N5@Qr$wO88m z!!`L!i)CL*)%TU`CQqvEoARkGKs8gL0=nD?r+HjK!^;zvno9+Y-0A@$cHfjy^AJ45 z3nfub6>waO5z46@Hbt(w8~l6?$zR^rdDp3WxBS3Ftn8P}kAZ=<7p&c!*T8b)qpLD^ zxxTxW$&c&f)9c0V6v#tyCX`zP!~&Te*tV(iy4K)}VcY$sTXnhCozFEE&0^={sobk= zAH^E5W9Fbdq3~;cD&IZy;NU3FkD}Hn`rg9tk?#O>YX*{b2*JDhlO6dKDv1>u9@2Ck zrp5J##|LlvP(m)pA15{9o*0$9q57sc@*RRJq0WDXeFhA1FQ6+l@h}k7J9&sP8?maZ zVwPz|xBc7Z_W0Lug(ogYZiMPr;Yy|t@)=A-xNM#(BaEA; z!>%)3Pihp_kQc^CVi@`K?21M5KiM>!vRH@Y;G`g598o?g)6LOLRUwYo|Dr2ALG}`} zgz|szyUE!27NhFoH9g8QCAqg);wBF4%ti{tG=L^@&Z7-DsIx1(-L&7D8-=qhfGNo9W>-w#*RR^k2^$U-EsLMY=UEU=|QK5G#K8S5-0DHM*2K7FvoMil1A0f2TIz-PI#^xI3h zHFOnkWk~L_=pQvjGI#OgsmWo%iN``Lc6yl(rVv$HA!Gpw9{w!=*42{&|8T|d{=kyR zfM!j4aE$E%Ww9CMG?F_ovFf-M9|xRP5pf%o=`@!%1HM+#j(}vL7klM~NOi&Tser%b zJE3SWDxk&8KhW$jMr zzjxHkOJ%X)mKrY-*HvVHjI8ooH&`wWX|ox2 z{672rb1UFqeavc%u9AFHsD+8sCZ!{F#>^nkR-sTyIDMRNS_=X~(e+Fy9a{nIQecG{ zZm|EIUXR#w92e|Ztjc>7D}s;GW20hZ=PN=op2@2fa3ndIId~p&y_*0_5Pg9TTMs}VmVqJ;hW~aT|5d~o~M4KmIxfEEpPRT?>j-svzm(-cY zwX<}dNUxGl%?dx=fg#cRv>KlS!+E)D`k5PJgIrqk8%?l<>Dct&8f~`t*|mfUqeg{P ziYS#6Jl4-{A1{5a2z96gkVnqsw#eE&ZE`U_LzIJl=tC4-e!!cu-8nLuO>;8Bz{xc3I zm)LcwQchtnWth~ln6V`TKyP${R*%mr{nHRsm}cz_9__D5@X?eDt1jD9!MQX>Wkgey z+E&Qbg^KU`Cs~%$QD>is33e~lbSty{{_>mmVI97l<|SU^2;jc)9vq%8*z z-rz1%ZEO}^JSR9FVx6}k98I4HkJMe-jer`29h;h_1ZCiAWsIjifc}tc?t4$ zo5Oz-?r53WnOGD$u_?ia2|@?ODMmtwXWIhF7jNwD&V1P!qgTEl07iE=Cv@9TRsfDY zm2w|XI|zRY)HE@M(4ZIa&gx~a*<@`~f@s=Fx{a)**>eE))cKq<>N==k>qqr7^KOn9 zL9@rP$4#_Xx#)y?TR^zHk2gdNSLypZ5RUrXvAWv;vf`RaTpPO4Eznd2UqO#O``*O*8wYqg2?2|;19{j`BTE)}q$>bL1tNZ6Mixm^S(d#2 zv$3iI{)dzV!H1?J2yR%7OS=GW-B}$bZ(wQqTb7G5JAN=aRiM<|*_+Sb1N6x+-j}FA zlD*5JfJ#j4q?r;<<=GiiPRCrEyX-H+ZlZrR-n`cYRe}KK3|X|&J}L6j;`4-uU3Vbf zR`!CT)C99h3US6>LZ}_xHCpi0^Zp%f4WAZOnBl2b3RS;G5t}^0WMeMSxQ%)p0w&ao z5WcIzut8_}T>|9KE?fmvls=V#g_+EsP#vWGo#uB|3zO=zWIH!{cH}eY>Y>zrM2ASw zwsNKiwyC!;6Y$hyJT61#tnze-AsVPcGZNCAs!!HXp$sDjeAMLS{vQw=)7=)nbgc1h zfIt?i4EM#rJWn~402fW+-kHVN0%U_*lHeuNqb234UtPH2vWAQ2iirNcZ|I0s%IVU^ zTjT`x=U2nWJvL-KrCri~=kZ%sPDs=VdJMbxI^kCP zYF!$8(KQ)4`ekj@4USX=4w;bz(@82y2!#o0sij7D7Azo_!@YeUZ=41kHLIlnid44! zj-r&FsyGbRb^tb|c_y1z&k(4;Exkf$sFa`@!LuJVWuJ-o7fzDhhD3AgE zd@sViPffGSyO~-ZNgY+GNpsQoR*JFV1>-<)Z|v&sb#rE*?R5?CgwJmq`~ekfCMfJ3 zdlRoF&wl~~DL(dX8`wzY)_W$5pVqjrq{r`d`MtpWA_WzDL z{LhR72QvfH|2gB(463Ybg~cjO1iOGwFaA2W9pfCd07Fj?^Y3#mV+N88Bj3gWS`Zf( zmkcWw4}-wVb=q;7`TY6S+--Z&^t!#g`Sh**G$>qMIZSMEX#k_>;NREo-r{HQ?+&G< z!vlagIt2rIug^$-8nA~rqhnxAB7iu7a}9|6p5(^`YYgNYL#f__cg3WY_s;|e>7Rt( zLq$47MFR!`^ybe$^MldRHv|BslB=iT55men0RrtXVjAyi_Z;effx8Q1{(T3n->3(4 z7ZC~J__YTg;|$W*$D$(VAA-68aP%EBHv$Db>sa#_u)qC<8lc<<2b8-w4$A4?6QS8`R3Zv+vx)iDDY#~T3>5t z@6r_L8Ibq#$N2*UWKL1xG=yj`>yNth(pG>vynQ^dJFy4_)6nQk|5oHk<)2s$*MCtk z(6`~#77(Dbf3tO?KX!}e;Tz_W-blEly7PA(10r%C6x+}B zt4&sR1{Cn__y8Ti{vPrHNLWM|U@(y1|JP4!z7^WMcUJZmPk?(608s`ZQJAmxpl21g{DF;t;QD zK}7wnTL$d0!uZA?%C`1i69xL^<6EP+-d<~f_6|USe#KtvHCScg*}^`7iGJn(-5gH) zlqdylw5|Q@{^aE&^h1F)J&b_yB1Fi^BkWCn)G&##M4YgH`hIao^1 zbn`YXE6<=F*%I2Z3{xpLD-5F774SYqt&Xv_{^?igIvY-;HZs`cw|c7}y^bV_0% zc#80|$(3Z4WaFdPhcQgR6`tO*DncdMAkE56w&wVr7frZ*PCjkynd+;IZO$wlDV0SH zgI94au!SWKPO}(&A{a+oECyet{iN?6YpnPCU;pWaJ0uCACi31ALK!KsxlSL|8nwHd zMBeW?wc-4Wr-sZ~z~=Y(VIyjT#^9)~U*zR$jWRs`B0**hIyk1+VqWNbUsc z!ZvlvbjbTv8S(_HB3$E%ywzcpR6McT3X#9N4WcO7m@3}fIN$c3#;RkW$$PXdt4T!t z%fa1*tkd(7%6ypbkjkD|aTa*P*otgW^5Z48SEqbjzC|ao zs?F46uJY*dUuvy7mM)gi&gQr-vHp5u%ZVW*YW+{Ve13RX)2(WBMZ*p_HYM~=ksVo`Te2PU zBgpu2_)3LifQx>b_(>Nju>KUvAUA!X{HC{xZqOIGCt@>XSipSP3SC3_vVFm{eZmgd zcHXVVEpXOlj5C7Dd&+o~tuNf}ILeD~T|PA;L_yU|S3nt|s7F{gkQ*0BbC)oIq2a=_ znQ1#+#ca}Mj9-@~NFPYR6L0plJ=k(5`lxXk^sXygMkLtNN~RKw^+3xWL&SXNhsKr< zqF&N&{c!pkAJl!?Z29U-G3Q@A(t4vC+6!F>=~<2-K_>lBOxudJIUc9I9UBI=@ZU>! zboD8L^}wb)Fe%tOk#NHpuKmaLl@O#69FjvB$hWK=OJS*5ruTCfa}N?xRFziPqgG^Ru3# zEfKzpQF&N|t`HBNT*_u}kepf`9J9KwW$M(e$=#nECg(Z#cy)2!re$z%3t^euz3iAa zJC^8!`<4G;#A#0@WIm542>!v2vhyw3cd{j<$vLkq8_*cxEY{hK`*&%}$Jl)ryR_C| zojx2*oVr$B+npGnSvv6A(hJj=Ly27??Gt#7h0iW~cwC012uHrCnZ=MzlafPlRqiPs zgdvTC!StR^lYOq5i6s7b;X%Inw!$y~#Ln;{Uf=;-IU>8>N*vn-EOJieNP?rTJx;>H z4p*L4F!~MGJWnGMo?!YChGI56Cpd|Lgnd`)h`5@f0UE7!s&^6Iy3WLhNMWTL*b2a3 zlsHkJH6-?plEpQ&jb%9Kn;SbOrCj7}0P55mNvyEw@(RmXJwiV$K?Ig+AVAcaCpFog zO0Y+=7^+5+qd~=$-Oa8VpxBf%v;1P|w zoodC*D^gyHdvkjFG=+LL93j{G@dx<3SDTZmK>XY-noFgQXCuTTSS@SJoZl#udnB4V zqqqXXS=fB0JNf+u-AQAWgankA|t^?EVC7k)2SX;~hKOVYqrl zO96d+Oq?e29?y5qbEc#h|6hvu3HnOD)w0A{9{*CLC~5B^h+;V>|SBk zP6`}l=c<+LFz4!~H!aV}iEel5V9eJa7MDbll0}U1Ex{aC|MIO3Jd68)-jUnrNc%*( z+Eyo~gG{+^RLUc?>%j4!jg+9z!5u`yOzHSZ|a6*yRQYRnFkH!?8Lg6ma(!9(hHEr;7q+SwH z;g5`ktXD+uJH_VAma2>|-X##%-q}cGg#43++NEwj{Q^&?fDh|?qF+_;`TKEO8T*XX zq4vzH{;cRuSBl5iI1wJFGNhjM3I+}3oc(E~6vNg`7_oDLkh-O^^0pdhL=T>){kGO8 zoKE(!I!53kM$EOiNBTf6Hj%c+v1iIp6zhnb6VLL*8jLDCm^g4k$?1IypdYxv{9+T- zX>#>C$q-A#GF9YKgh@-p;|+Gi;`~@zLS(KhUO^?RIKu!ygOFgB>XN+2G5e^hn3f3L znu77CptgG`RWXJhjenb5Y8e_gBl(F|irNE1=EV-R!6=~5o&wNo-4iReAz40SpOm{nlw8A^hS9Dq5y{khthwq?mq^(lb|2!oeYP1fmsS2Q= zjhJj3D+UdS+H-9Z30*4o&Bjcjp@nC@;XIFXDCO)uf%;_Ansce{fjUx%QuK&*BmBGj zp^lIT>l7QJHUpvm`cNE$XOwvv^L=tcV+?~E)rfJ=B|ZZG$gxRdn$@p;!1kDKlgqSj z7kyK2I~)0uaQ%)5YAd`+TSt^SO)xktS{2m$DvEJ~^5#M-@2|`hECqq7sLD$ov{pGZ zphsrBue^*SHHUw`0P&1XYOG$A3qKfT=IbygxF14-Qe!G`z5GBRKuu>CRHcqU`9ilP zeMF7{u9xeddgo!vW}(npt$VV_z?U9nE8Oq|;b-sr{%#D;U6T+aMM@FR6urISdd+i^ z?dy#uRX@JWg-0vcop>41rZo|}0ci8Qi9#PHmU1qA@eg>;AZ4Wq(hv%%5}D7hLarP-@i6_0=NFFCG3FZEF2VRv;S6{qA! zCv;ISu&K7q1jYS%9fSiZdeV6AMAX`oCLHv$;i@VH`yGKDVohQvYUndp zJ6K$yS`^08yH>LREjV%Bxd$T67-%piuuVB}a&8%}1zp~Dh`x6dA@F`eh7~m^&?J>7 z;{dvBfKWEXf&$H^y;Bc8iwcP-}8gpIL?FX)U;tRbF}6 zrE&)w(j)pjK0;u5-|)$8Ol`!1e}k){idNED>sOs=$f6`fmAl^p8s*gTM?i^2yJ5#{ zfcEE#_sp2LH6OH%GaE^)5(|%B0u#eTPr~OBRh@TL1J=n-VGN30+_mOGb-Cd37s(E$_U-a-Z8pTh|BOx4J8xfH?Ie z315_Z*lU^5!)UQp?&MAP*`0Gh!i|#}v#C9l6&l5lESK)Y+WiX|xAQ=W7dhTQ+JD_s zQoSc6o+1zV0_Z$7;W=#ur_-rRL(zU5&PodzIz}9t7Z#a*wczs~VqBIRjSn zw$Z;gU9(c}?*D7ZAiy-AQlqRsg}+>6@RiVP#m)J-0-t_1h7hEMK3k~A(19)NBIlCs zP3(mc1sfmFL!2qT9PFI3NEdq97c1<^NoTi`z?7r++I+kslbD_&WjXm7w(Z-p_sL0r z{dAcfobJ(w2WqB?8s`YvpC8zK~ zjmwq~Y#&ZXum9o=mVZ7(_fCu3DV!ROsqK~3^U;xaO{<2OblxTZ5(jHzn%a)8&g zAKiq-HL&O$-qV4fFA>K>xKGLqQJsnPEF-#f>T=B|aW&0Vr6)^jwZMCF*^V#JO#gil z`3zB74k{dx0l5fBWRMPCgqH;;6m(e_4h@16)Elwua!mEk(MOZ?#$B5x%2g?V#k8XA zvv3{+wlCCcLCPuRE6rObaWR$6L8HGh3~GqB3gV}|)E=ilNk2p^B^zy2*P9Hq+(7J@ zEA2}uA`gs;gjRW03iRTlP9B(hxO<)Nk$1Pb(F+SxIh$mXuErg4wni$QDlD!$uopEu z)|Sb3ugpbpYTl54NF6>aK07X2wz@c!^r!Nd)SM$xbF8Ctgz0+-o0OJZhJ=&*HHcr5 zOv*`h9VHq=v)3^r#W)XlpYj}w!9;-m4UD~pk@D|H#m-Qg2EMTPfN-iBT`>I@A9h^;ds#n@=$E4d@2U6Q?~@xn}u$891i1QpcG zZj#q4+;Ji|1cB$V4+zY6kv%QlmWBnSm-h9G8Kmb^yG+l+t#zBLS(6i>?3^p^sAG}T zQ1I{}!n-@+XB`<6q^Sr&u@8mau;YLbovevBOeG=brOAt6tKCl5eU^mv32&oCmVcG5 zcwP4!>>J8ydw+6iaK}Oq8>z0hr5s~cAD`mRn*xe5!G1@7?N_4Q?%BEWWaiWzb#u&Q zgDuwy6hs8pXfe z-zY`)z9W=Z;U(~BeRl@E7Sf4CabD=Q^Yr86NKZFKteb=9r>`9JFBF9=fJOGJ8YA4< zWMI9_+6^&(kqI2w8#Me^`+%RgtI$!XuAQ*&+%VUk>Tl6~f0p_^fI zwd7GrqiqY5&$O3+bit+L(&OUPU=6;?9a}!EM2}Kfq0v*zIwcLo38bWq1X$Nk zKbL*~7+cL3ZI$%0YPp!Uw{xn#U{c@FN|Td99>DRoBLD)w4=I{J=X#X@%$(J!OrlARWpdX$1XNv|t|snPCa~I@ ztT;qg`W4%2XvpGr;V~uNws7Tp=uRy1Jsx^=PWBX-?>ILV#4+5;WdGhD;xq%&vv3K| zc`k#M6dRl7L^-|u4(%gOIm_iooOJ87IXDURz*ZRpD$3#gl`g}Zv7zDEDmjbr)>3$9 zhmYujydka;i!3T|+420SY`yYbuH+)uQ zpCN5QI}%Efu^|l;cPMd66JYFq_B=!9*cEhqb&97i9ar*$$5V5w+H>-WEVa;e+5<`R zM>w;xeOqEV&>YppcVsxN1Ec%OuOR7nf&jG$vmF*=EZd^%ub+t%(}q?g z`FvMqI34G||CJ}FsXOnHV5>Gygh+%ZjMbUnPLG}%j@%fa&YA$#0A;m5kYu@0Yi^$d{*a|z*;~x-!dia%LsEl0kNl5&E;|*~(yP3>tWAe7rAmu(p;7lO#)?WF zIhAmzXR7ZCpDZu{jX~BjxEgLSpYq|8?kW{l?>>lw+{snlm{{dtibJaoA){|Q*d(#q z@ho&8eu}YqWhxK<#a5+;E&H&T3l5Ao-5Yg2pYX+}ijE>E&h zdqsjXz6F)E7|0Ao#<81XcvS*=>1%d-weK`BScQoddCktn+y`*2ps7Xur zh7?WM7xSLg0VRW}>`wri2yW(|G(|r-KXZkhgIb@a88fA(635L~GR{ysRM-0@UOlu< z2|RLck`Gwc|jCN5gxnThG4_!S*2$?AfM5dL_COq=HX@D?La-ygLY@WxC5z7tTC}y4lv2^7HPT_ zJfFd3Y{NoPC|$v0N0a8gExRr&9-4J%oyBajN*tk^pI3+W0AFGs?dIGrz?kp>w&G<6 z>JSg1`AftMbzv@Nr|cjug@CO$@F3l4TyEAu`7_wVSk|vFq5O{)sZvUsK50G zQAuy8w1IHoZZ|T8cUrEbAJo=trm5YLOa+l|oee+b^de@DEEVfRI6XWmwbV-1djE#I z`Q0<%gX3IWN69iVv5>yPlTaAa;f|tBYHXyVsw%q*33TX}lkMv+Y&apwQ^8kFjepSXJ@dOh zJT+CXf%SM~{qwX9Ll83?QX3ZPZca=$7G}{lS7Ekm*Aj9b$s70gcVd*OhE^p-gwDjd zpq^?Qr(-E~vtnzv5<=BQno>jw+R-Lz!v0Ug_tZXwww7tx>Dble=af}=%^ufOL4tm4 zqMZgRo-lEZSw+*s!0mKxtfC);Q~IX3FEM~^iv93aZX$j?mISRQy%M9DL!;J(!loW~ zhO_|Y5C0)@hZkuB8;wj}&*_(WuUSI-qHZ$;w40tXcFMlcv6!+%UA#c#uc3$uk@a_J6iVGypXJh#zinE!GONa@lYqGar=grg;8Z6sy*OZ4G(Pu)H+T-*r z*iva3mZ4j<%juN^=@peSByiP?u!pO2a77nV3iz3CP0y=~Tj+J0xDDP$$!AI?dKk3> zWF zwM9>6@IsD6%{}~vLx)Pg`zQvs#3a|Ibw2iI_OG}J`O}|i^d56z0oeh8GS4~CGWBAa zOLJ9h-gOcD?5LnkTmg|8J{=@f77<)pS_rtTd?y7SLVY72;hFqoEczE3y9c*~Z?o6uK4){qU3k=iTIdaFi<4bSmo}8aORV;>8Jo)4v zlxfU$&YvS4-Mn3%bt2BtUeS~CIZSM0K9{P4*bYr>5hgmy` z*fcfpKllOMwbAMPZ+41>{y(u(tPKAhr(?wDU|{%<>=Xk%11rP-F;y4S3M!AihDHN5 zK;mw1LESE7@8-4&hG}lz>EPA|0$D2n1mflv2=WRrKtgP84}pN2k-^3E`lI)(>w>y% zHOc99+w?+lR>9J|PF!Pg{TNXbDeit^hRgRAYaE zjbY!m>G@&LAU>LyT%A4rV{z7=<+@m>My8R^fPlC$@b#$>mYykwa4caR0l9JD=2Vpd z%eeyb{lKceF#cuktXKhPU2FT!e`oUlT0hf-I*S5R2 z)B*X+pKtl`hf!aW;hz8k3HT?={P`%sfsTk-0Q<|pel2I0CqS=`P9|=kLceSi4%wy` zlT8X%7U;#q5SFGB;=3m5}lM z>S52$p|@92&j5kiJKBT(p;OoY(5acfp!Hx{9e~sVt@`92d{=U&@zZ&4=MOslx&THq zWY-RW?0$YfKPDf*4!-5y@LnegiYkjrO2;3}M*TjEi}iH@^jL9m0kGKc$oS*a z;QME(Antzc&|vZ3>L}TNB~*ep`T+v{&_0<L@vZ8+4u3sSxBcb3@F815zIa6ItFYIgjcWj1n;JirsQorv{OB-1 zU_dSUwFmn2Pyw*e$xeUYa#<%Q_Ro*)eH4%IXy+CWzFrd=<*Cx2Z($Elyg&gu+W~s! zIr4&sr$@o>jy*L+tm0SkFv0BWg$!)vDE!O*u~V${=uf+BACd_D1fQEv;7EIb_U6Aq z?ts{wenbMk0N{6c!~lEsU*J3q>fbSMx!$VuV@guL4PQ6WLmzta(EWfP=-!-TH+u2# z{eVB{-i1M5z#X~eKYyp5lP@3W-jXjr=-#0E_h0DVl*>-};y)uMF5%zwm|7g&96UT# ze&oLw`+tLe-3R&c>Ecm87J#NC*{6DGs}D;>6Q`1F+ytFdebxAKBBtHOOBTP$&?KRh zTwKRGCsT|k%6PL=Y&1rsB1|g5cY{{IlE+%xGOyiyUr!=57rU;{qLhMzl0?80pMg=# zkE}V7^uBSkzn=ne5H$C@QqFccx}fzfQ1*7+eUo1+@yI_J(HiQj-djFW7)N~8VK%L{ z*^~AXIX=86vpozkjoDbCluf(wbl05H)SBEqlH!ylBdE`Q!sZRPvwzJnd< zBB%D3MW>|bUISq!}Xx(gfwkIk?uejC6bKCyM&dkQbXJYo+eZUfh)Qs4s0k54G~U;%}7bhmfxL(^`?op=~`HMNfWz*j;v^@j}EwEjPUXcn? zeVwJ^x7;4L{(SwA*xj{Jnby&CWyHGdjEO>t%>Ek!A_>9{Mj&WD7>}p$UJqk988seq z#m3#R-Jw#|BIiqKmE(^r_1o3gu#Km#13@_rmy6R1>M(hll{GPE>-cfq?_rbXABoy> z5(qMaLFHC^y|*Zq=x#Btn`;+&V5wXhdqa)O^plz~c(M0<>{9-R^=VJ*g-Bi}33ik( zz&c9}`Vh#j>g)Y=>7jew74hcK%Ut@vA{!eQv6sF3#JMy10$k|`I)RucR- zYSE?BAPNg>ym$h3JX$dXXQ@0T(_Rm4oqbC*xN#P>&aRAH?n z8P=1F1!cZ#$_|T4QZFS2`Zx(rc$h?(%gv^0>ncY2iHqCP3!nX5hFNIy60euQ%mQnsRGH=|v4ktkn9TVxU{~c}cB%^E@d9YI+$}3Fw>; z)lmk|?8VaR2ywes1$oQm&9SD5qacNW2$_n&viBUe*WA|PcDtpG`P17))Vs1ZfU_3o zu1u<0GutZKhCO+9g<2hA=irBRU1{WQSEk;MD1QFO*0N`VOfh6!%0Enx!$rdt1CQ#X zs{WaBwP#shP#M~l*GwU>u`N}p#EnbtVuCl!d#AM{nj2=Ej4N|K$H?{30IP=x_@&|C_Go{xr6x3f(ArWoaI|=loXXqK zPd5loYIRpPxgd*Oil`=1yTixHwYWKx8=W>dui|{BX{76rqM}fxj|k)v&GU|*WhN27l-xISo5R|PJlBbg z%iW#S2gXY8Vs_boT6>wHStGiNe1e11si5NZOBvCY>7@XaTlF4M&*eAZ&%Uz~FP~9e z8wptmJqTP^4V9tVmM{){Nl}&-7E}3YfMGtF$Sq5U53ITev+0v0a8)t=N#4@` zqU;=^L{Xw-TefZ6wr$(4TefZ6wr$(CZQJfQ>p$qpA7;ip&&oKlc4T`!%3O7CE$pMi&O}DGAJ;ZyJ zJ#P}n9PKv;sAa^1kAg#GFeX6Or}9y`Um_2_)se2|k~c|kTM_~9UijIM##@opV5=N; zO)n7y%{XoDFuMJ{2oIzVbj`vCVO@G~%-g-cD-UlmD-KQimXV|2^0`6-#UK4~w|C*a z6|c|Ill*7JJht{M8DK<+sZ1Ckj*?Xi6i?P~TkMzEgfkLX!@~j4D6&JkJ6p8>ehrRf z6i45gfHmk&C{8V6(bmV%z2WAScQCyXe~CJqMAT+&pOQ}u5{5#vV5f9?LCz(5@Zrc+ zpgp%FX|mXjXoRN_clKQiqDAMkg|oO;m0BcuTCdoPZx|nj1!B>~^o%yQL4m7#sYKgF zPViu`rN>sK2GWyfNGvP}VJnA>ZZ|*V4NIBEUOIu9hE{q7IZZE0=OoN!V!fR05f_%r zGPH)$P^#>^Ys~Di<(Oc>N`_2Xz8*^v!li9*GfkM|ZWC8VCnuf*I%HRUE9m@c`qPpL zO*wpDOPZYV7;cH2UutznS$~ilvE$QVZE`^?GXr^6!%^H9ShMno&S&8p7HcaM2h{fJJ>gcNVvE3V8Am3B zBN$w6)Z)lin#)u9W_fq}dbwRGfzdo6MWRE+gCLTlrn_f@D8wyS1yU4E<%i>o_36Eb zb#rh`-7G9MxGUcdjJ0Gpu&sIHerXSS^6!+Is!J^)6E+RDz} zkW;KqdB+0%UH5J$`3qVTA#}+WJmWYvJvg4?PRWTh)yTfva!~1fi67RTD_Z$_#jx+a zJ~mAUDZ@HMLv{v6)nu%vRe(IxaTgg@*8c9PV=iq0OH66AVT<=~^OgB_>xn6Fik6Fa z3&NSoB3or#nghAv;geI|8C%}Rpcxxwn{NSBOD%_3uZXq`e4gW8ou}N530>}%)rld( za3mX^0Y0prm-vgXL@|dYU|veN(eks(8vT)wOeGV_nS?gmvJm@vrx|m5EoBw=$Fv4KRHU*>l6I)wmBm(RWb-#(SiFu%c|T1I{k<7CK$5)hm#O zwFb^*EnqFg{+7I=Wd74t&q>FY)C-z!AI5F;TwdQBgC})Wtp7IJ&x9+oUcx(ftL*lh zQ;@}N4HcaE09jaQOs6mcW>JedZBu)xsz`^7G(!A=cNMzwmj?>sS%{YF1xsVIyYW@1 z7JwN;5sj#IQA>9Cc)sP~X`6H(9E>mS8zQ#!&mx9Z)lK49zI>1`LJ_MNWrV#020uGr@gIpjZ>ipi|Je2=zHs9& z%@Wi&Y8}IZfR^Or=VP=0Ix9*=0{H5^7%ChyEZvzuqWxtVx#UuKxNAOy->j4uBYsg~ z%YdQ|QiN^Zc<-h=(yJ5TPz68ru9eSJmCjd75&3KIkK)Dal)$P7PS>cI#-ljn-6@!I z5jI006x|h=+!DCVwL_SK z=cW1i^jVMA-oGz>|xZ;Ukx+p@1?cu=jAy~X^6q905>y4h$h#l$5tJNwcIM&>? z71UmuCHIk#)*USj;lqYD#>MHZXrYx8k)zt_aG;haSg->fvqNnvG>zn*>&O+2%x53+M~r)_;BQ!-ag@3V#kLN)#^zd*RJD zvZWjIqH&C&BV6f9mYfezu8lMJ$Wj%;nq2A4c=BgFG*O%!LEdATQzn!!*{1Czgt1k~ z=Yg?Yqe#Q8tjvC%-@QHZQMc`4LLMDPY2hXwc?&oBKK;2ZM@0~C zQYGH*FSXyQL?1XRpT|d@@C6?Fj|9*jJ?AZIN5GN9isHLqayuSK>eJ>5rXi-P=hc3C zOwGD6gQp|bWV zKSi^T=yRHb-L+M91?M(=WWOC-51^N$+_2`3#L!PQpE5q(vP6f14SER-Z`_&f~%9qKTla^^*Uof$A3wNM<1_$#%~)2rlV3S9&bkJ2Wd-}iooX) zhls@=gXZ&Nn`9@o!NuRHLO)EMvcRX%IFK<_O*=Q5VKaW+*vys+ScN*Lk>vBDf*1Q(3Nfx(82nwhI%&PCPI@ zjW6=wwlue#K_|DJ1tP?{;k_-xNRz7CJ^EUa90FL49?C#?g&%t}F!0-`Hj!yQAJ}$E z&5r-@F83$%PVsL8Q@VSfQ?}+R!zF>~Y88ANY-=9dr{3ZGoi3gS!U@0J)+)Y86avzv zHksEfHRHxKW>Cip0Z4Ayc$mCiaX+xaJk-XlG$TJDDr}}QQ*aKl#g=J0&CsEoOy`XTP0;q(-kR~vLA<8zW(t&^Nf&Ck)3`8GwlEfOTq42{G{ zXyg93xeS1Cjcf&I#U0gUM0mZ#^SO$P({#~iTws$hBG&85@++o4Y-r%Xpj)0eLl`yS$ps-Ke`f3^~oMT@(fB=8X_(a|2RzXL9NhQ!vG3DVeeIDmWtz3?11wk9s zrxjEm6}@1p`+9sWaM$NkU7_IKK~LU<5!8@isaPe}0y>8GN3oOiYke|F0VGQ^B7=Ej zbX4S8>j;($0R>TF^uhHk{E)h79?7>7XY|>S8H>k(OWO3wZy_uUbzE?y>0b1z6-(}P z>`Kq?qng4TfGxd{ZHzNNI$Oyvn2$d6zQCM(>G_DUGzgzF)r@5p=Xx#J&e@W;6BT7~ zrTMlyw$Yn(V?ySwK#(L&%y8BPWYn;hl|lL3@mD!>ZD~-$)txg^Ov+&SvVvm0sz`+N zbG(6vrN!~0xJ)fpIR~KxCw!=r&@e2bU9IeN(LT2pl!CTtqfj7YYR>1nsp5SVb#n}i zKf8fO7tMMAHIggp3pKpr?(I{V_R3lWs9T(zUCD@VBfv+ukxip%e@dO%5=6ML33nFy7NXl+(%F|}G&^j%KHG8s{0!>y zR;N<6Tw{H~AvU@lg#n4qIB+U_*R+A4mTv7(@kjBhv|xS9U{EySpL`3z-=O=PG-Xop z*xBvmfs417@l!0!6!SQwT{It^q2)WYD1@{a2- zI5U&Z>I3hmf`jyO^n_UL(xdicq0dE`B5wJWv7#--deEdBbZV5(Jrlt?!K3}RL1y<)lw|hWMaN);x)$hF zN>BL=RSYqt!){4;*-EzS6n3-R8Y!R>GomY8hip_U^u8G1V@Cnfiz=Xa(zasBz?m#KwnxmhZ-m`L2`K34p-a$TJW zK+=cEiAGUoWm|NTYuONzNw~Zk=}iK+TK^+zbiF9ghEKWsS7XQgaiW||9rN~nn==q^ zbHvMO(gE>pc2o4S9IZz^lbJZI%{$J<0 zyu-J?6QVpjTIXkCW2niO8msPCA{o_cCZpFPg{js4FecO~1!3#T&xgKFav6D)y&lmGs}ZDl=O0 zyI^W8!((d^4M|tOPpM#_aUmO$N;OkO5qINjePQ71ZV2$kuY!(|-vZ@Ik{`b6JSk*m z_hGroWeGG*$q?^|5Uaz6W0EGjskp63{tQ9Cg%};)x=i=0te&8!o)Z2IRl&&&;PVjP zM{o}x*$myX0LE#?j4oVDo-90YAdfnm zUOG?L;Mi*1w}LrdT3dK?`lPPMfE#IVF(S!7=QY*#gVNYw7Lr?@X(gx(Z$l}-<6Y&} zs0!`+=`M*JrteaG*vh#&H?GbtpOO;DONtb0Ex&~Nvogds5rYWN{C_dK%`%w`>j>J*H7NyQ&7W@AYw2_-L_oGPZ2`tgr?~}CC01$T zx-_!ai@s4-CAUem>=ILz_P+W3*#8hI6l`bKmlD$)@MW6!&+XES(N@|hNq`oK(l(z; zX?Z@Hdfo~$#j0v~iglp|& zzAXf_B#leU)&-JR_Ee_F3M5YU3SHKQ~h1u zAOY`@7-JL;j9PrKG0Hmw(XYFiP15#@Sn5qW*?z%;X*Q)qvE#DCJ1}yR?e_7IZafOK zAe7ic#r!d3n*JF>+w#$r69~$52(;B_Ner_Ij+|l4`0~AHrn#LK3OF5SST_oTJ?ju+ zf$%YRP*VHPhK!$?RV%gV^%bc|9MAc&Cc&D#;qq-<+3)58gtc$nGiM3D(AHfrC{L^i zyXDP{;rR3&*;dBd&Mm0o>d7YYqRLsB#=aJk`rhm9V|XVaf}zrvOc{qsfS)*_HpW5I zq3C@!2o)pE?ZbLHv!qGCe{)tROE&d&8X7r>@72^&1v^QmEp#V3l-YIFJmqpjM@e%OAl%VTE^I_X{o#kX~VROZf4tRW6Hat({eusal zvy%kYP%|E0RrTld8Xd-C_a2n$^FPUv+E}BickWYV7Yjlt^a zxxnE@=WP@fR9W*X5Q!%$H{^Ojw5}JGyw>diMgY$yO2?&W4!m#GD^#w&A~?5iun3yX ze+*O?Gz?-|#2d}{BF$*d#rl5i1!~W)=$eNF1)?0NGM7=z)dr2q;h-Z1&w_^XPemUl z=HV7jUUCd^H01ExW=M824w|io;TLJViPVEb&cgpd;oc{l{&iJ<ln(-8+ zAHsWph#O7SZ3m!hd z)kUGUP(CVijv~pITTu*au}Cr@j!}A6IK_*y5^~RLipCU`bEWIHpBB1e_>wEVO)Ulb zStd2vYVQN@=zLT6`1N&DZ(H=WoeTbXi)!~_|7#}C4q{1$Lw{q#nifbT9v9kfw55vFmO#R{`!S_T%z!GrhsJEhE_`bRgI44c%zOp_6mAzm8{8)Dfe=!B6J(V+@$h_UUaM$|fS8 ziHcO+V>pZ(O(vq?k1>PMz(aZJ-UcnmR#_sIHf4*bjP`(?{XifKH>BIXjzi*8rhYRF z%3|uCBIn{HGR9dYBEwww@P1CjFo!~x_p65cCP*HZlw|dHj7R3WnN{z03L>xS2S%9q zY!=f!$o1NJoIT721e9NNY?#X$^LmxovWSJGH4u;Njt;B;3_%3|CJ;(`oV43}po27t zc9zB*lYWJht9D1V^FTbEJr`fSLr^Z_3!YsWj~R=8 zWPY}DupwJ)?uQ5i!X%?thrCRg=y0h0{Vxj1;(hy;5Z>@l@ii4vtkZwv@iUp0IN+Zt z3@U9H>hAW^*JN61s?~mU0@F`oV9#nYb@c`BJt3Oe}cOr{cO!~oO8&E|HEg3}NZs8t_*`3v|B<}WR;O{?RbCjflUh|Uokg7Vm zGCUA&X_^C{Gv#eC!|u_7n(dk{T~YE`TUpq)@t4gJ1O6Raci%z}NiUo}-uymYhLEgS zjEFY=_xBp}Mm20j1Bxq6SP^7syNaa{V(U3%)6{eXkvW&&@!kO!CQTJD4!$tTK4+vC z8xZqPbR2N{e+LMyh2rjjO(zQbHFvk*pSW?_oZA_@|PP9?IUi!$l<<4KU z;K6GFnpiG`$t-KNL}t-9Dfz?(K8x?2c?Gl~;4`D@MUO54*v6DM74oB~#PDtB)?tQZ zM11T4EY#euo(z4nPVo0Ux162;l@DqXUOF$a_bL;wtZ(gt$Gh;+)yY z;{aXG#b@9*G~7!E@MYRDNW)?`i3}JSX&=jGEd7zvAcy>#B?!5-EydK>b;n-yt$T-M z?++mLF`70pxMll0_V7V;^@XO<0?2v{Ac}q7! zSz9tv!T|!2NH9>qf#Mc+xLY_9*`@8Uc6d8`G~V;J{q@IuCu^4YL#yxQVIVCAZ7=hqJPd7ISxPM?^W^`a6L`u2}E^rgzk5s&51%!(ukicNTPeXzW zAf|wxiPHEy>c9&EBY)onc>fs8{t?o#7xj1_z}~?g;(H3=kN_f{$rUUEaJLB%g}@-6 zn5u?kcyf$_3kWwmz|5at3ycDL3+T@_ z1~vsP-xkvGTe<*@F{~4V8vu|V2s@q<;rjjX5QGhw3qY?Cc=}%^QPJrM(Z+5h_6hWKYxE>qA8jt~e0{{@;BzZl*RsqeQas3)z*ce-U zJgTpuiE(^%{di=5ZZQUs>5vNGC=KrKc5Y!A&;;DY#0g~Mdx7{1-%zhs6U&+mvY`bu zupqYFZR-KSf?NFPw14OKH~%5CY^Jm!OCCoRZhU8qR&Q8r2H>I z6QBS<4-O8_m(CYp9uL5owZ-I*IG{5N_g{d5#M_}JgMUh4Gn=LxEVcfn~M)&3ORkDH!FJ>~Fqoaxcw2`~mX2S!&x z@AN0=0}u~~e(NI4`6qb>;I*{@#PbN~{bCV%KhB~5=a|8VJK*)9U-++(H-Kw|Us0PK z;Pu^K%zFpGb>*KJ5Ixt?9|0gh*F_&9{U3DTdUx|P{RDnaL)H(lBhY%lpFe%U%pYI} z;5FKxKM#QGlwW^Zq~L$I6V|_g`cw@+@ZKBXuYSo7jRDv3|7qQ>|7j68|7l2^zrelQ zu+RASCqUW%ohR*ok$>0RWpZ$E^mZ%x-_A{4{|5c|q6PA)=TTg2v5crt3{+9)os|iH zM?+rTAkg8(<}}YiBUejVBA!|!^NR0pINfa5tKGMb)z)vQZu!&~oN`*&2*X+iBF&}J z2@ba7$V8lyVA19nbrQOK#7W6(X-8Jobct>2Ge8d4_LMKW8V8+U zOxN~k;}R~c;MeC5#E1stBR)Pl77l*`vX^%cCT*?*D3Xi?;^PY{bT^w3eq{Y6soO2c&Dolyj;FP3-s9$j4V^AJ~6q{@^kNIXQcHP6}70M z$cdhyYOG#Urr!kxP_@Zo3(J&D|J)PoFv;SvbY zBFq|L?Nt5J>k!A)nAt+5eT(L$V!BJ^XgFE4q^jqaydHfl`Db{PFBa1|Kr!L`=aHA$X|x&4u8IXFJ4y3>y!DT^Q8=ItjEeY@-{! zg-rs_J82cljz*|0IuT@uoy2>{P-s=G{cH6J4xs$c*S3Si)2{^o;Nrut3lE_xZ&6Ee zR^`@T99Gx&udMhdSH%}xbXu%rVmVte9DXxIbCYjBke%XtbV}_o8AOYP!}vH@!8-vk!jC}6$H3FX1yOE?4iPB+b ze|E8n?AlMn zJrg*sr*YYL5y3NOZq-KSL9Oczoj!Za{P>OXcFU3XU(KbJ24tEVD5Mdei0+$-RfPmt zxw2I1-W1gBNkOpQx=FvoF|2oIstwvhTnoEKWg0p7r0pO8e!!a*w(%Bs;^}$;Rjo?t z;DN&vbzTZ>U)Z7}4)zSVw9jA9Bo2;+pEDP{7)Llrh;<_sl@tY zG|VJ^RaN{BC$#R}EKf|AY|_zV-p|r;w6v=R?bsmP=Q7=@|3DYa0wQX9jK(`GZ5dg* z|1f%L)XheWGp#;NTShv#L<`AfLJk^uh%M}cQpEz%>{Mu!o?2rP3MQ)}e1KG7mp|&2 zWXf22NM$eDuWW5SH~fhL;2As?*YRvs7BHy}>CmssjzIIP*Jzd``IVgvEkEAfL5W9} zz3XwyJ1*%A4S@9zM40lf@LQeXIgov!E1~o^@@_2s7Eu<&*ZN5g|9Ds$JJ15)H8{Es zAWMaw4|dRqxXG<;5E?Ug6z=_udNXYNO%y_H(omQ>M;b99jtZjhO!?%oG$^+ILFL|p zju+7GG9Dl7DMo8A)Qj$o?n}}kyhQzWGCHjfTP#hu-tEWYr+V55hz{8IsT`td)2J!+ z+Mj7aAst=&q5tM) zH!pyr$ym50Ux8X$!?rb~70pGV!iF4mb`8r|i&kW!|1nr1qxY*qQOp&^b_ompEx(&F ztTe;`B?kRMou2ieJYV~+xhp43n-6nK&RfBCY5M>CWcPj;5+}Z9$9!ngUFA%NpV8zi zgZq=sdWhi^FDCh`4$Qs`!z&Q4%l_KGsB zDYXI-V#=0!you)F)1GOUUb@yikBmj(muaQ)cN&<5W$nC})+2o#&I*rxyUa3442{USKm>*O+1~1=Po&8TPL)e>8#E5{o2zD@%!T1d z8+ysas~N{JQPd1lNd_=pr*N_{*Wu4oA-7 zX0w~ChiZ7B{~`%^YMI3B5!Mk@{+Ck&A;sFTDja8Uy1e+s329 z4DK~`Ql-PY)rD!8-SzhU$|={z|5|i&pF8j(%#j*|87oU|c6fOE)SoG9ZX34LeVG^% zfMuuDCO3dx=rZ2R7TpZ^6c2r1b7{ap`b#!s^M)~&BL!*2r)v==ILhxg?YJwE?^;_< zM64D=BdUvtpPEj?Q2dVxQEVF2eHRqrZ}BL%`2LH)n8A+r54oH2CKia4QIVg4(uZ!; z#07`z=U-`48^Bn`nN*g|4*UDew?k^+mzqhw`h`-TtYpwfjpT-HtTo&ecRh~{kAuC@ zd{otjv>lpq$hk5`JKrUApBAvbyo%gz{^q%hB;WLBHPk6tbx7HgSEC%qX9p;f%+nwc zJ6H+S5v4!J+ah7nkm~l6WcmjvXE7wZE)Himq(Nlf2;c0UXi+-F3;>2iJ-lnnw2r-S zo_d_PHtr{82ud)P(pXa0QMc%Ze*ySu@RF0Y-OxGe%|WkSC{&`@hgNgV z^YisM!`9~w=dhDJvKlJ$fpEcQq+PbkK?+49LRrJx4_MS=7b%&CfgiC5oKN$}?0F*$ z;HEWSi|?l`5raaXcU864HNt$j&{V;@=SzEnW}lC%usF-Srz-nuaQ4;eSMh+_ zELHH*)Nez>@;xzn!C4~XpP=vG8GVrOsw)0ktvf**Xz170z&d#G6%kRN0|b#?PT4Vc znd~S?p146?+G`yR%+ub#dtXb2?EY$BOr>Pu0v zTy@wKq+QSx{j_#xs=rEcsQW}smL)VHi*QT`UPs8Q9WK0rAB*qa@n+^JuRPwf@aN^> z;BD=M3J zykAlfB`;6>PO;Dogg8^DVbQ_&Ah>Wh@%=fTFXH>okwZ%M8|cj=r+z(X)07c-7<|ts zImR!`v{8g}nNFkF+hyM8&qO!}9J(mcbga_^2VL@v5#Ep1Ene$tRv<)=s{HKKBql=m zQueCWLN1A@$ytkMKm; z0@*GX;w;dMu&>C6mWag`)lXIbgneK!9;-KBLEd;HIh98(#Q^C_ee)2^&uqOumr~coFB;<86HeLY*NE2+h@Zv zVyVFuwa%7J6?ZZ`c>m(9`s8}agtg$6^F>vST3qNznj}Up)>kvI+_7M*+6iD8CXQuw z%1ARHGqU(B?lxM;qBEt(cV+S?I+e=R-~~7p9#w^K)d&q}UQpGQ+_^36cA~jG%_?de z<2&VulwFyQjoDDT)zpbC+X)wyZ}H-pzUkVfr6v5YFl}UD*VXOvddcaE}aw z1Nt(7=5F~1I7CNkA-6V)T#_k{N^1KnlMG57Qv7W@KzWVgUV62ml<2mHJZ&_q%~4EQ zj720uoky3$O{2WXu&UkBsS)hr`dI;`#=K_iAt3Aqkz7fSEXmg0#3%s#NLs(i`rE>NU3XoL68lH{qSW6_5Uyai&5LU%X`Zdc>&WvQwU-M5VG79Bxx z)%qu4FT1!|P^H@W?AvP}VZV(FCM}N0Yi856%BTu2^c+ePM0W95$M1al+OQ-slL^c& zEP9;DSOT8(1%{tyzRAy(!*;Qd32;K8!&(cp7Vpkc@!rK%QH;>Yb2~6M^j+ABq%h;2 zTevU)U)q$s+$s}L=&mVM+Ir%~{T1{plY4MDE{-nBuhX;d2kH!$Jknnn9UIQ3h!7 znD2pOg&QIK%A1YkFGs}p{5@s4CsdvFA=uG1dh|$*ME(6l*NP<_X)a!n+Iwn+5JR>g z$R8D-o57Z(#p9=HK)rU(Rqw_f_)F)$HQ1WCIJkeK>QC*4)-mi)BIRPV`8`VN>sm%> z@&WID*ehn=Fd8CbMvUrY^F~{FrThm2Sf2V_ZhTzkZ2%ROl-*n0!ztDr34kj!!^Wra zhX!NA5-q!94*1*dVRIMw3(vego^rM;qm4yh3zYe|pi~*`lE|ur{BSRo33+h#A6wzK zARe~!)Ju`^uX72NJyGyoQ?x_%Cz~l;qI*}55WmpJHyQN%r>u#x?JJ>V#M!Ia9M?dJ zS{Y9P+w1U_V$9sk9zE<9qH5g5SM=;YT1g-0#LMwGF7-=vCNJ?U@N$+hVZYperayC- z(_Nm}bQglI1UMs7bTxV#x9r)uw~U5qW%K7wW8)XIL*#&c9!B9TIyBaTD7c9=|HBV< zgn(NMm&W|Aky8Fv34h^en0lwKW}^{i>;2JQvS(awo4H(qHQ#3H*Woe|E`9QP4{%ev zhg2;@o4tx#+ft7+Z6TWw)|LmpLM6QV4QF@Bnw5u208V_bAmFAuN@i2^93-s)I?A;hU)Nc35&A za|^*DX&Gq=-83S+PE2qtZ$$(%(#-?Xgt18Me)Y~#%QIg;9P&CPuQ8~;RwA^N7pM$J z#uYS8?IY*m)hyBZ%d0*8k?r{%yjR(8-LYxb@Z`dxW_y*|r(Hu(3!28q6hL&>Gb~@G zDP*-b5&?ONmT5^H&)7@rk(97Z@8nfFHmrSomon$k6g0kUv}4^aN^j)|V-lM$2`w)h_K=bNXmDFfqXq* z$E#3sx&{NI7nES)RPGd@oE!B=*tagg6{N+ka41@5IN46JItXwozVa6cS>M()M24H9 zUP=m9R#~DC&YVS~(&a4k!G$D_^+@E@PV0>tZYQOZ%eXp)b!Y_B%w$@@q=-!7jeCT| zV(`uJEXyq*dyPf&pby7V&iy#xuHYB{>nsv^xfNT-C7h{CV3Un zf?}!TLk9uOP>OD==QyuP?ZE7DJ!hEax1qx{$|RwawWgi|y>zlU>}?EM&TAcLMSUDh zOxXKKG{jl~^^u4v!;5T?%AKY(fKbK5+u__sy~XnMPh2QyyvPSCJnYw3TN_pPQ$~3Y zrzC(l>nTL%i)(t{&+gy6ej1D1@6Y3tL`@nIStRB9%pVn*N#BpoB$u8aNwkNPDH$>T zVLY_L1m;J6un?(2NiY^)UT$-h%*52pv0IIAmv1du8xXKZtj__GW7P;fs>V);ukD|a zo;c$@_cv2FY|(X9+GZ7*#{AEs4j9D))yw@VQMRKY5irTg4O9)vq*rN_#R3+R3!}9) zC$;9Vmm{vQ9o(@uluGM)rT1{)9-EQ+Xy1^VO01Os2Wmb2)xiS=f zdOGKHM{?Mqa>Av;+Sxmj<>u&d$D1>uJ&?CpQkxSc2}`T?60E+H?u+^uuTdP+cJb`w z$MeiOk_S>YjIfRG%NXKFO7;fwC8JH&IvP;|k47F?@WOSMXl(ush;mti+D{;Mt=gz5 z`dM`Ry7I5xN7=%f=a%Z6*R_f2su&vKg3(N&(IE= z+sU7h(%8v93vTU+J zDA9&$SFIqblNab?WL9s+a}hnOg?{8aT3R<%A`osx>2r&l7-WHF7{6XHc%!kbmS-Rh zy3)GqyfLj2dWpb&abW{Kr4euSL8b0N-HQVneIJ|6JwO~0A;faXH zV)h7b3tEw}h?m#!+Ax{~;lk?JxnvyUckMpDk)#Y?ToWC!Po;?roykz-d8ZT2wn;<& z5-Op(BAH2DR$#?5ARqg=rnIGUJldEG$->9yL({gfDhppfVp)-HaHyuL&lH2epsx%* zbujYd`9E*o);``N#Izz=h(cM>sB{fTee>;IsVh8HQS4;ALT<~$Wq_KzRdNApEH)d6 z2Cp!|xd!p+gyr#3Ja571g6w^Hk(8LZCLM2|* zYoz>k89N5DycIyN*D<Us2O*Q&CxE$}mqdzs2CJ z!a&;DWFDPzHXOz{)71}!=^qc#HiJ-ysF|FL=#7ghW9oO9!ap)W>k(IPjzA);5xygH{4otFHCHPxXGX*cRhrRHNZAc1q+&Qy11xL^0Owmg;hffsU%GQ3dN&Mtq z7fiVtr;>YjhF$#h5+@5|!+2g65TdzLwQa%Pf3aQ#B9_>XyaarAQLJ)co!zW#4El_b zuE%kI$iiLKuTEc*OE(xnMHnu3gb`;%!>(WI6$Fouwi>hwEgC+eLdt5LM=V0O?L2Rl zc@)P_Sl2jnrx70~CpVaWzKY#EDOti1Zi7rAi1TVwS!kr+$JWxAQKa%>U0RY%J7#@7 z@hVt1h^m-W9%*DjARkLL`M$q>_qYBAU`CIe?43rrhrTh>t#uy_fT!vqHzV-RE$=W& zJjk~iOjcTwK5E@+c{7RwpJ@~Q6eltNMZ|zt(EHqJ4@SEd>{7xz@opZCppnT?QK<5H z&)$%sXicz4z{L?wJY(KARQy+#Qg{wtap{K#ugf$=MZ*PG1{_r@Mn ze~<$rFLf=NqMqBFifYA7HsMPQ=SiX~K>J2122JRtRPYr_bBdzd%#=S<2YCodv6DSqPuaAO+v{1H(?5e7a9<7xyX zY*LpvGqhmUl+H2aHaP< zS)PSZ2zV7OcSqNLX5+Nq%rjc*Ytd<4fn6Pj=C%BQ-UE(_c>_bqj-w7b)<6B&6A^`583b#)Y(UPYetFVgoJvWG~_k`M@s7-c|wS~5$ zgu-TL5{vm5SDy-)etl%MBHWDK~06M$^@Wu9&QwP6U%tB_fqr zPnUY8Q=#g+l^X>4v3jRi`xz}ib8`h-_3!o#9qsmuFwi(XFN33)X$;&o;4SECAo z$1S@Feigz?mwCw-&@gBTqb<1Z`fA<;=NW{j41ob8(1a+u>h_(ai7))IwxA-mv6wVo zXUM58HP-Xt-mLjO9-^!^Lsc-}O^@$Uzi|~_+n9Qf29*>DGj553Ungr$$T-a$jqfH9iEy=}eY`xY7KFgL=aFnvh8K-0;s4*7v zxl$j&q*H)fB2P8zZz{pS7vcf8eyAG@lqIRHG236A+JWstLI<-nVJocX>+^3@|CX6C zX!?nJW$i{$aaWf5$ewjXg~sza@x;+PZp+TGFvb&<7SWFF*|%`HhsIF(RHu4xG@SM7 z*IB@~`h1|{U|NPj;U%KZNLyzv8}u!>BnB#5#ZjxSv!w}f=YREcIOD@JPZhW7QAZWS zB9r2}k4i$wdy{(OSRipBo*d$d3AklRnMKpzb~ zS}+H&fljfyt7IV+-rHme>WN(XFXWG=wt}5SsBnyV$0>v%JV-^&+XlV&NTKR$I3v_4 z*_ajuki`Q2eK|w(@Jls@?d769tMO~R-8~KMamb+S9T6s7KS@}( zxQ-nM+9sw-;AhQex!To?%56jNkOY5U99LR#V^fYzEtT$_)#qi_Dw8UFe`DJFpUG60 zrtjMA=#+y4mt~wyo)r-bK@cC|AR>~p*9#6|cScb-LlAQ1O4CZo@;>vJWc$0dUaJR4 zXm+A{14BR8U*5JA>2i+%qs^2mMtY&Pu>}Z!uOHNrSr|NPqPJEvsh(! zCk`hV3sm_>_5BO#AF(m-KP63Ws7}c#2vSj@SRNC7-232p$qbq-P*hk??NImq zuPh3*OqC;NhNLs{OH3)drk3F&zD#4jGRt{gsNoU*LGb(175mS$&Z9y086Y=n)@}YY zvpsSNC#dLcgL~My&c8h~=fC{T;JDVhqZ8;3+b&fxI$sepZgiVAn^lmn^p1 z&VsiW#4% zB89UR7?dGmPh!1h5v9psak=qRS{Vz;Q4Y#|OE3Gn9Ce&@ib+~qvNGRLlYfY_kxI!= zd_&2|P|tpt61pnZ^leE|)zpnJ{lA&=iM3m!I+wP+sz#N=D+7kX6S#~@fpuY)lvcmv zcHUrT9}BF6x}3h6G8B=Fhq+ReYlwl`)t(Wl#dav`H9cCES+}=}m`ADhKDZ3@_${p|z397Q9A! z8K_p>(AOB1utyPQArJg_^1Po{d;;jp9tD?vwL&dX~1w`X^D<4u1~deeAYg& z5nQiIX*nv_zuVDga2xY6AivCNjQO+r9)f`Eze)Mq>9tQGkmt{#L>!y!n#txwA3?xd z_|H7R5n{8ThDB=u7&7&waN>53?XA9<$0He88tP1WH?|+%&Lh7VV)$%LCxt#L6Raos z^M_^2CBx41F&XQ*Ix>CS)pr2XQy9tt+&4wW7z$78i??MT%w~S`+g^S*Bz;{)-T=^Y zR;VbR;*Q>QE6|3+DzEmwHr(wc;P#=n1mU;Cw3bYktBAVLFMVNPc7%gjTkp)l$Sem+ zOnvVF>C>uzVV7}2yL$S%%s{^mxFE~#O~g8!XhDwlhqwY`6Pzi~W%^w-Y-htgs@bcx zteFYf*GnaA(r`tjA#+wyj96Uh&ZRnI1_ly1V#>Y;E)_^pSde6wFXa+Xfyv~LR>^Lr zjWZ^5utm8eMvsVG!~@eMCq$nJM(a;VH~xv4M~n^;dsY|QC*^V@`O%+bMSKoU5iJhu zw^j(ki~84)yRzMYSYmK}BjKhaFAzw82nrJ&D>D^WbQ4H?KP>2PY{k(~$DZXy3Ael) zS&3!;@stptyw3WVo=%m*_EM{XN9ut2Z)GQsDBjO zeqH4j4YF-=z?&$o&wM0=vyf}z`*CH;2>F4?m06(0;qzHsYi{NF6_Xc!3;2uqL1YJr z4n3%kCQ08o!nK7PM*%5h&;j(XnVHN$4fOk^s!s`gC_RJ(sjB7OdTsBQYU5gXE6I?I zYw70Gv!@v87NZFm+*?myDL#_k7V*|-KAfF$mg+YFMMymCe-eGbkTj|4bV6v$aAv-< z_3*z-K-7~hT{c=LY!0(*-RGr+hNDp$)gx!^knZ1z}gX5?G#FpNAlbHXdeQaFcJY247>aT!bfB zn%&vFs7xUF^pLgsxIn{p0tD28U8s)mF#8*xFdiuwm__bqob*h;AdxdP%{Oq264n=N zWgeyO17uB5Ib$!rWl)nAhrCL6?VX-NkV<2=T@VW%WF#`8fPBBLh;I zO1GS;bnmltVovWKHraaKK3r|hT@0Gpe{9`hRI~@OYuld3+$3Bc9_x(NTvq_rV?kIN zsT+9m-Xn)fHoNRVE{+f)2C^iNQQ3GwT{s#!YeJ2CXK;GpEXP{Kpe1?FxRubP3iJu_ z*YqNUt8l&qi1G+cr=fEtuAS8M7cz>;cx$zjBNcVrgfj)O0vvL30#U$)p2Ixp$1xq! zCq=WiPbar_aAyd>BE7lAZY*Slg{57>KtA{uVLL~Qv2lz)REI=@_|{+6rj=!EI@vCx z|BX;_bhWZ`hn=ip)>$4%0(3eUhLfH5+g$~A*Bv4SYFyk*ndwYYcNKVIt`Q&(9oOr`F} zW$@Gy*8(!Nw7~WE7_;dg*JXH7AM5CEN$4g{(0k8=5RD#O;h@4eYLJl|!-3m`@??n5 z655}&!o^`dcam(BUMj+;C~4R_HLYGZ^v5P`%lMh`RNiauv4iNNCj5n;93Qq{+&xM| zyUc>Te2KxfniS~4Qn{}$fMNz6LS=bM=J8&tKB=o0akLMfwew(>yLCRn#6nGr2=PtH zU6MpmzPMTu>IRak8p%2L-b6&mAUYWREyIhr>A88ARsjo>MU8U4EUGTEZ~W#M^kR7AE7+&9IzRF+Ex1v@7|6b0WIBHpS5Ulbp6rIR=jHg(W^zvP+A) zDV>|7U!j3FB0rk{Hbi7ZDKoknq1d*?t)2HV^LC!`81-fcbVfZw@)O3=vQftYihM4B zUTH!g8Kvko@2YL78wh+6pft~2EPpts)*3E6fm5MGDTea}E-04&nk!NTG3*=F1Cql` zkn}oenK_Q+{B)PHZvun$Q(=6Z#i~6V(uRfAGVX{f#6$}f=g4Aj$Q?sHgqN2P-+z)I z2wtW9c=Nu3&Av+IKe@P$d$y-;GW~S)oVlO>x_-7 zVo2|F;!9tuhwmdNJh@zG>rHrqke!9JC7FN@qz81NfG>}(<1BPi+@hqL8g&?+zdgU1 z0r{$oqt}yAp4C*r5`*cN@}j;ovz`f?6aD4QdvB?W&rNE%>Vf)>S55j0QK{#Xys9PU zn;cW-<@V$J8p}{O9gh;L7l)xjL0GakPYlJb-H0X{kILGTYwL37GC^irKj#iS^NaJ_ zh+pJ5Eq5e1s~d9IKl_|fk;BU>F!t$I@Ry@PTlcUXEA-@OcXHqRQ@ovw>+^BWth16# z_yyg<9uC|~e_-3Thj(-`)c85H2|wSJGZe&PgJ%x4l8kY8Yiu);&qXF=G~?WyRoMG=snU6fJ9p zTAD-4msq0T=AGFuPjp&?9kso zlB}^7u}3wz6x*qxVlvJiyT*Rn2a%}^l8rov0eJMm=q}1J!H<2_>fGuqto~xeTC2>6 zB3)W$?F~50?d8)UH_0c-8I8?{%RVEA(EM=7U5l9Y0^yo1%dQ%B!6B+?EAi{MC2r@# zeHuJNQAtqy?Ba;JtUkPOzHsrAU&r)@BHvD!1W66N^M zD&FM-tP-C{MIY={H7B~&hW$dTJN0cnboz_X!M`Km+CrcfBtxc&GFJ^()!4Y)vC<3i znt}>iF|yE=a9UxpZ*=hC^uZ8z5@9i`yO9sfXj$>&6h||)iH-z%O8FnMRY>i_Ch z>_bwhu2{|mh)B}nNuv#D0uK|=TzP8gcGrj)b~=nghq5RJhkQ7iULz*k1i5i!kbDmh zWK~_W;h8GX5O1 z3&;{}tQgh?9) zh@siVP%D>NK3%yJsHMWAdxyHHLv0?V<%0b>m*aktt>JS7E#XyRwL^U6jv?Ch@Y+Vr zr}t%r$L{OZA+7#&!pgsY8zRoQzZmUKf*ix}TY3wfHhuJ*vgO23%j*fSp-%7*s`vYF?#kU7G$^$&oIMkIz4aV}Rp_HAaaYADHd2&qKci*t3pUkj&L zmeeM%U8l@>h=keZ0ahjSP6}Q>VqPK#jxk<_K)5K^rFN+)v2V6+DORk>e&Js^LTLYk z+F&;*8ihPE*ACBWkA8vwWl;vqKITewp))7d+Z zU$5l;1K~)0W8>qpk7-=|b698kw#NFv@htX?z?!{g%#3wF6q{HXz&TsLcIby4Y*L0d_&WlH~f%> z>WHMu0APeW+B!xypbhq(PWDXiTRi9-M-oh(l@z)Nkx8IJka~U5;A~t0IFbMU~s0S z0rGhO&P!Yfgi~~Ix);2@V|V2;7)7-Y(m{W7=SQ*{eIp{9%tx{w6LjP z`A+>Yu{)#Hl)Bkox`gurh zq^|+7|0-R5CjV&FP42?vzj^Uc0RCc2&AjBa@&gRxXZo4yo6vjy4!-?nT=}(s{T{yE zQvB93|MsFraA;|Kmz2H5_5a50^lfZSeA`92?Qn8+-}+Zwf0C_z=_$GF`Jt(ynOomj zfBQ8j%7Wc?5||rVKF<*SRqN`ZNNVV`5_b z#NGI`N7L-u!H>F0{*(aq+|K-(qBJu!u>5ozOIKL~0E2@AyJ3X7kulUa{1buiw$5Xm zy`V<`J~^|t$llWWzut5KlC{9m_r@j1pz_nbX+7Z&LFS`>gV!?woDKgFumW^X@r4IL z^4C6rGXS5Z{1Tu6bWh+vrS2kGUGhQt#ij4O>D}>=-pK{Oq6PdW1zfl8?7Zis z{ibx)B7A>xSHo2Oq8|HTko^YUl9l@Hd1;iw_0om<1u}l8cJU$Kl6)RM=~k}iP3(r5 zp4gg!HNB?|cTRo%JMt#4VQuHL;X@{w@8fmeutrpPwxs zacUv38qqCZL`HwpCxxJf`uYasmgc<1lZv$ZG*PJYkr>Ds$;2e|H*~OCf59Gp;Ubn| zIHr$rKkC%M3D;R%D$wvUX|+)|d*R8JdMb`GI$*rZsDH!vE6%-%3dl>B?nT$qH+641 zKS!~c<7Ea10%}+OR_AkQ+wxONbtDko74?;Bz1Sd6%GA6_nV9brbtd5i%XG#FQGjFq zz%O5r!%Zl=vpq*-JlC5zIkG79o;Sj9=5=YqIMO%$Rh?SN!0~E;tbb)-0K8WKGmGpI zg;P9rK>LY?Dtv2CXUZ_Y7D^;L3zy8I|)hs#`5puiZ$q9A`le zucpTR`9?J&2{f@Plp-b=P1K>cX>PI)VPU`mX|3@QEmW$wvi&9kv{*Ho8l+TfSeAd( zMCj$V<5|)%FFGMYrrZiI&I23%Eq0Lbq=``oriYoO^zUKFgBzD}fLaxf4-G!%6H09)JH|6>Y-r%K-`a(I;iv;ds=Jm?QKJNjmGNuNy zBF|ZwELkBgn-@f)Y^Y-ICgZHkP{b-$@!t2|He&1iI+u-oqrO1dD#t$WDtNQ&Dipp(+7e_p z58i*cpQ`kR7!omio(_Oeh>pF=i-ay9VRkH+=O0!@!{7~W^&-xw%}%l(UTB+t)vZd0 zqR#W}$#vIUm-?04l2!4>TK%fFZHxei?d)OOvh_TXA^i}_L^ig$$6FeoAUi6J-E8kx zE4E}xSuKl8Q+MJI53ge#FuskKO?PC2(bZ}dq~7#MdKiZR-rx2}{(=bF@}3xJ_(%zU zGa?Ko&h=>*PwV{m4#kjUOG1rk%-VB)aUcIZ~ z=T!IPi>72Ix-TeeMj(Qhrrw^BAVr4EF5R1E7ZWB0bYtVThBqh_+dtaFH}!^l4$RZx zZsM3L;;k93zQ^c<7bmq6JB-SXZbMj9rcWWOBZWa0oj!P${Sem#D=CPy7w^7T{_Css zT8iW(#9f=+<)PG`SL9veg0}Y;3c>?7^CJC92@&Uz7G*j&$Z_wW1>At3?Pd;B-qRF; zR_B!uxs3EV*+NIxhR#@Sov9X%g;uj!d$LtqYUVv-uB;WLH|Q0#!u)O%<*EX#{|XWo zussy5J?Me{cAYkY#$8TZ5uwFlJX&>c`@%164VNQACTIwHNo8*QMLC=JYr;?^dN)>2r{Q;?1_9Di|dg|ibO2r&}pVI zv*AZQ&%VW%xjaMiUr;1Yn2i@yE#lo9l#C;mw3_XYzc(Z>3A3RdnYS6ka}TCu3}+-G zfUNPF**z@g&R!at3nzTm;B0v#4(2zqNnM9@Ee=ihcsD$-QBXSKY9&_6H)GQ+(fw1J z{ZLJ6z&Dqw~M2<75vhtb$pZO(47Fc*HlA(*nxWt zBg`cnb@F^vMo)XSmKbnUx-)hA-dV%4lKl1ObW03IP%z_EX{@=lDe zZ&^G?=m`pLa>XGt!>Q7Zkp;SFyJhj>&R{ME1|H(r$L}{>h;`Q|bji~)$@9xcI-8|JQ|6{(a_Kaf z2(aY(L1+&7Dh9Pd)fpf2U=c{IPVq31t2=f>;XMz~4E#$DAl5|719)DA3n~Xx5_54}xN%8&+a6AjD!2iquhX^xdT}S-%<~Yv5 zYRc#?oYBC==&Q}V2J`LW{oeE65m%HOZbVNwx3i0S(f%&c3reLozRC>0Y{r0~qkTRR z*iCmJ5ZEaYLBePONqiAj<%hPQVa8&<1&03&H7kkU=5)Nx!6K!knpg=q z9;0&N-;>CUwApE_i(!M-D_Y4Klut3M1U7B0Sivqcmv|Y-b{|f4!ht?z+%4_-)8aGA z-tD)OI!hS1>FOBm7_SxzNxpB0>6bPFn)4VRpB2$oaK@BV$@!`zpZP~-Rcy+e5K~I( z+*8h6HVMA8be1_^HB7g}*ru(ANgbj=2uykRRNQv(j!P$84f{=YO+_vmt~dIXl|L;o zo-ME-WQ}>8P_{&dUetG+PF@e6!Y71Q(^E++gjzPmDYWp!TT9f~KrGfCU933$#$$WU zpY9>(_8f|w>J?*Mv@Yd#Uh0X8X~A>&5n*Bz8o_+&0hL7i(tQnu{teDqYG;_`C~o_d zIFnxv$Ok)gwHj)fE>#XwVeuxD;Nz&_nGR*I?iioSFJ`PTl?nn0 zK7HuD0^#4wf+TPUe5A)MzBZwHci1XHZpe}0uwI{ zWSfM{YtTX;ypqR7$TIQpB<62L@9){fWE)?Xkk97H_g?;JO|N;CY1i0z-5c**rwlAm zd0`3oIn3C}OpDx3H4_QmGOcZu)`hrxK-T)#hFfVJ@|}1jUkzz^UvN0F7YREk2ykE=<7TK(zlf>RB$~BS!gy2N4Jvt zAW7rW$}F#4i)2sV8muKhI$e;BY8!%uEPu`sgYVwSrqGU%jr^9#fE^L}$=2{LiB)cw zGy^P@+6}0gr^gg{R3NYmkQm!EnKF)u+C!Co|_|3Frq(J!*=CR=w}an_OExbHH-&rU~{E}BUZ6o#;TGp z({@<%7$|0}!$wAM6|h%ra3K>ZnMQ%(xofVifn_>rg8o-PY#?;0*Jl+oa2%~86io>8 z>`YJNQ6~JM6lUH{K^XRQLz(SYTSBbR2Wys%h>^X|qs+~mXGW56;6%mUU(xyXYYnoeyRe?%ihm$g#D3jA=MIs8R8>OV$4z>cR zVp`^9TG2(03)v2gPQCo-h!SHAhBpP1%g{H4h>t~B=uwnT#Jd^JOqpn`GSf!fiw$Z6 z59w;}!hbCZ>MYbH>>|jX7!Spl3S?mf3KF3(zeV^M`iPhU!#{p?(EB0Trox+gV_3~ZSaY` zg$>d+(skR~;I*@_J1UiCXm$u^NBW=dhHQCRt7h|98kFh3_L%m-AAmy%TRX~Ld-S(} z-NYPQzLW^MB>9zs6(PrIWOxJo<{^D%0uaP^##`_+%&Abs+-x@X8n49EmOG=7QUBR=T1T~Q`5ui)EMs62M)jy_pAp)?x<@E z_Qa1-`dclj63z`dwO;Y0jk9#5M&ASK2N1&&Ah|R9LdO8TMqeW5WHnu#nDxU#UpX=4 zXF=s1S$d`xDQXRVSWOA}r~3ML4qtMS!HYcIv$U9A6rx(+V#cYg2B;(JUwLt_M-~1B zGa)`!E&biHCC!QIaMA@+5Y!br;CcMqgKexfoHi^UiI8C=?#pJaTE=6Ca7>5g+wn7a zf-o@0Umf0m)ihzOsl&k@fLGv$v5CnyLq2Jes!f`8MX4~V1fF@}5lAjYh_!(nYgtC; zk)k-@KbNcRlvbAzyS3C?g~ut3Vm_RhNV>-pkUT2OgfRdISp~9ZGXsyG3SS)q+us#6 zD}X~tl|I2)SX*IDxP5av^CtO>*gzvfZ#x|Hw@sao$V`84!3kwhm5P-i{+j%?w1Y{} zMh#kukpG>#T9BYeetP0qyb4@tUv-KB;;}3f9?>R~><0yzjVb(W#4Yk4uE=g%Ac6;_ z8lFEuITk6=F`^pqp>Eep=QD&+_!BA=Ip3$fne+Ss-Cuu)!CII8_{>@D<UaRXGhLucx53X1fFGU%)3YO~B1EC1cYgiMVLf#t zGc7hvkT4HY_*p89#O#|S>Kd4QT#LOkHhqs(#AgF9_?nT&G}c$d&pPftz!_~)P>bCPaqK- z)>H;LHHaQ?3RuS^>_#BRl7$Pr#XhAQ=zwRal}XcjF~^sDPa>*V(gM{8N9nUOC(Z-~ z+su`4{O(2f(LUdpqAkRl2`)0J(ff#OQhw|C?l`L^-jE|2Kx*lq;KvHb7w_BV`eYh8 z^rDPX>^z*n=@_`O7A?wV<{GOkXaJ@p(P|dM^h9*W;TwI*VeENfILeCh1otp0J2;*; zpPpp4=~pO51ipAml%3sa4qka#6-7;C4k*&QM<0_6LfVd4CgF*lwCwi!&y+XThqGVC z9H|$g-7ER?G15Z{`xzl*Ud*!r<(zJd3ODrrD%!yypW&A+5LE`!d#$L- zHmQnYZM9E>m@7uSv<5%{TYJgWwtgn{eUB_SN*34b-YAvaNeN7@XMl?ccxcdHJA2$0 z!8i`aZX$MMKq!$iGWO1qCY4OOC*VW7FIJ)|g-(rB>-gA-4CdAO=!zl27HZRYs!*oMzFSp?&=hVTSXAX@aQK4>vv}%%&Kx*-> z%W#5BDkp#;6dl1NU(7ByzCdEs7ZhFznDkvbj}0rTTrD`3za(;eR%v*_I?~^;lO&lr zV-X6q7xQyWtM?l7_AG7kN2A&L(|UEz_W;#o6>KW~2qfrJ-}VdXc0bGON5PL9PckVc zSt+%{$daQ9m~0|oV+=kw^IK?_Ksi=-7p?-q!O!qBK4KiF>ulcQi5RroHLougz16-S zEIc*6B$-L%U+lrBAk1~CjCGnz0`NUrzbgA{+KL4V?X)d&qC(B})f0Imm)kEn^>g4U_ouZb# z1kTIb_vlgaVbpMlNB(#eRBIfxdDdr+n)3vjs#FM3VZ#$!^VyRet=}DWR}Wd^kt%BJ zm|YvuL`b5bT%=u_$Y4M$9H>9bRB9%&*P0XqrOm)z&T>HHa#eG1TSX2Apon&MCNcsB zmu>p`-TcG8$y)TzD{3L*)srYd$q40rxfGbsIuB}Y6QGNPToOLUZvDBo(j+cEW&LPx zQ&C$KjdTk1hfJE@@%~wRYG9y#>p`5DR+w9lKGYKQox_9cR1oICtUi=`9uMC{OluI^ zcD&2v#X6e_x<~)GvC6p8BF;u}(Pt5wk(-Lhq2o`C33s8@9iA>m_BCs!Z_U$}#>8OK zjiY1hMpFR8NxePpz#{|~oMQqv^Ro|Zu+tQvC2r+T9L3<=ZaJY1Ny^Z-eT6Zh+BHai zQEv2dBR$jTtB*|>AUE{;33P#AuDo{+-RZc{=ofmY|Zaxz5?nx+@nK^ zA-=wYwc^6MYlOn)VedocU4w0UVKk3~&PqZO0=Ja&fH3gw5`pr10!dB~1-EjSv>bY7 z2MN0wuRh|U4ER+48VET4Oj~p0)fYC%kL57gRQam8;}vBwvWUQEmg{SFx{>TOAO~jB z)4rfdy-n=9l%ul*J3vFtGFmsig^7{@oqf;qb#_P9EP$eu_l%59no97(>+3tFdZ6bS~ZF7|>W3Pbzlp@iNZ` zpm15{6H~S(UTr)Z@V@g|#qh;CoGYWOHI{AW(Nu#P>unT`SzX!r;2+T@3+_6G*mITw zT=HBKmxDu1m(i5CsrwxsabGW9&Lqb`x<%VOs6F2dlH8=8nc`>I9kuosn*ILI++e)d z*p-E^GiB|yh$^MqKT#BbxYME0e^3R8|MK?@xkL);b6$d0;zltv3k47yN(ne{DVT{I zlCb^eCh^D-iI20SUxc7MB12tEf8)F7)HIswUOC1if!-ArmWjNVtOb)!} zjdFkjaP8?Z9%+>2wA8t7&JI?8CO&!E`1f5dx;dwgE{9)9!p_f>vZvqL6ce|(2~8r5 zD79KOTDfpQ&t#9x@Q>%abMM`mR14uV7-b(af;!RpK}hdF9!Cwkr~jjX%;8C}*|;E& zbzpv|o4_&-_2787ysA?`t6BndfLvG5WL#Rd7f_PM0#~7QMiAY z+1b(FQ0DE{AC~0CUsH?!m_%lB)VNlhBLnFjoh339;_`a_%+sir0aZX$cpw0?c5c?f z+#>Z}m-k5qRf^adaY|3JFfdbX7x$#v*|(b%c`ws| zH0QwCj4LZ%c7x=ru>A4#zDSir$E$vCBkHpC^8J`~&5Ew3l{}5sX#`zE{b<1pfrMM8 z$SoOE!&E1InN6Wem;qwS;2nCUc4nT=h2;QdKn$i?f(~NA3pW$Ep3XUw%97NIbVeho zU$1nOhHnH&%BYJ8_KuPGNrR!)VPw0rTnZBpGC3>GGz|E>OGZFADseBM!&e#^Q*LD4 zjGni1U!^PUFfK_reFGaaGT%*+mDdFsb6ej5Et7<6F$j*G>cIanxhx4Dh`9kc18d|MxTnDCHx zq!^v0J%{Fd-{xd9p!<ultRPR)%TUno{V@x7t7X%}ezTQ4j-|Wr6pq8Rh;Wt@dv_|I5 z-exHkUYVt0$J2(E#tez!`wV8L?5M*N4&noND^;(zwCV(3fIJZ)BYindu%oeOkn}*v zWTq=zRo--r)~tD-E7QD7RYUcZVrJ}nWE|2oFLfg7z6Tg@nMcjtSU){&ydS~NaRxRm zRi>X`tM@@P_-8}+f?(zkT}Sr{NwPhL*w0I$^UqTQ+M!w!eQ{H_vQ+BfhXlxW4oJ9t zWbGY8=?z)IBe1qMM#<^9DiQ0tb#fe(*^|rhgLVft{I+!KbC=Nfd59=kHn53v3AUb= ze`Yix88diQ6sv4Pdl-I) zV$i<`pZ2=mZ}Y|KQDM*)mT9A_#HsKtFQC5NIQ$MoZukQxc(Bmpgdete(aZ7kIPFlS z#9zh;)F=1SEDp)cfyjFD)^nAA$#B>RFWkj(0i;}0V{}o-(-P-QX;X=|i7Z3!SW;Ks zf#oD%Gns`FD{+HI>6JP_+?b9IMogDiryRi=wDlmj1CKV!>Zx$J2IbCD;}Bv#Q&qzt zSxv_NJ|vaPwQ>`DCOV4Bb7YNQ)feoq!52BQ!`q2&U{bI3*vRzMjMv5E`QxNA-g~ap zci1Uv8>w6) z4mvX}U2`U>8EU)L_qtr(iy|y09!xXV%K$Y`PvwX=w?Jn^W2Q|r0gPP}D$DS-`_-R| z0H)2ooFg3hF-%}w*wTFe7KR6oUck*P`F=DZ$>&v0qwE$ws)& zZJnPpbBVq}iyDz2Aq=p%rhW^9Q_>2U5d(<@-;>&(x+ymI$og*=e1@W6($0U|t}CE` z;8K%XPbzYk99J)-m!6Lltr?1pBP&^u0DA72tMn}Rm?DP@03JS)obUeFho#9Fb|Rb1 zLU5}r3bY=jE34){uADx4eO~f2Bs1=^{ve4E{nj|D6q61-V}{{fPZx&?iMpj%o1^*E z!?2Eno`zap=(Fl1T$VO2?-q5XdDMwvMmIhdk^D^JTkB<)?t>0E6<@=Rq8A=4IGKyY zGr@}CJJxoHC#Blj;og7ZIX=JKWt7tauT7f3Qf*g>v!i@JgL-5EeA`X8)yd0#-#=P9 zv`HsFJxVREo+Tq?up6DxuQ)iNgnYo3%cI4qR!YW{1RK?MFGVA;pzsDdoQVdPTc+U~ zzi5f1bB*dqXU9J<1M>$y?J>qMMRg+3Kfqgmkv(Wcop_tgY0I(e9EjoM82Vu52WsY{ zKEQggS2@`&R*%QJ1XiJ$_OWQK+eo9fuMcUv#gN_aBks*w#>1@^kiwMBs}lK^(J=Bv z!e&h!{Z8{E>JBt6zE2LC(;d*Oriqd=-wXGpS_!Ye3klI8Gh*2|Z^e8nO)1{v_=uZC z5~6GjtYC^C_)b`erjrPD8Cl&;o*#i!u)NFCQcV$J+A6vLN`-%><8W93n0hhF9JbM< z)|Ydvd8grXIvx7*(9~d*39*)zD(#V=)vxTi|1CfiOUb00Z1jm#Y#U(0L_(y-UgdTv zvd9J?<7uqVlk}L9v=C4TIy=)jB;6QW9kCehha_~wa3pF=q;Ri|fT5!p1+=f6a=mzc z3NfBsdzasLdch)}_t;-GKMH_(-TkG;F|iCos^7`2FT-&bRd>IcW4a<3hDU2rBz^8)@NfvxGlHVlM(p%{QNdUEr##v$B3}= z?585`UB>w@`)tX_993h{bnVz>kN~Re2(1o6l9tV#4v*pIZo0SAK*6g_Y%Z8@X$%rd zt=eTPY6jJFd7KCTTKghIfb2_*HtF+i{u6&0`oV+^ z2QS8APBlOl$_wWC>47qYx-KpKn>|Nj^cZY3Wc7R9j|Aoyzg}Rv!B^zCqJZ?Q(>=?0 z5S7t(lPAUyL{l8Z_d*&5af=JzU@S#Ee00Ms|Gq5Q8*)wfU6pRH9sIaRR;Px)laK(! zKwQZt+Oa@h)ALade_V`p~&8V8Vew+@vpXSe9&3YyNDw* zro5b370@QWjUx#jp^l7n`GrY9b6F@^?_B7n1>4@aWqtW@N$q_Do|@+NYR8m zO%wT}@YA;H-D`|o@t)KLpjVJ`tM1OF(abXMtiuNJ710KLK|BboQHIFS#KPS}K;l8`>dXznvTSlAY!pWIKUfC6fixQOoGVM!hq~ z1dlZ0!*oJ=J&P(rys}i5_JCVrrcg}y$LNJ@l!2{U(LXZCk{1%_wp|C79{Is3-NYa4 zC{;46@-{eZQdw>Aok`!`cGFo&4g4U_191r-8wNSn~r?w}Cm}voG zZS%-zl)#SIwU($> z6*m7jXx*3=xX>|~yA&*M@!hxG*(fk>k+Tiw3)ljk4WhV@QSB4Ls^O9qV(OmWHTo)h zDf+D0);F{npP)Y>_sBppka50hxt_?%=E+3D4te~29I>k zXcKd{P~+!%>4=IIi*z$Yd5pX^b!+^DH%=k;k)u%LiEA2yaFemx4bOo_(J`ArY<`R$ z`Qn)^5eX#F!={rJ!L3#EXFmOYi^Dt%2Pdz^urc3!7?CP^@G7L~mWWJQlLH^TJj8(L zet=%U9&1ePbgLWLViWhuXnV@WJ=1&OkM>tO3}=LKbg~Q1++VX!mm}=kZfBp5=&!W0 z0eCCDBzH~{E-4*iKJT9U=3`g0Rh+*FaQ(h#mw_IBUiVZ)GK^T5ZWeW$YzhlTq1?+3 z=biLuQD|o(%15_RTa9!MFjVA%rS3Iw9Rs5<`+%IxPp~Z6nCv!yurhqL+#&}-j8C&j$5C{`&u;p`sYBwaA6U;twD5!mWjnFHjw4LTJkObJdc}@naN+kG3wAVZy+{oeXnO+AUu^s9UzSyHyy>$b<5AHMBr5C{%_)77&qzz?9PRjrSCU zRE(a*L(pua85y9m#LFq5pA*Rid291rN40O{oS~7 zy@R4%1dD3-ydtqt<24Ev^V?Q8N%~YNNHdf(2h)$`E`K^zGDY!)%Eg7&V*nB_Y8S{4X)|p(F#*qpX zWD01>V(b~6H(YQNC%XY@;`;1&kze|G=ekHdY7^v3El8N*cy!Enb#FEUHAOL+ma6X| zZ^EkOTyD6P?A)Vh-V=7N*8U*rlm-J?y2d_QyzT((qg?{cE7=FhW#6x?&g`%)ck$Gn zOI#nb0>m>-l@r5c??`p#Qk<8cr#+EA$xeW9u=SDt*V_~Q(U=lS8Bd!N$x#&-^(mdm z{2kq>P4HS$rzZOAFbHt9AsF0K&ed+BX;vWXMZxXObM$21B+%Hk=1*I6-2Wu(1Gu?A zGK!1Z%)r68a3G?t2eVsJ5IfyHWTF(e5JH9&RXygWDqmre6kA&Zqj+5$YX4=Qt$K!X z)ef;*7;vo1pf}FGw(tK`ivM&h7*y{W|J)hRz6t5w@gO|rs1g*{F0no&;a_HLLL#1P=EPwn{S5OeEgSerO6c3FX$&-LaWHVZ%2etTC4_~t zsopK19}!GxRfn$hS1$O4oX`#KLBkIG9w5$+4k8)HG)=aede;&3Li!Ji6%M@gBS=bPyjw-q%#el?X@7iL=XA#$DXH04_)?x@D|9OJS92 zL}aVeRmQ*Da zzecV#=X`=j`R18!o&zt8qk|TZF%H2*Q23iP0D@KP)tMuzfzcGwJCx&6>N{0ygx4Wf zo%g^}HMqyC%}l1FCFy`Caqa~pCi;n_6^4}M{+`q%38ReBQ#Em=+yBM(1+jJRt zEA=7@A;)Wy9+j0=ps(c=wiCL!=7Iw(=uTs|Q`Ht}&I&PFSU&15KwYtR#$R^bR z)(UfT4XtwEzL9O5DZeb5z++YC%eTy^DsIc=&nX`*;UA07W`n34mJj9~sEsG$BzLgK zoMZO+u1v{s!lLZ;!;>_=13RRBM-u;1`5HddythlSS)B5my+*{#GMKwtSmJXA7kXCcXKsp32WluuoyojhheH?ZrHZ~fhV37V_Wq>*^|*LDBN1$}SW(PMDW}az{i~{ERxrW+1AFjCfybzeAe!}|0aM2hdJb8bX`Xv592E5cLUZ8=E7+xzfU=iSwU@mgnSZ#$26xJvvWc` zj{`Npo*UN9h(vj5Gxqgdm!JZ=TNnxVpv4Sv*VQr+_~)NH>2O>iS?DX(rzTWtL(y~Y z;=QK|JiUTg+=E&a6RRV_wyT;f_+e9s(6+>_dgFzLzU^IDM~tN%;;F0` z;AeFpvF)_N2)T^EIa zN9zqfIMj38Qww9E6Rw&l=I0#<(n2b?%=^}pkfh=|N6R+-uXO##|No91e0;(uu%n zRzJLI$UM!SrqDK?!)lT7Es0-2P$PHLy4-LV-E3H@HTN7iV%(8sVER|c`{+{)4p^tZ zTIxv)3uqP;6-yvH5}{wLz%a&wmng)dx!)7nS5gx^HrRaa2sA1SXbRY}mzf zgx`D}emb^}lZmPLQ}93SePvKw&AM&~7Tnzl8hjWAhrr;$J-GYe?(QKF+(Uq1!GZ+~ z8gy`Xhv4pZCTE|0Ygc{Wt+Vf~`|H-J>Z&E(y;gTsKkIp)cXhwL)GFB#8Q!psI2IA@ zqgpUH+jh-_J$SgYjQsjWed+t0g_UIp<7pP#*^JPeGC+hb$)nYtvmp>j z?L+=d-C?;;Da)Xi+~~uxF75Z4HiMt0)EXDk-z2JHgW|m?6a&6>o&f}z)|iKUMa;Y7kPP%n$t;@Q#!+sVdK2}T>g*!i528&FikUL8(k`)x+VBb2 zVlQ{V=D;yjQIb@-$)UNg7k4q7gqtwLF@6)dsB4_|&rFD5rC;0CO2vI9#zc`LVOPs^ zncFSOhkg3k>~Yxr9k*1t4LX_QYEZwu5Sx3O_bS=U5;XaxZra8Nrv}52KW6Onuc^J6 z^SQ<+x1^LZtD{fk`R&*@s=}ic@H`gAdkK&)OdjpmVM}B9l+yI3trWeDctp?)n|DH) zmhPJ5!a?NAN5g>$M0s{<*|t4ZwUp*XFHae(ZjGCB-EsjlMTYEH7Wzjzs^A0k1ixb- z4yZ(F^-&Sw`p3nW`$#{W;}JIpTZAg|x`*`yY+lT;L3$@AMs(&HVrSp-2`Y!a#Wvq! z;#}c_aHq7BxZ==n;NQ%J`t01!mZ*AAARAx33tIcc``P)*MWN^+q2Cd27fnxcY9klk zQCk2MJD#l4qYTMk&1lC{J-uon{4mARXfsAew9-N46RIGg|3n_6TyjN7)N@c=bZcIn z{YFDsKc-;g($c_=1xY=1p>hq|(EnNR>+Xq5F$t*{wv1}gUGH$Yg2Cc;#EGuT`bNs1(JA7qothHZFL5l=V!Fu%MJ?{_6Q>X2qWmB1fZ!yQB(`xfU{mS{AyGoAUq_ z^a8w&Li4+no^2^_Hzhp47CmcG1Z3|Yh=w`_r}sa;@@i9+@31{7u+>RvCyk1>@U@*f z6PKH|`i7Q9?%BOdct@~?a2oY4a*MEpy~KTKklpIEtEcu5YrAgyD@(O%3Ovgm)f!13 zZ3-LL(NqJ@AOaWZ*dlhqb#8Bqdr54WSIyE9m?5-}ufFu#YU1r&v0rj}mR886PInDF zjrwr3h$^)+I$AzcTXMW0WNh@=&dpVaoso?2I=FN@F14m5nB9?){3ISXWJUVy79BTb zQbeRdzf0hb4e%VXn8uKBlYIM0N!FvHrxIr}uW3pw?-RHGk}zD+v?snl0&0eO3Iset zSZa1r!eDzByfsd@T5RBL1n`2>_B#GThM~?dsjxm%_zhXikpY`bnC6L`^vR{m@rH1O zW_)(L8O|vSeLpSyin4y*xraLnG*fDjSl?`J4};CO{E>VdFYJ2iGM%kROtl1XS|`RX?3$5H zB|g1kdWf~`^$CffSS=*i%`S~S_CR~v5o<`QAn@zP{^p>1ac;LDE_- zkDk6>cXSJ=nd%1P;rN8hqdY?!eui&^g+$|$5kLMw?ga2{-1hLf2EcyIt{n2cEntR8 z*tnOu%M>&k@-uxhU z76&+5MrcsrNCrt2{3QE;AuP6wpyOfwc6g0I*1N{~eKE5Xpg<7>Qiwkd9xRZhIUZO% zq2skp6C+HyfC{=tpw8b$e(TMw`CjL^R1)(FUS0p`gb2GbW2zCsnO+dcIO0X1p=bne#?rvPP=7^P|P`0)G93mNC&6#q-qP0 z7EwUA>UHe6Kz65nJr&uE+3({rHafK*c5Q7FsA#dqK3RUIEa`rw+cxB!mbFF0)VAvq zf`^~MsHg1M^=RyMMtpT1(gA+>xC%K!^%AUBB#S@fDS4k6gXWwfozEKWFmnii?MBWi z_kr%yzPzg{eL_m9;BM0y1s#j;u9^Y-{l?s<&^I_OJk{>YuL`8Djzlk!B~lq=Iyv{X zp+}@Po$qHKHUsp8{V%=f^FF_(U>vO=Mf{R%Hjun>FL=@kOjx%}H$vkBCbrDhFU({It(&E5jf zH>yMYWQ(=|33svs@NdrX_)r))hAO{g>NgQ4H6fhC`${g9nX)!fwyK$@i)^&$#X9TM zsz~Tg%Z4ghs0`2%Tqf6)q$-AOZqgN|dq6pV5NlJ=66$;1uT`KKpW+r7n`sVgQ#gGL zR=Q@DJ%1T3nM~tZ##R?ZAi^^H;mUk2 zw9+7ABv%SdEO$7QdK5)ut}FYSCEB3BEYYUs1#fzhy_u6DxTh{+GMVO9Jul=QK{U5RK9)0~)R+ znfTAx1&3{h9}R<3Ay}VJ&u_eXD4|OYsY4PPhr{xn(!&NrjjgVQ=>;ndMXN{bwu6IX zz(*|8H)$Z9>4n*`V_rD%dv3e~fMZ7bYnx3J9EbsTIRbe#;aJMmRIbBQl z^&hEH-8H2<#;@!>8Oa(BbL*NlNNy880+$-?GZ`5u`FHB$c{S!KjW@{Uk(uoTq8DZq zrZBu`G5225yw^y5msT59ff zt=(;0__HyQ0K{0DESl-9hgOfzvy>Q_{=26GUiW+?3`^Sa72nIDx3z2v4UlDps!iWt zDU#Kw@@kK~siVnW&PBq`&hL}j+>@la{Wtz!tU)y~?>K|a!V{ia5;ZcM8*#u!4cv*4v` z;gRD|nnk*X?b%%AX!Ml;IK4MUS$C%|H=rNYV$TC^UKjl+4`R$h##v`Y5SmSt52Sa> zQ{uzY8wt!tP8Wzfr{=aIaK%84V8tzES>-QxBj5R883*==hslm*354fhUxGNL9M#_b zsMkUL5er(VO_1NIpDMWE6<>9E$Oseg(OjZ;pzOv1FC@SSjtn?Xw2oi09>l@w@f;Vi z{HJ*|{l%F6;t%M4xZ}G=s!rok=jxq1QnI;Z1b2(Y=_4PaeeKl`T=H>q$qIe#@y#X0 zK9aTw`fr~XoGl2Itb>#?R<>nhM!d$)Tyk80pBGq)C<&Z-jaQE(D*EPJEbhp1_~z8Y zZp`n<7QwR4y~Z0y64`xoRFBS+P;-ma?}Q3#_Olxef8G~vKsw)f`&|vZo0%gT6K*)l z>%!CG-M*vEoyXH`gaxARea4KP^(&x=c^f{XchwVzHSuW|XpJH4ek_fc*8XlCEuqV#Ij zVl5xv!QP6)Z`We?*pFy&$sFRv-)!OQUg11-;qHlB>8E?N$aFLTsfX;Hc4Rgvcr~fp zJ3rceKgzeCeR&^w?{V#+nX~Vt?(F_!vZ&hL0(bHF((|k$7o$__S3_xgy=Vp1UcDFY zo{HQqnwMJPA&DXY;oO##EBB0I|Lb05LO0w?B)OPU_TGKGr&P-T`q7qqaw(5xP%lWk z^4G&q8+p$Yo|*{4dFoGRza`(udxyD)=B2`YMNH>cBzB-L&eClKZ6Q04b5XY=y)Eg> zqJoS-5f(Yk`ed>uzuh~(^R?i*B(iGuXob~`y@lp90nFb149_yXPD3lgOr!GT8G+E? zi+LhK<;apiOh*pXH>`d%;VE>z;^=Hh{W81D>te-h zOS|p>bPzG=0+&&=d9mO)*$si2?CP2J47rUA!b?=zfh6D^x4^rX8F9v=V9VMk+8I=r zQfyctLOF_HLu&z$nX;=b=;a4~w`fXe33p%qZ(59sbmgT$162-h&Nk?%sq#*|;d^LR zAoR^I?;!ty+%JrbACVMpoeVK<-3s!wq?6!y%tpr@cKPMTSCxv1jva3cXJndK_$pPP z!&VlS;ue;)7M6t2;cn{Ndu3nIee$2Hz=vaL8)K^kpf(+65ZXOI}HMtn3 z%U-#-pdTHbRR~bY3ks2`WqM}`3s=wlESt74x}JMuST}TH)L&LVpKHtg{U@XK`B-gE zu;1)s^Q~|RX6tI=VdET@g5cWfPu{L&=bxDt^*#1BP_|q1JGF^AC3zv|VMw0U{x`w) zF6J}?*Q(uOyO~Y|BmyIFAwXG2(3 zE#H^mUt*+aF?d@r*02ulrvtxc9|h+{=;(P=H%TG(`>Lxy&Rq~43h5bEF`McfEnWu}<~W$LwIcin1dX z%7+Grbw!6~B&+uuZy0`t+h|A3B5p&dk6Z^)Kctf;CUg(gQ_+^9*K4D3W0V5_gf@#8 zr=yM9uy7->2pY=QRYFvh5e7So3%te<9;1KBml(;1 z!>1zVpGWhipUAr>>t-~5Qyp29#y?I3W!KfCgm1Uo>&===e!<8GR6qMk=#G@62=AM# zMwO_M52_-((ciy(mez-{#nE{|G>k3I{);UtVQgXh-?7CXBDwY&4}-CVUk(7q7AUzz z@^?b!|H2l6-hP**E-MSjW5V@+*kY!3`;L;T`Sl;R=<996h&32kO{qa^x5NbOr0&8aOR%>bny zc<0f}{CP+TwH|V+%4)=lfSDtBR^{DSe23oj$7;aI-$~B|Dy20QmBk zm112qXkl&`o>8{Ky*?Z1JF66%tCF4$v@f4u`Vr)O%uyZbPk0TNkJVO*@44{VP_Cs1 zy-FPYC-|Tw2+w2$n~x?Z0qzgcz+{Ot?WzR-9U_KG(9h47&;%?}^>DXUmQBl1={&`N z)Qo&ZJ|#9LUL93?SDD5!w1E$COuPbL7p){4$17!#k##{ zfXh#%y+LbsDR%iA%y9h;W_bQjF@xRuPbE)97xd;IO1}Qhluc!PnmwJ&7drAg*n9=> z$@jw`Dt-e1xvwR?$jHmUty8@@luO~h*^f=9*sy3TZ3`Su{Ktd57mN;^Yds)MJLjD`7}<|C^hq>T>mp*KE`6xmNZ zOa0$(8%QhDu1AIeQMO_&1NGm*4J?p0TM@f>$DbCmD&OE2)SnN3saK22kIstS;)=*c z{J~6&IRXkh7hL9mvdJ!PsiTt&3K6m_ogTTZ{0}}Eli64`tL`vo6b#{uJ@4oZ9xm;( zD3x2w8N(kgb-@744~3gJ-Jj0d16iUmy3wLtBEbSdU~-jMKXyh_wv!}r6D3?6$&(Pb zy%`p5OaJUnfoEh<nQhnD6+kilvjIi z=*VX!`G?aFJd8PxBRZa<*1L}d$=8Vno}#;>_p;Ky-A>^+pVbp$$a54AexHf)uVy<;=TX!ZFE2qV6YFBk3>QY#C;bRXD;$79f z$GwkccCX6G+}e0nPtOov{7UBOrtC@%H8a;zdYTQ#tm5>dGx`>jWV_bAFBeUz0=o*(g9@<<+WSz^3)+?2 zmCJN7R@_Q+PfH9hEmsVaPdy3lfpOV%N^pbN5qCnE+VBPldM^~kkumu&i1+mbO)G*k z#7z`Fcp~C9q7dJDrP0Ha_bB(FaN7hp*aitmqC3F}G{y#Tm=Ti!Bl%8<0#%BDePY=F zWMNvpg3gThku2?l@iF9+BQBdv-H5-5NO|Z!zbB4O?ZdjmaE@+I2n_K*U=eH6lj%zy z)pB0x@#%#}QY5_bbQlb{iH^7rB1xuhOQLI2m-jD0ye-5%dsn!bI?%^a2umU1wWQq{o{163Ujm7Ai- zUa;>Z{jC+>trfzp72U0s$=NSfd;c}6@BsXWwW^QygZWJttt%`)Y9004zgT6p9@bSH zQlnAnMNS}vSEd5)&?*%|d;ey<|ErEyc6KmxGljW%nH;MomDu1M_S1W2OFGq7{XLAc?j(6r> z9uCfCE=;gz{AWRH2YU&a3z?cpLIA)C0CIx3_yF8MUM_AOSP2COv;Tdjy0fvPqq!N( z2W@QUVvfq8tS+g|F6CxtXJTw`|EJOFR@N@mu=J0{vr=oCJG;PMN6pR71?1x42Y`6E z*#PXIfA$Ji0oGo5Yj<<%KP_RVwskaiwQ?~xrgs0YiXe6%J16rWKexHPnS+T9D$l=s z9MoZbq~=gEu~Bn{pmHcu1Nr`V$(>zXskuRbe+D+C1_1x*6#4Ic=!fqYoXL1`{dTlg z$4c2SkUWeAlXdi24QX#_2b^$|DWxXUOvIgjuZ_B&UHXs`CxFLm>G?C~Bh(Y9k*t7< zx%R*paTfeF@+gF9@xf79C}nA;0A6{7uUSS`(^hyn>5G7pG>scBsO(DOCw^QM*3Fx0 zg4hMa}PqjHE!)Dl3|uf?Z*M zsAukJ(bW52H#C9`Mo&qn`6@0Q{x@(-!v0siwPp`)T&zA1pEH141?gN$&cgmW!=+xr zOqPy{c6`j0Qomp{lD)GDZg&$ixZrH*;R}{FDc|1m6@5Nq@lE#nfp)@;70!5mdSen( z5cvr-%bHe2+yBBzZ|c#Siz!_WY(S)-HjU>A6cM>y6gq^3s_2}U9NmzvipIf{jy5SM zd{IGg82@^dVG@$PzFB`1d8=M@BTEez)>cs_)@C=$zbz_c^6>3pu_{d1a8rGIzX0`_ zQxoUVBkxkMe~)y9e(OGJbYDW|mXo&NPB-$mRIeckj?HV@%~smrV+96+i!3!9JN_YW(;(vF+EVz_CJ>@V;mEh5?(h?@P zQ$sM8G#Z%VBZ z%ACnR&6Zs_{wg7=UY<>{EEXi3jA-Y@&=qcBC3{)Y9Qo(00UpP%pE~Exg<>9 z#mm(jF!+gJdgt>OjMtUS#OT?-ap&F%?*1kUh1@UH^VLsbo=Lv*EL))yKm;rvUW5a9 zOAJVx4EB|=lk1j$PYN!_l(UE=zoRH;ftI>{QV#ke9ahZ2Uoer0E_12QZW3&Qrv7mL z*!J+Wk^M|lW6%fX{Ad@8|3zpzWN>3SxHjlv?`63%c{fHy5@iV-N+-!T)&$)M`dkDd zLe)s!MC*NnwMg9an65lY)0Y%mFX?&xash(sIyRhVh|3PTDLalpN6&>gwe*m3tgh=}-%#p%lwiV#p#2z4l2N>W)R2+;mc`q3=?GHOx% zD7ZSK2Bl4Jn!eyosx_&G2&xuITU2NgnvF;~LTk@spptw$& zq8CxzwJtpXBa51GlPaZX!a9(@u~@@0L^gv*c|WXWibJET*1C|%8hsfvj2MjB8nI=k{PC-TMiKaAa2-k5A?Gmr@$ASDneko}Eh^55 zD~l_e?rOu&c7~~*1>+GBjAK`YeAYS_Xs-`?d-gd^ghjf`R>(VM!zcaD9nnq1A^Oy+ zikBn~woLYFEQwc?#svKFc@eX78kJ&3QUQ5i`XNwst>__^$hZC7Q_jbmw3QQ-O3xw7 zmNhC5-1>YRpv_$ClmFnPWgF$SAw|dJj-@5-^Oth*cGym;M88*3;tIvTY0G^?dsmoL zmU4vZXIpldQ7SPrDH7WfnyxiAYOKGWp?YrX|JZxcl*P)L3w2;0^ahbC-bCo)-Y`CS zg}w5lqE);Tg>^GHa)J$bu$QH$7}4;c%dX|&e5++O8#01*i(_BIabtV)6YKc7dnG7q z-2$~MreCALIeVQWYMhdE}zlfUte#mwsQ<2_E15>MrA)!@2A%&Src`rI?-M^jGr z72Xm}X`VDIb$v;1%Pr~H%n!1VuFU-=Rdl~+=r3x6`DU9u2DNJ8IR+ZC65|d zdCg9LECyc(U|epqOfrtEk*BPF2#zbxC}#r(P?2FN4J#V{i~=>WflBcW#a=`99WBX* z2+2O|&8K-ld~xARe}`ftj=0%c>nPcl^>1ERUkxP|aTr_~AI_aa24&OT`B6&RdW)7? z*4x&n{QQH%)W2yzh*U(I3uM>Vk7x-)j*?Yj;d%|p)#R2kR6N`UilrKl`-?r^(J94C z#Vz2Uf$ko@vm>>oD(D?SgxPM&Z#TPIh|kZ?jr0~JhQr-Xs~?=*DN}3S%Z z4iot*!nTpJS#v%QKdh)i-zK$^>GRBRd#~Y1j+8bej(u)=N$wNCN9J=vN?8*poz6~~ z&T)E!A$0WQIbGk$1GJ~WP?;6WPq8{cB7J`0uE`t012pc^vWTg4{TaltNHwHGYA9*i zEkL@_;3*g51_TAXrLHWT1Fc3PBMj?o>xR_e^qPbd+F0! z5+p7?`F{6t)E{Q-()T8*1|P>XI~O6#$XS{@xh!NG1PEum)M0Sf{w*{>;ceLJ8~y`` zLL^GL6q~^#)1XRLW!k))=P_%W@8Dz45|hWq6NORM#&2uMB=m~J7IZ7hR7IlEW#HVs z?xq%Oz3@xPkMV>$K#;|7D3i+_@#bKvHml&8#V(=k8SU6}>h0f{$p7lM|A*D5t!i$8 z${}lSX6{L?%Sp}4sgKH`X6gWN5ReqAHs;zAR z)qPN+{{7H=dt+&FY(clnk$CoI(ul-NR9=E4I%U8K`uW9u74kwAyzp!oI4yi}V7^)q zu}1lObor0WATRAe`m~y}B2WEL0Qp-)&Ci%+RY?1zff!{MIL!)WqLDW5ck+wtFVD!P zstrcIG)>QN+DueT=GPy@G+ZESiAL=ocPnr^`K15wQAA%cJ$ei5 h&f$RQZ)A;&tFg1ICrp8$@^kZZ@}bhxODajB{s*@(e**vj literal 0 HcmV?d00001 diff --git a/.setup/latex/pdf/betaSandwich-zzz-tests-internal.pdf b/.setup/latex/pdf/betaSandwich-zzz-tests-internal.pdf new file mode 100644 index 0000000000000000000000000000000000000000..75d072e4be0d4dbe80cc57b37220202ad4884992 GIT binary patch literal 107877 zcmb5VL$oN1)}^^^+qP}nwr$(CdA9AdZQHhO+pb%cnboNK#;Es4E6|IW-@+U-NEJlH zXc_5Pp-AVJhS#7t2p91fBEKn!f1pse( z@gqP=>DUDM<3;Dlwo#2O(xd<>+TeRS`Q9_@K8~0U6sV5(KJ1h26;AF5#1e^tin9R8 zKtwcvDnUm?Wh60r*N+cMnA}s*I9Y|EKl=z!vQ7ZOnfRkQFVS2PWrG;PXy}JUGQr-` z(qHz3^G%)4vLIBq(i>N7gusMKDVy`zSSjGZPkra=;+lJWJVqN|x?VWch}_#0OLo5t z#(}||X9oBT?H-UK;ECeAj)$N$Lp042!oj>kC;>ceZ~OqE1+9TwNx7x2N1&Ye2TN^q z<)Nk_?RawO^Fpx;00;%;K>(9Q5L%M(_kh(4k2qfhsEkC(13EP@^0h{tr8l+?ws_q( zFPe_J7$|lo-G*bCMJXg`4+FJSdh#s!RFERQFRRs+<0AvRQ4QicHYJw4n{&5^6i7-9 z08u8HjeNDfIAXZ^Pe!xZ7RXP+HG?({m^GNw_8x{MhnM3+B7{;LUsl)S*OaVWXx3Ap zFdpYegP2pJ70+)RVN2$O47Krf7frSe`tgEBYftVfbF0_)k8JBUr$bW3--d=@KZD_! zz6pO=H)S*%iezrq1rFsinOEv~&7QpFdccW1)zPpJPF%iBdUN{aQ{{( zxo{KfRN`NGq8AG9Gv9?HJISKXuN%8mhR+H|dSI560Cj{M@?bU1(tfNJWH^ zwY*)HnWocTVD4FbiO{D&C{sI=|E;2b&i-!&GBNyHiYzSuy%ew0z~cw{+z9tf(YU9E((uz1cJ~PgK#)Ly9w-fQ1pX{(UFeRA#*GFt z#^@Xf5E&ZqqB^RrCQRDoR2ke(RN(u$r_MkkT@3B{A$&s z%8_k?`E2G>F4ir24a1CfyRXZ~zKp1dxtfMNIn%XzSr_qDpC_8c1E&HZN;Ge5@~BAF zYC&L8BWFG$WAW3mlr^1kvPJ9`h38?5gcgqSz9%}vhmQOT;t+aCb=Pg5pI7jzJ-%?_ zfbw%kL2dJ29W80F9){<9k<=pzcHj_W#tR(cMpV4IznZ;Rf!!TN`;GOKKb7NK2bQ z^u2#A3C|TQW#rpslnDF0Tg1 zC3VCy75W`Z61B`%S5(9ELcreJ_!I1c9%IFXuL`eWX+Gw$u){*wui3qpR~E?Z1#kwy zzz30<=rMQjb@XrPurfNWAkEc71vD*j3geOqfTN6JmU2nO0cK zPa@_6WTa)dt_jJ=FmYFr4-a(icWj}VtP7er`-HPh8xVL!;@ZQCGD%(<6UVq-{H)_N zjjiMAd*spBFo133G#Lu<>T}tvv1D+Jhu%aRT87dQ=s($eqZt{o4P~_7*_E{Mc$-@x zU2m8Bf5+>|tHw-x<07jYCcyBP1vFF=9f6sIqRu6*ussx$dyIzdVVPnGj8Pi9h?o(Y z&oYV{Vy&r|m=YbXAX>;YVMU~3duo+L7KJjRPeHd-^e`@_!AxuVH<~hiG*aeqQ>x3y zV*a2WWeH<4@@o10rhXdw8t!n;)woJ7308rYAtBrSRl)^QrCQPbbX|D|4&wIb`VSEO zr^e2~`d>qIt-fiuD1hMms$LaBMGC)jWBU>WqJ#|r8Y$6)M&Bol#VxCliLzO!)SDa0 z-a|rR83P2Rpt-@z&CQ)_oTC|wnF?y z<}ek6C|6bT2YMhiKc5qG8%(-0DN3pc5}+tbI*H5#$HyXdqUUL*Xs@Xj*3m=70x34~ zaEVE-DRqfUxG>%4g2#LP8>xG6N@%76xV(xG;!Njw(33~z@LU+lTRL;ASn`i7x^wT0 zS#&4K$$t9a=T8P$bRnpUb^)|A@|X?@1>RC?QLA5$u=nLhur@WNkX z(M~m{vZNI$FH(IXUL2tXKOzk$2 z&^PE<_(mB1d;A`N_kKC_jL!h2raf3zM1Y-_@Oif%Cr?X1bz0vLM1g)t!T7u*9|(o&6e_%UPN6^O?`sjO9s35#MwC(5 zK)#x4#YZ(fv}6W<_hW zXY_OJwmacHo6&xTIdBX3_m3JU7Z(o~e>=|8Ob@`|@O^6o``=Ifl~%_wy$fixIDhu3 z?AD3hS?bD%F7=fkN6rqK$;S=MxS*(_3lj&`+$CC7Pp#C!{XHYB`A&+@Z$W#7-1sop z$zuZ-HSJse>uEV3{>!34T-51YA?M8j(!w%kZFcbOa{>y4rs~h&YR(Nc7?u{skySVEF2pg>a2Rs% zP#0#A=(P7C9KWqyd$B|@{9y!T+i=(slT5dWfsuHZ1e`m9amaCz@0E+qp(WCGIW{ndDdYGqnNQXWU_kIoKI$1v(g%do{RvO}wfGllqQVdxd zj*J_$dOdZPMl)5Ac3Jz3oP@teAhjIiH=R;ho80aP=Ta+@YN=%*i3D++4-%hX;Ko)S zGYCL4BvuyJ2MED!B=Yly!3^|dP{4=GR`n(j%_5BS01`Z?-7NBn#PW?33HDTM`;<~6 z%ErmSJLI`hnn7jGw0{NTsQU%X_=sljRHS`!paR>Wdcz%vws*&7&D=ZU~9+N5q12J8AxqpfPWl;f&l7Ni@NN`a5itE>_;p?CwAP zbuFZY+HI+~%dc)>n^&7Oo_~=;@l5xJFZD08xk{Mid!;0?=&xv5*}sIp6!H9Pw9~Hd zuI&%dsYP7;AHZY#Pv9~C55SYPM`lC_yM0GhLsX(lyp9<)_D&Ee3~X@_D1jy4OCZZ) zD=#)ht|;uqBhOmP@)LQ_S4s66yNPkP>BX$Y--O1*R8we2D|5E<tCwdYJeTKr z-ceB{4}Qvw!xEm$rf92wj{9U15kKw2ew{yK?3vC{w_fk!EO?QjrqeQhPU?yv@<|qD zcNYa+)c&PtVdnMY<2!)2_Ol(I6@GYF?MF`IZJ&eV1M_Xn#HsznCdW~J23`+Uw75Ur zV|!b5Bb;3*1J3Ua;)@375UUf#fzT8KiSVZ5c7Ak1fgf+Tz8!mlFoa1Ty)Xh02zREJ zk&%S9?$(;#-7bGGx0SCA8(dcPchO1{k_p7o#A*Kuj%_XMtPL;|t$heP*Aq5wwV*h; zOsz%^h65+#s6ITrc{57^31g-d_Y{gDKQ;JEg};kI5pZr21^{{`M!4HNw^r#Zfee|%F#UpNEj zm<4iVw~dq$aN-c03`xDHGGYBNRHQBuA%PK5ed4krle`f=XoSQRjA81K(Sj7hpYkXf zS+YcpFJF}pa}qL16q4?d%(0jh37Q7D$nN5mK0f86eToMO&SF(H=1+WQ3HjV1u%c@U z!)1-+a-n^NG!J8QWVawu_VL_e_ss7B04 zN?WGTCY6>SCEcPrCoO}DY&3@J$YI+C@)qgDwGR#t8`D_UMBI@l%}F;{ByU_zyg0^W zG`u74!7JdYncSDucsMQz*FDu>3TR+usoV;UmTUOx4gH)TcFunz$MPRmS`LQ)!AhI1 z`;WVV5_bDZT}4897~hNm4Eg90s4GdwO--+|X-8*s-S@~hu1deVe^?)t~G+o^gAANGk#Ais{S zkph$|qh4&D+dkzvN<~Zz+H4FZiNcA|!beMb;_u+*HH+Iz6XFbes+J4bfT0;+XiJKw zxkwp(4@+LxmRYOZbF2{yRYgOAVi54D+!Oen>Gs8AOD%d%ryT5O1l zQ}d_6!5yh2FueIL9Z`(TE1-r35~Jc=sVD+M6agt1PugyiLn?oC(1RDk!imo3vXq~V zrEbnF!qDvtnU%<95|#@hJ0161z8Koiw``Q!p|+bPk5$Q3F_FnqX&;3GzQdBd5&(S$uS6C5%cHk5{rP-4e!Taf`;J+($@ohkH*M2AI#C8OLdRJt%!bKX~<$ujV=c+ zs|FC8N#q2UVmPP_36*)iEgjr>(WR9e*E%AE46x<%EEv#u(uhj{X-2z678+PPfTBwj zn=t@zafoH`D0OA~)+4t`K_ea0m_}@~hoKJJ(>>hicE-XZJ|_PGu4#M~;=BZ_u23{Z zGBnkMS-swB*Pbg@zeH15^FIK``tKgc&cO2D_c(Q1`Ar6dpB;TeMnY6eM!w$R+$Ko{ zFdL+ZR2%&kUx-NIU@841f~M~ePDdbF3|->>CdqOuCwD&^e)rQYQV?c31kHA{G}>j| zQE}j)D}aXAX>$WwR;_Nev6^~xCr*ILAOZm?Lr@gJG7SlV`RDv5=Mlz7QluaQI2cnf z(qQ@Sa+`}CKZZ5l6ut#Fs#FSz1h6Uyf(i_^4ROJk9ytB(&3h2k!NqRJJHw-#*r3N* zbMqOoy1gDNlkt$XcRZgaJr4j4=y|<!~S9PeaZy&FmkR`bLuzCT7pv8EX+1cF82MiVW2D#;wxfA<0qVdA$)!vdI%o zz0h(l*3)TzICK~VX4hZy)9{1Ohl>#TnlWwSYHL{EuqwoI8uy`-=auB1Z zldzkk=ieIfVDp@;~%=*b;04FM!+(tb} z@DY%**i<;wpmP?-iosa7l+vYuR#(hQkKj?ha>vF)e`VIvFXR-Ci3LFeIe~i;^9UHz zQeM29KPKbDJbuK5`LZUx!NYyC{r;@JpM09VCe*CBTeZGM3gH!Lyt}5V^Gd&b8r(rg z{?Jwb2Oc>8%>xJ1f6v3Qx~x1lBSQD7y2f9sP~j<`HDm0GR47`})F_n*FH3I;Ns9cG zcv4jV-bPJtWT=n;i0UO_Hs;Iv?~%(_9~wE6{+jk_=UZR!7&eS={hn~yq^U1w ztoPGNa8W%M1;qeC;{3!hwo-!+;m4BCgJ-ST1mls=KiOn{qh7MT!8I0IPLhhNh;y`2wu>U>y!rYlovaw~>}a4@ z*ZMYbWWm1MzUrgk;`*-4*}nXkxJT7bf8Q&Gce=K7oBxJB-^R_>8w{W-A4Vqctap%` z`&-XEjAgsGykQ;-ly3T~Iwj~FVP13W2yyFMjG~2-%GY#7+v*?Zu)Pm-B8;_mIrH5q ziDaw-n@1LahAA$<8srKAp3sC9ibc&p-OC^ZCG%J`$Pl_K!78TilOuzulhaC{<9StT zo&MO`y_p}6TystuJMZ|eq^PUm%3!0ZfV(nJOZE{T_lZk{wkzs*Lj}K09XNFe)1qf+ zRIxy3bH7B;4y#cFafuo+Xq}SSLpe1gr=Z$+_-QZmi(m_OvuZphdmW)Wnn4HIcx(mZ8|3ayK0385Ik1jwf?6s`Mv5BVgx_+U*z~z*7avrQwM{sWOmzlI~beG zj%NL`&(G!ddv0+vYGN7)idN~{f5x0g4HLjqgbKe|l59VZuO7IVq8Axs(JyrEe<}-<3yx(R|VCe0h9Zk*iJH%%_+Ww4o zTanc8&s+D39<0=FwCYGd*2A8SCdw;WcKO+ZjbFT=1L%$EQc#Q2(K6ASj5g9sG2etc z0}bxM!DBg@B-~{^iG%J30P{RwV^*!59&Co*H%ZQ?#{s}ap=jGY>lerqS&5)%#?jbL zq}{&1>F9>hpvShtOi#s4;cgK_Gcs))0O52?+pz!>G|q;q84w&Qr)=fA3JH_4OjS?M zU%=X;RK;P9?awJ0YqP0fdkL4#L8`N_n;=zE`c0kVK{e{>w)P_Mr!p-L0DwBpF{aF$pLIS~7obB#m^TwG1CzU<<@?_QYPHl7_N{(%iKU^>iBm7m7e4 zrT`36u)kbIf^0R|M8`p}T}?zPABZ!O*opCN14>Hy5pFa%*tjIpwU$YA1bv8zH9!PY zE_T_3hjcgGekUGi{OIoS_T9>jJD!JCbI6eeUcGTR7QZd8x`t`QUf;*O9m>Ackmp$i zWi;C3-R;TwYdiy!K#AH^bC^S`#^;tzhpxyH_g0Z3FDV(iYz0{{U@<58>gCF7e09xZJ9Ly>+|#|!u>4IWnKX5@agj4BFG9#P&UL8%3xwZ zO-|$P=?O&!&A*VNE2gUnZG4{B+?3N!peFXupffrP4k!%Z0w490z7Kb27hIZq5kSdI zIk=AleF3zqSR>Rle%;I`<)Sg&Vo-?%?1v;7tEpOL%t929x)(~D7#uU6L#ajGnb`wi zP1{P+F$>nE7}nlcy)$HHVM7K|K_XMah%!>3R6ijwP&*zm28Nll2~0_I=5ZfF1`xmw z0K_DY(#jNPS&Zg6rOWaZ(V#kq9-pd#YFLNNtiv75=*CII$r8SjLVxT=tTA?t?$2E% zjc%NtRG1a9B1j;tfQ{3L7=n#FLM>0AKVXnMXyFB<%`xN(e1u!>TPwkm8N!#pr;uZS z5f4=^<+8y}9T@p7$FvY7U52ja2wM6l{E=XD*D`LP5O~Gs80wIVMY?1 zLZHY5_~4#ZYLwMdas|SSlr=$vepvab2tBpt##grRlG`{GUV1*_NYW!gE|4Lv_)(3d zcgW`9*bIyL!KBg4Pxq>YB{q;&9wWs>mMSZxZv|M0jM2JcJi{_3e@R3V)o)#8Mcoy6 z(er^9ga9ldw;jv}TAL!nr%Z`jC1D@Qqzk0|fO&~Hi^~KHr9E%*oha_mVz5f&6X zG!|_5FUF6O4Adg!BAdHgR;!P!0niL~L!EhPtl{+?0e8{-m8gJmPIEQ5OKVv*Nr-5_ z=3ftgn%A8_+dHp+WkFtc@FGreX8Q7h!xqbNKFIi)WT*s{MnT+|*w9C*q*VtES;$M2 z$gp?dt6Cuk4Hb~Zh)*&ok7K?A)M6a?Js;}6y5HV}ihXIGfEhCK8{s_jwQD3Ev()v1 z+~47dwIg>|M&BdtIxo}P{m zw>hR7<(z&WTLkN8EkcK_8ofL?r#(fW)+n1aus6`Qtt`TytW(erMw8z^;B@yhBKDyJ z_e8SEG+;4d`?AH<4_hUl;L}%4aQ}lo|HH=2!pQJn>vLLdTn?BKrh8Uhqfp}7P>DM- z=O_pSm4G8(X~2>N{7+EAL?F?dACR#0q>`yhi!_;I?k>+}J(9`@)7}6_x1JW;p+&EN z1a?BtJ06up!0u}>XR%Hybftcxdp9_roup>2P z`~LM%VJ|tHkkc~IJrodSJjg-pKocT;!G)d8v((B~HPzqCzYDJ0o?Y#|oOv#jzmDtDfaEhwDd%TVS6JKSFktVD(v1%WZZqQnKR+ zTUn;Vd2ub`_XcxQijkt&JhOjxu_ zQ?=|8wPvJfEnT|Iuu}#FxA2EW!eX|OQ0om}_}VnZF$8bNswW1qm&eZ?*4B_v3(aAI zoT)CG1Scz1Se^J363MI+yQfq+(VN_Mx5~a=eW^6VCADzK-qC%jCM&)ZtzBMf&TcJx z9n!2|q>{rIN}+Z2gb5$1h|_%7(d73B+`q9!2q{DJL)dwJ>ia0(Xf{}6Y7TEJgfFdWR8kvwnsrS%7^nv5J*dgKdCp> zlbyJ%)$00C)dyiwzxRj;Itt&-&s*$fo_uH+niio_ARv+juK{4o@!<#ScCny`IYuT3 z)=N$`cG32lDkFNg&brz9T(v?lq-7V{s0boOPDTQwu^(cxphyy<)0(o|3kqsDRd+1p=RBTx+?vNi^eW+Hx^^u6Zt(aQ%PKOQ%5f7ZG) zf?}xZO;R+(Qs4NuE^RBOD{8Qd5yVQ^Op4iJq^i@_XjUKfnQ5qns;aD#t4RKGap>eyO zA&NDVM#=-L=eKcL&fdD^d}VQ;byQ@iduU%f?5w98`e5@ zkCNrEl$!u9Rs>9Q19TdWxKNFd1GC*ieAOP(<6!vTq~5zHflr@=u71zbOM2B}M+Ju} zs2qbF5J?WUTXhKc`f!Q`-!XUT za3Q6$l|9;NgbflDtSqjA-rmz}=n>t6{=svSdl#>Ra|k(syQ=cuJgR1$XaH>%H5L_d zh?rcAA?+p-1>Zh4{pHa8uhT}`i^u&F{b=3iLJBobjExtN-{h<{gkTVi4Q!|E><}H* z3vI{j;DCPbrz*jwVFTcfUyAO1nn%%t) zcU+f)EtWN!@;+hP7~dVoTAzU`nLt)Abq+KV{bVy&NO?VEbf5I{s)O7Ae!(37fm3$2 z|9)a?R~=u9$E;b_+%&0`E1375t}L`gG7ibzDPQOAxSArl`5hXS_;iFSi9O` zS@{0sB~U;o7T)U`hzCYK7i2;u9NuetY434j?7D zpaBwq+{n^g|Bs{YZS*^j5#v0|>N5o@nGS>RAL9`vtBkghD=wS}`IY;odSHz-lU6Lf zW%HRNnf9?zrWbbnJYi!ypXM%lc+;ber7YJTkm_1tKR@U0{t>Imjcc?)casdsHlJWv zW>0j&{K*tg(AIJGq5ATNsr_!Sbpg_~O4st+BY%-D%D8G(7G$c#Lvz`1kz*IGrUw03 zz7e8-1BKNA(ib~nbrdQ4(-;*&P&zej#EYb+v%bj?)C>R|;t#IEObG!aC^U!yev7sG zjf<`o_@X4~U8?4}E@Zw@Km%NTB!BuyQ$1U9?ZCFU6H^7mVOQ^GSBW9TLJUQJ+_*t6 z$vMtJ9@=e(8?c;kV*vtCtyasHt}`PR?cXF7S4N{0hRg-T5*|bv!y#)4jH-P%lZTcdG@`vcvV|k z9*OE;pQ%>p4S=G^i1>{5bH=9c&{ntA&0QLjADFPlor=?apLSaujx)@ln^$ip%mHMv zdtF$yIMg3Ir`4#h^0)|60v2gNCL5)VO$l7p!QEwhG>`6|f0OjjnEn3^H!~72vN5py zpQtkv0S6oV|9kb1NArIk5OA_H{_nuy|9=KLwh2@Pdjp9MMl`xpIj9q)Rmjnu7LPz6 z0VGJ+F`S5YxIjTCs&nzr!Ht4cbZ2L(_$=pZw)5?8?eorrmSj(cz1i&4j~VlV)rEtU z<{(Y~14B7Bc|x=}3PBN>EyNM%-QAtz{oS1r1Ji}j7Eb?fy)nZ@@O}*fhRTyZ3?>K0 z(ThbgXge>`vVlTCLnkr77&rh_6i}#$rw2e64-e5V;lN%YfMx>t5LW&Os6v=ve+@8_9_7zl^cR)2@uQphDaCV=6^GIkv z#9VW5+t2x2;Ch>9(4IkGQ9q&)XjlhdSetNlzeC^QIRGxHYCsq>#s|6Pvpf*^UhO_W zfKFfU;y3CyHzLS~IK$Wk)X5P{ke6_N3jlTmF-AUN?ZolP@dzM*V6{K8U|dbzs7C@g z!~sNu56PDz7X$%)2`B)s+nc(7jhaJ5V-|H9_0YY0{8sNGPn;&46)mu{6Oiz>4x`^H zIdoufHQwpX^!Ms9mw;ie!tO5tHpJ4#i97bn&CHgULPRvThU5$VOcCTEeirQ-EJ5Gk zATbFA5I`qDpPriARxkYAvm4m&KFALn|I6O#C5$uJ8cz%0OYm9%zCVMHt{|R40QMH{ z)#<1Gs6R0b0fGT+y%VrTkS(D?jDG`vW>IfFIE z()=g>2fq4LbqPhu=R&}D?Vn#aDe1v3fSzn19{@Q$Kmq`WBV<4b$UA_qAMSWEhzE6C zp5GxVL0bcWME*(N>_va6mp5r(8h=^{>b+j)ib1?oXt263Vi#mQK)lLP`n})AtzU@u zU*-2(nqT#TUwhGqo47dtw|~+oU;bYN2hMZ?71HH4g~%bgMvF4Jn>2gs0aXWK=`ZkSXa;C zQGi=I3hA515PS8U`~k2qard8MprHU;Oue%HM2G;bTe}kJ=zZ1S@CV=ymp`#0c!vVN z`J)__y@+>;6`ge?}i~I;`p8XA;e+_QiTo@-96P^z{CKnsYtS~KjQqfjNYKr-khYzF zlM0`Xbnrd-#@p-?CMM3g;qBdf`vs+qs;6Ln0DBXpE`DQL+o(pJevAT7cHCRr;b;p< z6)T@#mUG^*ukWALV%iy#a_7HvD>iDEKiZY}< zj@PUAR6m=aHWl8cI#$F=@}W+2&q2(qcC3^03n@q7|7b3nxRl#vFP+(di0ic}pQ0y& ztQWzvOxUk6e!UpIL;1w|J&fqefBO8EPhM__&Is6vh{d|dF|f=WQFo_S$#7k2>tNL4 z;3-=O+p;ZE%*R1H?bnuGXQR{O;^^X$Y_h>8Q4Z_k!pFBRXc?y5?7A(D-w+UwRiIL3 zwt;7!8n#)v+Uz914W-DN4hWNY<7~aKdJ-@6bh-MVdCd?-Zq%dJr}9v9i05uTst)-F zwclI|_eHZicm2WNis63`>Z*I?&V|s${fv#H5}4n`&O7hfN}IzK&c7%FhXuH{XdG6c zec8o+dR9T;;gBFu`ZE;AuUL=&_ora%JoxcW^!vL;HR32J<89;_x{93NT-RlFTllm} zI=27N@%*K5A}@a|n5uRDsf(*!b>!Bq*Gy6yNdnGSMHnV5bOk~cEm+`vT(Nx$MHaEe zTr@3nsgT(9kQ6yFeRCysVZ~lQmO3>KH-s|NQ|#})T1srtxv439pr)x0Sfr<}qK>d} zSU$z9+kC!@tE^#_BU=31Sv{=3_sFZ`;;)fveP1%mkh!k()3^)27B%e5)C0q6 zr=t;d?H{Ei9{7e7C8$4720)I)_ZI!_E`X`_%ID1y$ya>tZ&26x9tfJ9KzsE3WMa`X zYDmx8$3#gI#%VqXN(*^#9pV|9vy2`VGjnXiHM1z^VvI}^`EFjOqEOJW<#G@g@M=ts zQ0n3kui>TLo0_|$9b<&2jD)?dio+8D#Iw@`=I%8);wIt4r{VBey;5cHX@n+dP zPXD4(b~YbQbjT96Z(}{r7=d~(llk2}RgHCSc@cP3N9?2ROC1~K%FTTA*T&l{v>ChIo){wbRf}>Ho<;dBMQZvyE*Qf zf!*-rK^{`6Us6~fp@3qWqy;?{aY~2zkXG0Pg|IM!Z-_ZzlCL(-tK1VoeQ7booRP)E z`XwN;lJr$oLv(1jlUQwO6`}M*s>)jilIq+$C#sZeHEFARn?3)jhxxmqH~M(_7(WkE zy<*w-WvF117(5R7ka*F#XAyy1Dyoq@@&p zBzlyCr8$b9x+Y3OzBDxCF6~iqn|4IUSv%56glfi0T@E&5jj|@0Z6-fpG)w009MwqC zfq<4W9G9{#o6R6*QJykx4>}IU$DM#YGR*-RIal!47?8$popQ18@V_qi+{mSNN!n!UtN z-yVpwkhDh)FU$n44W^Wf5?I9wknNf?amR*hHG;zrT@eA)S5RJonCP4-SXs6$oFg|r z5v?TS;)yK&Bd$gI1N54mt-#M+HMS-3^bg?R54iiuZff4nBnY)+6f_QczQKjjdmGyF z^=Esf7D?qa=pVN^$ZqxX^dS+hwk;c8P3T{`t7^cAdtOe-G5^#p3D5mGdtm0>#woQA(*)Q8*N$O9NI zr?l3EYT>oSg&gk1sGDp#psk$B6il7WhzJo9h59+K1Z;5LoLZw&U6O?jrOF0ks;BU_ za@6WY3|+?vW)sLjhOZjTUsCV6A(kg2wgLz&r@R}ObL+BdA$}i;y^_+yX|6x-3_|IF zHd)Og)GYV zFbdkBH$7-A5lZ|}i^Qf@f^Tr zW3qB=DMHkxUM$H1ggza`Rgg0{6DfL)Vzdws(?)3Y9w^^X&xn%jnab#WBL2y>zGg`B zMCOfU7|!fZSqQ=DKktc0nC!&xu+@zv}c8Ss~O65>);|wTe+CjAJ zGU_%YG&{EX6E>)Ju@iHj>_nYky6_ruEKN6xQ%x!I>E|i-d1W-s1+ynu8Bc2OFWM}) zmxR@sEM;urEME%?zD>lQ=db5pvUV-npg`9;SN3ok%rGNsJJNR+n>S}dWqJ)$Kt_!^g$-#4sKAEoEI0v_lmQ>37D1axqdoH_ALD9ZFN039TkMM-&G?s zH^u3hNc6M_=Aya)`k?)F7(UVEC5)mvtVZJ1$|0&9w|%0cyUKEzyMuOvmkpcg1x8DR zx1yZA2w1+3gXA5eL#;a`DIWBkk{e&3sce3hSpEDH!v2==Gx=j1TEdvdIjarXpTcE@ zZUGpDm0ng#hK43hy$q9XZ9RfiLZw9;e&wsJ!% zplJgL5dk-Yk9MC5xfz{r&aKGewMhD}@WSKKUH57>0I`AgKiS^Re|(+6s3%rW1f}S> z(dbB?F}L8;lMwdrZr6{&4rJDIl%78!H#Etb5>Ble$lYxUX;#UT`S^F9cp zl%5WDR3n}p(m{Xs$_DRXo}ezBFvD0k_x5Id&N2es^)n7|LkN14u{w^vO5$EI6`hS* z^N==`a4VXo%0pUBI>J2piKMXoq55;qq?DRVw#?#sEGg;?g?`UAl88g-gh0t=jcqdk z3N6-&{V^u=8ury0us_c3{tUZ6PS%|ffq7|t*ODsB)j1tzlZr0ntIjo%IJ&-UC+Pl` zP;>W7*aKk9^|gU@cV9TEQh~*RzAve|Y#n{8VPt--zVKf6buP5_B3+hEb|d z+uvwA;_J6m3FqaAR!OpLZEGEj)~}HkYep?}9TG%g0F&AC<(eHk)Z{XvI*S4~k9FUt zlm2rPA(v;nR)&pAXpK4RK4vs%8p-p zcfLPhAj}EMJ<;}Ns~KDz6KnWR8*OxqO0R{+C`JJ+*y2M5))s__m51fdG2pj|a@J3o z7~SyI)a^iEjv{a@lh^!M9`x zJ2X~nq+lTGsclsYM1uY_26;@je9E(zQ;h9j7ue9!wswkvDk2G^ptAqDvySCrDJZ>u6 zgAy(OJQ!7dbV_89Ye;Ue6%0juS6tKO+Z~k`v)j(y=bn-pahbCMuMw^S?i2n}qYx5N zpQ7<#B>b4aRgwp@MEmp&15YIe%h2P5K`dQ-XR5jWXI0jB+ros30ylmvXI6! z2&SeZz^H8&mxS$@WAqx-D8(N4VJ2xWtCrm#>)+&`Td1&p7YA;I?{Jg1@R#q?^$~XX zNAg|rY*wqY@fmQw^1RJ4>#>EYyC)qihIQ=py?s17u0c*;b?U(r>lB8ZhG^E*3hEbx zX{+5s6(~R1ekFKfTG_7&B|+%4QkEMz^s?F?sVcfm3K<+94#}QsQI`V+lj=H+x6V;V zT)?fSH&jKbZn_F@Oii(98MG$PB;Uahh=~p?(}i3$o$Yoja$I$Q(P8HSu%Owsb|WfB zHBT2`Tq)m%VP(a+aLOpijQyD^;Me6{SB(atxu@-5Ia^n@0MBdl<2TOlZ}bPeESznJ zBQAz|JR%Tpm9OcRr(!)l{q_1Ye=ORB#_L`}!M!uEV{%t~vDm;FH?)jDTfs;)YV0a7 zWKyp$j^9G^2=tCdV9L!yPxTxq07v@36UwsWaY(Ul*e27e)gA{r71r8uOPoi(BNKcE z=s4M(7`T@dnP4LzVXL(E?~Ow?4Hb)PNrCw;oi)ITG8rOJ{alI`mT!zml#qW&I??A? zN;9uN7TBd);&SmHsYF)LRg8@2SH=Kn`x^1a%<%Bk5(lNs+~jmdfn@nQHCWR6$wfhC zG!FN+V7CH~jvUb5&$*z7W8FXaKMEi~p%`bHi*3QU93H7yIYb!K&^?JXqu?dU5p}vQ zP`%q9z#0n|>!o+xYf^&Wh@6WAK!Ou8go%b6)2L?0hL1&4K_yWz6J=zU0m0)4-Ulj? zc^|5=jCXdBb}LH@o?&;HAGQ9Ti92$eHDkKhXP41U`0Bt)kD2^cE;v4L+%)^vNC+@@ zcH!f7rAi6GI^}?qRe#iBN0}Y+S&rZKd@eY*7*CE#>v0u$THe#h+FJe&TG_E~bT=ttHy74d&0; zqpwkfr<=On=fNds7aixYAYNcTX2Om`na)r)U+?Ml=saN%(z;<2ctr(>I4WM?^a}@| zIGce%+1dNrV#&VhnV*%`cHGe1mY;y8vNqIqyO}EI<+f^W>ye-!?}E2#Lvb3ekkgKj z)&j^zV8OaO;pVbLMTpWR9@-Zr9K16Ty-KEVCtI?ON%;NIQ#d2hP#kJ?!YTB^OL7uz z50 z?Ni;m*aIBqhG#A)a7fjqTJN>W>Pcv|KT~e;ZA^*Ya9%54THJon1UuwbB^*Fs%VZOS z8Yzv7KKR}P3XAa@ad+PTJ^?F0%LU`gn)O>JK%;}apdUq6g1uElPc9^9K1 zK~uH_P5JM<#1m0?*CFyt7CQrfVF8q9HN12oBUh~?5;p6#%bbK58yZjM?c(zTL36}_ zsR{J|#n?N=`1XYVnr-a1-M!nkZQHhO+qP}nw!Pc7`E48Lm&}~WBw-kLe~`D?8+U4HTrrR_awUP2kR1}0x=R*&5YJNhExtiW%A@)| zj{m4#M|W^a)7CXIeWDkmA-j*eX0$1eCnlC$R)LgK4neEUypF&A5_clD3i>p z{-ByK>UIACb$^1;Sa$_jrkRLXg#A#_LW8hBZb1w0W&14UIH2)&as0R_ULsVQ9xix* zNv#%{;2JU0`HgyNrdSU5iD=d<9As$bmlm&DY|}|XUg(~hf!mcA&jRQ0r~X55Yz5kd zk%_RB5R_s2Fk3H(-IxcbI~Sz8U-h{yu3SJ;{HiY5(2^kb?z|wKHw#gUQsq>gR*1y2 zwA4HXMmN*Ji{`4-wR{dyD74#HSDCJ|bMH3C+}@jXHP%@xJQ<_s^}@?$^BQl>GLUz~ zI*rK3p-PB|51XpAxFAZaGqJdl*}>ua;XXmMh%W@n1ZS^aj&|S7B%)RUo;Mv+vgCNG z2jM}J4|Rg$!?wg1$JLpADase<7P*aw|5}~O^z(nr;YcKnGvsr(;k%h6JNX?@i^C zcpkCz{^esyy=)zhe0l*UZ2t$3ZlxJS7X8w$*}aKE&!Wb(mc%hTR`RfuIczanp=H~p zg-O8=(njojl*YIzz?goEp8d>)zd8|2_E<*rps$QYL~^H`DhnOC)2*;q^#kSMpKvJJ zD1Y9}Px$at@z9;;7wU8PG83wDE1bU6SnBx-i^QN+n8)ACg1iTQ!ur0rTMzO@YuXrm zmpV4(oPfugo@aZhF*Y|*LpW^p*J?crkKDCUjQzzH6F_on^pE{04B=BRWdkX%HDu?TzsOb#cg>72O6>aONyq#B z9r2#cR&R_50Ag4k2PfjVSD6VZ&2-#lTnNn=d-u3Ny+i{TDYkNU^tFl+HE)T?1p^F` zhiv3k{0&5`X9yu4)Bm`MP?~xSd6;nkUcm0v!SLrq0kx@fgn)Yq5diMr7r+nN5ZvPO z4A03oBXI}kqqs+YtZmL;O;yXct1!Yg(5dWTZNWe5;EvNi*!7wMEyfdtE@{-gphsEK zTWvmBa{&`yP1y=>`T$)MJY~sAx*-Z~K6_5oa$rx@u5h)e5iq|0o~?L44!AlluuqR7 zT1zdW7ZOui7~OJG{9s(lw5O`go1dnL_=i%RX!6Ya0voNm2mBP_d3E>U)^qC@E8y_` zhaIxyNE&^gbLQq}!EeC#Sfa94_p<}eQbNJZK2sQp8^KY~$FDgA{*jql4>1!@kj#(6 zP`4NC7ACdIY79oT1Oy|U?dkN-cfdh0*h`$@(+qK&SWe z{;3m7r$*vAZuMomMyuhM3HMHkS8!X{9Hibv6kym6kk5ABG%EYl`s&Ezn}Bn4H$@&r z7|F*M|2za{2Z{Cir#v#HV>>Lasu{n>*~_W{#^KYevHtw~!U?-FJblt!lZ?-po8<(E z_A&gZl=??qRVBKwQ@<5P8XN$}5Me$+8y#=UgwWqRS%BkNu0eJ~;6-sATPvZKCAfhJ zSUL*)8e_A(9qy)VrJIaLoYccz@#t~Lllj^&six7xB^vC0`Hn)J&HPZD^AOW>Owd?w z7x{n+lcpUZ9n}J2!tTB}_fA2*Gm#UEDt|LwT54#Mx{7~8eea%#hk zq-*1tb?M_MO)mO&)Ic|%`{w=Mf?Za0dyC+k3wUANUfxbU2>kvNuV4=MzS0yeJAPR~d*80VW$?9nBpcNlf=!tbk& z+{XGHL(aGn3%Bb{Qz30B2uK1dUMKLh-I5O)P7>p{q4gs?zgfRg-P4}sDYMM&RgfE1-eB~x>?E+_Gc<^L z4a@@31Vh&gHVlFObn&`8WQQNq4eEaAnn**qsZvV2zgtdPC#XeB>Dc)ooN7qIn37`J z9z>uBVY9gp$KuR%?Vi&t&Kt=F=58N3D$-q(sO`le8zii{`QP1ZSG=7!3f=x=IAlmHSHDA zpL!KReE~77E_W=N_&f%2&47#P0z$5&M*jQ02LA+-)zo(M)RM>RaR@g$I`sfj6?bK9 zDh}UYt~Q=N_H1LjrRLKHSId@?{;x^U;#bwqB z@dJ&>s>Gx^zBC7e$OxXy-n*I7`ovtbkM;FT;&tRDvSq{v8(wURzvFty`jgC3z5AKw z+{54>KdI{Pwr;obi=SI-$Bzwr%f>W{OoX}<5|5me^%V`Ulno2bNXkt$Q2F#vBM>$Q zMambh*YzDnR?|E%`9MC|bqEi+$rNywM)ci(u*Uq5J&nFne`&EMlMWQwyl8XVoDA>F zZhMhcI7*jyUQ=JI+rwUWG)Eh^_i`;0*`cyqmu)BG`CUb!r(f5YCr43|RM3SktzE*2 z{sf{NR02p9N1W9EiIns;_>zgSOAB1aAHz>SjZAlG;_b+Er6h9-UzAH;UR^8Jvv4=- z9=Kl^2BY7ck($Qyy8sK;s=h}eS>uj|j%>7!mr}{^Gwo8Nc9p)BGYZs`Mo!$`deo>F z6Op5+x=~YRXbvVyKd&(1rsQ5puH&+jAWP;7tLph z>_k}Fl8i}JEQ(tPuFSObn0cPEONx<9}4T747q9Ki*5Yx5d;FWhFJNeh_`|7CGCvU36N) zs5*~jyHS^I*Bt%k7z*i3FXyzwdoH4*WeQQA@4k0#c4ea;5;&@*{2AN&-E1HQOYx}~ zXtA~KjdWmr?iE~GsHuG1$_pv?wAAf5t_Gw6Yi;8L=0~iRZPn7PtkS)=zFO=uh%e;b z^gHcCWC;_YWXGEHw0m($IHcY880uiStu*AN>RglUIDo}Z6U0={T3zhxl;hT&1me@-mV!<*P?YWY*X7=;06d?fswudb!&Zo~`Njtcg->uBQpv=*AIW znG@3PHT=Wh=iR8{@Gp-4{4Q%jZbXqg9{iE8BBD0@3GF7Uv)AY zeQ$}n}tO?4h(-F6UTeXnE|q9a&zsg?W=m$0Q;NFVgKEA z85OihR{={SMh`_sL=kue_J54*7{Ne@5nxatNaaUo?BYi|3cnoZZ?p;=^epJauaKg6 z;Xy}|Y;YWTBP;_(K)Uwq0x}?o$!RFbiNOLuj!`2kcpe*}*79<8hATEuVDHwSD zT&uwm!rYukk}%)jf1rp$fEX!M#E#853NGV@3XvRO4S>eEi?=1IiT3RRu+Rg=4kCZ0 z2rKqu#=R#32mAW^{&sX@Kt($%AtM9(EO?j?pq_*dy%!`5C@uvMZsR?>+yCYA8`#FW zc}^dPy^44ZJyHOg+z%5gV9+bUw1-6w1(lcvHRJjSNQC_Jh@tsQ9|U!0?GD74u+D$s zCrUsnWb6kqj09EF4T&o(Vw?jc-h%UoVR0Gq0NMiyC{7R`>A+4;Ly2b_GR`fSI{}K{ zIvg~siVP@c`LG_M7m=d{au?<})Q#H;*(W8eWu5_63GeDQZfL*vJnnKy;79>#aSUb9 zKfj(D;wt+77m}-pQDVGUEMXUae;Tu;oLx%%2qV&@=+o9&=m3}!3XF&t6kH(>C@R1K zf`Hag?n&U=B?>Q7QWxyQ+kh8HT#2|spoKWdPJ5nBzko%U|Tu0Jjn7soqL*>&bnTuV3Wv zo3%(tfd3iONK#8Q2$;Y0HdRAkUW5x!gguTNi#N~C4HD+> z>_48WMG9c3LAOUh=!E_|C-={rH-A*^^cODZBF!$Qv%`1KNG=YyC&&d+Wy5gmM7NVR zaGE5su*d9kQ>W?`uoaT_I)>q*lkZ(at5yOnG&G1cC|Zg;(FNsEVNWpAEW!8c1+qF1 zjX9N=&Q>C8H>J;{*=pZYm-iYob_VkP@HN{qbDvrMcSyI9v|o2DYzH8w_>y0DC$?!P zMB=*Ye^SFmNNbq<>9zA!oksxH#rdcjrCn{}LjU{;L}wMN-0#EDa(Nq{hTmQlWpb+D zU5N&8tX)+05ZNP6_GgkZbdx3R^*t-*GZ99lzrLyC&-s*790m>6E^%4}XKJ1>iml?c zTsO(u9{-fSenayJ+RNAIc2X&_m>j8bl7F#acp)U?6DWe`y~ z6HK_A?WZ4#dxOs*z>iGg^p2=foTEAcdQxUqi5CjdzEf>z6v?emPMt|=Joyii)JwSJ zN>a%2*xhk6Yr@G|O1Ans$Xi4KT(EL_vbfZdI(*N3@?dz_SkbJb+Fm=lD1#}l6{h~= zkIsIzRcT-mZIM)(^r-krIn?)ar*|mo3q@f2l{GC7X`El7jbyrpQOEJ4xlrHM6Vyo$ zugp$A^HR3A#yycX)Awk1{c5|2(da)P*);dXYFcd1<)wz`@f)hykegC0OludNH~h|&lwcPMO27kYh&Cun=W0^sGEg-XaDmT`8SwO2}X1tB*@v3|6Np#4+3vNY&rM1goa6xe(hxUSDM-dk zS%kB%$sf&(QhEc$P2Q0=OGBBln`1B*LKCrcQP6^-+7K?fYCS<`EwCan>v1dE4Rh)>qrMo(kA%grJ2Re!gu; z!Tr@-IT=I9|5?Jbj*jDg>eyd>IBqsD{DoeXLBdp$D9KItW9^A5^&1U`y_s3q`n2m7 zE{!}wXW*OOvE+Yv(@^`TUWADCX{O$_G=82fDQ&yWW|vW$8t)Ct$C@H<8PzU433^S#(+7;lmfPn-nJHZ%~h*nn1ofi`8?@# znnz)YdnC7~Kwh2Y3Qa?@JNhqGip(R!-X;#10w|FY~?he&gBsq8>?7eK5R*gL>7`*@>m<>o!{N^l^J z>_bU*JsbQo{XriHP=pAoibLL)sy$#vKmIQA0!NnfE~92Mk%h%+`0pa!55Y+cb~{&> z&}8XB&rjYydAAEH5i*#rU50~!Z*G5wT5)*erSZH^toFs5_X3iZ(UG zslYfBoH&U0+ab=^8#B?vZK)_fn=@^NpBw9D^@{vJ+%pzay5|=sT3r$z;CoD|`ejQBlX*CuqC_rZtrnJ0ZW=~cgu87zAF^B?o5?ZXeI54o+Lm*Ip3X<}_TGoi2U9GBaEq-QE2b+w0) ztDN^79^=gr=3P>=JQ3|G-_JC|?AdOvC)^)!fB54n1k?EmmF}aKC^#ukK=)v3Z6Q2; zKccF>3JV*|6>);42_e6u_+o+oVyf=MYw*8lYw+zHm|9ZAXlb21@=5Tt>l%&g470+& zA4-mG(bQX#DM0cuC&s^MD!n>XiEZ=-;=xO zZFQ!;JbOK-$)jukB&ZHE2*@l@mYGB|z2AwQEVPrN?d6<_ib7eT5?eRwt!i#2@oerh zH&y$XMD|>~1K-J3W(z|UjZcyb>+?-U`H}n%z0$dG>C`-1ulNFy(m90Mz0*9g1e92B z+h`Upa-q0y78i;#QgALR{pqq?FAS8eMUOcNzLz}8cL>F54+XjRWHg^2lerFMe7ScZ zJqdU-@rI#FjUzcPgi-ZvAQlX=hH8VwIPKe1=&XchJvR(y2I!veJ@tu$Ic^v`N0ZMk z%_cfZ#9euA4GLLnYo6UXWo(S^A8*jHp9y07deto4EVnBn*g#*V5m*fL!jNiXuqfAF zJ?qj>)w$H&n^$?4Og{hC0WiQ$uHy6s7PTv~RvgBt5oDm3fLfK{P~$I1@|kWTmRh}5 z+3hFTU0N8JKg3S0M~vuJk!<{Rprs}?y@WMI-D;hv2XUPK#2e3}_28rTDY16YzDv@( zcj%nsr28qD6*(Y0YTj{ynmjfi!0$oW(8>U~^J5w#(;vtk(LfS%mK5RU{N?eLcQo~l=9KdT5De4{4WpJ@@|e-=9LzU>IFMP`}e1 z*X@oe@Z6YxG77JneQdvcevBE^J}Ff`$FdktSEbmLeSe>ZE7B{MlvpP@kkORZP69SF zl*t?zUSO)IC9E30|KoyZ*Wt4Y=th;+Fs*V2g+${;Nrxg$%?~Kj@x=K=Y#+KyM*Ya6 zZM%BiFM3gp;7)J}R4y>A|IBLVN5!&f!j^mJ4&L@B$*I z#9|{YnnhgS{+-GcC0b`dKgRp6F!v}O2t7K4PFj-hP+p1=PY0NCyoy#K*mH2-#3>I( zpYvXh@6PV{_*FVzoetd%BaK<3=@+exXzSXZP;r^3znpDlUv)5)LNJ^b&EhB~Uvtz= zb{n%WxX%>kdfI5rRc75MI7Cpo}D5a#f<^7c_TRGotbV#c+rpM&}NT{Gj(bwe-uRcCmu^TIG;tCOTIue zYytR7o_Z=QNIoAubzeb?mS(?}x08I3!AmX4(sKZp5*gF2K6jO^ob^HtUu;|KN_rk|`AKU)?_* z(XtJJXIFn9c6qeSBL4aHtClSb(LWq{i5IH&DHpnppP5Ns&q-b0(8;-1F4(27>3=Gk z&*5xu{Q}uQ;XV}z`>S5`ZF2ci9cq&c6lpSS4-KidL`o_8#3VSm-bh%DSvACvzlWxP z%UF$CMhm{o!iMb5$oFn>1lr z)e{_CJ$OX*Do#OrP&T8py&d@jYqHilwYz9PvTcZ`X1~wtAN9e}8~Y_U*V;IxlJXEM z9}Iu`{(d^e@haFW9Cgq_%1gmDCY4(xi{(!<6nnYEW0Du|pR93i5WLy&sq%Tptm!&T z3+hLUL-xAzo;t5NwjG7p0KGCk-Fr|#yMOTKyu;PD17Ecw-%h5tGzGiUee5`8afMxVfk3bO7~l)n7o3bWKP74bFA@Tn=-=S2@EX4t zlVDZZgC%0(-gcoKn%Rg69=$V}oU{5W+>X8(G3n@M-AjMs+dLQ(J2>#MPTZ}j2=2z% z-AmR{>YOaW6ZGUqCQ!S4n7q`QE3nwG(`*&~l!$nD8GN@GOD5+wwT~t6$7^;3CfUF7 z;aHybD^Q+QRD??2T_uO{+s*HrTPh#W-;IvMXKWOeep6xrUjSP^m(G2pewph+-{M>~ z{_%Qda3`y1pt5RDdOiv~v|bL?K7;s#M@qd()dXDmXb-16)N~WRZ6W^`Ra?Uof*l6F z94Dpwt0a6MTYMg&=b_)`KF_zmLoUr`H34+j0TaDA8^r4EIF|X+n};RCTW2Ndu;GvO zpXS?!aB)#9;s6inl3i;c;vqGP&MZ}@#-{-T1N^Tk#F7r{nbL#nsyc3A2(%Ayj zsj{!E>~CV|6)cJT%)^GMYQ1m02%~e&2gqc7%*=D!(o?m}T%4uwns-$&Y7oF-?|YAC zu`flwwwijjkZ*fRt~L?o)11kPWOufy|7_g)W1SXy`mP3V3+6{-p<`=1<&{06ue{|) zlB31#$J6#9uQ4Y|o1!lohZ@nx3+voBa7IMd3lAQpeAk-7gzG@kg2~|_V7%~``;B#89F!V zR6kT&o+HfX#em~_60oJ(K3L}zXNrXoL@NV{t-&T!(Jvi*_B@wyguOh^@U9~3H7(^+ z(@`v(#kwdX4{?=G*#)rFrCy@#!N{^O&Z;sWl98bu;HP$xlKWoF>NI-Qy)FoTlu?d@ z*4$5C#InRgq7}UHpqXM(z`HqP{Bm8~4dY0;&OBD&oF2EroGa%3gV0;+062Qt7wi~F zNSMpqY@?R%z1}4+{qPTLjfD`nU@RI~qG8C)hTPVcqA$X4J;*@X$#0jzP-@jN%mY~a zh(g&cRc7+4aWc})8@^8mF0711Nv9=MO*4~xfVqAidhg6ft!A*;=Y}xK;S_g8<}=Hx z%fU@2b|%_^oJY&a)!c3{>KABQP}`BjuF!1dE7kG686Af+;aR^FVgeC~U3mu#m7R=S z+0z?FJSwr&*hv}qcd=kmUQV}kYRjZ_dgQiBoMsfduqJugO>pq%8&@gXN>#N@h9Zty z)nhDQu1#ZBu9ISP@3Nxgxgl#|@OUU!xm}2zi zW{eYf`nKWC=Pv%fE!v=~X{vrys13St5%5F8ZQ!(Cys`_aCuwV1S8tT@14bzq$2O@^ zxH$v}AFq`CB-ZfzctZQ)*L_6@n+S9_EZ0!)_{wy>54cS(_MKLH zrB8f>K|ZITNzYQeR|)=zvS+Blw#Z;s^z?iTL>n2tAm5{;>&FyW-HuDzrsOsaF_W&g zU((+nbtT@%W)|3=8*l5trnExC7_d(^&CRn^LL=N?!8&T|_y$}Lhym}U64H4{PI1w^ zqgQVdCO@j71Gd)T-^c1vAD1V8M1<$)AK>C?DHz%z0cv68CIevCOC&kd=_HWy5xbsr zb{EETWGKiNT!9AO0y427bwjguTjRU5pf3axw<*0IfBW``Uo5OE@P$hHcxd7vr@e5woP{z@8Y^}M2Re|dd&qP zpp=xEqdSt*uT0e@UOc@e@o0Xx+JA}TFV_y6RWh{&$1@xnmHxAcaBuF#YJih?h@Y0H zYiF6}!f|3bw>{i>pUu_oAJA!;MUs)UNfnZkJhHA+Q?b2Z5x()}^A4SWi8%lX-{jNp zrhqR|^qV18ynqi<79oy{c35?`)>jRc1Sv;yXfw6wY%`R-d}YjHe^82kcugOj8Ebb* z64KjU^-wLd;rkOO-yqA?K+hf1|Asj`uA0C7t@Cr{K8RHH8gY#uA~;?U@C7U+d z)Y(#gX4KSrNn=~6xjjQBlX^%2^JE^n)t3C$ct;)1N8-uBf98pF`kMBY=_^`X;h?Tv zE@D@svocRV{8;JP8#fCzH`Q%?L4M$FKKo}(aKrhHhW0D5WRUrr+j?asSQ6|}6r?za z4ky(wf8mj7e*BbE*{Rje!qa~i-fkURI>0+6ANG^K$~**aHZIgoN~Q0=ehxC99ziYw zS2G`5W<|%@bJ4+6`cyl#f6;j^))wL9w5bkmS<48s=TfQ0`U|;m#3%kg1RnpVPM+~E z6BE<_bDf^)FCzy7Gw1)5crbD@|KG-t|L?>jrX5@%JGzT52BW+K4eIv4p|njX;NbpB zG`iE;(T(Qr9)(U%H+s|bvT5#q^Z3jBDrc4i@Z3pGK%uT&gvs8-0wuk+$-T(L%J2Xx zdZ3z-0U{$)gCHYA_i%DzO=xDl+cWWSaxExEnV3sEBLFFi6Cgfw&&o)A?9S=Qr4<+( z#U7aXV{p1}czSGT1k%93==d97kV}jpFf)N>@+ZL@XkvW>BzJ#O^yZouSMU^l4q*3l zh9qDr1ZQx1dRp?C&Lyx8aSp}A*aSX-!>J8qyUUw}sR^obBO@SS9{j*barFYq{rV8#KVobH{mjMz@i`m>c5wDY+P0<7X6rjs6-J9+#a`~K^>{9F3)%YNXm z`Q8ur{tGWLG`jhrZ&T%e|I2SfjFZqh-VeSTzB>Bu3w(UDyEgFRA8iHntEc5zKshmb z>hD~d8@r1kxW2mm!EXx2DH*UGSSIz?93{HH{KWp_tiNpr+XP0X$r<1K4{`=M! zhBYv0Xm$2e2kt3917&D-4*9Jv#=Qm-JLs42Czb;$J|`FfH$eSFI5Yuakopp=0TR35 zkANGXcqABkrmK8{Yy`qo{V8zgUEx31mA^qa1Y)TA6$CU|d_g+)6BqyfU45O1vANzG zzpGb%AjovDx+fTcGhlf~F!DdkT-WSRfA^=bvGG^5vH8*XuKtNB`wf@@65A($0W5s) zeEmW-^pHR9A`z2E`&0CmTfac|aWgW5ehZ)A{RUpw_zSN2bG%2}pB=s-cms$|e**vz zzaGZkfV|M~Uhsb}1jv9Ee-0BbgslgHyI%O!|DKCBy@T!nAdU!>uK}#>zWGD`cYD-E zuj8NHO*{ULd&TX)!+z{$zdt8N)^IGJ$}DWB{>pg2)oC^W!@gG(lh^oD*C-xb_bcY1%HK7C>_a~Sb`{;6O5rsnJ&e$-vt zjxW$Y_4()jUIxhS_x#5DBhP=kf7%NK@0aaGpWFKI@GYL^l_!x_ zzh^q(jHlC)kovFy*!dvcxq_Th8yCiSO?j>6G(pOnHoGY17r%h;$tIs?p3@p240J3b z4=5Gvb`a0(@5~jR&h#QqiYyL&<%~3=eOTNzdjDwH@6;{n(x| z9o-*CT8&XSX5q>QrV;PHW7`o0s>fAeoU`C5O!_veM$8c@-iYJF_KkG<@QJAP64K9? zv??(o7f@arf({tWxn*kp_VFeR3KT$|$f7(h8w6}LSm=}UUKYOHURrwex$#evvVTW~ z3k(L<`-gHYGY3FAJ<4CMJ=rL$#DPTQerHaIAcygyGAn|*QPvqYDh&JgXimiaz8Ob1 zvjvmWbRp_1;F`XV0f5$P+E~Q5jqOiZL(e|@L-Sv0{#C^wB9maPKgs;IUMLCMC61+9 zzwa<|zq)GYEZNI0@R@d2?iw+E_Bz2+Q~lD<_{tvmu1UO9P-|Qfk^bhbT;KjdSyZ$q zOSHwt#|_2q?Y@%D*blM8lZgkOROq8HITc#i;6db%f`(LPC!xAX^nF`Kf^FwbCh3y| z>e7(@Nr`rQpyM!x(p>#kEx248B^l<=JCvQ*ZzeIN`Km6H{DxZvEMNibxPI$zLI(Je&wo~vRYrnHfZ^{M& z3W*+E%UW8#xF))pevSM^{^%gV;KfGlk{s$Qvr`{CUI!=)eP3CqNmq8fxo_94&6f?- z4V_3=CfM7Otq1G5tLl74$X8jS`wTYdsrqA6{A1^q45~3>on8($M`R3Fz$Xx5949>S z1xZcEmwQ5_rd6|66RdR;hdA*vugiK;ag(0dLD42r(njuG2pE2~$^=qVN}(@Jl#KJ` ze{$nRDHD@b`F?zAt#g!yc9$;4xU)bM;>1^BkA{w>BWYBc*jyxQ?d&^G4M_iVR8=z+jaMJ z&0Iz+jS&5cm)9doMrEIPwY=Oj(2a}Xr=0|TPydtGOeC51d>nqwr|YQ?Hegi<`k+O0 zV+y)(Pa-yRWQKK~*qMoj>B+K&(qVjD_rM)~HXtx$3DQ9hr?%@VbvxA3r*UW2m5rpl zSJG{9j<4aA`)-vZdc4JX^gr=%(R$rc7C^@;W)ht0$>2CL77E6W?4t~kUz3Tl{R+)v zLKdWQhNZJvjGRkSR4lW_h9CFgKRqF{U}DYLeKc2cPNa@$JorMchE}RboMXOyOf}4I zPfQCo2SKylG}gOR^^JC5REuq%5)CR126XhPrrjRPd48-mRl1inAa+@4^dPotfvaLco6@{YL@_}vfT_P9SMovk0a?qYKrA`L=OGvl5yng+<}B9XE+ z_#q{h++-9F57J9XpqunpTnTJw_O^M-ipYKp4i>AX2qz@HOdzTP6{fCiO@2aKCAg@wJh48t9CJi(xHmd+!VY0aNbLjSxa+ z>$o)@O4(9kbbZ7F*o1Bp1rHnV+SBqshW-O zD=VJqk6dI!X9=xhpVQeQ@YOMz}Au zb5FT5{bn0PUt+ETzZEnc6egPABLooSVzvZ>8;gB8~usSgzMn`D*G~2t4iz0=G>V}3nifjMC`eQY(e4>KKylZ<)A*NC# z8Da^RyaiEr-erKB0@QV8T*MG@ElgLz=Qwcc)lu`TEB2H%sw@b@(QtQz52VP~dR@JD zGBwvrn`r*)_TdpF7+x#jnmM{oo45+LucPHr1~f9<_(sB}*B-|pkR&E^-mN_+J#AU9 zeSR7jUDiqqUEe=Pr^njpmJty7LOE_w%c|LQe|t7c?@uLUC~{@?l*w#1%u0t5W{t7g zoQsw;ZVkK(!^J4EK(fx8ctK&XlSf)}gusmw0!vbdp{aV@lKAa*O@Lnye<5Jw+ zH7nEV5{9CLM@s}@R>U;6Dk3a z>KG`iMIAaNHnkpbKJ$R-ia$lE0VTn&G(b!%My(@`8uV=UL(l9}d*aIt8dvx8*)6$< z*vFxnlitJ`<1Ba5;PvJ_-~kY&b5h{)s1Ch1QZCw9XOe58a zPUl0SsLol5p&wLc16LB}isf5T57fcRN|C@0O9iV+s$Q*bk$e(U8CI$)sm-(CNHgVu zzuJW*z`x=I^x?8h=PyJP)uX-oN7?HOj-L|vN0aCG_=EM*NRF+-8(5Sos;N#9NJm@K z0$J3{bUL%g;FXrMS-U(Wt2w{uigV3qkqxF1{WTr^CkxHixh zxg|U(?CXs%%vQXzg!{c?8;=viu z-70YXnFGt(jdSO0YumR^Tgcu_rHS8p9NUn+xtt_sZ}6IW+h%qGi{;H%se7>;JBAw; z=9rM4BYreg!$?t)NTS|4SpzJ#-=-}2S;(i%dK;AX*bCvQoK$6*$rE!|`%3a77OIoa z%UErpr|q+V@bX6z1l0xYqQcB;RpL%I|#f%1BA!;J3Qgg-zC-t(R0z~!XJg;i(XSV^FXYVQWN3658e1_~kkn;t6vb%k*x))Dv9eA%^15t(|fjyOlD zh``kJ=Xa}TpU_>LI;=EK|5bx)?euSpa>Ty}{LU6 zXv7R1BmX^U+7UIKRb#@eoVACfIGS4wO~rHY8-{_U*2<>~O|xa3#!KeM{^D!Yg*guu zy;SnqbwpPSC`%V^l8uu=3SnCxSY(INWF3#Nf0`Y`jyZ^BBdPgMtB{BWz16V~^uqpJ zgQPm%Isik0ujQ}a77sH@J^z|rd<$O!#~72EVo^hs>bre6cvck@su9njpGL*X1`#vkAdLJz)6 zXji#s*hV4X!0xn}tf`XP_Ng3*?3_57pR+tqH_d}c_6#f-qmA>N|>tCS-QieK6{G%y>a#_@GH0nK*o%j55PKXG^s5~ zCT@T{^mMRX_pI$r>crL2d=O41y1z_A87hbMOH6gNjL1ka)%Y35BbO1M5qNDidGig^3nW;I{_l6DtVXHIU-RinnN%(L4)0g8rUPtT zIcw%d%EJts9i9dL=w2c_5Ta5_k@UV>ztpQmVOBEW) z%fsd7L3d`s*d!YPvrS)+3>sU0tdG(EWy11kxFa*iflrOUNtj3@D^|->z>@5q_0Aw) zQhEPAdiLJd*eP1w&!|N(=PK z_05F?osN(d84d?!7_?)hgT3y)E%y~pXFsOsvXi%ajKK9-T6vi#1mz(FD$#_i05C&y zl@a5QCJipw%Nw@hrlCZ(=o?DA+;@9A`-Un=j_s!Vj=_p=tEN)1ER$}#Q(|b@C_%0* z#M{I-cws?se1%1oNqf9Bf{l~DR7v-2mJbhYM7QKo&nVks|GdjsSL?N?vKybuf2Wx| z{O9>pxDzHnek&F??I71<1R(4#ofts_k6~3DghM(yF#I+W1k1mJf&OC|H;j)a7A}e5 zYCJKhh045G_X`ef);c`h1#58ikRKxvhy;xD&IB%`=BP2Tr^cLG&J09PDu|6|%=>3? zP5yNYVBdtc^K3I0)>O%~a7`Fat*r%am1nLdixgTV0@J{2l!?5(+pwb!gDA(HHHAO} z4TT{+YYd#fHs7BS%9#e)R~nxMeYcMoSspW^7$*z)q<_ZD2wST0ba4hZ+(;Z2sQ37W zT|MS>vI#QfF>m~0T`dzPawU(hgx7qYH0&v>Gr~MdE&?#w`hAU2mQ5C}Voj+NrSd1{ zHM*qM0GVzHpqneEWqy3UFQPrvQStews2qj(G(B?3O|i3K7SxrfrzGzur07*c;}eHp zMEnd-pM#e5>%Wsx+FFn9J(_}+r?AH_Tg%fZv>#H9Wp9)1$MM6k;{1`_<)0E3CTgmj ziQWDdNNU4=Tp@hzI-*1c8M;V(DS{=mdkDX~oAA*ups~MXnuPZ8F~hBLX!5c!&oCEM za;Z8~I9tc<&7gy@4U|(`$=!XB{LnVau9BUiT$`XY zfK#HvA#I2L%o{W+nG=eva{txx5}PahYDx$oWz7!@J*e{$?-2 zxl3thlSR$Xuq%#77+wpu8Xg=7gE8k|L@WoriI5WLokJyc!f$MGE>3c^Zkw4z{?|_u zv?rbW`yEUIghv8wm!-oFK#UfUVdwuhDP@{xJo{l_+J(wAjp?d^v7Xyx`2(*6U|g6CvT+O_#tG z{-KQ2gMX1yAw{7mSc=%i8ZE`Uq`u^o+)p0G6{hMw=MSxPjxhm652263%C)9>)k$@M zUHkf?MhNt|3A1%7qIFw@rm04qdT_z2dT3rDIc%frqi3No)S8+F(s&L!_^+;SctI#) zEeM>=({*ltufa{mN~pb-8=tT5%EzP~W-#r6b;7|e3Le-y=N5O85_6v;1&xLh)XC$a zIJ_m8Zc)pAaI1Epc^;B$FnI)0V5pHDwj~)sO{bVHa=od{y7THhKMy3mxQ-hs)9l}I z^*_S@i?MSE7Dk8G?6GYd|FLb`wr$(CZQHhO+qSKDC$FmqJ?P3P$#hpzwUcix+hkTL z(TWkHp$>VVJU(<2-cAKIo%ABHXammaC+iH&M6?#wI)hLxZ+i^Ef0NhtjY5TXsF7i5 zA<4(l8-x|ls=07M>vUe*z~*`$|K)T+K2e^hXqd|j#ZVsJvr=f*oxQJ6O?l!py5&Xm zFV4ndw3aK_Y;ns>X<_znw!&93O$l{yqRluuZ2srV>3&>4o0=A6S5zD!ocC zQQfphThe4x$FXs4D+!G$C47ikS&?~PID|Ob16bUQWX-|BITqy~Iedfax2kR$Q8o11Q+iqrQbLrz0vr zauI%FKn=&H_-N*ec#9OEtjAJx50)+#zK2F10P@~Hrvli+$?Y&)Q6)d5g-dI&a%V;W zXn1ayxWo{x@RW>4P#!Q!Oy>Jm|F(!-e_m`jJUFGESWuA8;$2$~D%I%3AbxU2ATm3A zw3GHc8zj(eaTuHHd!|tzdr#JUZS{V|qkZy0y7|WBEx)6}B>ZALGSalVWkHew0P_UK zhF|M<;3AXpdTn^de%O~^>O4_lUS}JEdRr(1JO8WNphBl8KlhGmS8As6UXVZjXGD+t ztr0;k>|LMi_^&!nEyRZ)O1_0`b6V=Qo3$5XaTcPdPI9YoA*gsMFc+MkQ?xlV8Htc3 z*C>$uF~yr7;p|6Klsy})B%YCKAz~p;>hyjlu+KelgT}fNk7XY0|xtU0b^)>LK2l<;J4A?V!Sr;i}Ujfy`M!q)hQ1WXj z)v&Efvn-~z^{4@s4=?N6G$SX!Cuy7t)x@rvC&);H3qb9wB#W<&kW!hxE1- zX5Z^7q$jN&scC9hki9pC3Mh|4;x9zx zX>{3kG4H*JDv#jG8iU7`wEmw2jlEKvQak_$G^D4JtaU2TgZTNEhuSfqn#tk8q@0YTrI9re7#FMG!0}2Wq(qg z=I0TXpUA#r*71Q3g^~wEa0jC(w&8$yHTHs*`SFiA~f}|&mU=~&x#%`0! zAA?4^ddYEeKfk79g~TJ3OPmLTnuP?kgS_yTJ!E?3y26)AHq5i&#*Hnv&sjIzUr;DW z9$KBz74OAfb!%KE+>mX}8@v(^GNJx};Wo&L(CB|@GhANb*oz|E7Surt_jcy(K7kGVFSsn2CdCdNf|RC_i7Ia(-gi_TI?i17SO*$r3bNvPR}xVqYX>bXav>;ox2 zNk#0z8W7UM9-MRgcG3HtrIb&|o)ON$ZtmWjc%e$QNfcS_|8=q9PYot?2LFspl51?m zh{WD&hG-qgS27_?UDT{8WF9CHM)WZ2cb~+KqyHp4n6-y9at%lx9p98~nLfj`HnC-d zTk7+2iFm}T+51b>bu^;C(`F)n7z3!8ZCp+P(2cLNS6B{|=M@(l{SL~cSW)$65v)93 zZP1fWwutW>jL%T+5WS{3f;vT9vvCC!g&-vBi=B@aC~BhAwv>BCn?!z5mZv>IbL!Q> z%JUj%oZLjS_D;asuD?;7F;{@*Z>?-8{0pxIQGR`Z_(Gf2%k(?#KdH$U#>9KsVM_y!889(Gge?8& zG_3L|2)*5x7u6HU;D%?ow_T*Hu3`mL#T!jw@LTC}_D3#XQgD&$l|4~Zck`smm-ozs zU`+wGIDpe$WJ~GV3X#8^#Kfo=svdH~O*!D-`j^V?4h9$TTnZ0KgMgRu2?J2mID5pR zx-@hxI~+&r>(((8qtl{A_crX{^zcBK)-kZ9=8%MS#=6V8D=%Cu4uS#l+90 z!wBJ@&eHw*9Qm7+tVir> z^s;yL&NopSoYz13+nvBRhW|oES{hKTAatOWS}CWMMnli=r>iB0@ALn2f6K&)*~omE zXxgTbPl{YG;bQ;%GC!p^<4HSti&JD{QSc=#uOoJs)~CpU}de@3r|nq&A+8+M+p)JoK1e$$VkIPy)Cwi>p>xUTL2)c?$#2KdTw zZdKRdMl;M96*_QeYWN+ox&xO(hYI02T~3pu1Rg=Y zdacGRx6=1zPaa~YdsM%N;82oct?0*1)uktZg(5n$0RpA)GALY3CgS-U+nM}BseS{% z3iO=-zad@dh+dY=SH`3#=w}p*z@4EcF*J~7HY`(So(mP>%yP~FG}iM^T>o!d3c(U7 zp9+5J_XZDrfXr;v{eYO$b2@0|psg{4-$G1#Sd3dNbdUMOx*2^vka zdSG>4JzkqCy5B>=ej_3o9MFtzkZhMb*aPnGtf`udVK>sU%)SsvDl?ca)~0z z4q&SI+0TC`G4=?3z{@4nM4kp3WhS1nE;$4nCCg6AAYh%+wisOp2T~z&9#^{$ueNCN zRLVjQ>mr9lh8$u$G|b9nxGOTWT$T^z(3^128&5kin9MruM+gd~DaJp0y1@TT<8O!V z)cN>)`#wz^mKQ1bHw}{sC>LKyF zS~&QOc+=ZFjhG^T-6)|(m_;CzCSA(jOStcEzLfU?ftR;lGv!fS zLW$!MvY_pk6`Ajbb6z60DubWRm5Egr^YrxlhNJZf35luhE)p%Reav`X%4K!;-!sHH z|2T_VUlpBx z*=o9$?SnxetZreoYv4&3K@JJK_!Pq5c(KC1eH#xb@?dbeanrmJIS~D8453W34@Fb~ zR#Z#in+35`L^3X+@yUvW-%_) z6^0}A23B3SRIy2&mX<)HZUhK_*7af9|rDVQjok-3+j~=CwQxZuP#cGYt~!PUPEr#$|2j>Uc*ck zOaGK#)#jBr+H1n6u`sRINSe2|}4DlXJ$gWA5gQcT; z_n1U`c*$?jdFXIaQSwoKk2=XC*%btRQam&havOB0h7D{0O%ZZOKoF`g1n9l;#sz+d z|8&@@e+e(i2O9%oc2}A7>f!WFz`8NSt>^37>ed^wInTw`hUQYeQt5X5K_~vf!?7x;@nwsJAFl z3cui}{iSnfJH)3uvCxr?*e==0oCCSOx4uS12@2!s3VBKE+Vjrh%}9|mJl0n>F_@2EIQQj;7Y7J-7MIgI4Of=yV^beV9r}k^Y*K%r-w;sV zWPPi@@*rkoaAet@h6jLhP*U%`B+Xswr0PUR*q<~F@hHZgCfFo-1KvWwy z(x;5$NXn_EYNf9%`MqiYY2=T z*Gm*(;l+toCGP+lq~zwYLz!T(3dn5hAAYzX{rir(a4KJWU+(Wt z4nYXAe4r_Tczi(r7jhp++8H1V_;&jN)knUOq;@vX^Q_LT^U4$qprqu$`ih+Iu|tyy z%)~Y7P9REK!nOhtG8#1Q;5M}dP*kO3uXhyGLX|fWiQhr44(mu@0T89}D$^D5^xhhx zjPTyC=6`EZ?xz%2&Ha81!g6zluf&Spweo+D#8sQVVXwQJY2&+x`vVX_h5@lynW zL@YJ9DHD^XQ)e-{ET>c;W4q;i;n>>hR9yYn67cW%H^KB3{lpAcYHrZvACNYUPI6Qt zGLB!ePMttcUX&;_A))uMEGnv^N(piYCWAAlfc*XJgmR-H)RMX(3BPZ>Q10P4Ako$u zMJFH&30Jf$1c+JYpwhLh=|eehO{C^Vl13rFbqS9_q1?Yn4-5}|H(@jZb0Yl#6Zh@= zOs9{v#P zKrqLR&Kj~QVlKz{>z{%#j~to}m}~DP+n7L0`w`HOuD4Buqmg5t`1zt{4AuM~dA52x zG)(C+Y<#ptUoX(H(ocP>wLY843M2Q`xiI1i4!t&Bi~w7S(Q!q`*fQsduM^~IIfKfJ z|Cy&JdHB2_;sIvcMmMujhG4;cYQDIu$6q+?6I*A`Ey_sVAY6F*WQvr151ID6?v6DV z(?qct0YJNb%FJZSOLzv+)(|Gf*K*Xcs4jze+=r*JCz3>MO`Zl{ZAxewbefNv6~<+G zyVl^qbgG>oGmt{Cd+qUJzto9gc!X8VTu{jXf@Q&J^O`gQdzAB+&*LQb6`@60avxvp ztGM_EM<7-;p%ae<)OZaP2}4VN!-=w@n$rIy+N@@>|J`#)p0pLdC8Hgri!#87Gq0naes;v$`{40hI1C(YTcxw%a4em07(ssw#Jaed zWZ!PNZq^)&YXC#lug@S`zOmD834uZSC6#6!01hO=+&plTrI$N~+B)(`g4VBEALL+g z#o9{?;$7PyL$ovBC(9o0Nu<F9Gj%xJxXGOhL10Hy9nHVsah;ki}>Lny#fDt$YQv!d8zv67s#LrldQ%8{1qeRVSd z-VqwjH$Iw*l})*Amwnm_K8wQln#WXh#%H64_f4O?;Bof0Yltue@tyneoh+TjPtO1O zSIo0~EeT82cC~5D<9B)RCGc95R{@Fmwt$KwBd_bs*8Eq5JrQR1a_PZX>Rt66lv`zM zEC-p{#oSIXp3`2X-6t3v*FKGVw2{!og*VwaYWCu*H@ZhZG<0s2EK9MHq*fCu(rtd` zBIWokl;nFbg57AvlT^h5cWoqQrywrz%z&-PmkUzy!o;snu04{a4%wKkGvZ5eR#ium z^fi0f2Tm~HhlV<6cx@gbF7hJ*$3dj`Nr;;+I%af=k{hW8pPD$mok}pq>Cao+eMrMeZ z`CGss%9vFr-I;)XGW0>E^e1(DkOn28b@8HC5$3WRQc%9(JQDL-N5)BW2;oj7vxL<~ zUXG!})SEV%Oly~dhsx0V@62u3)oVw4(iO75%-@CmiQ+hT{Zk7PI3Y$Ccpcy%{ZL{E z#hfd)MSFhDM_%48ZCZG1e=5#A=4OmuAuFodpx3-?^IfMGV4=3`jqjQwZfB$>XfJuc z2@S-}#ekN{C`0c|$CgQSL2?=z_y#**;pT#5T`4U$P*|JMidzY`HbT;NbwhBFJI2)ha((#(u%_dfyeiOW= zTDbD{D@eS0{3NG;t6PhU(Rh>C>2`<^`wp!ge@Fyhl^otUVn~JV^VYt!#j*H}|7$wH zFi;g)F$*C(V;c&%28aDy>r@-{nU-0x*iheFB9Enj&VxkVtU=m&53mOh#EGV`hM;6riYs(f&31Rb@!HLWC;eeQn} zO^~g#iR}i`VLGl?U&_3lmUey@2`Qg_0pL_RBwN5vtLF#Q!}{(nb`mHI>#a*^Uw_6n z|03F36cQGbK8#1xh=J<%zCpb>22J9nCIwE$H}G2(!43aHz}gtXTjG<2OYU?~FbIM23uaC1 z2h^~F-qnt9cwcuV$OEakgywYem1`O3GJI7Pkp{KNYA5(L=77tx!pVp+thhjK zucn1(RQ(C2$U@6nW#+l)<;+(_$94R^(|hUgcW$oaftaj|gvU z%kj_8y=oNDU7(rb@?qincPkuU+YAkq(qFEU%GiA(ydygW6^gVp zz&KmEGDGz=4XNPC?jvqH?A;@mhBRJ62@^hIPrkdLDIb{TInt`=FTKTUux7ABNj|C2HGhIhtxOZ>LvmVQON@(8;R`Y}UHA>37;dl+>=@TRd1 z!>NUVTSD!n%9NQMv>!<)KA}eE`{dF4lb};P8Y8uW-B9aRt@|}!Y_cPhMrK(KE54)P zVDyADmflyQD<2(?Y+1QJ4=0K#Ik7a=2wis0lNxE7O{vj2ePRp zRB)Zl2q;;F)(`j@x_D01;*#1bP|i##Ag7Zi8p^UG1?`m+y1SO!oqKl8Jy4+47I1mq z=cT#cjU`BLT&;|3z>nnv8W!_}vx@2A<&g zRlfN_>4jJX`n_@97grTMg#HnT;r@A2GKsqELZ|UpXbTTr!iS+UvLIDTvRUYxflA+# z6Jpbiog#q!k0bp;IuKJ6MiOY-uF)c?wnq%8WclKg0jjro( zTv}lgGjmG?1RW`#7wF-J!-&_#>8Sx&ru?WjBC$2#i&#-SN&-|P zkG5?8976e8Mj@V9XJMP@U(h#nT-{V0=~+AeSQ64alJ42u52Edby~8JeR!8D_Jnneh zqq`%!|Cwiqxk;hhYdZ`aet|SZ%Qi8Y0RIL5lN-(*-bb>_{f-CsUbQn7|28?fJ~M>O zS)zPC2$T)^vTeuK?8#CrOEbhLUlqLHbd0&aHrZ%L@ke?xDZ`N?VYmdSOSV zt7hCb(o8^n&XPZ!RlN?n;}ndm1(R88$FbVWvEr$4pvo1{Psq)3y4y_k(;%>@iac4i$0{*Db zYQ%c^^of&W18)uQ0R86}fV%6YM5L2re0+7L6-2r&+|d@I1vmc^%dB0hN0 zc2mvuH%TzJ}ev zS&9Nyp4g|Mat7P}0qS8Nli>Rbao{n*AgdgPOQy=I&STRIB#DRY-l~O_NK?GokU)b4 zE@}rQc0*#CQ5;9jdXY`mt>Gt5J55J#yXE}zAwYxVaJjlV|8W`W&MzIvjT-oapc&)> zGXbJdB!)h+=Ygg}jwni11G&aDE7o@|GbpgA)^~+0x~M(!=BSJfm$Hu~byA(lm7Igz zV*&vGCodHz7J>5-rx_%S;1@?Gjxgoty#~f=5lY?i+?lw%l9QB8^a@v0V0*lNP_!*K zK;Ascy9Evufo?ekM_eP3WUA{v<^(l z6c*Vr^T=ZMmbj6ES1E~j`Nd3n6O>bYX@4a5vC@!60feRoG|GE=vajepKMUMWnL9>X zT=fE|Qc`8yq#NZ9=e%A#M2#_C%E&QN-ct0cVMozpWX1dV)^hm^ZeANSe$p$j>I+lV z4Q0mei(iv#&+!Fkne>b+*g484>~03_DuIz_+NSY29(m?wf)(KnrSOfLm!_6Mvi6>^ zjr8`_Ba1zYZhCa8u7F;0e6yCys3bS)iM<-_$fJjU9dCKeDy?6di@}_F%;e`{4Q-fh zdc`|35WnZ2*FmGXk$(wBWI)|!2M!C$=PzkUcVo@|;y%F~_0P?&$({bKx%A-la9tSb;;$8L^B{34W^Zb{#GRo^ z$)6b@7t=aYv1ACCct@5n3*$I^drVpoJ9BI}nRU=-e*BZBMoAQHddyE8>{t z>xXT+F4K#GT6lqz6y>yx4qyE8q0vo&+^I51C7cZ=kTEjV-GIb|>br|;stQd?tw2Me z$3wIrwRFF{MbdoG4v!n}Sef65zPincZJyG$aJ9NfFdetEF~`Ry=a#=aAy>q4YMA2| zJ4X4q@}?A&>le&%NvkoOZxW{4!Z{h9@@lsgs-Im7{(cpE& z+qW2Fh#AgA*kb%(cHxg5cQdU@G$o??W(JSE^InK!U{Z_1;8^AP3ekWCcrS!Hz1D;;YdjI!uo-&~Jr?}+A34ypKte552B?80n@HxE@vWIjDQ zz#Z9L7i8nM+w(G;-rTqL>LkmyTnb1`M9qr-Pw~v~2_zT2a3FZy3k-OH@#Ww<#B*b% zvrr}4p6@#!AUf3fi;&DQtkqpycpLI6ZN{+tjzu0_*1sh1wS6Osv&n(driTB%NISc) zd}n($*JR7I;l6@}cR3Ia4KLk04MYWFqcoH}S7OYjgCJv%$fZ@bs-H2sx8=U?>f)8F zMT(AtG84JHHL*q~lO{=Q)Ca!C88DZJ?9_$7tarUA{M&mI$fIFuO7Z;w`;P#W0bke! z&?(`3k$rmnP+t5=?@BYlbABLAdlasXa>`vStp7eJNm+x1Vq*L52UDs{zdsvD(451i z4CD3yBWrw7hrNCcU8SeJGw@gbXy&v+1$gyJY7@opjkXXsnF9s$yf-;}qQDDrPJA~_ zq+S|V3MUO3aPL`f7@S56-nZPsj;s|5;lst2R82+T^;mDn0X2p;ogO=ILgSKScP%N4 zO^yl&zOdT?k>A{(cHw4+d5CxtPa+T0c@!^tA|?vale(ShJV|6#17~YE6HjP8T_ojS zf_`|2W!<|$_Kys?snk@8rR6c!g?1QzJPjzx31s5{Ws?hvfNp$v=Z9$S{ISX2|J$U) z!$ZdieH%+-UONXjv?(&5_~V=d0!6;%NIk@TE2pWkTze-9#F~uJ6}WH!x^XhKtP3jl zg9fn~-{&8kTB`LTTr@WPAX|yNi$u{5k}Vs=?ts#!_*M6)_LA&{sB6I~)C&VH$`=oI z&1H-RG7t1lbZcb)QghzK4r3J}Tj#|zDg?|e(E>tCyq3#6X2F;*ca)zgcA zQA)TWCtsg@8(->c>reF~h3SX3#%9&}fLy4Hdz=wG-tWnk!ZjE;N4QcgZk1P5;eLs5 zL`>GTf{V)0SgR=UC}ryWv|vvo^%M#|^mcDqDx~(kIWCa2tn|4{zX|K2JyJ7+`vQIt z*uRlm>KMhWr^i2Adj2^bQF)BH$VpenOmt(y8Ynir z`-ubLIG4pkxYr(4yLr$ir(VG}La3b=VeD(}32G-4rb+}NcckWVm|~v|oK8ggAnhbp z5m0Qk3?;VHQh!$k#}_Yfs~Wv)aVKd8IrUJE2|e+I5V@}ig*IjnM=<#;K~8LsjlU?q<;AF_>5e60)QZ3= zHa=E!w4gI;cAdj?V%&*!ee#jx*S$Q>i%cVbefD`88kQp&WwtjS7_`+x0S6#0SN4Zv zu`#7)oXxC%jHDi;+o{g+k1KM>_W6^NBINOP#}TY?DK^*k#V3dr^1U}m3NSOP;>fBy z2!OE`tO2}&Ig+05fYm+C-r7TY98;?I%blv9AZ$s@DZCQw+ym1W1uxgXvWdc)8sxpZ zlXDY1%9C!RA*72Mnd1)-pvT!Rg79hc`m{`bv-tdgI?|Za{+6lQM4jvm;Mt|(qXmjS z=$hz;dWDEKJYoD;bo@%7@;A;PG*C#TfNBlgH({=Ama~pT@kvYq#qO#6o0M~DlvvI3 z$h?^QrY#HIF8mqnps{h=;(1{4TZBqDxtROl*t4WUo($~(c<;ar#S#5D?(ar~1j09e zlnZ1%PgcMgd-LVXVU80B@s3>O;X-`z4JokHWoJ--S}65Y8+!L?e#kTcLLJ_m93WTR zuXF{?2f#-%hIF7QUqILCK|Ri@$xS-(is4E^cGL}eRX+bXZc=6sVUh5L8*=2y$_Iv^ z=1g_Z_<~KBI*t)fc{FIJB-ciSOPE-R7RmkVa7st;Ng@QFehlUJls^AtqwWaI*pgWs zOH)hQ79!>b7Zx84*N_S9+u8o(9MT16b3-ZwHf+XThe$^Ba~agkX2EwrU#&o$YxnFx z6u;0*MK9Us_M;W*fz-2|Av$gG;6K}cJO@YvO*ZeEE@T6H^nLy}+08?@qnm3BNskfAWmU$f-J`a*8K$vV z_ftOIEdiKOx)cf0)zQJs_yuYvpH#BV2);G7mW2{eq>kDmBsr+|3(j^)BIlfoliU&t z9+@Ffdrrx)ILVEK=tWS5MiF9ME41yw^m)v$ZWp<`C?1TP{7kx29Z`Y2CeuK0!oxx9uJT_0zw%NW`JrPGRHqw`x6*Xa(Q{MCr zGasKHm`rH3^mW9qpTKfy2hRF8f8!+1->GXMM(WpB*k65F&(eTmXk}hX?7bv~VtQxQT8lwn6 zRUrCCND*!?t3OTAgez9ZIRTdBPn7dpJg0(~GOCc2x;X9P_UqQ$JFGfS0~|G67bus06D``zVvLE z-o2jlZT>^e$YBv5`_Y1ZG9ow_D3rUy3!n`>L z#5XR%)f=BkmRalaUdC}Z?M8K132~ytwg3)o@NG0DZ%Crm?dQ| zmEGf27%imt(5eRBFbFuMi^^u~8*&5+0-3s##FAK62FM?K5}LOyL@kmNu3cn1xI?JN zEnYbZW=w^ya`w|{-w2@nKFV(#Ly1C59(n{$XYS^G+H%GFErv- zreqrqE*n_kX}mmWZg*@Otxh@0O@P?m`E7##?a@EhI5+lZ_nh>7(@mg{sO(2>bVjZR zkcbUEEH}u>NU3w*gw$)M`!QN`M>nZ@*vWE)i1SO0b zP(+J5`IH*2Ts;@2#SEZ~X&o^B_eao;qbzwloT(i85RyKr12Mb$SC9V`B5yjzOGE7> z{woRi_z?OCY*0REm0cqn90sSJx3EoG{CnHkGzKt}Xy81+f>amWAU9pSij&vb-QDpi z-97&gNEkZ-J%OE}B@{RJ|8l_ov!bxD{vQttBLO=TJN^Ie{ohs;4rT_X|8FZwGpMq% z6*j9hG3+7%z4+VwPKQQ2gO9L212mgU~_clL+e|IP?9X6^MF0X zIUNIQ5+TGXoNGYj&lEo%SYsgHI7;k>ymYLKwbTIV1D#t zxIm9UYrsBiFmp|gpx^6g>@3LqI{?=|rP?z?@VCam004L(h;=X!7r*;^|II*s|FB~K z9u*h=R4RzivWCw*ux$T6Q{erR(;u#Fz1=?GfC4{ut&R0|_AX6`%0WFcc%o}R<5vQ9egp^*s3<4^ep>*9!O?&-H+LU9wRwEW-MzywxNjdF9c@5Y zcp3li0oVL6_}03v6mkfFFc1H4pTC-SyWp8A=z7qte!x`%FM5=(ymNTN_?^7>gL?yg zkbRE(0IzO<{kyX}z9w+bjZS{T-M{odhhA<1T4Sx~_HlS6a>`v=HJ zAYl<?6JQ#0#bO0V|bP;{LjC*%}Gp{hu^9FfF`_q z@L#KTZfn42KbaVQzuRiCakT4$?>y`m~>@dEG$FlAH zw?u({`S{i-uJ^YZp#4Kopg*ypgNx5{UhTADT~K$R}WT zz~Tu1G{ElGc@Zs`5XHSF&&$7|sG z4IoJ8?MwH}=JJ&*OC1il@k1EXJGSbaMECm{F{{wdo9l^6Ojt|~1bg{@7zb&p+m_A5 z`lz;ZSb(x7`GM9LJI{Qg(jAAZnoBLcMYVn#&d#vVj!sDo1WyruF}aqkl5BkP`ZR_K zxW?C8QAMaEAEa5m&DNaQ_o4~6&&j8aJy(5`vCWx-Bcu8c+vrtX3v6MDi`y(lp9sd$ z7K_POX+Pz=&l>CfG2%b7c#k9@)by{ngh)n8Y`)V+wMOm!Hj(#dUTrx4^0^^%&N%t( z7K|(Scq~JvRLbw{wY;l_sf5FkQb|ZC{8-k-%CZ&+4*W%`vC|qW4tfF2(z%j7bh$dZ z8|@d&CL0jCX|u)$r**nArhVuEAAq17+aAIN`Ab=&f2t(%a7<3cD0#$%yk|;!E3Em$MWSe z+W9=!6*k7dgXo8lxhs1Twi~iQ=55`2J^&UHn|lbzFV1JkmU72%A$jZm_k#=OEReok z5K!HA8#ByEP54Ea4$d0vuc;?lvdeo|NIJA#?zepg`Fk` zanqj5_Hn?m@b*qQiP^sgWV$ttu4vc+$EJk-Y4T&M3rn^megqj`4qvHoOmNXJ6F=!9 z1=im}8RVvKl)v;=(M|dy_e30q3=5b~TcH~$U$$?UwlCNL+s^y7xJAyoj0r|ic~2Ry zvW>;NT}OEluB+!pgea(*nF=T)6!i$}hJVHd(%dCXU}$*oY-ZX{*D+hP851|93DSoW z@FZJ(ZI8Cxi9Tvv2E7}~mJtc|w34ZW<2}%_ClE0|`Ju7pgQ!=u+rON?#)oxZHru}X zQq1|6Pqg0XhW0|2LVA{?NRUat6f?GBZH^~t?Ze2&v4qE7OUZh=zO)r>v9jLN6C54Jzia$cWD{iJ3`nd_piIA&5kAd;C|&8jJWNoM9dfQ zgu%Z!QFgv12Try`G&vWQWdjwA+Ev&)BG z+j?Od^C+>)WPJi}vGCbtk54PG6yeC1HFKDvymj9 zuRO@NKUSCqfH)amB#S(NtHfdWRy#s4M3fGqlpz3U0z`sYsctEC5XUM4TOj~3uGoc(+T!S7DLrYax|!T@&^(W z)=1)OI`ReP$lvk|sKE?PCiDE9Qx(s{cF8|h=GGXL4j$2{JE>O8ydveLc(-R~&(o;q z!x3_=pBTVDz1o~i1>zTO(OfEZJewgN!D?CK=KMyP+@sOd8O0S4&cf!i-N_#}7J;|J zTMpJy^qGBvp*r=V6`Jq92c;O*Ik{fWkTrd&c^(tOD`tg$vxQ!0T>K~O5y@AKLsCTw zP%mnIQv3X$2}GqXYyC`y9u&x*Hk59ZzELO<&f@tTy}i<~*nHA(ZztmfMi~(+X_lyp z)EmY8UIZDHvs9Bx5hf1N&w07NNMVBMOOsDojQ8wpN8#!fEd?NIDvwa5ma3XZOmoWz zHU@sXo(jg|8P+RJA(I5goCQRMVip#r6g$Bn{%2 z8dOr#j-C*~ATDR^xo%CAsyO473r}591wrd3(67B{vHOKtyD4y#ooiOI!<=hd-n9Sq z;&i)H2V=f5SX>fGOO`Mvwgq!o{mZvE@hu(#dPnb~BkdFEYFnL{4m0I`P$`emZUQHM zH&cSX26qt+Gr@~o{FTU~C7z-lPzTQ9&U!K`Qg-LPB(&QXa1ZcR+bA5Yqz}FnldB`l z#(@ghRwq&xb9;u#GL3L7FMhC9hJ6I5J)*%g_>f8MyYcTB+L5$l)rtfw1m|$7I$qe6 z9O7q*DO}U1!ihv$OPzcyKO0kY3Wd8wOY<_5)U?4bka|f)g+DVEv)&NB?-iRfTdFd? zd6z+4d*>pN5%NzPYL~nD^b0(l0zR!Di2qc<7ak^TW$ZIjhuSl*`?I1uT`8X4;zW3y z%8+_CDi}1Ba}H*dQVd%&VZ<&7L+X~x%G+w35j}XG587IvaXZ<^>llHH7_rvlp6CO) z*hJc%#$PDEP^=?zPCd&LYcQ+qVB)}uBxepRfPUcu^NUSTXa1?zNrqS=mZ>6_B1~B# zo@}xs7U##(5+QS4^9m|i#Tf{Le zZuQJI(+cl4U(;p%^sWun9DRVck+n)y8(bT5sL?vKrYeAfHe#`Dt{OBTYR|VxBy_3R zHybmBh8CXthVwklqm;Av1nQH|XwIj)2kJ;6O3@?Mjq>juggQbVZcuEB+6;tx^T==v zo>S&!EcD3Y7uWZ}4ZQJ$A zwr$(CZQJ$A?uwr2j+vNV%qAl;BA0iS_dEZoxa2`=kwXJ|V8Q>)O+Qj|U|E|HPv4}$ z?m@ZmgHdL=4s(M0CL$~`rUuu`3j_kxbap{iY7dkza9h$xs<~6LYIcdVt|dlE+k4S$G^a#kPsC zs4usjs6Sax8sD9mMtjnPgJCvYRV9DFJ+NJ@QS3wwedcNhn=4d{(pY-eY8IdwH`Y7n zK%@y14aNkvF*{byE!{Q0)7uWw_iiEt-cQJ|ycz|XwBlqOK$jg5%7#RcSfP0lr}MDt zfTOTF@H^)mW}o%OIM&E+(NY|0O)l~yv!E=s8Bem(D;K9k?qEZDM4!h;2rTytKB<+t zl|*njxH7VEC5^3a)tQz&QbJU@>ouT3PAzW)lz6lYcFYE7f39fHjAdK%pSE#E1F2O) z!O?SILYU}D_&lPjv#`C-?U!JTA%Ts{3y^kj)|?*mi?t}LuEC!xm4BCKGYwHh9kTCx z!V!c?CXacgrr%@Hk|fzaIuZ{N??c`}GadSnRc`nOpQ^@v0bjhHnw?Ka0l1GX7~M3c z#EN=C7nntoQ6iCEU5cN}J1?-@=XO!nbwT$n?n);hPTh&Z7iAvyT4oF|TI>}&xzoLN z=Nyo5<7CF{YX3?LjN(R?OLk)He)od6@j!_eI^ICqf8JA3zr`n}r{C-khFrl4a^3*WlhFon={L_F)e7UD zHInDdk>{3!gj`s70_Z01P2Nzv!5yXiC(u#uxb&?&d~W_o`-+-=BUl_}-;KQ^u$f%Q z48lc37Q~nOeF-nApzgTFtAc}Jl{&Xjs21F#8W&$N16KXI(YH5Uy;A4y|6|A~z&xK^ zt*kypuv}>H8Q)~Z&H1qcpLRBe5Tu1ZTcF3-jw9?M=aS}4;)NLr8yCkzk|Dkv?3}zv zA9~pvBkajZZ?_W9oUQlLbi5*ykd`cEIr$N`?c2Qf!O3v_c$pQP=Fy7}YNm#xTu8&6 z8Kqm4;flHmxKw|6VjP>~r|?dL$DRm53VVRgrRFLf)nyEA zFFB2ozN#PZ^X99dCiyLK84=q46RiA=sIfa@XL zD`keL&dhd}9#t}Rx#p9wn(C_3ohh}N?>)I}#}{a(|2BYphA1ru6^_V=TnHpGKo2j% z%ZeKcx-1Nb2EhsHjo5iPrh4b-qe*t-u1y>1suaL#T3-55Fb@LT8|t+n<&^xH>MfJ7 zn8NO$(bo_LHAq(p@!eKpkK321A0n2Vg*K||O%7USAa=}^`l<9c7mS*ePI*=e^x~pc z9+-QmYn|_bcekm*3mZ#0i*%B{+8uGWS}Kh?EVe7K2Q@3kmf3c%)J1V>-jIJ#9X>NI zD>h2DswkA~yW)q;oFhSVti5A|`D+k|jE+Kvl#}}KvQVM1bKH>`yfl)$n`y&S05Q#n>pll3$VUpuCDv;Y5s2F@y9OG3814bn67D)89uL zoqh#5x?0I+TG+t$;Ihj_mK}t_K)1F%@$>0G1XhmDJMM`qAFORRiZuOQ8PrfuKyaKD z`y+14j~;(l>v(u==KDskecVD4Cbg<>@N|^c`Ay?@4UG3cSmzoB8>p;=DPlE?3U4XA z^*wGh=^6?UTW7?IF;T`>az{wJqq*>o!-jCMQ5y*;m|=$08}A;NgQrcXz^1Ix;3mQ-1}; z-W7Jkjsrq;GACZKl!Tm@CNF}mb~{}6S>x9yyp0xFFMHhLblq=oZm6d1{VAlu9Sb~c zq&i=hvW?k%e2O}5@+nIN`yBnXUx;(MX6MS1SW&9RaUwp=HW&u)E>c`~vc#yZaE zC$N3i0IxQjbNz6aBOT5I@Vb3OzpFQV^5ijRxh{sa9N&;xi@00#Pm<}(qRq)Ho1(ko zWv8Oh%^R|}bH!wXb&e+=pq6*}=oAyJ0CV&Zvdu2Qw9z?tq5p=BsOfuH);1zit8Lp_ zTPQIgE^VYUlA8Ai0V8X+uu%}WUN^|5UB1N@hnhMLu40{iVw)7ujAUA}-^@$NMvJHQ zqBiC;YsXH5shADTd>)OFo8d?vZGvfaQN~X`-wSg!cpH-Sa_O56)+3{EBW_};#?Ihz zdT-0O7Yo2zTl~%@C?uZ4R8DzHl%+Qx>oS7TT|BjBsa>gY~dz*GCT{6FSZ>mHKb3 zK~S}Zbg_f3sitTW``Tj9x75x*q^^#KD*0)k+C}4Wwg;4m8(_SOAUpz zu-bmUJ9=FK%LdZP0N@qRS`m;}(Oo~hU@Z1OE87u7fPm{#%1m!F8{i1k2h^CgK)Z|} zB!GY#!E+`A;+SNiX)iP`M|F>2In4kwC&>y`tw3iQYj3Pb2XmhL4~dBXcAhnegbI94oTx`4 zZu|P(;rlk|hN2>*lUr2KCVR zbE>*vR^QR&%?1WBdg3BA;kX|+m9$~xgJiAM*~njdN{{u+gOV;c;v_qd{CMQ$yY84Xs8A?ZVUSu@wLf1eg83OvRL)3rVJH3It&r+>Et(Q5 z#JuGCbKXIokbsbK;PLN)*f#L9o>EC>8UfTYBRY2X42MG82>R;`@5lXFM$-NtX)D2H zV>9*wB_-TcxIA0{+buoQaM9%1`hD(kkGG$#;Of@*1x{sF=;Xf?3O3evm4$nAB%gUN zy50mQ9U<5>gcMrhc%vy-j9b5^G^2`1H+Nu6&HP_?nTns`?kz-q6u;t-i>SL`pLA&c7u$5i;+ z!WD0!J2A-j_~=pDSyN!XWtD`E}NSY-<1 z!rm5%S;w#^8AF-Qdu~hE>$B8G(rS|U$Q;jROCRZZ7Z7u>wv$qE8G$3GJ&B#xw%ZgS z^GuG$WawsbV}?uAE-kbA=((%D;l;Vt20Ft7JnrrLn{MO-8YJ@*hDTadOP;d)$jPsj z?Y9hz9LA}?Xo?b|^fiw-E~S)ahW|k4K`C^0C`GW7amSyGEFc+DJ-y?4VXrYstej;l zq0CC@Y_##7L%VgnbRZjiwBxs-*r3Tsq|LbhF8FrCXI1(U(i*fQp%f7lQa^Er600-; z_Q%hjXYd@SoSv^%@$|X%4A^l14gC& z4^EYxnJ{_)~&zNn&E|@jLG3uw@Hz zzMqFZ9FTFmUE1JL=g_k<#ROtEcKHq@D;r(2RFDm4wYoG1y~KQ z&)3Ppm5UG;WV^>-q7zIQ24v&2>L;!s33J3b^zTkx3(`5)O6Db)Dgp`39iT$XW(h zL-poUK77)hCBo`m2eFVlIjS2Is~pU+XjLKP46O&7q*gng1r8*S(Kav4W#Kkt?@V09d@EKsz&8&w8mG?nnd@|X4jw5ab6xwjZDdO@lfBR5f>)6*ALE`3{lHEjWVr;?UpVcUdQoXw7lTwNse3*5zN;4WuXJjQ zp+$CL9z;O%@KWzKpl;{^yE9+B{uE}m=$I=9m?U_MRNZo(kKj`FA)!c=&fu}5N%NlO zU6&OP&04gMB6e9Nj?m4It3!K$PqFtlb8Z)4EcgIh@zMizh<~AZOC;ZBwcl%d?t;)z z&jBd$=GwsHOS>6?;U*t)RvFd!(TKwz~ySfgE<}Ce5d<*D<13N9Vo9@M9pfD zl&D$>|+pEq2q0w6(W7i_E%HZ>OOoJ2<%)o&OZihrtg(u-Bf<-y}GLWLN zCvCHYR_1U^7SJY!sR`_Koa6+*nDvt92J^=wdebu5A;Rr>8tNVc>+y)Xr)e9;AQpC{ zR&3PW?C36Rtio-sf-Kk0CFESvSMIN`gh*2jtqRJ&IuqxDdaA9QjwLiriY;AA2$dJ9 zN`H&djy6%__rL4EruHGUwM@-mEg-NQ-${YXn-%i)W zDEdJ-rEQA)k^tBy+YepkBoNeLOVD{TC^4BiG-zEYZ0d2ROABCq^B*F&dy&<%)5_#_ zpMIM6n8mj(>NY_@yXh(8B<~9yiz!Rg)`@k+!dx2!h`*CjLAVhbQdSEF!d$WQ+3{&u zgU?>#Wugu5lWFR{+!}an=LSCl-%j;LdQJb1hKsVv%T~tG_+3ow!&D|g9!Lt8!PI<@?f5ca+JxtGnEtQmF8@g4woL)JQT~RAT z0$0umd$>9WmvO6_US#nz zrh@sGg_obJKUBe_lh}5+zWyt_I|LV2>FRJbXr+D{l^i$AGgPKxVS2Vg9>a(}Y2$$# zYrI#zad|D_a|+8Oxhv*do)2%Cu!8Yrrc>N)Pu(Vt)v|I=v%|UxD_I_XU6+^nr%mOO zu@9aJJU%f!A_3;ll{#sKl75x~WYHnrb`f{4B#!yx?G%GsYt&>qFXTw%+`pf2=uqi5 zAH~4t=-*yX$3tI6--?@%Kf{?u&oLJ^kR1>x%bWupa}Tz;G*|iNT_@r9jtbhu6%e`M z<3W5yA>pN^g@DV-S7P8H)EDv*E_%gd?ifUQVeGT;Xe!04OlPej@^n3r-oB%chu4kK z!G^c&&ZLTMzn?U+z!2@7BX_hrf%In1$@$r1`C?f4qfgF3sm5H#3`!nS;KqlwV*-Qd zos)KWANb$K$IQoDMc4dp7h`hM_kh^h?s)Yzt=U!~zR<}pB+@)boGqTf-GrCTX056*%A_GaSCVNuym$rnjt z>aWc680`fLa%Q^^Cl?kYTyNgP^S77_mZ0govnzSuw!{-e!So`O_ z(1DAA;$}_qvyu9xBNQ0@X)s%vkTirKFr!l#HO*H|DPYgT`RrL|7)ih z85sU2JjKTF-(2b!PqDNAH>LW&@YEkB#{X|T)dDJyvxY_+0SYS{2Vy}ZZtv#i2H9_s z7jIkS;0AkR+fUfm3H|~A2^X+;6D($WGBefvqt>maBl5D*FthVf9Htp$gE!aQ(i&JkEG^JqzV)Xd z54A2>@cK0^T}N9xEy@Nrod6C^&>02*9bpM656l^a^AGSez^|O5z}y7-xr%~J#>z8* zbo^YbfnyBoz~BM^oCU*=48R7}0Os4H#jIi97W+GBb*c zt{->m!%xNrE)rG&9GQjvUd|~j2OfjF7(0S!c-tm=u**25lnR_4B5Y~lXIMgfa`QnV z0M9#rSldqf>C&)b7y`YzM`r*Jn4a=uH#jjKt%3ww=K?e#{f6>j%l|fN1P}zwqM@PL z>dFGh;{iCcv>gA;)E%6Ldksr`YJF=5ribSW$L;%Uhs;AC!+HG-x!5B$?wjt1zI(SrLp7SyQ>pt* zq=IG(191PLdG?U}p6}sr~L5) z`kDUcxA^*lMsjRy^bnT$4FB^pYGV!E;P64cr_m@oXZA%cn9~aI*_*%7$LFSsXb$Gs z@TFHvv-Ii#FWisD_G_n(C_o)SGs^w*N>cnHj^#Q}Zb=&f0|KZJ#O7|*K>Nlf2LAE& zoK7<}`}%U= zop8TFe;+@f?Eq7Azh80ceE(7^VI^|#uv4=m_;fzGSH9O+c4!D^(2N4Q86oL6;A%^t zP1_3L-8Kf>Sm+sfJFC(;Mo${fCa!G*0@4ManL9m~HYAzPg`g)NrG#fi40`%4pL;N$I#aN#B!$8=-HYIxoU2>F#d;pcMTJRD zmOk-TvW!IbkE{6P=XD+q5y>_1P35PS>Pn+)p&Qw$n27#S@T8;%zZ_;yR=$CoI)1#t z9~Trw3>`DGsTTf&|Hf$j1!_xlTFipNenZ~Gi%LDwSFL30lkMn5zn!D+i6v2^P~4c~ zeQjc3Gn+{nBxLU&gYR{&a6d+Kf#^x>j9i80>>ioA^x&%GWqX@2X!jDa<1*;jVUtW; zlq0-CIu7UaN0vY;(Ck|{RVPw^mBYrq;-5lF(mCN7AX7U|g+^g5#qws~U0nzJTER9V zru{^o0+*O6Q@C~0085oY%xmZ+T;|GEjJj$xx~Q;!jq^9*54sS6L#n6oXS3aQr#1B9 zJ!vy>gnIz8mc_0#C;mbDljhXwF;8d#gLvClO)jYb34R(0E!<4WWsK`W*q}0w+v~m! zZ3SPe2@DQxyJUq}DVesj$FYLOPF^+?ci%mlgvhIt!^NiIYnt;%LJ2#^;1u zA9m#B2Ufk*{ui}W#hcIuI*vi;lOCcMz7=mDs^2Mzgu-S%spd=YNmUu`$KLkift&~o zH)q0J@i@XEg_2VhoSYK>${825!RW54D?RiAW_n4WORsbpk+8qC%ROLUmf&WMi6Wrg4y9B$w159x;CJ1Nk@oSD19vl?sp{EN^(iq6Ka@r4Ut6Hy<@3+vva#FuWRU% z1jgCu#Tu8C?h0|xj8S;nu8wYeWMZ1;hV!mCkr&+Gcti#%n=HzO zdel@{=Oa(F#Z(`VrJJ(Z1sFT*w!979#t-|Pp^Kg-Za#*vhk5u;gT3s}Ujo{Juj3FJ z*}OhG(4!jTkEKAc(`0P}g3gb5iSGw{V2T9dhZ|H##B#lgs^0W;E932F=*N?8eea?; zf(f>WbZ!+M;ofZ*PhmmK&FaQt#X+o!Qu3GSKqcj3viw%lp#RA3H1r4@eQ$70rfI!a zLVv4uH+Xbl=&*L3B(=4Zz$?*qRIx>lPK@L|TJI~!570^S)TlqXysF1x)L_Nq7Mol$ z5wVTvo`!bqTaKBO9tVu_&`PJ{(@>+qPZSC8}0Sy~b^~jl4`4 z9sl8&tU#dM+HW`dq$x6?5+on8_$oj%yGgwWOv7+80a*!;8x3a|bk`(3QbpU%q*;0w zpY1@R=(XVqe1U&osO74oYzyVNyHjz7--a#!i}5Nm$v^Szm8So#K#;z>y$x$ixdPia{%g(L4kD{E;>J!orvRTbi~tc)11T8%L&EF-^!Rt7ib42H-t|sCUaDfID+A-mWu+3_&={{;>d5x` z8V`p`)fnsU5B6fbj32QSOM!?djDl){T|aKi-MBi}*UZ2)q0U2|uNf;Kd*-qJ>ZGR?=cBF-T4P@+8q6H56)XGV6T{Q*7 zeq95*nZ_x1V6iR}Ax6jvm5HJwNJ=@`emA9+prr)SFKHH+ zED^b(d>O1D>xenrmda}YgXyZR-)1F{$~jGxsrAgbGrro2=(9)KVq>1U486;|O!V|N zIM|_dac|UadB47M%&b8lQgg=O(j61QCH2;{y!~njry0VVP#D}D5pKL?T~go(1!S9I zooP&6{dX?q94qgNC+O0?6{%J3mc1HfH8*Wi29iqp9 z-=#tZXtAQvcbnWirfVDK&R*hYTx$D^`20PkyHdj9xXie;UTA}0<|P(t;4+?gPVE5v z8;QCb9XMzE%2={st!q}~=y$+mtc0>e=1zSpbjQ!K_*m<1$5jm$^jU! zwchRCy1X_XJVzv-y?n3fg6|Sgd`hG&Q>W&d(5PIivH0w7Q~A2Vk?_W*Do4)2{c2WG z)oAHW1!t5a@CB!YuA|kp2M(Pa75FcBM2Wp4$dd*r3G6*Jf4~zLEqf{PewT=1UH zhknpzq*tYldaoqvVVesry#-&2$d(-XxijB$pvzB@%(GRMqeFxqZc2)|XbQ>kpQOOv z*Nj!W?m%TmVB*tf=#Q{y8Jl}GSHFx|SkZi=Ws(}x$#_il`6olvdLL;)jV!*-GBH?G zokaHI3kQjY+fls*fOVMr@VZodmbLL90D_3+uMW#`A2pQ>hsf@=2rauie8u-A7w`EB zIT>l%h7Du2`qrfOyJ0n4#Ii!9>dN)oA$sDpXmPF5p@;#G#I0DzNfyTvLBaRwb!3^8 zx5hBnPg)`e!Rd|F-|mier)tf4Uk=&v1dGDI_eb zqM3R&%ZAhNV|l>~ncdeB4TF7M;QBVrQU;$9+?1o9s0J9O_T+?%Z4D_z6dzbN#lFpw zd9jr)a=(s8^h+aJ9BlQ#hx3(!Z)xuV=vIH2Rq2Vy{3T5w6!*UVKRd+eTxg))Q#OZHhBSpDUSdbeKP zSTk4q>E?D>q2Nhzt~b;}Fp%_h>Xv{x<*osW8mnAme;~d-OT?V;#!u}Jfc$2&S1YYp zi+)LA0(P}rWrMkwk!dgDo~tXN5bMI3%bb2qM;i$fz50+uVIz6?8YLm0@UR^PFY~th z=6cOP+63e*7vk(eFM5&CAd1{quTcs3yF{t?u2VHC?rO=Pmt1u~f)YZKMx?CDLZI76 z9JvDdG)-Dq(LDhz{(yI26AOo?W~XvhVcWj7534<}=5sG73r3G=XD+$d+|)o8maHM7 zRgF1|4ta15Pj#7hGs5%?+hd#@dPG>PeRE{>hb^*U;Tx(MYsM1$qiB`Z*e5l9G+@A~ zQO|63pPOLuvIx63?k%HtGqg)YLmV>0d81O8ypVxBMvGjet}M(Z{Kr3S+PFg#P&)IB{Vi@(><6e4TomG8DO^of#XhD%$=| z@`}M(g9TewSiQ;yzYS3*cN@a5_Bz-k8Q5f0M~8{W5MRZNJ`&Oq0w_zB=V&+6EgXVD zHG8A={1HvU-oG4~|9rO94u1M_pD=M3PHUh?vtnQZ>1UWB_RYPTZn#-y+;VDDSEE(Q z0nn4r>Qr8WuF48amuUWvwS;5$%(pxSPqNQ3KS_Z*gn~|cx2xpnYav!OfuvwZT9RL% zpV8IlWuXx^T5Hf^ZA-ZG&(@T4<5~GGeb?EY)+=C#B(l=L-PO~niN$>uuXpAri0!f| z7&e+nbsYE-Lo%WwkTuOl?NcnJn|qAd(d1MeJ$na`GU|+&UYbv`IhZkIs-L{aJEmXm=3M1=~?qT`pt z-ZpoJj-6-I22btr39XhLe5 z(F$Ne1P{eBwC@)Le8tL|0KJbpYCVz%0JpgFvaAy3Ogo!cc_%Zx zwL<$Nxs)#r?C7G-Xx;Ck+O^(sDVgV;x=(S$dStc5aurJaJoeJ^aX*cUf#HaT^(=hZ zqpn7_t+9B2;S~e1eG<7yke0_gU_+gf{fw~_Ox)85B^b!J6Pq1lXcMyiu5}!xUQYVs zBFYhbJ_+E*rFfGPi{g4e@X{%DwdiajEesuXjuhNzE!*yVRe9Br5d!4$^8%e>Z{XEc zLIg9kDh@;~f(mifbsu^JBNkHFPrg^6Zt159xEQn+68CsX&Qpuo1W$SWr<6iK19-4ioMAp+^1t z!=7b2@4=kl0Jov$z*WnqSn(DRn{_L7)>DV7eZ2tGW3psGX5DqjJ=O9(bB)nae8Di; z<7EJKP@r50<6@uuHJ2QL*xnY??zGWSH74kAPY`)Q>c7`=2^_mrtiw z43?1};I&oLXWS;;)g8>``)}>0HXV2|V1Nd@<^|iwzUdCR`XU8?rjfvuI8&BAityY#AkWO06{MQ>ngIoV6q+s9zLLG_EBh`pKAk9!AGsd)7DZVHCNi=E7v-Tq0xkyXJU?k5N2uHo_Kuao% zAZtJI&lg@oPzvIeWFC*TR+S9&C!K>F?e7kQAXd`*!dlZ@Aanb|?qmBBP6PK;Cf3QV zt%-TdPmR)MtMJ4z_hZRbvdoF+miw(+nfS6nYR?yU&{&ol@F?bioDCkamTZ!Qr>rpO zP6tPun8?E4#=Ul)>>!UhcbU2?%nM=2s?G6trdF3$T$5{UQCez^YFl~FvQZ(ztTrm| zh3A*NLRYHPB-L)xTHihEAOsM)6lCF7l28a9=U{gpW$vD~_f7NODgD!~%@9jvO&Xgy z5qVSJsU%I+S&eRI)xZa4G~BIB;4x5I;7A6ObkTheu;E@;N;j0!1JRmX@CH)qTd2GfPvFLS{ThcF>4PR~X)RW-D%A1J}kyYXYfi62oPfwf-$KjliagO=> zqT`a_LSXOx{!G0?`J(E$a<1qa;cVc0j+*X$N56EqH+bL1)U>Di8Q+%!gh1}O6*55a zxXIGU^lh9?2REg(0ngTIC05(K3CzR~G7T*Bk zyK!AfmFm$+PFjx;(~@GWTrJ!JIEeB^vXcz-@^#_E5FuX>z&$annd_P2O%(%xgi!8% z&Y4$aFLX{V5o?$m=Nep5&8(_5AN7oD;_sKk;!cBWHY7Ry?4Gjr?>ZGfLJ?nI6j{a0 z;$xX{(JFSoJY-I`11u3IHg_Pit-sNtL`d48MdyyaRF#=4exFvS($-5o^CjW>@imso zt|;LihNCu$G0hSd#@I8YhONFv2Kg5ZAAuQES?% z7RY#7^}+CY9S?PgULsVv*~iC;6gP&qMgl&r01{^F1@)lnI?8Z`)zshl7i9nDg>NDfVtgoV-Xi9-Y z5{R8`wFLJj-(zC>11>}D3T@F@ZzoM|#!EOp>b9VQ^pG(IA;E%d+Ic}tgSObIoQQ>!xhp|*}W=?y)HSyu0yQph-ZAoSZo zQ1!pZdu8f3F-zPEenv(OpPFdG@o!HshxpX+b0}$nPssv%1H!+hQ10kMiAWobwLT@D zUweVyWC3pPzg>)Gy8a2Y$&AeqleE7LsoB;iuO@pd96w7-pdP2SB#TASF!$n`8^ zh~R`fBfzbVn0{d4#s>AP5GRKH(klr1)dHui%e=PMm3!!6e+}PMEIt~raAue*Aumx# zRQ5TfUtR3bYbR>Ouj)V7x$M-vZ`HsdelM)`PW~QJf+7+3+X6aQ*osb&5xu zJQQ}kQ3|{K>p7vT%hPUpk6NWhB@)F6YMK3(l?oc};QF@gzjk4n^oJGstvfFa_czU5 zP`3QYDjU#}wnBnWwCX~U9x6Ggn={S!&_Vyh%6HY&E;T|D9;RlbnmCqN5buzYg;3Tm z@WqfK)JtszPPsXvMW%9CE_N@E>44Gay>pg9DrSjt9JVuGYS0o=ki<_qh%0JRdtFz_ z&=1w}lZtSh6<-VXH_fj>(}6`3w+|a8M2~iXQ3GUyjWZ{JWj&Kd`=GRPE#L$&ZD8^; z4Z#J%+DF!fv*ATjcwPuzwuuA+&7Ru^@M@&_dL66{@x6hPw`UeYysH~LR(|z1zmHzy zX%mIYLdH#6-UbD?5ni`Z!Rq9exxsu<J%%$Ry$mxVC=kM~WD);6~1DyNX?}>Rp56))TSn zAEDlRnrR&GJD2mcg=W~m=Un5z`W~RPz5W#9r&$OoUb5vrKa(tPquZ#Xihgc0&iGof zh#gyH5>zX~fvdyFt!o{=)682lV?>1_`t#A?OaWmSzo$LyL>@%&Gt++YX>8hS9m!Fd%WSH0kc@ipEMrT+VhGz(5)c}P1Ic^-d(-Lq#9}oo z;jg)}Rz0H`tH<%pqqOHP>8`jv^^v*t!z%Tte(Z%_c9{-fR z9I!$tD00R$I$~dq+uqm-TYG>5a6qjOKCiA!4svg?uvh`9pJxW{iy5t=k)!z=Wsh>u z6=4%PsO$>T;#o<-vv-+g)ehrV-F-(@;^uqSrSPzW?ign9F`VBk31wGI$TsrWV4wxvKdSB5TCcwX1A?7uTj@M`ItW z8cK7gfw`}b0#B<+&6csihsZr~v7S86f$$w)`Snrs<(S=f$3!`tmPc=!Li}Oh8U-4$ z5cYYo6)uOP4UHwe-=(fYaxQe%=8q^-Y|iY#_s=A!1!URM2pp^I(cec67GL|s@UvBv zC=<6&P&w5UdVd6pta9IUVmId8DeJn4p^-5WcaKS4>xwe7zw_`WrBjmaV)+P91)!<< z@8tn39C&T1D^RY`U~s-Ezm?YI!Ur*6gd0&2T(TJ_08GSyFK%h1Hg> zFQEsOPUZtW%AUga4e#B=SXQ8VOL)J zY-i)`;yNWwT1%5V==$@F-KkfjtB;j7Uw_TN;yx;pRc^eMz7VuHtsiA(hw z3l%iPV(3y+Luug4nH=?fw#-Ci<6(XuyU)gdWgAcUHd_q^1k^!=C>RD6f6S$l#-=jV zthKOAsUitFnLg-(E!AecxY};l+LG}vL@3sdGk6FEFr8PXRNJs!t;E@VQ~BsDTIpJ(5^o zIs7G8*PXRF9`8_o%Sf_E;Rnar;5_4vDhtXF&fDPl+`o}2l|++aIiOM{C?4`A*73IB z(hPT(Q3|KF11c>0@#Syxp|ykxR$mawXSt?!L{`p`?ujyVxf5_n!kN!EK3l-QgjF-D zHmInHEfrWF52V&rS_?g`U=k9)R}ag|}Je zS#p00RCI^kh=m$kV|Pwe(9q*62Q{>0&KoI?!S|5GLvCfFt}uyWTym+488sVQLgzo~ z3zEU-%XIcK?;AUbtj15xPr#n(M^0cFe!IHnu=mxtM8W4&6hpwlu#OKKvn>sqBD&)@ zWg5MYzLo{day@krt{2p@cx`z}DbYcE9(t zB)Q<&fRMcFm_f6_<1YBU79*c|`fvcC?ToN`Ucj?pAu??G;x2u(?P|ckd%^#1rSHgC zzECcQ1f`wjnUQ-+8!k1ynNxhRLZQ(F`*Ta(n4F0-sXfi?H#k}tMM#bC z1}pVQ#XXLs8#ZESp=LTPM|VgZi~)fWKdYZ~z8(mV3o)jf-yzhR9FKt_I5J#OS9=NM z!$S>;X3hr(tlPO93N@}i+q0O|IEPR+&VGd0=pT{`BI(k#P-}4bG85<7^poSS7AsP9Mx~%~l1vl#$t}n|%Y0 zIR0UqFji{D8EHRV9WASbk6_)I1(vYrGq||v_R+?W$ycRfrUG83aL=Z3gwhev;}~#) z)p|;&XQ@f2a)^Pmd(%CNL?0yVGaX;{w9!_dzwK$G4Da6BfT?S9?%`s3*`Zx5SO!$kVVZ5JyM@! zN^1;ig41S6cXQBu7&%1_66#`t6&ZT$fgM>y$#-f z5HFs8BA)t@*iuDzj!pHF(h${pnICnbjtAf{rB)&YfM@hXxx&I_fI`dNv96So9O!qS zI%QmNZs6n5Fg|9k6enw}uDGa6&-8JZf3JaTx`Ynl00&F(%FT`;pMAS*GYKl7yUQpk zGo#nT%Ku=qS>TV6-Ovzz$T#0tR9+{`>CUYwJF>UB5!imaa=_dNa6iuE1vuJ)kCuMN z5s)rZ5B^nh0-^c{fAGQg4n6XPXe+|}Y3{sy5rNf8CeRL=6=n^O_camKH)NvXw1i$% zr`_dHu&x|jX9DV+nr$*K$4WGa`Yn;r$Ix_|E?kuN{YF}vw|Qjlard+u_ZY)w&wN@p zgf`7yws~88n@6?8gjLtni_Y&#YCXM(Ve|{rHukV{U}8~=`dR|zn6wj7?W7d(luhS# zZ+>Ua5RoYi4A>|+@zDz+zVI~w5dZv7sEz4=LT&5}EdSL2Vr_zws~0zrTN9~8H+gPnrmh)yks)q|Uv!?Es{t&bn(TN%@YFIqh>A1gU? zO1_Hvh)e-#e5=~a5J{;@xWEm7A5yX6E zr!LM35S>rYL}_#ux$gymk+)|Iymtg<{}0l!2lZ$Vz}~?g;&T$=fB+(n$rUUeaHkOv zs~U*TAbQIyyS*k(L;11aN2tQ8a&O2unzLP);D+tN>GgK20zR>|fMo8x5O` zmS_8m+NAQq{x@o)2l`*A?cm@)QJZc9@X}E-0REN#UT;+LH_Rjk(*YI0VJh6u&FuUVpfR|M@o&oZbDsDE-$1uU1IwBWvc4HKFh8cuZ;2e#5g?;y zs}uWUcd!{uNV^a3NAQH8F8vMPCXHjg-pXI#S(e|Uyw^roxa=oh10Wwj7Y+{2m(CYp z4iCVYwb}TGIG`gF_fC%V6#pO$_D^5aw9fI~5#SF;yE}lL9-QtE?r9<8*)8YyJ~jL= zYXkYFdO6PdR%v+H#nFHD62Jib!Ii@NH=s@6zt1PUdboGY;PZCy=~wcROZVeP^FuuG zlYI806(5xtJ)P?r+6(jjAB>$tkT5(KrQ5b`+qP}nwr$(CZQHipZ`-!#o6W5L#VnIs zl}crir0SmM9DXlj?S$CveKh(R*PuR|LGOuax`4lR73lZ%%Rca|z#N-Db!vE4zfCa5 zhEeEZO-|1Z4v*iYU>s9{I)UbRf{Mx${hANyx`*+;&47V{`2XZ>`1CW;=-}gj=Xz-~ zE1xH*jy{E_`BeX=;eOopEE_0CuH#LQ4o`qFxH&Mo3;Sk1K_7s4IP}|=V9r0uGXbw{ z3?QCILGPD}(Fbr213t$MK0E-g5B(#4g?s?qBK?co?E$av{$k%d0j{h5#DM6zj{XP$ z0lF{x5$XS+gEo3vp6Ms?a~rdNfSrIg0{;T&3upfTI{~lJ{sMRa+@}2p(xU|bo1L`z z1=Oc%{DJq`1b_8Ud1wl}PWZ3Zc(HlSbI_=@GM31v zwy6A)`x{PoyNw!;?PIl#8>(AA^+o60RyM-$*1;%qsSJXHop>@4=VVy4c}AVYZeMXy z@;chlH8ovgyM|2A1IJ#g{OQqdNHHR`ujPH^i|(c&mlxCZecJfM3v2j|g#$67p@hhf zkIuydpsdm5>}e9JQF1cvV@sU*y;z*F#L4TuG8cHKhq||!^oD_;HKo1l8^aAsy^^~~ zvOAaiUNsghV3`FwHwol@aprej7SMO53=X);NJVJV3H!L*$y{5piE6Et>6f}8ck)5$ zIx*$knm(j?7uG_3b_64$s%UbeC#YKM*VLJJK><{4vbdsh zCDT8Tn!qk&p)nCDzG(w2y&LgX=XlIH$7S_k!(X^W0<=i8CRlq_|BQOX2{mT6FloQy z1*zDcGC3Mf7A>iog=OzYUn~Au9wqs{#bQEDKm|6zr3GGZWL|G!d^?&iKA96lN&E6m zT{M%dr=D_YYlazxSLt;YEAfeSDPtFNQYvm^kJfIHwIZQIoamb^1Nw8#qb+WDq^^)d z#@xthm|_G^7618A9P$5hNIyo5hruok8h)JxS{ZiGjo!kifES##ie$$k)s~zIGR003 zJY^`fD%UOAd_w{$rT=x?L*nUIfq!uE;nzomQdP97rMjqc>o1L{>jzX-TF6!Ng%qEb zD4AHzRgOg54Aa~cI1J{b`W>B8J5B}DV&O184%Iq+=4h{iG|T<^60 zenY3v88<(EqrBaA;BS^v&J^w=1w}@D5R=WDH}R)e4@@zrR@)2a>Bu$1(){y z>z%^EvGjN0f)_)NGUV@Fs+**e@`ryy2HO=~uK^nI-6_OOYZ4um86Mycy_iI+_wq%t zWTF15Oc`)>Nqg=MAl9|L(>C(fLLp1c+=AZf7?+_zdE3wdwZnAW`f*=e(@gBAP@DJ9 zZ2THXz4UM8xO;p#!s@xCMOf>GFVu|$j<;g`@ABoEM6O%-(PEoU^-ndgQ(Xk1U6t=z z6}QfH9bb-U6%IDY+VbC-dc6DQR6J@Pt(@XPA<_R za+%PBMjm2Ihu}1^AT)aw8l|VU*u=uA>PTN871))J1|^wtmR?fXi;gQhJFm?EqCj{C z&!r7KJC#LDszW;T>+&Pef|_-jWl4TzXG5!xcMnkF(G{Nt+=|XiIzt0s{R0uE{44x6 z7kCb2Kjj(MZQ zN29`q9(8q($k>QhW}*KvSRtbis6tW97squA3;nIUn=!05#sVb;|3aOf^`bmq`>lH@ zC(f9Ua7!*&!*y#0{QTtfeHaoaz2?MzXwqHf&P1Hi6exoSkj;6D;gl>T2dECty^O#s z5O2u->}vFk+a<6VmQe=AJx+GulgkhGcInaO5l>MXCl8c6$<*2bBF)tqhsf9uPDJx7 zG*MTmADBm`RwCaKY|CUW`~yR%$Z3FkH#<8O5^V`FbmJ#eKBo-JT`CE-bJr+Z%Yy5sU#_-*6AT>Tk6h!a-Zgy>bSU` z%LVpS0m=13P1en#&lpTf&d=4ZFDpdIs9*I9k{ny5!Lai~@tPpv8u=EVl>!*wSG^%G zEfP;<|VenSJLsDe9{+Zo zW0Dvim2-s%4)wRY)yXnS`*dMS#EOa zCoWh6ok`0YVi^s)L<^PrYHpQ_hd?j81u_~3<0sp}qrwd7Gj&#_!@JdmX`I{h@%zfH z(8m8-a`%`&@FvWa8iE-wPit{}c>C0!EpKTbvC@5+92S6Or_?4lfL-i1-p>);3j7og zdth^I#6bE>F=X?BF_t3*X~U;$6(%?;7%=U;E0ynFUr9o&5kn)Yk4%`JNykw9&%vO? zG`Qz3I5NQUQEut|7lAR89nAu{hw>&4h?G&0pMlbsZp_3LhwI0pthpUvJo8K{+jf`z zefHZiE$Bbsb5wy_@h>G(=N^iZkoG+$Ck&@!Du16dQ;jSO*!;j8KZ;m61rat zSYKX6Zm(eL+*Oiq=CcOsl&mJSeA&B6j^ncv6iMc32#6i56zYgFfa7h6uy|N?=Sec- z1C+A_l3f>vvj@^3Du0x3ZeO%GgJKo{L!trRt#wAnK{#JMUR)dZ6EhSg1WReWzlO?T z_4>zY+5D(SbTgn3{4`|Q*~WhO9QEd)&pr$)N$f+brS|#xdV*p5^M-T8SsqypmH9xp za4X6_N97=uq6wkA@$CmJ`mvjo%+tW1SOm_uWpwVm2?lV>hOgD{(~gKiq2H&vM(Y}3 zAwp=n@ZIaBBi*)`@^K)fUz+#7*i7P-6XL+-LI5lvT2w1(c`Wi*l(mzLoe5X!o~PrGeax&1HzfH5 z%!lk-$u3r^iazIPus6+qUpHZKmIW_W_O+0ltF^C^LA5!mkmc#$#>SOuF$~_AT!H ztQc|zc7(0*&3AeMh$1)OYIb4YA^G^%oaMv}vR4KTB~T%FkUU|hFhGap+x^Zu*mmo- zLCz}ZKHDeteH*_Hz?6`&oz7ap$5g8`H}iRc=>-bsF{m)1vV0P)Jt>P2&VlK1*Do&o z;0%>>>((e{m9M-}2jh!ng>AjWZHehX)nl*E=I&}PMaA;eVN;RzKu`43J6x##s>Gr0 zlQdbD(S$4`Fd=xIAg^}0@Ctt{zxyUyn5Vt-dCwxAS4Kj1v=cK4Xk(}SI#+gZ#7F6w z0J?V}5Cfr5dxGmjSb+`UVT;@&H^hWL%mzwA(~<3UR8#VQNkNpnz3{ul!ZH!!O`S(X zhu(wXBHYFQ&GUQ_-*=53QnKGbZyh-g=s}yNj>5y>dp*f9ep#iDA)L!}8O7bM@IHSg z!8zj4MT=%&ohCZ!l4p+ceza}#+SITDA$nF9|IjPkx_SdBI%RP>c+X;Jp@r7`sv z>gXaqz(mukWeSGwBlvK{8e90jP_{fdC(_7;6f<|Gx=#t@xL$~}Krg|*A|F~ImRQz2 zRa*%A!eTtuY`ucK@kVjDycnZl%^o@e;#40LgYKqgMOT>HG@0A;?7gI=b_rPwtQ183 zC~O|+OwnsvFDF*F636$%sON=N@!KEZr5ZFYx`a~_MlR7;GqBpVWUJl{WEmljV|C6cgd3v5|b)s@`6E$VTmxjoG;ZXf46<%p79or#OxRJzsFi7VfY z5S4HB=9#(a-lL@@><1Mc9o%zszr0>{esS5FPfY&#kluv8Or*J6`2h~qky^~Fizb(3 zil>s=`N|@LQil|O+X+-&r?{71Yb+zW?Ilki%WiiPQx;iC9cJ5W* z<{kJ;*FPJub#ZaV%Bs#7hS z?G;t>9}Hmm>UVhw@maTlR8&&-Z}AVOSo0(RZqN*ypT-{=jE&2*>`uAhZ+nL=-QX`g z3l4b7Ic|)$mi?_z<`aTa<*>^lYZCG!eN-moAvu3+Mc;yW*e=sA#m2ubrBn_?A$QF& zjy0cbrf^9f-MvEmLLc8`(C?qJCdziNgp!eGuV(XHgQaTaJcVqpBio9x^RxT(u-k~L z@fTk)bN|pv`#C3Hjwf)bUt+R&iRXYFodey}42+*`Rc7WRyk3bsr6i^js$ zyL2_1j4<2okM>i%;`7?g1SBP-wQ#N{mn>#$+6CP!d;keO;;2_+(smfPP z5N-04eQ*yC16jY+z3AW@?P1*j{JA4|W?SXoBZ=pJz{C z@L@wz7t^iSjp|FFrZgD=q+10PvOSmvm{jsiY%sg z56Z4GX-!77T0NMZy6KjJ@Goou7-&KEqVS>arfgLoUeb;|Zv;T_`JSTUG<%jc|Lw{c z`0?%$-goHnE2EDu{uN^lX8qxw3QKtMd;L=dg)Z|g^6(emA<9|tlNhFpZxV?_p3>Y7 z!$z^5(cQn*7S=c9QS~z+%GMZHxc2xU`6`+{B+n-8dba&u?;xzoFK*Exp>U=*s=pij z6fBmOk(SU+C&KH(1jq7G zL@*=WIv`CPkHQ{M?;5i@^Yh0cuUGOOhw5)5LQ8#t%5-8}Mbp$iav5367G1c!+Sec5 zS=hyUmHpNopJ9ziDJpJpP^o*`GX%AyX?jcrM0Y#G@?)AtR(m56kf&&!k<{^uyR;ci z4bSpPS)*ga`iJjY?lP8&#+QS3tlLfLqa0~WV*3RFJr62OT(i4vB1!*o3G4|vgaK*x zi8$)aTFCMKAH$Sjpe?haJ>Zz<8U%{x0c|7Smml(8in6K{bl0&pP-W;s20)c2#)r37id?+|jl?0HnciW>|heFFFuOeDlB6WP|D1aG8(PRA_?>(g* zlry2{0@Ly~e3(v|EOfHo+*_!ZK{k)QgF(xAtply7kAsN`dmn{{SSO%98aZuvkpoh- z+nf#%rg(TelGmiSRFUzC3k8iA^+1J({rYNWtLkyeDDUZ<3=nTKjp%Z5P4D;F^P4|F zW108;d3=(jNh2bQq}-78qariq_tBN?+WRAk_HZ&SBgQ|1hgOux{KyX$Dpe#2#^T4z zZLX4)l$JGqtMTpnttD#<0``dYIY@G>8mULs)CKXi^E28TZ@lmEX6lYDx}i$jq9W5& z@LAjmqj;ct`L9}(?Pyp8Omb=yRf975RT^cfkcH&JXnoyTttI^Bh%0;-cRWffzA?w# z5^*|md-IxWZNZ&Z(*|g-$Gn|xD3=NVgGEi5)x&%Iy;bQc851x2)>tz{cF0Xp*&al`$1`$_unesJW+*t?Pekm z(W^%2N4~SQZA&E*;Z~GBucVnl7HF37>ji^12FrS77Sf(*~iB2;2`BHtN1ZQ#0Ht6#8PFe8TxM9{bf-k9cH? z)G+i*k&UK|9ZB|yJDa?y{WshBFYGisH5-HPSMx7LxqzoSd4`)*K8XE9mXdg~$de2j z7xPUt<6BZtbDXvNvG1$#Q$9zt<9?FE+ty7BmID!2W(n}S^UdB80wjx3XsM$v)51`g^tC48v3KN`b2%k<^9v{W)7K|>~ z!H*Y7iJ5CE(y3{tecL26ed>&k9-GjNYTV?#;Z>)B!nLYa%72fsb1>US0rYwUqi5{j zWAIF((S0-ko^F8Lio`#+y2B{-B;Rf{S#3@JsB^F5%`6Fe zrcLr!oWit-j0LZx_r22|ig7F4ql9cmej`K`w~A)U{};dR|K!sx>p& zq#rSy7m2O_?Hi>SG@-Xr;a3>VDT;0jQ^9OKe6n)v+#G^D_&hCF%O*8(p z&uD3{#i#X!_VpN=*YbmU4>%^~jSTq{)Q4V{@s=+Ppr|pyl)Kxp`$o>K6T_@>ooDn+ z7{^A5yGVk)eJEa+zCNt;0)rmsTEyAx)3XIZ*K#$L#lnJ}5d_3B9?rkcWaPcnTe8%N z>GhHM3jRA!?1XhXkC;>*)L{aiDrjKE;5ws%v198?L*h4vpVIIwzg{SC&gn|%qWGJA zaOl|G>hHa&+`h#`%U*JRn> zcHp`jYx$F$XAoX81O|{mlcMOVJ9m;Me(=ZIf{NJ2V$yhBp{KgkSkH(1bLRJWh_c!Y z)&B`rdi{S|2PnZAbvl2c(5-}IK$63m1li$6h<`G zB`}BK!cQw0ZByB9NiJUF8nia?S+=D@qLoF?I3=4vjj@=|mHG*$oCDpHcxqUG(+CE? z5D&QZ!`xY*tVr#Q+5YO)4(t{aJDH^k+hDz3pMRSNw#|$|Gfq6J>Nbl@y0g_s_iZ98 zHJ;CjCy(B7TX&CzF`l5bh<5GHzJ)71HHIsuyVUz);B3~u&H}&H7lNFI(lZT;E)jJ` z+q?4Epl`t?F;LkmkJ@xytW1cz`X=6SCPrqTDsR=Jk19t*ro?q0m4uM@r}QSUK;plm zc_IJ#V+uOnJYTRHE;6c%zu#&X>N;ETs< zcs^=yO8+g)W+Nef{aRCrOuL4jb}KaVkk+?BipvZlng{9Gj)nyYayCTimBb^rTg$FT z0!dF?q6;!huUk^;4&Zaa*D}WXzHLHZA%puzREA>z?%*(MSgONXr`bCTpe-qjdQ75{ zo%i}>6OG)rjVf(bI=&ILoK`!@f)|cAx2tf+<|BjY3t5g>{UdI7I9tbpa;e;HY#X15 zeb|ilu7ybt%d@4@Sm88k(pxTt~JvHshlJQ}oIl_PhSq$}!6Oev?f zj^QJrTw|ds+hs$j@e%$(@cYsY`_HuAvr+aLATN8)ec?2#BWf8ZxaD#{PTC4h#^YeI zadcSy5*dqE!L-*v8j$P7r27)esbN|z$0fS8-E(P~&3Ok<_xR?^`%iii(ViD_Z0=Fu zI1AGs$^1XQP6(2xF88o1>pmWYH@X6tMd&S=)Lmo9y+xK|RSO-nWJY-ws0xZgzp_R~ ztmYbs<)yOY9kU^F9LiZ15MPyhLf8K0;!m9q^Plp%6oVxx8mrP*L< zrRh^z84Jlt4$5O&FXy@fb%J!7Nm^U7s=!c_f0(n0O37b*Q_09s&tZfTx;oDEZCO#( z)SWQnzc=L*Yp+&yK7D6RjVhN{1`LBIXa$u5>%uHKyBcbidF9 zF|_PEA>Qr_N{lGDV^sdOShCD_*)xvKRk0}e8C9b@=80+$0)=_(w;L`pZ34AiP4M4r zFBAEcDHvGD|}9GvqCyqGhF)@B-8$U5m|kXlV+e^YegK1H~tREXoj zIwcb*<}5cq=;XK~jl)MqCBG=zY^z6W`B~s-P+6(29je>r z2^c!_ta$2vf$gKQozE*3RTkz#c|UOw(aEc@9BTApLoba!E*qjR^-IgTq>E<_t=_LZ?2=13EYXXI*{ms{Q0A{u6r=q&v={%>+%r~}h$Fj){flz7nf#bGMG2piOH`ZF=Di()@UrnO^uByQ zFpe19z*wZ^*c${AAdGMsOB^Z(Kc_mZ`n*Vv;}8+?8kJV5w07Pzx=*W}$c$)N`GeSqC zc^r^J79GIghK1Q2)X-p1y7r8~m(o*Mh^kh>z2EL(r9QrmubK?Wq@I2;BWH$*emRDK z(WCwBjpFk^X*k{n&8LfV?n>h}peTu_!*7x=7?KuMgKj8YInLZqjz0cRDTqdjmFqU^ zz=OqbQAv#EA=Jo$)bK`YEq?YnuSMXFMFC>o966Yrj519=kzg2e^6D#k{Y+M|cN7rR zBMSe4n(rVE^CYXD6(S|^U!h6Y+fDaA0X%2p9i?JVNU*E2y3pQ&)KW_X@WPNlM23)M z(Ts2AF0|2(MmRY}uMq4ScOvUc`^yLf(bnVqD{ji|_3&FPmaE7VYpVylHmymEJ?PZtU6p z<2HNW`=^_og{xsJ$FH3SjH=F1PJPGAguA5c<5Po)y4xDSW*i7>Gj$Vh{zueE>2{Aj z$mKCY}NDa=nAW=S{ z*(`LP%zs~~c=~#|g`;k^ zaGPvTB=Uz>f=JJ=kC5geOhjUDrQJzmT(COt1o3Y?jFn-Cyrb&YA0MSLQO0lX7_K$Qwb~dOG07 z2aNfQ&zo|*=+8~`_hfWaXXt+~!w}7$+!3H6IO>p5Tcbg{gbHMcFOoW6^&%zVefLuA zl-{Z$XDI2|x^?Z|w+tty9jo|R2~<8C9&y9ydU!0$I-#mTFBl|2ueEdlvc3KqZ zA<}touYlr)UBc!0$`%RUYQAafm+^FuUiFJ$R{IUUA;iKh%LoZADLqm|(SEqvks5|l zYMLpz4?aXh$RN5HgKeYBxEXo*SJr_`)5Xp5eynP)^X~!{7>yH#rc;d3NxFD=IjqTH z*_Ni0(5ps*v z(zX!zBSC3idRS?>W;U8Gy@1o8#3)7!1TQI8D=d_#f*B8t8v)5-rbzl7wauNza({cv zIJSYo2B|PU&*Rh|kLbd~>zVe%6k}tAOLFC~x8zTt9wRDCi66d55QMH%f4%hDQV0&z zs*=j5x_ruPF4)y|k51y%{}aJ9n>xcmh{~77&Ea0)xHsxR80bz+s$t0Nb>quiX+#_# zCqBDg>gZ2-fsmbtb|jmE4rK)Ppn$KAZ{jRG8&UA(`%n*;f&PNFxGP@dP- zz!HNQl<}c{u&|wrSP)h4<$ts_B;+NxUH3u#B&a1BnQJQV^E@TO@|!&}l{!OF(67%d>O6cby`$Yh3UEp8Lc3YsN2jnw38mn%4_G z8k~R0tjgtM6P);RFRb9K($PEW#0on--k(13`I6`)D=6M03qbbtf*HW=Eq z>*E`r4l{WPYr!w@w)7xhTAvRUB;4P_Vj8a?VxouZK?TUz*fc=FpXHM0vwGAS<>v2P zyse2ME#fFq@Vt6X5X+m`9X8G<>VG}gMq7-9-SK-}xg7mFLF>p^g@JFz^_S%!l39YH zxSQ4`Oxr^@-8)Sp_Hi(bT@R-W&VC?iI$_Etw5l4eKr^g3plI7L($*q^*nfEXg9#g& zB}11xZZsmu^}hmPOC%W{gF#iTEzvh7cFZOB=T5*xd1IZK;(-47m12vtj61H&qu5Og z6PI=I+&A&pIgCnUlxpTZ3dCawL3dS&4S5=<)!@-!WeX4|)?Q~p6z$PA?`*8zX$ zy-hhy$!u;tTJ;?}f);>7?pelc6pYYnTXoa44+&LEUrX4$D|NpZ9nj<*iB5((;E+Jn zWAo*M^Mgy6{yt$a68&+;BuH-JTQss0t)2pJQUH7p*&Rl_z&5N}v%PfErRmn-)z>3> zo86ZWsD4-lzes^0>a{BTp|dQesENf*E$w;)p*)o=M^-cQqw8J2Q}wAFVw3zrD*oiC zsXNuHH5wFN-)rpXqc>QF4*44c*AWJ_BpESFlD%%auEoaXiIZ7M&=OMAj+KM1hSLs@ zd#8twUl0*d1Lvhp(ag};TVxdb;EKgL`0I2 zNFHxO6MUS4=FV5ou)jgXu-9c0K9WN*JmSaE@*XqYCCG~>gXDjFB&+F}kH}Jmmh9_Z z@Qg+F7(AwgILzlpe& zees05K(jZPtTa$V{}_8>>w%)kB0*}^*Pih+McG-%bAxh+|A^UhD=> zTMT9xRwbdYW&~mpfj0EMzg?BzCn{)7FDIuXg2rW2rps@K0U#e6Kgm0Kna&^jMbZdf z7Mbpw-VbRk6f5Cpc~|E?EDw8Ax`Zs%!HQ*T;#Is@W{SLAc=q9&Gj}jh!P?n!x+nM9 zB4vYLLZfDCq-pOP@)+n+tWvx3mqK7`D4i#KtvcA!INR!ID(lsBjvSd^4zqTh=hu@z zg<2^(esFAvKGNY;UM)Oma6K6$*%`e+&=y%2Q9r_0=^CNijHqwcdj42deCoYfAJHDn zAgr#aXo@`N`DU^|4R#90Z|g5|mT$uLnqAurX_86!@~oBk9(LQFxi=1B=g4|=EFV1> z%3)d5M&^vjF*pP=9+MnR!ns=WJg}X+uA?N^C8QGVEXmXTc`KS>T~VLDahtK=B@$s@ z1X!2UKP`OwjD3w7I>C4y0pX_Hl-{SN#J=6Rqgb;c`-6Yu45j;D*apl0z&4mzSpJ{; z@PF6_J2NxK|HL*p*x5M$Ke3INH(&=GuRn08@wVJp+wHbh4(x5a92QHgZHo>r<-eHzrvDzM~?&}2-7t;xmQ$k@zOe1gJ~%E>V(1Je@& zGgDLXf}*7s$9C}F@Hl}|SQpo3N2lYz@Q@Jdg%wDJz?M@N05(28 zys`dOKqEK-b!=y4@qnbtZq^0B# zxjMBWmlyzgY&6S;< z$-&K)#qqI4C<9Alc#sMSYNl@QZe}1ET-skGmR5IXpo?s;tgVggtU!=oxLp(i+A=T( zP}BFj@0}T4+nn9qj9r`Szp2C%dgcNqX-+K(4o(gL+}&M--zfQ|F;okif{mab8_rsNAdK!7d&W8c8k=+&I(!8d#zW3pRg*cOFWM|O5UZ#Li2H81OVo7)^fs<}Hhzg;u{WNd0{f5X7E>7BUe zULApAkM?K?E!=-sic^a_lZW-B#%G6M8C_jjp9Bp-WRbbi(ErB4w#1+d-u8uI3=G{| zoWLsq1U5kdXmWKBf2}Cl(E~)U>6iKu*aJkr;ST{DB)$cE0MI7+Bj5*!Ui3$Xp$rm# zgEs(ZnEVmA14Lip4*?n`egp~NrTh^lf*<`6=_krA@j;r3e!&B4EWQPE0MKUnAyN|8 z@Ij^|zWO8JkLRD^fj*eOf&~<_JF~L30R`;?OTX~B#{Dn;uulJ&1V|bF=nsJ~ncbVf zUmo~Tqj^`7B(f~37>5uocY|*`8(h2KP&0%&;DAFT@f_%0_t+ zv$4Z|rr?-gVlcM^^?ZK;1ykQY z6fl!X^z+Yph~G1eOz(~$sjJ^NZ@?~H)8O@h824d= z(JhgYrNAvi*mj^p=}{cznzb|d!BS`yP&3YGk7I^gnGuI)jQ$=)bi2D##>cXK$rEG@ z1fV%%&c4qJ`(}Sno#);6vdP=EVEM@UcySodXhufq8*;xKs`&0}b+t!NX$#Ku)HqBV zYomk}|DNpYpnU;FIN;_FM;8a%)Y%37*ovn!KGugE^>`+P%%%p-s`BmcYA=z!N&2A-Y$u==ZQ=>k?^z zG$feCJK;UNKcnp$rzx&}zwHa>GtWC=``EccsY+>h6p)R>l>ahoXAWn~@TwL=wz*{H z;O|*|Zp;ks@x3l!#2(a3Th}sl>)`e|=%L7-mpxJQe0zH$vV5+S%cYMyW*D?2Y-f?_ zo*VlG3rs|q$sUeT>0{L>Rv!2jBBts!RifwGr1OL2sYLO1->}qCc(e-j7O{G(s1XbBkNYt_}7zi_QX-`I_A`r6+CT5L*w-O$iN}~x^#6dKRd%aVR*;jke`W-E3HfWxsyR_ z^uta3*{%6Hhy4S^2x5v5G`gUkY#|k3#i8V}M*eHS@|f^l?bJno@~hR%A3inDr+qlY zqh=(!Jn?P^B+nHSa^%^4&Y4$p_pS~m&A zc7!Ba(8@>btK^QqKb3Y($BN6e-lRwo#iNZ8G99+BuR?EILYFj^lAPqct9}@S3}&4o z`}&O;ls7wd^&8P!9*|s0!hgpt{@+30hHK&NvnuZ|YqAv~cgfSvY-9G@1sRw02tQkF ziBa9kcNUe*@5XFrq@9s>C-r8#oJ1E46p=2-N<&Y&`$;n@@RXOOGeg52>_};WT(pgt=M-Z zmog)Le>2byv?l7-ToSY~3?UGign{mG!a|1#4D#N9c$vL-%xvP%b$?(hc24O%18`gSt?hZ zS{mRmg!ac1je%9X_gW z=@l`9WB8w?XT&QA(PY!yGlz* zBJA>e)8fsi(P$75Vi@Mq1zCc3DKolmaV?B<1#Zm2AInDApt}OjQ3ysEn6p&&|BOVO z>7cwp%#Hw9NOZ~`1HNDUW~^&w9AKD=IaQOk%vay+;(huLSJU^4*c?l?6y6Qla)iu< zQ#8Lo&Dl<<@z@oK`8rBFI1%xXS{bPT@_j2Qyks+$mnji;KQUCD@S@uH35N>%iZ02x z@Q5C1+LgsvD$9{mmrFjVs!j+N@@|n=scpv{gbTSR?v2?}ze0cp1 zMt7qYCC{A@RdQ@-K8oJ|43*?nTZ#x(XDa-2!f1;5?xvTPer=?YP3JS+C`WCG!Ix4V z?P(m{);|n;UL-5(3qT)+e6;ykrQotJdfT^NRx~ua#@UXobq)#3HMihG?U&#HbAW39 z&xR~+<+HW>@YU*~|4CByn3i@z<<5h|;jtFVKAYp9+eNl11mzASufXH3Y|Jv`%Ut_0 zk~<8bqz+$lY`$GlsHlK2w~O zD_c0#zQL6GZtF_oIqNUl_UR!&@ba29#ckx)Y&$ydHj>>mz z@^^pcWk14aG#Xx5RQox2M1s8wuU%9&I$*C7Jj9IXL44>~d4uxbU2%gK?*Tu3bGie6 zu0@(gB>R@IVcp21Wv^8J)OtjMF$M?rD`A~bJg2;-|LH#<8|T z%VsGC;S$0#NMgv>kbDsWv4ZcHO2LyHYhgBy8?@*LaT5NzP0GAyz2epck+M&eiKJdG zTF!QWWb$uNG7Y!enmGJSh*;%CDjHHFRNbkO3}myCYK+kY6QM-%PSQCuX9~nU-;Hd0 z3YTK9wSd(-%wj`~F5@|i5kL$!)P>YYR$RIlP`2m}$}H0}9cv^^dn{|!MLM@ubkaWq zm=Zeb4tw%#G*Wg_H|YWAhPZ!d**Af+bntJB)TZd>xClLMje!5DVm$`VIaLcT3f-<( zrurReT~GyfNLD%Y#JbBF+4v@>a#nPoLT!`b77sDW$x;r@WZ=w{3V0<}5zvdBTP~_l z#c_MSXirW!N@d}a7&CoDNT|sv-|gmQc{?3H#YF=~9+m=J$$uW_H(R)AS>+@X?wZE+B*);7OTsv9g~?Fs_z&F~zMXm|h^ z+Dv8BUr9XUKrE-9QQ*+o9O{t9ZalB96mjUS(4g>{A?%NKE%;gt54*wyZ?>F8LSl&A z{h)#o!|~gM#FGsIkw)=fXN`;s)JCco4)L zb`aC5(^{VUQctT*)vU8g0>xpb7;w$>V=U|M9gs9gk?MSEg5g$t0wefgz!31qmU@xE4-R@zc{sK^P>V<=1+2Ta-rLF3{KOd|MdtW;5Z`~( zA^4ZV8|E=slmr3H<2Ao9Gn-!K9r9~I^7L6rCCLVb zozpI3Uk*C{zjI2}l^`#SVIqli>1>j~_+2bw@b@w>Y!?m~t$9xOk z&xjl!>kfQPA+%Jsw68*5i_@#GfBAG3>Z&X&#toKw}eciW8%qF1k z{(snerx;(OuG_P0+qPZ*@-Ex9z00<3+qSJ;wryAKvaQ}{Ea_IYmC z$ZyWI<{YD9&9%%0Ma8a$fQ4<~90(f2d}|^Fqh-(#j!jfX{UXK2EueYhC;d|ksmVD4 z;ac>i-Cj7c=hXZh50?Vl|rm zeZhKyneZ5?BO^9FrF$DaFc?1V>R(biW9sgK#~x&qy4BNqSwGFT6i|c2YHG8QB6*T& z)jA6hfP2C+()Fb!M_X(=0&7KneyweTwtWY)#+RB37b`wP7ezXe#A%JO<8nU|k#P`! zEYIGPX12~`KPzHvg)l3`brP}08fMzZ=r`$wWKG_LN`qfW3dz@! z0f2=QubmpZttZRqUVyoM!f97L9Y9mggq0o-dr2bJL0lP)V^ShX;TfO*PD+TXvSTv@ zED3?d0NrT=a1n?c8A-e@N#Va^D!!5ae216+{@%o&CH3e}){H;NwxH?2F>FkGNVdUn zT_|i}*z^eknzmVob1qVhfUVqPyPD04lkd@C;R`qXrN?&YzDP|fBBW&O9>oUnAtmc5 zfP#CiWh}35lfs@o00p>pmrh?Q>W+uGn4_mng}ZqU)H+^|D)69pO|Yhokfv+dlcIw$ z4+i4n(f|*NAMK|aseSWmc+5MmL@lnbbma(q;m+KHlpMYr+cc+8yjG@BjHndOct&+_ z%k+ID)L=)Zlq?q;Qb)W`c}O@H&DTs?%)Z-Y+(GkWr?}u)A+EFKm!im`8N`Fif-r7( zwP&EDk3102a#k&Vq9F8Gu{UJ@mECIU1l#~gM!$@$H5H;_L$tF^v+9iM9`JnJSX%3y9rR>5%xH!zxKJUqd5OoJO?4K@w2)`oOl9d9i)vW}y8OC!|IeSh)R zK4EdP#HoBHtlrn!O$TN*r>L=r`GCg22e9u{QZk7N!gOW9zP9&lddhq5Cmu>3A?_wo zH;B+_yGtynv9^KCX`{M~zU0If#RBviEnTtM1_Qo%+X6gx5WN?4Bcz#(CH>Lp5Q8J~ z&c->s>{kq+yeF>zz79p~dlO#~aGZqMCVkus>Oq~ne^2*l%q63cLNt+a%uoK&F9>%! zdNG)N+SC;W0mJ(?g6>`5@yvGPt`}enHyK?xc9U|F{|mC)P~Is0FVSdTRph-60=)iV zsfVOZE3BllJyK-M$pzsv2n?g@xSi3MIMIdJf?q>~ke2t`71rP<`lgIR>{OJkE7{bnvi=8{%Juk_xLHm?0p!x2{~c2mRrMh}fH<@yp#_529aPbQ>J~y2u=Z4F?L< zci}9gN-lildgNcA7Ki;MtzOlv<6d$bOEmQjsuTr3FiRQvdb=@+^GU?TToz|V#tknI zOt?w+fpL!hWxsgFY64NVtz@Y~CI(+2FEX0e0GkMf<`Xz=I8SX#v|~;&k!z|i1u5*g zm}WW%dVCB>Seter*50^6XDc|qi58!+PqoHdur%(t ztGAxcZTE-_OXY10tfC3 zJX)*cAexmLHy0>1YrCv1Ld9xvDc$pDfI{%RXg6ahfRF*m4l!DhJ3jtZ_qBriE!8D< zi#=(M-daky@Eu90+-}Ak?rhy)-=kk5KDr_}rZH8T*+Ur`UpH3r72cd#^BN_Zej$(q zS2*`3kz1GnfhD^Tfr-!J$+T)cyH^(vKf9nB#!FXgbe=?r+CWQpmUK`Cy^*|lg7slc zXJ}1oJXU(w@{c8`bzV7L9kKHaivS1cm1sp143#SBwPxwvu{<>e(uys7;4;cYV=1ZbhxHwX&3wn1oV?Uq+mXWN(| z_bxUuHr>)2$%c6GUI>YRyY!lsj9j` zxp~Niqho_aeY5JHbU*D$CRztEq)atokHf|Nz-PU-R!~@8Uk~P79T}UgF;Ps1Kmomn zSPp)g7^8-}=6h3MSF7Ar1%z_5~sc5yxUsOl|P~Xul`(zgLYzS@iCRPc=0RN+>vt!~7;Dx1eItp4#`xs7&~?5QHVvtkSd9D+l5vRwKhu znrr9b3eD>$2-rbLleba8zt4*umkDleVwN1S+%vFm%!eH~gqq6_E#F3aKZzlL{beQ= zDfh|CH3vrmNx8gctq7NQX&Eu{PT?hpgtz85z0G@`!Od#=r~2+oRT{e~^qP}e4g1Ll(*WjJR zlrbkWgSWhRXA2!Jlr-U4vMc(lX850vG3@>+ab-sfx&4?_m`Ej&bs=@Y`N)CA(+Ca` z8k;@1&b7LbuJ6RCfK&7?(}cY>?(rX_6Gq@BU2k!1TSGZKPc%Or7Ndfc2b% zcF?H=++Sf>emJ&lH4LvD_|G@fBhAj9(Q6-9*T6wjrbw&YWyJO~ihJjn9cLt}3W}KB z#NABmgyL<*Dj|sX0uun&$rDm!s?bkLGWEJc5O3G`w~>Ad|j%Occ|d z9GD)#CH^nu6BX-x>O&|;q3A5PGi3(-Q6w9nz0pc6RT9KxJ;KN9SwNn4u#P{eEscMGzE2q=)(`!&i}rb|E6y0v&Nt%(n_<P0ErI7W)#Y}}Q z^d+h}n_7t)EzGX5lE5R8f#AcN$RHOpwAX3k-U?+d^AzA3<)Hay%|RslP44+&)Z2@8 zI7CRl?B%a(Na9a-XVL7uL^`aLmB^Lff|5lOKhwTS1}IfKI)q_6nOC0&>OH*DaT4%U z?;Rn3oHgdAQ`_Yy0zq)h+K`{4WY23rD6MQxcFH(YpU|IW-pezn{78@rVo!QAAi%sw zXW@ohTABH*_9d+Sl_)k*6~5x|uD@g8sR%PxUd2)!LTVY6FK``8qg@~?-iA*x3O}`@ zE7%l`ix#bauy1_XlTI1~ON;wSGawe^nIk^^VC0Et))Kh@b;O^6BhBzE*W4`K!Yo5% zGkq=ug-XRno!DR&YO%Ejhz;;sjf#U6t;VltTuK+Okr=ON6v3cK-sq(su}%+D>jI%Uw&%0B$2X5Jf|lhmh>rKvGp}SnwVwk<#mTee>(ittO-ig?;8PB}<#JicE$h+7s0>YCR z1#Mp1?eqgWzem)M8+VNVMfE-?m}zh7+MBj5f=_d`NE zJI#N(Kosxq(mZ(fMBh@06fn3ruvDl&wFhR;Bp*SUaGnzB=2q)p*4#FSw^X>|4q=z% zvW(3{5({*Q$(QP~o@Y!*uWG>~u_!%RJMn5F-Za)SKpsWzugq%FTZnoPT(phGk1kLD zM0W5Wr6`Jg&Z$W+xhE1agcMgJ8SliY-~U3Zb#Ml~_Bdk$OToCrTy zfjnSpwXG^9i1v=sW46RVV(d z>~GvS8qAb8IcEpvV>Cgok^N$fc7D(CyT{k25bFtpAe4M?Fcsj|&-X>pZ!Gr1)6d;` z*TZ;n0e`Wv8S-lIJ6~)WL63If`nTf2+m0SJh0Z+VkKuyD@*Yk>AbMI$bT~-$4f8|& z<+JDqtRWXB)GK({f)qCVin~+pQe@>BKtec?qUVzE6^_L19AbG;8MH&VHf7fA(a}zn z-8!RahJcZ{sE)81rIyVZ1Wvcc#EtEId0re=b83~lucFh;YDnEOV02}((&EGJm=BB> z@qTLR4-tg4O<^5m5Abvcdv~jK3=z<*Lse&CP`_9EOHX14&9eee=`l6F=s6B+nLG)V z2D^RU())^EXMBQR*KOe7RTWoAvyHIPhgvKA_QbjOa%0vu`)m``=$PG4N&^;acF8by z>75*pv8i8EDpOuaKmd7@wuDX58L75J`pB4ruqgEvZq$d94nNmqYnwsauucHT-Gqlc zt`}yZAWPbX6t)Y?1-}U<&9Z;s=e$vUGKRtOp*r{%3-U;ErlInLPU0D83XzK+k@sOx z)AMj#L@5->j8AVa%}w5blRk=`tQx!K<(sRt3d_)Q6`LYl8{h3DiUt> zC@bYBBEf(5&T@+OwtzX}^LrTcTILlbudS1KKUjd5*?UXfc3NT3$1$t; z@`@REYG+)bm5dCb8D%vfC*FC*qFB_?h*0u~vWP|3NHED5U*x(1yw~PX#cnGS=Izsb zvgY~Kwv2pQL*sJL5hE6k@YcX2d7hlAGG@rUiBNt&k^8GXdUJBARDOlub3F>CJM=gu zpBuzpzlzA{AG9;cE3E}=ha!?Bv+#@fix^ee{(|kd(aKN4Lw2w)rv|QwQ#;7n-~7U( zmsgx#YS&So&HU29Q3IqIC3dXoja_1&n=lsz2BZlcNbFm*2ttGx-FxIdPdm5Kk$mqF zX{9eHcsI>=6*2yB0i-2ZW8uraMoZ?U}O$VsSfPd4cK|1U~QnzWna0m zHsa9P)|d5>b5rxl5{gB`e{=MGAzrxZf%*3s_?{j0SFBWSca;mGV@c5>JVwaIcWS$Z zZ_9evnG0eTv1jfAfz&dSI1YgoFvJW`#JEr9H|e0B*$3GFLzK|YwvXMWK^e#O&OGL_VF^O zAk`MJcT1%0K!MwvNl&!FX0){q2Z(tJh_+)6Msz{P>@louB27oPmJ=D6v7k2wFEMwy z3R8#t{n8UpIT7_@3PjepTH!MJ1#-=+rWbvZ!?UvjHkTyA)ql>+3p1DTzJgD&8Kwt$ z$5ZNs82;;V(Kg>X7F0GY(S53$lUsDJi{QrLiFv(ftW5QS*K75_qONiwy6FaqMzUQA zMeT#ZlG0RY+(|zqz8WTDF9IE%2b3B>Q{qvXW6i#$!{xJ-WABd95ct4lAnZ-N(W1lb zGO?aE004o6??k4au&$+&+OAGH?~`b7ssCh|_}5+4g)sZzr6+6~XAwh@{YbcS*C>G? zc{Oq$v^~H7zxE9)%H&Xd2 zwZ{s#|D-1&!(~hp7aFzI8Vf*1{*ubVK&@!)fF=_#w?>mZfNvmEIm56vOTH92Z^(z< zPiTw_fSuOUj)deLYt$AAbsxNS)!1*DyWiYlB%lbVohJ5Nz{MBJqRw86)?}+ou$x22 z-uYm(=?QQw?=185yzx5A`@g<)g1(v(NwGm8`AzfsY5|p8)lm`q5jrP@cj&Z=%;(0P zBA|Rt^p#S8MPR(Hjd|V65Ix$XGG@G+tL*FoB*?$Wb#znYBJ(Sb@|r+iy_p z=62M$$<0wd8Z&#-+`xadFH35cXA0jW$5iQY%Uf%LuSk24IOH>B5iHNu`U+wqnI zx>nVCR`2S`Q>G_L8^R8Jx*-=yPEWu3>UE~S3l_Rf@jBu4Wg&yJEzPiUT3y5RfV`W! z{FFSRw}xPRc~PwQD^;v@ORmMm%vfu`Un=vAG4@wc1XmM=B_PI5jXRohG;oCTAtkU* z`3bJ~@*W4@GvS9OqAFaxkHBF(tNpHIpzHR<9HsSq?Clq^?6$%Rf1@cI&OIoOD_3^H zHwrV|1~ynTYKn_jl(q;Kc|RQT*n=hC*2Opb6xf4|aZgLLRR{6=cR>6Fo#KbSG_B3A zaf6gjnES0l->>6N#B(xu5Pq}sa{tg#2~P=n)=VN3O}XWu2Q9)g06=C*Uy-ROHzav| z^scDKHA-`IvC!$Q#hK;$_3^N}W4>(f!7GY^>*Bm-KZRmGNQh0j>apXff7W5F82=pe zV52A*w40~I9IU`LLhWjmW^awxf}WEDJ!jWEPQ_*=4UAO>)$BNt1{-BzltX|Sszesf zfG{J*ua*Ce|4YGX?}NOBF+k6Iv+j>%F`A79qBe?X9@SzBir8wly=T0f#wXq$#>LVQ z7KIDbqZ1TA&+cz2jt)PHd?|1(&$TR~l5cLWw6CWuEH(Z#>M$>%`|L`Tu*SuY22*JU ziU9e|rZyea?2(`*e3_`Pn^nvoVUO_DPny3`omy!!uQVV_OaNZE7apVn{eTuoF?ihfdB52SBgG}w0?L7 z)T@ya;xep3xK}@Q7*ejfS}M=__%MNElF9!3FR>z(%h!W@IWmd6VQRjFFnZZ9@@U2E zPy4|WmUyQQF%_b>XoB3H6t$T$9o_Pile=G$*5cVbV`jNiL!}=Ilj=&RXzOK8ku2q; z!G(f$s=GBl{vOg8ARNt@Kl9QdX(|jQO(_vyFviuUKo6w$8*IhR0m&>fCoS6FQRm$> zC)A&-?AJ89)pmsH{>|rvHBCTri-U-^dTcNLOoU#n&=+Jhq?Cuh9(M@t1T#c#pxSPX7M~88U`<< zW8Qqs>Lb?3CrRC>KG{AinY8;$9wEgn1F={rfBtuGaeuOKkosR%Z#-_o&||_0o?H`B zer^=kV{$@@idVhCW?axaqzK|7ZNR)4w5UT>&Z>~6#?zDXqdL2DS5fXNLY1swY|vwY zSm4Nu_D3$kVMvem?IeG~?O&+CKXE!ImCL{JNmO;mAxhWOc)yBU4ugl4JCfDZWhqa0 zudaaD_N6Ab2ot2eGD!pQN{1|MZ8yq!WE6jc;l5A=W{K{TlXR*dv1L9gZQFyvh6?fX z0KtD=@4S(2UL{IdjGCylAjPPu@A1Bt5pZd1@UAUsk&+-rpf5YPK*Qmcj5U{yqf`!| z8s+r6`20YWKTNirF6(1zhoSjEJ2@Fasr#xoJ&hBy^e0_vuJqPLpOyD83j#Vutj2E|F2%NmhR4ZuTh+ShbfMcl$<>BuTxS5CvaOP(lJ3 z=WA!{V!b@9_Fq(6@q7E%t$a3(}AKcsLY%3hH>aTC19Yd_B zG@G?rhu8Ng`=F5{)IjY`PpV`<)QVOB~Y{O#IJJN`)MCDV&iYlf3saW^-)og8~AC- zzjHuq{biHa78#7Q`tohn1{#*$$>A_l9-;6rERD)765J!1Gv4sovqNDp#7w^ZpYsZ7 zC^MtYK*4rm!Xu87TjyKB_nox;<0c`X%uCta{9ro4nM{=D!3EDuhqiEN3`}6yVNqIY za%O)U(NWUZfoWiA`$A{Zr>}xI)*z)LUNJR-opwv2HW#C~`Ntd8zr#t#nol?|bcN zNneR4=ek)4yZct5eJ&WK3bbb1##CU(NoYhoWl4JJMv?gMtTN9w!`Q-7nm0C|GAEGR z1+e!t(k$V{M4glXoc`XlvTZ80w zCrj7YdIl}frXPCB`4_b4;>mS-R*k~mpMt(&1_)i^Gy~X88>xN~KHkcfBTPt^G>=|U zZ)mwls)`ZLNj+1@*zxPB{6^3+{tp1Lg3IfPz?yvrXdjfags z+GSsHYj&c&sz?_NL#TFdXN-0!iyx%`hW6X*IaY&`Ha@_to^c@?H&0;x+GsS>s3!9S z3-|smHt7*T3ACF%5r}D({7k-LRp<%codi=mx1$lftHTRMi7>47EX6raE1D+?N!}M| zlLrCKNIHAp)*$y&fv{fdz#GZdpX_660UHoK77V$Oie&`Vf4nT$Qfq1v?Lpy9sW1&oLo^{4CUse~4lw4WW`Fgy^E<&e z+3B9p`QEnhwD;s-9HYncX;(T-N$sV;p-}KXJ}G5~U(R*yu&(JB`!p{Y^i7B_dG&No zE95Wpj)JKQLxwYOF7n<;V_V?ow%c;J(|xKe+V4L~*e$~jx(C!CdGqQ zgPE=#9UZU_#ib@}3b8MI1lwwwv*3M>sd#3}3i+|d>APpw$rz$wo$GH>zs~#Ztw{dy zD{N^Kr)(&4aratu7GQDyDYSXAfOv5|)8^B&X zpjd%8@s)@HDXx@qiv}uCBuY_dQ#LcpIXp)y#!X{k(~oz0i_ym}bi_~FlJVqgzEjqb z>%iw-+{CJn_Pe{DnQS80jOC-eVw0Y>-QGtW%V&t6`BRW6!71EYc84?WD@yULh@1^IYdZ3(nxyQ zD|ZH%F#d*T{Nf+yFdY$+w#|S7uoPwwsGidjN!4Aezvs+cFR zv_??RFq?PCh>B;y4_b|bvhq)cw~uvrzhvi9k3#1hQ zEViZSa(v$Ao5q!+LN1x4;E|1iDu=|=g6AQjQAL%}dsl!bOKjwfssyUnkskhS^WYt$ zWVXz`)PUW$wgJ{$i>`fNZwe1hk;g##1ti^<#PS-GI2gg{unDXQ6czd`*EX$%LUa^tLMp36IPz)Ac?6L8lvcox%`E(Q;(MTOE5UEC^~ znW?6{jBa3GOL@T>%Ju7cGeVD6mfsX+z%x>DDkuwP!AD5+RsYOP3@+1Xg@w|AY_woENoX>{xbbQev+ zVNzOzUf8_0NB35&W7wtsHnBlhG~5J1L`7S(B+(c1;bE>Qdb$FMCRN)MBMPTi(e7pq z_5DkgF0Cvk)yv|7GE!9F5_$oIryj z=1g2c5#}@}h>N_)2F@x=j+SiCt5fV(8>BBMtmUesaD!MgX=tWnXw6Bs@jk8BtiX+c z+|J6Vq}`e&?pyxuI^tujU;oX(jl18aGCk6LvOdM1pGsmkrrYi+6i2&#D$Dcm^o$x9 z>wj$P)Y7!7_>dWr=c#87?Rv;9yR^2{PEr9%Z38j2A&JPl^2{~vvdRXkd?BE7!Qi>jYhg|~0BDEs(0YcD!%M=8lj))Nm zh$tQru^@I-7l0d&^*T1!ahAG&kV1SBPC{QeQTYQ|lj_ayD&N>8>|#vOZ%|_@7>;Ko zJcaVG)wzUdi5)pX#f!Hkq1eg=o)uIkoJms_*-A>4O391y^9x4KrlIfQ;xdS#a4{YZ z;DW&=__bltM=wfW=3(Krq11i2=D>!)LrVi~Y_dRg5Yh$lV|pP^_4=9*u1)A?D*%_S zwB_)du~pJYtS}F9HsMx34dBQFRz=g>Xu19aQu^v^^^xHd@T)-b>>2&Ma?GZ@y%l$N z?@!9wU5=CZE~Mq+%Lb@20axqi!ho0=?t#ObP05vGcC=R4MFh>~N9?ngZ}7^Cs|MJs z+qu4n&SYQ7;wXKy&^+9syz)b?0iX7e_ubC9R4~+S{u_lQ8g&+~)Bp#RZib=g&9bob zWIn1=ptBE+lf&$YqtN)CnlDDgP>w8o&ZQZ;2d>M#4b?xJ*Jr>Jw)7>slIQAMOY4$f zk&<>s7i+x1!R*8O291{a{c&ou;*hhWbtp0dlYYpg8A~auj$!{&u+0t1Sv0-9%xvHz zT4!eJ=(`}r@>_I62*$W4M)K-CEt;ZMy{tT*X@p<#>%HOOEonkwuOF%T3=XC>B0HDL z9$3xv`=Qszkz#xyc+qXF*)&*aB6gzpmg|!wP|*sW!7q0;^&8Q>7Wb^cKD))yMXh>K z_xbAlgdKSF<+qkFLf?7XF!4`5!6Uv(_n?pvs_}F!L!g^KW_ydeK_vku$iEqda&Jto zMElN(CmF#TQi5z(BOk)}qaH)Et|1fHws1&@F9s?q6iFj(?S2q>@r4|TlU)ng(a@V9 ze^={|PcajmsuN0(ibBjq1v^TLqZZpDEYL9F4Qyl4bbIz6j8%kM>DRhJ#dz&79x2b7|pAn3xjj zHpPxyD39f>o5)C_7dLep>3#3e!X&U+=9&K_Ks$MavNlRoEWKnry|dk6`&-Zink<7t z_{9;vCP9|)KylZ(;9M?n)mXkOF*CPv(IO!w7tx1Ujg{y(T^DLQA(2doI=p;#LTXYB zM`r4LBH(_pI@w91^ZcQ|dve_ZKA>I?mgN!(T41D|lTsFrSmADkfg!O0%VmTUT&SWd zf;Dycs(nH*d{fLig*xGr_?9zY9QRVtWNtRVHJ@a`pKm1MIQuPsaN;3!EH2-lM7b`E zO_^VV5W@qjvjQtPry~^c$SfQw@E2&^cX#N)fcSvlUvmHRcW+{t3oQ-_x*5WGE~@zQ z4ejyx^@zWU)Jwz$I&I{wk=(Wc9TTXKCvE*3a#F-qRZ_$8#t`K8ViR<>lSj)h4}qo( zktHYoy8OlBJG5N&wJD_i@+@o6k*@$&6DEzn%$ZiqJrSIY1yjB4c8O7#PUmb*&ygx4 z&Sb`L9m5MQ)yl<#o9;!JA{%|=Z+}XO&3xH)(%EjI(RN(k+ z)oi>qd3PKJjiclKjjt0^P%U^IjvQrOLC(myaQA4gNWS9E|0pbeLI=+!(+i2#%xlk? z|La_OlET7fThU~PBX%~=guzLu7wSSdCV_YKenjW1oAfK8a*BRQR zUI4XtCBDi&U1BgiW5u=bJ(4P>05S53KsVbVt<^Im^<@>qI=?Fx4E?z+3Q9_pniO|# z_ayvj9u?gEf*ce-ibT$d+RhCQCbxp6skl36wQPrHUfh_*zR_M`p>hzW&i8DYDov?{ z{h6up6QJ|AIt-}vx)b0|rh*r@&S4!}h%>LE20AYYE?KgFF8FaDiTkrr>-XfPldkby)DMtd^L$_SbS#s}>IGl!FvxIvFjDfqCH1-|q?efD!xV7_!b)r-O8&35 zHzb(B1kM6+nepa@V)bph9jF>lMN$AE()MjJgb6dl&TiCM@U6K5`i=NGLO_n?HjQNW z-pM&nkV@V4qsoDJ-w<;)GB>91Yinm`{sEX3#&h>135W%e)=x+^<;8ywd*ON5Er>e! zn^hUkykN?Vv+zCH9r}P@!W=A@B)XlaQ`h)z!U~-%y~tv~L;3oAVAVr6`iC4_~Iw(o4H%*w$;AfXEuv#RR* zZwRSM!Ejf3ywJGmeAQu5FD$=Rbz9FZ71ftswmC~|ygEZ;v#7s_{uD?!v9asG$;f)6 zEIhzxM2mCan$WO+Au_XNpIQuZ== zv;V*=fpD9{2uz4k>o;>c;JV8n1VDEE+pbPCugdG22a|2+gk`i^3|RfZY_E*wveRtE zLf*_!u_W*arqJ)*hyJ%H$I7?7^WZpQh4@%uKk!s~xG`!a(G)-6OLNE9U@GYxzNr8O z<-^FD1|tc>ygLRpHisLV6x zc-o5H=)T=Z+EiXahuE_^EK!h`X5Aqb&U)Xo#&FOZZaMn1mfh<0+L~F=ef4nRkrJ2* zc$@|y5*yp{@oI-Vh&-?+Yc0VrIGmJ)ndOACWzt*!*0d(yiPHfeQ0Vzbtk1<;UcQ2I+@C8GONp;6$PrXn*EGki46R{qO= zrN*ajk7l+dn@e@miuP@$xNd}1!=ZMF+0AJU{3}=xf&bgz&(vVsG%f~S`J!KPn^;r1 zz-WS~%1cXj@%h0#s~|o)llCUp;g^VDWTkE+?y_5|PamyB`JWcNjX{Lh+>5RCJDR~6 zHTgHQ6nl7Zt7;R9wjy`F06x$3-bUbXZPCs>iW3V0#EJ>PCy7!V-RBQwA*Ajrd8hN~ zlvURiP?Ls;ylN&bA!s5bCF!!;W8w)b!g+oN?Z|uxVM5*FFJMCqrTHy!epqU0(Le*$ zt1yehzkdRGd~KUwQ(yAz4>|GzYy7BxLCGiD9nl$~g~1D0TCIC;&|4@nP%G(idb2>}ZCqOX^_ zp312-qGc(BnrIDq8MRIzt}TG7NB7CDyiy(%yt0PSjA6!h9xCT+^jT?_GS131J}0eG z940EXr`AGb>U{)(py`D5iws$Nh=SaMmaZq1p3ht{xsZv+IQ&ZCvzz38s)^&P124LI=Bxt?eSiT0X)FE7EVt& zhFCGaIy}t=b5Gtb?_4>5h{0=WWCn{Vz%n~YaLB$7kFjiy2?#Ve4y&Ds{ysqh#GRQk zen8$erhRbPrOn)VANlMSRV+osI61;BLLI2G(+U!usQ69xnmFFKdjUJ7I`W_KQg2_I z!cqpRoq1jDf-k!R>$_^E0_?4ohu-4j!8y)jdAjMtQh59>B^5DNdMj9DIKIfH(P0Kz zRYh-FM^z8eMN>}Z7ckA`tz|X3OUd-kFpLo#n-ba_lQ0kJfz*dH` zpL?cEE&2{+lcnopuCQNgc`HqDiW;^vC)@o!7T!{$A;j-YvMt9jJFS&M`{iP7I_7D zy+^|1nPRZ|oM{v^j38&4k~~o0$e2z}Un3rm%b)PPrX* z;vF>O(e0ms-XF7{$Va(zl;Vp<<1ljt>!(eT*r1}XsO=wz>E%aEYkO=@w?DCAnb-7t z{0ylQQCk0g;xH^Z8@vgElV*w&@WC8vB!x>oQ_n(KyD5j}sRG>wfJtr{I>fP%Y3Qav zLU_1wSG669Xj{IR7vwY|F$2RyL~|^O^h`C;Yj#Dq#*LX-Pxz=F9e1P}xrNT?gb-_r z1o~Ysq5Ia+31^y^(m~E2={_YspnJ+)dxFi=^zj<0Jgh@$4NkVIU7hd50}WpWL3kM% z%Xy7^bd4&tx`q&|>z^wK;=9k2qvO&BoW$TZkZXh*GqaPuUHH+<|H{WYdL*_mXUQ3h zLD)ZHO27gF8T9JzgM^&!9NG70Bwl)?aOBGzXJNtF-tb*+Q;$`*xKMLg2Lbjfyj@&^ zvZ(ue%|cKFruxeJXZL}mJis$$2&uM)l`g}7KmW5263p0yb&^7f8To^E=dej+3LC{otf7EDp2`aqH$8}fDW}3U(P!I&bW*13l2|!uc~~NWYTv4Nu@e6$ka<&-S}m>CITZ{L zAk|=9&mba(WQgI6q5=jxO!VEz*1_1NB>AUHHd4y6IC$2CV0;teVz+-q2H8fLQ8*3B zM%6Q-PJ$!3ZvTsvsUHjthso`n9;|A$V#jp<=$EX&{26EQ)i{t>kdTIV=0)e5KF`rG zKwvpNXB9iRM^VkvmR2OL>iQ2Q9724f8$OKc`lhT(+hJ04GTJLXSy^hzUK!T z23s!Y3I}PeP;HzI6NmYI&juGR2CquD;Pa}sH?`JlS7)CprbbkS{6!hicK z9SqYE4&4i_fpE5&0f>R0u~Swwz-Hk=CV;oE26Ig}ARbuDBT2snfE+p4)Ul6jK=S2x z1T#x?Bs~}+Pz#qCUHI~=yQ+P^LaxO(DzBSsir1N??yu+eT&e&p-4G8#o1D~j!~5^% zSxDZ3@zr*7nTI<8TgZ+Iv1zkR-6(t5uZiBBuidGl|K#Mv@!y=Bh&b7p|4)A=BBK9! zu(pk=tla?h*#!PItJ+O&x3)r`!5_>A6kM~`z!M)7W2+1@pS_2lF{+ZUoSjdD!WDdqD*%kjwL zCBLruMd>vmoyT@^n6#)h{9ucxwJf^Z-Ay0bmabM#Tsa63ELezYv}zeW zR~BDCYXtCFzGwf&)II>%6x$l{wT(4XZ_V_wZ8kfy^+(>rsiF-qGRj|^X>*a=zQq)& z6Q{2*s?9K|EX^7tRQ6Fez)1zA16vpa0|((S7?6`18rf9p^#BcubQvYK0}wtm&+=gx z%qnY@_$hJG;~N`Ji_?9ONdS)YxUqqx3)LR6Av`Z>HmGj7ysalExof8v93G| z^60BU_WK>k;Z&S*^n>3kX<2(s0A)5L@&O$f?^=?KKe#l%!yd1$-=o8KdW#Q~v z$zdVlL1o}nOfnA_{e7!EV>Twz+g9b$sR$(xx5V2P%~Vt{4yT*P_vE4Yev`N2fI~iW z_e3&k)??w`DcAY$L$Nu(JomlFLc?s5oOkZy)~O_;cW(2)5C1Nu%l`d(@L1@WO=9rQ zRl0sihRG{adFL%@y2$C!@BJt_v>A~0^m+a_wYrWu&)0TcFo>$odGbz@w}GnG@h`Au z^amk2H)@a3)3(y+KdFZEzpI7=!1}+gnq>KZszDmQc|+R~E_wddkQ4taB>wU<0q|Qp z#i~VJLWUECOc4d)>-i#sSVr{;$TOq6A@581(dW$U?8XOk zYunVugR9HT+qKql`O(!KrOrqDdW-6M(Wcer{H{N%P1d7R#n$obcjI-D?Hb5O_=nqz zn_BLLgNmbT`%+nhtr^PJ&6E3mZ65r9`fyw2pH_id!t+)SlygO?GguGhk}GUE7O)3v z9Ok@x{EO1_x`ZKM5D2NLN`}!3)bBKNKk~Wm4?Hoq9ga~Bjk@8_={~%XZ&YP|u!po> zN1tu)@DIE7&#vu~3poTwDD2-Hg^uEV#eG4iU+WQXv!mS^I|4kEZ2YuRYON`_ojzyp zJ`ekWEy=hI43V;Xndh5b>D&mTN z#G$EVqe5`>5O`)T+DoJ995PF2`JZh!b&96#Fg{sBH7(JC)|G?rEMzu<;>AvLup5Gb zv66?}t2qs;e=?;GGclfENG6im-dVY&K{8_v=Y-9hze!eMoGOw2IhIS|2kKjLbC@VN zTXTTKaJfVhOjWRs75ycFugy@{_SaKl^knLrnln~7jn~(ls`sCw8TJhDoyaSsq>O`* zeRI%$GowBD_NE3qy^L|PR&@DnG2bjlbD%fOw9~U z&5%vaV40cInU4Kh^cc@$R!(A7R%TMB&8SeFTCy^;5;n6UHM7E;S{j*JqL^A@$f(d| zR<=&BXqj3nomw)RS~{6p!kA)9nPO9&Vq2bKgU^u0*>>Mw4b{i={${GREh_1L?8)N> zEZV33L94)Z!}ZeL6vX_t*OOz#$<>S86L_SI_V`a{AMoGLJ}2w{<>>eSk{GJNCa1y& z_5UL=5WZe6?nvF&pMh`$;_}Qd`?tQ_b>&sIZKlb*k1nUPJDv11B%hs};I6OlYq<$! zczAJ@vplo;_!?Gwt5(bmUe;;!Tc&Rf#;aO4@~l}Kdnqj+=9_Z^eb&CZ-uNmIdiIj8 zI@S?odG_~uIR|$fd$Y`1M{KR8=-*7=l^0v&Wq2KDYzizcs(JnlQm5-V*PoUDUTt>q zLmq66$AB6?FU4UXebL3gG&Hz-e_%@=tlV}H%xpZ%%Hf6oDpP(%lF@(Pc$EF3<rqRnJ;jLx(WnvUb5-{^I+J$aM!&* z%!aF{jZNCHIZ6_%Nisvs{8;9`-G2Zthj51ngx_P-cGi2)r-H!%SYX6wGE@Ueoxi9v zpsTC~r-Ej&hrDBWTHv}t1H@6m=P>Sa*7&0yhaHD=_-MBz*__DzeMI^the>5q4loB2 z2KW2VDS@`Q?Oy=qyVvREI;&_vs(q=Y{-LV->Im0HU`GWc4_KVOq8FK=D9;LVm3yJpEI(tFkf8v zA1|&SiX;E=;{N~UMcqGMSpUy>@n0x;@mL7?#|xiamVdl}&MT97=QaHwc){c8^Hk}y zy9qhZ*ZN<)SZzLeCm`%1{V!gOjrPGu>rL!2-aV8n{3p$D{r^HU@&8*h|64QvPmT5e zm1bz;%eDT4W|*1&gJ#&6{?}`)|JIqn{Ws2tNCF;r>+%Tq={E^}9iHAjMDwM05!P*H z)Nb_Tgv4d{tQYXTl;o5Mxar!vrL`QtnPlCqZ%n8yUfvGreY9?EBy5*u{a#!;3?jA5 zymzm?9D2_+xfI_<0)IAqxp{u6=6w>Hem;E%tV~CPzVr~p#XfAaIkCGc8~ctkZX&vD z@-p9zas3~aT?J5FO}54@xP}Co5S$=0gS%Vs;2LCbm^1aqQMk%`NMO z?Me|tjc$0gY3&G|vCQ_JmuHRReRem;=3Q;A%JpYS9f;Al{Kb@pRX%!tMM1OLLe{we zr?Q7F^2!Bz<}w%Uj^HW{gdY?TCaVLOBIEW4UtiRv>LA&uo4i05Ndq8_fkrS7rH8Gs< z9JPR`vx*$Pm}jQkHh^C(jo%@&Um8GWF+nW&EGGf=&r*Y=CN2y=WQDFV2{Z#b@@&Qu zh@NPNy8qzVu$ffISMy8DC{Pnr=VTQy)N*!HY@T{F5);cRAY8m;E7v@g;ZguZUS72m zND?ra zB}pqsMcxY}v^h+k{4x1ej+T^{GSeoTiSg0c!^s^t?Futop{mN%>(J){a6LFD;fCm& zjcM-~G+FFse>f((I&DNPNMpEs)aqK|`gfoK{tamO{=c9hZvTtU(=!IJ|C7!)u+Q38 z#iu(nDt=(3xjvc)%OGkF0&GQn!M+o|PY!+CoNZd{FFcCrgnVjcd=6iVy!1P4`3If< zJ1HL>SF(p10y=(cz2{wA z#EClYLZ-Txoa%?-dGH&d=<_-|LZ^5}$NMe*u+I;&u|(asMOBVw0`&X$sTqskb6O8= z1F+V+y~o*oV6@ry+snf>SB+1q(k~{yfFc~E+C~~`WEwe~IvvCv<6#}vN}A>9i`owd z{o0=;R3;asu1Lj|!~TFK3W9;l1w_pp(XiMhErY#L#HGSkVl<|4P-zlWv{;CKW!o3x zf=eKFy5}9a&Ii;#iO{^VnKx^4tq%kd#uROk^d+8j`Ex`P^gW7n4VMuPkfG6xe#gaP z$%#mowooS}kwXNz@6B`Q+xTYp2tQy;m`5(s{J^j$#ygbu$Kuk#|IGLTK~@rwiP={o zRU9rw079<}%#rG4ib_9u@{?(n0jvHPA9#u-WJ^+_8k}bqUx{{H$R?+v_81qq+vQr6 zH;;9%H4U~VCbPj6+YD?nry;{Sl$kPkVo#A>l&3qjO#Oq}v>erwf|MCUC4EK=rLh{& zJ_-IAjP3kJ-m7accp^_-<@Pv+k0l2-VF;J7+r2AHxkxgFOYBbGC@HL{3!nQ=f4@;m z3gbmgQ5}R&v`x7A{sNmUU5_D*a;cAJZRCB=-fOPdSg*aamOcWLdF8%exEXuVJ~1|O zGiG}PwrrbF*?VUVIszy8IT!Dp zzqUDkZUgl|(t3!^)^2X)$hq1oOK3#`DHUH+xVM@ojB7YhYkpFn%@jctdG52TX5e7KESV`_0$Z@S?Bp z`Subvo?hlTz9s(DEqll~%bUT0**hH~5&srNMO}ee_+5{u`}qaxaO;G5-FAgY!<6^< z7W5wW_(uKfCGj|t+MLJSyuL6ix+?g?=_##v=$!b=8x+i@CLY=(jQAgr4hFXWEIB_L zaazh68e|%)96LSf`3+q=%zxD^$$#|9HaGW|89fp`M&>lpJlzlHR|! z5I>-ZsIY4Y55KTWqf6tH5y7f^S?+PE*_q9%S;{e-;)XXin^7HglsN2Klu#et6vG%r zO&Xg}kl^tzV-d^Bzzk^%)fhM?X*2HQE3b4WbeaK;AzZM%AJid0SPuUUs&I330JqiS zr@Y~U2r7TgkGw-t*&u8&2IIn>41;ivuF?1?ny(YC8?1epJ5*2j81oDsN2d)DT@$!O zb|v@+`R;Q_bs8%UrA+F%tPc1LqGPF1Uc#ZHewUG9Hv!ZsfX-ybPHh$6Qp~F&(vz1( z8)+j$+(pO`6iNe22O?ZgG$}R;*oPIyhZQ)76gYy~1Igb{!oVKrW zG}XaOx<1%uwI9@19snNE8;8$eg;u43t{+vY1`qztga`fmdZFP0wQ{$FxBysTR@T}O zeNG@3FAo=ppAC;&%H7Qt>cYy#t!?M#2thtyxm(ynEZvYX85fAT8?sEr94P|uv~#ls z*m}VrE-nyjHtv@YFHfk8l`AXq9sj6k2X&S;cY^>}WraaJAYLARpdbj$D*yr;B5SBZ zt^W5yZ5MMG3}OY~mN$2Fh2U{(Xv^ty$-6r`T9`XK|4~}o*3K1x4F6RA1wa?#;)-kz z0OkVn0{MhM{Cr?e5EuVny+R5g^;NO+fB^nz!Uk}FnY-D#Ld*dk{}SZq;^pFD!xI<( zGjLD~dpy2>`#NYN`v~Axx3GWZ=7h(s1`rhbV=Q-Zbpr?hdH=fi000u={g-9rznjtz z3>~0P8%ggf&AQ`&Ty1YVxdMM)lME_lDmZ;qdU_ee0ClXdDOCK#cu;jjotUbdn7yD3 zMM1~hr%0nAoXDak^i1Pb;Tf#6N>E~YPp%?7F8ZnmME(9eG5>p>8kTj4r84;AvE_Tc z`~vddj6V%<5=w_Gy0U}lAc~)oDLZ${@#OF4?LV==Era z^uh`a>o`6RwUe+IxBAz6O>qy&6yOgK>#a2FW9t_{yqR)zrD`1B{8^dIVtNGrjaV|) z!ZRs(#F#fK1l0qD{L&qZD+=)mo0`O2!9X7#gn~aD!aYD4Ltro5iMQna5CT3Fj-8s=egLy24Ot94<;MLJ%INgWI5H%=7t| ziOflix0n}blK65S8brQ z3^(D&LB6gdzL%)uw7w_XP1d)Ni?%~V`&4yl*myE#;x9yjw{V84_ZfM2E_=?b&E4VQ z4%mmoHa1?OK=>f<2IFoBM9PstwcdVpCIB^%aw@Qi?fPcWq~J@;b(< zJ_ed}av+!)>T+un!fcZq*a$ruBf4dsRW#H6O!% zsBDvuYH*T+Y~Oe|?B|Lqc4I2}@!18DARGuvuAPF|Dp5Mqa(ta?LYKi>PXf1--0NP6%P+lQb{HKq4%Y?GB(|zz zb0!~xqKc{2A4adfm6*jaZyQG{M*^CNM;vw`MZwc4TGH%CjVK=AHp6t~*L*-J9iVby zzy8z(DVZw8I2K&u-L*EYQyfddYQDrXXg~oxs`0+zGh>E?vwi_P(fqQ!b{E-{-zuy8 zyFzun#)zH%5TLlYpF~bprzLb7e(8JndG%8q-BB@A4Uzmw)WNL1;8RLX;%0_J+f<6Y z?^hiw)9)j|>!Izpk`=XOcsMSq^-5~kiPfhhbC{>F5xvNeh3VwFt$PTDY=rq7n_?>*cX3oc*O`{c2Egtk`I;k2MxVcouPNs?COiH@M z{1r*TTZ~Hd_ZFY zg(ErkYur*N6Fw*m7IKRe&Snq{ZNAMO#OS9ixx9FIxPIUsT@6?R=*VTtMQQ~ShC{ih z4Fh;3Z$uNUv--wxNZkXO+Zxl^v;^bWvM|w@g1H zvG>1q?_Mt>BYpBQIV)p6^~w6Qq4kW4TBjF5kM~BD=xnNZGygQ-yzD_#pEQ5t)0cwy z-mg=+3rh%S)(k?0lB=4InVH1PGw`@=zQHVr4EpRxsO!SQHcGW}9@Qzyw@<3oSDubR zs#xC{g6CDW>ekqTGglWBV>RKlJkN@)=D9cz6=SAS0b?)O2g;UnybFb+ROqJP#TOkJ zvp4Q;z-V!txh57Rqd>S)zxE(17^Ka}Q4SaNR>_Zd34f|+k$_FYPOPM_ahzU2Q_rka zp*Zj(K+vHp9iB*32P-`Pz<0(4$t!>nlLPF6LDntu(T-{MFXqGyG@d@)qO2P|$SD7Y zQg6V{p%Pln`09G=x-ON{xlQ?#-QMEddn;bz=_t%^8KVbtR#SGrbo}YeE`HfTr|AU> zlzg+^t+dOIPK1fDbavcNtkf*|NjqW=f_O_4Z?a0&nHyoBCJ2IBW*S^2`UgdVKEQ^Wym#V9& z6*kT3vYD3^=M|WE&DUs;FumOMa4yxd|2FMpSLx{P^s3%5(;NT!YWG;J)sB!v?pOF` zI^vP<@%H5hx*m_3w}P#2_0)^+Tp8ASDF|-K9vmX@T&dVs_UUOJF3GiNmL>ZdNH*NO ziOI}dTRKu^IwkuE+d3wQ5Z2epoxvAzYY%3Z4wEzOG`**Xh!-TYy*`V?^P{8A44iE1 zXNYo4A&@KoHZ{BJp^T+~Nxi8R{u6=t_A6+9m`p%LV&gaOodwQA z^z(fxngo;h^%|@I-aFRAVh%FyrTzgb1s|wsyCVPfQ^&7D-#a)=H)W8G~F=9SvuC(RF`etLzUGs znrp7>o`&z6Ydy%&8jJj03Zk$sw$C;2&~kGEyAS}~Zw&M$g3D*`jX?Vc(<9ExFXG}2 z={^#fO!r%wU6 zXZnh(I+E8M{)Wen^GGI!Zm631 z$$xGgdG2(=mv)kmI*VVUxGo4(FxD#g?0M9##Q8+A-ZtK7M6-)&c~%ztcIXLi#*Aum z+HaOkMtPwy4UdgcU$>Q*yF?Gy=cnZj`+F&O6>U-orgzgOY(rroBZP0hv1VKp_7j4L z&K24Z){8~#8uVjj&hzG>d&;**keC;%w9fPsp^H9LXO8d=RUbYhH~vOW&$=)-nv~z$1at@P?l5u)tK~v<6*6d&2+?}dQO{oqGqd7y7e&;MUVL+ zB4ke`m7D+4Kue@vymw=}s`xC*0NhoJEq&YHM7PB$!taN5`845m$Jf7ONdImU_~)iy zUkhT5$F1aS1%U&McmO~U*aVOJm7O=_PZW<^4`2iYfB`^crWO?HhRpn9$=3QKVGTv5 z{!p$zDOrG#sGJ;-2P7m7mX-!eOA81I00qJFf>OK!GQ3iJLPC7};(-5N1=)@Y#MuVP zyTBm6|FfxrX=<3OSCf43*tJYYdHkz>MROgi;cwAd(XXdy9uyo#jHD5=7S9+=EH(*5 zLj-odON;sw+^<^x9zME16dN9IXJF{$B2gy|HOG)W12QvWHby3YpT_j6#`;u^&$i%C zv4Fu1*ETlD9LJ_7FKNoH;J}a|FNI5#bA*CeHIGdU_3%Y-c<14a?eUDj yrGhNDnMB=M#1rQ$sbLZ6f4KWB@po4Jb{9Lap~fII>qA$~k2COLI^y#E1!Y9M_8 literal 0 HcmV?d00001 diff --git a/.setup/latex/pdf/betaSandwich-zzz-tests-staging.pdf b/.setup/latex/pdf/betaSandwich-zzz-tests-staging.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0dd944709177bc80d645fdd9620afabfdcffb817 GIT binary patch literal 97502 zcmb5UQ?Mw?wrx3W+qP}nwv9Dy+qP}nw$`+5+g9ycukP1A5${xfjr_~V$kuz0F_Kh4 zM2wb^junb@ZfRrOIXj|4;*oivFvs8XV4~mhcreJGfR-y7Dr&|;%@Vyy zR#|6?kWBS>R{{q`7cWG{L8^{hAP&nA(N?U^tpy=GC>O&(h(}9boZ6dkgi)gOF34k+ zqFZL195y#9+lp99(}KleC3v8}36k>f`Z=_xku}#y*;Io2)s1Z@BuL z@`p7!XUK2vPv;kj?P$|5j3f`FvFM^<*aUcF&Rh;Z0u-u}i!ek=LW~O{Xx}9R&z@61 zw58ugxa@r3F+dVJLU`UbZgr}ck?xTVn!v5u*A7J$K8dJmyAX6{oA{L=&(bVfLNBpw~f0&5?}xHWuAMqXv!q(L)~!KArmN;sc%Xb zDcURXxWTLorvc=cKU0atR3+HYq+6t+Lw8xrVI7?7XnMYqIvP;mb~)auO5+4^0%Ed> z(`a2aPYfccs%vl3cGrVB17eocrDzwzjMp35+(eYbyUVAc#(Fd#W*7px$Jo=`D>lRt z2?|FqEnz`8#J}KhZQonuY@LE{)lAK6qh%uloD!^Hs5?QvooEEb@pynlk+tLt7LGFT zQOEiXhP>5}V5Y%q)n|Le=2Vt2D;C5LUJRKM`XEQ)Zi#@#g+Z@F!wFoM0#nWs|I0$L zxMy_dNN&ZqGxY0JyeVvmtfg%VVkrX@OGwbUE=Z2fJ#-Q{U;rJePyF3an>(uni1{eo z-SicQyKXU_6p11GsT{;^rF%a^S2IiZ2P#&Y9mSei9qS|t&%xpO=eR0JUrwy=x^k3u zr*vzdHR$)8J5CNhv?ysv-t^|xC(Fx~g9|UVm&9pSKPTt;UfqgNSV(nu6`aqSmsG^ns;c|nV9_isE-C`BI^Qs?j!?qOA)6-kejGs&-ZKo?IekfMs(6bI zP2z*k?gVI;dR>)o+lK%lfXF9+_hZuT41Ci2S3}pRooG4ko@?E*P{hhCP?pOz8szKv zcDIUltY6uKol2|j0O@A0w&n*{m3gk`{YUe;Ey$aiR;sAx_IZQ}#*k@GD}9-3t&bWZ zP?(EXxh2=0nmmZk9ivWe-}PB+ac;0huvpFf=)z^?acR>u3|n(ePfX zJd1Kpgp8~AK*_m<@f!G4W7&yZvMrT$R%4-roeElo~S0$dWOV?hd;>vHU?cs z$0SXy0Ytxbt3BH5K{W|7_prWH?CoS>O}jwrI3D#RUCFX4+H-yh>-js;1EjPS|EzV} zFRl=w1Imiv6pT@%9gmf7^ObqgK;MzqATN}ut;zqV#s5_QqvOnM{}yx(7WV(6=LG+E zLBH0pv0G$7_}S4nge7c2n)c?)(d(2n`$DaP$0169a zHW(EF0|BNaQtAggRAZx46e~w1K1cvDu^beuX^Y9P#@dnF+SpuXR*WDNTIGmV=J0fiuBQ`cDI)&}W)JutxC z%man^upVhp5GgdGp-bS^hj$RBl?(`xC3B5~z1!L2_Hc7R*rKFSt4o_sfnafFRdPPd_(?sr_LeQQcspY7r|2Lsd{J2a6yinJQ&3Y+E+}vy>r~ zu3PiKTnFEofvE*Z=XEwO*B3MP{dBPt-$BbH#)WAx!26o)p8|*qi4b*s@jN@zdZEE^ zxZ0yf+rxMN_v(U3v);D-j$Q3YuM_)b`*Oc;q-TSIz6zov-}43(7iKUyIJjJ8PkXT6 zAyz8C_Q_?-ilB@N)AErzw#tzn9NV4tunwrmc)B0Cc(5HPpzT;sSjFBhql>DR=quW5 zKJ=S2l8HmxC|Sd?vDxvQdp~un3Nh2ZE`W@lR0;0$!{OE-G5RLUeJt(tQmk8JMaus$ z>p(G`x?m174#l*(qS+i$6Dfo{djUh27g^~NTLOA67CryqebvWB%-2yaQMYA9 z+dkS3+x*L=8xd)2-{;~IWNQOBEz6!#GtN=VqNMNvfT zG%r(RDC}Hx>jM%hf+_poc(O438&6KA{~pidbQ}3i1_b}US9J}Ur1I9x$1Yl%q=fuzJX&ssHTKuLzoi)e_Kq?l}x z_G~DUN~7uL#N~>mw^xXGyKr4=q8ZKRH6 zuRhlefYXl_{?O+WTs_^5cFQUc5D>u5lpC|@emAi{hc<}W;90i?ew+0WvarEr4d_w# zgDE4h$I8RO8y_Cd!-!L>MyqvWOrgMmK@p_bFWfy@5~tdiw7a@W4Mxk5u%G3u4cy_T zE|C;!6be|7nxSydWuIe?c*;36mU>v7EX&9qr-NAWb~-3FJF(Lt9yGPOYav*f&HXM) zK*RtzvI9egDqq_g)_^$Fl95YWou(@-eu_#JRCk-YB@@n6XQ(U7n1UE*R;dPZI2n7f zTs?;+*u~D)g;k9$rvFt#w-S>x1 zCaxG96bTS&4OWI`hD>IpdnbVhNWtKD2#`}UKF_zz+!XuL|l9|C1!zFV;eTi4& zDL=k~wCr!7x(X1Ltu>gH`ts_$s&W58JA3{#f|n1Tam*Sj3wFh+>>oqafCKfBvZ^rw z{Q!`UQ=8Zd<$w)xTHkzC_#-Pdd)3=g#cHT=E;)U;0A7=t&6QvpO#^10GeJoQIsNry zh44%drpv>!k6F%%71tHSa1j@pQqb{R`J&69zs97KxKORLPQ(hQ{(AY8TeEcI_94;#Q;;6{^+hnaeFlXnz!xR>}Y4R-<&wZ!10OZC6{Eq{bu=~kMXt2F0Sd?PVS`t#>Or!8aKYhaobbP7Z<+2%ms+)SH>$n zXp}355z@Q*z%{*+3x9sx?u6>nYpD3K20Sar4h8Q$mdheWzs1h5;0?!CPgtm2=_d9^O?r#IQ=+L8MiGNdRDR$~Dn zGSIl9uFCU6SK$-c*^ht;IdzU9c{ zy9!7OEtPxOS3oSjj2AV2JP|`g&rLxgPyi(eP7;#ZY^)MwNuJj>`sYxS6MUmkQL|Dk zXBJyfvyaEl`-UqiE@5)~STcg=%PNxndZw;)k>s=M zwddE680At-D$;Jx;Nw#Vuf2r@8vtmTcnL(swm*v9i&wnXD_w@H&e7WgpfGl38-|0g zgGT~=Lei1%iy1HbM0MIXwb=KlUqBZj`r!UFbGBTWuT z)csX=_8YTawpxHb-|{(#Tq3MA{dA)yo4#fUslP23djIfySK?THkge)~y~;Z}l0Om@ z*488yhO^eaMQb~rN4LRN=oap#UE@IvB_l~)`nCc%h$Ox z0TV0w-@O7oWD>H>g$OL0@+%-om{&mQP;(b1`~t9i+L1MY$AN926QX5>YB<1#7X@Nt z)Lm$xQn+X#mGV1cOS=elKx#Rm7Zy4js=755=MAi8tL2DlT4bAqn9Il|ChXrN9MYkA zfnV=*QBS37yG=wka1olkv||cBB~Q ztQRrrHNDg?xXBf#LHQfg5N>aPe9KXQ?G%@@Dao2x10G34>n}c=Kbz;*0Aotu)o21HgY=>GYkUff6ec zxGF1MXWnysUcMd8wIx|dmU0|lj&n6q$3B5c-$M2}dqQE@!n;fZtl3?As?C6kk+kDjxH_gdrl=m z*mSfJV?+VYQ6VlBsV+s5BbyAFrbo5&3f+1zCcpEjmGqI1pggflg9N3bS;hf+v%izn zwTTJDht{uSj{HbR&P$H`Z0&0Ss|A~v2xNsvq%9@1t3}aKG@p3o8fy--l5|KGMR)0X z^<-AoMy?21X||&J<$vvM0H^T#B~f86q#hDm=D%cFZ{PXalLMQvER`n^%MO3zad1R> z1};9qiBaGDug4XGq$7$Kr0l3TSGYNOl5t2T!2P8f7btC9xE+`FxIo?oR%!@26VFY& z88hr$%@|{Iib+#;JhiUz1GQV53ns(wF`8dXFi0@sz_jj7k1%mreimHH=N3+o%zB!p zBO#1SAcLQO0x9!hJU3$*x~l|_{r~7f@5Sus3|6~=X=w%nMvbm-oX2)87tk7JHypX( z8Y*y?3AO0);$&TV1y}CuG^yR?LdGn=Gp1g%ssRNr=+VGd^dCf%52^KbaH#vQ(`1pX z)0*4qHJ!It%b(nn#F(FtywcQY)t2r)!0?+`sH0W?fF0UAeUgIRMMva&L=@BPLIR2#!D`y`cr((u1-0-JhRM(qz-z-@m=AFgLhRiy=v~B;N6IQj?Ei0 zy&gT?-Fdt^Fp$@^fF`_mh_GR$9Twm7+<4K^Pn!Jn_c;1V`gzHJa_{RoEjj*;LIkU* z)Ky$9uk`!_bM|DgfM$@br4bDd#hx5@TTApKNFzy%}euinA+@TP19tm$gT zo+FU$@v#gWXgMAg{-tve_V1rT|5h zuC(X0MrWO;Tb30c*6THn2KqE69&M>|Hh&$HmgjF;(cy|1+wzl#CnyYh-S5^BB$~bEeE|0S`Pr{0#Ik*j$1gRoU0Fnx}f#!O`niWap{_qw82b@0uRoZ0X_yst04HJe~PrQ>}jT zb8Yt`)AazG6T0bx<)&rEi$POI6w`aNjcRF(uod1GUv^$xq`Yp}3MVmr+bmB}nQf{iGqOfAg$Uw^A`UAZ>MhqB$x z5~mC@F|GQNF)zC#ovI2QNjq&KD>cB-GXOW$12sdUtw^tBnRW8``YeQ|Xdt;rl(AXJ zO*RlSy7MV#Gp{GMme7CCwsQLkkSi4IoAx8<`CpnLv{aGMzb|D8ZejnWT|%>=TL1Fca$_ zD-Y>;iDTs%3X+{io5`Kn`?gnp32*TeWPi#N+$Q}|eJHaaK5*rKCf9<5#>C*obTK#X|QBx6=9LHVpavOXE10&V!1xRVg_xu;YIGRyW|K6Ir zE?Q?dN4Qq8(EOp_S!*~gc;{&ahk7|6u(I>5c0s>Bat4_Bv464YE0oC8*;!#`2j`yt z;uUBD!s*0_3O|}tCXBT8MqO@YIXSo@4iafeU5=+n zX^8R{$3MsN0PrWUI*gNX`RUYdG7T74*hC4tY#JBKJ;zeS!`$B5-A<%2prCeB4Fgy+RLiv0({SZ~!t} z%Ll6vB?2X+#L7T0W2*`*?(7HYUUNL}Guy>VEC>uHRH&$e`*m%FpI0=QZ))3RNF_uz z;pLNF@$jO(#&kFLZPneM5F9m-*1`I5UJ-%=$Aj$chFPgN9h#pr{sN@t?FY2e$8=HC zJu*>X-+y<3;RU|n<-Yw=btMfH;84!qpmdAO*o)Vj+n>E;>YBcmw1@Hr0RWwza|kIt zIjp*FM|v4=={l@qnvn}U6vWl#R;|}n@ymZPMjH(j3!xSGdSJJss1aXJ=miEy6)T!( zLK(`s4u006W?(VCR0_!kkb*31C*D*|sjwBSCxfW5jS#HOLQM;{d!O|f|1S5Laz32} z8>s=2MA`bEjmn6^w6XTrdK}qszCo+D1fKl+MgQYx|C(}fGO+#EFSV!Eg4T zY#6Yj)U&>R+XG&#S5U@%E=LM`*MD!2C~K6wG2);F`SYH2zhR>UC51R0O)d`dbKTLVljTl^9_q6tOvf~8L#H{8798YUY zR=g_ZbZiZ_;AEq^GHT8GzAvgEM}PbK>dl=eL*Fw2G?>7aRo4ix1wCG^uA`AQowiPY zRb}@GRE!!ZY5OoJG1NN)4OtFxqxg9F1?*Z3us4uC#y;_O?#<@sr>LVlwL5)+A%igh zH6TbyU&F#j!afL^4}>$)_=|G+F;-PYn7$_jft#H$5Zz#p$Heh%*N&7wrcq3+Lj(f& z<~3|u^B|>Et&WwU94k_EhH3raT`3|@C2B;ur%V}Ds;BDm`e&SB#Qf^ctl-XH-MW9m ze-sR-5joleko(&5%2^8o^dkTmFCOfGB^Uo*QlhE^_Y=rFQ^7)L9Ll^Eod|YWfcOvMV zy%@^u_V4XMD|J$Bby}R*7?Dz-%drcbNk<(TCl$M0sJHC5roW!j{WnhvFP?>}vWKqq zt)sC<$M$i^N^VUio31Nv$r^>a2r%?7NDOcA470&#c=1(!fl2S*17Y#O1I^z za(>L!hzi6x3dbIcaI7Ci{0y&j`@IN;{3zp4gJp!V74bGo)~Q~D#?GAyN9p)3HYSgo zTwKdcIOs~_qqFs-XAk`&44cH`c1S7Yno49x=!Em*%?M)^LAuB!YY4g_qUUG z;?vvHB>Eu|#fE>A&Cd8QvKa{&*%_Jtcbd&az{$bH_`kb znU2@r)sJ3QtLdqx*QQIKyzfQ^i*v_GjUn2BNc(hXc6|6c3;{XamH0UP{z>Zop~=a( zk-*?>PM)RrS$%*mRB(TJ6_w!2ID7wS zVhq3*paFmj0(9;ALt#SSS2!{~O zAVmML3jkeHR{v6Dj2CjvYk45_y}BX5yZgKEoSV9{-H7~p{y;%BHG6S#gehdGCP0CF zI0OIELaex`FlclDkftA55KfLE`~yK-f^y*Thk!frO9KDGXf}W+hJF1eeQZR3(WO>?0u7~VS)t!i~L%@?q~ljHg4);8T?uaasd41 zNCW@m>oE9#;}>MzLEUTddf$KZPkzV6|MI8&&OG>`e*C%?pIz+Th2?$A5B`q9I|g&P z|BSdR)K*Onp_LEey8^!SsQ};QRZ&B`)&J<{HA0^mqMI17!TI46FKHrP0Jg3Kc51Bu zP^R%;)BDnA0;7Pf1ab@e@zVm>^6BmT-t$_grF;)P?tkS^@ayb_9lzfuLNQRcKi|?G zq9cL%BS6HHqumB2zl8(??0CapTEM=%36B5}z{A`;AON{z%%B4V5ZC+eme)f7P`qwF zk$XY`{QZp)!SlZGD=PZ}$e-bt*b}t(Bc2B*JHsb|0?_)7@s$T{{y{$i1{nAagtsL8 z?FT16(vMe%00{np=6gE5qkj-KTkG2sX85wBc$*s;TKuGc6(%k76BGnMxTk+pn0VJ$ zzyNT5$L2djJ2Q#`_)WUr=kuq#x$^_%!3ntJkN+)5U&X)ctDXFd8sP5U{G(AG*7XJd za~J{=#M`f?@yKjnWlre2Ojwha!nAa=l|_t{M3V(ZiL$nKtB5omgt6(tk`R_Ajt{U8ZiC0^qxUBsBYC(O5>~#&4q3YG<0pv|Nx}7W#bg4!o zEpsU)#=K6uC1WlEuIHY7PL4d1Y3$Bo)v$xn`%g5|_$!;%eq3+nix$=Lq1#QdNhwQV zz9=U#7MA&Q>UVCn5Z|Tl8>1L0%>!}pigl@ABP{-tRDEQDv0k^ky|YWa(HM_HEry>D z56!5QSBz+@-^+<_ zq4|}P#r3YfpL{NAZqd~H0`Ud=fEu>nEj=##m|e!T(bh5SL;tpwABm&K5jR&Q$k3aC zcjc?2ypkPEL}?x*OTYPK{5#CF(QT06Zkl7EmzSi;MPd29c%`eb>aGe`_uUP@mG@c; zRH_yO@@{A1s7Eu?rcOYAGAIvw67ypQe4j~H%W zw+YG=3B6x`nj(=weEcTn3^R-CLcyRg8ILxfD0Ob3c*V|dQiB{5h~R*nW+md1^amlP zIc++nZsWjs?d29*Szj#k@d*8E6H; z7AVBMLYYZ%EbbI!c30%mP%{=?WW#0=FJWhHNEI_~Ds}Ks9<7M3WlmvVwpGpZh}xfa zA~TL95*?eU!m=Q;k0bGurmU{!Qle=nZ%Qnzb470MvU;|5Xz^}69?Typa)r)ox85I~ z-5j1ZD`oAgd1ro4Xx^Qv3kLZEj*1jM!=sz$+9>@Eb)V11{D$fY_Ik+O%xuo6t@I_IL^bzoS5U1w18Q= zZoe7OQbS)07bm&y6BKg^!|LJdX|3nMdoKf3Ko56-9&2EBKqt$db`;V0MB(t-SKbG0 z1NAW$c!aVa+r4}XiLX=F&*M1)45JfV??swVYTyKfhR@d8&c2PRDNk$BIg*9&w>ew@ zlAxv=V!OU4+MZ`n2jWPk9wR;;#I{f;bdM{P!JsQAbdaXAgGN3gkJPk*c!5%al6&N@z3OfJGK+2s zIGf{bC;J(U`T`c%E(5V6$%D9H%nxLbVGs2i_Mn?11ikT~1-5l93zOd1Rg~A zd4ipsFIYFYeU@wZ8=QMsmJ*ZbT@LoIbm^P8fSP_2`+p{K)7X|SQtidrEMnTK%> zF#eVlsZz~VWQ(UYvm>NW$!1`gB`L6wFD|E+?apxXSY~4tqIpRwkI_mVF3~&YE|sr% zD{pd}KNYC|Gi_Skzq+Vq2`nGsN};#YfWdHwtvB2wIv@F?{S@WV65b-8Xol7Nw?$S?TnJ<`dg>IlM3sDy1o-wYiU)@ky35H1`eOV1tOTBJ&} zpHKrbV}Hq+iN){m031PzEq0#K2(4{8QQKACvWUMEaVe2d&bh7S>dw!X6hQS37P69g zbk^9xeo}&=ITVlasuOaA|95PDCeZyCF2YQK67UB z63_|jqYbG%6ZyVkSyGo~2&PJo1T@twoGOPbPJ`H)r3!^zFeMn@x-ydZEC*O5Q=#P^ z0L>A3XY?i<;I2)`c8}>@%`j=|*j-Ef(L}0I#)t3TvO#1Klt2p@faRp;;k(Ey6z1$J z4^Cw<{T19F0Wy74*J?N?Wb!+vg;F-+JnYDA``qRJ-UVU}eD3j+7{{vUC1o+D9q&139^iA3^Y(r^zURJ<_ zow2b74?ay>G#uwV_oE>T3y{XswnUYTBnnB#KI76>pmvb2s>MX|)NFq9@uaqDnTxG3 z@*}^6p&EFM#!4aj{a;M2m51?;8c~N*69*Ku%REhAvh_B+s1TX1-go zKR6$b&8b1oSu!rd?7PvWEAT7HTBUNP?nBSXtm+`apCg&?t6e1|*39VnfQozBrxsy; z;_RY;qmmT{MXiqxI{Ma+{K0+~B63dIz>dGwvmJ)$Hy7t{BR_LRXCCL((%u;oJ zzT*0atQE?}eOtwFwS=B$f5aD=n_u!1Q5AnQ8wnDAzY+g|wBDjv;?*cpD-Iq>h(ZUF z>V5YdPu{e)gkEQ?mn-FCo)Bk5)?~KU+&Yhm15O1-L#5x`US@qZqCUz|RRU|N$g-;I z3hbF@v;*3FO5Mbkd!Kx!Jp9X=-6t!ui*xwd)-(=Azt+q9^H+v>vc;1qqvJXA0;IR- z!#3dFW7Gn42gMgHzaiL9BsKqTq#hzm3f1dd5ZcD>FNSBPB`@irBSz! zC`#9?K#dk{*EcGS)X&c&MX2HPd z^6w1B8rR9Uoc&W|2vBn_;0Nf8yY~42aSk0NAd#F)JfaElL764oSAx(ahzRye8J}Tx zx3zD{@7njHgjCL${$M*PT-GQV|5Gh=GEp+L)T+zHsZ)pu*I2^}jXm*7=y{8KXO4y| z=s^6gN1|gMO(D@sl*Z>vuD||Encj*B#36jZ_gvI9;DmY8Y6G_CRVbe%5l8iTb{&9X z-Zh4bs5R2FG4OvE*-!*2raNsHkUQpbJYTON#D##o{xw_qG4 zK8$MVf>qOmU^HsXuAR&6e9K~f8gnZj;fVUrRmS>B;vknYOM>_bTBn$UWg&) zp2Jq7t?&GUgTl3wu^U;dxuk}Jkp1y_Il@nSEXy2rV->C2k+u=k!@>95hDVKEwttWARwccAdl1l-iSTsZkI~^TE^%Vx=i*VRccPiKNk)D`7Vy zJ02Tc$18L!u2{$(#y&<>Vie2;D_Xs!bOIJsS|)y1N&b1(mD%@6TU{%&*JzA^@@pKM zI@plb3Q}uD7P3GAED)zaw}$A3-2g4Tcu6Fz(H1`fZ5r@aaT;=oF&Wb9hddv zYD=gEwAO^FHf_3XyAxJX!Y&hPJTE-EW$Rqr20Zt?b}MWrEYb4e)9ydR2i96CqkI}} z!45u6%3+iO$qqOT&@Raq)OtL0RX!2w_fN_jC1MmFhBrQ;RD!`6EtYP%G{O$>9ib}z zP?p03Y@5|EvmHKVZS88iWo}AYQv#FOE@;#_8~ydF8q`CF(=&X0T z)6Y!4#rMmHb4@q=f}p3C=?!S@RG-3A0W_;4Dmojx!y}fW~`16elml;1eI4 z*Nv)G&s+6!DsuTj)+_D!kdf+Vps#9Zu3cakUcgF5z*T4>QyBMh798)|l)v&HIxB$V zWK*+zshx9Y=gy7s<^0!)zvsIgrK#s%3*0)rsgekvOd31bDkes+)d85P@&>%|6Kp)y zmHtUnC&~2@z?sF|`YdV0B;qGo4WmO{xb2{n6nnH#Os?K2>_7AR7g1D51cOYg*`2rs z@JH&kZSdyQ)b`>HDENu8L|m`uJ}-{6a9!O)1HntvlnX7XmJmH&!Ma%6;-!!I* z1p6jW z6{Z4H=JwU9?wnp~ckimEKgqlYQ(3VVO>2PPHH zLz7WKVz4}f$v0Vh`t#F8d!xg3qVovL-qobK;F1x zm`oW4^-Ws^95ADzPfJu9+@Sscn8-#aZ*6-BZA`h`VxE%Pxm(lBRG5UMv^Ly)xSA%N z*?v~Tz8YUj%oJw9pn4}%?%ali+6KUeYfbf;b8%RpBSP;M2=0dv2HZy;ur{awDOa?K zQS_y*uxN~@w#-j$iBqHo67zeNHBlw^piVZV0qlj{D&UvQkE5xvQhXkf8=8K|(if`> zs6^$z;Jy2&`_$2mb&3JJ6!$-S$K)O6@}|nsx%K)DaTOkWEY~_c2)zx~C=QreGR_(= z>g$#saUQ@t7q{XF`_J;7BOIOxK6V}yYcQdbpC;Dl?h5%^FTB8Lbuhy*-A4h*HPs5(xg#(rPUM) zO0A*eS|48t)Lzuxh|;lueON?_3<=UQRBnnI7CtVRtto*VsC_GtUvM7o>cy>FX2uJ@ z&%gSJDb_QpPu&ilUOhJ?BdSoe3SXgkm$VNQ+Yngqzg(|Jd(o=)s)kDrnD7d=Xs|i7 z*hRb6qN}zE1l3-a_jZ^gHl1EZE*@|$wh{ethH)LqwzmFZJX6+uq<^iyLm$<>SlRUI z+PJRhOC@aCKQnf@F_M;+339J4-CfSgE8(|9h~@6mWmf)W+4m?i*>)}!Qzn>Fm=-GQ zylO@oOKF93x*#f2eq@e6eR9C7XH!6;t9v;TZlfU-WJeKERsCCMcCmwwxr>&5A{LK` zFbv5wXfJM(s4907Q9hrjb}pHB|3)}AUL{8iPd6A8%@@l%>C*PZVYy8TZPpI^ZUW#e z^T9HAAM%kiC`Fw&35Xei(~(7)Dp36KL|B$_H?nmWavhfI8mgu1cZ|x~Ga7d!xcZeV zxYdd=d^Vzt%EKDBo354GMVQ-C0~L~|R>SHwGOWaYYhl}6XXQv@fxC%1?maS7AvqbR z>;Az;;_{Mg%)Xs`M7D*=&Z$Ik%*ezSmRTZfklC5h0BmX8Z|{9(J_n}xY3$j&Wvjop zqAu+C0v!{T^T`ip<_tA!dO;F(v3j zQyWm8G;OXd-a@m|wXnfk%w$*R+v(X@%xEn$rWfcNG_b;AdOqi`*-xFP80gLhxt0bv7jg+Y%u;^oj4{H@_ zZBI*uKJ~a(vSY^-6A{*Zu*siE`4y~dSt^g!bvQIQO+w=Cd4+50I1BAZCf8>Cszyw| zg~BpYy?0Od*CeBe znUigr^L~9l!An?VF?97axdJffxUwxh4>1IRD`Da~7Jqp-{26Ck)~BcV%Wa@Gy>ut4 zW6X(GD?%C_&BM1AiF`3RJ~vL0JGdXO+QGu7A9}tDqG_bnJRv}kr$OF_b{8Y_(-qkc zkAGK@Cw*ty6`FN} zy0taYM8f+=-?yMNWjK`3P12h@HvOCC8)p}{9XXdSGY$jNKn0VNkS4#hYNXFljHnFd zoMK0tD!R7}?qn#hb&j6U1Qp@tNKt+J*J!jUB}>B$-!;K5cR@w zc6;AHX-b9^jaUV0fCigaH`G(*@pSd(%}Ab}7JxKhRq1JVYx3PjCeDOlDN=^gU$7eA zaKVyA)Z~WF71<208XlKYhZ#Bcv<=_h%wiQJ+RC&we&d*giuh(P!(P?on(0oPU3rw% z1^X_?M}Tu!DOOF=yKV>j?zi(ko5y((XJGTrlEH=z+P-;%y+5sj_!I{A(N6(h%pc5J zZI$r6AIKjV`kA?V+b!A*oD6H~^l)|O_6`LtGv^u{_RZQY4~);N@qiGY) zH8ZI!4&(jRW_Taob;mwF8dZ||8wb#pHj>bZQ-dY}a70q;)ALaxX4>aY4vK$RFuU1Z z9uJ)wWqcx4`6qnW$?6k(UI)C%xf;_FdzWIH4Aw_2(a*qk7MG#h!9)%V(Ky^MA?qu( z;H;+Q9HdppJRUyc$iT0)XX7)X=OUt9Bh*}Bc9j`&P}aA*?KjufF~&lENi;=CEgydD z*HWEVR1wDlgyscXNVq%Noa4#l$8$H98Fa;!*EX#`or+6>mN!j-`6G2b%W3Fq-Im(+ zLP4@o(ZeivWzv!S^fSr)87E`QB|SIZQhzVSu_t>F$!oyi>UMU>-ritGRzI?juiqi8 z0t5O@0zh8^ZIH;uf~lPmo_!{cDKj5@489Ok789`}d-cynar;`d-{u_SnCiME%NdalpDm@ggbf|I1t*Nv{f*u8JbH&V7LMNB4W!YYRGw(UwkUqN)m zH%2)<$cYm`Ufg3X{Rr-DIfc~^r~*Xlqmig;^fs|63AjSH#Nyv(Ja zw8yM`(p{I#+1j!6jr^6P%)r}$98j#i-XWlpHp#CH(T;!H0ry@}VtkC!KHe)!16x^v z=`&aZM&(+ey;ej@uS25hMQsP^eSd}xN9F!lGzsBuNyw5MluP08#aE2L>%OQ}1XpwY zd{6FY{(!3uQ|Xdwf>(-oK$eEWqd2NYHY=y;;jN}hBeN$}e{X&6);k&BZQNw(?iaaU zw_k{TBi)&SJ9bZyJn25V$gBcA&A5xyxT`-7C$8=7=$<}q`9c4SJIxTmPs8Wo}|;SXG) z_amEKZ782sXNxywyNb7u3uRy!c2rheLawH}CRqGq%K=sq|Ksui{W1h~*#BEOoW67I zZr?_F4CdjFC|{;*YIqGHQ9vx_t%j6a6YKs$`xx;lrkT@%NLoj8^!+PUdv%#}EP zwfrV^x)VQo*LZ$E(4zTx03&ePud2CpL`-MPkLs2dy20~mZb%+Ff!=1 z;Z3wKH$RHp0xWh^Z&Bvf%zL$qQK+#ErwaNv!Q=O0z%0?3mr)GSHn~PSOuwc7#%>+1@VP7&5 z27KA;{Pf(=s)cI=igK3%SOrJ~N;&ZH%aCzFHqJ~`?ODN^$vdr3ZpexDs(%FRRTys+ zuz?E`3=;MWxUxLmS$M!}(BAsRh|$xW9yB`9&OIe|MAE6P4D1WrK{d(fR#KjBz-fa{ zO?lkn5w@9_3vVq-hW)!29~7LApJ>wV>HDuRl%SHCJSsBasT)K;S?fv3(F1mLhpkqV zB5!u+U^5z+wy79}WD{gN(xS~+p zeZPrUhG5!1U+%~BxK{M{EHLTDD&0g^Yrcb@mM6%?>*8gF?px!j6!{vX25 zL01?q2#nXZZQHhO+qP}nwr$(CeZOnl?w=-Y(zHom;+)N9W>zEsc&=zJ;-yqgHamve z8T5eJW~Si-cB|7Ai4YN!bEGn%v1ds~c#GWn3@Al)UgjuXs?~$WTVmqYTaHObw=(++@)SjENS=UxJm}?gpow#W$&rNkRyZO#_OHS}a|xNQh|>SBswxweuOUFqXdgT~t~gF0&pc`6jw7!gENQ zMcdlaci>C12IFs7U7t?ROBpz#Eu&^bRW27bdcpLtb?4&?`>AD-sXr#>A`!VD!35hw zH#952@v$i9(VE$D9uT&#WKbAg6A%dwa(s==DPe~B}`P*+01)8Xq{=&_M65< zx%hns#fC<^21W7_P(hu=v2p4#Uc_+9?bcN02#1n|0XqT`ONt@8D3vBkJH;pAlkY$W z5@xGovQW!=<>byo8{wCDWja2rd28p6T0Ky%s~K${uPx=#ryz&UBc=W;R_NCGspS#_ zH8j3-#F(009Vcw1JVc1Sj+i8Kf|2<8Ox(z7?SWxyT42x(XaL%RIri`r?ph-qsmhDS<1h(KLjQ4>etD z7}LkgY{a}Rk*PSyxOZHDs@$W^Zv z&_byy+y+)r=tWMhC-ABnc5ytvOuSA!y53*cIN3)i^Qbe>_u!77`E`cgalS|Xr((hH~GSX0#~W;P9ZmfivOkr=dj#Olo|n)dO+C^_$*bM0jk6zUF*8c#TS zr2rDHD6%ci-pFLc{0}g8Gom#$H`OX70;^H<-bf{2w9!z27eZw?FcBm7=DX9}AfoNS!#3E6B-{0? z0B4ZsJF0paL=xS|9>WTl_PC&{M4BTiGyA`9nL}sVE#A(H?biP+>PGNsvl)QKOdDpq zTs>?1M?C*G;N#JfTi6GQocZ*wcK2V69p1dnnHg0|>e=WoDc{?kI_uI04Xn`oHOKvx z%{MdHqJ9)Y7{qqYqC^DCIqbJThl<+GE%m6;32|QM*4ej6g!RlOfvF;EQ0;}LkRnRc z-aBokY@XLKhey8IWp_65Pqc1P`$O*5lqt+fWu&S4oE0mDc7z6%Blk~Swj;F~>6KVd zh;AZ7PB%Qw9#J~tNe66>LJ6u zs`dU{fa0&MUKZ|hn84^VBI2+=6aXC=g%gyo3T)E6FD;8p< zXsQb3%F!(D7jNk|x~e*rruZSiUw7z3 zH~r$oeF12=2exH8^wGvFug5)`a+`g0WE>26&x3Ue8?_qtv|Q{~i!(9pD2U7y!I6DD z(UVE7n`F!Gjv72WZ(mhYH>j^iXbxnhC=9!07n*e#%$u4tlk_6UTbm%-&v}UvW%R}C zwIh?6tkFR&J=e>zp05$KjUem6%g=~}EaLSVmRSkU`MU4RioxtQ`kN>v%l+1^uhp@= z;y7DTces{ZKSu7&GS(6ZxAFuvoNd+0EkL7&IK^T0_T^-nS8ry+i zUHp_p&#B&8w~b_e4rQ&qxMll@?E~?udDuYg{M{yCaPLljVNE-#EV{4U+*PL2kmImq z@OjjnVrBhmEdy1Cc&4*r`cR#j5tFVmM2XciEKW#JlRx|)HP)~H2N(N)6Yq=!OiT>y z{|kR*`j3+3VEW&f?EeAAax${A{7*Li{}0B-w1O(&TsG0hbayi&?Cb`2a}T-(2!gr0 z2X%LIL)u9?K;Oa*LV`fv#{0f@l7H>|)qB-fV41nrzuwwcP^z$IjMCuD1T4WBsGGT= zu>l5zByn+L2gJrEhsMSNM`mduA6tQcw_`+VVV_?EIRQX_2NN8?u(j%Cvd-SGTIL*6X5>_HZV8zi|_u| z_B)LT@l9{6?CcEgEw0>v4q*e@0I~@PNVOD2QHP%ZqS*8T72~mqcJ* z@S(lktMQjtL%T5ueEno^012e6@v9mVnoV4dhH-ohmXiFQ_B5KfXAKXz-y1vH))a>GKtSd}MS92hzdS4fx~p zTlsDuGBO9(0Fc=YG!vjkz_5gWXKz$+vj1-TK1U!Qz_-19+X%ez`}sA`KHUD&9ODU{?m@Fs=Uy@{2pG5 zv#|s?@aNuUZ~K`av-{Tz;PS@@=QZH}rR3(Ztwj)UJD-Hz;Mknm@7wUlU;o)J^ZUp4 zO;7*VPWrbGDcQZb`JWW^M*s6CZfgbK^z_MoU~9RnvkxaQd2jdflP4Z_%vy6e9M;gksG2}G+RSa-VSZ$G{7RNG%S0|x?D#nln;>!k)TV_*EC z-_^d%)b8uerL(8@s8988`{dhQg0i7AcvPQ!Y;YEs!PSlJMaT>L5&IDAy`g`%2z22| zUmC{16p*{4FB4#I>Iqnbi-Y)wRT0k)pn5~Us2`C&K=ly*5V%3=7yO|KP^0vZKn|dK z2Y&?AAoUOa(A&7`R}cq4?S=n*R_+Mit9ki5*aM(u%YQ+ej_XhG+kWDiKjMj&S=oEM zo%Q>Q@&o=%*6J1f0a#=9FSujh2`8xLN zmHQR`MY}1^f5pBn&c2`2fVIUr^!oDP9zK{I-|jEK ze%9#^+{Zd#oL}rit?w=W-d@MP;AwyE_ex}TH)sFS{b!x{vyJvI`0phd0>lewHZcty zX9iT*7E7r6mM;>~o8eBjC%<%Wd9uL#RnzVF@HGG|UrIk8x#z-%IE`y5y0MK|)Sb3V z==a)rXAcB_F|lUt-xAF*93YO?n5@O zYhW@KUbYqDYpz&-tl6=^%9X~)P~NsbPaN>0(khHoje3lr!Y8h4fyO;A0BJ5Y6D1Jv zKNQUO_R|cF+W#?Chc6Lv@{S~}c}3hln)udl&%0MFdAKw?Axa@W0Ob?Q+9qpE{F^}* z&wsJJ$i>!SvRStxg$F;C(l-_}_#}b28?OWp*6!x(ny>9U)wi7h6+udxC!#m|yR!*( zd?Ql{w7qYc18e(*xtuoP`M$dJ-D^G8ExuHiYZB^D=7`z=PIdj0qoH>EtZ~xP*Tf~^ zgN>*6$gafIrF>kzT*pKpWMnEhS8z&;-^x~%Ae#lZZORp=N*kOaJb19>FmLJSn2 z7}b3UghbLqq zYk7*K9EYx9o67w7P^^a*>mZoHla2)H)rT4_UbIOmdZ*D6+uPD8f+}Ttj?Dg^(XK>_ zU_<&WuRr5-rCY6yKxxc*%b< zAiV6}!ce^aD)3Xct_qXsNKxUGo%`t*!tCD95{i3ygMF;{`l8QY1M{Bl>+zrpDY>Mq zc2^BcfddK3LAOl@iRPC0JEa23-I1&Hf4V+;DmNEI3Qo)m$7Rls>bd)vzL-`kyK(q*`+-&gwwc*&^GCk0?jRmnXX-5d32;#V~o}I z!XtvU7U4$@FFV8z4<=qPqCfawXfmw0$Ds(Cf|6u*bD_pm#8X#7j(PJAX-u`Rf z+-QLz@R=4x&1bJ*I~~btS&2l+n*2!R4|(3oH>P~15bM1HtD_pq0bNC&7a?i9kt3F5 zA~4Wjv!5Q?>8hM10Iz6_=|;E#$dmAl1xN&Lp{G{PLD+i>w5yG(T%}Nyf?42vMoWe^ zy|R(TmL1yO^imq zJxYk(8XhPS3%mbk3N4e61(DNawp&cN4UZZ?b^hl|(!8>2M6_?-^JDMTaW2gW6jv32 zyqR})esd7^7vh<5S{eul4Fz<)s#6rEX2UC=aE(4c(cXI`0ireY|*vP2}WLncrCgb9gWwTp!!6pP_64wVhF*5xaY zW0lH^YrJ?otF4UWhxX@g$hfnBBjQDOVG)QBDC1}roE0@nvzI-@_DAE8Oc^`4Uny3c zACNt4JIPE?L}wlt&0HAM3gF&~)#du{eKIOG(a&g9rTdu+$UgbKUj~l$Dfik^#LAt> z?CX9nkYP(aZy(9MyCSLv1-1l>X}U}e#ZJu(6x!8;dlLR*=OTrcjLL07H;&hR({;00 zOf-M`&yULkbWm-jc)P;jH{R9yugdL0fy>`5`(@$|JbpGm2MjKi7h9mqn0(RWn*QQ$ zT(qd|e5v6BXqM(;LYh)d0u?y#haE8YdK&8{H#%2c`EEqCa)tC{fi zq!g8{`pm^<+H(P>9t@LQVR!U0dopINJ-5@XUqZE1qly#)Wwc`Tgmn{L^eUn5Q?a_F ziR5ZMp4ryq8fQwt!7Eu%-SBa+{6Ef>fJ zYb;^vf*~@Y=7QKK=9d~CwjQPWT&2e01=W2Or%gD1iXoYB&ppAE#0+cs?*+J#k^C;6 zrD_WCRh6G!H+V`8@gO*+Qcgaagiwxf4RU@K(r&}u|Fy6f4O^ZFg*rg1cIikkqO}g6 z9FQjMsMyul0jc}NpVPMdoHS4j2VX9P*Mz~kj z&~&J-vEp+?g-5HD4HYN1ff!vM9#rWQLUW!&!!=L(***G6r6_w}3J845H7#B<65mz1 zDdytl=Bnz*-A8T8*xYi9ZW^rkY=654tbT3DZH(P9Pz2 zQ!9HBvTljm2tWs*3GL9RArM=5j>0U`#8;>TN7z^HXvws>^5-EVk4GQ1`v;nRy?0Y} zXKLH1&_@+*l0@^XHH;&NXNW@=asFv(I#t1t5H*k`;#g~l;}y)55IpVIqM01KvQRwS zlZ-6wrU^1>ouyS_>vPMDjS@|=>siYuTlW1p`k_dOlZ6?rNAdbj*)@%wjX7P6d2}_) zd^k|jc+8>v<6UBrjXhq_?AQDU$vcyFfE3foAQMqKOn1ZS$>pBW2if4&C?8|{y7Jm( zr#F~0SIXjZb|aslcYFTZ4bGa*!o&DvW?2w4s+sdgj7rxbt6roQ^i#OsIwkbHYYU1$ zl2Yq5qSG=&J`tojczB!dJn1I51n=T7AC6O6oiI1vj?~8d+KBg+2mq6#L@Uzs<8;gk~pqhFg z>Xen-e5ID^pZF(2zZS|5l(c42o(A(W@}JV6C%{?yY_ehc>P1nSs)I7e1VTCP( z6BaxTT)i}h?U`>CCwvCeJ!s5pb1xFQf8FX4uT)Bd@9m;f9xsSB?U36#Gg3_@cEfCR zED;r`Wkuh}BD{(vfqX~wx*&n+U~H&UV}hiFR3})wS+P?%fUO@tP?6W^P;{r0^}|x* z%^UC|y$*T4{^A)4Qp)n_Cdn@JasXv1gry{1b$GZNQ(Y9?Kc4q{Ajw(qp z68UM@a)WMuo7f~dNHNWQACB6TEtb`In6@6}mt&|DSn7e7AISQr6_O4r;kJO_!f4q^ zO25%wpN|&*H{rDar#3D8+c;iZqNjAu_D5X*)M5tkdY|(5C(~wV>Ss%pXw+TRQt~=1 zvH0Vl%H{V>U?i$;=I zILUtwtG7X0;ciqMo3oF=&y4DwNn3Oy0SBIGrn*Vci=+&8tY+d%B4VBK4E&|%u{?c^ zu#+673U}FA$44BBE{g&*KX32TcD_!R_G=o0?y*8zD8z2ofx7D$9`kKQ{0}|U*ux|i z8z*C+hS`!5u(sS_wZbReG@{H;Lc88%-ZShKU4b{kLHcct>Z>&G28?_jz>)wYJ(N z^DXFyHAlZkrV~)As*5T0Njb>mo1u{;j3IUTy$iu((XePIQ1U8!*+oRcoilQ1qSKeK zmN==24N(+>o33N7V=&L!QsRrIcZgaU`sF1wx$VN0+U+NZ#q#AY1Wv7q?+1)*L0j%l z%G*4<1+Fy;Dye zgw71p@o|PSig(^{IcSzFRS%8t*P!+JXh&w6?^lnlMVL}KGfdN4z`F9736@{{S5W+F z^X{UovsJdepK}d@)4?ur%giT2==DmoCF+`bXu<=h^TAiT<)5L*@W@@ji0ud4n@~#_ z!Emd)gv#{2>Unhw(i)NAPNq;H7RY=_ZhxQuWha7c9qEMV3{$Nol*!m63N%AJ6n~TR zLZFRO(HAcK8O);AuidJNBUH_makJIXg*EtzoR;~LAho&rJx;?*rcwPx<-M0$tNZf^ zc`1Zk72nbIPe}1aA)?bl(o16$ZHuJcmE~*P(JrtQZGQGTR_fDT%geM1JBc*Eb2*>b zEgrpp)S2t>#}4>m_bu{&?}FAueI4lY7XjerKB&Ix(5L#vWlSKIpm@pBmcD*Y*}wY` z>m9iE&rDMgB7dD{@9^VL)9Fi0g>ma2C;iJX0^!`pJw~F9PddCSQQV4}&fT@4kGz80 z;fFMdbly0hC0x8G8uN2nN(*yEH5XdK2`8rG%{JNG6OOOX&0IEzi9FC~Hyz`0^(JSV z&AF?{oB(#rdI-@sFTtWlw}Ib^&5BaJvDj@5GVI?v&&=Ly#NAX@Gq?{^YB!rN9Lwmd zBlA}+hmwcll7@U@oTEO|RMdV})QkVb=90qm%%$GRq(zzTn4wq#cUGOq@dZcnnYx_j zBtr_b{xYG`3-Bsk`0B)Cv{Zy2TZ(xL zqw>N8BYF(Zu9kH=Y#6)IN2*S{Co_J1>n6J@5&KD7o7%}eka)RWjWPOpRxcoAbMXJ% z5n#^ieLwbXP#WOw$Z!JLom-K@2p>Z$xd}(~H6r-zCa_pFj|h3qr=Bu=S($n0#;GvH z;^!;!A_f_=zBtJf)Hg4Lmw~*DB*bDAue)GB>a4Is^-Vxi3$rWnW8t1B^!JYZ6zYo|^$qx84u z(pC9t$K~A)kan_*pbMEozH4}Ry(?Q)R%Hcv7+r;7HTHTPB76=QZ{!XtljgDLCUk#u z%oiC>N+4V;C#DuZ-Ou8kG%`}z2dMl7_%t1}sUYOX0xl}6Q4h*^AClqKPz_F<{8X^8 zx?A1XDIk2?j}tx}QcX1VQyF3VemOpVCL{WE-vlm7`C$yRkB{IY@2dDDK|j@C^jdGx z^cuXtV}#ckGt|@+Gc(O=1-#HkFaAeuZ*rhDsI{*vmXje~D!ex^SRz^7nfN<3$V-%E z{Z6ted3cc~LNZHxIlHf0;F1U07E=`T3=H^t9S3U@J*l=BjcuyjtWN_mJAztcum$Ve zyO#;89$`{yT~S32`#=rN&5v*?>7pUFXCbaNvTiBe#G(3VQR4bv{s8U%7SfY5-(_wt zzJf2=bZHK8*dur=xM)~>B5fodVN(?H(uz;WAu+`{H_DxvzHEsV8Vk|nK3@h70ys3g&)gv4>j{lo)SzUP`|U$m;iyOzBr z%>d}nA=6Dd+D$9m{;8&w3P@4=5Ju1Q^c;5f+Qm~v22KU|WKyhDk*DdD^q=n9QFTH-U?nqdBloK8=<89qANq}ckilM8C9o^a)MdMdYH75^gqnVt3d$e-!A$d^mY5S8s_88pm96+MGnIggyw)WLRy<7;3GA|0wj%Z|Lfkhe{MXhzyYNr z3VR>`H5(dr%~gu!T|Ix`YNW#4O7QFXZ3X`xtITAqWR5GP)KuNW`}S(m@9O3vo`GE= z)=-j)j1JQrKE!W-s%#*Dq35UwUD`x^-4w3{VTP0)I^wIQTIPJP`6W}GbtU*(7GMhNhNG3q9y z_MN*)gN@YLKf~LUVxWV%=|C3a^cmxVZuhoY7dpJ#`x0=RgkB<2O;e8L;SFy|Wa}D@?Mee?+t~XAvkdg~#Yqs|`{eO*)~)223q& z#A3e3Wn-U<1QILtGDOP1q^Zja!tOmzR4Sgc8WNx=K}v4sqVEp?-vTVD7OiOW}{bk=)1U0i#Yn_eEU( z@EsIN*M=iEQr&t%{DB=uwnmp9KU36!xx@QQh~H_xub@M zxQ9>cjNvMgV62kkmSvPz9ihQWS(}6%C&F^Os^b0~h%VF$lpMsMr%_J@n&smtE%>E4 z4f}cB$es;4A&x=fFbvIF^THNFxIAR9qW5s8>C&&lu}A? zmSm;Sel^4Mt0N}(kIZ&c(D`^zZ?exW@xkt}(SIpabG&^qUTaymo2|yDjibM653G*n zrXlXoY`-CBjw8`{!8|?Ku3Q)(6xiB9hH@rBMwLPa?k)u_PzS0zuTb)lRa&UgIk`Sr zwNojiKh}zFzB7v3-?E-i0YU>(VHcJdZerl8xs-kdzT)!1g@5Wus@0 z%-8`4Ur!dnbf$;ne*5~c;6XSZv0S2HgBsnLHMe$JVuOmlpb2R{$LR>SowV5e7VLsb zfqrqoQ+{`U+`&!`^N^2k)w94d&dQV`RL-#iB37Aa=I8S-B$jO{08D@2W{1%%;q>8| zoj}o2s{V_~SvD9McoHIW{u55@xM+-?40CbR&y9^-Vn_>1JTV=wD3?rO9G zD5(q|JGXwQe`fjm2*?G5pU{I!d30c5bRowXYTN_?hJvWchRrvl#?V;FeNS#4wo4!A z_w9$&X+?IXCz%xv8Rn8yc_p`JT~~v=6&*mm-njB4Rr*yKf6%Q_(0TO%idG&fSQ85^$aW2#? zgOYlMQ$>F?(|2Jp`QCo2q_jdx!pq{zGE(Rh)+;oh3y_L#5n%$L-B16i;?ji~mIC~` z-12Enl%h=Y8Sp1CUB1z9N98))bS)C@5wv*j4!p+_N0Z&Y5*V?kssGWu$T$hs#eIHN z!sn>llX07Ev0n3F=ZGd9j@9@y<&DvwCR|BJK<-7xpj%rIgGG-fr|ENZ-skdGJVRHu zH4Qa%pW5XBiu&n?D(NnK95v6p-Ae1M?dVB?j2{H>CsXWo|}EJO;Ie;?-Ut7s=z zaVT^y?S+2qw69-XboKmc47b--#RCWg+O_2UcAmB7;o|_KfuCYclE!qfY=V&#?G0Xu zoupXRvg06im9&9LmO%b&cOxASq%JZwlacx0U7qa%Ra%Oc5A8Tmgj1ag(W6%ycxs7G zo)6i;AOuIUxg8bI1hyYUdAZqmjuhAW$42QCy(MHR4$rN$$A>+ob-K^%JxI8?3d@YRaiuo&d+b zWy=LAc@)l<{}DKuuUza@8OFSK`My5ENQbx>I2s+)tL5Jk_c}$$wS9D&5jNo<7Vglj z)&WZEEcnW5_yv2Q1*OB3Zoe%(3nP-kc6mY_J-9w$4f?vrspXRfpI9>rt^m^~WCWX` z^r4%X<~&zPn9HZRQ2xr~$I=iflzXOKO=;1#a3!HYB4p2b$hpqFv?*P=o=Bv>iMito z8UOVWonX(kS?(jQMyij7xPxPi;7VnrS6&en;!)l@+p;>mG%Mf2SW|7GuF$g&tC;%S zCyO*1_Vl?SRIz@xSah7wQ8M~g0iYT6&jFe&zavY~MLJefJxd{oaDP}-w_^pcylgAe zZx9yuq*PrkzJQvOl!-znD|>!ERi2~Xf10gD{v2j^m!asPeRa1d#F6O=CPcG*CM%Q{ z^FMsqWICC8u?JFZc?|;8IJ#hUk#{Iu(ZXYdt)4@~D0-Fk!X(SwUvl07^z8pAEAoy9Gz8(d{tx-lGU zw|_Z2MdY?A@Pk@;qN9BoHcJ00yOb6pAL6Xt&Dv>)(m8_QdGBb{)j6lV#;A1oWhd%N z)$_>Y&I=!4KFgkG{3#)dg){W|mqQ*kqmHtk!jDded=6PC-%P7^w`AHS0}J|NGPqN` zeyQ-*c=ryScLAs`v+UtOt!|CW*B z;&pAoy2dR7jh*Z3l#qq&88ai_FFlsIR$vg3*j0t5H`I1#D@9AE=c~o!J6$#-R$QjW2RVAq-u92wRIou96BA<&)Ll=lV0(yNF=FF+Js6M%sQs)WpeVt z<&gAh%&{r&XwD6uOzcPDl*~Rlx|K1|On_mO5Z&25?YHxad7I~6N$)P&4G6zOF{lt@Y`@ulT{fUo_~#d;DC}! z^vXRfe`5taIs|~oyp+`<{u1ZWy`+aCmdQs+iUC|YoI8ZpVf+IS@uUMH1ozl&_&(iy zpK{_|@<$0P?q0Ug;UoF{QnPxLMp_DqN1M~31UN{a&Rvl5tQ2_;Tqcbjn#waiFh+Vw z%qF=p%+gqMk#nbPHF`?|zgNY#qB?>{A$5;RhfoSXS)|NC*q19Xy46gxnl*NG^|5Lt zj=!opv+cf2d4A?l7{%6ADy*$*y&!m7RGCz=%lwZsd|)z2qLNp~@uu5iSi+NsZCIva>V1~@Z&RBhJ#339W|Q$n6Whs9$sq1;Wk9J@ab3)%RX z9yMd6!nQ{!5IZT7&u(>7u5FJKMsvS%In-xc-)Hum7!K$8=9HoEhr(jO$UY<{4f-2e zy&c(bQ`@cp&jEj+8E;-sppNV8n4rR-7vxVbv?NBOQX$)qQz@55=svqYiN5^UuYu`^ zBDKwP!EJHqrmj~NMK=g5E`XL6KA-;A}yV)I~p^Kyi zX-sF&Dwgnn2sUem1Lk40M9cSElC^jj(L8Pci4_Yx z*}b+@OzP1KNfFf`Vt22ZECJkjs_JDzwk4 zuqXj@?&d8k5q(yeDtHlYjVnrc?GuTu9K9<-Ga&D2g;o>;7a{8yur6Vn9GjdOmx^ z%=@Lr{M0}aW~Cb~5h7Yr>!mJCuv*YX(RAd!Fc-in2g~U*LV;+Ze;db@j+UYoFIWI> z-cilD+)b&+Yag*_-`km@1)R&g2+J?pDnKdA1Lge2R0lrit|d;S>c1^=d1;SFj1u9h z_efy}Ap36?kW2X30A1?zyNnSM$JI{e=DREZF3}eI7^R?QS|@tI6eVF3ePI1pX|}|> z^yUN@jppy+fRaI!H>=U-=K5I+huM*?kw!7RayIItE^4Uc}B24bHVJRB@6e6Q9KRP#@6SJ zYn5M-04+fRWhu+{@pfs6WJSJvBi%Q=CgiZ;-nRpzUWWc(%%L?<5%ml#@oS3-phkGmzr@OAE+Kg-3||m*HEt%o`+PHiBOA<)|~yx_n5Nk#!B@J3N63 zn&CXm7ltn9?p9P-Ob*I%lHSzXg)0ZMqVyO(?y1g3nfWd|)QvCJEY(wdTn{@C>~^~y zy~zN|&Sub(MVKF!-wqWo%w&(LSYbs!$BvI?wrvfY3rU2P0b%zjt)a#RqSS(J3}D>7 zKMw1%HqGKkN#B%jkB*n7QVoY1nt%57!>6`#B@j%*8yj{B7FVjz_Hla?uL;3mPVeGvRLsAg@W0pqjf&P%?IP@SaMt+8knJI1sr zv~&CJC(;XeuDn~bcILLKcZ%2`FVljJD@!YPM9z6k%n@XyAUxU>;Ct@s%qeRQ^g!Q=B|-%tZTDR z%eqI)y>j=4x;_Lh>N>k)p)z#QXIB6wfsrh)b43-AE^wUTU@7n4nfN3j6Np$$8$RQ z480KA=9ILIO8}Qg23R6?ey+}R@&K!rX_;Wo+qNhO22`F+)Zifz`+GCVLmvm-a< zcE+<4%d``VZpdPdTwDGGn^)8^f5Vzhs~ZOsHq4KSH+?w@C8kyvfe)<50);fe7ujO# zQ^x(v!uJyK2>D7C@C|>%>{rE3)SZ0Nz!b;XmYXaguCML%M-5U-pKPWEFU_5}{>)WQ z2)~Csac7@ffufsH_#CZD-z=V-mwg6`?=#S4XB!S9F_bxSJ( z6H|8dDxV$=J-90#IW4u8DYWCX9`ULyc|tO|&xbOxq+V4Z?D%~vt(L&ZOAIbksQn|- zeeQS3vEmTtuPZDe1IgVSLzStwXcm0Gql&vl#lMVZshKj<;4oIH4suSA5GS6g0`wQ4 zKrgWn%)f&Aq-Y*Ip}Z*kWn~U`^J#eje@FA0>b?JDu#F4I^#~n9Uf`yl|At8@N-+Ev%ceX>fVhWsGS0$klfi2~(LYImee4 zcfJ0j0$S$AG+P&u@zbU5>)>}=;xA0yCwo&`mHRt5@QR@t3b5lyU$!W?TtMU1@Sc`* zO{vEdJGKw+{IUitJ-k$#Zb{hhaElQ1R#|ngltWdU`t2`AD3rs`+x^87doST#LHc#` zi~E$27!E1908@%uwdllfeD@DVGy7r=By_^W2QszJ4nCdi%fjX9x)#=^P+M|l0;(S4 z8l0XFq8qgwWKW#_G0oc!1y=NQI{!M^e;&sdIo5zUxfeJDsGF7YsZ1?fjqd=U86@2y zDe2O~-z_P)u*10Z4ymL6n(fj%Q({PPb4$K3a9XIRI5V1}Pa^WWEEFR7`z+{ZW#-25 zr#H92m?|tOSU#-cy9OERo{}l(YgU!5G_ciCS}bB<>X>J<00fOOBjVT3R<*KbR>}jP>hk*IZ}kl?-58Bs#ItxLx3J&5|G}QjG{C- zXUi#pc?52C{4*H5wYpMGAH2x4a8SoFVpM0|NwiADTW z$QE}aAY?hSnq)V=Pl#Nd?}5Bt_1aZS_N^(mHEisEwa18bev51Jw^45xba(y>lYL^^ z4jMywZRB2r8gjt~{o*uOh*1R2dY|D^E{AUX8|X@!xI+&;VN?R!s(6|a)e+KaeG>H5 z&z~0#dZ7+u5P8Qw`m74mm?F@^Z1_+x$`XR*;k~@N#@@&z!}z*g zOVU2fv$0~80;LBG_T)b%F3myLpo@Ci>ZZ^%L(G^}iXQc81$X|etq*~2JRhzp#9zA4 zYS}<1BU5F2^RTAuZ744vvb03RCns5*$i2fiyOsbm@X@Oz+)&Ae6x)m`M=!8&Vk)-N z(Lo2W%X)aN*&XQ`o=XiYsHr~z+++y3DTaq(=szx0M6IGJ%C#iYHwS|airm_i4ciK8 z+_WhbBBtpg>2CkrN52!G{WVcA!4}eEd4|CGE(v>&T7ABs{n_D1lW(vLrPVtlC1`X0 zmBck62OUzOYFr!8MGR4a$!gm(6kQmlE?9s18X+D>8uq_~P+7e+>Ugj1f@NIoK+=wv z-qR)s9weAKb;XBoeW_bvg=dxMmzc_X_@pc`5e@4>GoAw82g=Vv**%EENIo03p;I)X z8l7Ynig)!(0Tb#2T{p5|9}CTPQMgNg{8R~JzPd9;MCL6H1=YeS+9F!T1dMGBC*qRQ zcZb^5cWT&2r=E^(oIXz014Bc;iATD#NqSUqCz|%E!?w~zt|r8fc~QjFH4e@%6^POJwqicSOjyA!H2c+ zPHz^9QF3Os@i;7(2FE)tXNXI9OjJ+NqTpAMli2pRMb=UF3xmj-C_h z^0byt$S~Ud$KcSID7U|Z_j>=|q6|+QdL2<(M%2qSrX!cddl@oSeL+L&nrX^{h+4+% z!g)rAu-3-r<0N1XkClz#3yC-7D7Nay9(4MHZf^{-&-ue<_cd^cKGXTb z`UM2GL3RWq{YKpt6Sbd~UwVBK3*{X4V~42Lp1?G{6QV9SN~{rB?SCzZEg-A48MuE3 zhaJ#gaQ#iemi1e0*SVAlzM^$~a8$elG|0w$4+rtZYpM*U+DEai!ts>0n3yLxjZl_@ z&hkpNtV0mymj(WuKVp?Sn@mDQG!eRD2wXgF=+ecy338bVT4+Z72xo`p}+ekF9BgLi*HD2hmZwoes|{!Uy)`P)3Y|4|rk-qh>=W zbW2=%jd@g=G0{Ln-UVFE5f#BG2Rkj^!=2gV!oOjvs7b|96=RYs*x9C z501v4mO@FPtZ}vTDNWvM)NCc${sO*(dm|>o=kSbz?%OIFk%Hk!S;W6?`&%(GIG;Vk z4nA}YLu&Jm(m$7QZHtZ+6y-qa+sHs8x+aP*o%#$k&&(W|P#8YLG1x9gjs2R9ky>cJ z+x892D z9H3$6)M;TdQH3-)^$C{Ut{4f;0#kEMFGDwt4ew);F_dfn0!-;yvZDrkiK@Dgt@DD% z+op#+gRS0LQ?=-q<0CA)9RLgISo=|mMA-ig;>&Uw7-$WZ=PUrRzFxxg$WnEECcw=m z(M7b4tq3VpurO+|Rm5D0Yo?0U=5p`}{bH3~$>k2?I9vkU(3cr6o!X_NC!06dgreAb z5&IdFZr)aN6v00F{!p}X%x+~yi&*=pyy0mrxt?fu>ru!ZqxpDEj=}1xTEm-0!O3zC zFU2xkpkFX>C+5yK@AkFc1`hsqLrV12&y%YC(%P2MiW_$rk{=YMz!5bI^_vN2P#}p= z=9bSCk{hdhq{ad9>BY$@t5FTDEyL$_6-@H9F4RS4PhNK;r7~tpqN(d$57U5@mCD@q z5|n529}}QGdK8rpPi4icOr(sph$p@RP!Og0GQ9i#;w?9uu*scM+Kw3EK zfgD?So~2zBUTKejFLCgyyjpuVjtUngC7ZtL$ab#A76knR)^FBEQkv*%-1kK@b*+3P z35}6cM@f?Y{V5Up8VO}%pTQCgYRYI`+GTJ3AB^2otSCXaCE$&-ZQHhO+qP}nwr$%s z&$eybHs;(rPHr-jeyV0MR$6+EnkHfq?P z+c`o5ok*oS%g3&&9NwVu4J%x&XXYT`d!U85$fUycjQMuC$Z;$|W_E68QVz5>vQ44V zR%5~|C2B~<_FE|$7g+GCXp`aAWA(#SFgD0lC|AnKKA$oCs5w$#D%vVSb|2N|w$YlM z(o2e~a`VcW)F;a?#dv0rSETq)X8Dtzvkkj;g4IWOLoJ(beOQ2?spQFQTw-#T;A75% zF-q#VFQnOlI_4k})NWJCqSZ-}bCxQPebmIx0}a&CK1C-3gG4&d$^DYr8OD8v3xWfc zi$9SRGDNkS2X#c%0_g@Pb8x{j;2@3R;MdAl1inD8)_{EaNvlEvk}{jE9V`wO#q3Ij z$n~;B56Cz9yv8yD!hg&00-fekra?mK%g3a}NLMqvE_bz@RKRT-mYK@gpTqj-#~^|q zOQyZynoO^OGhW!ZBhbjhor}%|IJ+aYMlH)&()j3oxi?iA&TsTrqnsMe;faTOkt5x1Ssi;ccpz#EyQa|io$!!iC)ld z{aLo;w;|(Dk|jCFWAC{}hVE;9+c9&nB817F{i~fKk@#?!o_ya!t#s{>9d|i17?5h_ zaV+H9f_ww{EfVgpp|5!>p0{~vUp(*VL{!IPOe_F%8$jKO|5R*LU2TmN##S8ftrpeu zxVnFR!3@|4) zQdns{|1RPctLWP^%>PrJ3?+H0Pd;187cw&()2V$_+))DY;%$is&NqC8fn3o&yHi>% zzGj#v`a(>YW3pRVxk#W!L!yh9M8JybdBN1R3GKnaI&8f|wG*C4-7xlh~G(Z9>V6Ujn>A{V(3TMH9DNgA<#M)H3YD>^{6O%C~@NWG14? zuF!=rF04hX&-&4Xm;eO3AIl4KRU$d-9>>;dBk*SGBndQFg(TO5C;AiLP+^DRq&+@tJ(#E0^!{cVR1W}qg+!+;?53pFlf!4Z;_L@S=Hw>02aiy2tvSNrMDte+D-SaeLVsc|-blYh)0xLz(R#Zc|8iUQ2; zf$^P?lLjBwKxLF^ck35)NB-{f8Kq*h?DQL4=9Ym2QCwNF$vieUUlbHG_kM^ z_TT|HeTe-KLOjbMVqyt_Z!n7H@MvN4Yr}#X_j0rHLX-*396GqIz`|L$qqoZ&ACxKl zzHC+5l2sXk%Ppt8UGQRu=$14zE;@!ra`0(oU{|UjFd?yFBr)gQy&@CIr;vl*m^$Zf zP|i;b&W)-9v5-e_hc!Zh#P;N}T#^KCWD4L}IkQtbhRMccm%39Gsl`N#AG$xtcombS zhzSp0tk|)Z#4u0?KB}+!a+fi%jT!C_vG`OViDo&Cq}K!yUleFPS-6WUR+YAa?nWFdI17#G8f?Xb;{{3ZIlG3DDLp0zXs%2t6AS>t+ zkgaSs6seXE_yII@989_Lg{CL0b(gdxiY^2G!!+E|NEWfU3Ev2G9%QY?*LjVd=5sLz z1D{N8X(eW&=qKg;y3dMz|K?_F?<5{+5RXdRA!yE@@0s~vrKOj(rLADbKhVWKSx-w| zzVm;}*ylz=s*{T494oMSjWW7tUdT;IX;s`|QYFc9DXsz!K$fm$>(Ut&JW-MBrn0%O z^ZN0+Q@V-vs1^P)5R5;|AF=}SwKIJ5h?Yv_izOkVlyGW~BUcQcvTo+a`C(APk0FbS z$(+TZTQt1iQw)TL#v7Zj^QHNt7(}KHU5KIFIM>aTPa|N6(_?=uMeK)&y&$I9=@MVK zcq3B|+Wg7^2tf3{@cl^J3*yb(@Qn&BQY0UeXdIR+o=CHR7cq)TneTB1S# zE^(Je3s8I7j4l9GMRYN}l?C@U9<2fJ+)lLgQfKUAT?c1DS1^cE%LZ)TP%{f0o*6AE zBf%-KIyh!24+a86nHS<2RxsZGg|NavhvS0+AkZC>f!eV01oDh#+r=sH;h>niOtTWo zXH`mbEB$)oiBpOXwB6!D=1=upR%>I;Mj*}8SJWKZ+W`tV+YdFRvP}{56A=KSA0p$H zeNLMH^jfdjOF3NgbKiE~#@jM?YN-3RIdZphnm3g}@P?cr|byb=l5>J?Ev2Qe?;YB)Kr3YNywRP%vs|b)wMg&k9@cQ`N z!O-#esx!Y@T0;+O9ofTgH+et`X3lgIT6FY%Cxu?w2Mt*15*D4pxPy)^|B_gCKh@D2 z`)acqeY2_M`Oxr`z5)NIldT4oC0o#9-15iuQu+`G| z)YEL>$C4^sqQ!~kp!It0-acBeBL{1NkATW!(O8L>i(qbXW%?R&H#9cK%pkux#0S;P zQw^-=%`&=qM(bf&>uvS187|4RWY8$_x|2p3Lg$8Y^9NLXSUEkz{wU9U#plAdnbj;- zc?K7dlw9waU%@Lv-r~owOh@IF4=df5ujlQ^VD-IEtg2Wb3TT0FWCKp%0H*<#*9Occ z`RhaS8~vU}79ORXnDhjhlWk2U3)>rBm0J=}v;ieQJPAfl_tvThR2Prp9aZmB$-!Mm z$klOSB#ETiuynrFz@9>hts2_v(tLOVzyBHlz1(kTouqF6F$@6agfT<&UI>*ve)K#s z{`Y~7jxdtWPGy@aq3`b6tt{BjdyUk-%rPG~!<5(0LwB;zvL@3T{CA6oo_+q93~$nxRT0 z7+-{SAWs&@1Py7zG&yIjt=>b*PGPzr_v zPjG2H{bYFUQ*S|6l4by~ZJ3yz2VkOiL*W6$-o~HH?o3IQ`>!t=WW5syE1#Yp&GIp|9u?Nqyhs6rKmg zp}FSD7?_cB@4oa4X4TJ+{L4N`1xNYZj`zI#rs(KBo^JG(@VQ`cht!<_j+F})}c+W1Nm z33$n5o|WBAKna5mF&Xyao)OyKTEU<^z8E;_zLnR$H7a-ZD|`&>*wivyDvlXr3`=&@lEHX zqEy&bX*}?+KT4ma3TcLB%A>~gX4w43MQ-}`=9dEFc}L8&WA!{AzOcDkm64S`&h^Aj zm=Rki9n^ci`w$#sBLi9aJI~i4jAIDIn5 zuT`V+TNnGLrq!xyAw)P$`ONFS|MHEuqCu09KwAIiqF?Jt=PBog_zp-Lztt&c{+er) zb>O`QSe4J5=P%+WKx=HoP0aS;b$l1UkhIVrLAD1dxriI&&UQGw?iTn*Vqi*CaiV7iOSd>qcP)pkkU( zl=i74{*-H;)!DX8ty9=j(D^s;7%I4sE`8ij03H1*Zg{QjyRW1KBOmwHl@_Zf&)Hvh z{};Q!7;vzUL2GiLx!-9a)Sa+2EKri2hpSCzPR*lj25+o4V!m;eGd=Qe$esO9G-1p( zPdET6)?%|tlslBug`}F!YhJb%$q#|?0;f~To=O|{I?HOi_uf=7jf`@q_S5zwe46SP zFaBP@(Z}@pT6&;j0puhkiXM@*hPcVO2yd3HBZkQ!Y!9!azOb#{*co!6{_JK1&b`35 z^r-59=|8yyDwS**!`(6|tVW$4JlwtsG?k$V=Q+dDJ$0BW!8@ht->WIO8jv+m3Yap3 ziqgR+&)Fb1ws?~#D!?mEH&1!@8j-*v>ieUEP!TdjfS^WQZk=B0*v&vRjtkOg<3;6WnuXEcm⩔% z^z_jGF6T04AjvTDZ5*HladC0UuwwBraJ*cn9jBSkpI^=0wiivW+sm6z-`Y=u!qt_- z#1@wZP>K%zeeLcoeg^;UP+B@X0Pv$zP@wnvjP$1gd+;+l2G%43@P9==0g>O6{J5Zv zfqY}g)q8NRn6&c#nP7kVC*k%`5D!sMfq?+M`SZ{Gpmp>O0YIqa>S_3cu<}oUKst<= z#=F`*hx%V&@4}dW-$Cj(>H*zFL_#=z?ZL)4gY@;WsL1(;Aa4L1eaFm=KmgA=*8BzR zZ+{^NDE9%vx+3rI+&w%Tv^ct)y85q5*4P1c_1ph3v`4Uk9)Z??eOUimv^au(uA;HB zAo6bkTz{2nPYuCd8v_FX;DEr_K>xV--QD?b1nT>T9RcvDxcH}1fq#@WeB^;<`}dgw z?;W3fb8YGE^Z^GH__1rPueGyxX$tfV$b0$YpaTJ!Q&cz&A=u0Mqb$9&6`%}n9}nzK zEJ8vzH2TuN6**G*CsxDuUla`VZ8)_B1nBJFY~ARO-Tvz`5A#TGBwSM6`MZwsC#1{h zw^j}i8hD*MdOPcMHpwNh(_O&l7syq=yk`5B)S5@z13F)y4KBWNP>&Rj@XF8l1)rTC z9{dkv6eIw@Edc!BNWiI^yN{jP9G>LP?m-yrmyeE)HlQnY;!r^KKSTFu`~vyYLs7548RvfO zU%v=nZppt`qrYwVByiwIa4eU2AHQ)M6By9myt7 zhw-pM@9c$i_TXs!!(P4sU1{mBcF8D-!S@orX+D4<9)aDJe+7U5a9jEkz~TFgzS$5_ zK=0JQgM1!(Rhhxbyu6!mwZdDYGE{zaV&o0zU!Wa1sUo)&<%>Ab8%} z|89Eo{QCd05MsfhU+pKp1r5VJe*TkUMS%j~@v*MnG0?E?=|?x}U#cuMEa_@%7{)0| zX^K{@wR<1yVdJp8r<7YOtK(7DLaZ<5#0KlIBCAgsp`81?U$rh6h_sZPH+(;~HHpt< zty>IceMm3y{JQA0R>gvzgQfILH*eFj@(k*cETJ6BFqLw%!oYi70q;}P>KF@a>zo~k z4NaxYx+KpqW^B%h)v^VyqV`@FrQcW9^~iG#`#a2W8~A<#@Y8ww(mk`eeC5hghXbzt z;79e2tU4#q{J#I1RcPnU_CzHnEF=elK7ZYh{b{P(lFh_?ueNiThqNaChSC^4%Y3BL z9fPf!{pYZtSicTuXIN-Qrz8e~r3gQpTuD|*Ha>cN7()kK;pr`_!dH?F(yZKMYmV=E z(S+OQg$Ef^xLQV(?YkPx|h$#(Ka1^`Bn2 zLzEC|BJV9Bl#vpf>-15rQM5)ukOl6A4NtObGvdzNbKw8o5snn$&Cu4E5gs*dhP{Q!Zn`ATOCGD#S^Qo5c#{?Ac~xg zsp8Fz^KI{GtU3mgyhq!znncvU9NbOFIz2C`%$GS4hgQsrR&z_xf#mgDor1G{+lA;V zzSd(W$E;7lSne#E;1t4mTBgMX*`XXpG{=q8kf&O;=r(G&)#QcVj)l7oTRMz`SoXw< zv%nk1R%C;mA1|@JI_2Z?Ejo!+ZKfV`l}C^NQft+*bg_hbHpg{|g-*U7eIGJ=X-~{{ zO&Z9&rCZMjz(Q8+w0^hNH8 z*bEsK&>yx!*O0z!U(juzFax%ocdKy=oOK!Fj3Dx!GG1lt3%5It@*-T9PmS&li9 z3HG#-sRUy^P_oD1G2i*2vE_p(m$X|yoW8~fb)Pm{zWP$k`4^A0-e`vQLKi}MmLrG| zNk0_Rwqk9L$7yfJhJh{o_tG6*eM+D`Flpcy$ryW0z?|CQ=Tu9b@fR99@{I(2Ju_a}$R zdComvU7WXR8Qj}KSSEKbJEqN!CHi1~<>-t!?Wu&!=kWx=KiE-rz9sukwuCe}=appx z8Y7&=I-7A3)AsooyYFI`)*7tShogy8*Q#r~6XP>W2VPrxVH$JDu}h?V0Tz)}qa2s-nmCfid9_J|fk)rfL5D7f9R-C}+bFa;+cez~8;voJMw#3r(bO5m72wXo<}=;N@7ETAH^Z9_)=~7CeS)Dn^`aG;Z@&Ab z=+!y7Ud|9TeW`gKDg6WGBk6Da&>}-eO>J=>of7DbSAWJP(H4m9)m-cN8{B}GQjKwpomzzQ+@QpbO z2n)q5EKDi3gRwE#s#xNSnV<+3lv0@|zGuJmXmZw`9k4X0q^2A_!Gr&}oVMq>HBqW! zk5$e;c10Bgt(ic*^rFV@6=vLLcBc-;e4(?rB$AXYVvKJI z=CJygZ*AaN+z0fI+(t**C(_lnIx!t&%6+3y9-&?bj{j_=1bq(fAQ)zX6}k8;kwr^9 zM%|+foW`B@WK^W=%y~&@x6kA3TzYR9S-304TsVpnxMvne^m&k#|#rcZ_winNwG`B;85 zrsxz3cZrtfWhSXgLlg z@N^3Ju)ZhyRRx>BAGejU&qy6=&%El-itco!czlf$;c+TM>{+j1&`{3VpH@mSY|Vrg zJ0}RKTPiDWt8qr~;Cb3_Ykk7$WFMtLjEKjV# zsIr5O10$52-nRhyfep+rHbI#tSFe){u|z0SMJk1#v_v@GU`HshH}$r&kuM3??}(tb!ke^pM6S~Wg~g&(LAkG@7&jP5crgH~p~4s(M2AtWd@ zrUKK;4+H|#bap{e>IjrCbX(F#;27X~x&Enl9;R#-3a!<;CyNYx=~1@A4Nnk$_P+1$ z#^BsF2{BTn6!A>a+Z(ReJSW+{-e^+w_HGQfOJk?mDbK;3%pI{K-9s-eP$lx zB_XQZ{T9$DrsdG3*^Q)2R-1eZ@SO!oC5-OoYa_2?V+sDD1KzQ zbSKsh_F%A`2U5Jq@dm>F>zifFN)E~)a7ZPZgU_QVg)nEc>_3KMjOCoz&vMED~x;ANS-rSo?8wAVqxJKpogq4 zWkc}>XO!YWptHhp=|}nRx%m^#8%oBFU`d#L57v&rW=av$A1*@DAilJpOE^gdb;mVc z6>M~?w7G>MwcuXW_=L(C(3-c6{=Mm%m3nvoUqc1~rumc_W%Viik3KvQGc|1GB5LleXx-vWSCmb_rH0EB3z^RT z$ae{`4#(sS;KEg{*TX0|g%4_6wj^*8m;*E}HCO5AZeu8W$!YYARs95?cV7iH$sdW! z$k2}87>(eX&TKKJs@2N@UekUw6BgINqH{P;2Y$Xp91r0>DKi9hCf2iz=+ddnHJ`-Q zG*^|LEUDE3@5yC5zCbhm_d%pH1Zg?Qa0CXVA|R1LIyezt7MxI!WnoxUa83|!gs#gm z)jLNYP0|~8ZJH=or2rPwin7nb`9CmypcbAz~@nsH3{xWFX}RV#i!*UrG^qpj0HZ%Ck}+7Z-K%z}&;#>wJ&AyUmSWSeVM$ zB$ISC?g+CrQt4D-aovHvDA}>LOtyPvE{aq0hWtb7a9Q!$anZ8X#i67>mA|Cs9EqA^ z9i1ag-$U4>wB#}*oZPQL{E}o+PO9t3(HNS&ju|P&dAR$O=U5CT0`za7>@|#(e?KaA zhRTg9$42Rt{EB^tm*-jU;;aW%P$w1 zci@Kt-P-rW&!+?7Svb1xxF@cBFt^>v)Ae^{P(nQc!LV2CkGL&Ad;MLl6X3L&?wh>! zaf*l;)vABMGLYNmH;q3u&_CEQ&ovA-P*@03#cCH7-cxxSdfliqG!($M&WIFaqm8fR zju3ZA_L{~EGcg{wiKyUJP%^toUaxS+iQM1?p2t4GG2cb@v~*h<77$|bGPcBq|lnhn3GyI$8;yiPDP`cH|A{TiOB}*98W$% zF7NWuDkfP0=IX)cm|cKsqjBy+MTCv0>3dk#H6c)`ZQEK~DA6M zlHh>nmP`xVxE0rnG{lwWLdJ^%uC6}h^P0VG!-yu$4!H(m<`W-9gUHh zVM`uuf@*bBBuu{C3v)Gk86;EUAR%)jY+|a$&ERr+Z_9U-2*6ld#I;Z5`7m(0 zhwU%OwYg*ZU2Iu~>kMiX|8{>P7uoxcP+o{m5LxUBkNNjl^K_Cnp4Z(A_|}Vj_^D^DsMS@ujQkl z8%cDX{90c*^3KHM)3*Zww}+LdLKK7EW0$xbK~Y{NZ+S#gIVVvzbvf0w(=L{O&OVdV zzC)+x+!(?nx$Y$U%)LT4!{%zqqmoA37ABu*FaPL*OUK7MEvj0cvBUL!?tGl9x`)4< zZh(=SY=xp$s56bZH&(2JG0)9TEaJbNZ~aF?1ui#U)FTO}WBu;%V;f{cQ4zw)EjnnF z1JMbrhT8EDk%6`N7W1M^clk7w%~sh&wOpFR=ZaLFUk;maHBLU9i%U|mEF$51a1l?$ zw9Kh{W+R61wshkhwx(r!E#f2TyLUh%L9Chw!K)$&LX)lFTyK>g7pDem@Kx^E@?j-f zl)?&)o?6x^X(&!0C1oVQx_@V4)7nNXD$*G zj{9*_NgD<}2$njXje@1;jQD1v$Q>D@u12?H9Z3TLVa-X4O-W@NqFMEKMLkB3Jh z+rX~|3MH9oco56Xn7G|DY;tiUsP8k}U-uUoN&5$qHvG$`7OVvd3fQS|dDsBfTRO(S z#gk|2_j$*?-hQ@%t6M)8*j3q~lMkuntSlcY3-{)TKJ#9*eThywLNMv@sWe0hMq4Hs zY9!&5Z7qa1@hK6TiJu35;C501Z6qAH(a}?yoD}i^j<+2F;Q4(>Q3X2Js|29utWIST zO=>KYyWYVe>*91Zaj!Cg)!t;q!L!n@*j__J7PkwJDe<<2E8jzRVv+9g(4up)r$Bwj zxv9X9VOJ*m_t1&c3`ozyB|PW33|3NXY?>40^zu8jk2vKlmmhJ`t<&aUCDa33Welh& zhxb>y3~$DUhGVPbEW%q$;he$eiJ{mM5?#et#2RBT%N53jy)BZmk6}(ShqIjb+?KG` zXQ_;&)gezaqrmQbR!$oAfBHvJkp|E@|5LAN_ng5xTRm@FiuN}sHOlfd&?(^ zPc5UK;XlxMR0^FPP8IB8*zqSN4M>4d&*;2f*lS7_t6<(rEVoiR8*RGh&~6(q8_WS4 z?feQpXw+mN)MnWK5PZMkvnu-xX$#tsP>PHVX_&Y}j#HWdW%sk^89K+VpyR7kJbmf7 zk{>*tnp@SLlTT!+g{spYNSZ&wnU(F^63ZdKG8r8GgjVTzy+zW2{A=>>AUJcV_;n~2 zwe;gok^$^Mel>UNaxESWD!=&ZV9zZvh1xMT(H8eRvmct~s4l)E!)YBD%~yT}QNQyK zP>V3zVKK(CEt>xNnK&_RXho9GcV&jtasK;Xd2*V%^BxJdYV$n{tksAc6x?ZVj7`M$3@tFQ9;fGSb3$U6T->n>G2maxGOq2Zf!z#r!U;<)=R+HAwSFQW`~N|JWhD z%B#!TbZ}Fuv?v!Eb>CvFsN|7T35R;7`mXTF0t1j3BrSuh;Rf?5A3o`>QepM(gE)wt zT-A+&)anp2`nH2j60050LI>if7@Jq7^6=k(7B5WMhs9iQV00R#K-=F2rDVj; zZr_?$$eE*V*4yK4ln!rfGKH2K`QMzvIgU(60H;^g^54J**dSwCGaOed2ssK4PH@?q zfXDCVN<(a>3D~n{uDzp+mx;@RE^4m5LMdxcmzo_@`_CQ9yBIYM1^3)OvNZ+T$dB~W zP91jqFU3aG&AiRQsP@-+j2p1qCLcM(4#Sv(=#55f9S9>!F+HibY9XDYD&L@IH3nmhKHHnlLZsJ*xvs22o3CV?p>!y&_e;EbsGZ={z5QVo(zi87UYd_yyd5jdzwD`&5s+rsF+NRPw8AqJ z(?jtqI#`m`1ry2Hjpc@vnX#iAB)LRO!5wJ-ng|QiB>)Sb7+6|$ueQ? zbzi~z8r1cCbbcrlzC1FptH!{btoEBP$oxdY}gF z&U|qPQkhs|Vy_&ali@7VbSrp1gUi^4g`$wVg2#>~&3jvRT~<6a>rgw3*<_VCLN`CJ z4($QH#6H^1xm|!U;R0;M%MR4RA42n&h=0uLe%AKf1)(5c0+18TxlykQX6$!9ka5UB zzCjWSanSJp!ON|b?C*;bya}CJyq@ILdo`K5HJj2x`8#Oec-f;S+lk$tjLEQV_Bh#WEKe=&%&`Q;Fa$ogBBW&$fVI}y!-IKQld0b?D zqtAfa@-cdNiv|ZcT+O)9r$d_`wBPR~W4*kC6_tx9*^QDCRSRC9HKvp4#T**o>r!J^ ze=>*tg)%@*j;2>f&S0Yc)*nPAy`j(s!h*To$Q0gbxsrZRTeF#_c1JQ5M80)4{FKv+ zm_4#otPkPz@TAmID_QIPd$^n5Jp(>C&c$_F=*F(^T~cQ@xI>Z1>(q1H$)OFX$NMVc-f^3Qe7Duet_> zMsIzLU5i1hg3l8$3{wAK1P)GcJ0y`PJPSYLFUsMS|0y1O);3FQV+yxq25F|Bn!w7y zPD%8OT`zrUG=DmxGcA`LCfJ^*rs_4Y9*?Ylp0;5KVrD~Z!$R53iRs3|EZXKO%y#Ws zLdqj~3#^vZ$sib@#*xN1h&!__&s;@?;j*qLul z&#Q}D=yjX84ctbZyl}UV!GtN!CEM@M9k$$>q!Fs$&M(kg! z%&|M(ioo-4l?Oq_FT#qbTVbmU|J8JFh~&nkw7_DrVvFA~6^saGUVg5DPz94NBHOV)3cTG=tgwO8;{(W<9+H)%WH{WQNfE#mQ{P2oz~5mDe`dZy1Y!k?JAcH{cwz62}v1|iO}p<>Lis) z`q>H)#fP-p#oT?8*yc~SQ}k|a(UTdx5F=4@55M71q0;X@ih(UL$+c;nkNuhbD{eym z^k*8q$6Q!Ic0eG^a}Kmjy;$bbTos#lT?9WnDyS1zKxBqb2MLu$1ecZ;0xm1xNr8uu z-$+L|Xq8WSW8f7?(+xm+`;I;yUN=Su8{V=zlPb0Ye$q$+!!&n} z+%fL>(wn&_=Vwn9i(wT{KDh^F8grd9$oYtY8=uyWiS(j(PTJx9U=dAESx>i$t_3|V z#$=`+|A^q81obto*)}1*(8+H^l6*((Ev;pYq+Yl*Wd(-Ec4Rs58{3GjSI%Rux?k>d zu9;)vtu!>tyBvA-_g>txt<;rA=fH=(nS=@$6xLI+MdH|oEAxB?dx65-*`CA6#mB@$ zH41yPrFX4A5fb|Dq7omKSbo%-y0sW4?F-s)`GfS<{`nu&%2y5uGj%A3!i&ITagrBA zxY!Z?Z7V)xxB+%_+*tOO5yRlK87ia9n60Saa-%lzXCAk~FgX?8C~C@uZ+bOGY#+Fs zZ$alOJ1bG}#}_u{a;{07%PG`4oyMJ!4?q4Y4PtE{ zA(>U1`+SCnz8x6<8X4uoter$`ni}{Y`~dFS=yd*z>=fI7nVn*0{6Df&jLaPWbM=2^ zrx@87{?j1*|H)3Zg2-!cBGN`%`R~C7bqU4q(GG0?V+c*{-B$N(1rWIh2>#VS?;&af z4QxZi5ug6cO@04XzFMkH@91q_+&sIi&dHaTH-&5P|Dy=u>!F~)sJa071r=g~(E4X) z{!YxyLxP0+2TX9TDi~GeO4u86H@KFgCe<@SgJH1$;Vz27vYT z)jiq00buaTM;hBghL&gk7vb9A%QLsN1d|U-5AvtY{e={uGrvAK!0#V9xw)CKw7i{y zbZA60)dy`4(yj)yxUAbrJ{2v{$zSz^=~mgLOl9s~5n(w>wjMasuxK zrc_V%KOw@21v_;eZtZlyQvE2s&{Ef#cr!mGw*Q0(n+9&DWB?ZoD*+Zyfqp4x*S8>! z_70{lpc_9`2si8KXLVA6w8Z(Zt^@SZ%#!uqB?7bkPiAdijX#~5TJ^)Z);{U}yF*Ah zIJg`jg9Pp93^F0{WAZ>P_^$QOAq2duZ)$pccm(i|1;`KUVA-s@!_0;4-<6EjJ2-{( z?!m!_1(-Y~^zX%&+IxihyScsu18(o&2=d|it8{M{JU9UO9}FSDe=>v-#U!TOIi?TkNl$;6kmdYv1xy-}5hCO9ju^%p+Zp z*-U3A_oE)d12@RtFUvCMPlkp_KFHYek6();ZRxBNK4@#>ryZ8S%mO}KehB2)->nZg zjh`_VKbQ<0aA@TK_8?yy6aXkNuFv1IT(Zfn7Y`?PKBk8@$Tx2GUtUE>YuJW27K3c= zI)GAH+0tC{t6AZLqkTYkC+@g^2;m`H7@&2ve)wb))LsX-o#W7E*aMXpYm^^9ECALW-rYNXmEXUxTh=ol zKAb~q{0b{&8ke!hN6IoFC>O8-u=~H}Pd2 zr)LvkwTk{ehd&}CMXhaDo8oI%trxFyb;$B~6Qml3EJn~kQDqhn(~hR#*YetEu{8On9!dye5BQ{I?30omm9W|A=*xmHVFyy&F=_yt;2xi2rzI`z zGG=UKPe7WUtwwh}Q#H8f_rls2q$;3_9q}^UUQY)dX`QDYl@y8uu%-MPv$Jj;MKJ zTy+N5HI;lVrmr|Op5hgwCd7KqAE@$Lf1@;gRe@%U%xuzq@d3O|SFUGHf|Wr8=bJHI zViYEA-c;eb7r(|rl>in!AGa;Ts%4J-Q4hFrw~x@=QAv(eEX8#py10$pa`orJKHhjK z2Dl_m_dLljP=&^90z};5WAMPLegP-tnjsiAzDz>*%L};YDF^O0TR91gZIj)~9&hrK zI2bjW4<@B$xl3y87o{kmCJ*n<%7M%RvoXd|h_BKPsdsWkDJrMg$Fp9D(T@Oc?itS% zf2`>KY`8kfdx!twj7hbpE9r?o-r9wk)&dRR@zaC4tMkrBkd9jXA>KAcCskwdotN_d zgmfbGoLbK@EC}T$@`pB&1dJZb$`xYJ$lg zP2rBBv3lg>82OtbEKMQ2jpjzR)Yt6aUk=_0GMPm;oow1Ys9rGP9v}rhj@&E%;L^HZ zs&JJC?rpFc*p}JCD~KlY4u9DGW1>b^X9PL?&MNp6qaDEg+nS#cC_MvLr-Dn2 z)zK&`;-hUWv>!n#(c6iBu;ywJd2;fg>BxajE{RJ}5GR#z$+r$_kgU>l7PEdUHRc$O zC`AQTRG4cuhoQ=bE7Mp8OGmr%ST$|fw??0P87Z5dfMC_dDL5)l?#;KBsCb}TT~jsR zvw+r(VSgm(aKgl6%F`b_HpYF=J{wnHbUm(gV>cu6h`Y%781Ejk8mh5wMA?1sNTD;t zQfSejQy`|o@;B{9TTJ$mM>#tP&lf_I|G-*O?c8YBn5p=9!oVV1-GOe7<{ekNb&1U> z9|zZV{vuorY?cv6sUf^CVE+PRAx~wWFPj;;Um6utiBL_%^Ql5>K7azmx133m6mA)lk$+Ithl=5eZxxOxJ8p!o%PeCv>!X9%#KLyC~94AEG7)fs49_j zext31Xut68<(fRbE==E*e0RI%-F$Mi<~Vs?gef+U@s$qyd8YDxz1?h$BjM(dPTUEW z*&@aQ{_wGl5)^`&(_fE$-=ZN5_y5M&IRpu#1Y5do+qP}nw)wYh+qP}nwr$(CyXVG4 zyog!6#VoUOSBt8M%nMhCFE*8!r6^=NuMnu`ym~Y0We?`xH z6Hq6!=U?B2HltIQ3n9Vv$kzuiX}VBDL{rRLb*JH;NOkwM!jadPzAF5Z9W} zcn~WY4KP`23~cSEOPaS6zt+B?QaioJ%TOK)B(h}#jp83Mrj73R%Dil?WWp>~C;X~o zh}EyjYe6X5)J`D2zWtGbp}KDmO;>aj+Nb9G2i4k3(`b04a~xS z!F<+ihIL@fyCK`+Tv@oBLLjFSmh)^TXBRy_tmtN;6X(+Ha8XwFF5_Dr>LGWV zJy@)b&v_(GPFX4OLaw?uimy@VWc6pmOq0N3U|0yKI-fAECTG|7V^3r(c z=w`&McnUol!6@A3t{In0hOhRXWT|(Kz(*aG9lg)3_x+a|k;GbHhtcF{3JW^;g1nIk zm^kR%t443D`lhp3Q{)f-EOz#ta=7c?r6)VM*Mdj8TxMM4Fs<7u{|*2vA8u3GC`}HwjxyC6i+w0=!uqtJ&$`IlP~;MoB8**sXAPv47+6K*CeB$z7hz} zN;8uKMwARx`i3?q<}*o53`!DpRT8${FDL93{*drH0v<$z!+pC{!DrTr?G};~%=|_B z&=p;c_o#Yy4a(vmx4F@?+Hj=_t;--^JPY3iE_f-Cnf`;PH;j@2&`hwDPoTO!ONSol zAGGVz9;-@?Px$Wc@g?k6#6&uex?$kLv39D+Kue1FbkZ|z;e|0^>qJ&oFpnxbM*yF1OF=5zz4$XoS5($^`<@}#KH z=8UG{C?{rjM0c6t(OYT|_LzLNrZ=cy6*+RAb?SlXgKO>0%DmM(kU_-rh~eEB{!+YxLAVtE2KK^Y>7B3Qd7&t2Qs);xs}sD8(JJUS3VXA+Gl-gEyv^iHBnH~ zuu$MzL1es1LLFdT;HVE_D`e=@BZ+gx(|{D+U-xc$>2<^!`B1_N|&@>bDN2(3uZTPdVuz6kEMV$FrAt|i*pTofHGxok+6m*h;o#J)1ZSVF0yr#%rNLX6hh~yAvIs!?e;_7j0L%DTL z%RY88$p)K(Cb$c0s*?>waRo~;EXB!FsqT=yR!Z87TII^U$`)rS5^IuQM>HoKVn#-8 zmR{IHs7!5=&9?~Bd$$R`Tog|p-sg(T9Who&P=myOzJXbC0L+i&d9oztC%7M9z60=x zP3zO|#Y3TGnS7Y&gNG>t^zbVsfjjC!!My{@TRb)9cnb|)zcA~G!FLmFQKI#X6YL}- z!fOxn<^q@&9j#vHfkD2D$Y8n$unW|X3vohSW?sT0_AM8&7O?&XleXU`=x0lB`{I*IGpA!aJ1t0z(Y)@V;!>~XQSe5;=f>9oh_Nb z1dKf)UaUpol^z-$Cd&SlJ0D_e&@Rmo-mlOl*NKoIkO`l2R#Lw7Ko=zvMOU=NprBtU z$g6JjK3a+%tU6&dGtJV4G}G)+d7i*Uk??(@xcL<<4P@}L`hHre3GQ#8bF~Z^>MzVq zxLt*6@4!;UlMI-Ar_!GtpJUJ5IA_F>rflcv*f|50cC+I9w5KHez>cC+Fe>|LNW8rR z`{qQTLu*cgm%CI#JrY5a8)e|xpXL#Yt3!l$Q-XQS%DU4cJ&M}KUkW&}MoImhI(|5g z>`|BVNvLNHod=4wcvg3@jQ^Z88YQphc%BwJd+`##Mc11eW)<$hK)%3|JZ?;dFQB6p zw+t9ZY>zKL`t{nuRkf$*(SN_~7Qyg)qk3knP;h$_-MUP`cqCj`<&?1J+`WCPZbw$z zL~nMp$WXP>LW;U#ZOMUG+WeH`6HeOUQ9D4so{=i=0X&M zZMm(4W40&4k8j|TYoVUQ4Xo}2_NS&~teHE2l8(F~Cjk%q181^$4zg8f4rdf!s-Bqe zI+3~?l4Jzja6RNo)yUS6ID95sEuT>)CXWY4JHE}QJ)_c3V;U=^d5{V+=`K}2+3kIB zaU|syGN~g_1EJaiv>J(231jxaR^oQeNz#2zl7{ky9v1O<3s2iJ#D36oKFi6f2>x?} z2&Nu?AhT0p$NR_Bz!8Yg#K+c1{ZhVPy5b**E+$&ptmD8yzUa z&+<~Cc%=?DNt0fMy#EJ}iQ9VlRjsM5=cpiWEmT1(Rw}0lD@t}=VG>ujo6;vmkO3x* z2&P>6AN;$O>Lv&G3c6bCQ(?W19dMmE`36P3L{C zr3mZq3v307x0nG}A`OfVk6}RdE|z^Vm&Y99uH)AU zR>b0k`F?6Uib`>1w~`|XKQrsS`tSVI76An^oOoOJHU;+yUYSH@nZ}gO%wR9lVDc(u z_$ErHhhTc{c}Vvw*?|lL0twofc6n*h^(;|jOHHoo%ro1`R7p46gZkueO$#PUu3n6(RuF1 z9PyFQh3Yv%>=?jBHy~Yzf8IBtdZt~?nqHI7XJ$h;Ajg@5Q@Jg*rhkY6+U}pS<675R zC+81?^`SahofT0dmYvM?n)G&XxGXMHYwc%LiGr2jN?nS-$ivLtaD@w8(b3QAeuVbLT3KBsE`|Cc;XnN`H7n0KPTGufgGUe) zL!Mh_ueX>1k&%<+F!?7F(Qh33YOS=OK5$~Y)7csPp|P=E?~>D3+wILmA?K3o$iGi1 zcm$T1O2Pn1><79U6#}yAbbb=Uz5#AyX02*e!5zJ>S1&DpLU_~XqNL=lL06C!T;7So z7YpB4^cXqrn6yVO*qLuko8rd=UkkVGL&UOJ;1ZdO+}4oPVBn}|!7$&BJRC|Dhd5oF zk3bbIE?s#=`ja$X@i#tFIDm9!IIKTjO>EZprG}p)_>Vr_|#)sv+n@=3lDz+rWFGo@Y z2Y=10n!0Gc7_?C-q;080b}kB(gEAiz5V2JYHer=2gJNj}@nl5!xW3D$!EH@#LAzr9 z?B((z4{)qjlDasfjC**NaNYPmL{hpkBV1@s0j3=*x^cELiqKpCDSkuxtRl&$ed+!w zNpdF+KM9p$9`9h)v@ur_jwbolTB$j-lFW4Z_X_mOl0ag$P!ROgwjHx|1@QelG+Uqw z?nsWJp<6{hkF{(32J=4SLd(QKf%ew5JmM%;p$yEJ^kNSPWEEzb*5Y_nUguQ&JB*Zf z#}&a{xUrw#tvQmlZ|w?;HR%q>#*YnA9mkORJc=>HFyn}mazk48A;KL|0=(woD0X7H zJ+h7Dhu+l-BSBtM-?L|$g<~--u=@*B&R0i>?_cc|pm4?FIHHqgVjEcR zzORx>p;T9SEk`~m7uuC#tq5=6NY-1)LT2257gF>vnj9k%fFDLTQJ%FzV5tN|2n|LL zTcZHMTFH|DBdZD}jSrs|y<)^c%b3JKUZ%Q`N?s1L7 zixwQCJnE(A)h%LTjXSmcRm@vg=ag_+PzoJu?+CRGQfHnI5=*C~B?oAVqq!J3YS7)4 z03Ay!-x&JWagm8=C4*I3XW?}wh4Z5|23OBdJB*!lwuA{|YR~sZFy@jXL3ZjzKltlP^@t@`XZi3zyh&x}KW|eF3 zx8}nW-${E3wAL;U>aFW*JoMGXGs!-<$Bv_P!mYFV@-jLK&fhYu@;l?H;RR)LJ>f_$ zNT+r@_dHopMxhcu6c4zg8Wfq6xB%6x=Lm{-#^lWquv{@|6xEX)scQxg*&ESYrNoty z(+2&uUmah**}}(C?m2D3(|GoMn_++J&G&@@K;o3aAc&sO`N}TLMuJNd*oeULh}>8b zK2O5wpCWaqbj9UD)t}LO?7&2FNO7HWBgG{Hwp%IAtap+qW4mVJ8#HFwo(>F@-JX${ z%}=kww5WBM?2m1DQlv}DkmhMDy*|3G#jHR#)5CCQD&diKlUr@K@=9b(HIIY&iApa+ zAW|Wnfw=WD;C>zU6=A2g@KO2>wqLKa8DIUez<>|n(ftEaVVYkfzUE~y(U;VCf?9Bm z5;DW4w`A{D$?=WJlevOTJ+=9lWqRVLh2sx#2MwmsFhOV&IpQoxz5uzM-X?~Cfl2_0 z-U%Hj<-S*)-~S}OV8*V(6Kh;M&45|MStVmnyI`5o5NVt+(@a|_i5AnGC;rQnY;UuK zBpo|{?e01?99w&y^qi$gs0)$Fcw&SO!8khNYVC%N4=3(%>O$PQTmrTJH_Pm34>zX3 z4d@D(5hPDakL|~Bzb3Y2vS129omAlY4Zz#1@Kqt2Qq?EBJ7<&aFWzEC2W2<4Pd++k zaiWe`Pf)w}5=naY(rfx%j1$s16L7i8XHlq6Rg#S;WHt?=U)~Z$)f1GjAEs?hP$~{B z8PySZ(N9(~9(%D8GxQ3ViEBfS5{J9Q;F!cfi~U1LEGp|vMXME)G%Z*de-uJ+ytH=8fY~2wkC6ol{*p;(Ii5 zPkVdMrAsPj6I@~9(70l%0rA=EUka(N{V-{a+*#cUoqDr#!Eg;qZA~V_Lyx-V%QmxVF845{`5}^mPqcdtZwjn>N5V<58DvQTZ z$1bQ=+&pmdkuRmF>zT47VnfonCibUYJZ`j5n?chSBBY*_(B=d9%?Fbq{6nM2hS@l! zK2u>2#To6BU%ZX6 zH`MMwsBi0^HS*j7TGvbfB)TNxLu2xRp>}XEYmv`gDSh0E1)!^!|FwXq8Lto!x>e~_ z=YMJm1UfE0%?MEyKvXA51Fh~4Y)x7}YFgSZJwlCnLhQYc;`N}CO|;UQ zbl5&4s&H*28S885A6@{CRVNN2n#+7mqr-UHV7ry|ji-Z@?CgLOXURCO^8~&?pH6^K zY1h)ed+}m=+Oh|5rBZS5kQNODM8krcev)|?cjCPWH}T$Fb_HQd6)Ptj%vNtQokj(o zl8L6=R3}*^n`wa4t~r1slU$eG>=#N%T$c&?#C_*v1Qs%GD%op0J|ialetS^`46MMbATP)KX0WRpr?89GWL>qitor_~D_b zX1Kb4>5O0|Z{X}yYKA@GlLG`ME?}kshxpIv7^s-!8PeK^VJlS(PL+LSuV+6!_%L=h9n0$4hm=%|6=f9B#Cfcm$(KJ1|Ek zrI9^iCfy$wL1Owj)vyQAq%6X(WeVHZ4GhCHm(kh-=6pzGll<0bX@7*Thbu1|K16x^ zBDJmXSdrmM;&M@W>(a}|x?%gp+byt)9P`Upk#rTKXs6nFu+X;^JEfzlKvs2B=Of~1G8?oPWeIQ;jCofwZcW)s z`%g7PU$9EEUk2=vbV%xvc>cRp!R~h|BEokfzFyo9xspbM`8dc4S?- zTrkN=EOR}Jo6~O-^xb8AKPZsAB|m$t*&;qC0vc+cDR*B|qp z?7zexT754cD|vHD{>p~PEI}E6CIp7$l%yD81cDDe-P|PL{(*s+(Sd;wDd{S>z)gTZ zQt^@%5H5~D0)qiR4GAuQm;!nxO5^jW11|`S{CyMP{bMluM@YwB)Z={sdk1@n?Fsv45v*%?3+Lr9;Ar#fQ)fn>yfN`m{;6L~lPcG`JB6H6Gd zZuU?uARB$AOsp+{Wr9)yg5{e&AqEI-p#s;y>uWkXI_uHaSZf6E|5C-!{GlN%Ar(Nm zfN-+|{`vE3fl**@0sYy=z^0((+d?{iOBaAKhIL|a0|3$kVaHP;9vXi_eH1tG8q7V`)~rtvCaC0eQkZk2@u@p&5o9qB4~3P*JDFi12TYb0082f zB(LY!Dxmo@u3y6o8)J))NA)!{F^-R}ACK(MEye&c9Z~@trNRB(&Mhnhnt;2QIDu?@ zFA#s>8|u|+Vp)?xHne~S7Q~kOEt7*f0%Z1XcVU0+4Yhy?>-6LO37rzuXMEt>q;qaG zSosUS$_aQ>^x5c%l>a4Y0u%t~!NI}#()j|+;{iCcwwU}82XtoP-piAo;UA{qb@N;k zxB@(-vH9x}IPFitSB4ceFe3oC*aLZbd@DcfL8K%h8-Ou|0Ll2H5inf(750S(ocbN4 zeQ^8h0OoP%osU88zaKr_CH+DVO%oVkxBX}J#A)P;YM}{g%6i(T{oD56e&i79-r(dE zwBGT-5rBiU!yUj*A5QNN_pFHV{EqAQfEu1H3;^Vp>g^==SGDnJ569r$OArI_@4q4B z{d5#M_}JgMUh4Gn=LxEVcfn~M)&3ORkDH!F zJ>~Fqoaxcw2`~mX2S!&x@AN0=0}u~~e(NI4`6qb>;I*{@#PbN~{bCV%KhB~5=a|8V zJK*)9U-++(H-Kw|Us0PK;Pu^K%zFpGb>*KJ5Ixt?9|0gh*F_&9{U3DTdUx|P{RDna zL)H(lBhY%lpFe%U%pYI};5FKxKM#QGlwW^Zq~L$26V|_g`cw@+@ZKBXuYSo7jRDv3 z|Mj|E|LaBI{MSR``~~jahJD7rKLN`Aub#C3MgCoLm&w7w(c7)$e>*pI{TuY-ix$YI zo=0)9#WJEoF;GRFcUC6+9SwPTgFuHDo6|f8ja)5diFj&_%qzaX;dHZIuXf)$R$ITJ zy5&<}aLQ?6BMfU9h%}Q*Cpg%SBNK5-f<>ES)Jf>_5ho?Dr5#yS(GNfUAg5gf<^Hf?OQZ271LcRN5jdYB~?AYm`hDOY_AibAl*oSGJ*xW|H~TT_$bCFs<+^y~biG zKE5Vp>}*C##ck}~(j~H5D0GMub+c(ef3A77$qkRx8GOi?6EOu-gy5m#Hy45E{pc41Ke>m<;^u#Il?7B&ey@1#{II~t+3=tPhqb`tL)L!ni%X5Q)(96%|(-(?4h zr(X&F!NrGP7al@Y-lCS`tjevwIIOPkUs+);SH%}xbXu%rVmVte9DXxIbCYjBke%Xt zbV}_o8AOYP!}vH@!8-vk! zjC}6$H3FX1yOE?4iPB+be|EI=*TSw*nMMviX*&pj zAMj>{ZM?;uc)DIdRjX1uc;N6votHw}7q;k#gFOQ-?eo_&iGyR|=gb8!h8}6i-?Lad zK_%q}|AY*-Bf3@%H0-lofSKATIwCXF&mD3xfmY|~gJQu#{Z*0N@8X>L+~ZHIYjdY< z9G0Zwy>(1&_|&*=aWC}*dENxxkdXMSsnqY z&RqMtaW-V?pb0w)r`x@7RC`j{T2#%U`T};trY19IkF?T$qF8kABwKvC)z)sBx~vJg zY^M~zA}%i6RB#R8Xd$^w$Uy@Sv4wq5s#qYJoeGW8 zQ)^5@!DLm050DD%@<+XrOc_fLsq97jm94GkhCfjNJcGyLI-ae{0w&cV9r|_I5omt( z8qJa+RPHV4cmeG$Cqtp7Z#nOc9-F_^7 zs;7;B=zx8n$|0IIjha%g{h0<7@-YRf01WLB;Tfr@8c9z_hIc*t%pB$Nw0!N>o7U~k zXFCIh{9iGZO~-o^`fqM_^8z@UjD=hB6{w{(Y+FNG(OeWNY{*e(*RYJWXhkOaAA=<_ zdcP_Z#avNrm$1;^^7}uAm4+Cg#GqfO)3Y9w=WE|Jcjbg>vte$@c`LXsP5+;t?A{MU z;>6eNm=8_5tDNcZGn#y5aDTE{4>6qL#Uy{#f!UW~cm?8h*`FPa?lIeV7Q<4?fY`^0 zc6@UAfu2r1x?JK(O5>#dGDn#jTR^1QTH|0DyMgg2euYNra`gkVh?ENCJAy5ljQM>q zgz{|1^X6dIne`7t9peK%rB)z9OxaS8H_<$N+B5CaOV^s`k+CTJGObkpPJ@48SvxPL z^^nJAP1-x?m2R!cVmuWjCDc0IB&~~GSx;_L9Fy%A*Rwgm9x5O?o~TK>ne^!ciAi}m z+I6J`2N9kz9^pKBwWMa;xkeJV|%JMvfP$K=n zMiNReW#^1pM1?lHT}Q2ieDzMZ8I*cJH) zaxy4NW(OsXdj*cZ=&4jCh#{{tmH(|+nbuQC<4(&XZAICGoV00?IR8GDjrm3uKc=~2 z9;Su3r^>*N_{*Wu4oA-7X0w~AhiZ7Ba$v2BYUwOBI`cTY4?t1%v<&d%xlw+&nBzDx`Wz_L?nlN-P;bQ$kui*5#diibY1xinxP{UsZ+dBYgXk%F}1 z)3pc_9Od_$cHEW7cdacaB36r`5!FS+Pfe#`DE_BRFE$P8z6*-*w|JCWeE&sY%wR_| zNA9M)i3K8MRODx%^r0L5 T~$Go(u4PY$eOe)J}hy8u#+aWdZOU)!-{X(fvRx;?L zMsmY8)*5b#yPn5}$HCrcKB{U%+73-Q~dL#w&w`T2UBVe9jTbJ$59Sq+u>K)7Ht(k@%&Acdk4p{(KU2Q2Eb ziio2&Zl`~_Ph}WaMPNv#rM;eh(V#xyQ*628eu+MXsY1d^QAq_rik*fKe$ht zmt1s_IQfJ)V5tBA3y2ogQd%C1{MLT$T0R>Zm|qkY=L7UDv~apZ_GznyYRpC`UG4J_ z1v5U126xS0k}o2;-W6r_Bz=3_g}VFcICu{;v)mO)ejf87>sGRpm8!hgDGKaOv(Lv> zSe#|vQbId``JNcP;4G2xPtf=8j6O(sRTY1&)}5dYH1un0 zU>&^piioJs0fI;`r|g)!Om-9`Puw6c?X`{u=4sFT-q(^LyMJ5Q3g2wI2Y@JI9ji|p%8Qbx! z1$D`chOZR~aS89>ON7EWeH8lA{-Nf*Aen+hYPRZ z$KtzpyqS5*E06aq{CRmecw0LmgMc<>%C}>A8%KPEo(Z692Ldqw3bi|^E|?YA5FWPB zEn;0v_~T!HaY!1nosMd9-Y+SLl9wlbr&wqPLY%47u;}1>5L~#M`2HNv7x8`P$RQ>B z4fN)bQ@M~tz# z&kJSqlT!lCe+l!<9Vu>;0@*GX;w;dMu&>C6mWag`)lXIC!alGVkJX#6AaA^p9L_Js zXjn6c4uCjS2SuPeDVb5_X4Z{nc09W;sVSX8=Kah0kv|F>2Rf7VnpR5*RV~DE-O=i~ zA(i}g2Y4w44GXT}p3e_Cq$9L$=AQK!?oB%&A|G!fA0LEX8rebY9_gs0K7@oDmcaO* z^CLMU!-I*3O=?(W`)pW7EH${I*4eVD;!cJK?_a!CpIk4Quok>>zNo5Eiwhk|lf=ly z`f3K2I~HtJI{_@i#IdYS8EFP&Mi!sN-9`&pbf)z9u1x+!r&75Zya1=dqpA?D8leHr z3#z)3JGX`1PBgctSw(GQe5V|dvMbZEF&j#^nmVy%JK>`8EnYm+H(k55w1j=2q9X&l zu5OptOHMD&n{x?CKOfQ?(3c4`cgsJ(Av#hExwTQ`l1y<_QrlmdWKimm;&0ml%4-z& z(yI-nM7KTUX`@+fj$+DUEFux=Jh~ii8s$ZXRqc*WjbIno&k86tW;J6E0bw_YX>mkeGn=keMpbyB=TMp; zvWv$$e&^HIh9!xaOkj3l(c?_U67ZxiF#I(0O@6K%wu^;KfD;NG)>@#ocz2G9_b#rA zVuVJX+kv^E@4{9jg&FtU!i53&(x&9)R+)f8cTK6{?mGqY_IEaM$W{Wp@-tBS|Nc?G zyy*(G-f-tg1%+&=Ta|*|U5z$XiyEIC_W|!i<4VF#QN!N7Im;QWKi#9B$eEvrDNYL? zKKH;nEK~rk8I*YxWq=ls`5rh{xDmpyyxBM~~D<)Zb5Z ztyt2L=HdmZy{A?PF=PvZ{890_8Ei>fJbtPM)NAKl^={mOzjW?fgRO~+gZnqC{?u-0 z9mD=4QZ7cD-J_(wu4R-aAMoyny<+waqaiY8#Hda-Z?u(H%6~9`<*DE0#>Zve22fE+ z*}cU*oMO$90JuUkY|K z%9<$Kz7k4CoW1^=;~FSYE8{6(dmY|VjG3F+qleu>RE@j%ik{s^E9v8$csU-&rGAOd zd;V&EwQ}5K(Y&61by+7JZ_KeGIGm}fO z=G#pDI$S2grB7b(0d8vdaEpJGL5AZ-8-#;!?V>7MF+sTbq_)I%Qrs&j6dB|e)WxvG z{|88E7u5Ao>1z#hayMOV9Le@N4SujwKTZ=gxAQ!60)r15oXog$%wmMNkyc)TF;SLV z@FFp0Jrcw>Vv}5CL6C;9R`)<+g175+ZkvcMeV#~`YiLY6ythz)g{2%!#g4RlsM$6) za%S_7hx)e4A(xfhjtT>Mxt-pkh4U0{G%iz8m7vgkYUiNzDudQ!SgXaI*|CdmF%bX4 z27rMUWH%BY>Tc3T_2DJ;*yBb31fTCIGFG#DNppWk#=w_%m+-z_k6#&mY~im6YasIv z_f%NIgWq#s6%@MEr_kL`e48kH*;itSF0N4|0(nw%D-;{WYFc;iR$Ex#kVn(g=8JxX;(2ur1B z0tNlI>R^)OKin(49hRKO%tEk8T1HwzH;o9d6B8WETM^+O>E;1x!dN7Bzk27W<(aP^ z4tbrD*BDe^D-l}C3si<9;|iLl_L1}OYL@8y<<*}4$oBjW-mC1l?$|VIcyeJ;v%N~~ z)2<`w)h_K=bNXmDFfqXq*$E#3sx&{NI7nES)RPGd@oE!B=*tagg6{N+ka41@5IN46J zItXwozVa6cS>M()M24H9UP=m9R#~DC&YVS~(&a3(!G$D_^+@E@PV0>tZYQOZ%eXp) zb!Y_B%w$@@q=-!7jeCT|V(`uJEXyq*dyPf2pby7V&iy#xuHYB z{>nsv^xfNT-C7h{CV3Unf?}!TLk9uOP>OD==QyuP?ZE7DJ!hEax1qx{$|RwawWgi| zy>zlU>}?EM&TAcLMSUDhOxXKKG{jl~^^u4v!;5T?%AKY(fKbK5+u__sy~XnMPh2Qy zyvPSCJnYw3TN_pPQ$~3YrzC(l>nTL%i)(t{&+gy6ej1D1@6Y3tL`@nIStRB9%pVn* zN#BpoB$u8aNwkNPDH$>TVLY_L1m;J6un?(2NiY^)UT!m$%*52pv0IIAmv1du8xXKZ ztj__GW7P;fs>V);ukD|ao;c$@_cv2FY|(X9+GZ7*#{AEs4j9D))yw@VQMRKY5irTg z4O9)vq*rN_#R3+R3!}9)C$;9Vmm{vQ9o(@uluGM)rT1{)9-EOls zy1^VO01Os2Wmb2)xiS=fdOGKHM{?Mqa>Av;+Sxmj<>u&d$D1>uJ&?CpQkxSc2}`T? z60E+H?u+^uuTdP+cJb`w$MeiOk_S>YjIfRG%NXKFO7;fwC8JH&IvP;|k47F?@WOSM zXl(ush;mti+D{;Mt=gz5`dM`Ry7I5xN7=%f=a%Z6*R_f2su&vKg3+}sITMj<1>sJ$ z=F&>09@xI(YM6!RGql6zcJe2rG`EHMhQNmKNx|_i)O0=QcRV#?<s|=3k`QS#jTb+wQKY z(ow%WC5c{wYX}4<8BEPE#}Md?HS%$%%Q);;A3fsXNm9d*FGV(*Qg$TSC+;lr!nWTm zr@zqCtduMazF*D1WaWIGs-$UdQu#pk6In{)i9!!DXk5%U(e!UgLCrDNuE*Z5hEMry z&G!2V4lf&5Em#gjcp~Dlm_35qf>vZK;^j5GHjE}gxUf2QE*Z!8UAvEOBq_re*F;C` zQ)wbYXEGFd-s!}D+oU0X36)S?k<6qnE3o1jkdOUbQ`%BF9&OBpWZ~oUp=n!Km4&Y# zv8+fpI8;;BXNo~!&{qbZIvDx!{GT^(Yaj0sVp@?bM4_x`RJsPFzWMg9)D@npD0VVl zA-Cn>GC)nM2|*Yoz>k89N5DycIyN*D< zUs2O*Q&CxE$}mqdzs2CJ!a&;DWFDPzHXOz{)71}!=^qc#HiJ-ysF|FL=#7ghW9oO9 z!ap)W>k(IPjzA);5xygH{4otFHCHPxXGX*cRhrRHNZAc1q+&Qy11xL^0 zOwmg;hffsU%GQ3dN&Mtq7fiVtr;>YjhF$#h5+@5|!+2g65TdzLwQa%Pf3aQ#B9_>X zyaarAQLJ)co!zW#4El_buE%kI$iiLKuTEc*OE(xnMHnu3gb`;%!>(WI6$Fouwi>kl z(FR_**lGL4}D{% zTkAd=08iCJZbsmrTi#)mc#v;3n5?uUebl{7xz@opZCppnT?QK<5H&)$%sXicz4z{L?wJY(KARQwm&P@Mne~<$rFLf=NqMqBFifYA7HsMPQ=SiX~K>J2122JRtRPYr_ zbBdzd%#=S<2YCodv6DSqPu zaAO+v{1H(?5e7a9<7xyXY*LpvGqgrPM547TEq2hCotfC zu0@>1J~fjccr905Q6wzb5l%oH?e6sJL`L32y(vqbkX9Fwr{K5!#7hk{F zqL-6*LSD^`cwHI%)u@8tam#LkUxo0}WmfV9Gz?n8XbY~pzM40|c?RJrL-3!s#Dpli z>h_(ai7))IwxA-mv6wVoXUM58HP-Xt-mKX@9-^!^Lsc-}O^@$Uzi|~_+n9Qf29*>D zGj553Ungr$$T-a$jqfH9iEy=}eY`xY7 zKFgL=aFnvh8K-0;s4*7vxl$j&q*H)fB2P8zZz{pS7vcf8eyAG@lqIRHG236A+JWst zLI<-nVJocX>+^3@|JFZa(DW1c%G!;h;;t<9kv;2(3XSJ;;)$bo+?JhVVT>mzEutOU zvv1*Y4~?PnsZRCYXgKTDud{$}_4z=@!L$s6!b?P*k+#lUHt1V$NeooBilbItXG;^} z&ff8NoblnAr;1zksH2Kukx6mgM44sfwxs>TT!6tH!>VaimPWOI!Xcj+)3k4=Nw+?@wHpPY_9$C45F7I z0aoDcJ=&jl$nB?BppS+gEtmt?K&M#URkDx@?`^UK^+YcH7xG6_TfxpER5-@G;}pUW z9;Bk?ZG+x>q)_!WoDu4jY)p#+NMarDgeq~c1yds^^XH>_$F$#qEH)D2*RNHTh}3K7 zDc6F3?$Y|!NU<4#L~|hBTT!q8flh`fJ(76jwyRlnNFZqmi*$ki(rOo#y8QW^@wJSx zzHb}Rm&xGviAquI-tFyY3`=xaYc+dj0JJ4#QIAPfvT|R)tfP>7w@{@mOUBkCmr`pc zSn$H|W_J|s*t}&heIUyatA5074`*swP%f3bjBVl)un(KizMP?X_@x@d_Hxml)%Z2u z?w*GBIAqZEjtG;kpCqhXT*rhm&dl}Q!8zcKCo&t$4g(|7H5bjrbj%QDU;&x(kJAc&7}5E04Q>jj6fJEJI^Aqcs0 zrD>&Pd7pVqvi;p!uhj!2G&@nffuW!4FK^q5bh$@>(Pl~&BfU^t@=!BZg8DApbvObH z;rmGC()s4sr`dw7S*)_V6NeLw1*-g``pn1wHvSa00DY>{;6GWGpdZTrQklXA*zA3| z3Tp1CW7ll+=VHDD^F{_DLqo9JyY!eBaN|jOObI}*Q-C8DMs;h1ELqLLinhjMWw9>z zF>%#+S$93+Rb)?8dU!T9if-i$e>V|OuY$T_<-ALLp?e-DduvGe>^CrP>#Q{~8+A?b|#5>v{qsb%%yM2AYIuZy5d6M$ z#r`v`^JtKL2FT5tb(=rUY>!;R32MIVmy@G3mO5 za;%?H%XW@xY4ccIVsqLC)IGlW^7@lrK(yn99G!g>IL^fMLo(aIQ5J&asm(d8%)E~S z;f*Q>W)XTzB6ZUkbZeI7SkXeqES^@L0jh+e(66YL5v#riVtJ`(f5)tk7=v;ic!~^c zAg>IZpOqsr*!9utC5!DgG{RsryKihfz;yTf*gCXaLcrC?xMg>Uj{NuBFtMpv+Jnkf zS@hI(1$9w$ovZ(R#f(o>k;2&u49XC(C$V0$h|*-RxZLt34x9i|tU>YkIUS zvu==owX`EBc9Q00M=1^tTHxB6S?KOigfqriY1q(iDx6q{ffRCy@T{G>yo>H)1YN9eG-24WyyhNZKA^cKhO`!3$ zzxY}Y{@5;TeLE=Zg=TE1Di{J=%?TGLP~0<^Z3o$MTIbh2)J3?z2HrjPl_LIjn$?lX zaTik;`DZK+&W&=i=;)t28k^@ri)-v3A_J@k7WbGYb!ujA$_)+bK?}3}-$iXAh!^GQ zen=`Yw;-59qXYM1V1*}7n{gjiNMVfKp3M?NxNaY6QrVz&K+_7I$!d&cS# zb7Xh311MLT$d74Lln6MvM723>-rFFFE*suL@5}cB<47P3j76G{y}_V>A}LIDt<6>4 zFifEc{IOxaag@fwoO)N5B;E6Kvuv}K=i zi9_cQ;Oa4brMwup`STKw^dF2(OZaS;jI|>B)5taWy&36Eo`9HUY6%r-MZ=p%& z+fCOVAp&Q^9i?J-NU*E2y3p>t)M9f4==`8SM23)M(X?;o4vf*ZMmRZUj}Y7{cOvUc z+siN{@#f>)D_+X&_0U@^wyVe_Yl{cFHexGQH9S8bR{ z-z;t~yw!M{IE)nEIgc{BbfEze!Mc8=NHy-4AaOpC*$hmcNgpr}b#$N&514ZqpEu?B(VrU_@5vaZ&M^Bg zLy%3L+!5d+xav?*nGt_h(-P$(qTZR+U_7#Gx z1S+3(kGLU>F;jse0OzOO7f-M9@E(g0AAeGaofZW~h;-iDE3mj>r*L_`vPFWons3_L zWjx)ZSKY!NtG#;P5E9|$CB%g0lx`{FXg@sdNDV_NHO-XV2OnZ$6fj-Pf!2{Fyo|j3 zE9=0;sp2MiKUOu@xpx5z%!YA8(@DnYBwc*`9Me$}w3A)vSpm|X} zJ=+qPgDEaM=UhXlj-pauD!Jt)z0|HP(yy?fThSk_|9*(bh*M|vG{bQ0O4_;}Vi)Ya z5-=Og59y72g%u`EWaOex0+sk(fxXj(!7|G*YCqK4(>4+LBf)82x>;$trq>%Uy+G5T z#VAG!1TQI8{#htd1v4HPHvp5vPX6t4)HZh-&Hd>qR+&^j+38bebHT2zdvp@7{$B{D z$+@Yy)?(i{cJ7!_2tT=;Hn5-5kVEbpoT|FXee{H5|zwgEBs}4;Hp_5ewpfeEA=( z^$B^&t=GNK-wA5T{~)XMeN)!7#r;xZ%e~!yT;Ads>t_;B>B1hKxcn(f13!3oo3{Zh351^j|S#mGAncW*aXJ`?uGw2D|Pga zIl+5B1T$Rnd{&P-Bi#HQ3%Au#q(vMh3Z7Tb31WHUJ443# z#C@;l+UN_haNB;b%ab~+#4?M}6n9g)L}|Mirn{#}Bt8y?v1{R! z!PyUg8&8V5*zZ=U!%dJ!O9jOPNKcWf+X6lZQjv{%hFLX6MCC+nv&VnaaaZboG19NeI~<)1eZV1sq{rsV2k!@;F!go9U?lqOj76B- z$hTl*Ct5WL(Wn6Y9EA5itM0&$T7OWb2s_)TY7 zOi>++ms;BS2u67-S&pJ+=114FcBkr7F~}wfKra5|sIEQLt1%i7UfXSG@1-|bf(iK@ zh0qZOxBNS7mLz-KcwK{o#}g;Bn4l%3s2wW@Qw6Ub9`{a<5Wx@vX)hTbyS5kg$bz1o zFhOxVTbJZSsIOe`DOZi$F=CpaToFm26g99$wc3BWwg7&CK|$?yOo?nC_C{2-&a^lm zGs;N)L_c`iFh*D9p!3G^T}@4zCc`l-jpl~!Qiy~sBauATh%Wdz3B#SQo?(B3glVtK zBzz=?YIwwttK~gvx zk@Xk3MPGZ`+nkc6X+H1gX1Av+^?WD&D@6=vML!np+Kg+v1_hEV1 zo6;pzsSb85TO+UH#S&BG<@~b`->kWVfeQBarqeyS&n77w!Xi2~Qv*#~@1RG2r(&hr zmA@1sTYc#q(QDm0wH{3-Nu(eZ<0ee{tIukuRaLA~qA zz~AkW3q);^H4*hA0+r5Tx{ZjsCavd>6~(8Xo3&x>fefOmfBzaI&w0L>>`#N8!U83Y)vLp^>qfsRV?DB^48+&<3U_24<$F;w43kU>)l~zrx}r zUJx!$e>S!reu;<;CPQDQcdXxJF zltki;;}#6VCbYGIa*-%Wu5){E1=7^$^!xohp$S-vK^Pnz9T|RU;}M#{xPWA4t^=pY z=u`)^8pNBCu>rw(Gb7HAJo(GaLu+-kbKE!8w|8|hXRmWHZ*glvFEN5_3(~0pxfU?b zPy8ovd#5%HXpE%2-&@W=ssPGTBRuoR#C}DmyCsto0Lm}`Wdhyg3|7^-nGTc#s&@|v z%OMsR0k(LHuRr7mi3#wJ1~o7?1Jrf+xBN1JH3GCZhNq`@R|ke?QB2IC>Vf_PHmDY( zrs?qMVt`P%pZdULZE|h~KFRFJ2ysx9>-+Z#vw=!RmVwCjVSi`lHm3iVUiKQc@q=1C zt#3MDipJEO&d}Z(rrFt1?2DRDG67{CR>xgF%|9D3FuS`m3*a9IF)_D$P{%&4g{RSS zBNSIJ$T{v~GC)4G&mx@%?;n|*oSYhf2jT(=z&BH)@#ma>b^-dCF#$xw&JL_?4eSCN z0Ly`%!!!Z~{StX`XSV|b)5+Be=-=^U{YE2htOK1AGGhc#&Lf+Izi)A6z&5`_1Ox8C z9)ZrAg2v+E`ajq9{QIy1$fvh=XGfpf-uGzD7E%$_6;sXL*-w6%Mn-OUfp%qbfXLk7 z;ejw95CXE}arOayYAUh}^8I$dazHnISAr1l`r4DP`yJpQ z7XI-c-fDDe%=Zvmzh{QO+9$tzF~6oKzpm52_9Bb5Y;68dmcK~vzX#dtK{hWSxahgb_A8l z$&ukf(i})0p8XHaFaxzO=A1veBl=U%u(i<@pbE5q?E{SdDi`73l9CP6PyC8;K`;zw zfb<*d0YroRAD9s!`q&o{j@D27jne?EVd6*P1{8g5KMZV;2#D>+NA)MEhbY~HycYcE zi@>-Rd|?OiR`{QV<^NfT-HSl!FZ#dw<4O<&vg*L)#_CO^?f)!Y!c4e**V{(=TQecIw}3#Iv= zUiGQ|M&F%7>&5I*?H|+nRRtus0d;&E9?`eXp%3^>_2E)cA$N z(PgEU2cym3B0w>~Jwt$rTYW=-mH%*y*g3?p`ODte^R+9q_7T1FG<>zrfY)~8d2Iel z?*joEom*JHuVyuVkU-xZ8rOg0kZqQJ5NO%h9L(VRHVg>h_t$1-|5!Y9<^9LoDCPc? zPwy9x9|F06^cnd_IQ`0kZv5I|khdqnv(@_l{qqCffB3!y+a42F`${L^yu^<^`lswi z(VES{t&i5>J2b$~KP3x><`$Okrw^?^@CzQsM?_PnIw!#21vjT6y6c+&df!IJAAxdx zXs@obDYIuO{{-Z1`UU}#t{gz{gy44c0RgtQdgYGSU#TZh?yvJR$IImG3WBkAaz_s8 zQ~eYC`vVRH<^?o^n2vEX1140BBgD725{cBod?O1rqj+OkzQpKB&+Xd5S1?#UzhVYq z%drzt8uMCMcO$W&7hRjc>z&`sJ`nEyx5Ab0lLw3R-`uS$v0wH8UKSl6k~QvMK|-@d z)SWj^w`Wg`ci>LEM(sSRy@gZ^)fU97Szm$CV#j(XS7IASdE34;ZQzTFM{4D2wP`?q zqh}?^QVzHeGzSJ*68m!oKkxi$o&71pQp*RQC(p#?dWC_i7dEMy@v` z1=RDsWI-JxxmiWe2!is-Lt6Kgv@u&qnv>>51`!+Cp9!DQt_lD9E9yzZ!-h=`+NTK_ zg-%4#o`Xj*%g1Z?8Lh z+992*JRRzsFN=)TH|(XhbuoeMQB7+!{d6CA_vaC{Ad;V!xve8*n_N{v&AT0YUf)ZG zvxd9E1y&VO*VCvdNd26oz_2*goQ*+Y)+`6z_>m9%!nC?2RFDH-`rIFifvDzHs-~ln zADFZFAgCS}y-;y_clSdx`RwBhB~Ci!X*DM6rVs)zjunM}Sc)-{Jf0)b#i`IQU+(sz zC+ai&k+W`6`9gA3p#JUZl z$+Dr;KP+5sn$$bwMiqI53JVs9oF9q`#&WFxYR=GTdpkwWJDs%sgWCBmHwtcR^gly( zb?SE6=NRJ?H#5TSKMw?Ktt7ugI!GdDtfo(U;=qBS`3`3lRQJ61=%H|SzMII_qF1NI z=9C*gsE-;=X0F@-4Pj&M!nY5_&Qdkb&-ksjFztZO{Kb0m5cxHQjNI4yN`5X4k0z$A0E`~KYuQb$_oodt zuKW za`<&$vgkRE%&% zp%mam;b)?b5k$%%C;R>tL|5G}WbqPIazr-t2Y1yCCfU%rbqMFP%U@AXVN}jeo@RA_ zUe5_EEBTnsEJ?e9Ap6P=?Tlg%6p#eu#A2?Q1ZFtK5H4$FC-PPHeXq}^T@$n7J-4{_ zD4?3QG62QL7WDlS+*Hv0n@UMede&ICjKmJM%aHxW_$MlFX7T$qpr^ z*$Uu`7r#~+x%NPV^MIslLj7bmI#<A|5N);| zPO!6)V4QzT2G0p1^K=Y5*i`JryM_IJMCPVQgAPNr8dseB8b>chFhxrvU(tyNjSnt} zVM0~X%(9F200VdQ?^cx_8-U$UgRM8Q7X6@EbR+h9QIY4Xzo>nY1@sW=1n5|g3n9=5 zV;JbMH1{g?bdVsQs$-!fupU$(QtdV`T_ORM;U0?mD3l>*224;o3N;bZm;$R~paKP>6VJXAL3Dlv zVDI=>N<|S*y%afXx<3^TzUyEbug+(n7Dcj^n#KK@WjhK4lMMVLYv>IhD#n38qHU$D z`kw>(VxC(nSU5}8xR;@xN*h2+sqVlCA_*ElU~)B91FI2-HK}DB1@(>y7PL5V_dsO za|>1mu}xD0YB4E^N6e;R8ER1Jva$JQUrGGb(rI2br75S1Z@`LF5mO-_*&}T6fcEDj zlT=PH8QLdw2fr~`M#FAPN&YDZUreV2$@}4B3Qt}!6EvpJX==L7w%tNzOm+-WBx;9P2C z`|>@AZ53|VtsTc+%!J$ezC|2HA%LS)miG;vB*#&0lZX)=*nseiEgpbe05H%qGZr#P z!|~IlEcVqgymFgT4qEp7Bs2R?{KA`7y@#MHJR-WJ*$Glcy!daU!g@P`9;csNMz)A; zGu6DcICj~O_jO`}%Y7?PH?*hxO7xn-fP;S`Dl?vaqDE^pqwr?R_rs&(WA=X`7~lcD z^-;hvAN>z2*>gVG3_^1P-(dd|W7jy6HYXWPk4VB|lh7G=9=OXg#4<9jTIABiY;?z*CqWBrwL&f6x!(Vy!Q zB;Ma^ge6=sn0s8;>~=%6w*XzuM=Su9&J<0x9PrveoKKw$;O=i~9Ji}g6l#Z;Z+PwyHU ziyVH8g*+C^=0RW-dcx5%lJ+G&7FXSou!R7)F&@zmqZfN*ke??dnOIVKpsX^~Ua@7d*cb9L4 zf^R9-!em@0IN=Z49D+HQlsUt4$<28lWuGV)MZH|~B<+03`ek=DGk+1Bl~a~WDpignh0YG1Cf9>OL{KT<;Y9@KP6%E39$bq5kcdI{t&hs zCeVvipL0 zExFU;XtQ^bFiqfC9K5F&J24;&?egaz_P(K8ESrAwQKhh3UkMLhnaj8!GnsNsgvrTY z@ZIZ-s54plSRUGk&+3{ z;Q=rp{_^RMG|L&a?RBSKZb1H#1Z>c6)!g7iKo@d&O9oCQf`sgq} z^lpf=OFGCNczVDj6p=C(yO^pzhHd&n+v;N`NKy;64}iA(VHP z#EXsiRQTF6xG@gRBn7CvGh1BD(s=(kPQ1&0`d?X3frG?t6ic4YR7Efn6}!R8f-Lau z@pezRdVXJ4eY#{_GX*GXklih040f?FmCJQ^j>Np}dQY#reyb9Y2SrqOTw|;#a*NxG zd?{1N?*YKcy9yXgJsVGt($6oZV$OUnvJh6_Bx38+^;N37mO3H%ZL6=DSq7{@p)kyH zs8i5)OGTGdcT3ClUhD?dC-u*JyD;YtZMkj?uYALp{i*B5!>EHwmsyB|L>V(owb%+* zqosU)N_PgUUCrp`Dk`ebCFd7M>0fzh1Et&447Df}jPC~bhjA5Iia7cq^Q;9|J(|e5Z7OkI#b6N0?povE{N;GLLx|0GoCsXdSU`_(9c{=y&m9 z40?Gor*g^f_!Q_O;JPR#2pK$&I8D(Q?nKhgylt}BoM_xEo*^Q7yI?ouWizDCW&|p- zd+%`ILO#MKwEym|`lxfCi8m9otB4Q;7hvt8)#^%ejA@AAsQ67M_))_t_;%n+(xk$V zZfvJ9{gi|p);eeSPGkVBO#K->P*iYhth*NF5Pr<_rV*}Rr6~$Bds#ZR z%nH`}Mq(^9vTYPG6!MD&#y&%UX`<@ctIrXRL zy8%)B=A0opL^^1*1-o0v&zy(KgI&oBnsfk)W6@=stlV<0?u)>y z!^A5=D4_dXj6k*wHZfv6261``)25PzvRhJc+f~d??oLI`5oTytz^^$#ns*$gvKe}} z-eltboaUc$-Zvvl`3RkpC8c9n4Z23?_bTv$x;ng`Apf}^L(s$2c8$hoN9QFNR`(@D z!hTIF*|DC|gLuje$`NEbWom@TN})`4_(^@Jrn zSRKC}sy`d)70XI-wNGEV44Y!u7782Gu*>IkM@loHl!N_GDN_ymM}JKkOc&B+J4rT7 z1T&#!;q1H>SqXHImus!oisU}2=R{6^LrX0DxDHxEWrZpaKErt0OT~i3WmOe|J$QEy z{zcdw9l(=aZc(MxU14pBGephOIlya2z$L!{6tjc24|ZW+?7#f_<}VZt-_;G-SpcjD zNo|#7WF9!2-9e-ivwsfkVZ8x#3v83-@PTqCD*ayUJn};&Z)xtfr4aFOsdhr00g^$rH zoKGBbvE7y*kww}NoPSHSerzpzUn>j}y~QzNiXk+2o2Xa=ZVfd((>dbUp&Zj0Hl~v{ z^e{uXxujVRbQ?Eydxfca66rg-ZLWdur)Lf}L!HTO#rqKbNv@t2Sl^PG<|O7T91H8` ziq}8<0jxh1HvakK{Z~87zVmRYxbj8q*3xCe=nWPpM6%iw+xH_D^2=CzE&MSY`yP{J z8)oyc;Gg$8fD_N{2T6ZPoe&&pkP?F~V!51h@?f`J4MD<3$}R)Mguh{r;I5rP)33SY z?kAwzNHfnqT3!u?l%!(M=8}Sn(*5}Z68e;OMEE#teXvl7PVW(<9+LJKPP-OE{!4^u zc+%;6R8zb~Pu?SClXT20ccThO7k!wh{S(UW2zwR;X_W_5$c5u8yH8Mv8t;F{e9>W2 zt3gGdc6lxp4t~;`=)GYB+p;ioxeLDqQjJ^+EyriQu_^CNuJFync#cDl57u3v-%5kz+gWhzWkP0Y9N}I8s#d4eb7>&RoOSOS>N#-76i?VpDc`IYEOt*p)*(1W zLe>#s^ONc|`<6OLkvz^}EhT!eB#`=dS9ON@Sp4&K)Llr( zsZ5DuikEKm=uQd?%Sm>Cu^npC!3^2z@YJ@E@#tf|jOFw&Uub^?ycC?~h(l}koO_6w z0DHp9VZFHNc4{cqyL8!Ei&a)RUn9tBmkD7;ES4rk(EfZ4alO{y9y#@d9o(mN94-hr zu>DH7K*{s}T=ikX8psIG)6eZS{xDnyl8VBpQU&AUy~}Qp3}K3H0M)_T99Vuu;^v0z z{2DOD4NMdD7jPL97btQ89qb>D^fnhf!zLB!ibc9?5^+HV3xU3sE!ngzsdfAaZ0Jt( zxFM@h-RM3VK|-fz>gcCWToI39 zv2POZt;)jz8`ICtQB%m|vJ1uy#(;)+xf%ccKGDPl_%ilqLTx5_O%>X|#+P#B0}G{; zU%u7UdCt&VuOQU7c(TlIJ${+3rs9?gqF+Z$M$UZUA|n%ktIUsWQ-FOtierz6yoYq2 z4ap*(-HUfO5a6ebau;ja{qse8yU}r$`hJk+P=DIJkhfuCz`zd8!cSN3+*a{5;Wo2- zz|+OeyJF4ut$f+7K}MZ+;_lJ4-s;c2*ZM-Edk;m@>c@Gz=kV@pU}Y^Q!LED*S5 zG-A_GF2NPF=wkJvlFig=H*LY#Ls4d?3z-=7hlUZ$xBZ|gCNM$zGzJRist{@!E3S#u zf=A(JK6)wP!2c@}&6bzue?CG`atAYB!sCai7m~?pLB)~KKJW_^(CZP?xyLfnABj+qCkYK;xVN^4L=3VKnK}XZODNors-q z+LsohH&88}DR`oJe>=0prm_Q8`|C@qLMB4cp-&_7=IYP`AYCe|%|C5Lnz?vN8?p)g z@DDewt%bI#T`Z2J9?i0pGVE;P+z_sTi3NSh`#0>+rZr9Y1|oOHT!&!K;uL>)hFD1N z{P-&VL;SBbjs8LHZn!?+VGN+%w2{Yd&Q?LxES2o&!_pQK;|}rD>=Dp8P6D zBHg8+WUws`*kxlCY#3|=sivGwu^{0zIVfZ{KC=2@km!ctd&=`z0(U6IM$``8x699- zqGZ>dr7^eUx83GpwW|vYAY_l@5y}~Fe9z|KD$F{4R;$jA|K-pw{>5I(XZ4asuHKu4 za@vYY#su#zVg=3Xlm%pE_U{uA6Ta`9GKYRRB1fP%xf39%r&up%r)WAR!9+43_ixm`36A!FfoEcj(l`?I2(b!9uqqM^U*f!7XE}9e$F7{O?=m%*%3gptl?0x?6 zFC+I@yoW|1m`&gLe>@-RVx}U#J(a?*_*pg{>xu-Hh0qfm1gO~dSYEOLb1T)Zsuza9 z^pk%ux^vm^Y1XL2vE{R8iVbVhHt}@{!xT5@wW+!GSy;;#G!$!$c1AeSh9B||(>OU- z`%{dpJ+{j5cgk)OkeUhv$54`{^5)Zw8YRtO=7G>0Nd2{|Kf%K&?bZOnZl zax;9$m@_1W&zqqjdUsPt>&60r%VIZBWakUE3p0$-AAHPsJF;p@IN#(-d)nKjGs(Z$ z;UHPnrrPcFx*=P*d*a8XN7>*!_--@rMUfQ2-lnk&i9+XU+OcYNfpV<`{luJ>&2A$_ zYS8@iarJ??@BRHYh|D9W`P7Y-(>f}6K`3Tt#wC`wsn*&hn(2G(*4Nh{+D7%5zty@~ za^oYqfjE?VLQblFYAwSwZ-+kVq_Yvlod8C=LjQ2&ucmm(i;ZiNxv}ZQl#}b2Ljyl! zy6tclx$2`|6n+{5y(MD16^z5-P_A%*vz>3s(mT9j@N0RuV@{-RKako65nMXVd^o}5 zc@zi#FwSziwwJ2VeEta090;co;s4sWo6FRy&$zj2<&jw9i4$>~YtTSui2yEVZQlyQ zu|R&5epkfw3->|^R3Nt(*UGYCopQ2&Xt~g->&@PDIz7HWPgZhzFE<0HJUs3f)0H^h*hHneOck1e#m|#4?=%J#@b1AOOU)eg%u#RB8y( zh%lxwtg=QRumm^zUe`8q_di)A*<+_Zvz(Y#c zd>E&<8CYrLpl$ov7++*!0M`f{7~K}=s65)AN?D*Muh>(^tiVyg$bi~Niio*=#sZ~; zvD{^C_uuw^v}31UvwT}sghMAIYMkT{<;zxD&Ew>sBwB7(dSn-x8V{wi6G-Y&y)oQW z1SMz3A@m*luF8amTS^V(;?clgu6EqiAiYOYkQ(E2JkT4xC{n~vO@>?}^;W;E$PAFuVHutwZRY_WVyK2$LDZ8Af`vY3|#bk##b)CZQzHLyzRh{3u zuF<=sKLU}7gHXE7d77E@Xw7NsXPXcX2YSx%8s#5`>(%-yM~3ter&=&_`P0m@pM1!w zaI?HcWGXwc=QCg~=!$W7=K2M#C3;DZ^1MvuzY>C~B3B0j$Q<3FjiH+u7Sue=UfLoR z#rZ>-v;TBWTA@UdX+MLal!Y6X6JSlRwmwJNi#}eQ)Goeg$~_PCL?yAi4q+;O7aAse zojQJr=?F7B^P6Y0tkY+o5<|UArmRw!29I%a_tV^WC=nDT^BEujgTM+*-Rx#>z zIjgVtl(eToxy8DYA-doGh|Pw$7Tj+17jB9Z6+mZ8hXYuy7Rzr~MG0_E|9l}C;4JLz zh}S2v-Zgj^DJJ4N(A=g^?@YYVZHNKb0uUuS!Vs{yy?27$3W7J`eG8_M^()<{Fve5& zuTG}NqNJI6L3DX%T`xrS9F^9IBpLOg{bEvmeis$AtIL91#R(A=ETIRpBxmIyQk!k9 zn9pO4o#DEbNt>_SU&h-FedO1m3;|CZc<~MoEME@|h}@V*U^^3GhJ{Q+sUsEFwhgzG z*;^?!li#a~u+C&tD>YHC-rzwQO5&KQ+^UN{84o_eh-SA57#eRB4XEtITaWoi46%G; zXI43d*le1g$JnlxC?b4$F3aJY%F&1^9@E?ZpxZgowpm;Wp#>jAUlHaI-M2u8cr}An z?ep9PXr}8f=e0;3TItzpOJRu?%w!~xw4>DCY*Zf;02(%TJyiy8nKMXhWF(?KJ_aq< zQN+hVEGBAICb--0H>GQdpf6w$$tb+t9m*(mI!D-VjOj@tU)8e9lI_NsG_}-}QT8QI zn2{912TZzyqL+?(5#^|qmGpyRRRxpti>T*`*kfEbnHI{6gGU8sFLPL+s5{yGuQPZ@ zV?fT~XD&xFNwc9B$Mp z+={#svCGQ4aCLj(&Tcid;j4oEH)vPM?CIJR%6(6*C0J$=o!~Tf+k@ks$vw7Gs4^I` zo?Q8S!iFN(pU#7UU?w4U0)xVo$V7J_WQKub!hjk{>{?Bg0>PyW)q8V17MXlS8-IY7 zz=9|V#OFzSZQZ=?RXGd&s*bdZ03zYhe~D;fDL&JIF?t6y-Gnb#GDLQs1t40?&KW;| zZkKHQN)=bpxHO4!b->PG7K?zK$8YCT!BRX6Il|aKmcwb_x?X>=$9U!^^*;E*I4s%3|! zZzHif$5>93*3SKWwdYvTvqUA5ASwGxt)7cs4mDKAO7!>MU5F2N*dZ=a{|MlZJU^fmw0_f4~R> z33oVHa3}Fl0doI1iHK4vRr;z=4F6Fz;p&)YB%MUi*%V0=n5fXdWnYyF)!$H3*#xu= zyYqK!nwODA_fNtYK_B4Qx%D2<8{{F6r(b{!JB85BTC7N0=iT$<{@29+KER`%Zh2`t zmpL#(ALZAdnI*Voh^CnSTKHi~C;lAEFLa3Z3-qSh6;&tW+&RbFkAi*lf@UraM!9P< znYRwT{kv>8?|_FvU~2AbXy(zBU@y^Rc}p_YbY&aWINR7~6^Q0@;q&3qOYi*VW$~%@ zMX%#H(jnz7wXPO>IihG2+rK?J6b&PB@k zJ08?ln0wxCQb7Nw*FBhleunaeE|$~gcFo8{4t73zzU6WW*!Lqro`vwVD<1|cy*m!d zbq9%MY+H#u+*%G>O;84mM@wa;h#CKkDR(=@mWhRJH$sD)3R;?I0h|WdE3E$R77ulk zcIW1jA~M=9E!0zJUuDmiPx<-05NUR2X|k&Xm(9nxzcr-ml`#_K2w|Dhngv@@Y!7S+ z5Q!<^axul>3Yo9J!OTFqqb2b=CK$p%qc-~(!qqQi&Mdj`Rsq9=WEa)#37mTSG)|T`KFfIMf(sy?jJ$@nAk$-vYN{^L=u{e z?A{n~Ci0d<=f^$@C7EH|d6JHgT-Qb!4*@qEo9INGy z#CW{tH@Z(W|1oD`f9K@vjs3M!ra7wj=+lRiWM6V#97E)i_vg@-Q$2Bok1WBH3V11GKlb7%Y_N{)TrJsw#2~nGP zu1c5BRQX4)X7Hsw%FZH!j^#-_roDbgbhgc|29qRI*pHULJX-(s0959%TD1Z|aM8Ow z(T(JIN6k5XqNIarmk^#E5R(ro74(;QXEdjpDqs)-5uGUmZ0;<~JFItlc`b~9cy_rb z-0#9kEK$G~VXOTy40jblULa>?q|^W>Gv%c(tJSN%>FL9zCwMB&7TQ~=%~L`D#&V=w z5JDhIOXm{jh~nMIHV$YB4&a9B=vRL^JgsK1qo7BZT)dfVYV~v;a^SA(D2(U(t3=^u zMMFLH4flzcJf;<*nQL3u4d{kP=J^S5Df=xa`M5cOp>_`9r8= zGYiqS_(FuCYrrMmZxx++z^y$Efbn@-yxAxhbwcHO@D*Q6G+s&A!8m)@k8iq#<*J6K z=uDGJBe)NHgVUQ(*U1B&$_|-ap2nOgZEQF8&g2TNg%OlYMA7C!c1$fvs;md!%CBQJ zw>s66+h7hkO}f>l6CKhk2suK7(rCYEjal6=f`ZBL8L&T9BO!gHTHAsSi#bMcwjxd4 z73G;WOhWUuoJibPDMO?ERjO$fVwls03c!9fc z>4y75)f;thD+WHyi(DpS74)dOW;I-XeG9a+w4a*ma%&F)KM{61=GPS{^Pag3Qdjk% zeSlDgeMOw^k&kjy-Q!1wu{~5AhY@hS`Vwcmtut=Yn1FF6W<#oNvEMQbgAO%cP%Aww z=&}n_T{K&s-Gxap6yY|Tdi@~Lvo;UCgMT?i(B=3|Qi&e)g@BH)okQ#hQw1tB?)YQm z$Xo;M{qLF2Zd5&0WSxh<3M%bJC9^&NRZGLo-@e##$R3p13&^rDG{5Yza%)L1*;mB2 zokRBn&5#|sCi2c={rZY~%zE@r^B$dh;jbpPER}whI|f@xbhzvo$@&Jq^_uWajm4B) zuL7V`CF~Y~>aYT|yntgOraZ;&yrBesDKvrWS^4A6iR4cAm|2g89(cvKgX%?rX?)nC z)3J549N|NmY4Vj8MI!_h<0@L5M097kwQ^?%C4iN!KUh)ktWe@_kK@!^#dU6b8hs!EZzYxn|4$mUt7JgN+)lG zi3Mdhrp}+ z4BQdGu+MAtnnbkGd)K*yyd=XLDr;U%s3QgFG>eE^Eqh+=(P@MZyV!?A%YU${nVlP( z=$MwjTxbSI+~mJ|DNUP=2~6xxj>xn++k-C25Lt4 z6`ji3(F0znI{{I;lwC~qJ@TeVlJ0B&WOIlORcy44Qnrr3de|_&W!&m`lFlW%1~1=c zgEo7{ZH2ynV<61a{c0?jw!d2Vfte0W9Xr}6NySD*J_aG}AAJA{Ucy6r*tLJfcS0Eu zWBu_zLkxtX<{+M-sa~%JE@c-odtEh5QZ1the`;AF1%DOrDTkCV&yoU9!F7VZ|L8p< z3|=*lJYtnCFWIkKhx3Xu1&{J!VWuL)3Zl;u<1L)f2L)LaNslR z${LoI=PG@RX~|Jn8`7zzA5TaJ)wN5nPrjU0@=r#X4awNahjnK9MccRWqb_UKC!BYfT0Cy>8A;pw`CR-1&Gcm?kD>{LEP8pgyD~0dyD)XRJzzSA zH>pDnymE&yMVWj4>`jCWog1NraM)P)$go8a?+Bte7fqOGP}Zt4aV8|3+aRf%Et^@j zJ*8-RM-t$T&`HgpZ%q>q!o}-t(XaQ+d9N>v{L-CC8>=pgPgl*DK-A)`{Gp$GUkVOZ z-~%D8zf!db{zFumuS&@NICxOQXi6Qw8}&xN8jN?C#W&SlF@}9NXBcEEw#(?dm><3d z5^;yZnoG~PeR-6E!DoJ#Ew(i5SouqnZ!ay`n*a6)1x3Z(Inp9vp=b|@@V=$WaI%3sKyS5bFCksVEULZ5z zG^}B!{Hy6P_Qsd3dzHd$Efc+t){{M73cr-0}DpUz~-GbvvOkHVyY&4x$fThQz7$i(k zG`F#GL1pG6EKNP^0-|gpFrQ!t!csKwdXyKVwc6^QjdO`1?4qu-+sO|@7D`dY=A@Vb zb!dzX#Bwg_W$#$7SgJ+>l|!F;@<=k$w2?_(`cc7kBP=Pq(*z>zgwc0p^*`D>%h*Vo zElszf&Dh2^Gh>;VncB?E3}wc)+sxEvW@ct)W@cxZe!lpw=X;aoq#AG-gzWiGTW45@pnvQ2A$Dx+?Qo6Aj zaJ+4?cja0cPB7Yvu1C{B8j63?!6rbqI#%}KS|$6mO38!H7Uj`(f2cbuFc`JRIKevl ztO!X$9839bpay-wV(T0iVe}y@R8=1pINcILj)Fjvp0=`{|J_~`A}B{|JFu)@}LMJm`#!q80kW=oU)&I)9B@OdNyh z@!|^;ObR!b^ch9lbzNr;y7~FR5kgruU7>Slr1P6#l~E?Op{qugu?+9F#L`^_JR&t4j$L1rx!|d&Q&zRXb>yFQgQv zzPX~%mcRy0jgYcY_W_ca<#?VImtVSv3jD)2Q!PX@B4t)Pc@u0bSq z%9Z>S7eHL?`Y4Oa3CN3KYKQ=lJ3qlS&c3ZeixUV@XdFOT8ZoshxFQ1{mufDUypRwI zFytS0e4zE(h%}ldvrU+rrKlhfa;+~Nw3Av&1xNbcS#6Sne;7;Nn2Zqhij#W~w^azP zX1#=V2}ARCBgi zpBH-^Z!dwX6k$RA{hZXcQX7|kfy{~AYh0fJC)8}s_#?8nVX4Tl=YwCI1%)q_XtP)| zYdf~FIpcGF=z6C9g3{{|7-L_*Kxrb;RX9}Y56VOur23gn6jgVSm-;a2lhH*7qjP+P z7ZBCn>Ha!-PWTqV8dM+{_OH5D2kWsi(nX$O$KjMdoh#TXY@BL!vBY5po4f{iJWjOd zBRVE&$m_WY*5#)wEWVJw7!E&GOXN#hG+`feQl<;Cw24m#7^pti&XjzB2|(D`UrWDp|ReCkkOQo=kG{CU#IFvEF;S1 z4K^M-5IvTtQJHt~?r37)xLDghv&D)}7?G(3g*|2g1d_8X> z)(Ge@_Sm|4!REHS>^+-^Ir0vxCS!%sCE#V8NVt5!Rn3^`5v<3BRixV{S znmWzncVMa+#9AQdFE?{Uv-JA%TwZi~R0}Eg4zVZA(46GSOD8Sq?~RLXmPO9ugRX{& zT~Wp{q4^Jtt}`i*Xv9v8N(O#av5W3#9{z7DkoZHhPh$Z$#-t#sM*?8D&?ajF|5=akjVrQxCY>~PM~L~T~k)YIvf!S9ajDL z0(>OweNZX{<{OTB$7TIcrMfE^F}JMkBwr%G{F&cI>=f> z>LixvIv8$JaMqbgtJ|i?z_4;|GBFW^fMSfzZ8tnm!5RmQTnYpq6-sV+FD`H^e?>Pt zY%dnBb|m2gYsSd2WKy*2B7g|Xfi1(8!(BvfZzF8AvO=FReYzqi=N;R+Q5$zCt}oS) z9fW;ZjcT=tzjc1i3DF4(Fh)Gy1YeI=T*$9HE_PeJW{?ansvN7F`_07M_;C*XNPd2ypD}|F{r7pT?B&YqB3NKAFNHn5Tl)r*zc>3!tn~Q01XCjeGCOdPFh1s8`8Z$p+|JR zDEuxvQ&^yQ6Nb?*ff9Ch3`59D%3WAvW+A~aK?rh_xul&9xg2DiD> zE)l-d#@b&^UtD@LP8IO&!f<+o*ps2n&wZ?Waqf#xXiRCtyoMRyt&HRq|3{HUc8gk(AH$CPuA!wkzvg*@ zRvOa2;qKv|fFqBgg16V0IYJTB2CROZ#z#T12{7Mf*M_t#Ew-e+2~8-or1-S1(p}9J zXQq@q}MN2>zTW-?+d#E7P3rM6q zX;eu4V^FH(7#vxn!DW0>g@e08W|W>C=H57k%sQu&Y0PE?fk@|gkKQj7f!ptRwHM>$ z`b;o2B}C75y`jB{rKno5V`l>X7y-6;c6YPhoe19dki&&fdcWu~H|h>*xw=v~KJbAT zIOIEAP0cMevtUG>`27#qfVJ2Pr=L0xNhZin#u*zS@L%26vz19~=ao&*p)zuPU`y8; z!H`0!LOd8Mod0N%G1@RPiT;+gqfugpz`uHCTS(ZuJcJ4#$+}<9?hX}`UxdT6*stk$ zVZD*WJd`Iiy^Fo&p0vZWL46nUZ0G)o$2Np4&yuL|@(O`aEw?}&2^)z81EX+xV>aSW z(+53EgF$1dHG*y_O{CiwZ!sL$I4AIddJI>WoEKOa5URINSit6IQ0>Zo)%P8yM;%Qj zj+VO^9CwwZ)i@?ux&XRCXhETvG8i>VPIA58@;7tpU4AnF?aJ~rLHeEy-m41u=^ zz$hG!4o6kgzT%S)m9TYK{Th4EQClDtoItU2&}=Jsp8nXb1NZ2==Y4r*R1@RhVdmDL z4QR)9u+0?cpEm?mM%Ac^xto!{vz&ROv;Duw?4M*YW zUBCY402=x@>Po*g-jHfV7_CpaoOHx*O4#8=tMv2!A?OdeFFBCfk0lrnw?|feU6Y_0 z>Vqq)2&2CXeiT67LqEH=Z8-$#AL&JCAWMP|5Sz0n->TgDD}XNkw5eHE8b{bTHd1{@ zmu-q*iqmb`x2NNU>2NAn1kE&t?05Wmuk6LXsH@MKB9yn@vh%yP|Ae{#zH+qR;0t*_ zb__N#85>C94pMYr5P_eYC8Q5%#WtqVfrY| zxVgqWAI$pRbeV;HMl!q98>qE`AYXtF&L5#_uwtKgsqzd}>5_X0+#+d9gMRu0mPORm zAy0^68{)#Z*+?&V*9j^{om?kWh>fcgiR;tNPEK0Nx3mx(@3rpO-(#l4JfRK8KySK; zK;~Kn202R~sxSV*zHKjCJ(gGMmsEjvx^mhrA41vDykxs^sL>m2xhUP=7!ov@1L#g2h9G zg_;8gqX#xUzL>JRuA#5rTv!3mS%_FtK8}79b|GTGkxi|`yo7F@NWC=e*=PEedAJfh zhC1i_x=P4Jxq>ENvgB_Z*>wpyNLw^UN&1v1>_l2(XTDby#Q~cSY3+J=XviQm-)-)1 z>Ato>JuormVC3-gKcwYR7}HgK}EV8qB;k9r(ndr8bqzeYABD zbqWA~5X`GRNA5CyRFodjM&bp_lwq#Mhufq&Jd2UOQ4oD8kW1Ez;(y4ZW%uE*ecXn+ zN7pz$t3RzC@DiVaQuG{F%G1WKZBWoRbg-{1?eLp)#sxsq6yl z;q)7l@k%IuI;)}o6gW9vuMOey+Ub}f^p?#Q+KJP3<)?<=C(bNtbFY=-|Y9fQq??~j#N+M zYEfm~QX(?=aN>LWDie;Ak66k*Q&U8q~38~5Y6Y<%y}{@glNK@Ra*lVxY#ZsdDN7nJ_C)2 zM&|?xLViW9Wk=Pf;5p&T>YrRgGkwQvWOx%X&U#!Ajz=caGA#48rzdDg7{qb%c6QlL zV>XMf=qbEb16WQQc2RJi)otWc3g!sNH?l3ccyv4Bbm4LLAp|c)>g_i81s9f(&n9(b z80njuxjB8MIJTe{YXmv^;hj#)aLQ2@tn7Cjh7QLPBMdWzI)(B%@6kD6d7OC>XAYe?a2atgVm$L251gUImAb0azT%~)f7b~QsI?*p*o!P zjyJ|X*ctH5_(i8~`@uwJVQ!W0e(_}9Rl(1UH@VWpzr**{6m{B^p3(J$v25?$TMf#! zz(@Zv?fVIQnDbc~bUKtcW*>3F@?c-4X%2zKPptc>Vx+4Bw0qb`b2SpRCxgoS)vQ{pc*CAwF7mv}IlJt;WHr*T`450Ww#U05Ws-Z&XhtU_${Vd^B?w|@{D8a`LRe{M;(i{AY6 zt|y^8!K7)_C~|=Q#=PEalS)p8$8p#Y&8ED9r@xCM4M}Om8M?YCGY{{+gzyKHP+d9k zjlp4ae>wva-IjNvoueYv3!5g<>e+&P((7THnHPNaumYgH-d6jfY3^(R|a>3nH_F}jcevrr-6ypfk8$>xAOK**w8vk z5^Bo!*6^Zi3^*`eaX`xk#}goxtHRkf0Ei~%dsPBP5w-WOy-Qd zAz(5?bA*TaTw+{8y~R=PgmV~S8Y$!w-5X}NAq@WE=ZO|6m!U8?9760n9JHzm(_(#; z7+b*zCJWW;BF=-xPIw2`4SgKWd@C#jZbyb}Ph^*q_9`f(6it5{&T*AZI9!C_E%*xO z^=;<(T)}=O)YC@k6qx%h6FcA22Gv+ZAPTFE%lqIa?|PNH zc!yOkW%EEHY|?G!8kpgDbdzVwE5~{5Hd8$rC+nGUyLKo+@0n5ed1B>IqVTim#%-o~ zGLFtOL*e`;9wxI;>6tsf_9VSox8o&$*Sbf_-RpitYH=B3ny2wRyB9^3?ckXxa|K1E z`7>(G;0Ho@M%Wg;yG@C~-$29sH_$L~{7;}!_BT2d+Nt_iXb|2WPOgYum+!w|@kM2t zo_4RjxoXQPty_k3YMX)bPT#Z>n+9-ivOj?x7ay@zEg z-TLuMz2VY^l}t;fnhtXFo9Vg?Kd+^?)+e4~g!Zktv*u+)8LsWE4z}J6hmKT}h5;Lk zG1@2NXT{liIcaW(3F~aLlQOQZUdkjL$ExEZtHnAeALQPKXmqIIKLuEH#1GoIr}}zV z&o|6Ty(Q~T0x31esp;JCZ-t7FNYc8`E4MN)-RHLP%gJ|7u4~vudfaMs>ekMme|WvO zabU8(O>F(Xes^P*ZmA|vR#r`&wO35`p7l;5*!LWssnLQcDE~;6GV6C{Q$Ug02YLoj zX+RXi(Izm$tQlx_85I>XGzL`FvFG^p3t+*9q3nO6W9~OhB1B9#C6pbcq2*HDBKmdM zQ%UJ<`4;1hTTAb|m?5Pb98EF8S8kFrUsHeBtzhS^E=K*u!AA#J zkozht&LdkQo~6 zgb&vl*`mL?Df;m@$guoBflT!ON9O+{^B-2`{}wXT(M1}6gAD86Aj8b?Kd>@z|H;Y- zOR(Q=R%YUF)2`z2?;c*=g!3e|;#aOFSFE(B2SlZ{FK6>S#H<&lTFuVw{vx(bxpu8M?R(BJIu%<-`g*VbaB=@o#(gI^et-DP zzAzpR_Rx+O6?wDH3}kUuH1r;(Uqy6U=t}?&x`u*wRdJh2%-IgzCI)imQ8$Q;5d~JcynQH)QTm1vJwZS4*$v@VkZPK*}Z^3P?se%Jpi+sT8p3>JC1($HbF>0ujGqguRxBT zLjF`R>```hkdC&CeGA!F3l2)EkJINcXS@o%??D3!*O*m(oSy?T129)#c1WCU1RT5Y zrHAIz(?vg7%DjsZvK>rb23hkqKYP(#)PX0y*AT_Eg`ebYkjOpiP?uY>3LptXU%h%f zwoE{lJfe#aT@e9b<)D=Uy@apa2-OY#l9#8lSu4@88IM#8Jf?rnFG<5Fvs&(czNHBEYqKGS_(D|1sg~4=4sfGh)4=H&Vn^Fk>=?Xhg`o@x) z%(`1!|GT_keLJN6-nzM-xK)mAxuAFu5^{ri|4M5a`i^I4DXQfPi9Kk&b9J-!nt8!* z@}JN=enNwAd&Ucta85N+yB)n3T4(*o&`g`iwxo{7H=Hm@x2Wn#`1}W(vd?z!eHR^4 ztg;h_j>;pg+&OQS>kCKteVsXibu@|9`vGfE^@ngIV)tu)rIjul{^@%{%IZo+>$#aP z#BR6yIF*MTZuEouC2s&lBY7&}Dlp^2MuYE-V z1;GOF0I&+b41r$Ku%v6O9nyIsi25ry##;yuGvp!}|190;3ec-ON)c&UOlZdAE?|Dv zBE-AG43h~GiYYYDzF(6*4hqD%(6l<11zLK3mdf<{_pR?bWgsqS-^jqFlV*9oG*%I` zPciNIL)zGjx^)fuPiDzUzg|VKkZ0IUYPj;5AHU`Oeu&d?cdmg*g%=~^eZz}42mn^?wYO?KRB6z`s;+C1b^fE@%J~=k> zGG=zcWY{(-{m07$aKRMkk(u1{@;QCQwD^)&D*r*frK#h)EO^=%hFZNIok9IieAp=M z;da0HPph)sa~8KY{Gxi@4$gd6)Vosv_W?N`s|5cWdf5LnJ*;ei|Gvdh>bA*cKx)51 z+YrjXj~-wJiKPlP!j5)WYOwfp2B6rrh=&O9BfP!bg$tRq{sFng>`ZpsB|kVHJh3VG zbFXK5MQm#8Y)0>8Ymxo~gM?8{y@xY|n|`GV7$>(M9GHJoM&$b0A}+4NHt+h@-SwEZyun+$- zI6I9{EhP;NLXDMHoi6yS8o&!kw4&s~YtlA@-&Q&GsCc8OplgQs zKYR1weDe|Wx`trj^16O>{V3Ih-*hU;yeihcGu_nvedUVw!W@}SA_p>x6!grEpa!M` zuJuJ$5E6kM9`i(t%do;PMbJPd!u9L7W@yYOwcP}qqtRhFbCbY5ioUN$7+5SMS?ZYKi9?9b z@D8C}F+YEKpHd5SYKag1o>Fz#9Pk(fgOEjkbhRDzc?=DD@%{drpfjGNQ%Typ`0G>t z=StoDy~L3r`uxxID-g#niSZJ6EswUBOEoMuJ}gE%Bt|?#eMsYd@>6I3s|?*9xA62&_y5Ji}JX_z(W)=bhtUt;G)qTO%h!V+R5X zJ0lY%V>MbvI%Wns04pU7y?~RWnXLl_CB2flqm}XJyP}hUg|VUIXHLk$Sl{upOj`f5 z34x2bqZxsjo1L+PgRu!Ey_B(=i>-qZkmB<*{!!7~)<#(0(U^cjm=nMNU}j)tWCt)Y zvoQfQK5NL>8vXAJl^pc#?2L^F=tcFdfW|QNKa@n&=tP~YtPJ#RZ2s!Bl9@S>;4}SO z=V=I3j2(cVmm^@JV`OGz;Q+9*Fwp|&SpRufpAA0yD{byAvC^c~HB#`*-# z|K5<5j+u^u5{8%eukYr0Da5WWYo`Jmqu9B zm3FU8Zv=!|i5ih~Auip_Q0p>-<0xVp;76w4j3P}P?gH^6;)ElK|JlxtL4F#9w+Cbh z_mUG)e~g}i_>>vK8|b?hL~O^dcK-ENYVlWUn%_lR_YcD)7bM>_#4)KcRPYM_HD7R>5c6RA7sHad3nX@LIdgkD(i_A6On#Xs*#2Z41M8JL*ah^P;+XQ z&1SUFl|TpS{+xN`##!0bjvB5r0j}LL+7Xqy&I;n;2;0Hj#w(nLUz?30&Af^Zi+aYk z7#n%Gbq9r=6N|Rp2!81RZ>4z*qxIcE9`E;;I-}P-ANBjkZX>P4UH8ZUNk1NMjS2Fw z<*YOmuDpz02erEg^2{YoUj#_JOL^_vEWN;(_(=&XTkZ`0NlgQy6onASrla!llstD& z9{_ejZQc*9%fi?1eEeX{KmjNSmY>+V;51Sw)&ftJ<@DUa12DQpm;^2juBt-hJ~|N} z;}3XzvP_rls8Zeox*5E=AGxJ185189Pj(7uam%EMInhK=bl^qMbt*qw9J9NAjlAIg z^upAkl_uoZg1~}bXpygu?sF5s;N<>tF&Kp(HoJaobxnOszK3g@oLV zp6=ql)tHiv_eZg}gUZ86Z2qYckGDUZN&LOo5PGzYtcz9-e_t~~AcXt@X9cK5Gs#gX zd5XI@xQrA3HhJyvR++F8mr2_#09M_K0Y+PZc{y^pL~6$lsH zTmIdMB>*q?)T8TRnGVXhL_R2brppH{pHtjn)XSLF^H@>P)7X(My?#%^)%oYH16<@| zDQ0mDGpOh$Ua-)HjTKWW++(IH-oVfN(fme)j`b4r`)aOgAzOsYHSa*>y$LI@;3e+f zL7aXyRNt0wcDctgXg{{7=a>H~wvsD_#%r*wvksysfxYGiE}{+ufbqa}Du zN|Rkw&L$1<$Vmmw*R8UcZTOh~8*`Kk2yt4EHacu|E~WYSZtC}{P`F@qftqAOsRDrL z%D4&RlqMDOG~?x#7i=^jKE5R9C|%G z&?VjJE6-c?F@8OLLViN1AaRNqP7f{;>5pnGZFV(^u4V0=R2PAzSA)JLOE zDLjd&5Lsx7-{p`!P6F1V=>E|TbI$`j>=otNms|1L(rhzeBBxN4PZ%TayDP$saHiI< zCJLZLYVE|TPBCpcCS05EUR1v^1un>26xSilVp@m^SmG=vKoK~V%1RKqr6`wE=L=~N z6-)nVJ>yVTTn{d?h5L&OrwneM(4x1+?K8{S(x#n9= zuz8tV<>E@|up-#ruAa(9=1`hm<4Hhw2xwHaimN0!YJei_-ykSRy za|kuxS0(p>obura;B1SlK)Wyiv_Ro4pnx=0B4K1rXd)MuEG7v|QQ%u5wpb<9kc661 z(-xJOXb!Vp z4u7e$l#|!CrF%_x4kXvsF4`hwyq;~je$*?mGyc(?NFM(7a*SuXXwgtg)83b}RzGCd z!G=GT9vK$ReI%EeFu#wM(ydRda{z3OmE|pc$+f6r>%jRftv9HfxX4GWY8cgN1EIgo zKd9^@s<|ij`V;@!&^z?ZClm28I`Ngq=OaVavv1I|hkQ3y?kRlIZTzHEUH$rb*Ps6J zFdgoxs7F}G`GU9ez&BGi1MlM%2ao;tjtL~D00KeIH(lV*jyN!_MQ_^H`wLP;oNezv zklwMcb`w4am0J<-cXeswFS~?3kdttBh)kkxUh8r?k|VAhc=v~@!^UWGorrb>Ho8xw zojaDo=?uzULSiw z7^YQMuglh@600UG62|Z1Brf^phTl7oM&J6#-&iy^*%s&$yJHp5v9BT?s^7-D-=oOI zj9#9~r9o$rjY@giVgIPn?WgR|S<$LW^7xD0W0SeXW=wDgVdxMP`dF~y9@m1?fo*L!#rZ-rAT-91G&UkE+_}jwvYl`u@B$v1FZ*cQ$wxn%n^AtUqcK%~(bn{*#fb5|Re^Scf^%N~UNlrgFuLl6f@$zBE#wdnoHi3=M5Xx0G z>p{o*T!D;j)$TiBokLinogJeeKxUI&jmTd+QHpKWLxzRDFx7`1fuU)(21Zoh{qw}m z?-3>~61awrc1cST2SC-)ycRsD8d68Gmec>ZNeBA zbd;JsH}uDmtE!}%qb6hn&xsLDg-!SoKnYe+QGjk)Mg4blfYrNG|X)%mhPn}?k;-9TdN zZGm18uj9!`I^NIl$K#Nu{#-xV z`JAouQEk(2)>fg+-trZjAYLEM`Zolx`v!|3+~+phdag{HW*P3$W==s(SI$jMiRy}P ztdh0GwZxmqR`Ul+5zD_BJAVd0OGUN_K&$Zf?ZAioObxypI4qA!F!J|#*Qm}fLy~-1pJMF`d5d+zi9$B1!EH!dI=jNV^;!A z1_BNaZ5Vn*b9dv<91OiGfhHpX69MDrIR#r=M*@z&T-*wORX4FE_=g(%>p+-5lbex| zjadM|A;KiY$}S+t#>BxU%*Zav!2)0sVPh3$V&*0Iud94sMcUZL^iz@nSpWMo8gQpa z>4fxA`>*Opy9MsDiV|Ap-gF+M)+_IzzJY}Z6PX)Y?NCaS>U4p*LWCrVhg%##hjV=J zJQ*7sdwE<-%;*ZjkmW!F`+h8uSD5ZVD0->2t^_h~gg&pxhTr&Hmb; zhr+6dtC0;Zu@s1V^m7Q+^X0emQJ}2i{e=Sql$#>wwaph8 z2BQ(wHtaxc%mBuupU8^$i{!fuV6_a8H&tIm6yMif!V0dV3Q1=Tr)O)9>vzoil}6n( zSi*R@%agUa2X*bAz5~$)v=R+$&JApIJ!>Fe?BK}lU`&4m0&7PUUw1kRe7-6Yy#41N b8tAC+;OP1(YGF87IXD<$NJ&NHL}C6H>wufY literal 0 HcmV?d00001 diff --git a/.setup/latex/pdf/bib.bib b/.setup/latex/pdf/bib.bib new file mode 100644 index 0000000..8b4f589 --- /dev/null +++ b/.setup/latex/pdf/bib.bib @@ -0,0 +1,4551 @@ +@Article{Wright-1918, + author = {Sewall Wright}, + date = {1918-07}, + journaltitle = {Genetics}, + title = {On the nature of size factors}, + doi = {10.1093/genetics/3.4.367}, + number = {4}, + pages = {367--374}, + volume = {3}, + publisher = {Oxford University Press ({OUP})}, +} + +@Article{Wright-1920, + author = {Sewall Wright}, + date = {1920}, + journaltitle = {Proceedings of the National Academy of Sciences of the United States of America}, + title = {The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs}, + issn = {00278424}, + number = {6}, + pages = {320--332}, + url = {http://www.jstor.org/stable/84353}, + volume = {6}, + publisher = {National Academy of Sciences}, +} + +@Article{Craig-1936, + author = {Cecil C. Craig}, + date = {1936-03}, + journaltitle = {The Annals of Mathematical Statistics}, + title = {On the frequency function of $xy$}, + doi = {10.1214/aoms/1177732541}, + number = {1}, + pages = {1--15}, + volume = {7}, + publisher = {Institute of Mathematical Statistics}, + annotation = {mediation}, +} + +@Article{Johnson-Neyman-1936, + author = {Palmer O. Johnson and Jerzy Neyman}, + date = {1936}, + journaltitle = {Statistical Research Memoirs}, + title = {Tests of certain linear hypotheses and their application to some educational problems}, + pages = {57--93}, + volume = {1}, + abstract = {Beginning with the general ideas of testing hypotheses developed by Neyman and Pearson and using certain recent results of S. Kolodziejczyk, the problem of matched groups is discussed and a numerical illustration given. It is shown that the problem of matched groups may be generalized so that both a more detailed analysis of the experimental data and a greater accuracy of results is obtained. In treating this problem the idea of ``region of significance''' is introduced to educational and psychological investigations. The methods proposed, however, are quite general and not limited to problems in these fields.}, +} + +@Article{Uhlenbeck-Ornstein-1930, + author = {G. E. Uhlenbeck and L. S. Ornstein}, + date = {1930-09}, + journaltitle = {Physical Review}, + title = {On the Theory of the Brownian Motion}, + doi = {10.1103/physrev.36.823}, + number = {5}, + pages = {823--841}, + volume = {36}, + abstract = {With a method first indicated by Ornstein the mean values of all the powers of the velocity $u$ and the displacement $s$ of a free particle in Brownian motion are calculated. It is shown that $u - u_0 \exp( - \beta t )$ and $s - u_0 \beta [ 1 - \exp( - \beta t ) ]$ where $u_0$ is the initial velocity and $\beta$ the friction coefficient divided by the mass of the particle, follow the normal Gaussian distribution law. For $s$ this gives the exact frequency distribution corresponding to the exact formula for $s^2$ of Ornstein and F\"{u}rth. Discussion is given of the connection with the Fokker-Planck partial differential equation. By the same method exact expressions are obtained for the square of the deviation of a harmonically bound particle in Brownian motion as a function of the time and the initial deviation. Here the periodic, aperiodic and overdamped cases have to be treated separately. In the last case, when $\beta$ is much larger than the frequency and for values of $t >> \beta^{-1}$, the formula takes the form of that previously given by Smoluchowski.}, + publisher = {American Physical Society ({APS})}, +} + +@Article{Wright-1934, + author = {Sewall Wright}, + date = {1934-09}, + journaltitle = {The Annals of Mathematical Statistics}, + title = {The method of path coefficients}, + doi = {10.1214/aoms/1177732676}, + number = {3}, + pages = {161--215}, + volume = {5}, + publisher = {Institute of Mathematical Statistics}, +} + +@Article{Aroian-1947, + author = {Leo A. Aroian}, + date = {1947-06}, + journaltitle = {The Annals of Mathematical Statistics}, + title = {The probability function of the product of two normally distributed variables}, + doi = {10.1214/aoms/1177730442}, + number = {2}, + pages = {265--271}, + volume = {18}, + abstract = {Let $x$ and $y$ follow a normal bivariate probability function with means $\bar X, \bar Y$, standard deviations $\sigma_1, \sigma_2$, respectively, $r$ the coefficient of correlation, and $\rho_1 = \bar X/\sigma_1, \rho_2 = \bar Y/\sigma_2$. Professor C. C. Craig [1] has found the probability function of $z = xy/\sigma_1\sigma_2$ in closed form as the difference of two integrals. For purposes of numerical computation he has expanded this result in an infinite series involving powers of $z, \rho_1, \rho_2$, and Bessel functions of a certain type; in addition, he has determined the moments, semin-variants, and the moment generating function of $z$. However, for $\rho_1$ and $\rho_2$ large, as Craig points out, the series expansion converges very slowly. Even for $\rho_1$ and $\rho_2$ as small as 2, the expansion is unwieldy. We shall show that as $\rho_1$ and $\rho_2 \rightarrow \infty$, the probability function of $z$ approaches a normal curve and in case $r = 0$ the Type III function and the Gram-Charlier Type A series are excellent approximations to the $z$ distribution in the proper region. Numerical integration provides a substitute for the infinite series wherever the exact values of the probability function of $z$ are needed. Some extensions of the main theorem are given in section 5 and a practical problem involving the probability function of $z$ is solved.}, + publisher = {Institute of Mathematical Statistics}, + annotation = {mediation, mediation-delta}, +} + +@Article{Cochran-1952, + author = {William G. Cochran}, + date = {1952-09}, + journaltitle = {The Annals of Mathematical Statistics}, + title = {The $\chi^{2}$ test of goodness of fit}, + doi = {10.1214/aoms/1177729380}, + number = {3}, + pages = {315--345}, + volume = {23}, + publisher = {Institute of Mathematical Statistics}, + abstract = {This paper contains an expository discussion of the chi square test of goodness of fit, intended for the student and user of statistical theory rather than for the expert. Part I describes the historical development of the distribution theory on which the test rests. Research bearing on the practical application of the test--in particular on the minimum expected number per class and the construction of classes--is discussed in Part II. Some varied opinions about the extent to which the test actually is useful to the scientist are presented in Part III. Part IV outlines a number of tests that have been proposed as substitutes for the chi square test (the $\omega^2$ test, the smooth test, the likelihood ratio test) and Part V a number of supplementary tests (the run test, tests based on low moments, subdivision of chi square into components).}, + publisher = {Institute of Mathematical Statistics}, + annotation = {robustness}, +} + +@Article{Johnson-Fay-1950, + author = {Palmer O. Johnson and Leo C. Fay}, + date = {1950-12}, + journaltitle = {Psychometrika}, + title = {The {Johnson-Neyman} technique, its theory and application}, + doi = {10.1007/bf02288864}, + issn = {1860-0980}, + number = {4}, + pages = {349--367}, + volume = {15}, + abstract = {The theoretical basis for the Johnson-Neyman Technique is here presented for the first time in an American journal. In addition, a simplified working procedure is outlined, step-by-step, for an actual problem. The determination of significance is arrived at early in the analysis; and where no significant difference is found, the problem is complete at this point. The plotting of the region of significance where a significant difference does exist has also been simplified by using the procedure of rotation and translation of axes.}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{Duncan-1969, + author = {Otis D. Duncan}, + date = {1969-09}, + journaltitle = {Psychological Bulletin}, + title = {Some linear models for two-wave, two-variable panel analysis}, + doi = {10.1037/h0027876}, + issn = {0033-2909}, + number = {3}, + pages = {177--182}, + volume = {72}, + abstract = {In the absence of a sufficient number of a priori substantive assumptions ruling out certain conceivable causal linkages among variables, neither cross-lagged correlation nor any other technique for analyzing 2-wave, 2-variable panel data will yield a unique causal inference. A wide variety of distinct linear causal models will always be compatible with a given set of panel data.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Goodman-1960, + author = {Leo A. Goodman}, + date = {1960-12}, + journaltitle = {Journal of the American Statistical Association}, + title = {On the exact variance of products}, + doi = {10.1080/01621459.1960.10483369}, + number = {292}, + pages = {708--713}, + volume = {55}, + abstract = {A simple exact formula for the variance of the product of two random variables, say, x and y, is given as a function of the means and central product-moments of x and y. The usual approximate variance formula for xy is compared with this exact formula; e.g., we note, in the special case where x and y are independent, that the ``variance'' computed by the approximate formula is less than the exact variance, and that the accuracy of the approximation depends on the sum of the reciprocals of the squared coefficients of variation of x and y. The case where x and y need not be independent is also studied, and exact variance formulas are presented for several different ``product estimates.'' (The usefulness of exact formulas becomes apparent when the variances of these estimates are compared.) When x and y are independent, simple unbiased estimates of these exact variances are suggested; in the more general case, consistent estimates are presented.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-delta}, +} + +@Article{Granger-1969, + author = {C. W. J. Granger}, + date = {1969-08}, + journaltitle = {Econometrica}, + title = {Investigating causal relations by econometric models and cross-spectral methods}, + doi = {10.2307/1912791}, + issn = {0012-9682}, + number = {3}, + pages = {424}, + volume = {37}, + abstract = {There occurs on some occasions a difficulty in deciding the direction of causality between two related variables and also whether or not feedback is occurring. Testable definitions of causality and feedback are proposed and illustrated by use of simple two-variable models. The important problem of apparent instantaneous causality is discussed and it is suggested that the problem often arises due to slowness in recording information or because a sufficiently wide class of possible causal variables has not been used. It can be shown that the cross spectrum between two variables can be decomposed into two parts, each relating to a single causal arm of a feedback situation. Measures of causal lag and causal strength can then be constructed. A generalisation of this result with the partial cross spectrum is suggested.}, + publisher = {JSTOR}, +} + +@Article{Kalman-1960, + author = {R. E. Kalman}, + date = {1960-03}, + journaltitle = {Journal of Basic Engineering}, + title = {A new approach to linear filtering and prediction problems}, + doi = {10.1115/1.3662552}, + number = {1}, + pages = {35--45}, + volume = {82}, + abstract = {The classical filtering and prediction problem is re-examined using the Bode-Shannon representation of random processes and the “state-transition” method of analysis of dynamic systems. New results are: (1) The formulation and methods of solution of the problem apply without modification to stationary and nonstationary statistics and to growing-memory and infinite-memory filters. (2) A nonlinear difference (or differential) equation is derived for the covariance matrix of the optimal estimation error. From the solution of this equation the co-efficients of the difference (or differential) equation of the optimal linear filter are obtained without further calculations. (3) The filtering problem is shown to be the dual of the noise-free regulator problem. The new method developed here is applied to two well-known problems, confirming and extending earlier results. The discussion is largely self-contained and proceeds from first principles; basic concepts of the theory of random processes are reviewed in the Appendix.}, + publisher = {{ASME} International}, +} + +@Article{Bradley-1978, + author = {James V. Bradley}, + date = {1978-11}, + journaltitle = {British Journal of Mathematical and Statistical Psychology}, + title = {Robustness?}, + doi = {10.1111/j.2044-8317.1978.tb00581.x}, + number = {2}, + pages = {144--152}, + volume = {31}, + publisher = {Wiley}, + abstract = {The actual behaviour of the probability of a Type I error under assumption violation is quite complex, depending upon a wide variety of interacting factors. Yet allegations of robustness tend to ignore its highly particularistic nature and neglect to mention important qualifying conditions. The result is often a vast overgeneralization which nevertheless is difficult to refute since a standard quantitative definition of what constitutes robustness does not exist. Yet under any halfway reasonable quantitative definition, many of the most prevalent claims of robustness would be demonstrably false. Therefore robustness is a highly questionable concept.}, + annotation = {robustness}, +} + +@Article{Cronbach-Furby-1970, + author = {Lee J. Cronbach and Lita Furby}, + date = {1970-07}, + journaltitle = {Psychological Bulletin}, + title = {How we should measure ``change'': Or should we?}, + doi = {10.1037/h0029382}, + number = {1}, + pages = {68--80}, + volume = {74}, + abstract = {Examines procedures previously recommended by various authors for the estimation of ``change'' scores, ``residual,'' or ``basefree'' measures of change, and other kinds of difference scores. A procedure proposed by F. M. Lord is extended to obtain more precise estimates, and an alternative to the L. R. Tucker, F. Damarin, and S. A. Messick (see 41:3) procedure is offered. A consideration of the purposes for which change measures have been sought in the past leads to a series of recommended procedures which solve research and personnel-decision problems without estimation of change scores for individuals.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Efron-1979a, + author = {Bradley Efron}, + date = {1979-01}, + journaltitle = {The Annals of Statistics}, + title = {Bootstrap methods: Another look at the jackknife}, + doi = {10.1214/aos/1176344552}, + number = {1}, + volume = {7}, + abstract = {We discuss the following problem: given a random sample $\mathbf{X} = \left( X_1 , X_2 , \dots , X_n \right)$ from an unknown probability distribution $F$, estimate the sampling distribution of some prespecified random variable $R \left( \mathbf{X}, F \right)$, on the basis of the observed data $\mathbf{x}$. (Standard jackknife theory gives an approximate mean and variance in the case $R \left( \mathbf{X}, F \right) = \theta \left( \hat{F} \right) - \theta \left( F \right)$, $\theta$ some parameter of interest.) A general method, called the ``bootstrap'' is introduced, and shown to work satisfactorily on a variety of estimation problems. The jackknife is shown to be a linear approximation method for the bootstrap. The exposition proceeds by a series of examples: variance of the sample median, error rates in a linear discriminant analysis, ratio estimation, estimating regression parameters, etc.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {bootstrap, discriminant analysis, error rate estimation, jackknife, nonlinear regression, nonparametric variance estimation, resampling, subsample values}, +} + +@Article{Efron-1979b, + author = {Bradley Efron}, + date = {1979-10}, + journaltitle = {{SIAM} Review}, + title = {Computers and the theory of statistics: Thinking the unthinkable}, + doi = {10.1137/1021092}, + number = {4}, + pages = {460--480}, + volume = {21}, + abstract = {This is a survey article concerning recent advances in certain areas of statistical theory, written for a mathematical audience with no background in statistics. The topics are chosen to illustrate a special point: how the advent of the high-speed computer has affected the development of statistical theory. The topics discussed include nonparametric methods, the jackknife, the bootstrap, cross-validation, error-rate estimation in discriminant analysis, robust estimation, the influence function, censored data, the EM algorithm, and Cox's likelihood function. The exposition is mainly by example, with only a little offered in the way of theoretical development.}, + publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})}, +} + +@Article{Engel-1977, + author = {George L. Engel}, + date = {1977-04}, + journaltitle = {Science}, + title = {The need for a new medical model: A challenge for biomedicine}, + doi = {10.1126/science.847460}, + issn = {1095-9203}, + number = {4286}, + pages = {129--136}, + volume = {196}, + abstract = {The dominant model of disease today is biomedical, and it leaves no room within tis framework for the social, psychological, and behavioral dimensions of illness. A biopsychosocial model is proposed that provides a blueprint for research, a framework for teaching, and a design for action in the real world of health care. }, + publisher = {American Association for the Advancement of Science (AAAS)}, +} + +@Article{Hinkley-1977, + author = {David V. Hinkley}, + date = {1977-08}, + journaltitle = {Technometrics}, + title = {Jackknifing in unbalanced situations}, + doi = {10.1080/00401706.1977.10489550}, + number = {3}, + pages = {285--292}, + volume = {19}, + abstract = {Both the standard jackknife and a weighted jackknife are investigated in the general linear model situation. Properties of bias reduction and standard error estimation are derived and the weighted jackknife shown to be superior for unbalanced data. There is a preliminary discussion of robust regression fitting using jackknife pseudo-values.}, + publisher = {Informa {UK} Limited}, + keywords = {jackknife, linear model, regression, residual, robustness,}, + annotation = {regression, regression-hc}, +} + +@Article{Horn-Horn-Duncan-1975, + author = {Susan D. Horn and Roger A. Horn and David B. Duncan}, + date = {1975-06}, + journaltitle = {Journal of the American Statistical Association}, + title = {Estimating heteroscedastic variances in linear models}, + doi = {10.1080/01621459.1975.10479877}, + number = {350}, + pages = {380--385}, + volume = {70}, + publisher = {Informa {UK} Limited}, + annotation = {regression, regression-hc}, +} + +@Article{Nesselroade-Cable-1974, + author = {John R. Nesselroade and Dana G. Cable}, + date = {1974-07}, + journaltitle = {Multivariate Behavioral Research}, + title = {Sometimes, it's okay to factor difference scores" - The separation of state and trait anxiety}, + doi = {10.1207/s15327906mbr0903_3}, + number = {3}, + pages = {273--284}, + volume = {9}, + abstract = {Contemporary psychometric policy and practice have tended to make the use of algebraic difference scores in psychological research taboo. Within the more limited domain of factor analytic research on personality, difference scores have been the subject of sporadic debate for more than 30 years. Using the personality trait versus state distinction as a substantive context, the fit of the factor analytic model to difference score data is investigated and found to be quite good. Methodological issues related to properties of difference scores and their implications for personality research are briefly discussed.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Osborne-Suddick-1972, + author = {R. T. Osborne and D. E. Suddick}, + date = {1972-09}, + journaltitle = {The Journal of Genetic Psychology}, + title = {A Longitudinal Investigation of the Intellectual Differentiation Hypothesis}, + doi = {10.1080/00221325.1972.10533131}, + issn = {1940-0896}, + number = {1}, + pages = {83--89}, + volume = {121}, + publisher = {Informa UK Limited}, +} + +@Article{Rubin-1976, + author = {Donald B. Rubin}, + date = {1976}, + journaltitle = {Biometrika}, + title = {Inference and missing data}, + doi = {10.1093/biomet/63.3.581}, + number = {3}, + pages = {581--592}, + volume = {63}, + abstract = {When making sampling distribution inferences about the parameter of the data, $\theta$, it is appropriate to ignore the process that causes missing data if the missing data are `missing at random' and the observed data are `observed at random', but these inferences are generally conditional on the observed pattern of missing data. When making direct-likelihood or Bayesian inferences about $\theta$, it is appropriate to ignore the process that causes missing data if the missing data are missing at random and the parameter of the missing data process is `distinct' from $\theta$. These conditions are the weakest general conditions under which ignoring the process that causes missing data always leads to correct inferences.}, + publisher = {Oxford University Press ({OUP})}, +} + +@Book{Arnold-1974, + author = {Ludwig Arnold}, + date = {1974}, + title = {Stochastic differential equations: Theory and applications}, + isbn = {9780471033592}, + location = {New York, NY}, + pagetotal = {228}, + publisher = {Wiley}, + series = {A Wiley-Interscience publication}, +} + +@InBook{Baltes-Nesselroade-1979, + author = {Paul B. Baltes and John R. Nesselroade}, + date = {1979}, + title = {History and rationale of longitudinal research}, + booktitle = {Longitudinal research in the study of behavior and development}, + editor = {John R. Nesselroade and Paul B. Baltes}, + isbn = {9780125156608}, + location = {New York, NY}, + abstract = {Within the context of developmental psychology, longitudinal research is defined and reviewed from a historical perspective. Longitudinal research is shown always to include repeated-measurement methodology as the defining attribute, with individuals being the entity under study in developmental psychology. Additional characterizations vary, depending on historical and theoretical contexts. The need for longitudinal research was recognized at least as early as the nineteenth century. Terminology and specification of rationale, however, did not appear until the second or third decade of the twentieth century. The term longitudinal was initially identified in the context of age-based definitions of development. Recent decades, however, have seen an expansion of developmental theory beyond monolithic views to include age-irrelevant and multidirectional conceptions of the nature of development, particularly if a life-span perspective is taken. Such a pluralistic conception of behavioral development implies a more generic definition of longitudinal methodology than is associated with the traditional age-developmental view. Finally, it is important to recognize that the objective of longitudinal methodology is not only the descriptive identification of change. The objective includes explanatory goals also. Only recently has the unique strength of longitudinal research for explanatory efforts been recognized. In the second section of this chapter, a series of rationales for longitudinal research are outlined. These rationales are developed within the context of developmental psychology. They deal with (1) the direct identification of intraindividual change; (2) the identification of interindividual differences in intraindividual change; (3) the analysis of interrelationships in behavioral change; (4) the analysis of causes (determinants ) of intraindividual change; and (5) the analysis of causes (determinants) of interindividual differences in intraindividual change. In a third section, selected issues in longitudinal designs and analysis are briefly reviewed. The need for complex longitudinal designs and control groups is emphasized to help counteract the rather widespread assumption that simple longitudinal studies are invariably sufficient for answering developmental questions. Furthermore, general limitations on aspects of developmental research associated with the study of assigned variables such as age, sex, or cohort are outlined. These limitations place constraints on design purity and mandate the use of and familiarity with alternative quasi-experimental designs. As an example, some of the problems associated with causal analysis involving distal (delayed, mediated) influences and the use of lagged paradigms and causal modeling are discussed.}, + publisher = {Academic Press}, +} + +@InBook{Rogosa-1979, + author = {David R. Rogosa}, + booktitle = {Longitudinal methodology in the study of behavior and development}, + date = {1979}, + title = {Causal models in longitudinal research: {R}ationale, formulation, and interpretation}, + editor = {John R. Nesselroade and Paul B. Baltes}, + isbn = {9780125156608}, + location = {New York, NY}, + publisher = {Academic Press}, +} + +@Article{Barnard-Collins-Farewell-etal-1981, + author = {George A. Barnard and J. R. Collins and V. T. Farewell and C. A. Field and J. D. Kalbfleisch and Stanley W. Nash and Emanuel Parzen and Ross L. Prentice and Nancy Reid and D. A. Sprott and Paul Switzer and W. G. Warren and K. L. Weldon}, + date = {1981}, + journaltitle = {The Canadian Journal of Statistics / La Revue Canadienne de Statistique}, + title = {Nonparametric standard errors and confidence intervals: Discussion}, + doi = {10.2307/3314609}, + number = {2}, + pages = {158--170}, + volume = {9}, + publisher = {Wiley}, +} + +@Article{Baron-Kenny-1986, + author = {Reuben M. Baron and David A. Kenny}, + date = {1986}, + journaltitle = {Journal of Personality and Social Psychology}, + title = {The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations}, + doi = {10.1037/0022-3514.51.6.1173}, + number = {6}, + pages = {1173--1182}, + volume = {51}, + abstract = {In this article, we attempt to distinguish between the properties of moderator and mediator variables at a number of levels. First, we seek to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating, both conceptually and strategically, the many ways in which moderators and mediators differ. We then go beyond this largely pedagogical function and delineate the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena, including control and stress, attitudes, and personality traits. We also provide a specific compendium of analytic procedures appropriate for making the most effective use of the moderator and mediator distinction, both separately and in terms of a broader causal system that includes both moderators and mediators.}, + publisher = {American Psychological Association ({APA})}, + annotation = {mediation, mediation-causalsteps}, +} + +@Article{Bentler-Lee-1983, + author = {P. M. Bentler and Sik-Yum Lee}, + date = {1983}, + journaltitle = {Journal of Educational Statistics}, + title = {Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models}, + doi = {10.2307/1164760}, + issn = {0362-9791}, + number = {3}, + pages = {207}, + volume = {8}, + abstract = {This paper provides methods for the estimation of covariance structure models under polynomial constraints. Estimation is based on maximum likelihood principles under constraints, and the test statistics, parameter estimates, and standard errors are based on a statistical theory that takes into account the constraints. The approach is illustrated by obtaining statistics for the squared multiple correlation, for predictors in a standardized metric, and in the analysis of longitudinal data via old and new models having constraints that cannot be obtained by standard methods.}, + publisher = {JSTOR}, +} + +@Article{Bollen-1987, + author = {Kenneth A. Bollen}, + date = {1987}, + journaltitle = {Sociological Methodology}, + title = {Total, direct, and indirect effects in structural equation models}, + doi = {10.2307/271028}, + issn = {0081-1750}, + pages = {37}, + volume = {17}, + abstract = {Decomposing the total effects of one variable on another into direct and indirect effects has long been of interest to researchers who use path analysis. In this paper, I review the decomposition of effects in general structural equation models with latent and observed variables. I present the two approaches to defining total effects. One is based on sums of powers of coefficient matrices. The other defines total effects as reducedform coefficients. I show the conditions under which these two definitions are equivalent. I also compare the different types of specific indirect effects. These are the influences that are transmitted through particular variables in a model. Finally, I propose a more general definition of specific effects that includes the effects transmitted by any path or combination of paths. I also include a section on computing standard errors for all types of effects.}, + publisher = {JSTOR}, +} + +@Article{Browne-1984, + author = {Michael W. Browne}, + date = {1984-05}, + journaltitle = {British Journal of Mathematical and Statistical Psychology}, + title = {Asymptotically distribution-free methods for the analysis of covariance structures}, + doi = {10.1111/j.2044-8317.1984.tb00789.x}, + number = {1}, + pages = {62--83}, + volume = {37}, + abstract = {Methods for obtaining tests of fit of structural models for covariance matrices and estimator standard error which are asymptotically distribution free are derived. Modifications to standard normal theory tests and standard errors which make them applicable to the wider class of elliptical distributions are provided. A random sampling experiment to investigate some of the proposed methods is described.}, + publisher = {Wiley}, +} + +@Article{Chesher-Jewitt-1987, + author = {Andrew Chesher and Ian Jewitt}, + date = {1987-09}, + journaltitle = {Econometrica}, + title = {The bias of a heteroskedasticity consistent covariance matrix estimator}, + doi = {10.2307/1911269}, + number = {5}, + pages = {1217}, + volume = {55}, + publisher = {{JSTOR}}, + annotation = {regression, regression-hc}, +} + +@Article{Cloninger-1987, + author = {C. Robert Cloninger}, + date = {1987-04}, + journaltitle = {Science}, + title = {Neurogenetic adaptive mechanisms in alcoholism}, + doi = {10.1126/science.2882604}, + issn = {1095-9203}, + number = {4800}, + pages = {410--416}, + volume = {236}, + abstract = {Clinical, genetic, and neuropsychopharmacological studies of developmental factors in alcoholism are providing a better understanding of the neurobiological bases of personality and learning. Studies of the adopted-away children of alcoholics show that the predisposition to initiate alcohol-seeking behavior is genetically different from susceptibility to loss of control after drinking begins. Alcohol-seeking behavior is a special case of exploratory appetitive behavior and involves different neurogenetic processes than do susceptibility to behavioral tolerance and dependence on the antianxiety or sedative effects of alcohol. Three dimensions of personality have been described that may reflect individual differences in brain systems modulating the activation, maintenance, and inhibition of behavioral responses to the effects of alcohol and other environmental stimuli. These personality traits distinguish alcoholics with different patterns of behavioral, neurophysiological, and neuropharmacological responses to alcohol.}, + publisher = {American Association for the Advancement of Science (AAAS)}, +} + +@Article{Cox-Klinger-1988, + author = {W. Miles Cox and Eric Klinger}, + date = {1988-05}, + journaltitle = {Journal of Abnormal Psychology}, + title = {A motivational model of alcohol use}, + doi = {10.1037/0021-843x.97.2.168}, + issn = {0021-843X}, + number = {2}, + pages = {168--180}, + volume = {97}, + abstract = {The final, common pathway to alcohol use is motivational. A person decides consciously or unconsciously to consume or not to consume any particular drink of alcohol according to whether or not he or she expects that the positive affective consequences of drinking will outweigh those of not drinking. Various factors (e.g., past experiences with drinking, current life situation) help to form expectations of affective change from drinking, these factors always modulated by a person's neurochemical reactivity to alcohol. Such major influences include the person's current nonchemical incentives and the prospect of acquiring new positive incentives and removing current negative incentives. Our motivational counseling technique uses nonchemical goals and incentives to help the alcoholic develop a satisfying life without the necessity of alcohol. The technique first assesses the alcoholic's motivational structure and then seeks to modify it through a multicomponent counseling procedure. The counseling technique is one example of the heuristic value of the motivational model.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Cudeck-1989, + author = {Robert Cudeck}, + date = {1989-03}, + journaltitle = {Psychological Bulletin}, + title = {Analysis of correlation matrices using covariance structure models}, + doi = {10.1037/0033-2909.105.2.317}, + issn = {0033-2909}, + number = {2}, + pages = {317--327}, + volume = {105}, + abstract = {It is often assumed that covariance structure models can be arbitrarily applied to sample correlation matrices as readily as to sample covariance matrices. Although this is true in many cases and leads to an analysis that is mostly correct, it is not permissible for all structures. This article reviews three interrelated problems associated with the analysis of structural models using a matrix of sample correlations. Depending upon the model, applying a covariance structure to a matrix of correlations may (a) modify the model being studied, (b) produce incorrect values of the omnibus test statistic, or (c) yield incorrect standard errors. An important class of models are those that are scale invariant (Browne, 1982), for then Errors a and b cannot occur when a correlation matrix is analyzed. A number of examples based on restricted factor analysis are presented to illustrate the concepts described in the article.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Efron-1981a, + author = {Bradley Efron}, + date = {1981}, + journaltitle = {Canadian Journal of Statistics / La Revue Canadienne de Statistique}, + title = {Nonparametric standard errors and confidence intervals}, + doi = {10.2307/3314608}, + number = {2}, + pages = {139--158}, + volume = {9}, + abstract = {We investigate several nonparametric methods; the bootstrap, the jackknife, the delta method, and other related techniques. The first and simplest goal is the assignment of nonparametric standard errors to a real-valued statistic. More ambitiously, we consider setting nonparametric confidence intervals for a real-valued parameter. Building on the well understood case of confidence intervals for the median, some hopeful evidence is presented that such a theory may be possible.}, + publisher = {Wiley}, + keywords = {bootstrap, jackknife, delta method, nonparametric confidence intervals, nonparametric standard errors}, +} + +@Article{Efron-1981b, + author = {Bradley Efron}, + date = {1981}, + journaltitle = {The Canadian Journal of Statistics / La Revue Canadienne de Statistique}, + title = {Nonparametric standard errors and confidence intervals: Rejoinder}, + doi = {10.2307/3314610}, + number = {2}, + pages = {170--172}, + volume = {9}, + publisher = {Wiley}, +} + +@Article{Efron-1987, + author = {Bradley Efron}, + date = {1987-03}, + journaltitle = {Journal of the American Statistical Association}, + title = {Better bootstrap confidence intervals}, + doi = {10.1080/01621459.1987.10478410}, + number = {397}, + pages = {171--185}, + volume = {82}, + abstract = {We consider the problem of setting approximate confidence intervals for a single parameter $\theta$ in a multiparameter family. The standard approximate intervals based on maximum likelihood theory, $\hat{\theta} \pm \hat{\sigma} z^{\left( \alpha \right)}$, can be quite misleading. In practice, tricks based on transformations, bias corrections, and so forth, are often used to improve their accuracy. The bootstrap confidence intervals discussed in this article automatically incorporate such tricks without requiring the statistician to think them through for each new application, at the price of a considerable increase in computational effort. The new intervals incorporate an improvement over previously suggested methods, which results in second-order correctness in a wide variety of problems. In addition to parametric families, bootstrap intervals are also developed for nonparametric situations.}, + publisher = {Informa {UK} Limited}, + keywords = {resampling methods, approximate confidence intervals, transformations, nonparametric intervals, second-order theory, skewness corrections}, +} + +@Article{Efron-1988, + author = {Bradley Efron}, + date = {1988}, + journaltitle = {Psychological Bulletin}, + title = {Bootstrap confidence intervals: Good or bad?}, + doi = {10.1037/0033-2909.104.2.293}, + number = {2}, + pages = {293--296}, + volume = {104}, + abstract = {The bootstrap is a nonparametric technique for estimating standard errors and approximate confidence intervals. Rasmussen has used a simulation experiment to suggest that bootstrap confidence intervals perform very poorly in the estimation of a correlation coefficient. Part of Rasmussen's simulation is repeated. A careful look at the results shows the bootstrap intervals performing quite well. Some remarks are made concerning the virtues and defects of bootstrap intervals in general.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Gollob-Reichardt-1987, + author = {Harry F. Gollob and Charles S. Reichardt}, + date = {1987-02}, + journaltitle = {Child Development}, + title = {Taking account of time lags in causal models}, + doi = {10.2307/1130293}, + issn = {0009-3920}, + number = {1}, + pages = {80}, + volume = {58}, + abstract = {Although it takes time for a cause to exert an effect, causal models often fail to allow adequately for time lags. In particular, causal models that contain cross-sectional relations (i. e., relations between values of 2 variables at the same time) are unsatisfactory because (a) they omit the values of variables at prior times, (b) they omit effects that variables can have on themselves, and (c) they fail to specify the length of the causal interval that is being studied. These omissions can produce severe biases in estimates of the size of causal effects. Longitudinal models also can fail to take account of time lags properly, and this too can lead to severely biased estimates. The discussion illustrates the biases that can occur in both cross-sectional and longitudinal models, introduces the latent longitudinal approach to causal modeling, and shows how latent longitudinal models can be used to reduce bias by taking account of time lags even when data are available for only 1 point in time.}, + publisher = {JSTOR}, +} + +@Article{James-Brett-1984, + author = {Lawrence R. James and Jeanne M. Brett}, + date = {1984}, + journaltitle = {Journal of Applied Psychology}, + title = {Mediators, moderators, and tests for mediation}, + doi = {10.1037/0021-9010.69.2.307}, + number = {2}, + pages = {307--321}, + volume = {69}, + abstract = {Discusses mediation relations in causal terms. Influences of an antecedent are transmitted to a consequence through an intervening mediator. Mediation relations may assume a number of functional forms, including nonadditive, nonlinear, and nonrecursive forms. Although mediation and moderation are distinguishable processes, with nonadditive forms (moderated mediation) a particular variable may be both a mediator and a moderator within a single set of functional relations. Current models for testing mediation relations in industrial and organizational psychology often involve an interplay between exploratory (correlational) statistical tests and causal inference. It is suggested that no middle ground exists between exploratory and confirmatory (causal) analysis and that attempts to explain how mediation processes occur require specified causal models.}, + publisher = {American Psychological Association ({APA})}, + annotation = {mediation, mediation-causalsteps}, +} + +@Article{Judd-Kenny-1981, + author = {Charles M. Judd and David A. Kenny}, + date = {1981-10}, + journaltitle = {Evaluation Review}, + title = {Process analysis}, + doi = {10.1177/0193841x8100500502}, + number = {5}, + pages = {602--619}, + volume = {5}, + abstract = {This article presents the rationale and procedures for conducting a process analysis in evaluation research. Such an analysis attempts to identify the process that mediates the effects of some treatment, by estimating the parameters of a causal chain between the treatment and some outcome variable. Two different procedures for estimating mediation are discussed. In addition we present procedures for examining whether a treatment exerts its effects, in part, by altering the mediating process that produces the outcome. Finally, the benefits of process analysis in evaluation research are underlined.}, + publisher = {{SAGE} Publications}, + annotation = {mediation, mediation-causalsteps}, +} + +@Article{Kaplan-Martin-Robbins-1984, + author = {Howard B. Kaplan and Steven S. Martin and Cynthia Robbins}, + date = {1984-09}, + journaltitle = {Journal of Health and Social Behavior}, + title = {Pathways to adolescent drug use: Self-derogation, peer influence, weakening of social controls, and early substance use}, + doi = {10.2307/2136425}, + issn = {0022-1465}, + number = {3}, + pages = {270}, + volume = {25}, + abstract = {We test a model that accounts for the adoption of drug use among adolescents in terms of four explanatory perspectives: self-derogation, peer influence, social control, and early substance use. The data come from a three-wave panel study of junior high school students in Houston (N = 3,052). Using nine variables at Time 1, 10 variables at Time 2, and drug use at Time 3, we operationalize components of all four theoretical perspectives in a path model predicting drug use. Results indicate that the four theoretical perspectives complement each other in predicting subsequent adoption of drug use. Significant primary and intervening roles can be attributed to each of the four perspectives. We discuss these findings in terms of an integrative approach to multivariate models of drug use.}, + publisher = {SAGE Publications}, +} + +@Article{MacKinnon-White-1985, + author = {James G. MacKinnon and Halbert White}, + date = {1985-09}, + journaltitle = {Journal of Econometrics}, + title = {Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties}, + doi = {10.1016/0304-4076(85)90158-7}, + number = {3}, + pages = {305--325}, + volume = {29}, + abstract = {We examine several modified versions of the heteroskedasticity-consistent covariance matrix estimator of Hinkley (1977) and White (1980). On the basis of sampling experiments which compare the performance of quasi t-statistics, we find that one estimator, based on the jackknife, performs better in small samples than the rest. We also examine the finite-sample properties of using modified critical values based on Edgeworth approximations, as proposed by Rothenberg (1984). In addition, we compare the power of several tests for heteroskedasticity, and find that it may be wise to employ the jackknife heteroskedasticity-consistent covariance matrix even in the absence of detected heteroskedasticity.}, + publisher = {Elsevier {BV}}, + annotation = {regression, regression-hc}, +} + +@Article{McArdle-McDonald-1984, + author = {J. Jack McArdle and Roderick P. McDonald}, + date = {1984-11}, + journaltitle = {British Journal of Mathematical and Statistical Psychology}, + title = {Some algebraic properties of the {Reticular Action Model} for moment structures}, + doi = {10.1111/j.2044-8317.1984.tb00802.x}, + issn = {2044-8317}, + number = {2}, + pages = {234--251}, + volume = {37}, + abstract = {A number of models for the analysis of moment structures, such as linear structural relations, have recently been shown to be capable of being given a particularly simple and economical representation, in terms of the reticular action model (RAM). A formal algebraic treatment is presented that shows that RAM directly incorporates many common structural models, including models describing the structure of means. It is also shown that RAM treats coefficient matrices with patterned inverses simply and generally.}, + publisher = {Wiley}, +} + +@Article{Micceri-1989, + author = {Theodore Micceri}, + date = {1989}, + journaltitle = {Psychological Bulletin}, + title = {The unicorn, the normal curve, and other improbable creatures}, + doi = {10.1037/0033-2909.105.1.156}, + number = {1}, + pages = {156--166}, + volume = {105}, + abtsract = {An investigation of the distributional characteristics of 440 large-sample achievement and psychometric measures found all to be significantly nonnormal at the alpha .01 significance level. Several classes of contamination were found, including tail weights from the uniform to the double exponential, exponential-level asymmetry, severe digit preferences, multimodalities, and modes external to the mean/median interval. Thus, the underlying tenets of normality-assuming statistics appear fallacious for these commonly used types of data. However, findings here also fail to support the types of distributions used in most prior robustness research suggesting the failure of such statistics under nonnormal conditions. A reevaluation of the statistical robustness literature appears appropriate in light of these findings.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Nel-1985, + author = {D.G. Nel}, + date = {1985-06}, + journaltitle = {Linear Algebra and its Applications}, + title = {A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients}, + doi = {10.1016/0024-3795(85)90191-0}, + issn = {0024-3795}, + pages = {137--145}, + volume = {67}, + abstract = {The asymptotic covariance matrix of the sample correlation matrix is derived in matrix form as an application of some new matrix theory in multivariate statistics.}, + publisher = {Elsevier BV}, +} + +@Article{Newey-West-1987, + author = {Whitney K. Newey and Kenneth D. West}, + date = {1987-05}, + journaltitle = {Econometrica}, + title = {A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix}, + doi = {10.2307/1913610}, + number = {3}, + pages = {703}, + volume = {55}, + publisher = {{JSTOR}}, +} + +@Article{Rasmussen-1987, + author = {Jeffrey L. Rasmussen}, + date = {1987}, + journaltitle = {Psychological Bulletin}, + title = {Estimating correlation coefficients: Bootstrap and parametric approaches}, + doi = {10.1037/0033-2909.101.1.136}, + number = {1}, + pages = {136--139}, + volume = {101}, + abstract = {The bootstrap, a computer-intensive approach to statistical data analysis, has been recommended as an alternative to parametric approaches. Advocates claim it is superior because it is not burdened by potentially unwarranted normal theory assumptions and because it retains information about the form of the original sample. Empirical support for its superiority, however, is quite limited. The present article compares the bootstrap and parametric approaches to estimating confidence intervals and Type I error rates of the correlation coefficient. The parametric approach is superior to the bootstrap under both assumption violation and nonviolation. The bootstrap results in overly restricted confidence intervals and overly liberal Type I error rates.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Rogosa-1980, + author = {David R. Rogosa}, + date = {1980-09}, + journaltitle = {Psychological Bulletin}, + title = {A critique of cross-lagged correlation}, + doi = {10.1037/0033-2909.88.2.245}, + issn = {0033-2909}, + number = {2}, + pages = {245--258}, + volume = {88}, + abstract = {Comments that cross-lagged correlation (CLC) is not a useful procedure for the analysis of longitudinal panel data. In particular, the difference between CLCs is not a sound basis for causal inference. Demonstrations of the failure of CLC are based mainly on results for the 2-wave, 2-variable longitudinal panel design. Extensions of these results to panels with multiple waves and multiple measures reveal additional problems; each 2-wave snapshot did not yield dependable results. Taken together, the 2-wave analyses were often contradictory and misleading.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Schenker-1987, + author = {Nathaniel Schenker}, + date = {1987-03}, + journaltitle = {Journal of the American Statistical Association}, + title = {Better bootstrap confidence intervals: Comment}, + doi = {10.2307/2289150}, + number = {397}, + pages = {192}, + volume = {82}, + publisher = {{JSTOR}}, +} + +@Article{Sobel-1982, + author = {Michael E. Sobel}, + date = {1982}, + journaltitle = {Sociological Methodology}, + title = {Asymptotic confidence intervals for indirect effects in structural equation models}, + doi = {10.2307/270723}, + pages = {290}, + volume = {13}, + publisher = {{JSTOR}}, + annotation = {mediation, mediation-delta}, +} + +@Article{Sobel-1986, + author = {Michael E. Sobel}, + date = {1986}, + journaltitle = {Sociological Methodology}, + title = {Some new results on indirect effects and their standard errors in covariance structure models}, + doi = {10.2307/270922}, + pages = {159}, + volume = {16}, + publisher = {{JSTOR}}, + annotation = {mediation, mediation-delta}, +} + +@Article{Sobel-1987, + author = {Michael E. Sobel}, + date = {1987-08}, + journaltitle = {Sociological Methods {\&} Research}, + title = {Direct and indirect effects in linear structural equation models}, + doi = {10.1177/0049124187016001006}, + number = {1}, + pages = {155--176}, + volume = {16}, + abstract = {This article discusses total indirect effects in linear structural equation models. First, I define these effects. Second, I show how the delta method may be used to obtain the standard errors of the sample estimates of these effects and test hypotheses about the magnitudes of the indirect effects. To keep matters simple, I focus throughout on a particularly simple linear structural equation system; for a treatment of the general case, see Sobel (1986). To illustrate the ideas and results, a detailed example is presented.}, + publisher = {{SAGE} Publications}, + annotation = {mediation, mediation-delta}, +} + +@Article{Venzon-Moolgavkar-1988, + author = {D. J. Venzon and S. H. Moolgavkar}, + date = {1988}, + journaltitle = {Applied Statistics}, + title = {A method for computing profile-likelihood-based confidence intervals}, + doi = {10.2307/2347496}, + number = {1}, + pages = {87}, + volume = {37}, + abstract = {The method of constructing confidence regions based on the generalised likelihood ratio statistic is well known for parameter vectors. A similar construction of a confidence interval for a single entry of a vector can be implemented by repeatedly maximising over the other parameters. We present an algorithm for finding these confidence interval endpoints that requires less computation. It employs a modified Newton-Raphson iteration to solve a system of equations that defines the endpoints.}, + publisher = {{JSTOR}}, + keywords = {confidence intervals, profile likelihood}, +} + +@Article{White-1980, + author = {Halbert White}, + date = {1980-05}, + journaltitle = {Econometrica}, + title = {A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity}, + doi = {10.2307/1912934}, + number = {4}, + pages = {817--838}, + volume = {48}, + abstract = {This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator to those of the usual covariance estimator, one obtains a direct test for heteroskedasticity, since in the absence of heteroskedasticity, the two estimators will be approximately equal, but will generally diverge otherwise. The test has an appealing least squares interpretation.}, + publisher = {{JSTOR}}, + annotation = {regression, regression-hc}, +} + +@InBook{Bergstrom-1984, + author = {A. R. Bergstrom}, + booktitle = {Handbook of Econometrics}, + date = {1984}, + title = {Continuous time stochastic models and issues of aggregation over time}, + editor = {Zvi Griliches and Michael D. Intriligator}, + location = {Amsterdam}, + volume = {2}, +} + +@Book{Cohen-1988, + author = {Jacob Cohen}, + date = {1988}, + title = {Statistical power analysis for the behavioral sciences}, + doi = {10.4324/9780203771587}, + edition = {2}, + isbn = {9780203771587}, + publisher = {Routledge}, + library = {HA29 .C66 1988}, + keywords = {Social sciences--Statistical methods, Probabilities, Statistical power analysis}, + addendum = {https://lccn.loc.gov/88012110}, + abstract = {Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: \begin{itemize} \item a chapter covering power analysis in set correlation and multivariate methods; \item a chapter considering effect size, psychometric reliability, and the efficacy of ``qualifying'' dependent variables and; \item expanded power and sample size tables for multiple regression/correlation. \end{itemize}}, +} + +@Book{NationalResearchCouncil-1982, + author = {{National Research Council}}, + date = {1982-01}, + title = {An assessment of research-doctorate programs in the {United States}: Social and behavioral sciences}, + doi = {10.17226/9781}, + location = {Washington, D.C.}, + publisher = {National Academies Press}, + annotation = {data}, +} + +@Book{Rubin-1987, + author = {Donald B. Rubin}, + date = {1987-06}, + title = {Multiple imputation for nonresponse in surveys}, + doi = {10.1002/9780470316696}, + isbn = {9780470316696}, + location = {New York}, + publisher = {John Wiley {\&} Sons, Inc.}, + library = {HA31.2 .R83 1987}, + keywords = {Multiple imputation (Statistics), Nonresponse (Statistics), Social surveys--Response rate}, + addendum = {https://lccn.loc.gov/86028935}, + annotation = {Lib-Missing-Data-Books}, + abstract = {Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.}, +} + +@Article{Serlin-Lapsley-1985, + author = {Ronald C. Serlin and Daniel K. Lapsley}, + date = {1985}, + journaltitle = {American Psychologist}, + title = {Rationality in psychological research: The good-enough principle}, + doi = {10.1037/0003-066x.40.1.73}, + number = {1}, + pages = {73--83}, + volume = {40}, + abstract = {Reexamines methodological and procedural issues raised by P. Meehl (1967; see also PA, Vol 62:5042) that question the rationality of psychological inquiry. Issues concern the asymmetry in theory testing between psychology and physics and the slow progress observed in psychological research. A good-enough principle is proposed to resolve Meehl's methodological paradox, and a more powerful reconstruction of science developed by I. Lakatos (1978) is suggested to account for the actual practice of psychological researchers.}, + publisher = {American Psychological Association ({APA})}, + annotation = {robustness}, +} + +@Article{Andrews-1991, + author = {Donald W. K. Andrews}, + date = {1991-05}, + journaltitle = {Econometrica}, + title = {Heteroskedasticity and autocorrelation consistent covariance matrix estimation}, + doi = {10.2307/2938229}, + number = {3}, + pages = {817}, + volume = {59}, + abstract = {This paper is concerned with the estimation of covariance matrices in the presence of heteroskedasticity and autocorrelation of unknown forms. Currently available estimators that are designed for this context depend upon the choice of a lag truncation parameter and a weighting scheme. Results in the literature provide a condition on the growth rate of the lag truncation parameter as $T \to \infty$ that is sufficient for consistency. No results are available, however, regarding the choice of lag truncation parameter for a fixed sample size, regarding data-dependent automatic lag truncation parameters, or regarding the choice of weighting scheme. In consequence, available estimators are not entirely operational and the relative merits of the estimators are unknown. This paper addresses these problems. The asymptotic truncated mean squared errors of estimators in a given class are determined and compared. Asymptotically optimal kernel/weighting scheme and bandwidth/lag truncation parameters are obtained using an asymptotic truncated mean squared error criterion. Using these results, data-dependent automatic bandwidth/lag truncation parameters are introduced. The finite sample properties of the estimators are analyzed via Monte Carlo simulation.}, + publisher = {{JSTOR}}, + annotation = {regression, regression-hc}, +} + +@Article{Andrews-Monahan-1992, + author = {Donald W. K. Andrews and J. Christopher Monahan}, + date = {1992-07}, + journaltitle = {Econometrica}, + title = {An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator}, + doi = {10.2307/2951574}, + number = {4}, + pages = {953}, + volume = {60}, + publisher = {{JSTOR}}, + annotation = {regression, regression-hc}, +} + +@Article{Bollen-Stine-1990, + author = {Kenneth A. Bollen and Robert Stine}, + date = {1990}, + journaltitle = {Sociological Methodology}, + title = {Direct and indirect effects: Classical and bootstrap estimates of variability}, + doi = {10.2307/271084}, + pages = {115}, + volume = {20}, + abstract = {The decomposition of effects in structural equation models has been of considerable interest to social scientists. Finite-sample or asymptotic results for the sampling distribution of estimators of direct effects are widely available. Statistical inferences about indirect effects have relied exclusively on asymptotic methods which assume that the limiting distribution of the estimator is normal, with a standard error derived from the delta method. We examine bootstrap procedures as another way to generate standard errors and confidence intervals and to estimate the sampling distributions of estimators of direct and indirect effects. We illustrate the classical and the bootstrap methods with three empirical examples. We find that in a moderately large sample, the bootstrap distribution of an estimator is close to that assumed with the classical and delta methods but that in small samples, there are some differences. Bootstrap methods provide a check on the classical and delta methods when the latter are applied under less than ideal conditions.}, + publisher = {{JSTOR}}, +} + +@Article{Cooper-Frone-Russell-etal-1995, + author = {M. Lynne Cooper and Michael R. Frone and Marcia Russell and Pamela Mudar}, + date = {1995-11}, + journaltitle = {Journal of Personality and Social Psychology}, + title = {Drinking to regulate positive and negative emotions: A motivational model of alcohol use}, + doi = {10.1037/0022-3514.69.5.990}, + issn = {0022-3514}, + number = {5}, + pages = {990--1005}, + volume = {69}, + abstract = {The present study proposed and tested a motivational model of alcohol use in which people are hypothesized to use alcohol to regulate both positive and negative emotions. Two central premises underpin this model: (a) that enhancement and coping motives for alcohol use are proximal determinants of alcohol use and abuse through which the influence of expectancies, emotions, and other individual differences are mediated and (b) that enhancement and coping motives represent phenomenologically distinct behaviors having both unique antecedents and consequences. This model was tested in 2 random samples (1 of adults, 1 of adolescents) using a combination of moderated regression and path analysis corrected for measurement error. Results revealed strong support for the hypothesized model in both samples and indicate the importance of distinguishing psychological motives for alcohol use.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Li-Raghunathan-Rubin-1991, + author = {K. H. Li and Trivellore Eachambadi Raghunathan and Donald B. Rubin}, + date = {1991-12}, + journaltitle = {Journal of the American Statistical Association}, + title = {Large-sample significance levels from multiply imputed data using moment-based statistics and an {$F$} reference distribution}, + doi = {10.1080/01621459.1991.10475152}, + number = {416}, + pages = {1065--1073}, + volume = {86}, + abstract = {We present a procedure for computing significance levels from data sets whose missing values have been multiply imputed data. This procedure uses moment-based statistics, $m \leq 3$ repeated imputations, and an F reference distribution. When $m = \infty$, we show first that our procedure is essentially the same as the ideal procedure in cases of practical importance and, second, that its deviations from the ideal are basically a function of the coefficient of variation of the canonical ratios of complete to observed information. For small $m$ our procedure's performance is largely governed by this coefficient of variation and the mean of these ratios. Using simulation techniques with small $m$, we compare our procedure's actual and nominal large-sample significance levels and conclude that it is essentially calibrated and thus represents a definite improvement over previously available procedures. Furthermore, we compare the large-sample power of the procedure as a function of $m$ and other factors, such as the dimensionality of the estimand and fraction of missing information, to provide guidance on the choice of the number of imputations; generally, we find the loss of power due to small $m$ to be quite modest in cases likely to occur in practice.}, + publisher = {Informa {UK} Limited}, + keywords = {imputation, missing data, nonresponse, tests of significance}, + annotation = {missing, missing-mi}, +} + +@Article{MacKinnon-1994, + author = {David P. MacKinnon}, + date = {1994}, + journaltitle = {NIDA research monograph}, + title = {Analysis of mediating variables in prevention and intervention research}, + pages = {127--153}, + volume = {139}, + abstract = {Mediational analysis is one way to test specific hypotheses derived from theory. Although this analysis has been suggested in the prevention literature, mediation analysis rarely is conducted. As the field of prevention matures, more questions about how prevention programs work (or fail to work) will emerge. Studies of mediation can address these questions, thereby reducing the cost and enhancing the impact of prevention programs. The methods outlined here can be applied in the evaluation of primary, secondary, and tertiary prevention programs. Since most prevention studies include measurement of some mediating constructs, mediation effects can be assessed on many existing data sets. Mediation analysis can be used to test ideas about prevention.}, + keywords = {Data Interpretation, Statistical; Health Behavior; Humans; Models, Statistical; Primary Prevention, methods; Research Design; Substance-Related Disorders, prevention & control}, + annotation = {mediation-prevention}, +} + +@Article{Mackinnon-Dwyer-1993, + author = {David P. Mackinnon and James H. Dwyer}, + date = {1993-04}, + journaltitle = {Evaluation Review}, + title = {Estimating mediated effects in prevention studies}, + doi = {10.1177/0193841x9301700202}, + number = {2}, + pages = {144--158}, + volume = {17}, + abstract = {The purpose of this article is to describe statistical procedures to assess how prevention and intervention programs achieve their effects. The analyses require the measurement of intervening or mediating variables hypothesized to represent the causal mechanism by which the prevention program achieves its effects. Methods to estimate mediation are illustrated in the evaluation of a health promotion program designed to reduce dietary cholesterol and a school-based drug prevention program. The methods are relatively easy to apply and the information gained from such analyses should add to our understanding of prevention.}, + publisher = {{SAGE} Publications}, + annotation = {mediation-prevention}, +} + +@Article{Muthen-Curran-1997, + author = {Bengt O. Muth{\a'e}n and Patrick J. Curran}, + date = {1997-12}, + journaltitle = {Psychological Methods}, + title = {General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation.}, + doi = {10.1037/1082-989x.2.4.371}, + number = {4}, + pages = {371--402}, + volume = {2}, + abstract = {The generality of latent variable modeling of individual differences in development over time is demonstrated with a particular emphasis on randomized intervention studies. First, a brief overview is given of biostatistical and psychometric approaches to repeated measures analysis. Second, the generality of the psychometric approach is indicated by some nonstandard models. Third, a multiple-population analysis approach is proposed for the estimation of treatment effects. The approach clearly describes the treatment effect as development that differs from normative, control-group development. This framework allows for interactions between treatment and initial status in their effects on development. Finally, an approach for the estimation of power to detect treatment effects in this framework is demonstrated. Illustrations of power calculations are carried out with artificial data, varying the sample sizes, number of timepoints, and treatment effect sizes. Real data are used to illustrate analysis strategies and power calculations. Further modeling extensions are discussed.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Oehlert-1992, + author = {Gary W. Oehlert}, + date = {1992-02}, + journaltitle = {The American Statistician}, + title = {A note on the delta method}, + doi = {10.1080/00031305.1992.10475842}, + issn = {1537-2731}, + number = {1}, + pages = {27--29}, + volume = {46}, + abstract = {The delta method is an intuitive technique for approximating the moments of functions of random variables. This note reviews the delta method and conditions under which delta-method approximate moments are accurate.}, + keywords = {approximate moments, asymptotic approximations, Taylor series}, + publisher = {Informa UK Limited}, +} + +@Article{Oud-vandenBercken-Essers-1990, + author = {Johan H. Oud and John H. {van den Bercken} and Raymond J. Essers}, + date = {1990-12}, + journaltitle = {Applied Psychological Measurement}, + title = {Longitudinal factor score estimation using the {Kalman} filter}, + doi = {10.1177/014662169001400406}, + number = {4}, + pages = {395--418}, + volume = {14}, + abstract = {The advantages of the Kalman filter as a factor score estimator in the presence of longitudinal data are described. Because the Kalman filter presupposes the availability of a dynamic state space model, the state space model is reviewed first, and it is shown to be translatable into the LISREL model. Several extensions of the LISREL model specification are discussed in order to enhance the applicability of the Kalman filter for behavioral research data. The Kalman filter and its main properties are summarized. Relationships are shown between the Kalman filter and two well-known cross-sectional factor score estimators: the regression estimator, and the Bartlett estimator. The indeterminacy problem of factor scores is also discussed in the context of Kalman filtering, and the differences are described between Kalman filtering on the basis of a zero-means and a structured-means LISREL model. By using a structured-means LISREL model, the Kalman filter is capable of estimating absolute latent developmental curves. An educational research example is presented. Index terms: factor score estimation, indeterminacy of factor scores, Kalman filter, L,ISREL longitudinal LISREL modeling, longitudinal factor analysis, state space modeling.}, + publisher = {{SAGE} Publications}, +} + +@Article{Robey-Barcikowski-1992, + author = {Randall R. Robey and Robert S. Barcikowski}, + date = {1992-11}, + journaltitle = {British Journal of Mathematical and Statistical Psychology}, + title = {Type {I} error and the number of iterations in {Monte Carlo} studies of robustness}, + doi = {10.1111/j.2044-8317.1992.tb00993.x}, + number = {2}, + pages = {283--288}, + volume = {45}, + abstract = {A recent survey of simulation studies concluded that an overwhelming majority of papers do not report a rationale for the decision regarding the number of Monte Carlo iterations. A surprisingly large number of reports do not contain a justifiable definition of robustness and many studies are conducted with an insufficient number of iterations to achieve satisfactory statistical conclusion validity. The implication is that we do not follow our own advice regarding the management of Type I and Type II errors when conducting Monte Carlo experiments. This paper reports a straightforward application of a well-known procedure for the purpose of objectively determining the exact number of iterations necessary to confidently detect departures from robustness in Monte Carlo results. A table of the number of iterations necessary to detect departures from a series of nominal Type I error rates is included.}, + publisher = {Wiley}, + annotation = {robustness}, +} + +@Article{Shapiro-Browne-1990, + author = {A. Shapiro and M.W. Browne}, + date = {1990}, + journaltitle = {Linear Algebra and its Applications}, + title = {On the treatment of correlation structures as covariance structures}, + doi = {10.1016/0024-3795(90)90362-g}, + issn = {0024-3795}, + pages = {567--587}, + volume = {127}, + abstract = {Necessary and sufficient conditions are provided for minimum discrepancy methods, intended for covariance structures, to retain their asymptotic properties in the analysis of correlation structures. Examples of correlation structures satisfying these conditions are considered, and alternative discrepancy functions, which are always appropriate for correlation structures under normality assumptions, are discussed.}, + publisher = {Elsevier BV}, +} + +@Article{Stoffer-Wall-1991, + author = {David S. Stoffer and Kent D. Wall}, + title = {Bootstrapping state-space models: {Gaussian} maximum likelihood estimation and the {Kalman} filter}, + number = {416}, + pages = {1024--1033}, + volume = {86}, + date = {1991-12}, + doi = {10.1080/01621459.1991.10475148}, + journaltitle = {Journal of the American Statistical Association}, + abstract = {The bootstrap is proposed as a method for assessing the precision of Gaussian maximum likelihood estimates of the parameters of linear state-space models. Our results also apply to autoregressive moving average models, since they are a special case of state-space models. It is shown that for a time-invariant, stable system, the bootstrap applied to the innovations yields asymptotically consistent standard errors. To investigate the performance of the bootstrap for finite sample lengths, simulation results are presented for a two-state model with 50 and 100 observations; two cases are investigated, one with real characteristic roots and one with complex characteristic roots. The bootstrap is then applied to two real data sets, one used in a test for efficient capital markets and one used to develop an autoregressive integrated moving average model for quarterly earnings data. We find the bootstrap to be of definite value over the conventional asymptotics.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Tibshirani-1996, + author = {Robert Tibshirani}, + date = {1996-01}, + journaltitle = {Journal of the Royal Statistical Society Series B: Statistical Methodology}, + title = {Regression shrinkage and selection via the lasso}, + doi = {10.1111/j.2517-6161.1996.tb02080.x}, + issn = {1467-9868}, + number = {1}, + pages = {267--288}, + volume = {58}, + abstract = {We propose a new method for estimation in linear models. The ‘lasso’ minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.}, + publisher = {Oxford University Press (OUP)}, +} + +@Article{VonKorff-Simon-1996, + author = {Michael {Von Korff} and Gregory Simon}, + date = {1996-06}, + journaltitle = {British Journal of Psychiatry}, + title = {The Relationship Between Pain and Depression}, + doi = {10.1192/s0007125000298474}, + issn = {1472-1465}, + number = {S30}, + pages = {101--108}, + volume = {168}, + abstract = {Empirical results from epidemiological studies on pain–depression comorbidity in primary care and population samples have shown that: (a) pain is as strongly associated with anxiety as with depressive disorders; (b) characteristics that most strongly predict depression are diffuseness of pain and the extent to which pain interferes with activities; (c) certain psychological symptoms (low energy, disturbed sleep, worry) are prominent among pain patients, while others (guilt, loneliness) are not; (d) depression and pain dysfunction are evident early in the natural history of pain, but dysfunction and distress are often transient; and (e) among initially dysfunctional pain patients whose dysfunction is chronic, depression levels do not improve but neither do they increase over time with chronicity alone. These results seem consistent with these mechanisms of pain–depression comorbidity; (1) a trait of susceptibility to both dysphoric physical symptoms (including pain) and psychological symptoms (including depression), and a state of somatosensory amplification in which psychological distress amplifies dysphoric physical sensations (including pain); (2) psychological illness and behavioural dysfunction being interrelated features of a maladaptive response to pain evident early in the natural history of the condition, and often resolving during an early recovery phase; (3) pain constituting a significant physical and psychological stressor that may induce or exacerbate psychological distress. Thus, pain and psychological illness should be viewed as having reciprocal psychological and behavioural effects involving both processes of illness expression and adaption, as well as pain having specific effects on emotional state and behavioural function.}, + publisher = {Royal College of Psychiatrists}, +} + +@InBook{Arbuckle-1996, + author = {James L. Arbuckle}, + booktitle = {Advanced structural equation modeling}, + date = {1996}, + title = {Full information estimation in the presence of incomplete data}, + doi = {10.4324/9781315827414}, + editor = {George A. Marcoulides and Randall E. Schumacker}, +} + +@Book{Brockwell-Davis-1991, + author = {Peter J. Brockwell and Richard A. Davis}, + date = {1991}, + title = {Time series: Theory and methods}, + doi = {10.1007/978-1-4419-0320-4}, + isbn = {9781441903204}, + publisher = {Springer New York}, + abstract = {This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition.}, + issn = {0172-7397}, + journaltitle = {Springer Series in Statistics}, +} + +@Book{Collins-Horn-1991, + editor = {Linda M. Collins and John L. Horn}, + publisher = {American Psychological Association}, + title = {Best methods for the analysis of change: Recent advances, unanswered questions, future directions}, + date = {1991}, + location = {Washington, DC}, + doi = {10.1037/10099-000}, + isbn = {978-1-55798-113-4}, + library = {BF637.C4 B48 1991}, + addendum = {https://lccn.loc.gov/91020462}, + abstract = {The chapters making up this book represent a rich offering of current research on the analysis of change.}, + keywords = {Change (Psychology), Psychometrics}, +} + +@Book{Davidson-MacKinnon-1993, + author = {Russell Davidson and James G. MacKinnon}, + publisher = {Oxford University Press}, + title = {Estimation and inference in econometrics}, + date = {1993}, + location = {New York, NY}, + isbn = {9780195060119}, + library = {HB139 .D368 1993}, + keywords = {Econometrics}, + addendum = {https://lccn.loc.gov/92012048}, + annotation = {regression, regression-hc}, +} + +@Book{Davison-Hinkley-1997, + author = {Anthony Christopher Davison and David Victor Hinkley}, + publisher = {Cambridge University Press}, + title = {Bootstrap methods and their application}, + series = {Cambridge Series in Statistical and Probabilistic Mathematics}, + date = {1997}, + location = {Cambridge and New York, NY, USA }, + doi = {10.1017/CBO9780511802843}, + isbn = {9780521573917}, + library = {QA276.8 .D38 1997}, + keywords = {Bootstrap (Statistics)}, + addendum = {https://lccn.loc.gov/96030064}, + abstract = {Bootstrap methods are computer-intensive methods of statistical analysis, which use simulation to calculate standard errors, confidence intervals, and significance tests. The methods apply for any level of modelling, and so can be used for fully parametric, semiparametric, and completely nonparametric analysis. This 1997 book gives a broad and up-to-date coverage of bootstrap methods, with numerous applied examples, developed in a coherent way with the necessary theoretical basis. Applications include stratified data; finite populations; censored and missing data; linear, nonlinear, and smooth regression models; classification; time series and spatial problems. Special features of the book include: extensive discussion of significance tests and confidence intervals; material on various diagnostic methods; and methods for efficient computation, including improved Monte Carlo simulation. Each chapter includes both practical and theoretical exercises. S-Plus programs for implementing the methods described in the text are available from the supporting website.}, + annotation = {bootstrap}, +} + +@Book{Efron-Tibshirani-1993, + author = {Bradley Efron and Robert J. Tibshirani}, + publisher = {Chapman \& Hall}, + title = {An introduction to the bootstrap}, + series = {Monographs on statistics and applied probability ; 57}, + date = {1993}, + location = {New York}, + doi = {10.1201/9780429246593}, + isbn = {9780412042317}, + library = {QA276.8 .E3745 1993}, + addendum = {https://lccn.loc.gov/93004489}, + abstract = {Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.}, + keywords = {Bootstrap (Statistics)}, +} + +@Book{Finkel-1995, + author = {Steven E. Finkel}, + date = {1995}, + title = {Causal analysis with panel data}, + isbn = {9780803938960}, + location = {Thousand Oaks, CA}, + number = {105}, + pagetotal = {98}, + publisher = {Sage}, + series = {Quantitative applications in the social sciences}, + abstract = {Panel data, which consist of information gathered from the same individuals or units at several different points in time, are commonly used in the social sciences to test theories of individual and social change. This book provides an overview of models that are appropriate for the analysis of panel data, focusing specifically on the area where panels offer major advantages over cross-sectional research designs: the analysis of causal interrelationships among variables. Without ``painting'' panel data as a cure all for the problems of causal inference in nonexperimental research, the author shows how panel data offer multiple ways of strengthening the causal inference process. In addition, he shows how to estimate models that contain a variety of lag specifications, reciprocal effects, and imperfectly measured variables. Appropriate for readers who are familiar with multiple regression analysis and causal modeling, this book will offer readers the highlights of developments in this technique from diverse disciplines to analytic traditions.}, +} + +@InBook{Gollob-Reichardt-1991, + author = {Harry F. Gollob and Charles S. Reichardt}, + editor = {Linda M. Collins and John L. Horn}, + publisher = {American Psychological Association}, + title = {Interpreting and estimating indirect effects assuming time lags really matter}, + booktitle = {Best methods for the analysis of change: Recent advances, unanswered questions, future directions}, + date = {1991}, + location = {Washington, DC}, + doi = {10.1037/10099-015}, + isbn = {978-1-55798-113-4}, + pages = {243--259}, +} + +@Book{Hamilton-1994, + author = {James D. Hamilton}, + date = {1994}, + title = {Time series analysis}, + isbn = {9780691218632}, + location = {Princeton, NJ}, + pagetotal = {1799}, + publisher = {Princeton University Press}, + ppn_gvk = {1733186549}, +} + +@Book{Harvey-1990, + author = {Andrew C. Harvey}, + date = {1990-02}, + title = {Forecasting, structural time series models and the {Kalman} filter}, + doi = {10.1017/cbo9781107049994}, + abstract = {In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.}, + publisher = {Cambridge University Press}, +} + +@InBook{Kenny-Kashy-Bolger-1998, + author = {David A. Kenny and Deborah A. Kashy and Niall Bolger}, + booktitle = {The handbook of social psychology}, + date = {1998}, + title = {Data analysis in social psychology}, + edition = {4}, + editor = {Daniel Todd Gilbert and Gardner Lindzey and Susan T. Fiske}, + isbn = {978-0195213768}, + location = {Boston, MA}, + pages = {233--265}, + publisher = {McGraw Hill}, + abstract = {Focuses on structural equation modeling and multilevel modeling. The chapter begins by discussing nonindependence of observations in group research. After considering ANOVA solutions, multilevel modes that can be used to estimate many forms of grouped data are discussed. Identification in structural equation models and the problem of testing mediation are discussed.}, +} + +@Book{Kim-Nelson-1999, + author = {Chang-Jin Kim and Charles R. Nelson}, + publisher = {The {MIT} Press}, + title = {State-space models with regime switching: Classical and {Gibbs}-sampling approaches with applications}, + isbn = {9780262277112}, + date = {1999}, + doi = {10.7551/mitpress/6444.001.0001}, + library = {HB135 .K515 1999}, + addendum = {https://lccn.loc.gov/98044193}, + abstract = {Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data. + The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.}, + keywords = {Economics--Mathematical models, State-space methods, Heteroscedasticity, Sampling (Statistics), Econometrics}, +} + +@Book{Ollendick-Prinz-1996, + date = {1996}, + title = {Advances in clinical child psychology}, + doi = {10.1007/978-1-4613-0323-7}, + editor = {Thomas H. Ollendick and Ronald J. Prinz}, + isbn = {9781461303237}, + publisher = {Springer US}, + subtitle = {Volume 18}, + abstract = {As in past volumes, the current volume of Advances in Clinical Child Psychology strives for a broad range of timely topics on the study and treatment of children, adolescents, and families. Volume 18 includes a new array of contributions covering issues pertaining to treatment, etiol­ ogy, and psychosocial context. The first two contributions address conduct problems. Using qualitative research methods, Webster-Stratton and Spitzer take a unique look at what it is like to be a parent of a young child with conduct problems as well as what it is like to be a participant in a parent training program. Chamberlain presents research on residential and foster-care treatment for adolescents with conduct disorder. As these chapters well reflect, Webster-Stratton, Spitzer, and Chamberlain are all veterans of programmatic research on treatment of child and adolescent conduct problems. Wills and Filer describe an emerging stress-coping model that has been applied to adolescent substance use and is empirically well justified. This model has implications for furthering intervention strategies as well as enhancing our scientific understanding of adolescents and the development of substance abuse. Foster, Martinez, and Kulberg confront the issue that researchers face pertaining to race and ethnicity as it relates to our understanding of peer relations. This chapter addresses some of the measurement and conceptual challenges relative to assessing ethnic variables and relating these to social cognitions of peers, friendship patterns, and peer acceptance.}, +} + +@InBook{Robinson-Riley-1999, + author = {Michael E. Robinson and Joseph III L. Riley}, + booktitle = {Psychosocial factors in pain: Critical perspectives}, + date = {1999}, + title = {The role of emotion in pain}, + editor = {Robert J. Gatchel and Dennis C. Turk}, + pages = {74--88}, + publisher = {The Guilford Press}, + abstract = {The purpose of this chapter is to review the role of negative emotion in the experience of pain. The authors focus their attention on the broad categories of depression, anxiety, and anger. They will also discuss several issues and controversies surrounding the role of negative emotion in pain. These include (1) the prevalence of negative emotion in patients with pain conditions, (2) the measurement of negative affect in pain conditions, (3) the role of negative emotion in disability and outcomes, (4) causal relationships between pain and negative affect, and (5) models incorporating negative emotion and pain.}, +} + +@Book{Schafer-1997, + author = {Joseph L. Schafer}, + date = {1997-08}, + title = {Analysis of incomplete multivariate data}, + doi = {10.1201/9780367803025}, + isbn = {9780367803025}, + abstract = {The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. + Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. + All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.}, + publisher = {Chapman and Hall/CRC}, +} + +@InBook{Wills-Filer-1996, + author = {Thomas Ashby Wills and Marnie Filer}, + booktitle = {Advances in Clinical Child Psychology}, + date = {1996}, + title = {Stress-Coping Model of Adolescent Substance Use}, + doi = {10.1007/978-1-4613-0323-7_3}, + isbn = {9781461303237}, + pages = {91--132}, + publisher = {Springer US}, + abstract = {The goal of this chapter is to discuss research on adolescent substance use from the perspective of a stress-coping model. In addition to the long-term health implications of cigarette smoking and alcohol use (e.g., Helzer, 1987; U.S. Department of Health and Human Services, 1988), adolescent substance use is of concern to clinical psychology both because early onset of substance use has prognostic significance for later substance abuse problems (Robins \& Przybeck, 1985) and because substance use tends to be correlated with other problem behaviors, including aggressive and depressive symptomatology (e.g., see Cole \& Carpentieri, 1990; Loeber, 1988). Thus, research aimed at a better understanding of adolescent substance use has relevance for informing research on other types of child behavior problems.}, +} + +@Article{Andrews-2000, + author = {Donald W. K. Andrews}, + date = {2000-03}, + journaltitle = {Econometrica}, + title = {Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space}, + doi = {10.1111/1468-0262.00114}, + number = {2}, + pages = {399--405}, + volume = {68}, + publisher = {The Econometric Society}, +} + +@Article{Baker-Piper-McCarthy-etal-2004, + author = {Timothy B. Baker and Megan E. Piper and Danielle E. McCarthy and Matthew R. Majeskie and Michael C. Fiore}, + date = {2004}, + journaltitle = {Psychological Review}, + title = {Addiction motivation reformulated: An affective processing model of negative reinforcement}, + doi = {10.1037/0033-295x.111.1.33}, + issn = {0033-295X}, + number = {1}, + pages = {33--51}, + volume = {111}, + abstract = {This article offers a reformulation of the negative reinforcement model of drug addiction and proposes that the escape and avoidance of negative affect is the prepotent motive for addictive drug use. The authors posit that negative affect is the motivational core of the withdrawal syndrome and argue that, through repeated cycles of drug use and withdrawal, addicted organisms learn to detect interoceptive cues of negative affect preconsciously. Thus, the motivational basis of much drug use is opaque and tends not to reflect cognitive control. When either stressors or abstinence causes negative affect to grow and enter consciousness, increasing negative affect biases information processing in ways that promote renewed drug administration. After explicating their model, the authors address previous critiques of negative reinforcement models in light of their reformulation and review predictions generated by their model.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Bauer-Curran-2005, + author = {Daniel J. Bauer and Patrick J. Curran}, + date = {2005-07}, + journaltitle = {Multivariate Behavioral Research}, + title = {Probing interactions in fixed and multilevel regression: Inferential and graphical techniques}, + doi = {10.1207/s15327906mbr4003_5}, + issn = {1532-7906}, + number = {3}, + pages = {373--400}, + volume = {40}, + abstract = {Many important research hypotheses concern conditional relations in which the effect of one predictor varies with the value of another. Such relations are commonly evaluated as multiplicative interactions and can be tested in both fixed- and random-effects regression. Often, these interactive effects must be further probed to fully explicate the nature of the conditional relation. The most common method for probing interactions is to test simple slopes at specific levels of the predictors. A more general method is the Johnson-Neyman (J-N) technique. This technique is not widely used, however, because it is currently limited to categorical by continuous interactions in fixed-effects regression and has yet to be extended to the broader class of random-effects regression models. The goal of our article is to generalize the J-N technique to allow for tests of a variety of interactions that arise in both fixed- and random-effects regression. We review existing methods for probing interactions, explicate the analytic expressions needed to expand these tests to a wider set of conditions, and demonstrate the advantages of the J-N technique relative to simple slopes with three empirical examples.}, + publisher = {Informa UK Limited}, +} + +@Article{Bauer-Preacher-Gil-2006, + author = {Daniel J. Bauer and Kristopher J. Preacher and Karen M. Gil}, + date = {2006}, + journaltitle = {Psychological Methods}, + title = {Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations}, + doi = {10.1037/1082-989x.11.2.142}, + number = {2}, + pages = {142--163}, + volume = {11}, + abstracts = {The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects. Simulations show that the estimates are unbiased under most conditions. Confidence intervals based on a normal approximation or a simulated sampling distribution perform well when the random effects are normally distributed but less so when they are nonnormally distributed. These methods are further developed to address hypotheses of moderated mediation in the multilevel context. An example demonstrates the feasibility and usefulness of the proposed methods.}, + publisher = {American Psychological Association ({APA})}, + keywords = {multilevel model, hierarchical linear model, indirect effect, mediation, moderated mediation}, + annotation = {mediation, mediation-multilevel}, +} + +@Article{Bentler-2007, + author = {Peter M. Bentler}, + date = {2007}, + journaltitle = {American Psychologist}, + title = {Can scientifically useful hypotheses be tested with correlations?}, + doi = {10.1037/0003-066x.62.8.772}, + issn = {0003-066X}, + number = {8}, + pages = {772--782}, + volume = {62}, + abstract = {Historically, interesting psychological theories have been phrased in terms of correlation coefficients, which are standardized covariances, and various statistics derived from them. Methodological practice over the last 40 years, however, has suggested it is necessary to transform such theories into hypotheses on covariances and statistics derived from them. This complication turns out to be unnecessary, because the methodology now exists to test hypotheses on latent structures of correlations directly. Two examples are given. Limitations of correlation structures are also noted.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Boker-2002, + author = {Steven M. Boker}, + date = {2002-07}, + journaltitle = {Multivariate Behavioral Research}, + title = {Consequences of continuity: The hunt for intrinsic properties within parameters of dynamics in psychological processes}, + doi = {10.1207/s15327906mbr3703_5}, + issn = {1532-7906}, + number = {3}, + pages = {405--422}, + volume = {37}, + abstract = {Notes that over 300 yrs ago Sir Isaac Newton wrote of a simple set of relations that could be used to predict the motions of objects relative to one another. The main advantage of this insight was that the relationship between the movements of the planets and stars could be predicted much more simply than with the accurate, but cumbersome Ptolemaic calculations. But perhaps the most important consequence of the acceptance of Newton's insight was that intrinsic properties such as mass could be distinguished from measurements such as weight. A similar revolution in thinking appears to be underway in the behavioral sciences. It is likely that intensive longitudinal measurement coupled with dynamical systems analyses will lead to simplified but powerful models of the evolution of psychological processes. In this case, it is reasonable to expect that a set of intrinsic psychological properties may be able to be extracted from the parameters of successful dynamical systems models. The purpose of this article is to issue an invitation to the hunt, to provide a tentative map as to where the game might likely be found, and blow a call on the hunting horn.}, + publisher = {Informa UK Limited}, +} + +@Article{Bolger-Davis-Rafaeli-2003, + author = {Niall Bolger and Angelina Davis and Eshkol Rafaeli}, + date = {2003-02}, + journaltitle = {Annual Review of Psychology}, + title = {Diary methods: Capturing life as it is lived}, + doi = {10.1146/annurev.psych.54.101601.145030}, + issn = {1545-2085}, + number = {1}, + pages = {579--616}, + volume = {54}, + abstract = {In diary studies, people provide frequent reports on the events and experiences of their daily lives. These reports capture the particulars of experience in a way that is not possible using traditional designs. We review the types of research questions that diary methods are best equipped to answer, the main designs that can be used, current technology for obtaining diary reports, and appropriate data analysis strategies. Major recent developments include the use of electronic forms of data collection and multilevel models in data analysis. We identify several areas of research opportunities: 1. in technology, combining electronic diary reports with collateral measures such as ambulatory heart rate; 2. in measurement, switching from measures based on between-person differences to those based on within-person changes; and 3. in research questions, using diaries to (a) explain why people differ in variability rather than mean level, (b) study change processes during major events and transitions, and (c) study interpersonal processes using dyadic and group diary methods.}, + publisher = {Annual Reviews}, + keywords = {experience sampling method, longitudinal designs, electronic data collection, self-report measures, multilevel models, diary}, +} + +@Article{Casella-2003, + author = {George Casella}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Introduction to the silver anniversary of the bootstrap}, + doi = {10.1214/ss/1063994967}, + number = {2}, + volume = {18}, + publisher = {Institute of Mathematical Statistics}, +} + +@Article{Efron-2003, + author = {Bradley Efron}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Second thoughts on the bootstrap}, + doi = {10.1214/ss/1063994968}, + number = {2}, + volume = {18}, + abstract = {This brief review article is appearing in the issue of Statistical Science that marks the 25th anniversary of the bootstrap. It concerns some of the theoretical and methodological aspects of the bootstrap and how they might influence future work in statistics.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {ABC method, BCA, bootstrap confidence intervals, objective Bayes, plug-in principle}, +} + +@Article{Davison-Hinkley-Young-2003, + author = {Anthony Christopher Davison and David Victor Hinkley and George Alastair Young}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Recent developments in bootstrap methodology}, + doi = {10.1214/ss/1063994969}, + number = {2}, + volume = {18}, + abstract = {Ever since its introduction, the bootstrap has provided both a powerful set of solutions for practical statisticians, and a rich source of theoretical and methodological problems for statistics. In this article, some recent developments in bootstrap methodology are reviewed and discussed. After a brief introduction to the bootstrap, we consider the following topics at varying levels of detail: the use of bootstrapping for highly accurate parametric inference; theoretical properties of nonparametric bootstrapping with unequal probabilities; subsampling and the $m$ out of $n$ bootstrap; bootstrap failures and remedies for superefficient estimators; recent topics in significance testing; bootstrap improvements of unstable classifiers and resampling for dependent data. The treatment is telegraphic rather than exhaustive.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {bagging, bootstrap, conditional inference, empirical strength probability, parametric bootstrap, subsampling, superefficient estimator, tilted distribution, time series, weighted bootstrap}, +} + +@Article{Hall-2003, + author = {Peter Hall}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {A short prehistory of the bootstrap}, + doi = {10.1214/ss/1063994970}, + number = {2}, + volume = {18}, + abstract = {The contemporary development of bootstrap methods, from the time of Efron's early articles to the present day, is well documented and widely appreciated. Likewise, the relationship of bootstrap techniques to certain early work on permutation testing, the jackknife and cross-validation is well understood. Less known, however, are the connections of the bootstrap to research on survey sampling for spatial data in the first half of the last century or to work from the 1940s to the 1970s on subsampling and resampling. In a selective way, some of these early linkages will be explored, giving emphasis to developments with which the statistics community tends to be less familiar. Particular attention will be paid to the work of P. C. Mahalanobis, whose development in the 1930s and 1940s of moving-block sampling methods for spatial data has a range of interesting features, and to contributions of other scientists who, during the next 40 years, developed half-sampling, subsampling and resampling methods.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {block bootstrap, computer-intensive statistics, confidence interval, half-sample, Monte Carlo, moving block, permutation test, resample, resampling, sample survey, statistical experimentation, sub-sample}, +} + +@Article{Boos-2003, + author = {Dennis D. Boos}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Introduction to the bootstrap world}, + doi = {10.1214/ss/1063994971}, + number = {2}, + volume = {18}, + abstract = {The bootstrap has made a fundamental impact on how we carry out statistical inference in problems without analytic solutions. This fact is illustrated with examples and comments that emphasize the parametric bootstrap and hypothesis testing.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {confidence intervals, hypothesis testing, resamples, resampling, statistical inference}, +} + +@Article{Beran-2003, + author = {Rudolf Beran}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {The impact of the bootstrap on statistical algorithms and theory}, + doi = {10.1214/ss/1063994972}, + number = {2}, + volume = {18}, + abstract = {Bootstrap ideas yield remarkably effective algorithms for realizing certain programs in statistics. These include the construction of (possibly simultaneous) confidences sets and tests in classical models for which exact or asymptotic distribution theory is intractable. Success of the bootstrap, in the sense of doing what is expected under a probability model for data, is not universal. Modifications to Efron's definition of the bootstrap are needed to make the idea work for modern procedures that are not classically regular.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {confidence sets, convolution theorem, double bootstrap, error in coverage probability, local asymptotic equivariance, simultaneous confidence sets}, +} + +@Article{Lele-2003, + author = {Subhash R. Lele}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Impact of bootstrap on the estimating functions}, + doi = {10.1214/ss/1063994973}, + number = {2}, + volume = {18}, + abstract = {Estimating functions form an attractive statistical methodology because of their dependence on only a few features of the underlying probabilistic structure. They also put a premium on developing methods that obtain model-robust confidence intervals. Bootstrap and jackknife ideas can be fruitfully used toward this purpose. Another important area in which bootstrap has proved its use is in the context of detecting the problem of multiple roots and searching for the consistent root of an estimating function. In this article, I review, compare and contrast various approaches for bootstrapping estimating functions.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {model-robust confidence intervals, multiple roots, stochastic processes, Wu's wild bootstrap}, +} + +@Article{Shao-2003, + author = {Jun Shao}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Impact of the bootstrap on sample surveys}, + doi = {10.1214/ss/1063994974}, + number = {2}, + volume = {18}, + abstract = {This article discusses the impact of the bootstrap on sample surveys and introduces some of the main developments of the bootstrap methodology for sample surveys in the last twenty five years.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {easy implementation, imputation, robustness, stratification, variance estimation, without replacement sampling}, +} + +@Article{Lahiri-2003, + author = {Partha Lahiri}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {On the impact of bootstrap in survey sampling and small-area estimation}, + doi = {10.1214/ss/1063994975}, + number = {2}, + volume = {18}, + abstract = {Development of valid bootstrap procedures has been a challenging problem for survey samplers for the last two decades. This is due to the fact that in surveys we constantly face various complex issues such as complex correlation structure induced by the survey design, weighting, imputation, small-area estimation, among others. In this paper, we critically review various bootstrap methods developed to deal with these challenging issues. We discuss two applications where the bootstrap has been found to be effective.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {imputation, resampling, small-area estimation, survey weights}, +} + +@Article{Horowitz-2003, + author = {Joel L. Horowitz}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {The bootstrap in econometrics}, + doi = {10.1214/ss/1063994976}, + number = {2}, + volume = {18}, + abstract = {This paper presents examples of problems in estimation and hypothesis testing that demonstrate the use and performance of the bootstrap in econometric settings. The examples are illustrated with two empirical applications. The paper concludes with a discussion of topics on which further research is needed.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {asymptotic distribution, asymptotic refinement, hypothesis test}, +} + +@Article{Politis-2003, + author = {Dimitris N. Politis}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {The impact of bootstrap methods on time series analysis}, + doi = {10.1214/ss/1063994977}, + number = {2}, + volume = {18}, + abstract = {Sparked by Efron's seminal paper, the decade of the 1980s was a period of active research on bootstrap methods for independent data--mainly i.i.d. or regression set-ups. By contrast, in the 1990s much research was directed towards resampling dependent data, for example, time series and random fields. Consequently, the availability of valid nonparametric inference procedures based on resampling and/or subsampling has freed practitioners from the necessity of resorting to simplifying assumptions such as normality or linearity that may be misleading.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {block bootstrap, confidence intervals, large sample inference, linear models, nonparametric estimation, resampling, subsampling}, +} + +@Article{Ernst-Hutson-2003, + author = {Michael D. Ernst and Alan D. Hutson}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Utilizing a quantile function approach to obtain exact bootstrap solutions}, + doi = {10.1214/ss/1063994978}, + number = {2}, + volume = {18}, + abstract = {The popularity of the bootstrap is due in part to its wide applicability and the ease of implementing resampling procedures on modern computers. But careful reading of Efron (1979) will show that at its heart, the bootstrap is a ``plug-in'' procedure that involves calculating a functional $\theta \left( \hat{F} \right)$ from an estimate of the c.d.f. $F$. Resampling becomes invaluable when, as is often the case, $\theta \left( \hat{F} \right)$ cannot be calculated explicitly. We discuss some situations where working with the sample quantile function, $\hat{Q}$, rather than $\hat{F}$, can lead to explicit (exact) solutions to $\theta \left( \hat{F} \right)$.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {censored data, confidence band, L-estimator, Monte Carlo, order statistics}, +} + +@Article{Holmes-2003a, + author = {Susan Holmes}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Bootstrapping phylogenetic trees: Theory and methods}, + doi = {10.1214/ss/1063994979}, + number = {2}, + volume = {18}, + abstract = {This is a survey of the use of the bootstrap in the area of systematic and evolutionary biology. I present the current usage by biologists of the bootstrap as a tool both for making inferences and for evaluating robustness, and propose a framework for thinking about these problems in terms of mathematical statistics.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {bootstrap, confidence regions, nonpositive curvature, phylogenetic trees}, +} + +@Article{Soltis-Soltis-2003, + author = {Pamela S. Soltis and Douglas E. Soltis}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {Applying the Bootstrap in Phylogeny Reconstruction}, + doi = {10.1214/ss/1063994980}, + number = {2}, + volume = {18}, + abstract = {With the increasing emphasis in biology on reconstruction of phylogenetic trees, questions have arisen as to how confident one should be in a given phylogenetic tree and how support for phylogenetic trees should be measured. Felsenstein suggested that bootstrapping be applied across characters of a taxon-by-character data matrix to produce replicate ``bootstrap data sets,'' each of which is then analyzed phylogenetically, with a consensus tree constructed to summarize the results of all replicates. The proportion of trees/replicates in which a grouping is recovered is presented as a measure of support for that group. Bootstrapping has become a common feature of phylogenetic analysis. However, the interpretation of bootstrap values remains open to discussion, and phylogeneticists have used these values in multiple ways. The usefulness of phylogenetic bootstrapping is potentially limited by a number of features, such as the size of the data matrix and the underlying assumptions of the phylogeny reconstruction program. Recent studies have explored the application of bootstrapping to large data sets and the relative performance of bootstrapping and jackknifing.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {bootstrap, jackknife, phylogeny, support}, +} + +@Article{Holmes-2003b, + author = {Susan Holmes}, + date = {2003-05}, + journaltitle = {Statistical Science}, + title = {{Bradley Efron}: A conversation with good friends}, + doi = {10.1214/ss/1063994981}, + number = {2}, + volume = {18}, + abstract = {Bradley Efron is Professor of Statistics and Biostatistics at Stanford University. He works on a combination of theoretical and applied topics, including empirical Bayes, survival analysis, exponential families, bootstrap and jackknife methods and confidence intervals. Most of his applied work has originated in biomedical consulting projects at the Stanford Medical School, mixed in with a few papers concerning astronomy and physics. Even his theoretical papers usually begin with specific applied problems. All three of the interviewers here have been close scientific collaborators. + Brad was born in St. Paul, Minnestora, May 1938, to Esther and Miles Efron, Jewish-Russian immigrants. A Merit Scholarship, in the program's inaugural year, brought him to Caltech, graduating in Mathematics in 1960. He arrived at Stanford that Fall, eventually gaining his Ph.D., under the direction of Rupert Miller and Herb Solomon, in the Statistics Department, whose faculty also included Charles Stein, Herman Chernoff, Manny Parzen, Lincoln Moses and Ingram Olkin. Brad has lived at Stanford since 1960, with sabbaticals at Harvard, Imperial College and Berkeley. He has held several administrative positions in the university: Chair of Statistics, Associate Dean of Science, Chairman of the University Advisory Board and Chair of the Faculty Senate. He is currently Chair of the Undergraduate Program in Applied Mathematics. + Honors include doctorates from Chicago, Madrid and Oslo, a MacArthur Prize Fellowship, membership in the National Academy of Sciences and the American Academy of Arts and Sciences, fellowship in the IMS and ASA, the Wilks Medal, Parzen Prize, the newly inaugurated Rao Prize and the outstanding statistician award from the Chicago ASA chapter. He has been the Rietz, Wald, and Fisher lecturers and holds the Max H. Stein endowed chair as Professor of Humanities and Sciences at Stanford. Professional service includes Theory and Methods Editor of JASA and President of the IMS. Currently he is President-Elect of the American Statistical Association, becoming President in 2004.}, + publisher = {Institute of Mathematical Statistics}, +} + +@Article{Cheong-MacKinnon-Khoo-2003, + author = {JeeWon Cheong and David P. MacKinnon and Siek Toon Khoo}, + date = {2003-04}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Investigation of mediational processes using parallel process latent growth curve modeling}, + doi = {10.1207/s15328007sem1002_5}, + number = {2}, + pages = {238--262}, + volume = {10}, + abstract = {This study investigated a method to evaluate mediational processes using latent growth curve modeling. The mediator and the outcome measured across multiple time points were viewed as 2 separate parallel processes. The mediational process was defined as the independent variable influencing the growth of the mediator, which, in turn, affected the growth of the outcome. To illustrate modeling procedures, empirical data from a longitudinal drug prevention program, Adolescents Training and Learning to Avoid Steroids, were used. The program effects on the growth of the mediator and the growth of the outcome were examined first in a 2-group structural equation model. The mediational process was then modeled and tested in a parallel process latent growth curve model by relating the prevention program condition, the growth rate factor of the mediator, and the growth rate factor of the outcome.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Cheung-2007, + author = {Mike W.-L. Cheung}, + date = {2007-05}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models}, + doi = {10.1080/10705510709336745}, + number = {2}, + pages = {227--246}, + volume = {14}, + abstract = {Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating models with 1 mediator, 2 intermediate mediators, 2 specific mediators, and 1 mediator in 2 independent groups are illustrated. By using phantom variables (Rindskopf, 1984), a Wald CI, percentile bootstrap CI, bias-corrected bootstrap CI, and a likelihood-based CI on the mediating effect are easily constructed with some existing SEM packages, such as LISREL, Mplus, and Mx. Monte Carlo simulation studies are used to compare the coverage probabilities of these CIs. The results show that the coverage probabilities of these CIs are comparable when the mediating effect is large or when the sample size is large. However, when the mediating effect and the sample size are both small, the bootstrap CI and likelihood-based CI are preferred over the Wald CI. Extensions of this SEM approach for future research are discussed.}, + publisher = {Informa {UK} Limited}, + keywords = {mediation, bootstrapping}, + annotation = {mediation, mediation-delta, mediation-likelihood, mediation-bootstrap}, +} + +@Article{Cheung-2009a, + author = {Mike W.-L. Cheung}, + date = {2009-05}, + journaltitle = {Behavior Research Methods}, + title = {Comparison of methods for constructing confidence intervals of standardized indirect effects}, + doi = {10.3758/brm.41.2.425}, + number = {2}, + pages = {425--438}, + volume = {41}, + abstract = {Mediation models are often used as a means to explain the psychological mechanisms between an independent and a dependent variable in the behavioral and social sciences. A major limitation of the unstandardized indirect effect calculated from raw scores is that it cannot be interpreted as an effect-size measure. In contrast, the standardized indirect effect calculated from standardized scores can be a good candidate as a measure of effect size because it is scale invariant. In the present article, 11 methods for constructing the confidence intervals (CIs) of the standardized indirect effects were evaluated via a computer simulation. These included six Wald CIs, three bootstrap CIs, one likelihood-based CI, and the PRODCLIN CI. The results consistently showed that the percentile bootstrap, the bias-corrected bootstrap, and the likelihood-based approaches had the best coverage probability. Mplus, LISREL, and Mx syntax were included to facilitate the use of these preferred methods in applied settings. Future issues on the use of the standardized indirect effects are discussed.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {mediation analysis, coverage probability, structural equation modeling approach}, + annotation = {mediation, mediation-bootstrap, mediation-likelihood, mediation-delta, mediation-prodclin}, +} + +@Article{Cheung-2009b, + author = {Mike W.-L. Cheung}, + date = {2009-04}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Constructing approximate confidence intervals for parameters with structural equation models}, + doi = {10.1080/10705510902751291}, + number = {2}, + pages = {267--294}, + volume = {16}, + abstract = {Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric indexes can be constructed with the use of phantom variables (Rindskopf, 1984) in some of the current structural equation modeling (SEM) packages. The procedures to form CIs for the differences in correlation coefficients, squared multiple correlations, indirect effects, coefficient alphas, and reliability estimates are illustrated. A simulation study on the Pearson correlation is used to demonstrate the advantages of the likelihood-based CI over the Wald CI. Issues arising from this SEM approach and extensions of this approach are discussed.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-likelihood}, +} + +@Article{Cheung-Lau-2007, + author = {Gordon W. Cheung and Rebecca S. Lau}, + date = {2007-07}, + journaltitle = {Organizational Research Methods}, + title = {Testing mediation and suppression effects of latent variables}, + doi = {10.1177/1094428107300343}, + number = {2}, + pages = {296--325}, + volume = {11}, + abstract = {Because of the importance of mediation studies, researchers have been continuously searching for the best statistical test for mediation effect. The approaches that have been most commonly employed include those that use zero-order and partial correlation, hierarchical regression models, and structural equation modeling (SEM). This study extends MacKinnon and colleagues (MacKinnon, Lockwood, Hoffmann, West, \& Sheets, 2002; MacKinnon, Lockwood, \& Williams, 2004, MacKinnon, Warsi, \& Dwyer, 1995) works by conducting a simulation that examines the distribution of mediation and suppression effects of latent variables with SEM, and the properties of confidence intervals developed from eight different methods. Results show that SEM provides unbiased estimates of mediation and suppression effects, and that the bias-corrected bootstrap confidence intervals perform best in testing for mediation and suppression effects. Steps to implement the recommended procedures with Amos are presented.}, + publisher = {{SAGE} Publications}, + keywords = {mediating effects, suppression effects, structural equation modeling}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Chow-Hamagani-Nesselroade-2007, + author = {Sy-Miin Chow and Fumiaki Hamagani and John R. Nesselroade}, + date = {2007-12}, + journaltitle = {Psychology and Aging}, + title = {Age differences in dynamical emotion-cognition linkages}, + doi = {10.1037/0882-7974.22.4.765}, + issn = {0882-7974}, + number = {4}, + pages = {765--780}, + volume = {22}, + abstract = {The ability to maintain the separation between positive emotion and negative emotion in times of stress has been construed as a resilience mechanism. Emotional resiliency is particularly relevant in old age given concomitant declines in cognitive performance. In the present study, the authors examined the dynamical linkages among positive emotion, negative emotion, and cognition as individuals performed a complex cognitive task. Comparisons were made between younger (n = 63) and older (n = 52) age groups. Older adults manifested significant unidirectional coupling from negative emotion to cognitive performance; younger adults manifested significant unidirectional coupling from negative emotion to positive emotion and from cognitive performance to both positive and negative emotions. Implications for age differences in emotion regulatory strategies are discussed.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Cole-Maxwell-2003, + author = {David A. Cole and Scott E. Maxwell}, + date = {2003-11}, + journaltitle = {Journal of Abnormal Psychology}, + title = {Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling.}, + doi = {10.1037/0021-843x.112.4.558}, + number = {4}, + pages = {558--577}, + volume = {112}, + abstract = {R. M. Baron and D. A. Kenny (1986; see record 1987-13085-001) provided clarion conceptual and methodological guidelines for testing mediational models with cross-sectional data. Graduating from cross-sectional to longitudinal designs enables researchers to make more rigorous inferences about the causal relations implied by such models. In this transition, misconceptions and erroneous assumptions are the norm. First, we describe some of the questions that arise (and misconceptions that sometimes emerge) in longitudinal tests of mediational models. We also provide a collection of tips for structural equation modeling (SEM) of mediational processes. Finally, we suggest a series of 5 steps when using SEM to test mediational processes in longitudinal designs: testing the measurement model, testing for added components, testing for omitted paths, testing the stationarity assumption, and estimating the mediational effects.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{CribariNeto-2004, + author = {Francisco Cribari-Neto}, + date = {2004-03}, + journaltitle = {Computational Statistics {\&} Data Analysis}, + title = {Asymptotic inference under heteroskedasticity of unknown form}, + doi = {10.1016/s0167-9473(02)00366-3}, + number = {2}, + pages = {215--233}, + volume = {45}, + abstract = {We focus on the finite-sample behavior of heteroskedasticity-consistent covariance matrix estimators and associated quasi-$t$ tests. The estimator most commonly used is that proposed by Halbert White. Its finite-sample behavior under both homoskedasticity and heteroskedasticity is analyzed using Monte Carlo methods. We also consider two other consistent estimators, namely: the HC3 estimator, which is an approximation to the jackknife estimator, and the weighted bootstrap estimator. Additionally, we evaluate the finite-sample behavior of two bootstrap quasi-$t$ tests: the test based on a single bootstrapping scheme and the test based on a double, nested bootstrapping scheme. The latter is very computer-intensive, but proves to work well in small samples. Finally, we propose a new estimator, which we call HC4; it is tailored to take into account the effect of leverage points in the design matrix on associated quasi-$t$ tests.}, + publisher = {Elsevier {BV}}, + annotation = {regression, regression-hc}, +} + +@Article{CribariNeto-daSilva-2010, + author = {Francisco Cribari-Neto and Wilton Bernardino {da Silva}}, + date = {2010-11}, + journaltitle = {{AStA} Advances in Statistical Analysis}, + title = {A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model}, + doi = {10.1007/s10182-010-0141-2}, + number = {2}, + pages = {129--146}, + volume = {95}, + abstract = {The assumption that all random errors in the linear regression model share the same variance (homoskedasticity) is often violated in practice. The ordinary least squares estimator of the vector of regression parameters remains unbiased, consistent and asymptotically normal under unequal error variances. Many practitioners then choose to base their inferences on such an estimator. The usual practice is to couple it with an asymptotically valid estimation of its covariance matrix, and then carry out hypothesis tests that are valid under heteroskedasticity of unknown form. We use numerical integration methods to compute the exact null distributions of some quasi-t test statistics, and propose a new covariance matrix estimator. The numerical results favor testing inference based on the estimator we propose.}, + publisher = {Springer Science and Business Media {LLC}}, + annotation = {regression, regression-hc}, +} + +@Article{CribariNeto-Souza-Vasconcellos-2007, + author = {Francisco Cribari-Neto and Tatiene C. Souza and Klaus L. P. Vasconcellos}, + date = {2007-08}, + journaltitle = {Communications in Statistics - Theory and Methods}, + title = {Inference under heteroskedasticity and leveraged data}, + doi = {10.1080/03610920601126589}, + number = {10}, + pages = {1877--1888}, + volume = {36}, + abstract = {We evaluate the finite-sample behavior of different heteros-ke-das-ticity-consistent covariance matrix estimators, under both constant and unequal error variances. We consider the estimator proposed by Halbert White (HC0), and also its variants known as HC2, HC3, and HC4; the latter was recently proposed by Cribari-Neto (2004). We propose a new covariance matrix estimator: HC5. It is the first consistent estimator to explicitly take into account the effect that the maximal leverage has on the associated inference. Our numerical results show that quasi-$t$ inference based on HC5 is typically more reliable than inference based on other covariance matrix estimators.}, + publisher = {Informa {UK} Limited}, + annotation = {regression, regression-hc}, +} + +@Article{CribariNeto-Souza-Vasconcellos-2008, + author = {Francisco Cribari-Neto and Tatiene C. Souza and Klaus L. P. Vasconcellos}, + date = {2008-09}, + journaltitle = {Communications in Statistics - Theory and Methods}, + title = {Errata: Inference under heteroskedasticity and leveraged data, {Communications in Statistics, Theory and Methods}, 36, 1877--1888, 2007}, + doi = {10.1080/03610920802109210}, + number = {20}, + pages = {3329--3330}, + volume = {37}, + publisher = {Informa {UK} Limited}, + annotation = {regression, regression-hc}, +} + +@Article{Ferrer-McArdle-2003, + author = {Emilio Ferrer and John McArdle}, + date = {2003-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Alternative structural models for multivariate longitudinal data analysis}, + doi = {10.1207/s15328007sem1004_1}, + number = {4}, + pages = {493--524}, + volume = {10}, + abstract = {Structural equation models are presented as alternative models for examining longitudinal data. The models include (a) a cross-lagged regression model, (b) a factor model based on latent growth curves, and (c) a dynamic model based on latent difference scores. The illustrative data are on motivation and perceived competence of students during their first semester in high school. The 3 models yielded different results and such differences were discussed in terms of the conceptualization of change underlying each model. The last model was defended as the most reasonable for these data because it captured the dynamic interrelations between the examined constructs and, at the same time, identified potential growth in the variables.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Fritz-MacKinnon-2007, + author = {Matthew S. Fritz and David P. MacKinnon}, + date = {2007-03}, + journaltitle = {Psychological Science}, + title = {Required sample size to detect the mediated effect}, + doi = {10.1111/j.1467-9280.2007.01882.x}, + number = {3}, + pages = {233--239}, + volume = {18}, + abstract = {Mediation models are widely used, and there are many tests of the mediated effect. One of the most common questions that researchers have when planning mediation studies is, ``How many subjects do I need to achieve adequate power when testing for mediation?'' This article presents the necessary sample sizes for six of the most common and the most recommended tests of mediation for various combinations of parameters, to provide a guide for researchers when designing studies or applying for grants.}, + publisher = {{SAGE} Publications}, + keywords = {bootstrap, collinearity, mediation analysis, power, tolerance}, + annotation = {mediation, mediation-power, mediation-causalsteps, mediation-joint, mediation-delta, mediation-prodclin, mediation-bootstrap}, +} + +@Article{Gatchel-Peng-Peters-etal-2007, + author = {Robert J. Gatchel and Yuan Bo Peng and Madelon L. Peters and Perry N. Fuchs and Dennis C. Turk}, + date = {2007}, + journaltitle = {Psychological Bulletin}, + title = {The biopsychosocial approach to chronic pain: Scientific advances and future directions.}, + doi = {10.1037/0033-2909.133.4.581}, + issn = {0033-2909}, + number = {4}, + pages = {581--624}, + volume = {133}, + abstract = {The prevalence and cost of chronic pain is a major physical and mental health care problem in the United States today. As a result, there has been a recent explosion of research on chronic pain, with significant advances in better understanding its etiology, assessment, and treatment. The purpose of the present article is to provide a review of the most noteworthy developments in the field. The biopsychosocial model is now widely accepted as the most heuristic approach to chronic pain. With this model in mind, a review of the basic neuroscience processes of pain (the bio part of biopsychosocial), as well as the psychosocial factors, is presented. This spans research on how psychological and social factors can interact with brain processes to influence health and illness as well as on the development of new technologies, such as brain imaging, that provide new insights into brain-pain mechanisms.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Graham-Olchowski-Gilreath-2007, + author = {John W. Graham and Allison E. Olchowski and Tamika D. Gilreath}, + date = {2007-06}, + journaltitle = {Prevention Science}, + title = {How many imputations are really needed? Some practical clarifications of multiple imputation theory}, + doi = {10.1007/s11121-007-0070-9}, + number = {3}, + pages = {206--213}, + volume = {8}, + abstract = {Multiple imputation (MI) and full information maximum likelihood (FIML) are the two most common approaches to missing data analysis. In theory, MI and FIML are equivalent when identical models are tested using the same variables, and when m, the number of imputations performed with MI, approaches infinity. However, it is important to know how many imputations are necessary before MI and FIML are sufficiently equivalent in ways that are important to prevention scientists. MI theory suggests that small values of m, even on the order of three to five imputations, yield excellent results. Previous guidelines for sufficient m are based on relative efficiency, which involves the fraction of missing information ($\gamma$) for the parameter being estimated, and m. In the present study, we used a Monte Carlo simulation to test MI models across several scenarios in which $\gamma$ and m were varied. Standard errors and p-values for the regression coefficient of interest varied as a function of m, but not at the same rate as relative efficiency. Most importantly, statistical power for small effect sizes diminished as m became smaller, and the rate of this power falloff was much greater than predicted by changes in relative efficiency. Based our findings, we recommend that researchers using MI should perform many more imputations than previously considered sufficient. These recommendations are based on $\gamma$, and take into consideration one's tolerance for a preventable power falloff (compared to FIML) due to using too few imputations.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {multiple imputation, number of imputations, full information maximum likelihood, missing data, statistical power}, +} + +@Article{Grundy-Gondoli-BlodgettSalafia-2007, + author = {Amber M. Grundy and Dawn M. Gondoli and Elizabeth H. {Blodgett Salafia}}, + date = {2007}, + journaltitle = {Journal of Family Psychology}, + title = {Marital conflict and preadolescent behavioral competence: Maternal knowledge as a longitudinal mediator}, + doi = {10.1037/0893-3200.21.4.675}, + issn = {0893-3200}, + number = {4}, + pages = {675--682}, + volume = {21}, + abstract = {The present study considered whether maternal knowledge mediated the relation between overt marital conflict and preadolescent behavioral competence. Four years of self-report data were collected from 133 mothers and their preadolescents, beginning when the preadolescents were in 4th grade. Marital conflict, maternal knowledge, and preadolescent behavioral competence were assessed at all 4 time points in order to apply a stringent methodology for assessing longitudinal mediating patterns. The results indicated that maternal knowledge mediated the relation between marital conflict and preadolescent behavioral competence. Thus, the present study identified one possible process through which marital conflict may affect preadolescent behavior. }, + publisher = {American Psychological Association (APA)}, +} + +@Article{HatemiJ-2003, + author = {Abdulnasser Hatemi-J}, + date = {2003-02}, + journaltitle = {Applied Economics Letters}, + title = {A new method to choose optimal lag order in stable and unstable {VAR} models}, + doi = {10.1080/1350485022000041050}, + number = {3}, + pages = {135--137}, + volume = {10}, + abstract = {A crucial aspect of empirical research based on the vector autoregressive (VAR) model is the choice of the lag order, since all inference in the VAR model is based on the chosen lag order. Here, a new information criterion is introduced for this purpose. The conducted Monte Carlo simulation experiments show that this new information criterion performs well in picking the true lag order in stable as well as unstable VAR models.}, + publisher = {Informa {UK} Limited}, +} + +@Article{HatemiJ-2004, + author = {Abdulnasser Hatemi-J}, + date = {2004-07}, + journaltitle = {Economic Modelling}, + title = {Multivariate tests for autocorrelation in the stable and unstable {VAR} models}, + doi = {10.1016/j.econmod.2003.09.005}, + number = {4}, + pages = {661--683}, + volume = {21}, + abstract = {This study investigates the size and power properties of three multivariate tests for autocorrelation, namely portmanteau test, Lagrange multiplier (LM) test and Rao F-test, in the stable and unstable vector autoregressive (VAR) models, with and without autoregressive conditional heteroscedasticity (ARCH) using Monte Carlo experiments. Many combinations of parameters are used in the simulations to cover a wide range of situations in order to make the results more representative. The results of conducted simulations show that all three tests perform relatively well in stable VAR models without ARCH. In unstable VAR models the portmanteau test exhibits serious size distortions. LM and Rao tests perform well in unstable VAR models without ARCH. These results are true, irrespective of sample size or order of autocorrelation. Another clear result that the simulations show is that none of the tests have the correct size when ARCH is present irrespective of VAR models being stable or unstable and regardless of the sample size or order of autocorrelation. The portmanteau test appears to have slightly better power properties than the LM test in almost all scenarios.}, + publisher = {Elsevier {BV}}, +} + +@Article{Hayes-2009, + author = {Andrew F. Hayes}, + date = {2009-12}, + journaltitle = {Communication Monographs}, + title = {Beyond {Baron} and {Kenny}: Statistical mediation analysis in the new millennium}, + doi = {10.1080/03637750903310360}, + number = {4}, + pages = {408--420}, + volume = {76}, + abstract = {Understanding communication processes is the goal of most communication researchers. Rarely are we satisfied merely ascertaining whether messages have an effect on some outcome of focus in a specific context. Instead, we seek to understand how such effects come to be. What kinds of causal sequences does exposure to a message initiate? What are the causal pathways through which a message exerts its effect? And what role does communication play in the transmission of the effects of other variables over time and space? Numerous communication models attempt to describe the mechanism through which messages or other communication-related variables transmit their effects or intervene between two other variables in a causal model. The communication literature is replete with tests of such models. + Over the years, methods used to test such process models have grown in sophistication. An example includes the rise of structural equation modeling (SEM), which allows investigators to examine how well a process model that links some focal variable X to some outcome Y through one or more intervening pathways fits the observed data. Yet frequently, the analytical choices communication researchers make when testing intervening variables models are out of step with advances made in the statistical methods literature. My goal here is to update the field on some of these new advances. While at it, I challenge some conventional wisdom and nudge the field toward a more modern way of thinking about the analysis of intervening variable effects.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Hayes-Cai-2007, + author = {Andrew F. Hayes and Li Cai}, + date = {2007-11}, + journaltitle = {Behavior Research Methods}, + title = {Using heteroskedasticity-consistent standard error estimators in {OLS} regression: An introduction and software implementation}, + doi = {10.3758/bf03192961}, + number = {4}, + pages = {709--722}, + volume = {39}, + publisher = {Springer Science and Business Media {LLC}}, + annotation = {regression, regression-hc}, +} + +@Article{Kauermann-Carroll-2001, + author = {G{\"o}ran Kauermann and Raymond J. Carroll}, + date = {2001-12}, + journaltitle = {Journal of the American Statistical Association}, + title = {A note on the efficiency of sandwich covariance matrix estimation}, + doi = {10.1198/016214501753382309}, + number = {456}, + pages = {1387--1396}, + volume = {96}, + abstract = {The sandwich estimator, also known as robust covariance matrix estimator, heteroscedasticity-consistent covariance matrix estimate, or empirical covariance matrix estimator, has achieved increasing use in the econometric literature as well as with the growing popularity of generalized estimating equations. Its virtue is that it provides consistent estimates of the covariance matrix for parameter estimates even when the fitted parametric model fails to hold or is not even specified. Surprisingly though, there has been little discussion of properties of the sandwich method other than consistency. We investigate the sandwich estimator in quasi-likelihood models asymptotically, and in the linear case analytically. We show that under certain circumstances when the quasi-likelihood model is correct, the sandwich estimate is often far more variable than the usual parametric variance estimate. The increased variance is a fixed feature of the method and the price that one pays to obtain consistency even when the parametric model fails or when there is heteroscedasticity. We show that the additional variability directly affects the coverage probability of confidence intervals constructed from sandwich variance estimates. In fact, the use of sandwich variance estimates combined with $t$-distribution quantiles gives confidence intervals with coverage probability falling below the nominal value. We propose an adjustment to compensate for this fact.}, + publisher = {Informa {UK} Limited}, + annotation = {regression, regression-hc}, +} + +@Article{Kenny-Korchmaros-Bolger-2003, + author = {David A. Kenny and Josephine D. Korchmaros and Niall Bolger}, + date = {2003}, + journaltitle = {Psychological Methods}, + title = {Lower level mediation in multilevel models}, + doi = {10.1037/1082-989x.8.2.115}, + issn = {1082-989X}, + number = {2}, + pages = {115--128}, + volume = {8}, + abstract = {Multilevel models are increasingly used to estimate models for hierarchical and repeated measures data. The authors discuss a model in which there is mediation at the lower level and the mediational links vary randomly across upper level units. One repeated measures example is a case in which a person's daily stressors affect his or her coping efforts, which affect his or her mood, and both links vary randomly across persons. Where there is mediation at the lower level and the mediational links vary randomly across upper level units, the formulas for the indirect effect and its standard error must be modified to include the covariance between the random effects. Because no standard method can estimate such a model, the authors developed an ad hoc method that is illustrated with real and simulated data. Limitations of this method and characteristics of an ideal method are discussed. }, + publisher = {American Psychological Association (APA)}, +} + +@Article{Koob-LeMoal-2008, + author = {George F. Koob and Michel {Le Moal}}, + date = {2008-01}, + journaltitle = {Annual Review of Psychology}, + title = {Addiction and the brain antireward system}, + doi = {10.1146/annurev.psych.59.103006.093548}, + issn = {1545-2085}, + number = {1}, + pages = {29--53}, + volume = {59}, + abstract = {A neurobiological model of the brain emotional systems has been proposed to explain the persistent changes in motivation that are associated with vulnerability to relapse in addiction, and this model may generalize to other psychopathology associated with dysregulated motivational systems. In this framework, addiction is conceptualized as a cycle of decreased function of brain reward systems and recruitment of antireward systems that progressively worsen, resulting in the compulsive use of drugs. Counteradaptive processes, such as opponent process, that are part of the normal homeostatic limitation of reward function fail to return within the normal homeostatic range and are hypothesized to repeatedly drive the allostatic state. Excessive drug taking thus results in not only the short-term amelioration of the reward deficit but also suppression of the antireward system. However, in the long term, there is worsening of the underlying neurochemical dysregulations that ultimately form an allostatic state (decreased dopamine and opioid peptide function, increased corticotropin-releasing factor activity). This allostatic state is hypothesized to be reflected in a chronic deviation of reward set point that is fueled not only by dysregulation of reward circuits per se but also by recruitment of brain and hormonal stress responses. Vulnerability to addiction may involve genetic comorbidity and developmental factors at the molecular, cellular, or neurocircuitry levels that sensitize the brain antireward systems.}, + publisher = {Annual Reviews}, +} + +@Article{Krull-MacKinnon-2001, + author = {Jennifer L. Krull and David P. MacKinnon}, + date = {2001-04}, + journaltitle = {Multivariate Behavioral Research}, + title = {Multilevel modeling of individual and group level mediated effects}, + doi = {10.1207/s15327906mbr3602_06}, + issn = {1532-7906}, + number = {2}, + pages = {249--277}, + volume = {36}, + abstract = {This article combines procedures for single-level mediational analysis with multilevel modeling techniques in order to appropriately test mediational effects in clustered data. A simulation study compared the performance of these multilevel mediational models with that of single-level mediational models in clustered data with individual- or group-level initial independent variables, individual- or group-level mediators, and individual level outcomes. The standard errors of mediated effects from the multilevel solution were generally accurate, while those from the single-level procedure were downwardly biased, often by 20\% or more. The multilevel advantage was greatest in those situations involving group-level variables, larger group sizes, and higher intraclass correlations in mediator and outcome variables. Multilevel mediational modeling methods were also applied to data from a preventive intervention designed to reduce intentions to use steroids among players on high school football teams. This example illustrates differences between single-level and multilevel mediational modeling in real-world clustered data and shows how the multilevel technique may lead to more accurate results.}, + publisher = {Informa UK Limited}, +} + +@Article{Long-Ervin-2000, + author = {J. Scott Long and Laurie H. Ervin}, + date = {2000-08}, + journaltitle = {The American Statistician}, + title = {Using heteroscedasticity consistent standard errors in the linear regression model}, + doi = {10.1080/00031305.2000.10474549}, + number = {3}, + pages = {217--224}, + volume = {54}, + publisher = {Informa {UK} Limited}, + annotation = {regression, regression-hc}, +} + +@Article{MacKinnon-Fritz-Williams-etal-2007, + author = {David P. MacKinnon and Matthew S. Fritz and Jason Williams and Chondra M. Lockwood}, + date = {2007-08}, + journaltitle = {Behavior Research Methods}, + title = {Distribution of the product confidence limits for the indirect effect: Program {PRODCLIN}}, + doi = {10.3758/bf03193007}, + number = {3}, + pages = {384--389}, + volume = {39}, + abstract = {This article describes a program, PRODCLIN (distribution of the PRODuct Confidence Limits for INdirect effects), written for SAS, SPSS, and R, that computes confidence limits for the product of two normal random variables. The program is important because it can be used to obtain more accurate confidence limits for the indirect effect, as demonstrated in several recent articles (MacKinnon, Lockwood, \& Williams, 2004; Pituch, Whittaker, \& Stapleton, 2005). Tests of the significance of and confidence limits for indirect effects based on the distribution of the product method have more accurate Type I error rates and more power than other, more commonly used tests. Values for the two paths involved in the indirect effect and their standard errors are entered in the PRODCLIN program, and distribution of the product confidence limits are computed. Several examples are used to illustrate the PRODCLIN program. The PRODCLIN programs in rich text format may be downloaded from www.psychonomic.org/archive.}, + publisher = {Springer Science and Business Media {LLC}}, + annotation = {mediation, mediation-prodclin}, +} + +@Article{MacKinnon-Krull-Lockwood-2000, + author = {David P. MacKinnon and Jennifer L. Krull and Chondra M. Lockwood}, + date = {2000}, + journaltitle = {Prevention Science}, + title = {Equivalence of the mediation, confounding and suppression effect}, + doi = {10.1023/a:1026595011371}, + issn = {1389-4986}, + number = {4}, + pages = {173--181}, + volume = {1}, + abstract = {This paper describes the statistical similarities among mediation, confounding, and suppression. Each is quantified by measuring the change in the relationship between an independent and a dependent variable after adding a third variable to the analysis. Mediation and confounding are identical statistically and can be distinguished only on conceptual grounds. Methods to determine the confidence intervals for confounding and suppression effects are proposed based on methods developed for mediated effects. Although the statistical estimation of effects and standard errors is the same, there are important conceptual differences among the three types of effects.}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{MacKinnon-Lockwood-Hoffman-etal-2002, + author = {David P. MacKinnon and Chondra M. Lockwood and Jeanne M. Hoffman and Stephen G. West and Virgil Sheets}, + date = {2002}, + journaltitle = {Psychological Methods}, + title = {A comparison of methods to test mediation and other intervening variable effects}, + doi = {10.1037/1082-989x.7.1.83}, + number = {1}, + pages = {83--104}, + volume = {7}, + abstract = {A Monte Carlo study compared 14 methods to test the statistical significance of the intervening variable effect. An intervening variable (mediator) transmits the effect of an independent variable to a dependent variable. The commonly used R. M. Baron and D. A. Kenny (1986) approach has low statistical power. Two methods based on the distribution of the product and 2 difference-in-coefficients methods have the most accurate Type I error rates and greatest statistical power except in 1 important case in which Type I error rates are too high. The best balance of Type I error and statistical power across all cases is the test of the joint significance of the two effects comprising the intervening variable effect.}, + publisher = {American Psychological Association ({APA})}, + annotation = {mediation, mediation-causalsteps, mediation-jointtest, mediation-prodclin}, +} + +@Article{MacKinnon-Lockwood-Williams-2004, + author = {David P. MacKinnon and Chondra M. Lockwood and Jason Williams}, + date = {2004-01}, + journaltitle = {Multivariate Behavioral Research}, + title = {Confidence limits for the indirect effect: Distribution of the product and resampling methods}, + doi = {10.1207/s15327906mbr3901_4}, + number = {1}, + pages = {99--128}, + volume = {39}, + abstract = {The most commonly used method to test an indirect effect is to divide the estimate of the indirect effect by its standard error and compare the resulting z statistic with a critical value from the standard normal distribution. Confidence limits for the indirect effect are also typically based on critical values from the standard normal distribution. This article uses a simulation study to demonstrate that confidence limits are imbalanced because the distribution of the indirect effect is normal only in special cases. Two alternatives for improving the performance of confidence limits for the indirect effect are evaluated: (a) a method based on the distribution of the product of two normal random variables, and (b) resampling methods. In Study 1, confidence limits based on the distribution of the product are more accurate than methods based on an assumed normal distribution but confidence limits are still imbalanced. Study 2 demonstrates that more accurate confidence limits are obtained using resampling methods, with the bias-corrected bootstrap the best method overall.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bootstrap, mediation-montecarlo, mediation-prodclin}, +} + +@Article{Maxwell-Cole-2007, + author = {Scott E. Maxwell and David A. Cole}, + date = {2007}, + journaltitle = {Psychological Methods}, + title = {Bias in cross-sectional analyses of longitudinal mediation}, + doi = {10.1037/1082-989x.12.1.23}, + number = {1}, + pages = {23--44}, + volume = {12}, + abstract = {Most empirical tests of mediation utilize cross-sectional data despite the fact that mediation consists of causal processes that unfold over time. The authors considered the possibility that longitudinal mediation might occur under either of two different models of change: (a) an autoregressive model or (b) a random effects model. For both models, the authors demonstrated that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters even under the ideal conditions when mediation is complete. In longitudinal models where variable M completely mediates the effect of X on Y, cross-sectional estimates of the direct effect of X on Y, the indirect effect of X on Y through M, and the proportion of the total effect mediated by M are often highly misleading.}, + publisher = {American Psychological Association ({APA})}, + keywords = {mediation, direct effect, indirect effect, cross-sectional designs, longitudinal designs}, +} + +@Article{McArdle-2009, + author = {John J. McArdle}, + date = {2009-01}, + journaltitle = {Annual Review of Psychology}, + title = {Latent variable modeling of differences and changes with longitudinal data}, + doi = {10.1146/annurev.psych.60.110707.163612}, + number = {1}, + pages = {577--605}, + volume = {60}, + abstract = {This review considers a common question in data analysis: What is the most useful way to analyze longitudinal repeated measures data? We discuss some contemporary forms of structural equation models (SEMs) based on the inclusion of latent variables. The specific goals of this review are to clarify basic SEM definitions, consider relations to classical models, focus on testable features of the new models, and provide recent references to more complete presentations. A broader goal is to illustrate why so many researchers are enthusiastic about the SEM approach to data analysis. We first outline some classic problems in longitudinal data analysis, consider definitions of differences and changes, and raise issues about measurement errors. We then present several classic SEMs based on the inclusion of invariant common factors and explain why these are so important. This leads to newer SEMs based on latent change scores, and we explain why these are useful.}, + publisher = {Annual Reviews}, + keywords = {linear structural equations, repeated measures}, +} + +@Article{Molenaar-Campbell-2009, + author = {Peter C.M. Molenaar and Cynthia G. Campbell}, + date = {2009-04}, + journaltitle = {Current Directions in Psychological Science}, + title = {The new person-specific paradigm in psychology}, + doi = {10.1111/j.1467-8721.2009.01619.x}, + issn = {1467-8721}, + number = {2}, + pages = {112--117}, + volume = {18}, + abstract = {Most research methodology in the behavioral sciences employs interindividual analyses, which provide information about the state of affairs of the population. However, as shown by classical mathematical-statistical theorems (the ergodic theorems), such analyses do not provide information for, and cannot be applied at, the level of the individual, except on rare occasions when the processes of interest meet certain stringent conditions. When psychological processes violate these conditions, the interindividual analyses that are now standardly applied have to be replaced by analysis of intraindividual variation in order to obtain valid results. Two illustrations involving analysis of intraindividual variation of personality and emotional processes are given.}, + publisher = {SAGE Publications}, +} + +@Article{Oud-Jansen-2000, + author = {Johan H. L. Oud and Robert A. R. G. Jansen}, + date = {2000-06}, + journaltitle = {Psychometrika}, + title = {Continuous time state space modeling of panel data by means of {SEM}}, + doi = {10.1007/bf02294374}, + number = {2}, + pages = {199--215}, + volume = {65}, + abstract = {Maximum likelihood parameter estimation of the continuous time linear stochastic state space model is considered on the basis of largeN discrete time data using a structural equation modeling (SEM) program. Random subject effects are allowed to be part of the model. The exact discrete model (EDM) is employed which links the discrete time model parameters to the underlying continuous time model parameters by means of nonlinear restrictions. The EDM is generalized to cover not only time-invariant parameters but also the cases of stepwise time-varying (piecewise time-invariant) parameters and parameters varying continuously over time according to a general polynomial scheme. The identification of the continuous time parameters is discussed and an educational example is presented.}, + publisher = {Springer Science and Business Media {LLC}}, +} + +@Article{Peugh-Enders-2004, + author = {James L. Peugh and Craig K. Enders}, + date = {2004-12}, + journaltitle = {Review of Educational Research}, + title = {Missing data in educational research: A review of reporting practices and suggestions for improvement}, + doi = {10.3102/00346543074004525}, + number = {4}, + pages = {525--556}, + volume = {74}, + publisher = {American Educational Research Association ({AERA})}, + abstract = {Missing data analyses have received considerable recent attention in the methodological literature, and two ``modern'' methods, multiple imputation and maximum likelihood estimation, are recommended. The goals of this article are to (a) provide an overview of missing-data theory, maximum likelihood estimation, and multiple imputation; (b) conduct a methodological review of missing-data reporting practices in 23 applied research journals; and (c) provide a demonstration of multiple imputation and maximum likelihood estimation using the Longitudinal Study of American Youth data. The results indicated that explicit discussions of missing data increased substantially between 1999 and 2003, but the use of maximum likelihood estimation or multiple imputation was rare; the studies relied almost exclusively on listwise and pairwise deletion.}, + keywords = {EM algorithm, maximum likelihood estimation, missing data, multiple imputation, NORM}, +} + +@Article{Preacher-Curran-Bauer-2006, + author = {Kristopher J. Preacher and Patrick J. Curran and Daniel J. Bauer}, + date = {2006-12}, + journaltitle = {Journal of Educational and Behavioral Statistics}, + title = {Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis}, + doi = {10.3102/10769986031004437}, + issn = {1935-1054}, + number = {4}, + pages = {437--448}, + volume = {31}, + abstract = {Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the conditional relations is often a tedious and error-prone task. This article provides an overview of methods used to probe interaction effects and describes a unified collection of freely available online resources that researchers can use to obtain significance tests for simple slopes, compute regions of significance, and obtain confidence bands for simple slopes across the range of the moderator in the MLR, HLM, and LCA contexts. Plotting capabilities are also provided.}, + publisher = {American Educational Research Association (AERA)}, +} + +@Article{Preacher-Hayes-2004, + author = {Kristopher J. Preacher and Andrew F. Hayes}, + date = {2004-11}, + journaltitle = {Behavior Research Methods, Instruments, \& Computers}, + title = {{SPSS} and {SAS} procedures for estimating indirect effects in simple mediation models}, + doi = {10.3758/bf03206553}, + number = {4}, + pages = {717--731}, + volume = {36}, + abstract = {Researchers often conduct mediation analysis in order to indirectly assess the effect of a proposed cause on some outcome through a proposed mediator. The utility of mediation analysis stems from its ability to go beyond the merely descriptive to a more functional understanding of the relationships among variables. A necessary component of mediation is a statistically and practically significant indirect effect. Although mediation hypotheses are frequently explored in psychological research, formal significance tests of indirect effects are rarely conducted. After a brief overview of mediation, we argue the importance of directly testing the significance of indirect effects and provide SPSS and SAS macros that facilitate estimation of the indirect effect with a normal theory approach and a bootstrap approach to obtaining confidence intervals, as well as the traditional approach advocated by Baron and Kenny (1986). We hope that this discussion and the macros will enhance the frequency of formal mediation tests in the psychology literature. Electronic copies of these macros may be downloaded from the Psychonomic Society's Web archive at www.psychonomic.org/archive/.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {life satisfaction, indirect effect, mediation analysis, cognitive therapy, Sobel test}, + annotation = {mediation, mediation-delta, mediation-bootstrap}, +} + +@Article{Preacher-Hayes-2008, + author = {Kristopher J. Preacher and Andrew F. Hayes}, + date = {2008-08}, + journaltitle = {Behavior Research Methods}, + title = {Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models}, + doi = {10.3758/brm.40.3.879}, + number = {3}, + pages = {879--891}, + volume = {40}, + abstract = {Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {indirect effect, structural equation modeling, residual covariance, total indirect effect, multiple mediator model}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Raghunathan-Lepkowski-Hoewyk-etal-2001, + author = {Trivellore E. Raghunathan and James M. Lepkowski and John Van Hoewyk and Peter Solenberger}, + date = {2001}, + journaltitle = {Survey Methodology}, + title = {A multivariate technique for multiply imputing missing values using a sequence of regression models}, + number = {1}, + pages = {85--95}, + volume = {27}, + abstract = {This article describes and evaluates a procedure for imputing missing values for a relatively complex data structure when the data are missing at random. The imputations are obtained by fitting a sequence of regression models and drawing values from the corresponding predictive distributions. The types of regression models used are linear, logistic, Poisson, generalized logit or a mixture of these depending on the type of variable being imputed. Two additional common features in the imputation process are incorporated: restriction to a relevant subpopulation for some variables and logical bounds or constraints for the imputed values. The restrictions involve subsetting the sample individuals that satisfy certain criteria while fitting the regression models. The bounds involve drawing values from a truncated predictive distribution. The development of this method was partly motivated by the analysis of two data sets which are used as illustrations. The sequential regression procedure is applied to perform multiple imputation analysis for the two applied problems. The sampling properties of inferences from multiply imputed data sets created using the sequential regression method are evaluated through simulated data sets.}, + keywords = {item nonresponse, missing at random, multiple imputation, nonignorable missing mechanism, regression, sampling properties and simulations}, +} + +@Article{Raykov-Marcoulides-2004, + author = {Tenko Raykov and George A. Marcoulides}, + date = {2004-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Using the delta method for approximate interval estimation of parameter functions in {SEM}}, + doi = {10.1207/s15328007sem1104_7}, + issn = {1532-8007}, + number = {4}, + pages = {621--637}, + volume = {11}, + abstract = {In applications of structural equation modeling, it is often desirable to obtain measures of uncertainty for special functions of model parameters. This article provides a didactic discussion of how a method widely used in applied statistics can be employed for approximate standard error and confidence interval evaluation of such functions. The described approach is illustrated with data from a cognitive intervention study, in which it is used to estimate time-invariant reliability in multiwave, multiple indicator models.}, + publisher = {Informa UK Limited}, +} + +@Article{Schafer-Graham-2002, + author = {Joseph L. Schafer and John W. Graham}, + date = {2002}, + journaltitle = {Psychological Methods}, + title = {Missing data: Our view of the state of the art}, + doi = {10.1037/1082-989x.7.2.147}, + number = {2}, + pages = {147--177}, + volume = {7}, + abstract = {Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, discourage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the mainstream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Selig-Preacher-2009, + author = {James P. Selig and Kristopher J. Preacher}, + date = {2009-06}, + journaltitle = {Research in Human Development}, + title = {Mediation models for longitudinal data in developmental research}, + doi = {10.1080/15427600902911247}, + number = {2-3}, + pages = {144--164}, + volume = {6}, + abstract = {Mediation models are used to describe the mechanism(s) by which one variable influences another. These models can be useful in developmental research to explicate the relationship between variables, developmental processes, or combinations of variables and processes. In this article we describe aspects of mediation effects specific to developmental research. We focus on three central issues in longitudinal mediation models: the theory of change for variables in the model, the role of time in the model, and the types of indirect effects in the model. We use these themes as we describe three different models for examining mediation in longitudinal data.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Serlin-2000, + author = {Ronald C. Serlin}, + date = {2000}, + journaltitle = {Psychological Methods}, + title = {Testing for robustness in {Monte Carlo} studies}, + doi = {10.1037/1082-989x.5.2.230}, + number = {2}, + pages = {230--240}, + volume = {5}, + abstract = {Monte Carlo studies provide the information needed to help researchers select appropriate analytical procedures under design conditions in which the underlying assumptions of the procedures are not met. In Monte Carlo studies, the 2 errors that one could commit involve (a) concluding that a statistical procedure is robust when it is not or (b) concluding that it is not robust when it is. In previous attempts to apply standard statistical design principles to Monte Carlo studies, the less severe of these errors has been wrongly designated the Type I error. In this article, a method is presented for controlling the appropriate Type I error rate; the determination of the number of iterations required in a Monte Carlo study to achieve desired power is described; and a confidence interval for a test's true Type I error rate is derived. A robustness criterion is also proposed that is a compromise between W. G. Cochran's (1952) and J. V. Bradley's (1978) criteria.}, + publisher = {American Psychological Association ({APA})}, + annotation = {robustness}, +} + +@Article{Shiffman-2009, + author = {Saul Shiffman}, + date = {2009-12}, + journaltitle = {Psychological Assessment}, + title = {Ecological momentary assessment ({EMA}) in studies of substance use}, + doi = {10.1037/a0017074}, + number = {4}, + pages = {486--497}, + volume = {21}, + abstract = {Ecological momentary assessment (EMA) is particularly suitable for studying substance use, because use is episodic and thought to be related to mood and context. This article reviews EMA methods in substance use research, focusing on tobacco and alcohol use and relapse, where EMA has been most applied. Common EMA designs combine event-based reports of substance use with time-based assessments. Approaches to data organization and analysis have been very diverse, particularly regarding their treatment of time. Compliance with signaled assessments is often high. Compliance with recording of substance use appears good but is harder to validate. Treatment applications of EMA are emerging. EMA captures substance use patterns not measured by questionnaires or retrospective data and holds promise for substance use research.}, + publisher = {American Psychological Association ({APA})}, + keywords = {ecological momentary assessment, substance use, drug use, tobacco, alcohol}, +} + +@Article{Shiffman-Stone-Hufford-2008, + author = {Saul Shiffman and Arthur A. Stone and Michael R. Hufford}, + date = {2008-04}, + journaltitle = {Annual Review of Clinical Psychology}, + title = {Ecological momentary assessment}, + doi = {10.1146/annurev.clinpsy.3.022806.091415}, + number = {1}, + pages = {1--32}, + volume = {4}, + abstract = {Assessment in clinical psychology typically relies on global retrospective self-reports collected at research or clinic visits, which are limited by recall bias and are not well suited to address how behavior changes over time and across contexts. Ecological momentary assessment (EMA) involves repeated sampling of subjects' current behaviors and experiences in real time, in subjects' natural environments. EMA aims to minimize recall bias, maximize ecological validity, and allow study of microprocesses that influence behavior in real-world contexts. EMA studies assess particular events in subjects' lives or assess subjects at periodic intervals, often by random time sampling, using technologies ranging from written diaries and telephones to electronic diaries and physiological sensors. We discuss the rationale for EMA, EMA designs, methodological and practical issues, and comparisons of EMA and recall data. EMA holds unique promise to advance the science and practice of clinical psychology by shedding light on the dynamics of behavior in real-world settings.}, + publisher = {Annual Reviews}, + keywords = {diary, experience sampling, real-time data capture}, +} + +@Article{Shrout-Bolger-2002, + author = {Patrick E. Shrout and Niall Bolger}, + date = {2002}, + journaltitle = {Psychological Methods}, + title = {Mediation in experimental and nonexperimental studies: New procedures and recommendations}, + doi = {10.1037/1082-989x.7.4.422}, + number = {4}, + pages = {422--445}, + volume = {7}, + publisher = {American Psychological Association ({APA})}, + abstract = {Mediation is said to occur when a causal effect of some variable $X$ on an outcome $Y$ is explained by some intervening variable $M$. The authors recommend that with small to moderate samples, bootstrap methods (B. Efron \& R. Tibshirani, 1993) be used to assess mediation. Bootstrap tests are powerful because they detect that the sampling distribution of the mediated effect is skewed away from 0. They argue that R. M. Baron and D. A. Kenny's (1986) recommendation of first testing the $X \to Y$ association for statistical significance should not be a requirement when there is a priori belief that the effect size is small or suppression is a possibility. Empirical examples and computer setups for bootstrap analyses are provided.}, + publisher = {American Psychological Association ({APA})}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Staudenmayer-Buonaccorsi-2005, + author = {John Staudenmayer and John P Buonaccorsi}, + date = {2005-09}, + journaltitle = {Journal of the American Statistical Association}, + title = {Measurement error in linear autoregressive models}, + doi = {10.1198/016214504000001871}, + issn = {1537-274X}, + number = {471}, + pages = {841--852}, + volume = {100}, + abstract = {Time series data are often subject to measurement error, usually the result of needing to estimate the variable of interest. Although it is often reasonable to assume that the measurement error is additive (i.e., the estimator is conditionally unbiased for the missing true value), the measurement error variances often vary as a result of changes in the population/process over time and/or changes in sampling effort. In this article we address estimation of the parameters in linear autoregressive models in the presence of additive and uncorrelated measurement errors, allowing heteroscedasticity in the measurement error variances. We establish the asymptotic properties of naive estimators that ignore measurement error and propose an estimator based on correcting the Yule–Walker estimating equations. We also examine a pseudo-likelihood method based on normality assumptions and computed using the Kalman filter. We review other techniques that have been proposed, including two that require no information about the measurement error variances, and compare the various estimators both theoretically and via simulations. The estimator based on corrected estimating equations is easy to obtain and readily accommodates (and is robust to) unequal measurement error variances. Asymptotic calculations and finite-sample simulations show that it is often relatively efficient.}, + publisher = {Informa UK Limited}, +} + +@Article{Swift-2000, + author = {Robert Swift}, + date = {2000-04}, + journaltitle = {Alcoholism: Clinical and Experimental Research}, + title = {Transdermal alcohol measurement for estimation of blood alcohol concentration}, + doi = {10.1111/j.1530-0277.2000.tb02006.x}, + issn = {1530-0277}, + number = {4}, + pages = {422--423}, + volume = {24}, + publisher = {Wiley}, +} + +@Article{Taylor-MacKinnon-Tein-2007, + author = {Aaron B. Taylor and David P. MacKinnon and Jenn-Yun Tein}, + date = {2007-07}, + journaltitle = {Organizational Research Methods}, + title = {Tests of the three-path mediated effect}, + doi = {10.1177/1094428107300344}, + number = {2}, + pages = {241--269}, + volume = {11}, + abstract = {In a three-path mediational model, two mediators intervene in a series between an independent and a dependent variable. Methods of testing for mediation in such a model are generalized from the more often used single-mediator model. Six such methods are introduced and compared in a Monte Carlo study in terms of their Type I error, power, and coverage. Based on its results, the joint significance test is preferred when only a hypothesis test is of interest. The percentile bootstrap and bias-corrected bootstrap are preferred when a confidence interval on the mediated effect is desired, with the latter having more power but also slightly inflated Type I error in some conditions.}, + publisher = {{SAGE} Publications}, + keywords = {mediation, bootstrapping}, + annotation = {mediation, mediation-bootstrap, mediation-jointtest}, +} + +@Article{vanBuuren-Brand-GroothuisOudshoorn-etal-2006, + author = {Stef {van Buuren} and J. P. L. Brand and C. G. M. Groothuis-Oudshoorn and Donald B. Rubin}, + date = {2006-12}, + journaltitle = {Journal of Statistical Computation and Simulation}, + title = {Fully conditional specification in multivariate imputation}, + doi = {10.1080/10629360600810434}, + number = {12}, + pages = {1049--1064}, + volume = {76}, + abstract = {The use of the Gibbs sampler with fully conditionally specified models, where the distribution of each variable given the other variables is the starting point, has become a popular method to create imputations in incomplete multivariate data. The theoretical weakness of this approach is that the specified conditional densities can be incompatible, and therefore the stationary distribution to which the Gibbs sampler attempts to converge may not exist. This study investigates practical consequences of this problem by means of simulation. Missing data are created under four different missing data mechanisms. Attention is given to the statistical behavior under compatible and incompatible models. The results indicate that multiple imputation produces essentially unbiased estimates with appropriate coverage in the simple cases investigated, even for the incompatible models. Of particular interest is that these results were produced using only five Gibbs iterations starting from a simple draw from observed marginal distributions. It thus appears that, despite the theoretical weaknesses, the actual performance of conditional model specification for multivariate imputation can be quite good, and therefore deserves further study.}, + publisher = {Informa {UK} Limited}, + keywords = {multivariate missing data, multiple imputation, distributional compatibility, Gibbs sampling, simulation, proper imputation}, +} + +@Article{Wang-Zhang-2020, + author = {Lijuan Wang and Qian Zhang}, + date = {2020-06}, + journaltitle = {Psychological Methods}, + title = {Investigating the impact of the time interval selection on autoregressive mediation modeling: Result interpretations, effect reporting, and temporal designs}, + doi = {10.1037/met0000235}, + issn = {1082-989X}, + number = {3}, + pages = {271--291}, + volume = {25}, + abstract = {This study investigates the impact of the time interval (the time passed between 2 consecutive measurements) selection on autoregressive mediation modeling (AMM). For a widely used autoregressive mediation model, via analytical derivations, we explained why and how the conventionally reported time-specific coefficient estimates (e.g., $\hat{a} \hat{bb}$ and $\hat{c}^{\prime}$ ) and inference results in AMM provide limited information and can arrive in even misleading conclusions about direct and indirect effects over time. Furthermore, under the stationarity assumption, we proposed an approach to calculate the overall direct and indirect effect estimates over time and the time lag lengths at which they reach maxima, using AMM results. The derivation results revealed that the overall direct and indirect effect curves are asymptotically invariant to the time interval selection, under stationarity. With finite samples and thus sampling errors and potential computing problems, however, our simulation results revealed that the overall indirect effect curves were better recovered when the time interval is selected to be closer to half of the time lag length at which the overall indirect effect reaches its maximum. An R function and an R Shiny app were developed to obtain the overall direct and indirect effect curves over time and facilitate the time interval selection using AMM results. Our findings provide another look at the connections between AMM and continuous time mediation modeling and the connections are discussed. }, + publisher = {American Psychological Association (APA)}, +} + +@Article{Yuan-Bentler-2000, + author = {Ke-Hai Yuan and Peter M. Bentler}, + date = {2000-08}, + journaltitle = {Sociological Methodology}, + title = {Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data}, + doi = {10.1111/0081-1750.00078}, + number = {1}, + pages = {165--200}, + volume = {30}, + abstract = {Survey and longitudinal studies in the social and behavioral sciences generally contain missing data. Mean and covariance structure models play an important role in analyzing such data. Two promising methods for dealing with missing data are a direct maximum-likelihood and a two-stage approach based on the unstructured mean and covariance estimates obtained by the EM-algorithm. Typical assumptions under these two methods are ignorable nonresponse and normality of data. However, data sets in social and behavioral sciences are seldom normal, and experience with these procedures indicates that normal theory based methods for nonnormal data very often lead to incorrect model evaluations. By dropping the normal distribution assumption, we develop more accurate procedures for model inference. Based on the theory of generalized estimating equations, a way to obtain consistent standard errors of the two-stage estimates is given. The asymptotic efficiencies of different estimators are compared under various assumptions. We also propose a minimum chi-square approach and show that the estimator obtained by this approach is asymptotically at least as efficient as the two likelihood-based estimators for either normal or nonnormal data. The major contribution of this paper is that for each estimator, we give a test statistic whose asymptotic distribution is chisquare as long as the underlying sampling distribution enjoys finite fourth-order moments. We also give a characterization for each of the two likelihood ratio test statistics when the underlying distribution is nonnormal. Modifications to the likelihood ratio statistics are also given. Our working assumption is that the missing data mechanism is missing completely at random. Examples and Monte Carlo studies indicate that, for commonly encountered nonnormal distributions, the procedures developed in this paper are quite reliable even for samples with missing data that are missing at random.}, + publisher = {{SAGE} Publications}, +} + +@Article{Yuan-MacKinnon-2009, + author = {Ying Yuan and David P. MacKinnon}, + date = {2009-12}, + journaltitle = {Psychological Methods}, + title = {Bayesian mediation analysis.}, + doi = {10.1037/a0016972}, + issn = {1082-989X}, + number = {4}, + pages = {301--322}, + volume = {14}, + abstract = {In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptually simpler for multilevel mediation analysis. Simulation studies and analysis of 2 data sets are used to illustrate the proposed methods.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Zeileis-2004, + author = {Achim Zeileis}, + date = {2004}, + journaltitle = {Journal of Statistical Software}, + title = {Econometric computing with {HC} and {HAC} covariance matrix estimators}, + doi = {10.18637/jss.v011.i10}, + number = {10}, + volume = {11}, + abstract = {Data described by econometric models typically contains autocorrelation and/or heteroskedasticity of unknown form and for inference in such models it is essential to use covariance matrix estimators that can consistently estimate the covariance of the model parameters. Hence, suitable heteroskedasticity consistent (HC) and heteroskedasticity and autocorrelation consistent (HAC) estimators have been receiving attention in the econometric literature over the last 20 years. To apply these estimators in practice, an implementation is needed that preferably translates the conceptual properties of the underlying theoretical frameworks into computational tools. In this paper, such an implementation in the package sandwich in the R system for statistical computing is described and it is shown how the suggested functions provide reusable components that build on readily existing functionality and how they can be integrated easily into new inferential procedures or applications. The toolbox contained in sandwich is extremely flexible and comprehensive, including specific functions for the most important HC and HAC estimators from the econometric literature. Several real-world data sets are used to illustrate how the functionality can be integrated into applications.}, + publisher = {Foundation for Open Access Statistic}, + annotation = {regression, regression-hc}, +} + +@Article{Zeileis-2006, + author = {Achim Zeileis}, + date = {2006-08}, + journaltitle = {Journal of Statistical Software}, + title = {Object-oriented computation of sandwich estimators}, + doi = {10.18637/jss.v016.i09}, + number = {9}, + volume = {16}, + abstract = {Sandwich covariance matrix estimators are a popular tool in applied regression modeling for performing inference that is robust to certain types of model misspecification. Suitable implementations are available in the R system for statistical computing for certain model fitting functions only (in particular lm()), but not for other standard regression functions, such as glm(), nls(), or survreg(). Therefore, conceptual tools and their translation to computational tools in the package sandwich are discussed, enabling the computation of sandwich estimators in general parametric models. Object orientation can be achieved by providing a few extractor functions' most importantly for the empirical estimating functions' from which various types of sandwich estimators can be computed.}, + publisher = {Foundation for Open Access Statistic}, + annotation = {regression, regression-hc}, +} + +@Book{Casella-Berger-2002, + author = {George Casella and Robert L. Berger}, + date = {2002}, + title = {Statistical inference}, + isbn = {9780534243128}, + location = {Pacific Grove, CA}, + publisher = {Thomson Learning}, + abstract = {This book builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.}, +} + +@Book{Collins-Sayer-2002, + date = {2002}, + title = {New methods for the analysis of change}, + edition = {2}, + editor = {Linda M. Collins and Aline Sayer}, + isbn = {1557987548}, + location = {Washington, DC}, + note = {Based on a conference held in 1998 at The Pennsylvania State Univ.}, + pagetotal = {442}, + publisher = {American Psychological Association}, + series = {Decade of behavior}, + subtitle = {[based on a conference held in 1998 at The Pennsylvania State University, a follow-up to the Los Angeles conference Best Methods for the Analysis of Change]}, + ppn_gvk = {612816524}, +} + +@Book{Fernandez-2002, + author = {Ephrem Fernandez}, + date = {2002}, + title = {Anxiety, depression, and anger in pain: Research findings and clinical options}, + isbn = {978-0972316408}, + publisher = {Advanced Psychological Resources}, + location = {Dallas, TX}, + abstract = {This book is about the many ways in which anxiety, depression, and anger can predispose a person to pain, trigger the pain, aggravate it, maintain it, in addition to being correlates or consequences of pain. These interactions are clearly illustrated and embellished with examples. Pain is described in terms of neurological signals, sensation, perception, cognition, and behavior, but with special reference to emotions, moods, and affective disorders. +In each of the chapters on anxiety, depression, and anger, the author conveys the significance of emotional problems while also providing data on their prevalence and relationship to demographic factors. Underlying mechanisms are explored with keen attention to psychosocial and biochemical processes. Then, options are discussed for assessment and treatment. Psychological tests for anxiety, depression, and anger are pitted against one another to allow the selection of the best. Treatment strategies of both the psychological and pharmacological varieties are evaluated for effectiveness and side effects. Thus for anxiety, information is provided on tranquilizers as well as attention-diversion, thought-stopping, reappraisal, respiratory regulation, muscle relaxation, biofeedback, music, hypnosis, and massage. Depression treatment is described with reference to psychodynamic and cognitive therapies but with an in-depth analysis of whether antidepressant medications actually relieve pain or depression. For anger, a case is made for the novel integration of cognitive, behavioral, and experiential strategies. +The final chapter succinctly summarizes all the main findings while also suggesting ideas for future study. The book is practical in its objectives to the very end. What gives it particular strength is the heavy reliance on empirical evidence and theory. In short, this book unravels the complex interactions among pain, anxiety, depression, and anger -- consistently sounding its relevance to pain sufferers, pain clinicians, scholars, and students in this field.}, +} + +@Book{Hektner-Schmidt-Csikszentmihalyi-2007, + author = {Joel Hektner and Jennifer Schmidt and Mihaly Csikszentmihalyi}, + date = {2007}, + title = {Experience sampling method: Measuring the quality of everyday life}, + doi = {10.4135/9781412984201}, + isbn = {9781412984201}, + publisher = {SAGE Publications, Inc.}, + abstract = {Experience Sampling Method: Measuring the Quality of Everyday Life is the first book to bring together the theoretical foundations and practical applications of this indispensable methodology. Authors Joel M. Hektner, Jennifer A. Schmidt, and Mihaly Csikszentmihalyi provide fascinating information for anyone interested in how people go about their daily lives. Key Features: Provides a step-by-step guide: In nontechnical prose, the book details the logistics of carrying out an Experience Sampling Method (ESM) study and guides the reader through every step of the process, from conceiving the research question to analyzing the data. In addition, a through treatment of the measurement of Csikszentmihalyi s flow describes all of the different ways in which flow can be measured. Includes real-life examples: This book gives readers useful tips to consider before implementing a study, based on real-life examples. It illustrates how the ESM has been used to address a diverse array of topics in social science research including the phenomenology of everyday life, gender differences, family relations, work experiences, cross-cultural differences and similarities, school experiences, and mental health. Offers a complete overview of the foundations for ESM: This is the first source to compile findings from a large and increasingly diverse research literature documenting the use of the ESM. A comprehensive overview is given of issues affecting reliability and validity of the method and empirical evidence of its psychometric properties. Intended Audience: This is a must-have resource for social and behavioral scientists who are studying the human experience in everyday life and need guidelines for how to validate and present their data. It can also be used in various advanced undergraduate and graduate research methods courses in the departments of Education, Educational Psychology, Psychology, Nursing, and Health.}, +} + +@Book{Iacus-2008, + author = {Stefano M. Iacus}, + date = {2008}, + title = {Simulation and Inference for Stochastic Differential Equations}, + doi = {10.1007/978-0-387-75839-8}, + publisher = {Springer New York}, +} + +@Book{Lutkepohl-2005, + author = {Helmut L{\"u}tkepohl}, + date = {2005}, + title = {New introduction to multiple time series analysis}, + doi = {10.1007/978-3-540-27752-1}, + isbn = {978-3-540-27752-1}, + location = {Berlin}, + pagetotal = {764}, + abstract = {This reference work and graduate level textbook considers a wide range of models and methods for analyzing and forecasting multiple time series. The models covered include vector autoregressive, cointegrated, vector autoregressive moving average, multivariate ARCH and periodic processes as well as dynamic simultaneous equations and state space models. Least squares, maximum likelihood and Bayesian methods are considered for estimating these models. Different procedures for model selection and model specification are treated and a wide range of tests and criteria for model checking are introduced. Causality analysis, impulse response analysis and innovation accounting are presented as tools for structural analysis. The book is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it. Applied researchers involved in analyzing multiple time series may benefit from the book as it provides the background and tools for their tasks. It bridges the gap to the difficult technical literature on the topic.}, + publisher = {Springer Berlin Heidelberg}, +} + +@Book{MacKinnon-2008, + author = {David P. MacKinnon}, + series = {Multivariate applications}, + date = {2008}, + title = {Introduction to statistical mediation analysis}, + doi = {10.4324/9780203809556}, + isbn = {9780805864298}, + location = {Hoboken}, + pages = {488}, + library = {QA278.2 .M29 2008}, + addendum = {https://lccn.loc.gov/2007011793}, + abstract = {This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. + Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying downloadable resources contain outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. + The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. + Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.}, + publisher = {Erlbaum Psych Press}, + keywords = {Mediation (Statistics)}, + annotation = {mediation, mediation-book}, +} + +@Book{Venables-Ripley-2002, + author = {W. N. Venables and B. D. Ripley}, + date = {2002}, + title = {Modern applied statistics with {S}}, + doi = {10.1007/978-0-387-21706-2}, + publisher = {Springer New York}, +} + +@Article{Aalen-Roysland-Gran-etal-2012, + author = {Odd O. Aalen and Kjetil R{\o}ysland and Jon Michael Gran and Bruno Ledergerber}, + date = {2012}, + journaltitle = {Journal of the Royal Statistical Society. Series A (Statistics in Society)}, + title = {Causality, mediation and time: A dynamic viewpoint}, + issn = {09641998, 1467985X}, + number = {4}, + pages = {831--861}, + doi = {10.1111/j.1467-985X.2011.01030.x}, + volume = {175}, + abstract = {Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations 'at a glance'. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented.}, + publisher = {Wiley}, +} + +@Article{Aalen-Roysland-Gran-etal-2016, + author = {Odd O. Aalen and Kjetil R{\o}ysland and Jon Michael Gran and Roger Kouyos and Theis Lange}, + date = {2016-07}, + journaltitle = {Statistical Methods in Medical Research}, + title = {Can we believe the {DAGs}? {A} comment on the relationship between causal {DAGs} and mechanisms}, + doi = {10.1177/0962280213520436}, + issn = {1477-0334}, + number = {5}, + pages = {2294--2314}, + volume = {25}, + abstract = {Directed acyclic graphs (DAGs) play a large role in the modern approach to causal inference. DAGs describe the relationship between measurements taken at various discrete times including the effect of interventions. The causal mechanisms, on the other hand, would naturally be assumed to be a continuous process operating over time in a cause–effect fashion. How does such immediate causation, that is causation occurring over very short time intervals, relate to DAGs constructed from discrete observations? We introduce a time-continuous model and simulate discrete observations in order to judge the relationship between the DAG and the immediate causal model. We find that there is no clear relationship; indeed the Bayesian network described by the DAG may not relate to the causal model. Typically, discrete observations of a process will obscure the conditional dependencies that are represented in the underlying mechanistic model of the process. It is therefore doubtful whether DAGs are always suited to describe causal relationships unless time is explicitly considered in the model. We relate the issues to mechanistic modeling by using the concept of local (in)dependence. An example using data from the Swiss HIV Cohort Study is presented.}, + publisher = {SAGE Publications}, +} + +@Article{Asparouhov-Hamaker-Muthen-2017, + author = {Tihomir Asparouhov and Ellen L. Hamaker and Bengt Muth{\a'e}n}, + date = {2017-12}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Dynamic structural equation models}, + doi = {10.1080/10705511.2017.1406803}, + number = {3}, + pages = {359--388}, + volume = {25}, + abstract = {This article presents dynamic structural equation modeling (DSEM), which can be used to study the evolution of observed and latent variables as well as the structural equation models over time. DSEM is suitable for analyzing intensive longitudinal data where observations from multiple individuals are collected at many points in time. The modeling framework encompasses previously published DSEM models and is a comprehensive attempt to combine time-series modeling with structural equation modeling. DSEM is estimated with Bayesian methods using the Markov chain Monte Carlo Gibbs sampler and the Metropolis-Hastings sampler. We provide a detailed description of the estimation algorithm as implemented in the Mplus software package. DSEM can be used for longitudinal analysis of any duration and with any number of observations across time. Simulation studies are used to illustrate the framework and study the performance of the estimation method. Methods for evaluating model fit are also discussed.}, + publisher = {Informa {UK} Limited}, + keywords = {Bayesian methods, dynamic factor analysis, intensive longitudinal data, time series analysis}, +} + +@Article{Biesanz-Falk-Savalei-2010, + author = {Jeremy C. Biesanz and Carl F. Falk and Victoria Savalei}, + date = {2010-08}, + journaltitle = {Multivariate Behavioral Research}, + title = {Assessing mediational models: Testing and interval estimation for indirect effects}, + doi = {10.1080/00273171.2010.498292}, + number = {4}, + pages = {661--701}, + volume = {45}, + abstract = {Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron \& Kenny, 1986; Sobel, 1982) have in recent years been supplemented by computationally intensive methods such as bootstrapping, the distribution of the product methods, and hierarchical Bayesian Markov chain Monte Carlo (MCMC) methods. These different approaches for assessing mediation are illustrated using data from Dunn, Biesanz, Human, and Finn (2007). However, little is known about how these methods perform relative to each other, particularly in more challenging situations, such as with data that are incomplete and/or nonnormal. This article presents an extensive Monte Carlo simulation evaluating a host of approaches for assessing mediation. We examine Type I error rates, power, and coverage. We study normal and nonnormal data as well as complete and incomplete data. In addition, we adapt a method, recently proposed in statistical literature, that does not rely on confidence intervals (CIs) to test the null hypothesis of no indirect effect. The results suggest that the new inferential method--the partial posterior p value--slightly outperforms existing ones in terms of maintaining Type I error rates while maximizing power, especially with incomplete data. Among confidence interval approaches, the bias-corrected accelerated (BCa) bootstrapping approach often has inflated Type I error rates and inconsistent coverage and is not recommended. In contrast, the bootstrapped percentile confidence interval and the hierarchical Bayesian MCMC method perform best overall, maintaining Type I error rates, exhibiting reasonable power, and producing stable and accurate coverage rates.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bootstrap, mediation-bayesian}, +} + +@Article{Blanca-Arnau-LopezMontiel-etal-2013, + author = {Maria J. Blanca and Jaume Arnau and Dolores Lopez-Montiel and Roser Bono and Rebecca Bendayan}, + date = {2013-05}, + journaltitle = {Methodology}, + title = {Skewness and kurtosis in real data samples}, + doi = {10.1027/1614-2241/a000057}, + number = {2}, + pages = {78--84}, + volume = {9}, + abstract = {Parametric statistics are based on the assumption of normality. Recent findings suggest that Type I error and power can be adversely affected when data are non-normal. This paper aims to assess the distributional shape of real data by examining the values of the third and fourth central moments as a measurement of skewness and kurtosis in small samples. The analysis concerned 693 distributions with a sample size ranging from 10 to 30. Measures of cognitive ability and of other psychological variables were included. The results showed that skewness ranged between -2.49 and 2.33. The values of kurtosis ranged between -1.92 and 7.41. Considering skewness and kurtosis together the results indicated that only 5.5\% of distributions were close to expected values under normality. Although extreme contamination does not seem to be very frequent, the findings are consistent with previous research suggesting that normality is not the rule with real data.}, + publisher = {Hogrefe Publishing Group}, +} + +@Article{Boettiger-Eddelbuettel-2017, + author = {Carl Boettiger and Dirk Eddelbuettel}, + date = {2017}, + journaltitle = {The R Journal}, + title = {An introduction to {Rocker}: Docker containers for {R}}, + doi = {10.32614/rj-2017-065}, + number = {2}, + pages = {527}, + volume = {9}, + abstract = {We describe the Rocker project, which provides a widely-used suite of Docker images with customized R environments for particular tasks. We discuss how this suite is organized, and how these tools can increase portability, scaling, reproducibility, and convenience of R users and developers.}, + publisher = {The R Foundation}, + annotation = {container, container-docker, container-docker-rocker}, +} + +@Article{Chen-Daniel-Ziad-etal-2011, + author = {Gang Chen and Daniel R. Glen and Ziad S. Saad and J. Paul Hamilton and Moriah E. Thomason and Ian H. Gotlib and Robert W. Cox}, + date = {2011-12}, + journaltitle = {Computers in Biology and Medicine}, + title = {Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis}, + doi = {10.1016/j.compbiomed.2011.09.004}, + number = {12}, + pages = {1142--1155}, + volume = {41}, + abstract = {Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and their interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoid some prevalent pitfalls that can occur when VAR and SEM are utilized separately.}, + keywords = {connectivity analysis, vector autoregression (VAR), structural equation modeling (SEM), structural vector autoregression (SVAR)}, + publisher = {Elsevier {BV}}, +} + +@Article{Chow-Ho-Hamaker-etal-2010, + author = {Sy-Miin Chow and Moon-ho R. Ho and Ellen L. Hamaker and Conor V. Dolan}, + date = {2010-04}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Equivalence and differences between structural equation modeling and state-space modeling techniques}, + doi = {10.1080/10705511003661553}, + number = {2}, + pages = {303--332}, + volume = {17}, + abstract = {State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and numerical simulations, with a focus on their use in representing intraindividual dynamics and interindividual differences. To demonstrate the respective strengths and weaknesses of the 2 approaches in representing these 2 aspects, we simulated data under (a) a cross-sectional common factor model, (b) a latent difference score model with random effects in intercept and slope, and (c) a bivariate dynamic factor analysis model with auto- and cross-regression parameters. Possible ways in which SEM and state-space modeling can be utilized as complementary tools in representing human developmental and other related processes are discussed.}, + publisher = {Informa {UK} Limited}, + annotation = {ild, sem, ssm}, +} + +@Article{Curran-Bauer-2011, + author = {Patrick J. Curran and Daniel J. Bauer}, + date = {2011-01}, + journaltitle = {Annual Review of Psychology}, + title = {The disaggregation of within-person and between-person effects in longitudinal models of change}, + doi = {10.1146/annurev.psych.093008.100356}, + number = {1}, + pages = {583--619}, + volume = {62}, + abstract = {Longitudinal models are becoming increasingly prevalent in the behavioral sciences, with key advantages including increased power, more comprehensive measurement, and establishment of temporal precedence. One particularly salient strength offered by longitudinal data is the ability to disaggregate between-person and within-person effects in the regression of an outcome on a time-varying covariate. However, the ability to disaggregate these effects has not been fully capitalized upon in many social science research applications. Two likely reasons for this omission are the general lack of discussion of disaggregating effects in the substantive literature and the need to overcome several remaining analytic challenges that limit existing quantitative methods used to isolate these effects in practice. This review explores both substantive and quantitative issues related to the disaggregation of effects over time, with a particular emphasis placed on the multilevel model. Existing analytic methods are reviewed, a general approach to the problem is proposed, and both the existing and proposed methods are demonstrated using several artificial data sets. Potential limitations and directions for future research are discussed, and recommendations for the disaggregation of effects in practice are offered.}, + publisher = {Annual Reviews}, + keywords = {multilevel modeling, growth modeling, trajectory analysis, within-person effects}, +} + +@Article{Deboeck-Boulton-2016, + author = {Pascal R. Deboeck and Aaron J. Boulton}, + date = {2016-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Integration of stochastic differential equations using structural equation modeling: A method to facilitate model fitting and pedagogy}, + doi = {10.1080/10705511.2016.1218763}, + issn = {1532-8007}, + number = {6}, + pages = {888--903}, + volume = {23}, + abstract = {Stochastic differential equation (SDE) models are a promising method for modeling intraindividual change and variability. Applications of SDEs in the social sciences are relatively limited, as these models present conceptual and programming challenges. This article presents a novel method for conceptualizing SDEs. This method uses structural equation modeling (SEM) conventions to simplify SDE specification, the flexibility of SEM to expand the range of SDEs that can be fit, and SEM diagram conventions to facilitate the teaching of SDE concepts. This method is a variation of latent difference scores (McArdle, 2009; McArdle \& Hamagami, 2001) and the oversampling approach (Singer, 2012), and approximates the advantages of analytic methods such as the exact discrete model (Oud \& Jansen, 2000) while retaining the modeling fiexibility of methods such as latent differential equation modeling (Boker, Neale, \& Rausch, 2004). A simulation and empirical example are presented to illustrate that this method can be implemented on current computing hardware, produces good approximations of analytic solutions, and can flexibly accommodate novel models.}, + publisher = {Informa UK Limited}, +} + +@Article{Deboeck-Preacher-2015, + author = {Pascal R. Deboeck and Kristopher J. Preacher}, + date = {2015-06}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {No need to be discrete: A method for continuous time mediation analysis}, + doi = {10.1080/10705511.2014.973960}, + number = {1}, + pages = {61--75}, + volume = {23}, + abstract = {Mediation is one concept that has shaped numerous theories. The list of problems associated with mediation models, however, has been growing. Mediation models based on cross-sectional data can produce unexpected estimates, so much so that making longitudinal or causal inferences is inadvisable. Even longitudinal mediation models have faults, as parameter estimates produced by these models are specific to the lag between observations, leading to much debate over appropriate lag selection. Using continuous time models (CTMs) rather than commonly employed discrete time models, one can estimate lag-independent parameters. We demonstrate methodology that allows for continuous time mediation analyses, with attention to concepts such as indirect and direct effects, partial mediation, the effect of lag, and the lags at which relations become maximal. A simulation compares common longitudinal mediation methods with CTMs. Reanalysis of a published covariance matrix demonstrates that CTMs can be fit to data used in longitudinal mediation studies.}, + publisher = {Informa {UK} Limited}, + keywords = {continuous time models, cross-lagged panel model, exact discrete model, longitudinal mediation, mediation}, + annotation = {mediation, mediation-longitudinal}, +} + +@Article{Demeshko-Washio-Kawahara-etal-2015, + author = {Marina Demeshko and Takashi Washio and Yoshinobu Kawahara and Yuriy Pepyolyshev}, + date = {2015-11}, + journaltitle = {{ACM} Transactions on Intelligent Systems and Technology}, + title = {A novel continuous and structural {VAR} modeling approach and its application to reactor noise analysis}, + doi = {10.1145/2710025}, + number = {2}, + pages = {1--22}, + volume = {7}, + abstract = {A vector autoregressive model in discrete time domain (DVAR) is often used to analyze continuous time, multivariate, linear Markov systems through their observed time series data sampled at discrete timesteps. Based on previous studies, the DVAR model is supposed to be a noncanonical representation of the system, that is, it does not correspond to a unique system bijectively. However, in this article, we characterize the relations of the DVAR model with its corresponding Structural Vector AR (SVAR) and Continuous Time Vector AR (CTVAR) models through a finite difference method across continuous and discrete time domain. We further clarify that the DVAR model of a continuous time, multivariate, linear Markov system is canonical under a highly generic condition. Our analysis shows that we can uniquely reproduce its SVAR and CTVAR models from the DVAR model. Based on these results, we propose a novel Continuous and Structural Vector Autoregressive (CSVAR) modeling approach to derive the SVAR and the CTVAR models from their DVAR model empirically derived from the observed time series of continuous time linear Markov systems. We demonstrate its superior performance through some numerical experiments on both artificial and real-world data.}, + publisher = {Association for Computing Machinery ({ACM})}, + keywords = {casual discovery, ARMA models, control theory, AR model, SVAR model, CTVAR model, continuous time linear Markov +system, canonicality, nuclear reactor noise analysis}, +} + +@Article{Driver-Oud-Voelkle-2017, + author = {Charles C. Driver and Johan H. L. Oud and Manuel C. Voelkle}, + date = {2017}, + journaltitle = {Journal of Statistical Software}, + title = {Continuous time structural equation modeling with {R} package {ctsem}}, + doi = {10.18637/jss.v077.i05}, + issn = {1548-7660}, + number = {5}, + volume = {77}, + abstract = {We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1) and time series (N = 1) data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models) in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem. }, + publisher = {Foundation for Open Access Statistic}, +} + +@Article{Driver-Voelkle-2018, + author = {Charles C. Driver and Manuel C. Voelkle}, + date = {2018-12}, + journaltitle = {Psychological Methods}, + title = {Hierarchical {Bayesian} continuous time dynamic modeling.}, + doi = {10.1037/met0000168}, + issn = {1082-989X}, + number = {4}, + pages = {774--799}, + volume = {23}, + abstract = {Continuous time dynamic models are similar to popular discrete time models such as autoregressive cross-lagged models, but through use of stochastic differential equations can accurately account for differences in time intervals between measurements, and more parsimoniously specify complex dynamics. As such they offer powerful and flexible approaches to understand ongoing psychological processes and interventions, and allow for measurements to be taken a variable number of times, and at irregular intervals. However, limited developments have taken place regarding the use of continuous time models in a fully hierarchical context, in which all model parameters are allowed to vary over individuals. This has meant that questions regarding individual differences in parameters have had to rely on single-subject time series approaches, which require far more measurement occasions per individual. We present a hierarchical Bayesian approach to estimating continuous time dynamic models, allowing for individual variation in all model parameters. We also describe an extension to the ctsem package for R, which interfaces to the Stan software and allows simple specification and fitting of such models. To demonstrate the approach, we use a subsample from the German socioeconomic panel and relate overall life satisfaction and satisfaction with health.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Dudgeon-2017, + author = {Paul Dudgeon}, + date = {2017-03}, + journaltitle = {Psychometrika}, + title = {Some improvements in confidence intervals for standardized regression coefficients}, + doi = {10.1007/s11336-017-9563-z}, + number = {4}, + pages = {928--951}, + volume = {82}, + keywords = {standardized regression coefficients, robust confidence intervals, non-normality}, + abstract = {Yuan and Chan (Psychometrika 76:670-690, 2011. doi:10.1007/S11336-011-9224-6) derived consistent confidence intervals for standardized regression coefficients under fixed and random score assumptions. Jones and Waller (Psychometrika 80:365-378, 2015. doi:10.1007/S11336-013-9380-Y) extended these developments to circumstances where data are non-normal by examining confidence intervals based on Browne's (Br J Math Stat Psychol 37:62-83, 1984. doi:10.1111/j.2044-8317.1984.tb00789.x) asymptotic distribution-free (ADF) theory. Seven different heteroscedastic-consistent (HC) estimators were investigated in the current study as potentially better solutions for constructing confidence intervals on standardized regression coefficients under non-normality. Normal theory, ADF, and HC estimators were evaluated in a Monte Carlo simulation. Findings confirmed the superiority of the HC3 (MacKinnon and White, J Econ 35:305-325, 1985. doi:10.1016/0304-4076(85)90158-7) and HC5 (Cribari-Neto and Da Silva, Adv Stat Anal 95:129-146, 2011. doi:10.1007/s10182-010-0141-2) interval estimators over Jones and Waller's ADF estimator under all conditions investigated, as well as over the normal theory method. The HC5 estimator was more robust in a restricted set of conditions over the HC3 estimator. Some possible extensions of HC estimators to other effect size measures are considered for future developments.}, + publisher = {Springer Science and Business Media {LLC}}, +} + +@Article{Eddelbuettel-Balamuta-2017, + author = {Dirk Eddelbuettel and James Joseph Balamuta}, + date = {2017-08}, + journaltitle = {PeerJ Preprints}, + title = {Extending {R} with {C++}: A brief introduction to {Rcpp}}, + doi = {10.7287/peerj.preprints.3188v1}, + number = {3}, + volume = {3188v1}, + abstract = {R has always provided an application programming interface (API) for extensions. Based on the C language, it uses a number of macros and other low-level constructs to exchange data structures between the R process and any dynamically-loaded component modules authors added to it. With the introduction of the Rcpp package, and its later refinements, this process has become considerably easier yet also more robust. By now, Rcpp has become the most popular extension mechanism for R. This article introduces Rcpp, and illustrates with several examples how the Rcpp Attributes mechanism in particular eases the transition of objects between R and C++ code.}, + publisher = {{PeerJ}}, + annotation = {r, r-packages}, +} + +@Article{Eddelbuettel-Francois-2011, + author = {Dirk Eddelbuettel and Romain Fran{\c c}ois}, + date = {2011}, + journaltitle = {Journal of Statistical Software}, + title = {{Rcpp}: Seamless {R} and {C++} integration}, + doi = {10.18637/jss.v040.i08}, + number = {8}, + volume = {40}, + abstract = {The Rcpp package simplifies integrating C++ code with R. It provides a consistent C++ class hierarchy that maps various types of R objects (vectors, matrices, functions, environments, ...) to dedicated C++ classes. Object interchange between R and C++ is managed by simple, flexible and extensible concepts which include broad support for C++ Standard Template Library idioms. C++ code can both be compiled, linked and loaded on the fly, or added via packages. Flexible error and exception code handling is provided. Rcpp substantially lowers the barrier for programmers wanting to combine C++ code with R.}, + publisher = {Foundation for Open Access Statistic}, + annotation = {r, r-packages}, +} + +@Article{Eddelbuettel-Sanderson-2014, + author = {Dirk Eddelbuettel and Conrad Sanderson}, + date = {2014-03}, + journaltitle = {Computational Statistics \& Data Analysis}, + title = {{RcppArmadillo}: Accelerating {R} with high-performance {C++} linear algebra}, + doi = {10.1016/j.csda.2013.02.005}, + pages = {1054--1063}, + volume = {71}, + abstract = {The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centred algorithms from R to C++ becomes straightforward. The algorithms retain the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.}, + publisher = {Elsevier {BV}}, + annotation = {r, r-packages}, +} + +@Article{Efron-2012, + author = {Bradley Efron}, + date = {2012-12}, + journaltitle = {The Annals of Applied Statistics}, + title = {Bayesian inference and the parametric bootstrap}, + doi = {10.1214/12-aoas571}, + number = {4}, + volume = {6}, + abstract = {The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates. Besides computational methods, the theory provides a connection between Bayesian and frequentist analysis. Efficient algorithms for the frequentist accuracy of Bayesian inferences are developed and demonstrated in a model selection example.}, + publisher = {Institute of Mathematical Statistics}, + keywords = {deviance, exponential families, generalized linear models, Jeffreys prior}, +} + +@Article{Enders-Fairchild-MacKinnon-2013, + author = {Craig K. Enders and Amanda J. Fairchild and David P. MacKinnon}, + date = {2013-05}, + journaltitle = {Multivariate Behavioral Research}, + title = {A {Bayesian} approach for estimating mediation effects with missing data}, + doi = {10.1080/00273171.2013.784862}, + issn = {1532-7906}, + number = {3}, + pages = {340--369}, + volume = {48}, + abstract = {Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed that the Bayesian approach produced frequentist coverage rates and power estimates that were comparable to those of maximum likelihood with the bias-corrected bootstrap. We share a SAS macro that implements Bayesian estimation and use two data analysis examples to demonstrate its use.}, + publisher = {Informa UK Limited}, +} + +@Article{Epskamp-Borsboom-Fried-2017, + author = {Sacha Epskamp and Denny Borsboom and Eiko I. Fried}, + date = {2017-03}, + journaltitle = {Behavior Research Methods}, + title = {Estimating psychological networks and their accuracy: A tutorial paper}, + doi = {10.3758/s13428-017-0862-1}, + issn = {1554-3528}, + number = {1}, + pages = {195--212}, + volume = {50}, + abstract = {The usage of psychological networks that conceptualize behavior as a complex interplay of psychological and other components has gained increasing popularity in various research fields. While prior publications have tackled the topics of estimating and interpreting such networks, little work has been conducted to check how accurate (i.e., prone to sampling variation) networks are estimated, and how stable (i.e., interpretation remains similar with less observations) inferences from the network structure (such as centrality indices) are. In this tutorial paper, we aim to introduce the reader to this field and tackle the problem of accuracy under sampling variation. We first introduce the current state-of-the-art of network estimation. Second, we provide a rationale why researchers should investigate the accuracy of psychological networks. Third, we describe how bootstrap routines can be used to (A) assess the accuracy of estimated network connections, (B) investigate the stability of centrality indices, and (C) test whether network connections and centrality estimates for different variables differ from each other. We introduce two novel statistical methods: for (B) the correlation stability coefficient, and for (C) the bootstrapped difference test for edge-weights and centrality indices. We conducted and present simulation studies to assess the performance of both methods. Finally, we developed the free R-package bootnet that allows for estimating psychological networks in a generalized framework in addition to the proposed bootstrap methods. We showcase bootnet in a tutorial, accompanied by R syntax, in which we analyze a dataset of 359 women with posttraumatic stress disorder available online.}, + keywords = {network psychometrics, psychological networks, replicability, bootstrap, tutorial}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{Epskamp-Lourens-Mottus-etal-2018, + author = {Sacha Epskamp and Lourens J. Waldorp and Ren{\a'e} M~ottus and Denny Borsboom}, + date = {2018-04}, + journaltitle = {Multivariate Behavioral Research}, + title = {The {Gaussian} graphical model in cross-sectional and time-series data}, + doi = {10.1080/00273171.2018.1454823}, + number = {4}, + pages = {453--480}, + volume = {53}, + abstract = {We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.}, + publisher = {Informa {UK} Limited}, + keywords = {time-series analysis, multilevel modeling, multivariate analysis, exploratory-data analysis, network modeling}, +} + +@InCollection{Fairchild-MacKinnon-2014, + author = {Amanda J. Fairchild and David P. MacKinnon}, + booktitle = {Defining Prevention Science}, + date = {2014}, + title = {Using mediation and moderation analyses to enhance prevention research}, + doi = {10.1007/978-1-4899-7424-2_23}, + pages = {537--555}, + abstract = {Integrating mediating and moderating variables into prevention research can refine interventions and guide program evaluation by demonstrating how and for whom programs work, as well as lending insight into the construct validity of an intervention. In this way, program development and evaluation strategies that incorporate mediation and moderation analyses contribute to our ability to affect behavioral change. This chapter aims to illustrate how mediation and moderation analyses enhance and inform prevention and intervention work. To that end we define and differentiate the models, discuss their application to prevention programming and research, and provide information on their estimation for individuals seeking to implement these analyses.}, + publisher = {Springer {US}}, + keywords = {mediation, moderation, prevention research, program evaluation, mechanisms of change, contextual effects}, + annotation = {mediation-prevention, mediation-moderation}, +} + +@Article{Fritz-Taylor-MacKinnon-2012, + author = {Matthew S. Fritz and Aaron B. Taylor and David P. MacKinnon}, + date = {2012-02}, + journaltitle = {Multivariate Behavioral Research}, + title = {Explanation of two anomalous results in statistical mediation analysis}, + doi = {10.1080/00273171.2012.640596}, + number = {1}, + pages = {61--87}, + volume = {47}, + abstract = {Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special concern as the bias-corrected bootstrap is often recommended and used due to its higher statistical power compared with other tests. The second result is statistical power reaching an asymptote far below 1.0 and in some conditions even declining slightly as the size of the relationship between X and M, a, increased. Two computer simulations were conducted to examine these findings in greater detail. Results from the first simulation found that the increased Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap are a function of an interaction between the size of the individual paths making up the mediated effect and the sample size, such that elevated Type I error rates occur when the sample size is small and the effect size of the nonzero path is medium or larger. Results from the second simulation found that stagnation and decreases in statistical power as a function of the effect size of the a path occurred primarily when the path between M and Y, b, was small. Two empirical mediation examples are provided using data from a steroid prevention and health promotion program aimed at high school football players (Athletes Training and Learning to Avoid Steroids; Goldberg et al., 1996), one to illustrate a possible Type I error for the bias-corrected bootstrap test and a second to illustrate a loss in power related to the size of a. Implications of these findings are discussed.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Gates-Molenaar-Hillary-etal-2010, + author = {Kathleen M. Gates and Peter C.M. Molenaar and Frank G. Hillary and Nilam Ram and Michael J. Rovine}, + date = {2010-04}, + journaltitle = {{NeuroImage}}, + title = {Automatic search for {fMRI} connectivity mapping: An alternative to {Granger} causality testing using formal equivalences among {SEM} path modeling, {VAR}, and unified {SEM}}, + doi = {10.1016/j.neuroimage.2009.12.117}, + number = {3}, + pages = {1118--1125}, + volume = {50}, + abstract = {Modeling the relationships among brain regions of interest (ROIs) carries unique potential to explicate how the brain orchestrates information processing. However, hurdles arise when using functional MRI data. Variation in ROI activity contains sequential dependencies and shared influences on synchronized activation. Consequently, both lagged and contemporaneous relationships must be considered for unbiased statistical parameter estimation. Identifying these relationships using a data-driven approach could guide theory-building regarding integrated processing. The present paper demonstrates how the unified SEM attends to both lagged and contemporaneous influences on ROI activity. Additionally, this paper offers an approach akin to Granger causality testing, Lagrange multiplier testing, for statistically identifying directional influence among ROIs and employs this approach using an automatic search procedure to arrive at the optimal model. Rationale for this equivalence is offered by explicating the formal relationships among path modeling, vector autoregression, and unified SEM. When applied to simulated data, biases in estimates which do not consider both lagged and contemporaneous paths become apparent. Finally, the use of unified SEM with the automatic search procedure is applied to an empirical data example.}, + publisher = {Elsevier {BV}}, +} + +@Article{Gu-Preacher-Ferrer-2014, + author = {Fei Gu and Kristopher J. Preacher and Emilio Ferrer}, + date = {2014-04}, + journaltitle = {Journal of Educational and Behavioral Statistics}, + title = {A state space modeling approach to mediation analysis}, + doi = {10.3102/1076998614524823}, + issn = {1935-1054}, + number = {2}, + pages = {117--143}, + volume = {39}, + abstract = {Mediation is a causal process that evolves over time. Thus, a study of mediation requires data collected throughout the process. However, most applications of mediation analysis use cross-sectional rather than longitudinal data. Another implicit assumption commonly made in longitudinal designs for mediation analysis is that the same mediation process universally applies to all members of the population under investigation. This assumption ignores the important issue of ergodicity before aggregating the data across subjects. We first argue that there exists a discrepancy between the concept of mediation and the research designs that are typically used to investigate it. Second, based on the concept of ergodicity, we argue that a given mediation process probably is not equally valid for all individuals in a population. Therefore, the purpose of this article is to propose a two-faceted solution. The first facet of the solution is that we advocate a single-subject time-series design that aligns data collection with researchers’ conceptual understanding of mediation. The second facet is to introduce a flexible statistical method—the state space model—as an ideal technique to analyze single-subject time series data in mediation studies. We provide an overview of the state space method and illustrative applications using both simulated and real time series data. Finally, we discuss additional issues related to research design and modeling.}, + publisher = {American Educational Research Association (AERA)}, +} + +@Article{HaanRietdijk-Voelkle-Keijsers-Hamaker-2017, + author = {Silvia {de Haan-Rietdijk} and Manuel C. Voelkle and Loes Keijsers and Ellen L. Hamaker}, + date = {2017-10}, + journaltitle = {Frontiers in Psychology}, + title = {Discrete- vs. continuous-time modeling of unequally spaced experience sampling method data}, + doi = {10.3389/fpsyg.2017.01849}, + issn = {1664-1078}, + volume = {8}, + abstract = {The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.}, + publisher = {Frontiers Media SA}, +} + +@Article{Hamaker-Ceulemans-Grasman-etal-2015, + author = {E. L. Hamaker and E. Ceulemans and R. P. P. P. Grasman and F. Tuerlinckx}, + date = {2015-07}, + journaltitle = {Emotion Review}, + title = {Modeling affect dynamics: State of the art and future challenges}, + doi = {10.1177/1754073915590619}, + issn = {1754-0747}, + number = {4}, + pages = {316--322}, + volume = {7}, + abstract = {The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what research questions are being considered: (1) single- versus multiple-person data; (2) univariate versus multivariate models; (3) stationary versus nonstationary models; (4) linear versus nonlinear models; (5) discrete time versus continuous time models; (6) discrete versus continuous variables; (7) time versus frequency domain; and (8) modeling the process versus computing descriptives. In addition, we discuss what we believe to be the most urging future challenges regarding the modeling of affect dynamics.}, + publisher = {SAGE Publications}, +} + +@Article{Hamaker-Kuiper-Grasman-2015, + author = {Ellen L. Hamaker and Rebecca M. Kuiper and Raoul P. P. P. Grasman}, + date = {2015}, + journaltitle = {Psychological Methods}, + title = {A critique of the cross-lagged panel model}, + doi = {10.1037/a0038889}, + number = {1}, + pages = {102--116}, + volume = {20}, + abstract = {The cross-lagged panel model (CLPM) is believed by many to overcome the problems associated with the use of cross-lagged correlations as a way to study causal influences in longitudinal panel data. The current article, however, shows that if stability of constructs is to some extent of a trait-like, timeinvariant nature, the autoregressive relationships of the CLPM fail to adequately account for this. As a result, the lagged parameters that are obtained with the CLPM do not represent the actual within-person relationships over time, and this may lead to erroneous conclusions regarding the presence, predominance, and sign of causal influences. In this article we present an alternative model that separates the within-person process from stable between-person differences through the inclusion of random intercepts, and we discuss how this model is related to existing structural equation models that include cross-lagged relationships. We derive the analytical relationship between the cross-lagged parameters from the CLPM and the alternative model, and use simulations to demonstrate the spurious results that may arise when using the CLPM to analyze data that include stable, trait-like individual differences. We also present a modeling strategy to avoid this pitfall and illustrate this using an empirical data set. The implications for both existing and future cross-lagged panel research are discussed.}, + keywords = {cross-lagged panel, reciprocal effects, longitudinal model, trait-state models, within-person dynamics}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Hayes-Scharkow-2013, + author = {Andrew F. Hayes and Michael Scharkow}, + date = {2013-08}, + journaltitle = {Psychological Science}, + title = {The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis}, + doi = {10.1177/0956797613480187}, + number = {10}, + pages = {1918--1927}, + volume = {24}, + abstract = {A content analysis of 2 years of Psychological Science articles reveals inconsistencies in how researchers make inferences about indirect effects when conducting a statistical mediation analysis. In this study, we examined the frequency with which popularly used tests disagree, whether the method an investigator uses makes a difference in the conclusion he or she will reach, and whether there is a most trustworthy test that can be recommended to balance practical and performance considerations. We found that tests agree much more frequently than they disagree, but disagreements are more common when an indirect effect exists than when it does not. We recommend the bias-corrected bootstrap confidence interval as the most trustworthy test if power is of utmost concern, although it can be slightly liberal in some circumstances. Investigators concerned about Type I errors should choose the Monte Carlo confidence interval or the distribution-of-the-product approach, which rarely disagree. The percentile bootstrap confidence interval is a good compromise test.}, + publisher = {{SAGE} Publications}, + annotation = {mediation, mediation-bootstrap, mediation-montecarlo, mediation-prodclin}, +} + +@Article{Hecht-Voelkle-2019, + author = {Martin Hecht and Manuel C. Voelkle}, + date = {2019-11}, + journaltitle = {International Journal of Behavioral Development}, + title = {Continuous-time modeling in prevention research: An illustration}, + doi = {10.1177/0165025419885026}, + issn = {1464-0651}, + number = {1}, + pages = {19--27}, + volume = {45}, + abstract = {The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study comparisons. Continuous-time modeling overcomes these limitations. In this article, we illustrate the use of continuous-time models using Bayesian and frequentist approaches to model estimation. As an empirical example, we study the dynamic interplay of physical activity and health, a classic research topic in prevention science, using data from the “Midlife in the United States (MIDUS 2): Daily Stress Project, 2004–2009.” To help prevention researchers in adopting the approach, we provide annotated R scripts and a simulated data set based on the results from analyzing the MIDUS 2 data.}, + publisher = {SAGE Publications}, +} + +@Article{Hesterberg-2015, + author = {Tim C. Hesterberg}, + date = {2015-10}, + journaltitle = {The American Statistician}, + title = {What teachers should know about the bootstrap: Resampling in the undergraduate statistics curriculum}, + doi = {10.1080/00031305.2015.1089789}, + number = {4}, + pages = {371--386}, + volume = {69}, + abstract = {Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using $t$-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods--how they work, when they work or not, and which methods work better-and to highlight pedagogical issues. Supplementary materials for this article are available online.}, + publisher = {Informa {UK} Limited}, + keywords = {bias, confidence intervals, sampling distribution, standard error, statistical concepts, teaching}, +} + +@Article{Hingson-Zha-Smyth-2017, + author = {Ralph Hingson and Wenxing Zha and Daniel Smyth}, + date = {2017-07}, + journaltitle = {Journal of Studies on Alcohol and Drugs}, + title = {Magnitude and trends in heavy episodic drinking, alcohol-impaired driving, and alcohol-related mortality and overdose hospitalizations among emerging adults of college ages 18–24 in the {United States}, 1998–2014}, + doi = {10.15288/jsad.2017.78.540}, + issn = {1938-4114}, + number = {4}, + pages = {540--548}, + volume = {78}, + abstract = {Objective: This article estimates percentages of U.S. emerging adults ages 18-24 engaging in past-month heavy episodic drinking and past-year alcohol-impaired driving, and numbers experiencing alcohol-related unintentional injury deaths and overdose hospitalizations between 1998 and 2014. Method: We analyzed national injury mortality data from coroner, census, and college enrollment statistics, the National Survey on Drug Use and Health, and the Nationwide Inpatient Sample. Results: From 1999 to 2005, percentages of emerging adults ages 18-24 reporting past-month heavy episodic drinking rose from 37.1\% to 43.1\% and then declined to 38.8\% in 2014. Alcohol-impaired driving rose from 24\% to 25.5\% and then declined to 16.0\%. Alcohol-related unintentional injury deaths increased from 4,807 in 1998 to 5,531 in 2005 and then declined to 4,105 in 2014, a reduction of 29\% per 100,000 since 1998. Alcohol-related traffic deaths increased from 3,783 in 1998 to 4,114 in 2005 and then declined to 2,614 in 2014, down 43\% per 100,000 since 1998. Alcohol-related overdose deaths increased from 207 in 1998 to 891 in 2014, a 254\% increase per 100,000. Other types of nontraffic unintentional injury deaths declined. Alcohol-overdose hospitalizations rose 26\% per 100,000 from 1998 to 2014, especially from increases in alcohol/other drug overdoses, up 61\% (alcohol/opioid overdoses up 197\%). Conclusions: Among emerging adults, a trend toward increased alcohol-related unintentional injury deaths, heavy episodic drinking, and alcohol-impaired driving between 1998 and 2005 was reversed by 2014. Persistent high levels of heavy episodic drinking and related problems among emerging adults underscore a need to expand individually oriented interventions, college/community collaborative programs, and evidence-supported policies to reduce their drinking and related problems.}, + publisher = {Alcohol Research Documentation, Inc.}, +} + +@Article{Hunter-2017, + author = {Michael D. Hunter}, + date = {2017-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {State space modeling in an open source, modular, structural equation modeling environment}, + doi = {10.1080/10705511.2017.1369354}, + number = {2}, + pages = {307--324}, + volume = {25}, + abstract = {State space models (SSMs) are introduced in the context of structural equation modeling (SEM). In particular, the OpenMx implementation of SSMs using the Kalman filter and prediction error decomposition is discussed. In reflection of modularity, the implementation uses the same full information maximum likelihood missing data procedures for SSMs and SEMs. Similarly, generic OpenMx features such as likelihood ratio tests, profile likelihood confidence intervals, Hessian-based standard errors, definition variables, and the matrix algebra interface are all supported. Example scripts for specification of autoregressive models, multiple lag models (VAR(p)), multiple lag moving average models (VARMA(p, q)), multiple subject models, and latent growth models are provided. Additionally, latent variable calculation based on the Kalman filter and raw data generation based on a model are all included. Finally, future work for extending SSMs to allow for random effects and for presenting them in diagrams is discussed.}, + publisher = {Informa {UK} Limited}, + keywords = {state space model, software, Kalman filter, OpenMx}, + annotation = {ild, ild-software, sem, sem-software, ssm, ssm-software}, +} + +@Article{Jensen-Turk-2014, + author = {Mark P. Jensen and Dennis C. Turk}, + date = {2014}, + journaltitle = {American Psychologist}, + title = {Contributions of psychology to the understanding and treatment of people with chronic pain: Why it matters to {ALL} psychologists}, + doi = {10.1037/a0035641}, + issn = {0003-066X}, + number = {2}, + pages = {105--118}, + volume = {69}, + abstract = {Chronic pain is a prevalent problem with significant costs to individuals, significant others, and society. In this article, which introduces the American Psychologist special issue on chronic pain, we provide an overview of the seminal contributions made by psychologists to our current understanding of this important problem. We also describe the primary treatments that have been developed based on psychological principles and models of pain, many of which have demonstrated efficacy for reducing pain and its impact on psychological and physical functioning. The article ends with an enumeration of directions for future research and clinical practice. We believe that the chronicle of psychology’s role in improving our understanding and treatment of pain provides a model for how psychologists can have a significant influence on many fields, and that the models and approaches developed for understanding and treating pain may be of use to psychologists working in other areas. Thus, we think that chronic pain is an important area of study that offers insights about translational research for ALL psychologists.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Jones-Waller-2013a, + author = {Jeff A. Jones and Niels G. Waller}, + date = {2013}, + journaltitle = {Psychological Methods}, + title = {Computing confidence intervals for standardized regression coefficients.}, + doi = {10.1037/a0033269}, + number = {4}, + pages = {435--453}, + volume = {18}, + abstract = {With fixed predictors, the standard method (Cohen, Cohen, West, \& Aiken, 2003, p. 86; Harris, 2001, p. 80; Hays, 1994, p. 709) for computing confidence intervals (CIs) for standardized regression coefficients fails to account for the sampling variability of the criterion standard deviation. With random predictors, this method also fails to account for the sampling variability of the predictor standard deviations. Nevertheless, under some conditions the standard method will produce CIs with accurate coverage rates. To delineate these conditions, we used a Monte Carlo simulation to compute empirical CI coverage rates in samples drawn from 36 populations with a wide range of data characteristics. We also computed the empirical CI coverage rates for 4 alternative methods that have been discussed in the literature: noncentrality interval estimation, the delta method, the percentile bootstrap, and the bias-corrected and accelerated bootstrap. Our results showed that for many data-parameter configurations--for example, sample size, predictor correlations, coefficient of determination ($R^2$), orientation of $\beta$ with respect to the eigenvectors of the predictor correlation matrix, $R_X$--the standard method produced coverage rates that were close to their expected values. However, when population $R^2$ was large and when $\beta$ approached the last eigenvector of $R_X$, then the standard method coverage rates were frequently below the nominal rate (sometimes by a considerable amount). In these conditions, the delta method and the 2 bootstrap procedures were consistently accurate. Results using noncentrality interval estimation were inconsistent. In light of these findings, we recommend that researchers use the delta method to evaluate the sampling variability of standardized regression coefficients.}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{Jones-Waller-2015, + author = {Jeff A. Jones and Niels G. Waller}, + date = {2015-06}, + journaltitle = {Psychometrika}, + title = {The normal-theory and asymptotic distribution-free ({ADF}) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior}, + doi = {10.1007/s11336-013-9380-y}, + number = {2}, + pages = {365--378}, + volume = {80}, + abstract = {Yuan and Chan (Psychometrika, 76, 670-690, 2011) recently showed how to compute the covariance matrix of standardized regression coefficients from covariances. In this paper, we describe a method for computing this covariance matrix from correlations. Next, we describe an asymptotic distribution-free (ADF; Browne in British Journal of Mathematical and Statistical Psychology, 37, 62-83, 1984) method for computing the covariance matrix of standardized regression coefficients. We show that the ADF method works well with nonnormal data in moderate-to-large samples using both simulated and real-data examples. R code (R Development Core Team, 2012) is available from the authors or through the Psychometrika online repository for supplementary materials.}, + publisher = {Springer Science and Business Media {LLC}}, + annotation = {standardized-regression, standardized-regression-hc}, +} + +@Article{KisbuSakarya-MacKinnon-Miocevic-2014, + author = {Yasemin Kisbu-Sakarya and David P. MacKinnon and Milica Mio{\v c}evi{\a'c}}, + date = {2014-05}, + journaltitle = {Multivariate Behavioral Research}, + title = {The distribution of the product explains normal theory mediation confidence interval estimation}, + doi = {10.1080/00273171.2014.903162}, + number = {3}, + pages = {261--268}, + volume = {49}, + abstract = {The distribution of the product has several useful applications. One of these applications is its use to form confidence intervals for the indirect effect as the product of 2 regression coefficients. The purpose of this article is to investigate how the moments of the distribution of the product explain normal theory mediation confidence interval coverage and imbalance. Values of the critical ratio for each random variable are used to demonstrate how the moments of the distribution of the product change across values of the critical ratio observed in research studies. Results of the simulation study showed that as skewness in absolute value increases, coverage decreases. And as skewness in absolute value and kurtosis increases, imbalance increases. The difference between testing the significance of the indirect effect using the normal theory versus the asymmetric distribution of the product is further illustrated with a real data example. This article is the first study to show the direct link between the distribution of the product and indirect effect confidence intervals and clarifies the results of previous simulation studies by showing why normal theory confidence intervals for indirect effects are often less accurate than those obtained from the asymmetric distribution of the product or from resampling methods.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-prodclin}, +} + +@Article{Koopman-Howe-Hollenbeck-etal-2015, + author = {Joel Koopman and Michael Howe and John R. Hollenbeck and Hock-Peng Sin}, + date = {2015}, + journaltitle = {Journal of Applied Psychology}, + title = {Small sample mediation testing: Misplaced confidence in bootstrapped confidence intervals}, + doi = {10.1037/a0036635}, + number = {1}, + pages = {194--202}, + volume = {100}, + abstract = {Bootstrapping is an analytical tool commonly used in psychology to test the statistical significance of the indirect effect in mediation models. Bootstrapping proponents have particularly advocated for its use for samples of 20-80 cases. This advocacy has been heeded, especially in the Journal of Applied Psychology, as researchers are increasingly utilizing bootstrapping to test mediation with samples in this range. We discuss reasons to be concerned with this escalation, and in a simulation study focused specifically on this range of sample sizes, we demonstrate not only that bootstrapping has insufficient statistical power to provide a rigorous hypothesis test in most conditions but also that bootstrapping has a tendency to exhibit an inflated Type I error rate. We then extend our simulations to investigate an alternative empirical resampling method as well as a Bayesian approach and demonstrate that they exhibit comparable statistical power to bootstrapping in small samples without the associated inflated Type I error. Implications for researchers testing mediation hypotheses in small samples are presented. For researchers wishing to use these methods in their own research, we have provided R syntax in the online supplemental materials.}, + publisher = {American Psychological Association ({APA})}, + keywords = {mediation, bootstrapping, permutation, Bayes}, + annotation = {mediation, mediation-bootstrap, mediation-bayesian}, +} + +@Article{Kossakowski-Groot-Haslbeck-2017, + author = {Jolanda J. Kossakowski and Peter C. Groot and Jonas M. B. Haslbeck and Denny Borsboom and Marieke Wichers}, + date = {2017-02}, + journaltitle = {Journal of Open Psychology Data}, + title = {Data from '{Critical} slowing down as a personalized early warning signal for depression'}, + doi = {10.5334/jopd.29}, + issn = {2050-9863}, + volume = {5}, + abstract = {We present a dataset of a single (N = 1) participant diagnosed with major depressive disorder, who completed 1478 measurements over the course of 239 consecutive days in 2012 and 2013. The experiment included a double-blind phase in which the dosage of anti-depressant medication was gradually reduced. The entire study looked at momentary affective states in daily life before, during, and after the double-blind phase. The items, which were asked ten times a day, cover topics like mood, physical condition and social contacts. Also, depressive symptoms were measured on a weekly basis using the Symptom Checklist Revised (SCL-90-R). The data are suitable for various time-series analyses and studies in complex dynamical systems.}, + publisher = {Ubiquity Press, Ltd.}, +} + +@Article{Kuiper-Oisin-2018, + author = {Rebecca M. Kuiper and Oisin Ryan}, + date = {2018-03}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval}, + doi = {10.1080/10705511.2018.1431046}, + number = {5}, + pages = {809--823}, + volume = {25}, + abstract = {The cross-lagged panel model (CLPM), a discrete-time (DT) SEM model, is frequently used to gather evidence for (reciprocal) Granger-causal relationships when lacking an experimental design. However, it is well known that CLPMs can lead to different parameter estimates depending on the time-interval of observation. Consequently, this can lead to researchers drawing conflicting conclusions regarding the sign and/or dominance of relationships. Multiple authors have suggested the use of continuous-time models to address this issue. In this article, we demonstrate the exact circumstances under which such conflicting conclusions occur. Specifically, we show that such conflicts are only avoided in general in the case of bivariate, stable, nonoscillating, first-order systems, when comparing models with uniform time-intervals between observations. In addition, we provide a range of tools, proofs, and guidelines regarding the comparison of discrete- and continuous-time parameter estimates.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Kuppens-2015, + author = {Peter Kuppens}, + date = {2015-07}, + journaltitle = {Emotion Review}, + title = {It's about time: A special section on affect dynamics}, + doi = {10.1177/1754073915590947}, + issn = {1754-0747}, + number = {4}, + pages = {297--300}, + volume = {7}, + abstract = {The study of affect dynamics aims to discover the patterns and regularities with which emotions and affective experiences and components change across time, the underlying mechanisms involved, and their potential relevance for healthy psychological functioning. The intention of this special section is to serve as a mini handbook covering the contemporary state of research into affect dynamics. Contributions address theoretical viewpoints on the origins and functions of emotional change, methodological and modeling approaches, biological and social perspectives on affect dynamics, and the downstream consequences for well-being and psychopathology.}, + publisher = {SAGE Publications}, +} + +@Article{Kurtzer-Sochat-Bauer-2017, + author = {Gregory M. Kurtzer and Vanessa Sochat and Michael W. Bauer}, + date = {2017-05}, + journaltitle = {{PLOS} {ONE}}, + title = {{Singularity}: Scientific containers for mobility of compute}, + doi = {10.1371/journal.pone.0177459}, + editor = {Attila Gursoy}, + number = {5}, + pages = {e0177459}, + volume = {12}, + publisher = {Public Library of Science ({PLoS})}, + annotation = {container, container-singularity}, +} + +@Article{Kwan-Chan-2011, + author = {Joyce L. Y. Kwan and Wai Chan}, + date = {2011-04}, + journaltitle = {Behavior Research Methods}, + title = {Comparing standardized coefficients in structural equation modeling: A model reparameterization approach}, + doi = {10.3758/s13428-011-0088-6}, + number = {3}, + pages = {730--745}, + volume = {43}, + abstract = {We propose a two-stage method for comparing standardized coefficients in structural equation modeling (SEM). At stage 1, we transform the original model of interest into the standardized model by model reparameterization, so that the model parameters appearing in the standardized model are equivalent to the standardized parameters of the original model. At stage 2, we impose appropriate linear equality constraints on the standardized model and use a likelihood ratio test to make statistical inferences about the equality of standardized coefficients. Unlike other existing methods for comparing standardized coefficients, the proposed method does not require specific modeling features (e.g., specification of nonlinear constraints), which are available only in certain SEM software programs. Moreover, this method allows researchers to compare two or more standardized coefficients simultaneously in a standard and convenient way. Three real examples are given to illustrate the proposed method, using EQS, a popular SEM software program. Results show that the proposed method performs satisfactorily for testing the equality of standardized coefficients.}, + publisher = {Springer Science and Business Media {LLC}}, +} + +@Article{Kwan-Chan-2014, + author = {Joyce L. Y. Kwan and Wai Chan}, + date = {2014-04}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Comparing squared multiple correlation coefficients using structural equation modeling}, + doi = {10.1080/10705511.2014.882673}, + number = {2}, + pages = {225--238}, + volume = {21}, + abstract = {In social science research, a common topic in multiple regression analysis is to compare the squared multiple correlation coefficients in different populations. Existing methods based on asymptotic theories (Olkin \& Finn, 1995) and bootstrapping (Chan, 2009) are available but these can only handle a 2-group comparison. Another method based on structural equation modeling (SEM) has been proposed recently. However, this method has three disadvantages. First, it requires the user to explicitly specify the sample R2 as a function in terms of the basic SEM model parameters, which is sometimes troublesome and error prone. Second, it requires the specification of nonlinear constraints, which is not available in some popular SEM software programs. Third, it is for a 2-group comparison primarily. In this article, a 2-stage SEM method is proposed as an alternative. Unlike all other existing methods, the proposed method is simple to use, and it does not require any specific programming features such as the specification of nonlinear constraints. More important, the method allows a simultaneous comparison of 3 or more groups. A real example is given to illustrate the proposed method using EQS, a popular SEM software program.}, + keywords = {squared multiple correlation coefficients, structural equation modeling, model reparameterization, multi-sample analysis}, + publisher = {Informa {UK} Limited}, +} + +@Article{Leffingwell-Cooney-Murphy-etal-2012, + author = {Thad R. Leffingwell and Nathaniel J. Cooney and James G. Murphy and Susan Luczak and Gary Rosen and Donald M. Dougherty and Nancy P. Barnett}, + date = {2012-07}, + journaltitle = {Alcoholism: Clinical and Experimental Research}, + title = {Continuous Objective Monitoring of Alcohol Use: Twenty‐First Century Measurement Using Transdermal Sensors}, + doi = {10.1111/j.1530-0277.2012.01869.x}, + issn = {1530-0277}, + number = {1}, + pages = {16--22}, + volume = {37}, + abstract = {Transdermal alcohol sensors continuously collect reliable and valid data on alcohol consumption in vivo over the course of hours to weeks. Transdermal alcohol readings are highly correlated with breath alcohol measurements, but transdermal alcohol levels lag behind breath alcohol levels by one or more hours owing to the longer time required for alcohol to be expelled through perspiration. By providing objective information about alcohol consumption, transdermal alcohol sensors can validate self-report and provide important information not previously available. In this article, we describe the development and evaluation of currently available transdermal alcohol sensors, present the strengths and limitations of the technology, and give examples of recent research using the sensors.}, + publisher = {Wiley}, +} + +@Article{Maxwell-Cole-Mitchell-2011, + author = {Scott E. Maxwell and David A. Cole and Melissa A. Mitchell}, + date = {2011-09}, + journaltitle = {Multivariate Behavioral Research}, + title = {Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model}, + doi = {10.1080/00273171.2011.606716}, + number = {5}, + pages = {816--841}, + volume = {46}, + abstract = {Maxwell and Cole (2007) showed that cross-sectional approaches to mediation typically generate substantially biased estimates of longitudinal parameters in the special case of complete mediation. However, their results did not apply to the more typical case of partial mediation. We extend their previous work by showing that substantial bias can also occur with partial mediation. In particular, cross-sectional analyses can imply the existence of a substantial indirect effect even when the true longitudinal indirect effect is zero. Thus, a variable that is found to be a strong mediator in a cross-sectional analysis may not be a mediator at all in a longitudinal analysis. In addition, we show that very different combinations of longitudinal parameter values can lead to essentially identical cross-sectional correlations, raising serious questions about the interpretability of cross-sectional mediation data. More generally, researchers are encouraged to consider a wide variety of possible mediation models beyond simple cross-sectional models, including but not restricted to autoregressive models of change.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Merkel-2014, + author = {Dirk Merkel}, + date = {2014}, + journaltitle = {Linux Journal}, + title = {{Docker}: Lightweight {Linux} containers for consistent development and deployment}, + number = {239}, + pages = {2}, + volume = {2014}, + url = {https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment}, + annotation = {container, container-docker}, +} + +@Article{Miocevic-Gonzalez-Valente-etal-2017, + author = {Milica Miocevic and Oscar Gonzalez and Matthew J. Valente and David P. MacKinnon}, + date = {2017-07}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {A tutorial in {Bayesian} potential outcomes mediation analysis}, + doi = {10.1080/10705511.2017.1342541}, + issn = {1532-8007}, + number = {1}, + pages = {121--136}, + volume = {25}, + abstract = {Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.}, + publisher = {Informa UK Limited}, +} + +@Article{Molenaar-2017, + author = {Peter C. M. Molenaar}, + date = {2017-02}, + journaltitle = {Multivariate Behavioral Research}, + title = {Equivalent Dynamic Models}, + doi = {10.1080/00273171.2016.1277681}, + issn = {1532-7906}, + number = {2}, + pages = {242--258}, + volume = {52}, + abstract = {Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.}, + publisher = {Informa UK Limited}, + keywords = {Dynamic factor analysis, Granger causality, hybrid models, lagged factorloadings, matrix polynomials, state-space models, vector autoregressive models}, +} + +@Article{Moneta-Chlas-Entner-etal-2011, + author = {Alessio Moneta and Nadine Chla{\ss} and Doris Entner and Patrik Hoyer}, + date = {2011-01}, + journaltitle = {Journal of Machine Learning Research - Proceedings Track}, + title = {Causal search in structural vector autoregressive models}, + pages = {95--114}, + volume = {12}, + abstract = {This paper reviews a class of methods to perform causal inference in the framework of a structural vector autoregressive model. We consider three different settings. In the first setting the underlying system is linear with normal disturbances and the structural model is identified by exploiting the information incorporated in the partial correlations of the estimated residuals. Zero partial correlations are used as input of a search algorithm formalized via graphical causal models. In the second, semi-parametric, setting the underlying system is linear with non-Gaussian disturbances. In this case the structural vector autoregressive model is identified through a search procedure based on independent component analysis. Finally, we explore the possibility of causal search in a nonparametric setting by studying the performance of conditional independence tests based on kernel density estimations.}, + keywords = {causal inference, econometric time series, SVAR, graphical causal models, independent component analysis, conditional independence tests}, +} + +@Article{Neale-Hunter-Pritikin-etal-2015, + author = {Michael C. Neale and Michael D. Hunter and Joshua N. Pritikin and Mahsa Zahery and Timothy R. Brick and Robert M. Kirkpatrick and Ryne Estabrook and Timothy C. Bates and Hermine H. Maes and Steven M. Boker}, + date = {2015-01}, + journaltitle = {Psychometrika}, + title = {{OpenMx} 2.0: Extended structural equation and statistical modeling}, + doi = {10.1007/s11336-014-9435-8}, + number = {2}, + pages = {535--549}, + volume = {81}, + abstract = {The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R \$ mechanisms, and improved tab completion from within the R Graphical User Interface.}, + publisher = {Springer Science and Business Media {LLC}}, + annotation = {r, r-packages, sem, sem-software}, +} + +@Article{OLaughlin-Martin-Ferrer-2018, + author = {Kristine D. O'Laughlin and Monica J. Martin and Emilio Ferrer}, + date = {2018-04}, + journaltitle = {Multivariate Behavioral Research}, + title = {Cross-sectional analysis of longitudinal mediation processes}, + doi = {10.1080/00273171.2018.1454822}, + issn = {1532-7906}, + number = {3}, + pages = {375--402}, + volume = {53}, + abstract = {Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.}, + publisher = {Informa UK Limited}, +} + +@Article{Oravecz-Tuerlinckx-Vandekerckhove-2011, + author = {Zita Oravecz and Francis Tuerlinckx and Joachim Vandekerckhove}, + date = {2011}, + journaltitle = {Psychological Methods}, + title = {A hierarchical latent stochastic differential equation model for affective dynamics}, + doi = {10.1037/a0024375}, + number = {4}, + pages = {468--490}, + volume = {16}, + abstract = {In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key parameters of the model are the average position (also called home base), the variances and covariances of the process, and the regulatory mechanisms that keep the process in the vicinity of the average position. To account for individual differences, the model is extended hierarchically. A particularly novel contribution is that in principle all parameters of the stochastic process (not only the mean but also its variance and the regulatory parameters) are allowed to differ between individuals. In this way, the aim is to understand the affective dynamics of single individuals and at the same time investigate how these individuals differ from one another. The final model is a continuous-time state-space model for repeated measurement data taken at possibly irregular time points. Both time-invariant and time-varying covariates can be included to investigate sources of individual differences. As an illustration, the model is applied to a diary study measuring core affect repeatedly for several individuals (thereby generating intensive longitudinal data).}, + publisher = {American Psychological Association ({APA})}, +} + +@Article{ORourke-MacKinnon-2018, + author = {Holly P. O'Rourke and David P. MacKinnon}, + date = {2018-03}, + journaltitle = {Journal of Studies on Alcohol and Drugs}, + title = {Reasons for testing mediation in the absence of an intervention effect: A research imperative in prevention and intervention research}, + doi = {10.15288/jsad.2018.79.171}, + number = {2}, + pages = {171--181}, + volume = {79}, + abstract = {Objective: Mediation models are used in prevention and intervention research to assess the mechanisms by which interventions influence outcomes. However, researchers may not investigate mediators in the absence of intervention effects on the primary outcome variable. There is emerging evidence that in some situations, tests of mediated effects can be statistically significant when the total intervention effect is not statistically significant. In addition, there are important conceptual and practical reasons for investigating mediation when the intervention effect is nonsignificant. Method: This article discusses the conditions under which mediation may be present when an intervention effect does not have a statistically significant effect and why mediation should always be considered important. Results: Mediation may be present in the following conditions: when the total and mediated effects are equal in value, when the mediated and direct effects have opposing signs, when mediated effects are equal across single and multiple-mediator models, and when specific mediated effects have opposing signs. Mediation should be conducted in every study because it provides the opportunity to test known and replicable mediators, to use mediators as an intervention manipulation check, and to address action and conceptual theory in intervention models. Conclusions: Mediators are central to intervention programs, and mediators should be investigated for the valuable information they provide about the success or failure of interventions.}, + publisher = {Alcohol Research Documentation, Inc.}, + annotation = {mediation-prevention}, +} + +@InCollection{ORourke-MacKinnon-2019, + author = {Holly P. O'Rourke and David P. MacKinnon}, + booktitle = {Advances in Prevention Science}, + date = {2019}, + title = {The importance of mediation analysis in substance-use prevention}, + doi = {10.1007/978-3-030-00627-3_15}, + pages = {233--246}, + abstract = {This chapter describes the theoretical and practical importance of mediation analysis in substance-use prevention research. The most important reason for including mediators in a research study is to examine the mechanisms by which prevention programs influence substance-use outcomes. Understanding the mechanisms by which prevention programs achieve effects helps reduce the cost and increases effectiveness of prevention programs. This chapter first describes the theoretical foundations of the mediation model in prevention, and reasons for using mediation analysis in substance-use prevention. Next, we provide an overview of statistical mediation analysis for single and multiple mediator models. We summarize mediation analyses in substance-use prevention and discuss future directions for application of mediation analysis in substance-use research.}, + publisher = {Springer International Publishing}, + annotation = {mediation-prevention}, +} + +@Article{Ou-Hunter-Chow-2019, + author = {Lu Ou and Michael D. Hunter and Sy-Miin Chow}, + date = {2019}, + journaltitle = {The R Journal}, + title = {What's for {dynr}: A package for linear and nonlinear dynamic modeling in {R}}, + doi = {10.32614/rj-2019-012}, + number = {1}, + pages = {91}, + volume = {11}, + abstract = {Intensive longitudinal data in the behavioral sciences are often noisy, multivariate in nature, and may involve multiple units undergoing regime switches by showing discontinuities interspersed with continuous dynamics. Despite increasing interest in using linear and nonlinear differential/difference equation models with regime switches, there has been a scarcity of software packages that are fast and freely accessible. We have created an R package called dynr that can handle a broad class of linear and nonlinear discreteand continuous-time models, with regime-switching properties and linear Gaussian measurement functions, in C, while maintaining simple and easy-to learn model specification functions in R. We present the mathematical and computational bases used by the dynr R package, and present two illustrative examples to demonstrate the unique features of dynr.}, + publisher = {The R Foundation}, + annotation = {ild, ild-software, r, r-packages}, +} + +@Article{Piasecki-2019, + author = {Thomas M. Piasecki}, + date = {2019-03}, + journaltitle = {Alcoholism: Clinical and Experimental Research}, + title = {Assessment of alcohol use in the natural environment}, + doi = {10.1111/acer.13975}, + issn = {1530-0277}, + number = {4}, + pages = {564--577}, + volume = {43}, + abstract = {The current article critically reviews 3 methodological options for assessing drinking episodes in the natural environment. Ecological momentary assessment (EMA) typically involves using mobile devices to collect self-report data from participants in daily life. This technique is now widely used in alcohol research, but investigators have implemented diverse assessment strategies. This article focuses on “high-resolution” EMA protocols that oversample experiences and behaviors within individual drinking episodes. A number of approaches have been used to accomplish this, including using signaled follow-ups tied to drinking initiation, asking participants to log entries before and after individual drinks or drinking episodes, and delivering frequent signaled assessments during periods of the day when alcohol use is most common. Transdermal alcohol sensors (TAS) are devices that are worn continuously and are capable of detecting alcohol eliminated through the skin. These methods are appealing because they do not rely upon drinkers’ self-report. Studies using TAS have been appearing with greater frequency over the past several years. New methods are making the use of TAS more tractable by permitting back-translation of transdermal alcohol concentration data to more familiar estimates of blood alcohol concentration or breath alcohol concentration. However, the current generation of devices can have problems with missing data and tend to be relatively insensitive to low-level drinking. An emerging area of research investigates the possibility of using mobile device data and machine learning to passively detect the user's drinking, with promising early findings. EMA, TAS, and sensor-based approaches are all valid, and tend to produce convergent information when used in conjunction with one another. Each has a unique profile of advantages, disadvantages, and threats to validity. Therefore, the nature of the underlying research question must dictate the method(s) investigators select.}, + publisher = {Wiley}, +} + +@Article{Preacher-Kelley-2011, + author = {Kristopher J. Preacher and Ken Kelley}, + date = {2011}, + journaltitle = {Psychological Methods}, + title = {Effect size measures for mediation models: Quantitative strategies for communicating indirect effects}, + doi = {10.1037/a0022658}, + issn = {1082-989X}, + number = {2}, + pages = {93--115}, + volume = {16}, + abstract = {The statistical analysis of mediation effects has become an indispensable tool for helping scientists investigate processes thought to be causal. Yet, in spite of many recent advances in the estimation and testing of mediation effects, little attention has been given to methods for communicating effect size and the practical importance of those effect sizes. Our goals in this article are to (a) outline some general desiderata for effect size measures, (b) describe current methods of expressing effect size and practical importance for mediation, (c) use the desiderata to evaluate these methods, and (d) develop new methods to communicate effect size in the context of mediation analysis. The first new effect size index we describe is a residual-based index that quantifies the amount of variance explained in both the mediator and the outcome. The second new effect size index quantifies the indirect effect as the proportion of the maximum possible indirect effect that could have been obtained, given the scales of the variables involved. We supplement our discussion by offering easy-to-use R tools for the numerical and visual communication of effect size for mediation effects.}, + publisher = {American Psychological Association (APA)}, + annotation = {mediation-effectsize}, +} + +@Article{Preacher-Selig-2012, + author = {Kristopher J. Preacher and James P. Selig}, + date = {2012-04}, + journaltitle = {Communication Methods and Measures}, + title = {Advantages of {Monte Carlo} confidence intervals for indirect effects}, + doi = {10.1080/19312458.2012.679848}, + number = {2}, + pages = {77--98}, + volume = {6}, + abstract = {Monte Carlo simulation is a useful but underutilized method of constructing confidence intervals for indirect effects in mediation analysis. The Monte Carlo confidence interval method has several distinct advantages over rival methods. Its performance is comparable to other widely accepted methods of interval construction, it can be used when only summary data are available, it can be used in situations where rival methods (e.g., bootstrapping and distribution of the product methods) are difficult or impossible, and it is not as computer-intensive as some other methods. In this study we discuss Monte Carlo confidence intervals for indirect effects, report the results of a simulation study comparing their performance to that of competing methods, demonstrate the method in applied examples, and discuss several software options for implementation in applied settings.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-montecarlo, mediation-bootstrap}, +} + +@Article{Reichardt-2011, + author = {Charles S. Reichardt}, + date = {2011-09}, + journaltitle = {Multivariate Behavioral Research}, + title = {Commentary: Are three waves of data sufficient for assessing mediation?}, + doi = {10.1080/00273171.2011.606740}, + issn = {1532-7906}, + number = {5}, + pages = {842--851}, + volume = {46}, + abstract = {Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even with longitudinal data, simple autoregressive structural equation models can imply the existence of indirect effects when only direct effects exist and the existence of direct effects when only indirect effects exist.}, + publisher = {Informa UK Limited}, +} + +@Article{Rosseel-2012, + author = {Yves Rosseel}, + date = {2012}, + journaltitle = {Journal of Statistical Software}, + title = {{lavaan}: An {R} package for structural equation modeling}, + doi = {10.18637/jss.v048.i02}, + number = {2}, + volume = {48}, + abstract = {Structural equation modeling (SEM) is a vast field and widely used by many applied researchers in the social and behavioral sciences. Over the years, many software packages for structural equation modeling have been developed, both free and commercial. However, perhaps the best state-of-the-art software packages in this field are still closed-source and/or commercial. The R package lavaan has been developed to provide applied researchers, teachers, and statisticians, a free, fully open-source, but commercial-quality package for latent variable modeling. This paper explains the aims behind the development of the package, gives an overview of its most important features, and provides some examples to illustrate how lavaan works in practice.}, + publisher = {Foundation for Open Access Statistic}, + annotation = {r, r-packages, sem, sem-software}, +} + +@Article{Sacks-Gonzales-Bouchery-etal-2015, + author = {Jeffrey J. Sacks and Katherine R. Gonzales and Ellen E. Bouchery and Laura E. Tomedi and Robert D. Brewer}, + date = {2015-11}, + journaltitle = {American Journal of Preventive Medicine}, + title = {2010 national and state costs of excessive alcohol consumption}, + doi = {10.1016/j.amepre.2015.05.031}, + issn = {0749-3797}, + number = {5}, + pages = {e73--e79}, + volume = {49}, + abstract = {Introduction: Excessive alcohol use cost the U.S. $223.5 billion in 2006. Given economic shifts in the U.S. since 2006, more-current estimates are needed to help inform the planning of prevention strategies. Methods: From March 2012 to March 2014, the 26 cost components used to assess the cost of excessive drinking in 2006 were projected to 2010 based on incidence (e.g., change in number of alcohol-attributable deaths) and price (e.g., inflation rate in cost of medical care). The total cost, cost to government, and costs for binge drinking, underage drinking, and drinking while pregnant were estimated for the U.S. for 2010 and allocated to states. Results: Excessive drinking cost the U.S. $249.0 billion in 2010, or about $2.05 per drink. Government paid for $100.7 billion (40.4\%) of these costs. Binge drinking accounted for $191.1 billion (76.7\%) of costs; underage drinking $24.3 billion (9.7\%) of costs; and drinking while pregnant $5.5 billion (2.2\%) of costs. The median cost per state was $3.5 billion. Binge drinking was responsible for >70\% of these costs in all states, and >40\% of the binge drinking–related costs were paid by government. Conclusions: Excessive drinking cost the nation almost $250 billion in 2010. Two of every $5 of the total cost was paid by government, and three quarters of the costs were due to binge drinking. Several evidence-based strategies can help reduce excessive drinking and related costs, including increasing alcohol excise taxes, limiting alcohol outlet density, and commercial host liability. +}, + publisher = {Elsevier BV}, +} + +@Article{Schermerhorn-Chow-Cummings-2010, + author = {Alice C. Schermerhorn and Sy-Miin Chow and E. Mark Cummings}, + date = {2010}, + journaltitle = {Developmental Psychology}, + title = {Developmental family processes and interparental conflict: Patterns of microlevel influences.}, + doi = {10.1037/a0019662}, + issn = {0012-1649}, + number = {4}, + pages = {869--885}, + volume = {46}, + abstract = {Although there are frequent calls for the study of effects of children on families and mutual influence processes within families, little empirical progress has been made. We address these questions at the level of microprocesses during marital conflict, including children's influence on marital conflict and parents' influence on each other. Participants were 111 cohabiting couples with a child (55 male, 56 female) age 8–16 years. Data were drawn from parents' diary reports of interparental conflict over 15 days and were analyzed with dynamic systems modeling tools. Child emotions and behavior during conflicts were associated with interparental positivity, negativity, and resolution at the end of the same conflicts. For example, children's agentic behavior was associated with more marital conflict resolution, whereas child negativity was linked with more marital negativity. Regarding parents' influence on each other, among the findings, husbands' and wives' influence on themselves from one conflict to the next was indicated, and total number of conflicts predicted greater influence of wives' positivity on husbands' positivity. Contributions of these findings to the understanding of developmental family processes are discussed, including implications for advanced understanding of interrelations between child and adult functioning and development.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Schouten-Lugtig-Vink-2018, + author = {Rianne Margaretha Schouten and Peter Lugtig and Gerko Vink}, + date = {2018-07}, + journaltitle = {Journal of Statistical Computation and Simulation}, + title = {Generating missing values for simulation purposes: A multivariate amputation procedure}, + doi = {10.1080/00949655.2018.1491577}, + number = {15}, + pages = {2909--2930}, + volume = {88}, + abstract = {Missing data form a ubiquitous problem in scientific research, especially since most statistical analyses require complete data. To evaluate the performance of methods dealing with missing data, researchers perform simulation studies. An important aspect of these studies is the generation of missing values in a simulated, complete data set: the amputation procedure. We investigated the methodological validity and statistical nature of both the current amputation practice and a newly developed and implemented multivariate amputation procedure. We found that the current way of practice may not be appropriate for the generation of intuitive and reliable missing data problems. The multivariate amputation procedure, on the other hand, generates reliable amputations and allows for a proper regulation of missing data problems. The procedure has additional features to generate any missing data scenario precisely as intended. Hence, the multivariate amputation procedure is an efficient method to accurately evaluate missing data methodology.}, + publisher = {Informa {UK} Limited}, + keywords = {missing data, multiple imputation, multivariate amputation, evaluation}, +} + +@Article{Schultzberg-Muthen-2017, + author = {M{\r a}rten Schultzberg and Bengt Muth{\a'e}n}, + date = {2017-12}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling}, + doi = {10.1080/10705511.2017.1392862}, + issn = {1532-8007}, + number = {4}, + pages = {495--515}, + volume = {25}, + abstract = {Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, structural equation, multilevel, and time-varying effects models. Despite the well-known properties of these analysis areas by themselves, it is unclear how their sample size requirements and recommendations transfer to the DSEM framework. This article presents the results of a simulation study that examines the estimation quality of univariate 2-level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8. Three features are varied in the simulations: complexity of the model, number of subjects, and number of time points per subject. Samples with many subjects and few time points are shown to perform substantially better than samples with few subjects and many time points.}, + publisher = {Informa UK Limited}, +} + +@Article{Schuurman-Hamaker-2019, + author = {No{\a'e}mi K. Schuurman and Ellen L. Hamaker}, + date = {2019-02}, + journaltitle = {Psychological Methods}, + title = {Measurement error and person-specific reliability in multilevel autoregressive modeling.}, + doi = {10.1037/met0000188}, + issn = {1082-989X}, + number = {1}, + pages = {70--91}, + volume = {24}, + abstract = {An increasing number of researchers in psychology are collecting intensive longitudinal data in order to study psychological processes on an intraindividual level. An increasingly popular way to analyze these data is autoregressive time series modeling; either by modeling the repeated measures for a single individual using classic n = 1 autoregressive models, or by using multilevel extensions of these models, with the dynamics for each individual modeled at Level 1 and interindividual differences in these dynamics modeled at Level 2. However, while it is widely accepted in psychology that psychological measurements usually contain a certain amount of measurement error, the issue of measurement error is largely neglected in applied psychological (autoregressive) time series modeling: The regular autoregressive model incorporates innovations, or “dynamic errors,” but not measurement error. In this article we discuss the concepts of reliability and measurement error in the context of dynamic (VAR(1)) models, and the consequences of disregarding measurement error variance in the data. For this purpose, we present a preliminary model that accounts for measurement error for constructs that are measured with a single indicator. We further discuss how this model could be used to investigate the between-person reliability of the measurements, as well as the (person-specific) within-person reliabilities and any individual differences in these reliabilities. We illustrate the consequences of assuming perfect reliability, the preliminary model, and reliabilities, using an empirical application in which we relate women’s general positive affect to their positive affect concerning their romantic relationship.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Schuurman-Houtveen-Hamaker-2015, + author = {No{\a'e}mi K. Schuurman and Jan H. Houtveen and Ellen L. Hamaker}, + date = {2015-07}, + journaltitle = {Frontiers in Psychology}, + title = {Incorporating measurement error in n = 1 psychological autoregressive modeling}, + doi = {10.3389/fpsyg.2015.01038}, + issn = {1664-1078}, + volume = {6}, + abstract = {Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30-50\% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters.}, + publisher = {Frontiers Media SA}, +} + +@Article{Shrout-2011, + author = {Patrick E. Shrout}, + date = {2011-09}, + journaltitle = {Multivariate Behavioral Research}, + title = {Commentary: Mediation analysis, causal process, and cross-sectional data}, + doi = {10.1080/00273171.2011.606718}, + number = {5}, + pages = {852--860}, + volume = {46}, + abstract = {Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and Maxwell et al. showed that the same general conclusions are obtained, namely that analyses of cross-sectional data will not reveal the longitudinal mediation process. While applauding the advances of the target article, this comment encourages the detailed exploration of alternate causal models in psychology beyond the autoregressive model considered by Maxwell et al. When inferences based on cross-sectional analyses are compared to alternate models, different patterns of bias are likely to be observed. I illustrate how different models of the causal process can be derived using examples from research on psychopathology.}, + publisher = {Informa {UK} Limited}, +} + +@Article{Singer-2012, + author = {Hermann Singer}, + date = {2012-01}, + journaltitle = {The Journal of Mathematical Sociology}, + title = {{SEM} modeling with singular moment matrices part {II}: {ML}-estimation of sampled stochastic differential equations}, + doi = {10.1080/0022250x.2010.532259}, + issn = {1545-5874}, + number = {1}, + pages = {22--43}, + volume = {36}, + abstract = {Linear stochastic differential equations are expressed as an exact discrete model (EDM) and estimated with structural equation models (SEMs) and the Kalman filter (KF) algorithm. The oversampling approach is introduced in order to formulate the EDM on a time grid which is finer than the sampling intervals. This leads to a simple computation of the nonlinear parameter functionals of the EDM. For small discretization intervals, the functionals can be linearized, and standard software permitting only linear parameter restrictions can be used. However, in this case the SEM approach must handle large matrices leading to degraded performance and possible numerical problems. The methods are compared using coupled linear random oscillators with time-varying parameters and irregular sampling times.}, + publisher = {Informa UK Limited}, +} + +@Article{Smith-Juarascio-2019, + author = {Kathryn E. Smith and Adrienne Juarascio}, + date = {2019-06}, + journaltitle = {Current Psychiatry Reports}, + title = {From ecological momentary assessment ({EMA}) to ecological momentary intervention ({EMI}): Past and future directions for ambulatory assessment and interventions in eating disorders}, + doi = {10.1007/s11920-019-1046-8}, + number = {7}, + volume = {21}, + abstract = {Purpose of Review: Ambulatory assessment methods, including ecological momentary assessment (EMA), have often been used in eating disorders (EDs) to assess the type, frequency, and temporal sequencing of ED symptoms occurring in naturalistic environments. Relatedly, growing research in EDs has explored the utility of ecological momentary interventions (EMIs) to target ED symptoms. The aims of the present review were to (1) synthesize recent literature pertaining to ambulatory assessment/EMA and EMI in EDs, and (2) identify relevant limitations and future directions in these domains. Recent Findings: With respect to ambulatory assessment and EMA, there has been substantial growth in the expansion of constructs assessed with EMA, the exploration of state- vs. trait-level processes, integration of objective and passive assessment approaches, and consideration of methodological issues. The EMI literature in EDs also continues to grow, though most of the recent research focuses on mobile health (mHealth) technologies with relatively minimal EMI components that adapt to momentary contextual information. Summary: Despite these encouraging advances, there remain several promising areas of ambulatory assessment research and clinical applications in EDs going forward. These include integration of passive data collection, use of EMA in treatment evaluation and design, evaluation of dynamic system processes, inclusion of diverse samples, and development and evaluation of adaptive, tailored EMIs such as just-in-time adaptive interventions. While much remains to be learned in each of these domains, the continual growth in mobile technology has potential to facilitate and refine our understanding of the nature of ED psychopathology and ultimately improve intervention approaches.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {eating disorders, ambulatory assessment, ecological momentary assessment, mHealth, ecological momentary intervention}, +} + +@Article{Taylor-MacKinnon-2012, + author = {Aaron B. Taylor and David P. MacKinnon}, + date = {2012-02}, + journaltitle = {Behavior Research Methods}, + title = {Four applications of permutation methods to testing a single-mediator model}, + doi = {10.3758/s13428-011-0181-x}, + number = {3}, + pages = {806--844}, + volume = {44}, + abstract = {Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {mediation, bootstrapping, permutation, Bayes}, + annotation = {mediation, mediation-bootstrap}, +} + +@Article{Tibshirani-2011, + author = {Robert Tibshirani}, + date = {2011-04}, + journaltitle = {Journal of the Royal Statistical Society Series B: Statistical Methodology}, + title = {Regression shrinkage and selection via the lasso: A retrospective}, + doi = {10.1111/j.1467-9868.2011.00771.x}, + issn = {1467-9868}, + number = {3}, + pages = {273--282}, + volume = {73}, + abstract = {In the paper I give a brief review of the basic idea and some history and then discuss some developments since the original paper on regression shrinkage and selection via the lasso.}, + publisher = {Oxford University Press (OUP)}, +} + +@Article{Tofighi-Kelley-2019, + author = {Davood Tofighi and Ken Kelley}, + date = {2019-06}, + journaltitle = {Multivariate Behavioral Research}, + title = {Indirect effects in sequential mediation models: Evaluating methods for hypothesis testing and confidence interval formation}, + doi = {10.1080/00273171.2019.1618545}, + number = {2}, + pages = {188--210}, + volume = {55}, + abstract = {Complex mediation models, such as a two-mediator sequential model, have become more prevalent in the literature. To test an indirect effect in a two-mediator model, we conducted a large-scale Monte Carlo simulation study of the Type I error, statistical power, and confidence interval coverage rates of 10 frequentist and Bayesian confidence/credible intervals (CIs) for normally and nonnormally distributed data. The simulation included never-studied methods and conditions (e.g., Bayesian CI with flat and weakly informative prior methods, two model-based bootstrap methods, and two nonnormality conditions) as well as understudied methods (e.g., profile-likelihood, Monte Carlo with maximum likelihood standard error [MC-ML] and robust standard error [MC-Robust]). The popular BC bootstrap showed inflated Type I error rates and CI under-coverage. We recommend different methods depending on the purpose of the analysis. For testing the null hypothesis of no mediation, we recommend MC-ML, profile-likelihood, and two Bayesian methods. To report a CI, if data has a multivariate normal distribution, we recommend MC-ML, profile-likelihood, and the two Bayesian methods; otherwise, for multivariate nonnormal data we recommend the percentile bootstrap. We argue that the best method for testing hypotheses is not necessarily the best method for CI construction, which is consistent with the findings we present.}, + keywords = {indirect effect, confidence interval, sequential mediation, Bayesian credible interval}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bayesian, mediation-bootstrap, mediation-likelihood, mediation-montecarlo}, +} + +@Article{Tofighi-MacKinnon-2015, + author = {Davood Tofighi and David P. MacKinnon}, + date = {2015-08}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {{Monte Carlo} confidence intervals for complex functions of indirect effects}, + doi = {10.1080/10705511.2015.1057284}, + number = {2}, + pages = {194--205}, + volume = {23}, + abstract = {One challenge in mediation analysis is to generate a confidence interval (CI) with high coverage and power that maintains a nominal significance level for any well-defined function of indirect and direct effects in the general context of structural equation modeling (SEM). This study discusses a proposed Monte Carlo extension that finds the CIs for any well-defined function of the coefficients of SEM such as the product of $k$ coefficients and the ratio of the contrasts of indirect effects, using the Monte Carlo method. Finally, we conduct a small-scale simulation study to compare CIs produced by the Monte Carlo, nonparametric bootstrap, and asymptotic-delta methods. Based on our simulation study, we recommend researchers use the Monte Carlo method to test a complex function of indirect effects.}, + keywords = {confidence interval, mediation analysis, Monte Carlo}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-bootstrap, mediation-delta, mediation-montecarlo}, +} + +@Article{Usami-Murayama-Hamaker-2019, + author = {Satoshi Usami and Kou Murayama and Ellen L. Hamaker}, + date = {2019-10}, + journaltitle = {Psychological Methods}, + title = {A unified framework of longitudinal models to examine reciprocal relations}, + doi = {10.1037/met0000210}, + issn = {1082-989X}, + number = {5}, + pages = {637--657}, + volume = {24}, + abstract = {Inferring reciprocal effects or causality between variables is a central aim of behavioral and psychological research. To address reciprocal effects, a variety of longitudinal models that include cross-lagged relations have been proposed in different contexts and disciplines. However, the relations between these cross-lagged models have not been systematically discussed in the literature. This lack of insight makes it difficult for researchers to select an appropriate model when analyzing longitudinal data, and some researchers do not even think about alternative cross-lagged models. The present research provides a unified framework that clarifies the conceptual and mathematical similarities and differences between these models. The unified framework shows that existing longitudinal models can be effectively classified based on whether the model posits unique factors and/or dynamic residuals and what types of common factors are used to model changes. The latter is essential to understand how cross-lagged parameters are interpreted. We also present an example using empirical data to demonstrate that there is great risk of drawing different conclusions depending on the cross-lagged models used.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{vanBuuren-GroothuisOudshoorn-2011, + author = {Stef {van Buuren} and Karin Groothuis-Oudshoorn}, + date = {2011}, + journaltitle = {Journal of Statistical Software}, + title = {{mice}: Multivariate Imputation by Chained Equations in {R}}, + doi = {10.18637/jss.v045.i03}, + number = {3}, + volume = {45}, + abstract = {The R package mice imputes incomplete multivariate data by chained equations. The software mice 1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an R package. mice 1.0 introduced predictor selection, passive imputation and automatic pooling. This article documents mice, which extends the functionality of mice 1.0 in several ways. In mice, the analysis of imputed data is made completely general, whereas the range of models under which pooling works is substantially extended. mice adds new functionality for imputing multilevel data, automatic predictor selection, data handling, post-processing imputed values, specialized pooling routines, model selection tools, and diagnostic graphs. Imputation of categorical data is improved in order to bypass problems caused by perfect prediction. Special attention is paid to transformations, sum scores, indices and interactions using passive imputation, and to the proper setup of the predictor matrix. mice can be downloaded from the Comprehensive R Archive Network. This article provides a hands-on, stepwise approach to solve applied incomplete data problems.}, + publisher = {Foundation for Open Access Statistic}, + keywords = {MICE, multiple imputation, chained equations, fully conditional specification, Gibbs sampler, predictor selection, passive imputation, R}, +} + +@Article{VerHoef-2012, + author = {Jay M. {Ver Hoef}}, + date = {2012-05}, + journaltitle = {The American Statistician}, + title = {Who invented the delta method?}, + doi = {10.1080/00031305.2012.687494}, + issn = {1537-2731}, + number = {2}, + pages = {124--127}, + volume = {66}, + abstract = {Many statisticians and other scientists use what is commonly called the ``delta method.'' However, few people know who proposed it. The earliest article was found in an obscure journal, and the author is rarely cited for his contribution. This article briefly reviews three modern versions of the delta method and how they are used. Then, some history on the author and the journal of the first known article on the delta method is given. The original author’s specific contribution is reproduced, along with a discussion on possible reasons that it has been overlooked.}, + publisher = {Informa UK Limited}, +} + +@Article{Voelkle-Oud-2012, + author = {Manuel C. Voelkle and Johan H. L. Oud}, + date = {2012-03}, + journaltitle = {British Journal of Mathematical and Statistical Psychology}, + title = {Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes}, + doi = {10.1111/j.2044-8317.2012.02043.x}, + number = {1}, + pages = {103--126}, + volume = {66}, + abstract = {When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud \& Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem.}, + publisher = {Wiley}, +} + +@Article{Voelkle-Oud-Davidov-etal-2012, + author = {Manuel C. Voelkle and Johan H. L. Oud and Eldad Davidov and Peter Schmidt}, + date = {2012}, + journaltitle = {Psychological Methods}, + title = {An {SEM} approach to continuous time modeling of panel data: Relating authoritarianism and anomia}, + doi = {10.1037/a0027543}, + number = {2}, + pages = {176--192}, + volume = {17}, + abstract = {Panel studies, in which the same subjects are repeatedly observed at multiple time points, are among the most popular longitudinal designs in psychology. Meanwhile, there exists a wide range of different methods to analyze such data, with autoregressive and cross-lagged models being 2 of the most well known representatives. Unfortunately, in these models time is only considered implicitly, making it difficult to account for unequally spaced measurement occasions or to compare parameter estimates across studies that are based on different time intervals. Stochastic differential equations offer a solution to this problem by relating the discrete time model to its underlying model in continuous time. It is the goal of the present article to introduce this approach to a broader psychological audience. A step-by-step review of the relationship between discrete and continuous time modeling is provided, and we demonstrate how continuous time parameters can be obtained via structural equation modeling. An empirical example on the relationship between authoritarianism and anomia is used to illustrate the approach.}, + publisher = {American Psychological Association ({APA})}, + keywords = {continuous time modeling, panel design, autoregressive cross-lagged model, longitudinal data analysis, structural equation modeling}, +} + +@Article{Vuorre-Bolger-2017, + author = {Matti Vuorre and Niall Bolger}, + date = {2017-12}, + journaltitle = {Behavior Research Methods}, + title = {Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience}, + doi = {10.3758/s13428-017-0980-9}, + issn = {1554-3528}, + number = {5}, + pages = {2125--2143}, + volume = {50}, + abstract = {Statistical mediation allows researchers to investigate potential causal effects of experimental manipulations through intervening variables. It is a powerful tool for assessing the presence and strength of postulated causal mechanisms. Although mediation is used in certain areas of psychology, it is rarely applied in cognitive psychology and neuroscience. One reason for the scarcity of applications is that these areas of psychology commonly employ within-subjects designs, and mediation models for within-subjects data are considerably more complicated than for between-subjects data. Here, we draw attention to the importance and ubiquity of mediational hypotheses in within-subjects designs, and we present a general and flexible software package for conducting Bayesian within-subjects mediation analyses in the R programming environment. We use experimental data from cognitive psychology to illustrate the benefits of within-subject mediation for theory testing and comparison.}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{Wichers-Groot-Psychosystems-2016, + author = {Marieke Wichers and Peter C. Groot and {Psychosystems} and {ESM Group} and {EWS Group}}, + date = {2016}, + journaltitle = {Psychotherapy and Psychosomatics}, + title = {Critical slowing down as a personalized early warning signal for depression}, + doi = {10.1159/000441458}, + issn = {1423-0348}, + number = {2}, + pages = {114--116}, + volume = {85}, + publisher = {S. Karger AG}, +} + +@Article{Wu-Jia-2013, + author = {Wei Wu and Fan Jia}, + date = {2013-09}, + journaltitle = {Multivariate Behavioral Research}, + title = {A new procedure to test mediation with missing data through nonparametric bootstrapping and multiple imputation}, + doi = {10.1080/00273171.2013.816235}, + number = {5}, + pages = {663--691}, + volume = {48}, + abstract = {This article proposes a new procedure to test mediation with the presence of missing data by combining nonparametric bootstrapping with multiple imputation (MI). This procedure performs MI first and then bootstrapping for each imputed data set. The proposed procedure is more computationally efficient than the procedure that performs bootstrapping first and then MI for each bootstrap sample. The validity of the procedure is evaluated using a simulation study under different sample size, missing data mechanism, missing data proportion, and shape of distribution conditions. The result suggests that the proposed procedure performs comparably to the procedure that combines bootstrapping with full information maximum likelihood under most conditions. However, caution needs to be taken when using this procedure to handle missing not-at-random or nonnormal data.}, + publisher = {Informa {UK} Limited}, + annotation = {mediation, mediation-missing, mediation-bootstrap}, +} + +@Article{Yuan-Chan-2011, + author = {Ke-Hai Yuan and Wai Chan}, + date = {2011-08}, + journaltitle = {Psychometrika}, + title = {Biases and standard errors of standardized regression coefficients}, + doi = {10.1007/s11336-011-9224-6}, + number = {4}, + pages = {670--690}, + volume = {76}, + abstract = {The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample standardized regression coefficients are also biased in general, although it should not be a concern in practice when the sample size is not too small. Monte Carlo results imply that, for both standardized and unstandardized sample regression coefficients, SE estimates based on asymptotics tend to under-predict the empirical ones at smaller sample sizes.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {asymptotics, bias, consistency, Monte Carlo}, + annotation = {standardized-regression, standardized-regression-delta, standardized-regression-normal, standardized-regression-adf}, +} + +@Article{Yzerbyt-Muller-Batailler-etal-2018, + author = {Vincent Yzerbyt and Dominique Muller and C{\a'e}dric Batailler and Charles M. Judd}, + date = {2018-12}, + journaltitle = {Journal of Personality and Social Psychology}, + title = {New recommendations for testing indirect effects in mediational models: The need to report and test component paths}, + doi = {10.1037/pspa0000132}, + number = {6}, + pages = {929--943}, + volume = {115}, + abstract = {In light of current concerns with replicability and reporting false-positive effects in psychology, we examine Type I errors and power associated with 2 distinct approaches for the assessment of mediation, namely the component approach (testing individual parameter estimates in the model) and the index approach (testing a single mediational index). We conduct simulations that examine both approaches and show that the most commonly used tests under the index approach risk inflated Type I errors compared with the joint-significance test inspired by the component approach. We argue that the tendency to report only a single mediational index is worrisome for this reason and also because it is often accompanied by a failure to critically examine the individual causal paths underlying the mediational model. We recommend testing individual components of the indirect effect to argue for the presence of an indirect effect and then using other recommended procedures to calculate the size of that effect. Beyond simple mediation, we show that our conclusions also apply in cases of within-participant mediation and moderated mediation. We also provide a new R-package that allows for an easy implementation of our recommendations.}, + publisher = {American Psychological Association ({APA})}, + keywords = {indirect effects, mediation, joint-significance, bootstrap}, + annotation = {mediation, mediation-jointtest}, +} + +@Article{Zhang-Wang-2012, + author = {Zhiyong Zhang and Lijuan Wang}, + date = {2012-12}, + journaltitle = {Psychometrika}, + title = {Methods for mediation analysis with missing data}, + doi = {10.1007/s11336-012-9301-5}, + number = {1}, + pages = {154--184}, + volume = {78}, + abstract = {Despite wide applications of both mediation models and missing data techniques, formal discussion of mediation analysis with missing data is still rare. We introduce and compare four approaches to dealing with missing data in mediation analysis including listwise deletion, pairwise deletion, multiple imputation (MI), and a two-stage maximum likelihood (TS-ML) method. An R package bmem is developed to implement the four methods for mediation analysis with missing data in the structural equation modeling framework, and two real examples are used to illustrate the application of the four methods. The four methods are evaluated and compared under MCAR, MAR, and MNAR missing data mechanisms through simulation studies. Both MI and TS-ML perform well for MCAR and MAR data regardless of the inclusion of auxiliary variables and for AV-MNAR data with auxiliary variables. Although listwise deletion and pairwise deletion have low power and large parameter estimation bias in many studied conditions, they may provide useful information for exploring missing mechanisms.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {mediation analysis, missing data, MI, TS-ML, bootstrap, auxiliary variables}, + annotation = {mediation, mediation-missing, mediation-bootstrap}, +} + +@Article{Zyphur-Allison-Tay-etal-2019, + author = {Michael J. Zyphur and Paul D. Allison and Louis Tay and Manuel C. Voelkle and Kristopher J. Preacher and Zhen Zhang and Ellen L. Hamaker and Ali Shamsollahi and Dean C. Pierides and Peter Koval and Ed Diener}, + date = {2019-05}, + journaltitle = {Organizational Research Methods}, + title = {From data to causes {I}: Building a general cross-lagged panel model ({GCLM})}, + doi = {10.1177/1094428119847278}, + issn = {1552-7425}, + number = {4}, + pages = {651--687}, + volume = {23}, + abstract = {This is the first paper in a series of two that synthesizes, compares, and extends methods for causal inference with longitudinal panel data in a structural equation modeling (SEM) framework. Starting with a cross-lagged approach, this paper builds a general cross-lagged panel model (GCLM) with parameters to account for stable factors while increasing the range of dynamic processes that can be modeled. We illustrate the GCLM by examining the relationship between national income and subjective well-being (SWB), showing how to examine hypotheses about short-run (via Granger-Sims tests) versus long-run effects (via impulse responses). When controlling for stable factors, we find no short-run or long-run effects among these variables, showing national SWB to be relatively stable, whereas income is less so. Our second paper addresses the differences between the GCLM and other methods. Online Supplementary Materials offer an Excel file automating GCLM input for Mplus (with an example also for Lavaan in R) and analyses using additional data sets and all program input/output. We also offer an introductory GCLM presentation at https://youtu.be/tHnnaRNPbXs. We conclude with a discussion of issues surrounding causal inference.}, + publisher = {SAGE Publications}, +} + +@Article{Zyphur-Voelkle-Tay-etal-2019, + author = {Michael J. Zyphur and Manuel C. Voelkle and Louis Tay and Paul D. Allison and Kristopher J. Preacher and Zhen Zhang and Ellen L. Hamaker and Ali Shamsollahi and Dean C. Pierides and Peter Koval and Ed Diener}, + date = {2019-05}, + journaltitle = {Organizational Research Methods}, + title = {From data to causes {II}: Comparing approaches to panel data analysis}, + doi = {10.1177/1094428119847280}, + issn = {1552-7425}, + number = {4}, + pages = {688--716}, + volume = {23}, + abstract = {This article compares a general cross-lagged model (GCLM) to other panel data methods based on their coherence with a causal logic and pragmatic concerns regarding modeled dynamics and hypothesis testing. We examine three ``static'' models that do not incorporate temporal dynamics: random- and fixed-effects models that estimate contemporaneous relationships; and latent curve models. We then describe ``dynamic'' models that incorporate temporal dynamics in the form of lagged effects: cross-lagged models estimated in a structural equation model (SEM) or multilevel model (MLM) framework; Arellano-Bond dynamic panel data methods; and autoregressive latent trajectory models. We describe the implications of overlooking temporal dynamics in static models and show how even popular cross-lagged models fail to control for stable factors over time. We also show that Arellano-Bond and autoregressive latent trajectory models have various shortcomings. By contrasting these approaches, we clarify the benefits and drawbacks of common methods for modeling panel data, including the GCLM approach we propose. We conclude with a discussion of issues regarding causal inference, including difficulties in separating different types of time-invariant and time-varying effects over time.}, + publisher = {SAGE Publications}, +} + +@Book{Bolger-Laurenceau-2013, + author = {Niall Bolger and Jean-Philippe Laurenceau}, + date = {2013}, + title = {Intensive longitudinal methods: An introduction to diary and experience sampling research}, + isbn = {9781462506927}, + publisher = {Guilford Publications}, + abstract = {A complete, practical guide to planning and executing an intensive longitudinal study, this book provides the tools for understanding within-subject social, psychological, and physiological processes in everyday contexts. Intensive longitudinal studies involve many repeated measurements taken on individuals, dyads, or groups, and include diary and experience sampling studies. A range of engaging, worked-through research examples with datasets are featured. Coverage includes how to: select the best intensive longitudinal design for a particular research question, model within-subject change processes for continuous and categorical outcomes, distinguish within-subject from between-subjects effects, assess the reliability of within-subject changes, assure sufficient statistical power, and more. Several end-of-chapter write-ups illustrate effective ways to present study findings for publication.}, +} + +@InBook{Deboeck-Preacher-Cole-2018, + author = {Pascal R. Deboeck and Kristopher J. Preacher and David A. Cole}, + booktitle = {Continuous time modeling in the behavioral and related sciences}, + date = {2018}, + title = {Mediation modeling: Differing perspectives on time alter mediation inferences}, + doi = {10.1007/978-3-319-77219-6_8}, + isbn = {9783319772196}, + pages = {179--203}, + publisher = {Springer International Publishing}, + abstract = {Time is unlike any other variable collected in the social, behavioral, and medical sciences. Research participants who are sampled, and variables that are measured, come in distinct, discrete units. Although time is often recorded in such discrete units (e.g., wave 1, grade 3, day 5), time is markedly different from either participants or variables. Sampling time points is unlike sampling people or variables, as there are an arbitrary number of additional samples that can be collected between any two occasions of measurement. These interstitial samples are ignored by many longitudinal modeling paradigms. These observations that occur between sampling occasions form the basis for the perspectives on mediation explored in this chapter. We focus on the difference in perspectives offered by discrete time approaches commonly utilized in mediation research versus models that conceptualize time as a continuous variable. The differences in how one conceptualizes time have the potential to alter such core mediation concepts as direct and indirect effect, complete and partial mediation, and even what constitutes a ``mediation'' model.}, +} + +@Book{Eddelbuettel-2013, + author = {Dirk Eddelbuettel}, + date = {2013}, + title = {Seamless {R} and {C++} integration with {Rcpp}}, + doi = {10.1007/978-1-4614-6868-4}, + isbn = {978-1-4614-6868-4}, + publisher = {Springer New York}, + abstract = {Illustrates a range of statistical computations in R using the Rcpp package. Provides a general introduction to extending R with C++ code. Features an appendix for R users new to the C++ programming language Rcpp packages are presented in the context of useful application case studies.}, + annotation = {r, r-packages}, +} + +@Book{Enders-2010, + author = {Craig K. Enders}, + date = {2010-05-31}, + title = {Applied missing data analysis}, + isbn = {9781606236390}, + pagetotal = {377}, + library = {HA29 .E497 2010}, + addendum = {https://lccn.loc.gov/2010008465}, + abstract = {Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website (www.appliedmissingdata.com) includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists.}, + publisher = {Guilford Publications}, + keywords = {Social sciences--Statistical methods, Missing observations (Statistics), Social sciences--Research--Methodology}, +} + +@Book{Flor-Turk-2011, + author = {Herta Flor and Dennis C. Turk}, + date = {2011}, + title = {Chronic pain: An integrated biobehavioral approach}, + isbn = {978-0-931092-90-9}, + location = {Seattle, WA}, + publisher = {IASP Press}, + abstract = {This volume provides a psychobiological perspective on people who experience chronic pain and describes a comprehensive approach to their treatment. The text focuses on the interaction of psychosocial (psychological, behavioral, and social) and physiological processes in people with chronic pain and the implications that follow. Our basic hypothesis is that chronic pain is a learned response, whereby ``pain memories'' rather than current nociceptive input determine much of the pain experienced. Moreover, interdisciplinary approaches that integrate psychological principles and approaches with traditional biomedical knowledge in the assessment and treatment of people with chronic pain are more fruitful than any single modalities, be they physical (surgery, medication, regional anesthesia, or neuroaugmentive interventions) or psychological (biofeedback, counseling, or psychotherapy). Although our emphasis is on the role of psychological and social factors in chronic pain states, we attempt to integrate these aspects with the current biological understanding of the neurophysiology of nociception.}, +} + +@InBook{Koopman-Howe-Hollenbeck-2014, + author = {Joel Koopman and Michael Howe and John R. Hollenbeck}, + booktitle = {More statistical and methodological myths and urban legends: Doctrine, verity and fable in organizational and social sciences}, + date = {2014}, + title = {Pulling the {Sobel} test up by its bootstraps}, + bookauthor = {Charles E. Lance and Robert J. Vandenberg}, + isbn = {9780203775851}, + pages = {224--243}, + doi = {10.4324/9780203775851}, + isbn = {9780203775851}, + abstract = {In the domain of building and testing theory, mediation relationships are among the most important that can be proposed. Mediation helps to explicate our theoretical models (Leavitt, Mitchell, \& Peterson, 2010) and addresses the fundamental question of why two constructs are related (Whetten, 1989). One of the better-known methods for testing mediation is commonly referred to as the ``Sobel test,'' named for the researcher who derived a standard error (Sobel, 1982) to test the significance of the indirect effect. Recently, a number of different research teams (e.g., Preacher \& Hayes, 2004; Shrout \& Bolger, 2002) have criticized the Sobel test because this standard error requires an assumption of normality for the indirect effect sampling distribution. This distribution tends to be positively skewed (i.e,. not normal), particularly in small samples, and so this assumption can be problematic (Preacher \& Hayes, 2004; Stone \& Sobel, 1990). As a result, the statistical power of the Sobel test may be lessened in these contexts (Preacher \& Hayes 2004; Shrout \& Bolger, 2002). In light of this concern, some scholars have advocated instead for the use of bootstrapping to test the significance of the indirect effect (e.g.. Shrout \& Bolger 2002). Bootstrapping requires no a priori assumption about the shape of the sampling distribution because this distribution is empirically estimated using a resampling procedure (Efron \& Tibshirani, 1993). As a result, departures from normality are less troublesome when creating a confidence interval for the indirect effect. For this reason, bootstrapping is now widely believed to be inherently superior to the Sobel test when testing the significance of the indirect effect in organizational research. Our position is that this belief constitutes an urban legend. As with all statistical urban legends, there is an underlying kernel of truth to the belief that bootstrapping is superior to the Sobel test. However, as we discuss in this chapter, there are several reasons to be concerned with a broad belief in the superiority of bootstrapping. We begin with a brief overview of mediation testing focusing on the Sobel test and bootstrapping and then explain the underlying kernel of truth that has propelled bootstrapping to the forefront of mediation testing in organizational research. Subsequently, we discuss four areas of concern that cast doubt on the belief of the inherent superiority of bootstrapping. Finally, we conclude with recommendations concerning the future of mediation testing in organizational research.}, + publisher = {Routledge/Taylor \& Francis Group}, + annotation = {mediation, mediation-delta, mediation-bootstrap}, +} + +@Book{Little-Rubin-2019, + author = {Roderick J. A. Little and Donald B. Rubin}, + date = {2019-04}, + title = {Statistical analysis with missing data}, + doi = {10.1002/9781119482260}, + edition = {3}, + isbn = {9781119482260}, + library = {QA276}, + addendum = {https://lccn.loc.gov/2018061330}, + abstract = {An up-to-date, comprehensive treatment of a classic text on missing data in statistics. + The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. + Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. + \begin{itemize} \item An updated ``classic'' written by renowned authorities on the subject \item Features over 150 exercises (including many new ones) \item Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods \item Revises previous topics based on past student feedback and class experience \item Contains an updated and expanded bibliography \end{itemize} + The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work ``has been no less than defining and transforming.'' (ISI) + Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.}, + publisher = {Wiley}, + keywords = {Mathematical statistics, Mathematical statistics--Problems, exercises, etc., Missing observations (Statistics), Missing observations (Statistics)--Problems, exercises, etc.}, +} + +@Book{Mehl-Conner-Csikszentmihalyi-2011, + author = {Matthias R. Mehl and Tamlin S. Conner and Mihaly. Csikszentmihalyi}, + date = {2011}, + title = {Handbook of research methods for studying daily life}, + isbn = {9781609187491}, + publisher = {Guilford Publications}, + abstract = {Laboratory-based experimental methods historically have been the strength and pride of psychology and related disciplines. Yet a comprehensive science of behavior also requires the study of humans in real life. Bringing together leading investigators, this book reviews the breadth of current approaches for studying how people think, feel, and behave in everyday environments. The Handbook is organized in four parts. Part I covers the theoretical and methodological foundations of conducting daily life research. Part II provides guidance for designing a high-quality study and selecting and implementing appropriate methods. The chapters describe experience sampling methods, diary methods, ambulatory physiological measures, and other tools---including recording technologies and computerized approaches---that allow repeated, real-time measurement in natural settings. Part III focuses on techniques for analyzing intensive data from daily life, featuring practical discussions of power analysis, psychometrics, data cleaning, multilevel modeling, time series analysis, and other topics. Part IV reviews how methods for studying daily life have been employed in different subfields and research areas, such as the study of emotion, close relationships, personality, health, development, psychopathology, and mental health treatment. Specific advantages and challenges inherent to using the methods in each area are discussed. Timely and authoritative, this handbook meets a key need for research psychologists and for graduate students in social/personality, health, developmental, industrial/organizational, and clinical psychology.}, +} + +@Book{Millsap-2011, + author = {Roger E. Millsap}, + date = {2011}, + title = {Statistical approaches to measurement invariance}, + isbn = {9780203821961 }, + doi = {10.4324/9780203821961}, + publisher = {Routledge}, +} + +@InBook{Oravecz-Wood-Ram-2018, + author = {Zita Oravecz and Julie Wood and Nilam Ram}, + booktitle = {Continuous time modeling in the behavioral and related sciences}, + date = {2018}, + title = {On fitting a continuous-time stochastic process model in the {Bayesian} framework}, + doi = {10.1007/978-3-319-77219-6_3}, + isbn = {9783319772196}, + pages = {55--78}, + publisher = {Springer International Publishing}, + abstract = {Process models can be viewed as mathematical tools that allow researchers to formulate and test theories on the data-generating mechanism underlying observed data. In this chapter we highlight the advantages of this approach by proposing a multilevel, continuous-time stochastic process model to capture the dynamical homeostatic process that underlies observed intensive longitudinal data. Within the multilevel framework, we also link the dynamical processes parameters to time-varying and time-invariant covariates. However, estimating all model parameters (e.g., process model parameters and regression coefficients) simultaneously requires custom-made implementation of the parameter estimation; therefore we advocate the use of a Bayesian statistical framework for fitting these complex process models. We illustrate application to data on self-reported affective states collected in an ecological momentary assessment setting.}, +} + +@InBook{Oud-Delsing-2010, + author = {Johan H. L. Oud and Marc J. M. H. Delsing}, + editor = {Kees {van Montfort} and Johan H. L. Oud and A. Satorra}, + booktitle = {Longitudinal research with latent variables}, + date = {2010}, + title = {Continuous time modeling of panel data by means of {SEM}}, + doi = {10.1007/978-3-642-11760-2_7}, + isbn = {9783642117602}, + pages = {201--244}, + publisher = {Springer Berlin Heidelberg}, + abstract = {After a brief history of continuous time modeling and its implementation in panel analysis by means of structural equation modeling (SEM), the problems of discrete time modeling are discussed in detail. This is done by means of the popular cross-lagged panel design. Next, the exact discrete model (EDM) is introduced, which accounts for the exact nonlinear relationship between the underlying continuous time model and the resulting discrete time model for data analysis. In addition, a linear approximation of the EDM is discussed: the approximate discrete model (ADM). It is recommended to apply the ADM-SEM procedure by means of a SEM program such as LISREL in the model building phase and the EDM-SEM procedure by means of Mx in the final model estimation phase. Both procedures are illustrated in detail by two empirical examples: Externalizing and Internalizing Problem Behavior in children; Individualism, Nationalism and Ethnocentrism in the Flemish electorate.}, +} + +@Book{Pawitan-2013, + author = {Yudi Pawitan}, + date = {2013-01-17}, + title = {In all likelihood: Statistical modelling and inference using likelihood}, + isbn = {9780199671229}, + pagetotal = {544}, + abstract = {Based on a course in the theory of statistics this text concentrates on what can be achieved using the likelihood/Fisherian method of taking account of uncertainty when studying a statistical problem. It takes the concept ot the likelihood as providing the best methods for unifying the demands of statistical modelling and the theory of inference. Every likelihood concept is illustrated by realistic examples, which are not compromised by computational problems. Examples range from a simile comparison of two accident rates, to complex studies that require generalised linear or semiparametric modelling. + The emphasis is that the likelihood is not simply a device to produce an estimate, but an important tool for modelling. The book generally takes an informal approach, where most important results are established using heuristic arguments and motivated with realistic examples. With the currently available computing power, examples are not contrived to allow a closed analytical solution, and the book can concentrate on the statistical aspects of the data modelling. In addition to classical likelihood theory, the book covers many modern topics such as generalized linear models and mixed models, non parametric smoothing, robustness, the EM algorithm and empirical likelihood.}, + publisher = {Oxford University Press}, +} + +@InBook{Ryan-Kuiper-Hamaker-2018, + author = {Oisin Ryan and Rebecca M. Kuiper and Ellen L. Hamaker}, + booktitle = {Continuous time modeling in the behavioral and related sciences}, + date = {2018}, + title = {A continuous-time approach to intensive longitudinal data: What, why, and how?}, + doi = {10.1007/978-3-319-77219-6_2}, + isbn = {9783319772196}, + pages = {27--54}, + publisher = {Springer International Publishing}, + abstract = {The aim of this chapter is to (a) provide a broad didactical treatment of the first-order stochastic differential equation model—also known as the continuous-time (CT) first-order vector autoregressive (VAR(1)) model—and (b) argue for and illustrate the potential of this model for the study of psychological processes using intensive longitudinal data. We begin by describing what the CT-VAR(1) model is and how it relates to the more commonly used discrete-time VAR(1) model. Assuming no prior knowledge on the part of the reader, we introduce important concepts for the analysis of dynamic systems, such as stability and fixed points. In addition we examine why applied researchers should take a continuous-time approach to psychological phenomena, focusing on both the practical and conceptual benefits of this approach. Finally, we elucidate how researchers can interpret CT models, describing the direct interpretation of CT model parameters as well as tools such as impulse response functions, vector fields, and lagged parameter plots. To illustrate this methodology, we reanalyze a single-subject experience-sampling dataset with the R package ctsem; for didactical purposes, R code for this analysis is included, and the dataset itself is publicly available.}, +} + +@Book{Shumway-Stoffer-2017, + author = {Robert H. Shumway and David S. Stoffer}, + publisher = {Springer International Publishing}, + title = {Time series analysis and its applications: With {R} examples}, + isbn = {978-3-319-52452-8}, + date = {2017}, + doi = {10.1007/978-3-319-52452-8}, + library = {QA280}, + addendum = {https://lccn.loc.gov/2019301243}, + abstract = {The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. +The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. +This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.}, + keywords = {Time-series analysis, Time-series analysis--Data processing, R (Computer program language)}, +} + +@InBook{Turk-Monarch-2018, + author = {Dennis C. Turk and Elena S. Monarch}, + booktitle = {Psychological approaches to pain management: A practitioner's handbook}, + date = {2018}, + title = {Biopsychosocial perspective on chronic pain}, + edition = {3}, + editor = {Dennis C. Turk and Robert J. Gatchel}, + isbn = {9781462535620}, + location = {New York}, + publisher = {The Guilford Press}, +} + +@Book{vanBuuren-2018, + author = {Stef {van Buuren}}, + date = {2018-07}, + title = {Flexible imputation of missing data}, + doi = {10.1201/9780429492259}, + edition = {2}, + isbn = {9780429492259}, + publisher = {Chapman and Hall/{CRC}}, + library = {QA278}, + addendum = {https://lccn.loc.gov/2019719619}, + abstract = {Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. + This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. + This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.}, + keywords = {Multivariate analysis, Multiple imputation (Statistics), Missing observations (Statistics)}, +} + +@Book{vanMontfort-Oud-Satorra-2010, + date = {2010}, + title = {Longitudinal research with latent variables}, + editor = {Kees {van Montfort} and Johan H. L. Oud and A. Satorra}, + isbn = {9783642117602}, + location = {New York}, + note = {Includes bibliographical references.}, + pagetotal = {301}, + publisher = {Springer}, + ppn_gvk = {1772810835}, +} + +@Book{vanMontfort-Oud-Voelkle-2018, + date = {2018}, + title = {Continuous time modeling in the behavioral and related sciences}, + doi = {10.1007/978-3-319-77219-6}, + editor = {Kees {van Montfort} and Johan H. L. Oud and Manuel C. Voelkle}, + publisher = {Springer International Publishing}, +} + +@InCollection{Zhang-Wang-Tong-2015, + author = {Zhiyong Zhang and Lijuan Wang and Xin Tong}, + booktitle = {Quantitative Psychology Research}, + date = {2015}, + title = {Mediation analysis with missing data through multiple imputation and bootstrap}, + doi = {10.1007/978-3-319-19977-1_24}, + pages = {341--355}, + abtract = {A method using multiple imputation and bootstrap for dealing with missing data in mediation analysis is introduced and implemented in both SAS and R. Through simulation studies, it is shown that the method performs well for both MCAR and MAR data without and with auxiliary variables. It is also shown that the method can work for MNAR data if auxiliary variables related to missingness are included. The application of the method is demonstrated through the analysis of a subset of data from the National Longitudinal Survey of Youth. Mediation analysis with missing data can be conducted using the provided SAS macros and R package bmem.}, + publisher = {Springer International Publishing}, + keywords = {mediation analysis, missing data, multiple imputation, bootstrap}, + annotation = {mediation, mediation-missing, mediation-bootstrap}, +} + +@Misc{Hesterberg-2014, + title = {What teachers should know about the bootstrap: Resampling in the undergraduate statistics curriculum}, + author = {Tim C. Hesterberg}, + date = {2014}, + eprint = {1411.5279}, + archiveprefix = {arXiv}, + primaryclass = {stat.OT}, + url = {https://arxiv.org/abs/1411.5279}, + abstract = {I have three goals in this article: \begin{enumerate} \item To show the enormous potential of bootstrapping and permutation tests to help students understand statistical concepts including sampling distributions, standard errors, bias, confidence intervals, null distributions, and P-values. \item To dig deeper, understand why these methods work and when they don't, things to watch out for, and how to deal with these issues when teaching. \item To change statistical practice---by comparing these methods to common $t$ tests and intervals, we see how inaccurate the latter are; we confirm this with asymptotics. $n \geq 30$ isn't enough---think $n \geq 5000$. \end{enumerate} Resampling provides diagnostics, and more accurate alternatives. Sadly, the common bootstrap percentile interval badly under-covers in small samples; there are better alternatives. The tone is informal, with a few stories and jokes.}, + keywords = {teaching, bootstrap, permutation test, randomization test}, +} + +@Report{Jones-Waller-2013b, + author = {Jeff A. Jones and Niels G. Waller}, + date = {2013-05-25}, + institution = {University of Minnesota-Twin Cities}, + title = {The normal-theory and asymptotic distribution-free ({ADF}) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior}, + type = {techreport}, + url = {http://users.cla.umn.edu/~nwaller/downloads/techreports/TR052913.pdf}, + urldate = {2022-07-22}, + abstract = {Yuan and Chan (2011) recently showed how to compute the covariance matrix of standardized regression coefficients from covariances. In this paper, we describe a new method for computing this covariance matrix from correlations. We then show that Yuan and Chan's original equations can also be used when only correlational data are available. Next, we describe an asymptotic distribution-free (ADF; Browne, 1984) method for computing the covariance matrix of standardized regression coefficients. We show that theADF method works well with non-normal data in moderate-to-large samples using both simulated and real-data examples. Finally, we provide R code (R Development Core Team, 2012) in an Appendix to make these methods accessible to applied researchers.}, +} + +@Manual{Muthen-Muthen-2017, + author = {Linda K. Muth{\a'e}n and Bengt O. Muth{\a'e}n}, + date = {2017}, + title = {{Mplus} user’s guide. {Eighth} edition}, + location = {Los Angeles, CA}, + publisher = {{Muth\'en} \& {Muth\'en}}, + annotation = {sem, sem-software}, +} + +@Article{Adolf-Loossens-Tuerlinckx-etal-2021, + author = {Janne K. Adolf and Tim Loossens and Francis Tuerlinckx and Eva Ceulemans}, + date = {2021-12}, + journaltitle = {Psychological Methods}, + title = {Optimal sampling rates for reliable continuous-time first-order autoregressive and vector autoregressive modeling}, + doi = {10.1037/met0000398}, + issn = {1082-989X}, + number = {6}, + pages = {701--718}, + volume = {26}, + abstract = {Autoregressive and vector autoregressive models are a driving force in current psychological research. In affect research they are, for instance, frequently used to formalize affective processes and estimate affective dynamics. Discrete-time model variants are most commonly used, but continuous-time formulations are gaining popularity, because they can handle data from longitudinal studies in which the sampling rate varies within the study period, and yield results that can be compared across data sets from studies with different sampling rates. However, whether and how the sampling rate affects the quality with which such continuous-time models can be estimated, has largely been ignored in the literature. In the present article, we show how the sampling rate affects the estimation reliability (i.e., the standard errors of the parameter estimators, with smaller values indicating higher reliability) of continuous-time autoregressive and vector autoregressive models. Moreover, we determine which sampling rates are optimal in the sense that they lead to standard errors of minimal size (subject to the assumption that the models are correct). Our results are based on the theories of optimal design and maximum likelihood estimation. We illustrate them making use of data from the COGITO Study. We formulate recommendations for study planning, and elaborate on strengths and limitations of our approach.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Cheung-2021, + author = {Mike W.-L. Cheung}, + date = {2021-06}, + journaltitle = {Alcohol and Alcoholism}, + title = {Synthesizing indirect effects in mediation models with meta-analytic methods}, + doi = {10.1093/alcalc/agab044}, + number = {1}, + pages = {5--15}, + volume = {57}, + abstract = {Aims + A mediator is a variable that explains the underlying mechanism between an independent variable and a dependent variable. The indirect effect indicates the effect from the predictor to the outcome variable via the mediator. In contrast, the direct effect represents the predictor's effort on the outcome variable after controlling for the mediator. + Methods + A single study rarely provides enough evidence to answer research questions in a particular domain. Replications are generally recommended as the gold standard to conduct scientific research. When a sufficient number of studies have been conducted addressing similar research questions, a meta-analysis can be used to synthesize those studies' findings. + Results + The main objective of this paper is to introduce two frameworks to integrating studies using mediation analysis. The first framework involves calculating standardized indirect effects and direct effects and conducting a multivariate meta-analysis on those effect sizes. The second one uses meta-analytic structural equation modeling to synthesize correlation matrices and fit mediation models on the average correlation matrix. We illustrate these procedures on a real dataset using the R statistical platform. + Conclusion + This paper closes with some further directions for future studies.}, + publisher = {Oxford University Press ({OUP})}, + keywords = {heterogeneity, gold standard, outcome variable, datasets, mediation analysis}, +} + +@Article{Cheung-Cheung-Lau-etal-2022, + author = {Shu Fai Cheung and Sing-Hang Cheung and Esther Yuet Ying Lau and C. Harry Hui and Weng Ngai Vong}, + date = {2022-07}, + journaltitle = {Health Psychology}, + title = {Improving an old way to measure moderation effect in standardized units.}, + doi = {10.1037/hea0001188}, + issn = {0278-6133}, + number = {7}, + pages = {502--505}, + volume = {41}, + abstract = {Moderation effects in multiple regression, tested usually by the inclusion of a product term, are frequently investigated in health psychology. However, several issues in presenting the moderation effects in standardized units and their associated confidence intervals are commonly observed. While an old method had been proposed to standardize variables in moderated regression before fitting a moderated regression model, this method was rarely used due to inconvenience and even when used, the confidence intervals derived were biased. Here, we attempt to solve these two problems by providing a tool to conveniently conduct standardization in moderated regression without the step of standardizing the variables beforehand and to accurately form the nonparametric bootstrapping confidence intervals for this standardized measure of moderation effects. Health psychology researchers are now equipped with a tool that can be used to report and interpret standardized moderation effects correctly.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Cheung-Pesigan-2023a, + author = {Shu Fai Cheung and Ivan Jacob Agaloos Pesigan}, + date = {2023-01}, + journaltitle = {Multivariate Behavioral Research}, + title = {{FINDOUT}: Using either {SPSS} commands or graphical user interface to identify influential cases in structural equation modeling in {AMOS}}, + doi = {10.1080/00273171.2022.2148089}, + pages = {1--5}, + abstract = {The results in a structural equation modeling (SEM) analysis can be influenced by just a few observations, called influential cases. Tools have been developed for users of R to identify them. However, similar tools are not available for AMOS, which is also a popular SEM software package. We introduce the FINDOUT toolset, a group of SPSS extension commands, and an AMOS plugin, to identify influential cases and examine how these cases influence the results. The SPSS commands can be used either as syntax commands or as custom dialogs from pull-down menus, and the AMOS plugin can be run from AMOS pull-down menu. We believe these tools can help researchers to examine the robustness of their findings to influential cases.}, + publisher = {Informa {UK} Limited}, + keywords = {influential cases, outliers, structural equation modeling, AMOS, sensitivity analysis, SPSS}, +} + +@Article{Cheung-Pesigan-2023b, + author = {Shu Fai Cheung and Ivan Jacob Agaloos Pesigan}, + date = {2023-05}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {{semlbci}: An {R} package for forming likelihood-based confidence intervals for parameter estimates, correlations, indirect effects, and other derived parameters}, + doi = {10.1080/10705511.2023.2183860}, + pages = {1--15}, + abstract = {There are three common types of confidence interval (CI) in structural equation modeling (SEM): Wald-type CI, bootstrapping CI, and likelihood-based CI (LBCI). LBCI has the following advantages: (1) it has better coverage probabilities and Type I error rate compared to Wald-type CI when the sample size is finite; (2) it correctly tests the null hypothesis of a parameter based on likelihood ratio chi-square difference test; (3) it is less computationally intensive than bootstrapping CI; and (4) it is invariant to transformations. However, LBCI is not available in many popular SEM software packages. We developed an R package, semlbci, for forming LBCI for parameters in models fitted by lavaan, a popular open-source SEM package, such that researchers have more options in forming CIs for parameters in SEM. The package supports both unstandardized and standardized estimates, derived parameters such as indirect effect, multisample models, and the robust LBCI proposed by Falk.}, + publisher = {Informa {UK} Limited}, + keywords = {confidence interval, likelihood-based confidence interval, robust method, structural equation modeling}, + annotation = {r, r-packages, sem, sem-software, sem-likelihood}, +} + +@Article{Cheung-Pesigan-Vong-2022, + author = {Shu Fai Cheung and Ivan Jacob Agaloos Pesigan and Weng Ngai Vong}, + date = {2022-03}, + journaltitle = {Behavior Research Methods}, + title = {{DIY} bootstrapping: Getting the nonparametric bootstrap confidence interval in {SPSS} for any statistics or function of statistics (when this bootstrapping is appropriate)}, + doi = {10.3758/s13428-022-01808-5}, + number = {2}, + pages = {474--490}, + volume = {55}, + abstract = {Researchers can generate bootstrap confidence intervals for some statistics in SPSS using the BOOTSTRAP command. However, this command can only be applied to selected procedures, and only to selected statistics in these procedures. We developed an extension command and prepared some sample syntax files based on existing approaches from the Internet to illustrate how researchers can (a) generate a large number of nonparametric bootstrap samples, (b) do desired analysis on all these samples, and (c) form the bootstrap confidence intervals for selected statistics using the OMS commands. We developed these tools to help researchers apply nonparametric bootstrapping to any statistics for which this method is appropriate, including statistics derived from other statistics, such as standardized effect size measures computed from the t test results. We also discussed how researchers can extend the tools for other statistics and scenarios they encounter.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {bootstrapping, effect sizes, confidence intervals}, +} + +@Article{Courtney-Russell-2021, + author = {Jimikaye B. Courtney and Michael A. Russell}, + date = {2021-08}, + journaltitle = {Psychology of Addictive Behaviors}, + title = {Testing affect regulation models of drinking prior to and after drinking initiation using ecological momentary assessment}, + doi = {10.1037/adb0000763}, + issn = {0893-164X}, + number = {5}, + pages = {597--608}, + volume = {35}, + abstract = {Objective: Affect regulation models of drinking state that affect motivates and reinforces drinking. Few studies have been able to elucidate the timing of these associations in natural settings. We tested positive affect (PA) and negative affect (NA) as predictors of drinking behavior, both prior to and during drinking episodes, and whether drinking predicted changes in affect during episodes. Method: Two hundred twenty two regularly drinking young adults (21–29 years, 84\% undergraduates), completed an ecological momentary assessment (EMA) protocol for five consecutive 24-hr periods stretching across 6 days (Wednesday–Monday). Participants provided PA and NA reports three times daily and every half hour during drinking episodes. Alcohol consumption reports were provided each morning and every half hour during drinking episodes. Results: Multi-level models showed that greater pre-drinking PA predicted higher odds of drinking and greater number of drinks consumed. Pre-drinking NA did not predict same day odds of drinking or drinks consumed. Episode-level results revealed different associations for PA and NA with drinking. Current PA did not predict drinks consumed over the next half hour; however, increased drinking was associated with greater increases in PA over the next half hour. Higher NA predicted fewer drinks consumed in the next half hour and higher odds of the end of a drinking episode; however, increased drinking was not associated with changes in NA. Conclusions: PA increased following drinking during episodes. Our results suggest that a focus on PA prior to episodes and a focus on NA during episodes may interrupt processes leading to heavy drinking, and may therefore aid prevention efforts.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Didier-King-Polley-etal-2023, + author = {Nathan A. Didier and Andrea C. King and Eric C. Polley and Daniel J. Fridberg}, + date = {2023-10}, + journaltitle = {Experimental and Clinical Psychopharmacology}, + title = {Signal processing and machine learning with transdermal alcohol concentration to predict natural environment alcohol consumption.}, + doi = {10.1037/pha0000683}, + issn = {1064-1297}, + abstract = {Wrist-worn alcohol biosensors continuously and discreetly record transdermal alcohol concentration (TAC) and may allow alcohol researchers to monitor alcohol consumption in participants’ natural environments. However, the field lacks established methods for signal processing and detecting alcohol events using these devices. We developed software that streamlines analysis of raw data (TAC, temperature, and motion) from a wrist-worn alcohol biosensor (BACtrack Skyn) through a signal processing and machine learning pipeline: biologically implausible skin surface temperature readings (< 28C) were screened for potential device removal and TAC artifacts were corrected, features that describe TAC (e.g., rise duration) were calculated and used to train models (random forest and logistic regression) that predict self-reported alcohol consumption, and model performances were measured and summarized in autogenerated reports. The software was tested using 60 Skyn data sets recorded during 30 alcohol drinking episodes and 30 nonalcohol drinking episodes. Participants (N = 36; 13 with alcohol use disorder) wore the Skyn during one alcohol drinking episode and one nonalcohol drinking episode in their natural environment. In terms of distinguishing alcohol from nonalcohol drinking, correcting artifacts in the data resulted in 10\% improvement in model accuracy relative to using raw data. Random forest and logistic regression models were both accurate, correctly predicting 97\% (58/60; AUC-ROCs = 0.98, 0.96) of episodes. Area under TAC curve, rise duration of TAC curve, and peak TAC were the most important features for predictive accuracy. With promising model performance, this protocol will enhance the efficiency and reliability of TAC sensors for future alcohol monitoring research.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Dora-Piccirillo-Foster-etal-2023, + author = {Jonas Dora and Marilyn Piccirillo and Katherine T. Foster and Kelly Arbeau and Stephen Armeli and Marc Auriacombe and Bruce Bartholow and Adriene M. Beltz and Shari M. Blumenstock and Krysten Bold and Erin E. Bonar and Abby Braitman and Ryan W. Carpenter and Kasey G. Creswell and Tracy {De Hart} and Robert D. Dvorak and Noah Emery and Matthew Enkema and Catharine E. Fairbairn and Anne M. Fairlie and Stuart G. Ferguson and Teresa Freire and Fallon Goodman and Nisha Gottfredson and Max Halvorson and Maleeha Haroon and Andrea L. Howard and Andrea Hussong and Kristina M. Jackson and Tiffany Jenzer and Dominic P. Kelly and Adam M. Kuczynski and Alexis Kuerbis and Christine M. Lee and Melissa Lewis and Ashley N. Linden-Carmichael and Andrew Littlefield and David M. Lydon-Staley and Jennifer E. Merrill and Robert Miranda and Cynthia Mohr and Jennifer P. Read and Clarissa Richardson and Roisin M. O'Connor and Stephanie S. O'Malley and Lauren Papp and Thomas M. Piasecki and Paul Sacco and Nichole Scaglione and Fuschia Serre and Julia Shadur and Kenneth J. Sher and Yuichi Shoda and Tracy L. Simpson and Michele R. Smith and Angela Stevens and Brittany Stevenson and Howard Tennen and Michael Todd and Hayley {Treloar Padovano} and Timothy Trull and Jack Waddell and Katherine Walukevich-Dienst and Katie Witkiewitz and Tyler Wray and Aidan G. C. Wright and Andrea M. Wycoff and Kevin M. King}, + date = {2023-01}, + journaltitle = {Psychological Bulletin}, + title = {The daily association between affect and alcohol use: A meta-analysis of individual participant data}, + doi = {10.1037/bul0000387}, + issn = {0033-2909}, + number = {1–2}, + pages = {1--24}, + volume = {149}, + abstract = {Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affects in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess the affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol but not on days they experienced higher negative and positive affects. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increase in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Fridberg-Wang-Porges-2022, + author = {Daniel J. Fridberg and Yan Wang and Eric Porges}, + date = {2022-02}, + journaltitle = {Alcoholism: Clinical and Experimental Research}, + title = {Examining features of transdermal alcohol biosensor readings: A promising approach with implications for research and intervention}, + doi = {10.1111/acer.14794}, + issn = {1530-0277}, + number = {4}, + pages = {514--516}, + volume = {46}, + publisher = {Wiley}, +} + +@Article{Georgeson-AlvarezBartolo-MacKinnon-2023, + author = {A. R. Georgeson and Diana Alvarez-Bartolo and David P. MacKinnon}, + date = {2023-12}, + journaltitle = {Psychological Methods}, + title = {A sensitivity analysis for temporal bias in cross-sectional mediation}, + doi = {10.1037/met0000628}, + abstract = {For over three decades, methodologists have cautioned against the use of cross-sectional mediation analyses because they yield biased parameter estimates. Yet, cross-sectional mediation models persist in practice and sometimes represent the only analytic option. We propose a sensitivity analysis procedure to encourage a more principled use of cross-sectional mediation analysis, drawing inspiration from Gollob and Reichardt (1987, 1991). The procedure is based on the two-wave longitudinal mediation model and uses phantom variables for the baseline data. After a researcher provides ranges of possible values for cross-lagged, autoregressive, and baseline Y and M correlations among the phantom and observed variables, they can use the sensitivity analysis to identify longitudinal conditions in which conclusions from a cross-sectional model would differ most from a longitudinal model. To support the procedure, we first show that differences in sign and effect size of the b-path occur most often when the cross-sectional effect size of the b-path is small and the cross-lagged and the autoregressive correlations are equal or similar in magnitude. We then apply the procedure to cross-sectional analyses from real studies and compare the sensitivity analysis results to actual results from a longitudinal mediation analysis. While no statistical procedure can replace longitudinal data, these examples demonstrate that the sensitivity analysis can recover the effect that was actually observed in the longitudinal data if provided with the correct input information. Implications of the routine application of sensitivity analysis to temporal bias are discussed. R code for the procedure is provided in the online supplementary materials.}, + publisher = {American Psychological Association (APA)}, + keywords = {mediation, cross-sectional mediation, sensitivity analysis}, + annotation = {mediation}, +} + +@Article{Gunn-Steingrimsson-Merrill-etal-2021, + author = {Rachel L. Gunn and Jon A. Steingrimsson and Jennifer E. Merrill and Timothy Souza and Nancy Barnett}, + date = {2021-05}, + journaltitle = {Drug and Alcohol Review}, + title = {Characterising patterns of alcohol use among heavy drinkers: A cluster analysis utilising alcohol biosensor data}, + doi = {10.1111/dar.13306}, + issn = {1465-3362}, + number = {7}, + pages = {1155--1164}, + volume = {40}, + abstract = {Introduction: Previous research has predominately relied on person-level or single characteristics of drinking episodes to characterise patterns of drinking that may confer risk. This research often relies on self-report measures. Advancements in wearable alcohol biosensors provide a multi-faceted objective measure of drinking. The current study aimed to characterise drinking episodes using data derived from a wearable alcohol biosensor. Methods: Participants ($n = 45$) were adult heavy drinkers who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet and reported on their drinking behaviours. Cluster analysis was used to evaluate unique combinations of alcohol episode characteristics. Associations between clusters and self-reported person and event-level factors were also examined in univariable and multivariable models. Results: Results suggested three unique clusters: Cluster 1 (most common, slowest rate of rise to and decline from peak), Cluster 2 (highest peak transdermal alcohol concentration and area under the curve) and Cluster 3 (fastest rate of decline from peak). Univariable analyses distinguished Cluster 1 as having fewer self-reported drinks and fewer episodes that occurred on weekends relative to Cluster 2. The effect for number of drinks remained in multivariable analyses. Discussion and Conclusions: This is the first study to characterise drinking patterns at the event-level using objective data. Results suggest that it is possible to distinguish drinking episodes based on several characteristics derived from wearable alcohol biosensors. This examination lays the groundwork for future studies to characterise patterns of drinking and their association with consequences of drinking behaviour. +}, + publisher = {Wiley}, +} + +@Article{Hecht-Zitzmann-2020a, + author = {Martin Hecht and Steffen Zitzmann}, + date = {2020-03}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {A computationally more efficient {Bayesian} approach for estimating continuous-time models}, + doi = {10.1080/10705511.2020.1719107}, + issn = {1532-8007}, + number = {6}, + pages = {829--840}, + volume = {27}, + abstract = {Continuous-time modeling is gaining in popularity as more and more intensive longitudinal data need to be analyzed. Current Bayesian software implementations of continuous-time models suffer from rather high, inadequate run times. Therefore, we apply a model reformulation approach to reduce run time. In a simulation study, we investigate the estimation quality and run time gain. We then illustrate our optimized Bayesian continuous-time model estimation and compare it to established continuous-time modeling software using an empirical example. Parameter estimates and inference statistics were very comparable, while run times were very different. Our approach reduces the run times for Bayesian estimations of continuous-time models from hours to minutes.}, + publisher = {Informa UK Limited}, +} + +@Article{Hecht-Zitzmann-2020b, + author = {Martin Hecht and Steffen Zitzmann}, + date = {2020-07}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Sample size recommendations for continuous-time models: Compensating shorter time series with larger numbers of persons and vice versa}, + doi = {10.1080/10705511.2020.1779069}, + issn = {1532-8007}, + number = {2}, + pages = {229--236}, + volume = {28}, + abstract = {Autoregressive modeling has traditionally been concerned with time-series data from one unit (N = 1). For short time series (T < 50), estimation performance problems are well studied and documented. Fortunately, in psychological and social science research, besides T, another source of information is often available for model estimation, that is, the persons (N > 1). In this work, we illustrate the N/T compensation effect: With an increasing number of persons N at constant T, the model estimation performance increases, and vice versa, with an increasing number of time points T at constant N, the performance increases as well. Based on these observations, we develop sample size recommendations in the form of easily accessible N/T heatmaps for two popular autoregressive continuous-time models.}, + publisher = {Informa UK Limited}, +} + +@Article{Hecht-Zitzmann-2021, + author = {Martin Hecht and Steffen Zitzmann}, + date = {2021-05}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects}, + doi = {10.1080/10705511.2021.1914627}, + issn = {1532-8007}, + number = {6}, + pages = {894--902}, + volume = {28}, + abstract = {Cross-lagged panel models have been commonly applied to investigate the dynamic interplay of variables. In such discrete-time models, the size of the cross-lagged effects depends on the length of the time interval between the measurement occasions. Continuous-time modeling allows to explore this interval dependence of cross-lagged effects and thus to identify the maximal “peak” cross-lagged effects. To detect these peak effects, sufficient statistical power is needed. Based on results from a simulation study, we employed machine learning algorithms to identify a highly accurate prediction model. Results are incorporated into a Shiny App (available at https://psychtools.shinyapps.io/ ContinuousTimePowerCalculation) for easy power calculations. Although limitations apply, our results might be helpful for study planning.}, + publisher = {Informa UK Limited}, +} + +@Article{Li-Oravecz-Zhou-etal-2022, + author = {Yanling Li and Zita Oravecz and Shuai Zhou and Yosef Bodovski and Ian J. Barnett and Guangqing Chi and Yuan Zhou and Naomi P. Friedman and Scott I. Vrieze and Sy-Miin Chow}, + date = {2022-01}, + journaltitle = {Psychometrika}, + title = {{Bayesian} forecasting with a regime-switching zero-inflated multilevel poisson regression model: An application to adolescent alcohol use with spatial covariates}, + doi = {10.1007/s11336-021-09831-9}, + number = {2}, + pages = {376--402}, + volume = {87}, + abstract = {In this paper, we present and evaluate a novel Bayesian regime-switching zero-inflated multilevel Poisson (RS-ZIMLP) regression model for forecasting alcohol use dynamics. The model partitions individuals’ data into two phases, known as regimes, with: (1) a zero-inflation regime that is used to accommodate high instances of zeros (non-drinking) and (2) a multilevel Poisson regression regime in which variations in individuals’ log-transformed average rates of alcohol use are captured by means of an autoregressive process with exogenous predictors and a person-specific intercept. The times at which individuals are in each regime are unknown, but may be estimated from the data. We assume that the regime indicator follows a first-order Markov process as related to exogenous predictors of interest. The forecast performance of the proposed model was evaluated using a Monte Carlo simulation study and further demonstrated using substance use and spatial covariate data from the Colorado Online Twin Study (CoTwins). Results showed that the proposed model yielded better forecast performance compared to a baseline model which predicted all cases as non-drinking and a reduced ZIMLP model without the RS structure, as indicated by higher AUC (the area under the receiver operating characteristic (ROC) curve) scores, and lower mean absolute errors (MAEs) and root-mean-square errors (RMSEs). The improvements in forecast performance were even more pronounced when we limited the comparisons to participants who showed at least one instance of transition to drinking. }, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {Bayesian zero-inflated Poisson model, forecast, intensive longitudinal data, regime-switching, spatial data, substance use}, + annotation = {bayesian, ild}, +} + +@Article{Li-Wood-Ji-etal-2021, + author = {Yanling Li and Julie Wood and Linying Ji and Sy-Miin Chow and Zita Oravecz}, + date = {2021-09}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Fitting multilevel vector autoregressive models in {Stan}, {JAGS}, and {Mplus}}, + doi = {10.1080/10705511.2021.1911657}, + number = {3}, + pages = {452--475}, + volume = {29}, + abstract = {The influx of intensive longitudinal data creates a pressing need for complex modeling tools that help enrich our understanding of how individuals change over time. Multilevel vector autoregressive (mlVAR) models allow for simultaneous evaluations of reciprocal linkages between dynamic processes and individual differences, and have gained increased recognition in recent years. High-dimensional and other complex variations of mlVAR models, though often computationally intractable in the frequentist framework, can be readily handled using Markov chain Monte Carlo techniques in a Bayesian framework. However, researchers in social science fields may be unfamiliar with ways to capitalize on recent developments in Bayesian software programs. In this paper, we provide step-by-step illustrations and comparisons of options to fit Bayesian mlVAR models using Stan, JAGS and Mplus, supplemented with a Monte Carlo simulation study. An empirical example is used to demonstrate the utility of mlVAR models in studying intra- and inter-individual variations in affective dynamics.}, + publisher = {Informa {UK} Limited}, + keywords = {multilevel vector autoregressive models, Bayesian modeling, missing data, affective dynamics}, +} + +@Article{Loossens-Mestdagh-Dejonckheere-etal-2020, + author = {Tim Loossens and Merijn Mestdagh and Egon Dejonckheere and Peter Kuppens and Francis Tuerlinckx and Stijn Verdonck}, + date = {2020-05}, + journaltitle = {PLOS Computational Biology}, + title = {The {Affective Ising Model}: A computational account of human affect dynamics}, + doi = {10.1371/journal.pcbi.1007860}, + editor = {Jacopo Grilli}, + issn = {1553-7358}, + number = {5}, + pages = {e1007860}, + volume = {16}, + abstract = {The human affect system is responsible for producing the positive and negative feelings that color and guide our lives. At the same time, when disrupted, its workings lie at the basis of the occurrence of mood disorder. Understanding the functioning and dynamics of the affect system is therefore crucial to understand the feelings that people experience on a daily basis, their dynamics across time, and how they can become dysregulated in mood disorder. In this paper, a nonlinear stochastic model for the dynamics of positive and negative affect is proposed called the Affective Ising Model (AIM). It incorporates principles of statistical mechanics, is inspired by neurophysiological and behavioral evidence about auto-excitation and mutual inhibition of the positive and negative affect dimensions, and is intended to better explain empirical phenomena such as skewness, multimodality, and non-linear relations of positive and negative affect. The AIM is applied to two large experience sampling studies on the occurrence of positive and negative affect in daily life in both normality and mood disorder. It is examined to what extent the model is able to reproduce the aforementioned non-Gaussian features observed in the data, using two sightly different continuous-time vector autoregressive (VAR) models as benchmarks. The predictive performance of the models is also compared by means of leave-one-out cross-validation. The results indicate that the AIM is better at reproducing non-Gaussian features while their performance is comparable for strictly Gaussian features. The predictive performance of the AIM is also shown to be better for the majority of the affect time series. The potential and limitations of the AIM as a computational model approximating the workings of the human affect system are discussed.}, + publisher = {Public Library of Science (PLoS)}, +} + +@Article{Loossens-Tuerlinckx-Verdonck-2021, + author = {Tim Loossens and Francis Tuerlinckx and Stijn Verdonck}, + date = {2021-03}, + journaltitle = {Scientific Reports}, + title = {A comparison of continuous and discrete time modeling of affective processes in terms of predictive accuracy}, + doi = {10.1038/s41598-021-85320-4}, + issn = {2045-2322}, + number = {1}, + volume = {11}, + abstract = {Intra-individual processes are thought to continuously unfold across time. For equally spaced time intervals, the discrete-time lag-1 vector autoregressive (VAR(1)) model and the continuous-time Ornstein-Uhlenbeck (OU) model are equivalent. It is expected that by taking into account the unequal spacings of the time intervals in real data between observations will lead to an advantage for the OU in terms of predictive accuracy. In this paper, this is claim is being investigated by comparing the predictive accuracy of the OU model to that of the VAR(1) model on typical ESM data obtained in the context of affect research. It is shown that the VAR(1) model outperforms the OU model for the majority of the time series, even though time intervals in the data are unequally spaced. Accounting for measurement error does not change the result. Deleting large abrupt changes on short time intervals (that may be caused by externally driven events) does however lead to a significant improvement for the OU model. This suggests that processes in psychology may be continuously evolving, but that there are factors, like external events, which can disrupt the continuous flow.}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{Manthey-Hassan-Carr-etal-2021, + author = {Jakob Manthey and Syed Ahmed Hassan and Sinclair Carr and Carolin Kilian and S{\"o}ren Kuitunen-Paul and J{\"u}rgen Rehm}, + date = {2021-05}, + journaltitle = {PharmacoEconomics}, + title = {What are the economic costs to society attributable to alcohol use? A systematic review and modelling study}, + doi = {10.1007/s40273-021-01031-8}, + issn = {1179-2027}, + number = {7}, + pages = {809--822}, + volume = {39}, + abstract = {Background: Alcohol-attributable costs to society are captured by cost-of-illness studies, however estimates are often not comparable, e.g. due to the omission of relevant cost components. In this contribution we (1) summarize the societal costs attributable to alcohol use, and (2) estimate the total costs under the assumption that all cost components are considered. Methods: A systematic review and meta-analyses were conducted for studies reporting costs from alcohol consumption for the years 2000 and later, using the EMBASE and MEDLINE databases. Cost estimates were converted into 2019 international dollars (Int\$) per adult and into percentage of gross domestic product (GDP). For each study, weights were calculated to correct for the exclusion of cost indicators. Results: Of 1708 studies identified, 29 were included, and the mean costs of alcohol use amounted to 817.6 Int\$ per adult (95\% confidence interval [CI] 601.8-1033.4), equivalent to 1.5\% of the GDP (95\% CI 1.2-1.7\%). Adjusting for omission of cost components, the economic costs of alcohol consumption were estimated to amount to 1306 Int\$ per adult (95\% CI 873-1738), or 2.6\% (95\% CI 2.0-3.1\%) of the GDP. About one-third of costs (38.8\%) were incurred through direct costs, while the majority of costs were due to losses in productivity (61.2\%). Discussion: The identified cost studies were mainly conducted in high-income settings, with high heterogeneity in the employed methodology. Accounting for some methodological variations, our findings demonstrate that alcohol use continues to incur a high level of cost to many societies.}, + publisher = {Springer Science and Business Media LLC}, +} + +@Article{McNeish-Hamaker-2020, + author = {Daniel McNeish and Ellen L. Hamaker}, + date = {2020-10}, + journaltitle = {Psychological Methods}, + title = {A primer on two-level dynamic structural equation models for intensive longitudinal data in {Mplus}}, + doi = {10.1037/met0000250}, + number = {5}, + pages = {610--635}, + volume = {25}, + abstract = {Technological advances have led to an increase in intensive longitudinal data and the statistical literature on modeling such data is rapidly expanding, as are software capabilities. Common methods in this area are related to time-series analysis, a framework that historically has received little exposure in psychology. There is a scarcity of psychology-based resources introducing the basic ideas of time-series analysis, especially for data sets featuring multiple people. We begin with basics of N = 1 time-series analysis and build up to complex dynamic structural equation models available in the newest release of Mplus Version 8. The goal is to provide readers with a basic conceptual understanding of common models, template code, and result interpretation. We provide short descriptions of some advanced issues, but our main priority is to supply readers with a solid knowledge base so that the more advanced literature on the topic is more readily digestible to a larger group of researchers.}, + publisher = {American Psychological Association ({APA})}, + keywords = {dynamic structural equation modeling, time-series analysis, intensive longitudinal data, multilevel modeling}, +} + +@Article{McNeish-MacKinnon-2022, + author = {Daniel McNeish and David P. MacKinnon}, + date = {2022-12}, + journaltitle = {Psychological Methods}, + title = {Intensive longitudinal mediation in {Mplus}}, + doi = {10.1037/met0000536}, + abstract = {Much of the existing longitudinal mediation literature focuses on panel data where relatively few repeated measures are collected over a relatively broad timespan. However, technological advances in data collection (e.g., smartphones, wearables) have led to a proliferation of short duration, densely collected longitudinal data in behavioral research. These intensive longitudinal data differ in structure and focus relative to traditionally collected panel data. As a result, existing methodological resources do not necessarily extend to nuances present in the recent influx of intensive longitudinal data and designs. In this tutorial, we first cover potential limitations of traditional longitudinal mediation models to accommodate unique characteristics of intensive longitudinal data. Then, we discuss how recently developed dynamic structural equation models (DSEMs) may be well-suited for mediation modeling with intensive longitudinal data and can overcome some of the limitations associated with traditional approaches. We describe four increasingly complex intensive longitudinal mediation models: (a) stationary models where the indirect effect is constant over time and people, (b) person-specific models where the indirect effect varies across people, (c) dynamic models where the indirect effect varies across time, and (d) cross-classified models where the indirect effect varies across both time and people. We apply each model to a running example featuring a mobile health intervention designed to improve health behavior of individuals with binge eating disorder. In each example, we provide annotated Mplus code and interpretation of the output to guide empirical researchers through mediation modeling with this increasingly popular type of longitudinal data.}, + publisher = {American Psychological Association ({APA})}, + keywords = {intensive longitudinal data, time-series, mediation, EMA, daily diary}, + annotation = {mediation, mediation-longitudinal}, +} + +@Article{Nust-Eddelbuettel-Bennett-etal-2020, + author = {Daniel N{\"u}st and Dirk Eddelbuettel and Dom Bennett and Robrecht Cannoodt and Dav Clark and Gergely Dar{\a'o}czi and Mark Edmondson and Colin Fay and Ellis Hughes and Lars Kjeldgaard and Sean Lopp and Ben Marwick and Heather Nolis and Jacqueline Nolis and Hong Ooi and Karthik Ram and Noam Ross and Lori Shepherd and P{\a'e}ter S{\a'o}lymos and Tyson Lee Swetnam and Nitesh Turaga and Charlotte {Van Petegem} and Jason Williams and Craig Willis and Nan Xiao}, + date = {2020}, + journaltitle = {The R Journal}, + title = {The {Rockerverse}: Packages and applications for containerisation with {R}}, + doi = {10.32614/rj-2020-007}, + number = {1}, + pages = {437}, + volume = {12}, + abstract = {The Rocker Project provides widely used Docker images for R across different application scenarios. This article surveys downstream projects that build upon the Rocker Project images and presents the current state of R packages for managing Docker images and controlling containers. These use cases cover diverse topics such as package development, reproducible research, collaborative work, cloud-based data processing, and production deployment of services. The variety of applications demonstrates the power of the Rocker Project specifically and containerisation in general. Across the diverse ways to use containers, we identified common themes: reproducible environments, scalability and efficiency, and portability across clouds. We conclude that the current growth and diversification of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse ecosystem of packages, developing common practices for applications, and exploring alternative containerisation software.}, + publisher = {The R Foundation}, + annotation = {container, container-docker, container-rocker}, +} + +@Article{Park-Chow-Epskamp-etal-2023, + author = {Jonathan J. Park and Sy-Miin Chow and Sacha Epskamp and Peter C. M. Molenaar}, + date = {2023}, + journaltitle = {Multivariate Behavioral Research}, + title = {Subgrouping with chain graphical {VAR} models}, + abstract = {Recent years have seen the emergence of an ``idio-thetic'' class of methods to bridge the gap between nomothetic and idiographic inference. These methods describe nomothetic trends in idiographic processes by pooling intraindividual information across individuals to inform group-level inference or vice versa. The current work introduces a novel ``idio-thetic'' model: the subgrouped chain graphical vector autoregression (scGVAR). The scGVAR is unique in its ability to identify subgroups of individuals who share common dynamic network structures in both lag(1) and contemporaneous effects. Results from Monte Carlo simulations indicate that the scGVAR shows promise over similar approaches when clusters of individuals differ in their contemporaneous dynamics and in showing increased sensitivity in detecting nuanced group differences while keeping Type-I error rates low. In contrast, a competing approach–the Alternating Least Squares VAR (ALS VAR) performs well when groups were separated by larger distances. Further considerations are provided regarding applications of the ALS VAR and scGVAR on real data and the strengths and limitations of both methods.}, + publisher = {Informa UK Limited}, +} + +@Article{Park-Fisher-Chow-etal-2023a, + author = {Jonathan J. Park and Zachary Fisher and Sy-Miin Chow and Peter C. M. Molenaar}, + date = {2023-01}, + journaltitle = {Multivariate Behavioral Research}, + title = {On subgrouping continuous processes in discrete time}, + doi = {10.1080/00273171.2022.2160957}, + issn = {1532-7906}, + number = {1}, + pages = {154--155}, + volume = {58}, + publisher = {Informa UK Limited}, +} + +@Article{Park-Fisher-Chow-etal-2023b, + author = {Jonathan J. Park and Zachary F. Fisher and Sy-Miin Chow and Peter C. M. Molenaar}, + date = {2023-08}, + journaltitle = {Multivariate Behavioral Research}, + title = {Evaluating discrete time methods for subgrouping continuous processes}, + doi = {10.1080/00273171.2023.2235685}, + issn = {1532-7906}, + pages = {1--13}, + abstract = {Rapid developments over the last several decades have brought increased focus and attention to the role of time scales and heterogeneity in the modeling of human processes. To address these emerging questions, subgrouping methods developed in the discrete-time framework—such as the vector autoregression (VAR)—have undergone widespread development to identify shared nomothetic trends from idiographic modeling results. Given the dependence of VAR-based parameters on the measurement intervals of the data, we sought to clarify the strengths and limitations of these methods in recovering subgroup dynamics under different measurement intervals. Building on the work of Molenaar and collaborators for subgrouping individual time-series by means of the subgrouped chain graphical VAR (scgVAR) and the subgrouping option in the group iterative multiple model estimation (S-GIMME), we present results from a Monte Carlo study aimed at addressing the implications of identifying subgroups using these discrete-time methods when applied to continuous-time data. Results indicate that discrete-time subgrouping methods perform well at recovering true subgroups when the measurement intervals are large enough to capture the full range of a system’s dynamics, either via lagged or contemporaneous effects. Further implications and limitations are discussed therein.}, + publisher = {Informa UK Limited}, +} + +@Article{Pesigan-Cheung-2020, + author = {Ivan Jacob Agaloos Pesigan and Shu Fai Cheung}, + date = {2020-12}, + journaltitle = {Frontiers in Psychology}, + title = {{SEM}-based methods to form confidence intervals for indirect effect: Still applicable given nonnormality, under certain conditions}, + doi = {10.3389/fpsyg.2020.571928}, + volume = {11}, + abstract = {A SEM-based approach using likelihood-based confidence interval (LBCI) has been proposed to form confidence intervals for unstandardized and standardized indirect effect in mediation models. However, when used with the maximum likelihood estimation, this approach requires that the variables are multivariate normally distributed. This can affect the LBCIs of unstandardized and standardized effect differently. In the present study, the robustness of this approach when the predictor is not normally distributed but the error terms are conditionally normal, which does not violate the distributional assumption of ordinary least squares (OLS) estimation, is compared to four other approaches: nonparametric bootstrapping, two variants of LBCI, LBCI assuming the predictor is fixed (LBCI-Fixed-X) and LBCI based on ADF estimation (LBCI-ADF), and Monte Carlo. A simulation study was conducted using a simple mediation model and a serial mediation model, manipulating the distribution of the predictor. The Monte Carlo method performed worst among the methods. LBCI and LBCI-Fixed-X had suboptimal performance when the distributions had high kurtosis and the population indirect effects were medium to large. In some conditions, the problem was severe even when the sample size was large. LBCI-ADF and nonparametric bootstrapping had coverage probabilities close to the nominal value in nearly all conditions, although the coverage probabilities were still suboptimal for the serial mediation model when the sample size was small with respect to the model. Implications of these findings in the context of this special case of nonnormal data were discussed.}, + publisher = {Frontiers Media {SA}}, + keywords = {mediation, nonnormal, confidence interval, structural equation modeling, bootstrapping}, + annotation = {mediation, mediation-likelihood, mediation-bootstrap, mediation-montecarlo}, +} + +@Article{Pesigan-Cheung-2023, + author = {Ivan Jacob Agaloos Pesigan and Shu Fai Cheung}, + date = {2023-08}, + journaltitle = {Behavior Research Methods}, + title = {{Monte Carlo} confidence intervals for the indirect effect with missing data}, + doi = {10.3758/s13428-023-02114-4}, + abstract = {Missing data is a common occurrence in mediation analysis. As a result, the methods used to construct confidence intervals around the indirect effect should consider missing data. Previous research has demonstrated that, for the indirect effect in data with complete cases, the Monte Carlo method performs as well as nonparametric bootstrap confidence intervals (see MacKinnon et al., Multivariate Behavioral Research, 39(1), 99–128, 2004; Preacher \& Selig, Communication Methods and Measures, 6(2), 77–98, 2012; Tofighi \& MacKinnon, Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194–205, 2015). In this manuscript, we propose a simple, fast, and accurate two-step approach for generating confidence intervals for the indirect effect, in the presence of missing data, based on the Monte Carlo method. In the first step, an appropriate method, for example, full-information maximum likelihood or multiple imputation, is used to estimate the parameters and their corresponding sampling variance-covariance matrix in a mediation model. In the second step, the sampling distribution of the indirect effect is simulated using estimates from the first step. A confidence interval is constructed from the resulting sampling distribution. A simulation study with various conditions is presented. Implications of the results for applied research are discussed.}, + publisher = {Springer Science and Business Media {LLC}}, + keywords = {Monte Carlo method, nonparametric bootstrap, indirect effect, mediation, missing completely at random, missing at random, full-information maximum likelihood, multiple imputation}, + annotation = {mediation, mediation-missing, mediation-bootstrap, mediation-montecarlo, mediation-jointtest, sem, r, r-packages}, +} + +@Article{Pesigan-Sun-Cheung-2023, + author = {Ivan Jacob Agaloos Pesigan and Rong Wei Sun and Shu Fai Cheung}, + date = {2023-04}, + journaltitle = {Multivariate Behavioral Research}, + title = {{betaDelta} and {betaSandwich}: Confidence intervals for standardized regression coefficients in {R}}, + doi = {10.1080/00273171.2023.2201277}, + pages = {1--4}, + abstract = {The multivariate delta method was used by Yuan and Chan to estimate standard errors and confidence intervals for standardized regression coefficients. Jones and Waller extended the earlier work to situations where data are nonnormal by utilizing Browne’s asymptotic distribution-free (ADF) theory. Furthermore, Dudgeon developed standard errors and confidence intervals, employing heteroskedasticity-consistent (HC) estimators, that are robust to nonnormality with better performance in smaller sample sizes compared to Jones and Waller’s ADF technique. Despite these advancements, empirical research has been slow to adopt these methodologies. This can be a result of the dearth of user-friendly software programs to put these techniques to use. We present the betaDelta and the betaSandwich packages in the R statistical software environment in this manuscript. Both the normal-theory approach and the ADF approach put forth by Yuan and Chan and Jones and Waller are implemented by the betaDelta package. The HC approach proposed by Dudgeon is implemented by the betaSandwich package. The use of the packages is demonstrated with an empirical example. We think the packages will enable applied researchers to accurately assess the sampling variability of standardized regression coefficients.}, + publisher = {Informa {UK} Limited}, + keywords = {standardized regression coefficients, confidence intervals, delta method standard errors, heteroskedasticity-consistent standard errors, R package}, + annotation = {r, r-packages}, +} + +@Article{Rhemtulla-vanBork-Borsboom-2020, + author = {Mijke Rhemtulla and Riet {van Bork} and Denny Borsboom}, + date = {2020-02}, + journaltitle = {Psychological Methods}, + title = {Worse than measurement error: Consequences of inappropriate latent variable measurement models}, + doi = {10.1037/met0000220}, + issn = {1082-989X}, + number = {1}, + pages = {30--45}, + volume = {25}, + abstract = {Previous research and methodological advice has focused on the importance of accounting for measurement error in psychological data. That perspective assumes that psychological variables conform to a common factor model. We explore what happens when data that are not generated from a common factor model are nonetheless modeled as reflecting a common factor. Through a series of hypothetical examples and an empirical reanalysis, we show that when a common factor model is misused, structural parameter estimates that indicate the relations among psychological constructs can be severely biased. Moreover, this bias can arise even when model fit is perfect. In some situations, composite models perform better than common factor models. These demonstrations point to a need for models to be justified on substantive, theoretical bases in addition to statistical ones.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Rousselet-Pernet-Wilcox-2021, + author = {Guillaume A. Rousselet and Cyril R. Pernet and Rand R. Wilcox}, + date = {2021-01}, + journaltitle = {Advances in Methods and Practices in Psychological Science}, + title = {The percentile bootstrap: A primer with step-by-step instructions in {R}}, + doi = {10.1177/2515245920911881}, + number = {1}, + pages = {1--10}, + volume = {4}, + abstract = {The percentile bootstrap is the Swiss Army knife of statistics: It is a nonparametric method based on data-driven simulations. It can be applied to many statistical problems, as a substitute to standard parametric approaches, or in situations for which parametric methods do not exist. In this Tutorial, we cover \texttt{R} code to implement the percentile bootstrap to make inferences about central tendency (e.g., means and trimmed means) and spread in a one-sample example and in an example comparing two independent groups. For each example, we explain how to derive a bootstrap distribution and how to get a confidence interval and a $p$ value from that distribution. We also demonstrate how to run a simulation to assess the behavior of the bootstrap. For some purposes, such as making inferences about the mean, the bootstrap performs poorly. But for other purposes, it is the only known method that works well over a broad range of situations. More broadly, combining the percentile bootstrap with robust estimators (i.e., estimators that are not overly sensitive to outliers) can help users gain a deeper understanding of their data than they would using conventional methods.}, + publisher = {{SAGE} Publications}, + keywords = {bootstrap, confidence interval, correlation, R, simulation, trimmed mean, median, reaction time, skewness, group comparison, open materials}, +} + +@Article{Russell-LindenCarmichael-Lanza-etal-2020, + author = {Michael A. Russell and Ashley N. Linden-Carmichael and Stephanie T. Lanza and Emily V. Fair and Kenneth J. Sher and Thomas M. Piasecki}, + date = {2020-05}, + journaltitle = {Psychology of Addictive Behaviors}, + title = {Affect relative to day-level drinking initiation: Analyzing ecological momentary assessment data with multilevel spline modeling}, + doi = {10.1037/adb0000550}, + issn = {0893-164X}, + number = {3}, + pages = {434--446}, + volume = {34}, + abstract = {Affect regulation models state that affect both motivates and reinforces alcohol use. We aimed to examine whether affect levels and rates of change differed across drinking versus nondrinking days in a manner consistent with affect regulation models. Four hundred four regularly drinking adults, aged 18–70 years, completed ecological momentary assessments over 3 weeks. Participants provided positive affect (PA; enthusiastic, excited, happy) and negative affect (NA; distressed, sad) reports during all prompts; alcohol consumption reports were also provided. Multilevel spline models revealed that on drinking days, PA was higher and NA was lower both before and after drinking compared to matched times on nondrinking days. PA and NA were also higher and lower, respectively, both before and after drinking, when heavy drinking days were compared to moderate drinking days. Examination of affect rates of change revealed that (a) accelerating increases in PA and accelerating decreases in NA preceded drinking initiation, (b) PA increases and NA decreases were seen up to 2 hr after drinking initiation, and (c) pre- and postdrinking PA increases were larger on heavy versus moderate drinking days, whereas only postdrinking NA decreases were larger on heavy drinking days. Results supported affect regulation models while adding nuance, showing accelerating changes in predrinking affect on drinking days and pre- and postdrinking differences in affect levels and rates of change across days of varying drinking intensity. Beyond theory, our results suggest that accelerating changes in affect may provide a clue to future commencement of heavy drinking, which may aid momentary intervention development.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Russell-Smyth-Turrisi-Rodriguez-2023, + author = {Michael A. Russell and Joshua M. Smyth and Rob Turrisi and Gabriel C. Rodriguez}, + date = {2023-06}, + journaltitle = {Psychology of Addictive Behaviors}, + title = {Baseline protective behavioral strategy use predicts more moderate transdermal alcohol concentration dynamics and fewer negative consequences of drinking in young adults’ natural settings.}, + doi = {10.1037/adb0000941}, + issn = {0893-164X}, + abstract = {Objective: Test whether frequent protective behavioral strategies (PBS) users report (a) fewer alcohol-related consequences and (b) less risky alcohol intoxication dynamics (measured via transdermal alcohol concentration [TAC] sensor ``features'') in daily life. Method: Two hundred twenty-two frequently heavy-drinking young adults ($M_{\mathrm{age}} = 22.3$ years) wore TAC sensors for 6 consecutive days. TAC features peak (maximum TAC), rise rate (speed of TAC increase), and area under the curve (AUC) were derived for each day. Negative alcohol-related consequences were measured in the morning after each self-reported drinking day. Past-year PBS use was measured at baseline. Results: Young adults reporting more frequent baseline PBS use showed (a) fewer alcohol-related consequences and (b) lower intoxication dynamics on average (less AUC, lower peaks, and slower rise rates). Limiting/stopping and manner of drinking PBS showed the same pattern of findings as the total score. Serious harm reduction PBS predicted fewer negative alcohol-related consequences, but not TAC features. Multilevel path models showed that TAC features peak and rise rate partially explained associations between PBS (total, limiting/stopping, and manner of drinking) and consequences. Independent contributions of PBS subscales were small and nonsignificant, suggesting that total PBS use was a more important predictor of risk/protection than the specific types of PBS used. Conclusions: Young adults using more total PBS may experience fewer alcohol-related consequences during real-world drinking episodes in part through less risky intoxication dynamics (TAC features). Future research measuring PBS at the daily level is needed to formally test TAC features as day-level mechanisms of protection from acute alcohol-related consequences.}, + publisher = {American Psychological Association (APA)}, +} + +@Article{Russell-Turrisi-Smyth-2022, + author = {Michael A. Russell and Robert J. Turrisi and Joshua M. Smyth}, + date = {2022-01}, + journaltitle = {Alcoholism: Clinical and Experimental Research}, + title = {Transdermal sensor features correlate with ecological momentary assessment drinking reports and predict alcohol‐related consequences in young adults’ natural settings}, + doi = {10.1111/acer.14739}, + issn = {1530-0277}, + number = {1}, + pages = {100--113}, + volume = {46}, + abstract = {Background: Wearable transdermal alcohol concentration (TAC) sensors allow passive monitoring of alcohol concentration in natural settings and measurement of multiple features from drinking episodes, including peak intoxication level, speed of intoxication (absorption rate) and elimination, and duration. These passively collected features extend commonly used self-reported drink counts and may facilitate the prediction of alcohol-related consequences in natural settings, aiding risk stratification and prevention efforts. Method: A total of 222 young adults aged 21-29 ($M_{\mathrm{age}} = 22.3$, 64 female, 79\% non-Hispanic white, 84\% undergraduates) who regularly drink heavily participated in a 5-day study that included the ecological momentary assessment (EMA) of alcohol consumption (daily morning reports and participant-initiated episodic EMA sequences) and the wearing of TAC sensors (SCRAM-CAM anklets). The analytic sample contained 218 participants and 1274 days (including 554 self-reported drinking days). Five features—area under the curve (AUC), peak TAC, rise rate (rate of absorption), fall rate (rate of elimination), and duration—were extracted from TAC-positive trajectories for each drinking day. Day- and person-level associations of TAC features with drink counts (morning and episodic EMA) and alcohol-related consequences were tested using multilevel modeling. Results: TAC features were strongly associated with morning drink reports ($r$ = 0.60.7) but only moderately associated with episodic EMA drink counts ($r$ = 0.30.5) at both day and person levels. Higher peaks, larger AUCs, faster rise rates, and faster fall rates were significantly predictive of day-level alcohol-related consequences after adjusting for both morning and episodic EMA drink counts in separate models. Person means of TAC features added little above daily scores to the prediction of alcohol-related consequences. Conclusions: These results support the utility of TAC sensors in studies of alcohol misuse among young adults in natural settings and outline the specific TAC features that contribute to the day-level prediction of alcohol-related consequences. TAC sensors provide a passive option for obtaining valid and unique information predictive of drinking risk in natural settings. +}, + publisher = {Wiley}, +} + +@Article{Ryan-Hamaker-2021, + author = {Oisin Ryan and Ellen L. Hamaker}, + date = {2021-06}, + journaltitle = {Psychometrika}, + title = {Time to intervene: A continuous-time approach to network analysis and centrality}, + doi = {10.1007/s11336-021-09767-0}, + number = {1}, + pages = {214--252}, + volume = {87}, + abstract = {Network analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.}, + publisher = {Springer Science and Business Media {LLC}}, +} + +@Article{Savalei-Rosseel-2021, + author = {Victoria Savalei and Yves Rosseel}, + date = {2021-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {Computational options for standard errors and test statistics with incomplete normal and nonnormal data in {SEM}}, + doi = {10.1080/10705511.2021.1877548}, + number = {2}, + pages = {163--181}, + volume = {29}, + abstract = {This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or expected, whether the observed information matrix is estimated numerically or using an analytic asymptotic approximation, and whether the information matrix and the outer product matrix of the score vector are evaluated at the saturated or at the structured estimates. A variety of different standard errors and robust test statistics become possible by varying these options. We review the asymptotic properties of these computational variations, and we show how to obtain them using lavaan in R. We hope that this article will encourage methodologists to study the impact of the available computational options on the performance of standard errors and test statistics in SEM.}, + publisher = {Informa {UK} Limited}, + keywords = {incomplete data, nonnormal data, robust corrections, software implementation}, +} + +@Article{Shaygan-Karami-2020, + author = {Maryam Shaygan and Zainab Karami}, + date = {2020}, + journaltitle = {International Journal of Community Based Nursing \& Midwifery}, + title = {Chronic pain in adolescents: Predicting role of emotional intelligence, self-esteem and parenting style}, + doi = {10.30476/ijcbnm.2020.83153.1129}, + volume = {8}, + abstract = {Background: Pediatric chronic pain is prevalent and disabling. The present study aimed to assess the prevalence of chronic pain among adolescents in Shiraz, Iran. We also compared emotional intelligence, self-esteem and parenting style between adolescents with chronic pain and healthy adolescents. Finally, we examined the predicting role of these variables regarding chronic pain in adolescents. Methods: This cross-sectional study, from January to June 2018, was conducted on 734 adolescents in Shiraz. A clustering sampling method was used. Adolescents with chronic pain were identified by affirmative answers to screening questions based on the International Classification of Diseases 11th Revision (ICD-11) criteria. Participants completed three validated self-report questionnaires: Trait Emotional Intelligence Questionnaire, Rosenberg self-esteem scale and Baumrind parenting style questionnaire. The data were analyzed through SPSS v.22 software using Mann-Whitney and binary logistic regression tests. P<0.05 was considered significant. Results: There were 221(30.1\%) adolescents who met the ICD-11 criteria of chronic pain. Mann-Whitney tests showed that emotional intelligence (P<0.001), self-esteem (P<0.001), authoritative parenting style (P=0.004), and authoritarian parenting style (P=0.006) were significantly different in adolescents with chronic pain compared to healthy adolescents. Binary logistic regression revealed that emotional intelligence (P<0.001), self-esteem (P<0.001), authoritarian parenting style (P=0.04) and authoritative parenting style (P=0.01) were significantly correlated with chronic pain after controlling for demographic variables. Conclusion: Our findings indicate that emotional intelligence, self-esteem and parenting styles could be important factors in development or maintenance of chronic pain in adolescents. The results have potential to be extended to future interventions for adolescents with chronic pain.}, + publisher = {Shiraz University of Medical Sciences, Shiraz, Iran}, +} + +@Article{Tofighi-Kelley-2020, + author = {Davood Tofighi and Ken Kelley}, + date = {2020}, + journaltitle = {Psychological Methods}, + title = {Improved inference in mediation analysis: Introducing the model-based constrained optimization procedure}, + doi = {10.1037/met0000259}, + pages = {496--515}, + volume = {25}, + abstract = {Mediation analysis is an important approach for investigating causal pathways. One approach used in mediation analysis is the test of an indirect effect, which seeks to measure how the effect of an independent variable impacts an outcome variable through one or more mediators. However, in many situations the proposed tests of indirect effects, including popular confidence interval-based methods, tend to produce poor Type I error rates when mediation does not occur and, more generally, only allow dichotomous decisions of ``not significant'' or ``significant'' with regards to the statistical conclusion. To remedy these issues, we propose a new method, a likelihood ratio test (LRT), that uses non-linear constraints in what we term the model-based constrained optimization (MBCO) procedure. The MBCO procedure (a) offers a more robust Type I error rate than existing methods; (b) provides a p-value, which serves as a continuous measure of compatibility of data with the hypothesized null model (not just a dichotomous reject or fail-to-reject decision rule); (c) allows simple and complex hypotheses about mediation (i.e., one or more mediators; different mediational pathways), and (d) allows the mediation model to use observed or latent variables. The MBCO procedure is based on a structural equation modeling framework (even if latent variables are not specified) with specialized fitting routines, namely with the use of non-linear constraints. We advocate using the MBCO procedure to test hypotheses about an indirect effect in addition to reporting a confidence interval to capture uncertainty about the indirect effect because this combination transcends existing methods.}, + publisher = {{American Psychological Association ({APA})}}, +} + +@Article{Usami-2020, + author = {Satoshi Usami}, + date = {2020-10}, + journaltitle = {Structural Equation Modeling: A Multidisciplinary Journal}, + title = {On the differences between general cross-lagged panel model and random-intercept cross-lagged panel model: Interpretation of cross-lagged parameters and model choice}, + doi = {10.1080/10705511.2020.1821690}, + issn = {1532-8007}, + number = {3}, + pages = {331--344}, + volume = {28}, + abstract = {Many methods have been developed to infer reciprocal relations between longitudinally observed variables. Among them, the general cross-lagged panel model (GCLM) is the most recent development as a variant of the cross-lagged panel model (CLPM), while the random-intercept CLPM (RI-CLPM) has rapidly become a popular approach. In this article, we describe how common factors and cross-lagged parameters included in these models can be interpreted, using a unified framework that was recently developed. Because common factors are modeled with lagged effects in the GCLM, they have both direct and indirect influences on observed scores, unlike stable trait factors included in the RI-CLPM. This indicates that the GCLM does not control for stable traits as the RI-CLPM does, and that there are interpretative differences in cross-lagged parameters between these models. We also explain that including such common factors as well as moving-average terms in the GCLM makes this interpretation very complicated.}, + publisher = {Informa UK Limited}, +} + +@Article{Zeileis-Koll-Graham-2020, + author = {Achim Zeileis and Susanne K{\"o}ll and Nathaniel Graham}, + date = {2020-10}, + journaltitle = {Journal of Statistical Software}, + title = {Various versatile variances: An object-oriented implementation of clustered covariances in {R}}, + doi = {10.18637/jss.v095.i01}, + number = {1}, + volume = {95}, + abstract = {Clustered covariances or clustered standard errors are very widely used to account for correlated or clustered data, especially in economics, political sciences, and other social sciences. They are employed to adjust the inference following estimation of a standard least-squares regression or generalized linear model estimated by maximum likelihood. Although many publications just refer to "the" clustered standard errors, there is a surprisingly wide variety of clustered covariances, particularly due to different flavors of bias corrections. Furthermore, while the linear regression model is certainly the most important application case, the same strategies can be employed in more general models (e.g., for zero-inflated, censored, or limited responses). In R, functions for covariances in clustered or panel models have been somewhat scattered or available only for certain modeling functions, notably the (generalized) linear regression model. In contrast, an object-oriented approach to ``robust''' covariance matrix estimation - applicable beyond lm() and glm() - is available in the sandwich package but has been limited to the case of cross-section or time series data. Starting with sandwich 2.4.0, this shortcoming has been corrected: Based on methods for two generic functions (estfun() and bread()), clustered and panel covariances are provided in vcovCL(), vcovPL(), and vcovPC(). Moreover, clustered bootstrap covariances are provided in vcovBS(), using model update() on bootstrap samples. These are directly applicable to models from packages including MASS, pscl, countreg, and betareg, among many others. Some empirical illustrations are provided as well as an assessment of the methods' performance in a simulation study.}, + publisher = {Foundation for Open Access Statistic}, +} + +@InBook{Chow-Losardo-Park-etal-2023, + author = {Sy-Miin Chow and Diane Losardo and Jonathan Park and Peter C. M. Molenaar}, + booktitle = {Handbook of structural equation modeling}, + date = {2023}, + title = {Continuous-time dynamic models: Connections to structural equation models and other discrete-time models}, + edition = {2}, + editor = {Rick H. Hoyle}, + isbn = {9781462550722}, + location = {New York}, + publisher = {The Guilford Press}, +} + +@Book{Gates-Chow-Molenaar-2023, + author = {Kathleen M. Gates and Sy-Miin Chow and Peter C. M. Molenaar}, + date = {2023}, + title = {Intensive longitudinal analysis of human processes}, + doi = {10.1201/9780429172649}, + isbn = {9780429172649}, + location = {Boca Raton}, + publisher = {Chapman \& Hall/CRC Press,}, + series = {Chapman \& Hall/CRC statistics in the social and behavioral sciences}, + abstract = {This book focuses on a span of statistical topics relevant to researchers who seek to conduct person-specific analysis of human data. Our purpose is to provide one consolidated resource that includes techniques from disciplines such as engineering, physics, statistics, and quantitative psychology and outlines their application to data often seen in human research. The book balances mathematical concepts with information needed for using these statistical approaches in applied settings, such as interpretative caveats and issues to consider when selecting an approach. +The statistical topics covered here include foundational material as well as state-of-the-art methods. These analytic approaches can be applied to a range of data types such as psychophysiological, self-report, and passively collected measures such as those obtained from smartphones. We provide examples using varied data sources including functional MRI (fMRI), daily diary, and ecological momentary assessment data. +Features: +Description of time series, measurement, model building, and network methods for person-specific analysis +Discussion of the statistical methods in the context of human research +Empirical and simulated data examples used throughout the book +R code for analyses and recorded lectures for each chapter available at the book website: https://www.personspecific.com/ +Across various disciplines of human study, researchers are increasingly seeking to conduct person-specific analysis. This book provides comprehensive information, so no prior knowledge of these methods is required. We aim to reach active researchers who already have some understanding of basic statistical testing. Our book provides a comprehensive resource for those who are just beginning to learn about person-specific analysis as well as those who already conduct such analysis but seek to further deepen their knowledge and learn new tools. +}, +} + +@Book{Hayes-2022, + author = {Andrew F. Hayes}, + date = {2022}, + title = {Introduction to mediation, moderation, and conditional process analysis: A regression-based approach}, + series = {Methodology in the social sciences}, + edition = {3}, + isbn = {9781462549030}, + pages = {732}, + library = {HA31.3 .H39 2022}, + addendum = {https://lccn.loc.gov/2021031108}, + abstract = {Lauded for its easy-to-understand, conversational discussion of the fundamentals of mediation, moderation, and conditional process analysis, this book has been fully revised with 50\% new content, including sections on working with multicategorical antecedent variables, the use of PROCESS version 3 for SPSS and SAS for model estimation, and annotated PROCESS v3 outputs. Using the principles of ordinary least squares regression, Andrew F. Hayes carefully explains procedures for testing hypotheses about the conditions under and the mechanisms by which causal effects operate, as well as the moderation of such mechanisms. Hayes shows how to estimate and interpret direct, indirect, and conditional effects; probe and visualize interactions; test questions about moderated mediation; and report different types of analyses. Data for all the examples are available on the companion website (www.afhayes.com) along with links to download PROCESS.}, + publisher = {Guilford Publications}, + keywords = {Social sciences--Statistical methods, Mediation (Statistics), Regression analysis}, + annotation = {mediation, mediation-bootstrap, mediation-book}, +} + +@InBook{Vanhasbroeck-Ariens-Tuerlinckx-etal-2021, + author = {Niels Vanhasbroeck and Sigert Ariens and Francis Tuerlinckx and Tim Loossens}, + booktitle = {Affect dynamics}, + editors = {Christian E. Waugh and Peter Kuppens}, + date = {2021}, + title = {Computational models for affect dynamics}, + doi = {10.1007/978-3-030-82965-0_10}, + isbn = {9783030829650}, + pages = {213--260}, + publisher = {Springer International Publishing}, + abstract = {Computational models of affect dynamics are ubiquitous. These models are appropriate for either exploring intensive longitudinal data or testing theories about affect dynamics. In this chapter, we give a brief overview of some of the computational models that have been applied in the field of affect dynamics, focusing on both discrete-time and continuous-time models. The emphasis of this chapter lies on describing the core ideas of the models and how they can be interpreted. At the end, we provide references to other important topics for the interested reader.}, +} + +@Manual{Arbuckle-2020, + author = {James L. Arbuckle}, + date = {2020}, + title = {Amos 27.0 user's guide}, + location = {Chicago}, + publisher = {IBM SPSS}, + annotation = {sem, sem-software}, +} + +@Manual{Arbuckle-2021, + author = {James L. Arbuckle}, + date = {2021}, + title = {Amos 28.0 user's guide}, + location = {Chicago}, + publisher = {IBM SPSS}, + annotation = {sem, sem-software}, +} + +@Report{Asparouhov-Muthen-2022, + author = {Tihomir Asparouhov and Bengt O. Muth{\a'e}n}, + date = {2022}, + title = {Multiple imputation with {Mplus}}, + type = {techreport}, + url = {http://www.statmodel.com/download/Imputations7.pdf}, + institution = {http:\\www.statmodel.com}, +} + +@Manual{Eddelbuettel-Francois-Allaire-etal-2023, + title = {{Rcpp}: Seamless {R} and {C++} Integration}, + author = {Dirk Eddelbuettel and Romain Francois and JJ Allaire and Kevin Ushey and Qiang Kou and Nathan Russell and Inaki Ucar and Douglas Bates and John Chambers}, + date = {2023}, + note = {R package version 1.0.11}, + url = {https://CRAN.R-project.org/package=Rcpp}, + annotation = {r, r-package}, +} + +@Manual{Jorgensen-Pornprasertmanit-Schoemann-etal-2022, + title = {{semTools}: Useful tools for structural equation modeling}, + author = {Terrence D. Jorgensen and Sunthud Pornprasertmanit and Alexander M. Schoemann and Yves Rosseel}, + date = {2022}, + note = {R package version 0.5-6}, + url = {https://CRAN.R-project.org/package=semTools}, +} + +@Misc{Kurtzer-cclerget-Bauer-etal-2021, + author = {Gregory M. Kurtzer and {cclerget} and Michael Bauer and Ian Kaneshiro and David Trudgian and David Godlove}, + date = {2021}, + title = {{hpcng/singularity: Singularity 3.7.3}}, + doi = {10.5281/ZENODO.1310023}, + copyright = {Open Access}, + publisher = {Zenodo}, + annotation = {container, container-singularity}, +} + +@Manual{Patrick-Miech-Johnston-etal-2023, + author = {Megan Patrick and Richard Miech and Lloyd Johnston and Patrick O\textquoterightMalley}, + date = {2023}, + title = {{Monitoring the Future Panel Study} annual report: National data on substance use among adults ages 19 to 60, 1976-2022}, + doi = {10.7826/isr-um.06.585140.002.07.0002.2023}, + institution = {Institute for Social Research, University of Michigan}, + location = {Ann Arbor, MI}, + publisher = {Institute for Social Research, The University of Michigan}, +} + +@PhdThesis{Pesigan-2022, + author = {Ivan Jacob Agaloos Pesigan}, + year = {2022}, + school = {University of Macau}, + title = {Confidence intervals for standardized coefficients: Applied to regression coefficients in primary studies and indirect effects in meta-analytic structural equation modeling}, + type = {phdthesis}, +} + +@Manual{RCoreTeam-2021, + title = {{R}: A language and environment for statistical computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + date = {2021}, + location = {Vienna, Austria}, + url = {https://www.R-project.org/}, + annotation = {r, r-manual}, +} + +@Manual{RCoreTeam-2022, + title = {{R}: A language and environment for statistical computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + date = {2022}, + location = {Vienna, Austria}, + url = {https://www.R-project.org/}, + annotation = {r, r-manual}, +} + +@Manual{RCoreTeam-2023, + title = {{R}: A language and environment for statistical computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + date = {2023}, + location = {Vienna, Austria}, + url = {https://www.R-project.org/}, + annotation = {r, r-manual}, +} + +@Manual{SAMHSA-2020, + author = {{SAMHSA}}, + title = {Key substance use and mental health indicators in the {United States}: Results from the {2019 National Survey on Drug Use and Health} ({HHS Publication No. PEP20-07-01-001, NSDUH Series H-55})}, + date = {2020}, + url = {https://www.samhsa.gov/data/}, + location = {Rockville, MD}, + publisher = {Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration}, +} + +@Manual{SAMHSA-2023, + author = {{SAMHSA}}, + title = {Key substance use and mental health indicators in the {United States}: Results from the {2022 National Survey on Drug Use and Health} ({HHS Publication No. PEP23-07-01-006, NSDUH Series H-58})}, + date = {2023}, + url = {https://www.samhsa.gov/data/report/2022-nsduh-annual-national-report}, + location = {Rockville, MD}, + publisher = {Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration}, +} + +@Manual{Schulenberg-Patrick-Johnston-etal-2021, + author = {John E. Schulenberg and Megan E. Patrick and Lloyd D. Johnston and Patrick M. O'Malley and Jerald G. Bachman and Richard A. Miech}, + title = {{Monitoring the Future} national survey results on drug use, 1975-2020: Volume II, College students and adults ages 19–60}, + date = {2021}, + location = {Ann Arbor, MI}, + publisher = {Institute for Social Research, The University of Michigan}, +} + +@Manual{Waller-2022, + author = {Niels G. Waller}, + title = {{fungible}: Psychometric functions from the {Waller Lab}}, + date = {2022}, + note = {R package version 2.2.1}, + url = {https://CRAN.R-project.org/package=fungible}, + publisher = {The R Foundation}, + annotation = {r, r-package}, +} diff --git a/README.md b/README.md index 29d6fb6..12ed68c 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ betaSandwich ================ Ivan Jacob Agaloos Pesigan -2024-06-13 +2024-06-18