-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval.py
83 lines (68 loc) · 2.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import sys
import time
import gym_super_mario_bros
import torch
import torch.nn as nn
from gym_super_mario_bros.actions import COMPLEX_MOVEMENT
from nes_py.wrappers import JoypadSpace
from wrappers import *
# Same as duel_dqn.mlp (you can make model.py to avoid duplication.)
class model(nn.Module):
def __init__(self, n_frame, n_action, device):
super(model, self).__init__()
self.layer1 = nn.Conv2d(n_frame, 32, 8, 4)
self.layer2 = nn.Conv2d(32, 64, 3, 1)
self.fc = nn.Linear(20736, 512)
self.q = nn.Linear(512, n_action)
self.v = nn.Linear(512, 1)
self.device = device
self.seq = nn.Sequential(self.layer1, self.layer2, self.fc, self.q, self.v)
self.seq.apply(init_weights)
def forward(self, x):
if type(x) != torch.Tensor:
x = torch.FloatTensor(x).to(self.device)
x = torch.relu(self.layer1(x))
x = torch.relu(self.layer2(x))
x = x.view(-1, 20736)
x = torch.relu(self.fc(x))
adv = self.q(x)
v = self.v(x)
q = v + (adv - 1 / adv.shape[-1] * adv.max(-1, True)[0])
return q
def init_weights(m):
if type(m) == nn.Conv2d:
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def arange(s):
if not type(s) == "numpy.ndarray":
s = np.array(s)
assert len(s.shape) == 3
ret = np.transpose(s, (2, 0, 1))
return np.expand_dims(ret, 0)
if __name__ == "__main__":
ckpt_path = sys.argv[1] if len(sys.argv) > 1 else "mario_q_target.pth"
print(f"Load ckpt from {ckpt_path}")
n_frame = 4
env = gym_super_mario_bros.make("SuperMarioBros-v0")
env = JoypadSpace(env, COMPLEX_MOVEMENT)
env = wrap_mario(env)
device = "cuda" if torch.cuda.is_available() else "cpu"
q = model(n_frame, env.action_space.n, device).to(device)
q.load_state_dict(torch.load(ckpt_path, map_location=torch.device(device)))
total_score = 0.0
done = False
s = arange(env.reset())
i = 0
while not done:
env.render()
if device == "cpu":
a = np.argmax(q(s).detach().numpy())
else:
a = np.argmax(q(s).cpu().detach().numpy())
s_prime, r, done, _ = env.step(a)
s_prime = arange(s_prime)
total_score += r
s = s_prime
time.sleep(0.001)
stage = env.unwrapped._stage
print("Total score : %f | stage : %d" % (total_score, stage))