-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_scanobj_ref.py
219 lines (144 loc) · 5.97 KB
/
main_scanobj_ref.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import numpy as np
import torch
from torch.nn.modules import module
from Dataloader.scanobjectnn import get_sets
from utils.test_perform_cal import get_cls_accuracy
import torch.nn as nn
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import os
import shutil
from utils.cal_final_result import accuracy_calculation
from utils.all_utils import smooth_loss
# from model.cls.DGCNN_repmax import DGCNN_ref
# from model.cls.PointNet_pp_repmax import PointNet_pp
# from model.cls.PointNet_repmax import PointNet_hie_ref
# from model.cls.curvenet_repmax import CurveNet_repmax
import random
import time
import argparse
def get_parse():
parser=argparse.ArgumentParser(description='argumment')
parser.add_argument('--exp_name',type=str,default='DGCNN_ref_scanobj_exp')
parser.add_argument('--seed',default=0)
parser.add_argument('--batch_size',default=16)
parser.add_argument('--data_path',default='/data1/jiajing/dataset/scanobjectnn/main_split_nobg')
parser.add_argument('--lr',default=0.001)
return parser.parse_args()
cfg=get_parse()
def main():
seed=cfg.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled=False
cuda=0
datapath=cfg.data_path
from model.cls.DGCNN_repmax import DGCNN_ref
model=DGCNN_ref(40,0.8,2.1)
train_loader,test_loader,valid_loader=get_sets(datapath,train_batch_size=cfg.batch_size,test_batch_size=cfg.batch_size)
train_model(model,train_loader,valid_loader,cfg.exp_name,cuda)
def train_model(model,train_loader,valid_loader,exp_name,cuda_n):
assert torch.cuda.is_available()
epoch_acc=[]
#这里应该用GPU
device=torch.device('cuda:{}'.format(cuda_n))
model=model.to(device)
initial_epoch=0
training_epoch=350
loss_func=smooth_loss
optimizer=torch.optim.Adam(model.parameters(),lr=0.001)
lr_schedule=torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=np.arange(10,training_epoch,40),gamma=0.7)
#here we define train_one_epoch
def train_one_epoch():
iterations=tqdm(train_loader,ncols=100,unit='batch',leave=False)
#真正训练这里应该解封
epsum=run_one_epoch(model,iterations,"train",loss_func=loss_func,optimizer=optimizer,loss_interval=10)
summary={"loss/train":np.mean(epsum['losses'])}
return summary
def eval_one_epoch():
iteration=tqdm(valid_loader,ncols=100,unit='batch',leave=False)
#epsum only have logit and labes
#epsum['logti'] is (batch,4096,13)
#epsum['labels] is (batch,4096)
epsum=run_one_epoch(model,iteration,"valid",loss_func=loss_func)
mean_acc=np.mean(epsum['acc'])
epoch_acc.append(mean_acc)
summary={'meac':mean_acc}
summary["loss/valid"]=np.mean(epsum['losses'])
return summary
#build tensorboard
# tensorboard=SummaryWriter(log_dir='.Exp/{}/TB'.format(exp_name))
tqdm_epoch=tqdm(range(initial_epoch,training_epoch),unit='epoch',ncols=100)
#build folder for pth_file
exp_path=os.path.join('./Exp',exp_name)
pth_path=os.path.join(exp_path,'pth_file')
tensorboard_path=os.path.join(exp_path,'TB')
if not os.path.exists(exp_path):
os.mkdir(exp_path)
os.mkdir(pth_path)
os.mkdir(tensorboard_path)
# pth_save_path=os.path.join('Exp',exp_name,'pth_file')
# if not os.path.exists(pth_save_path):
# os.mkdir(pth_save_path)
tensorboard=SummaryWriter(log_dir=tensorboard_path)
for e in tqdm_epoch:
train_summary=train_one_epoch()
valid_summary=eval_one_epoch()
summary={**train_summary,**valid_summary}
lr_schedule.step()
#save checkpoint
if np.max(epoch_acc)==epoch_acc[-1]:
summary_saved={**summary,
'model_state':model.state_dict(),
'optimizer_state':optimizer.state_dict()}
# torch.save(summary_saved,'./pth_file/{0}/epoch_{1}'.format(exp_name,e))
torch.save(summary_saved,os.path.join(pth_path,'epoch_{}'.format(e)))
for name,val in summary.items():
tensorboard.add_scalar(name,val,e)
def run_one_epoch(model,tqdm_iter,mode,loss_func=None,optimizer=None,loss_interval=10):
if mode=='train':
model.train()
else:
model.eval()
param_grads=[]
for param in model.parameters():
param_grads+=[param.requires_grad]
param.requires_grad=False
summary={"losses":[],"acc":[]}
device=next(model.parameters()).device
for i,(x_cpu,y_cpu) in enumerate(tqdm_iter):
x,y=x_cpu.to(device),y_cpu.to(device)
if mode=='train':
optimizer.zero_grad()
#logtis' shape is [batch,40]
#y size is [batch,1]
if mode=='train':
logits,loss=model(x,y.view(-1))
else:
logits,loss=model(x,y.view(-1))
if loss_func is not None:
summary['losses']+=[loss.item()]
if mode=='train':
loss.backward(retain_graph=True)
optimizer.step()
#display
if loss_func is not None and i%loss_interval==0:
tqdm_iter.set_description("Loss: {:.3f}".format(np.mean(summary['losses'])))
else:
log=logits.cpu().detach().numpy()
lab=y_cpu.numpy()
mean_acc=get_cls_accuracy(log,lab)
summary['acc'].append(mean_acc)
if i%loss_interval==0:
tqdm_iter.set_description("mea_ac: %.3f"%(np.mean(summary['acc'])))
if mode!='train':
for param,value in zip(model.parameters(),param_grads):
param.requires_grad=value
return summary
if __name__=='__main__':
main()