-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscenarios.py
548 lines (423 loc) · 20.9 KB
/
scenarios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
from __future__ import division
import json
import csv
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import os
import random
import copy
try:
import cPickle as pickle
except:
import pickle
def inhomogeneous_poisson(l, rej_threshold, default=0, size=1):
values = np.random.poisson(lam=l, size=1)
rnd_throws = np.random.uniform(size=values.shape)
values[rnd_throws < rej_threshold] = default
return values
def generate_testcase(id, last_run, duration_limits=[180, 1200], history_length=0, history_fail_prob=0.05):
tc = {
'Id': id,
'Duration': random.randint(duration_limits[0], duration_limits[1]),
'CalcPrio': 0,
'LastRun': last_run,
'LastResults': [1 if random.random() < history_fail_prob else 0 for _ in range(history_length)]
}
return tc
def generate_solution(tc, basic_failure_chance, prev_failure_influence):
failure_chance = basic_failure_chance + sum(tc['LastResults'][0:3]) * prev_failure_influence
return 1 if random.random() < failure_chance else 0
class VirtualScenario(object):
def __init__(self, available_time, testcases=[], solutions={}, name_suffix='vrt', schedule_date=datetime.today()):
self.available_time = available_time
self.gen_testcases = testcases
self.solutions = solutions
self.no_testcases = len(testcases)
self.name = name_suffix
self.scheduled_testcases = []
self.schedule_date = schedule_date
def testcases(self):
return iter(self.gen_testcases)
def submit(self):
# Sort tc by Prio ASC (for backwards scheduling), break ties randomly
sorted_tc = sorted(self.gen_testcases, key=lambda x: (x['CalcPrio'], random.random()))
# Build prefix sum of durations to find cut off point
scheduled_time = 0
detection_ranks = []
undetected_failures = 0
rank_counter = 1
while sorted_tc:
cur_tc = sorted_tc.pop()
if scheduled_time + cur_tc['Duration'] <= self.available_time:
if self.solutions[cur_tc['Id']]:
detection_ranks.append(rank_counter)
scheduled_time += cur_tc['Duration']
self.scheduled_testcases.append(cur_tc)
rank_counter += 1
else:
undetected_failures += self.solutions[cur_tc['Id']]
detected_failures = len(detection_ranks)
total_failure_count = sum(self.solutions.values())
assert undetected_failures + detected_failures == total_failure_count
if total_failure_count > 0:
ttf = detection_ranks[0] if detection_ranks else 0
if undetected_failures > 0:
p = (detected_failures / total_failure_count)
else:
p = 1
napfd = p - sum(detection_ranks) / (total_failure_count * self.no_testcases) + p / (2 * self.no_testcases)
recall = detected_failures / total_failure_count
avg_precision = 123
else:
ttf = 0
napfd = 1
recall = 1
avg_precision = 1
return [detected_failures, undetected_failures, ttf, napfd, recall, avg_precision, detection_ranks]
def get_ta_metadata(self):
execTimes, durations = zip(*[(tc['LastRun'], tc['Duration']) for tc in self.testcases()])
metadata = {
'availAgents': 1,
'totalTime': self.available_time,
'minExecTime': min(execTimes),
'maxExecTime': max(execTimes),
'scheduleDate': self.schedule_date,
'minDuration': min(durations),
'maxDuration': max(durations)
}
return metadata
def set_testcase_prio(self, prio, tcid=-1):
self.gen_testcases[tcid]['CalcPrio'] = prio
def reduce_to_schedule(self):
""" Creates a new scenario consisting of all scheduled test cases and their outcomes (for replaying) """
scheduled_time = sum([tc['Duration'] for tc in self.scheduled_testcases])
total_time = sum([tc['Duration'] for tc in self.testcases()])
available_time = self.available_time * scheduled_time / total_time
solutions = {tc['Id']: self.solutions[tc['Id']] for tc in self.scheduled_testcases}
return VirtualScenario(available_time, self.scheduled_testcases, solutions, self.name, self.schedule_date)
def clean(self):
for tc in self.testcases():
self.set_testcase_prio(0, tc['Id'] - 1)
self.scheduled_testcases = []
class RandomScenario(VirtualScenario):
""" On-the-fly random scenario generator for schedules with only one test agent and without schedule optimization"""
def __init__(self, schedule_ratio=None, no_testcases=None, history_length=3, init_testcases=False,
name_suffix='rnd'):
super(RandomScenario, self).__init__(available_time=random.randint(14400, 28800), name_suffix=name_suffix)
self.tc_duration_limit = [180, 1200]
self.must_run_prob = 0.2
self.basic_failure_chance = 0.03
self.prev_failure_influence = 0.5
self.history_length = history_length
if no_testcases is None:
time_to_schedule = self.available_time / schedule_ratio
self.no_testcases = int(time_to_schedule / np.mean(self.tc_duration_limit))
self.name = '1_%.1f_%s' % (schedule_ratio, name_suffix)
else:
self.no_testcases = no_testcases
self.name = '1_%d_%s' % (no_testcases, name_suffix)
self.gen_testcases = []
self.scheduled_testcases = []
self.solutions = {}
if init_testcases:
list(self.testcases())
def testcases(self):
if len(self.gen_testcases) < self.no_testcases:
for i in range(len(self.gen_testcases), self.no_testcases):
yield self.generate_testcase()
else:
for i in range(self.no_testcases):
yield self.gen_testcases[i]
def generate_testcase(self):
last_run = self.schedule_date - timedelta(days=random.randint(1, 5))
tc = generate_testcase(id=len(self.gen_testcases) + 1, duration_limits=self.tc_duration_limit,
last_run=last_run, history_length=self.history_length)
self.gen_testcases.append(tc)
sol = self.generate_solution(tc)
self.solutions[tc['Id']] = sol
return tc
def generate_solution(self, tc):
return generate_solution(tc, self.basic_failure_chance, self.prev_failure_influence)
def clean(self):
for tc in self.testcases():
self.set_testcase_prio(0, tc['Id'] - 1)
self.scheduled_testcases = []
class RandomScenarioProvider(object):
def __init__(self, scenario_class=RandomScenario):
self.schedule_ratios = [0.3, 0.5, 0.7, 0.9]
self.validation = []
self.validation_length = 64
self.scenario_class = scenario_class
self.name = 'random'
def get(self, name_suffix='rnd', init_testcases=False):
schedule_ratio = random.choice(self.schedule_ratios)
return self.scenario_class(schedule_ratio=schedule_ratio, init_testcases=init_testcases,
name_suffix=name_suffix)
def get_validation(self):
if not self.validation:
if os.path.exists('%s_validation.p' % type(self).__name__):
self.validation = pickle.load(open('%s_validation.p' % type(self).__name__, 'rb'))
else:
self.validation = [self.get(name_suffix='rnd%d' % i) for i in range(self.validation_length)]
pickle.dump(self.validation, open('%s_validation.p' % type(self).__name__, 'wb'), 2)
return copy.deepcopy(self.validation)
# Generator functions
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
sc = self.get()
if sc is None:
raise StopIteration()
return sc
class IncrementalScenarioProvider(RandomScenarioProvider):
def __init__(self, testcases=[], solutions={}, episode_length=50, avg_failure_cnt=5, prob_tc_changes=0.1):
super(IncrementalScenarioProvider, self).__init__()
self.name = 'incremental'
self.episode_length = episode_length
self.step_counter = 0
self.scenario = None
self.validation_length = self.episode_length * 2
self.initial_last_run = datetime(2015, 1, 1)
self.basic_failure_chance = 0.03
self.prev_failure_influence = 0.15
self.avg_failure_count = avg_failure_cnt
self.prob_failure_count_changes = 0.9
self.prob_tc_changes = prob_tc_changes
self.prob_tc_add = 0.7
self.testcases = testcases
self.solutions = solutions
self.available_time = 0
if len(self.testcases) > 0 and len(self.solutions) > 0:
self.scenario = VirtualScenario(testcases=self.testcases, solutions=self.solutions, name_suffix='inc0')
def get_validation(self):
if not self.validation:
if os.path.exists('%s_validation.p' % type(self).__name__) and False:
self.validation = pickle.load(open('%s_validation.p' % type(self).__name__, 'rb'))
else:
self.validation = [RandomScenario(no_testcases=100, name_suffix='rnd%d' % i) for i in
range(self.validation_length)]
pickle.dump(self.validation, open('%s_validation.p' % type(self).__name__, 'wb'), 2)
return copy.deepcopy(self.validation)
def get(self, name_suffix='inc'):
if self.scenario is None or self.step_counter % self.episode_length == 0:
self.scenario = super(IncrementalScenarioProvider, self).get(
name_suffix='%s%d' % (name_suffix, self.step_counter))
self.testcases = list(self.scenario.testcases())
self.solutions = self.scenario.solutions
self.available_time = self.scenario.available_time
else:
self.scenario = self.updated_scenario()
self.step_counter += 1
return self.scenario
def updated_scenario(self):
today = datetime.today()
# Expected variation in failures
if np.random.random() < self.prob_failure_count_changes:
failure_count_changes = inhomogeneous_poisson(self.avg_failure_count, 1) - self.avg_failure_count
else:
failure_count_changes = 0
# Update recently executed testcases
for (idx, tc) in enumerate(self.testcases):
if tc in self.scenario.scheduled_testcases:
sol = self.solutions[tc['Id']]
tc['LastResults'] = [sol] + tc['LastResults']
tc['LastRun'] = today - timedelta(days=1)
self.solutions[tc['Id']] = generate_solution(tc, self.basic_failure_chance, self.prev_failure_influence)
else:
tc['LastRun'] = tc['LastRun'] - timedelta(days=1)
if random.random() < self.basic_failure_chance:
self.solutions[tc['Id']] = not self.solutions[tc['Id']]
failure_count_changes += -1 if self.solutions[tc['Id']] else +1
self.testcases[idx] = tc
# Update total testcase repository
tc_changes = inhomogeneous_poisson(10, self.prob_tc_changes) - 10
for i in range(tc_changes):
if np.random.random() < self.prob_tc_add:
# Add test case
tc_id = max(self.solutions.keys()) + 1
tc = generate_testcase(id=tc_id, last_run=self.initial_last_run)
self.testcases.append(tc)
sol = generate_solution(tc, self.basic_failure_chance, self.prev_failure_influence)
self.solutions[tc_id] = sol
if sol:
failure_count_changes -= 1
else:
# Remove random test case
idx = np.random.randint(0, len(self.testcases))
del self.solutions[self.testcases[idx]['Id']]
del self.testcases[idx]
if failure_count_changes != 0:
if failure_count_changes > 0:
cand_tc = [tc for tc in self.testcases if not self.solutions[tc['Id']]]
else:
cand_tc = [tc for tc in self.testcases if self.solutions[tc['Id']]]
if len(cand_tc) >= abs(failure_count_changes):
chg_tc = np.random.choice(cand_tc, size=abs(failure_count_changes))
for tc in chg_tc:
self.solutions[tc['Id']] = not self.solutions[tc['Id']]
assert len(self.testcases) == len(self.solutions)
assert len([tc for tc in self.testcases if not tc['Id'] in self.solutions]) == 0
name = 'inc%d' % self.step_counter
return VirtualScenario(self.available_time, self.testcases, self.solutions, name_suffix=name)
class FileBasedSubsetScenarioProvider(RandomScenarioProvider):
def __init__(self, tcfile, solfile, scheduleperiod=20, starttime=None, sched_time_ratio=0.5):
super(FileBasedSubsetScenarioProvider, self).__init__()
self.basename = os.path.splitext(os.path.basename(tcfile))[0]
self.name = self.basename
self.testcases = []
self.solutions = {}
self.tc_reader = csv.DictReader(open(tcfile, 'r'), delimiter=';', quoting=csv.QUOTE_MINIMAL, escapechar='',
quotechar='\'')
self.sol_reader = csv.DictReader(open(solfile, 'r'), delimiter=';', quoting=csv.QUOTE_MINIMAL, escapechar='',
quotechar='\'')
tc = self.next_testcase().next()
self.testcases.append(tc)
if starttime is None or not isinstance(starttime, datetime):
self.starttime = tc['LastRun'].replace(hour=0, minute=0, second=0, microsecond=0)
else:
self.starttime = starttime
self.lastidx = -1
self.maxtime = self.starttime
self.scheduleperiod = scheduleperiod
self.scenario = None
self.avail_time_ratio = sched_time_ratio
def next_testcase(self):
for row in self.tc_reader:
tc = self.row_to_testcase(row)
self.load_solution(tc['Id']) # Assure solution is loaded
assert tc['Id'] in self.solutions
yield tc
def load_solution(self, tc_id):
if tc_id in self.solutions:
return
for s in self.sol_reader:
s_id = int(s['Id'])
self.solutions[s_id] = s['Result'] == '1'
if s_id == tc_id:
break
def row_to_testcase(self, tc):
tc['Id'] = int(tc['Id'])
tc['MustRun'] = tc['MustRun'] == '1'
tc['Duration'] = int(tc['Duration'])
tc['FixedPrio'] = int(tc['FixedPrio'])
tc['LastResults'] = json.loads(tc['LastResults'])
tc['LastAgents'] = [1] * len(tc['LastResults']) # ast.literal_eval(tc['LastAgents'])
tc['PossAgents'] = [1] # ast.literal_eval(tc['PossAgents'])
a = tc['LastRun']
if len(tc['LastRun']) == 16:
tc['LastRun'] = datetime(int(a[:4]), int(a[5:7]), int(a[8:10]), int(a[11:13]), int(a[14:16]))
else:
tc['LastRun'] = datetime(int(a[:4]), int(a[5:7]), int(a[8:10]), int(a[11:13]), int(a[14:16]), int(a[17:19]))
return tc
def get(self, name_suffix=None, init_testcases=False):
seltc = self.testcases
self.testcases = []
if isinstance(self.scheduleperiod, timedelta):
self.maxtime += self.scheduleperiod
for tc in self.next_testcase():
add_by_date = isinstance(self.scheduleperiod, timedelta) and tc['LastRun'] <= self.maxtime
add_by_count = isinstance(self.scheduleperiod, int) and len(seltc) < self.scheduleperiod
if add_by_date or add_by_count:
seltc.append(tc)
else:
self.testcases.append(tc)
break
if len(seltc) > 0:
if name_suffix is None:
name_suffix = (self.maxtime + timedelta(days=1)).isoformat()
req_time = sum([tc['Duration'] for tc in seltc])
total_time = req_time * self.avail_time_ratio
selsol = {tc['Id']: self.solutions[tc['Id']] for tc in seltc}
self.scenario = VirtualScenario(testcases=seltc, solutions=selsol, name_suffix=name_suffix,
available_time=total_time, schedule_date=self.maxtime + timedelta(days=1))
self.maxtime = seltc[-1]['LastRun']
else:
self.scenario = None
return self.scenario
def get_validation(self):
if not self.validation:
val_path = '%s_%s_validation.p' % (type(self).__name__, self.basename)
if os.path.exists(val_path):
self.validation = pickle.load(open(val_path, 'rb'))
else:
self.validation = []
while len(self.validation) < 14:
# Two periods of each 7 days
starttimes = sorted(
set([c['LastRun'].replace(hour=0, minute=0, second=0, microsecond=0) for c in self.testcases]))[
:-7]
idx = random.randint(0, len(starttimes) - 1)
week = []
remove_tc = []
for j in range(7):
start = starttimes[idx + j]
end = starttimes[idx + j + 1]
seltc = [tc for tc in self.testcases if start < tc['LastRun'] <= end]
selsol = {tc['Id']: self.solutions[tc['Id']] for tc in seltc}
req_time = sum([tc['Duration'] for tc in seltc])
total_time = req_time * self.avail_time_ratio
val_scenario = VirtualScenario(testcases=seltc, solutions=selsol,
name_suffix='val_%s' % start.isoformat(),
available_time=total_time,
schedule_date=end + timedelta(days=1))
if sum(val_scenario.solutions.values()) == 0:
break # Choose new starttime
week.append(val_scenario)
remove_tc.extend(val_scenario.testcases())
else:
self.validation.extend(week)
self.testcases[:] = [tc for tc in self.testcases if tc not in remove_tc]
pickle.dump(self.validation, open(val_path, 'wb'), 2)
return copy.deepcopy(self.validation)
class IndustrialDatasetScenarioProvider(RandomScenarioProvider):
"""
Scenario provider to process CSV files for experimental evaluation of RETECS.
Required columns are `self.tc_fieldnames` plus ['Verdict', 'Cycle']
"""
def __init__(self, tcfile, sched_time_ratio=0.5):
super(IndustrialDatasetScenarioProvider, self).__init__()
self.basename = os.path.splitext(os.path.basename(tcfile))[0]
self.name = self.basename
self.tcdf = pd.read_csv(tcfile, sep=';', parse_dates=['LastRun'])
self.tcdf['LastResults'] = self.tcdf['LastResults'].apply(json.loads)
self.solutions = dict(zip(self.tcdf['Id'].tolist(), self.tcdf['Verdict'].tolist()))
self.cycle = 0
self.maxtime = min(self.tcdf.LastRun)
self.max_cycles = max(self.tcdf.Cycle)
self.scenario = None
self.avail_time_ratio = sched_time_ratio
self.tc_fieldnames = ['Id', 'Name', 'Duration', 'CalcPrio', 'LastRun', 'LastResults']
def get(self, name_suffix=None):
self.cycle += 1
if self.cycle > self.max_cycles:
self.scenario = None
return None
cycledf = self.tcdf.loc[self.tcdf.Cycle == self.cycle]
seltc = cycledf[self.tc_fieldnames].to_dict(orient='record')
if name_suffix is None:
name_suffix = (self.maxtime + timedelta(days=1)).isoformat()
req_time = sum([tc['Duration'] for tc in seltc])
total_time = req_time * self.avail_time_ratio
selsol = dict(zip(cycledf['Id'].tolist(), cycledf['Verdict'].tolist()))
self.scenario = VirtualScenario(testcases=seltc, solutions=selsol, name_suffix=name_suffix,
available_time=total_time, schedule_date=self.maxtime + timedelta(days=1))
self.maxtime = seltc[-1]['LastRun']
return self.scenario
def get_validation(self):
""" Validation data sets are not supported for this provider """
return []
class ScenarioStore(object):
def __init__(self, max_memory=500, discount=0.9):
self.memory = []
self.max_memory = max_memory
self.discount = discount
def remember(self, scenario):
self.memory.append(scenario)
if len(self.memory) > self.max_memory:
del self.memory[0]
def get_batch(self, batch_size=10):
batch = np.random.choice(self.memory, size=batch_size)
return batch