Skip to content

Latest commit

 

History

History
267 lines (224 loc) · 10.8 KB

getting-started-kubernetes.md

File metadata and controls

267 lines (224 loc) · 10.8 KB
layout title nav_order parent
page
Kubernetes
5
Getting-Started

Getting Started with RAPIDS and Kubernetes

This guide will run through how to set up the RAPIDS Accelerator for Apache Spark in a Kubernetes cluster. At the end of this guide, the reader will be able to run a sample Apache Spark application that runs on NVIDIA GPUs in a Kubernetes cluster.

This is a quick start guide which uses default settings which may be different from your cluster.

Kubernetes requires a Docker image to run Spark. Generally everything needed is in the Docker image - Spark, the RAPIDS Accelerator for Spark jars, and the discovery script. See this Dockerfile.cuda example.

Prerequisites

* Kubernetes cluster is up and running with NVIDIA GPU support
* Docker is installed on a client machine
* A Docker repository which is accessible by the Kubernetes cluster

These instructions do not cover how to setup a Kubernetes cluster.

Please refer to Install Kubernetes on how to install a Kubernetes cluster with NVIDIA GPU support.

Docker Image Preparation

On a client machine which has access to the Kubernetes cluster:

  1. Download Apache Spark. Supported versions of Spark are listed on the RAPIDS Accelerator download page. Please note that only Scala version 2.12 is currently supported by the accelerator.

    Note that you can download these into a local directory and untar the Spark .tar.gz as a directory named spark.

  2. Download the RAPIDS Accelerator for Spark jars and the GPU discovery script.

    Put the 2 jars -- rapids-4-spark_<version>.jar, cudf-<version>.jar and getGpusResources.sh in the same directory as spark.

    Note: If here you decide to put above 2 jars in the spark/jars directory which will be copied into /opt/spark/jars directory in Docker image, then in the future you do not need to specify spark.driver.extraClassPath or spark.executor.extraClassPath using cluster mode. This example just shows you a way to put customized jars or 3rd party jars.

  3. Download the sample Dockerfile.cuda in the same directory as spark.

    The sample Dockerfile.cuda will copy the spark directory's several sub-directories into /opt/spark/ along with the RAPIDS Accelerator jars and getGpusResources.sh into /opt/sparkRapidsPlugin inside the Docker image.

    Examine the Dockerfile.cuda file to ensure the file names are correct and modify if needed.

    Currently the directory in the local machine should look as below:

    $ ls
    Dockerfile.cuda   cudf-<version>.jar   getGpusResources.sh   rapids-4-spark_<version>.jar   spark
  4. Build the Docker image with a proper repository name and tag and push it to the repository

    export IMAGE_NAME=xxx/yyy:tag
    docker build . -f Dockerfile.cuda -t $IMAGE_NAME
    docker push $IMAGE_NAME

Running Spark Applications in the Kubernetes Cluster

Submitting a Simple Test Job

This simple job will test if the RAPIDS plugin can be found. ClassNotFoundException is a common error if the Spark driver can not find the RAPIDS Accelerator jar, resulting in an exception like this:

Exception in thread "main" java.lang.ClassNotFoundException: com.nvidia.spark.SQLPlugin

Here is an example job:

export SPARK_HOME=~/spark
export IMAGE_NAME=xxx/yyy:tag
export K8SMASTER=k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>
export SPARK_NAMESPACE=default
export SPARK_DRIVER_NAME=exampledriver

$SPARK_HOME/bin/spark-submit \
     --master $K8SMASTER \
     --deploy-mode cluster  \
     --name examplejob \
     --class org.apache.spark.examples.SparkPi \
     --conf spark.executor.instances=1 \
     --conf spark.executor.resource.gpu.amount=1 \
     --conf spark.executor.memory=4G \
     --conf spark.executor.cores=1 \
     --conf spark.task.cpus=1 \
     --conf spark.task.resource.gpu.amount=1 \
     --conf spark.rapids.memory.pinnedPool.size=2G \
     --conf spark.executor.memoryOverhead=3G \
     --conf spark.locality.wait=0s \
     --conf spark.sql.files.maxPartitionBytes=512m \
     --conf spark.sql.shuffle.partitions=10 \
     --conf spark.plugins=com.nvidia.spark.SQLPlugin \
     --conf spark.kubernetes.namespace=$SPARK_NAMESPACE  \
     --conf spark.kubernetes.driver.pod.name=$SPARK_DRIVER_NAME  \
     --conf spark.executor.resource.gpu.discoveryScript=/opt/sparkRapidsPlugin/getGpusResources.sh \
     --conf spark.executor.resource.gpu.vendor=nvidia.com \
     --conf spark.kubernetes.container.image=$IMAGE_NAME \
     --conf spark.executor.extraClassPath=/opt/sparkRapidsPlugin/rapids-4-spark_<version>.jar:/opt/sparkRapidsPlugin/cudf-<version>.jar   \
     --conf spark.driver.extraClassPath=/opt/sparkRapidsPlugin/rapids-4-spark_<version>.jar:/opt/sparkRapidsPlugin/cudf-<version>.jar   \
     --driver-memory 2G \
     local:///opt/spark/examples/jars/spark-examples_2.12-3.0.2.jar

Note: local:// means the jar file location is inside the Docker image. Since this is cluster mode, the Spark driver is running inside a pod in Kubernetes. The driver and executor pods can be seen when the job is running:

$ kubectl get pods
NAME                               READY   STATUS    RESTARTS   AGE
spark-pi-d11075782f399fd7-exec-1   1/1     Running   0          9s
exampledriver                      1/1     Running   0          15s

To view the Spark driver log, use below command:

kubectl logs $SPARK_DRIVER_NAME

To view the Spark driver UI when the job is running first expose the driver UI port:

kubectl port-forward $SPARK_DRIVER_NAME 4040:4040

Then open a web browser to the Spark driver UI page on the exposed port:

http://localhost:4040

To kill the Spark job:

$SPARK_HOME/bin/spark-submit --kill spark:$SPARK_DRIVER_NAME

To delete the driver POD:

kubectl delete pod $SPARK_DRIVER_NAME

Running an Interactive Spark Shell

If you need an interactive Spark shell with executor pods running inside the Kubernetes cluster:

$SPARK_HOME/bin/spark-shell \
     --master $K8SMASTER \
     --name mysparkshell \
     --deploy-mode client  \
     --conf spark.executor.instances=1 \
     --conf spark.executor.resource.gpu.amount=1 \
     --conf spark.executor.memory=4G \
     --conf spark.executor.cores=1 \
     --conf spark.task.cpus=1 \
     --conf spark.task.resource.gpu.amount=1 \
     --conf spark.rapids.memory.pinnedPool.size=2G \
     --conf spark.executor.memoryOverhead=3G \
     --conf spark.locality.wait=0s \
     --conf spark.sql.files.maxPartitionBytes=512m \
     --conf spark.sql.shuffle.partitions=10 \
     --conf spark.plugins=com.nvidia.spark.SQLPlugin \
     --conf spark.kubernetes.namespace=$SPARK_NAMESPACE  \
     --conf spark.executor.resource.gpu.discoveryScript=/opt/sparkRapidsPlugin/getGpusResources.sh \
     --conf spark.executor.resource.gpu.vendor=nvidia.com \
     --conf spark.kubernetes.container.image=$IMAGE_NAME \
     --conf spark.executor.extraClassPath=/opt/sparkRapidsPlugin/rapids-4-spark_<version>.jar:/opt/sparkRapidsPlugin/cudf-<version>.jar   \
     --driver-class-path=./cudf-<version>.jar:./rapids-4-spark_<version>.jar \
     --driver-memory 2G 

Only the client deploy mode should be used. If you specify the cluster deploy mode, you would see the following error:

Cluster deploy mode is not applicable to Spark shells.

Also notice that --conf spark.driver.extraClassPath was removed but --driver-class-path was added. This is because now the driver is running on the client machine, so the jar paths should be local filesystem paths.

When running the shell you can see only the executor pods are running inside Kubernetes:

$ kubectl get pods
NAME                                     READY   STATUS    RESTARTS   AGE
mysparkshell-bfe52e782f44841c-exec-1     1/1     Running   0          11s

The following Scala code can be run in the Spark shell to test if the RAPIDS Accelerator is enabled.

val df = spark.sparkContext.parallelize(Seq(1)).toDF()
df.createOrReplaceTempView("df")
spark.sql("SELECT value FROM df WHERE value <>1").show
spark.sql("SELECT value FROM df WHERE value <>1").explain
:quit

The expected explain plan should contain the GPU related operators:

scala> spark.sql("SELECT value FROM df WHERE value <>1").explain
== Physical Plan ==
GpuColumnarToRow false
+- GpuFilter NOT (value#2 = 1)
   +- GpuRowToColumnar TargetSize(2147483647)
      +- *(1) SerializeFromObject [input[0, int, false] AS value#2]
         +- Scan[obj#1]

Running PySpark in Client Mode

Of course, you can COPY the Python code in the Docker image when building it and submit it using the cluster deploy mode as showin in the previous example pi job.

However if you do not want to re-build the Docker image each time and just want to submit the Python code from the client machine, you can use the client deploy mode.

$SPARK_HOME/bin/spark-submit \
     --master $K8SMASTER \
     --deploy-mode client  \
     --name mypythonjob \
     --conf spark.executor.instances=1 \
     --conf spark.executor.resource.gpu.amount=1 \
     --conf spark.executor.memory=4G \
     --conf spark.executor.cores=1 \
     --conf spark.task.cpus=1 \
     --conf spark.task.resource.gpu.amount=1 \
     --conf spark.rapids.memory.pinnedPool.size=2G \
     --conf spark.executor.memoryOverhead=3G \
     --conf spark.locality.wait=0s \
     --conf spark.sql.files.maxPartitionBytes=512m \
     --conf spark.sql.shuffle.partitions=10 \
     --conf spark.plugins=com.nvidia.spark.SQLPlugin \
     --conf spark.kubernetes.namespace=$SPARK_NAMESPACE  \
     --conf spark.executor.resource.gpu.discoveryScript=/opt/sparkRapidsPlugin/getGpusResources.sh \
     --conf spark.executor.resource.gpu.vendor=nvidia.com \
     --conf spark.kubernetes.container.image=$IMAGE_NAME \
     --conf spark.executor.extraClassPath=/opt/sparkRapidsPlugin/rapids-4-spark_<version>.jar:/opt/sparkRapidsPlugin/cudf-<version>.jar   \
     --driver-memory 2G \
     --driver-class-path=./cudf-<version>.jar:./rapids-4-spark_<version>.jar \
     test.py

A sample test.py is as below:

from pyspark.sql import SQLContext
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()
sc = SparkContext.getOrCreate()
sqlContext = SQLContext(sc)
df=sqlContext.createDataFrame([1,2,3], "int").toDF("value")
df.createOrReplaceTempView("df")
sqlContext.sql("SELECT * FROM df WHERE value<>1").explain()
sqlContext.sql("SELECT * FROM df WHERE value<>1").show()
sc.stop()

Please refer to Running Spark on Kubernetes for more information.