-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.lua
411 lines (362 loc) · 15 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
------------------------------------------------------------------------------
-- Hadamard Product for Low-rank Bilinear Pooling
-- Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, Byoung-Tak Zhang
-- https://arxiv.org/abs/1610.04325
--
-- This code is based on
-- https://github.com/VT-vision-lab/VQA_LSTM_CNN/blob/master/train.lua
-----------------------------------------------------------------------------
require 'nn'
require 'rnn'
require 'dp'
require 'torch'
require 'optim'
require 'cutorch'
require 'cunn'
require 'hdf5'
require 'myutils'
mhdf5=require 'misc.mhdf5'
cjson=require('cjson')
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a Visual Question Answering model')
cmd:text()
cmd:text('Options')
-- Data input settings
cmd:option('-input_img_h5','data_train-val_test-dev_2k/data_res.h5','path to the h5file containing the image feature')
cmd:option('-input_ques_h5','data_train-val_test-dev_2k/data_prepro.h5','path to the h5file containing the preprocessed dataset')
cmd:option('-input_json','data_train-val_test-dev_2k/data_prepro.json','path to the json file containing additional info and vocab')
cmd:option('-input_skip','skipthoughts_model','path to skipthoughts_params')
cmd:option('-mhdf5_size', 10000)
-- Model parameter settings
cmd:option('-batch_size',100,'batch_size for each iterations')
cmd:option('-rnn_model', 'GRU', 'question embedding model')
cmd:option('-input_encoding_size', 620, 'the encoding size of each token in the vocabulary')
cmd:option('-rnn_size',2400,'size of the rnn in number of hidden nodes in each layer')
cmd:option('-common_embedding_size', 1200, 'size of the common embedding vector')
cmd:option('-num_output', 2000, 'number of output answers')
cmd:option('-model_name', 'MLB', 'model name')
cmd:option('-label','','model label')
cmd:option('-num_layers', 1, '# of layers of Multimodal Residual Networks')
cmd:option('-dropout', .5, 'dropout probability for joint functions')
cmd:option('-glimpse', 2, '# of glimpses')
cmd:option('-clipping', 10, 'gradient clipping')
-- Second Answers
cmd:option('-seconds', true, 'usage of second candidate answers')
cmd:option('-input_seconds', 'data_train-val_test-dev_2k/seconds.json')
-- Optimizer parameter settings
cmd:option('-learning_rate',3e-4,'learning rate for rmsprop')
cmd:option('-learning_rate_decay_start', 0, 'at what iteration to start decaying learning rate? (-1 = dont)')
cmd:option('-learning_rate_decay_every', 100, 'every how many epoch thereafter to drop LR by 0.1?')
cmd:option('-max_iters', 250000, 'max number of iterations to run for ')
cmd:option('-optimizer','rmsprop','opimizer')
--check point
cmd:option('-save_checkpoint_every', 25000, 'how often to save a model checkpoint?')
cmd:option('-checkpoint_path', 'model/', 'folder to save checkpoints')
cmd:option('-load_checkpoint_path', '', 'path to saved checkpoint')
cmd:option('-previous_iters', 0, 'previous # of iterations to get previous learning rate')
cmd:option('-kick_interval', 50000, 'interval of kicking the learning rate as its double')
-- misc
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:option('-seed', 1231, 'random number generator seed to use')
--visualgenome augmentation
cmd:option('-vg', false, 'visual genome augmentation')
cmd:option('-vg_ques_h5', '', 'path to visual genome question h5 file')
cmd:option('-vg_img_h5', '', 'path to visual genome image h5 file')
opt = cmd:parse(arg)
opt.iterPerEpoch = 240000 / opt.batch_size
print(opt)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
require 'misc.RNNUtils'
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1)
end
------------------------------------------------------------------------
-- Setting the parameters
------------------------------------------------------------------------
local model_name = opt.model_name..opt.label..'_L'..opt.num_layers
local num_layers = opt.num_layers
local model_path = opt.checkpoint_path
local batch_size=opt.batch_size
local embedding_size_q=opt.input_encoding_size
local rnn_size_q=opt.rnn_size
local common_embedding_size=opt.common_embedding_size
local noutput=opt.num_output
local dropout=opt.dropout
local glimpse=opt.glimpse
local decay_factor = 0.99997592083 -- math.exp(math.log(0.1)/opt.learning_rate_decay_every/opt.iterPerEpoch)
local question_max_length=26
local seconds=readAll(opt.input_seconds)
paths.mkdir(model_path)
------------------------------------------------------------------------
-- Loading Dataset
------------------------------------------------------------------------
local file = io.open(opt.input_json, 'r')
local text = file:read()
file:close()
json_file = cjson.decode(text)
print('DataLoader loading h5 file: ', opt.input_ques_h5)
dataset = {}
local h5_file = hdf5.open(opt.input_ques_h5, 'r')
local nhimage = 2048
dataset['question'] = h5_file:read('/ques_train'):all()
dataset['question_id'] = h5_file:read('/question_id_train'):all()
dataset['lengths_q'] = h5_file:read('/ques_length_train'):all()
dataset['img_list'] = h5_file:read('/img_pos_train'):all()
dataset['answers'] = h5_file:read('/answers'):all()
h5_file:close()
if opt.vg then
h5_file = hdf5.open(opt.vg_ques_h5, 'r')
dataset['question_vg'] = h5_file:read('/ques_train'):all()
dataset['img_list_vg'] = h5_file:read('/img_id_train'):all()
dataset['answers_vg'] = h5_file:read('/answers'):all()
h5_file:close()
end
print('DataLoader loading h5 file: ', opt.input_img_h5)
local h5_file = hdf5.open(opt.input_img_h5, 'r')
local h5_cache = mhdf5(h5_file, {2048,14,14}, opt.mhdf5_size) -- consumes 48Gb memory
if opt.vg then h5_file_vg = hdf5.open(opt.vg_img_h5, 'r') end
local train_list={}
for i,imname in pairs(json_file['unique_img_train']) do
table.insert(train_list, imname)
end
dataset['question'] = right_align(dataset['question'],dataset['lengths_q'])
-- Normalize the image feature
if opt.img_norm == 1 then
end
local count = 0
for i, w in pairs(json_file['ix_to_word']) do count = count + 1 end
local vocabulary_size_q=count
collectgarbage()
------------------------------------------------------------------------
--Design Parameters and Network Definitions
------------------------------------------------------------------------
print('Building the model...')
buffer_size_q=dataset['question']:size()[2]
if opt.rnn_model == 'GRU' then
-- skip-thought vectors
-- lookup = nn.LookupTableMaskZero(vocabulary_size_q, embedding_size_q)
if opt.num_output == 1000 then lookupfile = 'lookup_fix.t7'
elseif opt.num_output == 2000 then lookupfile = 'lookup_2k.t7'
elseif opt.num_output == 3000 then lookupfile = 'lookup_3k.t7'
end
lookup = torch.load(paths.concat(opt.input_skip, lookupfile))
assert(lookup.weight:size(1)==vocabulary_size_q+1) -- +1 for zero
assert(lookup.weight:size(2)==embedding_size_q)
gru = torch.load(paths.concat(opt.input_skip, 'gru.t7'))
-- Bayesian GRUs have right dropouts
rnn_model = nn.GRU(embedding_size_q, rnn_size_q, false, .25, true)
skip_params = gru:parameters()
rnn_model:migrate(skip_params)
rnn_model:trimZero(1)
gru = nil
--encoder: RNN body
encoder_net_q=nn.Sequential()
:add(nn.Sequencer(rnn_model))
:add(nn.SelectTable(question_max_length))
elseif opt.rnn_model == 'LSTM' then
lookup = nn.LookupTableMaskZero(vocabulary_size_q, embedding_size_q)
opt.rnn_layers = 2
local rnn_model = nn.LSTM(embedding_size_q, rnn_size_q, false, nil, .25, true)
rnn_model:trimZero(1)
encoder_net_q = nn.Sequential()
:add(nn.Sequencer(rnn_model))
for i=2,opt.rnn_layers do
local rnn_model = nn.LSTM(rnn_size_q, rnn_size_q, false, nil, .25, true)
rnn_model:trimZero(1)
encoder_net_q
:add(nn.ConcatTable()
:add(nn.SelectTable(-1))
:add(nn.Sequential()
:add(nn.Sequencer(rnn_model))
:add(nn.SelectTable(-1))))
:add(nn.JoinTable(2))
end
rnn_size_q = rnn_size_q*opt.rnn_layers
encoder_net_q:getParameters():uniform(-0.08, 0.08)
end
collectgarbage()
--embedding: word-embedding
embedding_net_q=nn.Sequential()
:add(lookup)
:add(nn.SplitTable(2))
require('netdef.'..opt.model_name)
if opt.model_name=='MCB' then
multimodal_net,cbp1,cbp2=netdef[opt.model_name](rnn_size_q,nhimage,common_embedding_size,dropout,num_layers,noutput,batch_size,glimpse)
else
multimodal_net=netdef[opt.model_name](rnn_size_q,nhimage,common_embedding_size,dropout,num_layers,noutput,batch_size,glimpse)
end
print(multimodal_net)
local model = nn.Sequential()
:add(nn.ParallelTable()
:add(nn.Sequential()
:add(embedding_net_q)
:add(encoder_net_q))
:add(nn.Identity()))
:add(multimodal_net)
--criterion
criterion=nn.CrossEntropyCriterion()
if opt.gpuid >= 0 then
print('shipped data function to cuda...')
model = model:cuda()
criterion = criterion:cuda()
end
local multimodal_w=multimodal_net:getParameters()
multimodal_w:uniform(-0.08, 0.08)
w,dw=model:getParameters()
if paths.filep(opt.load_checkpoint_path) then
print('loading checkpoint model...')
-- loading the model
model_param=torch.load(opt.load_checkpoint_path);
-- trying to use the precedding parameters
w:copy(model_param)
end
-- optimization parameter
local optimize={}
optimize.maxIter=opt.max_iters
optimize.learningRate=opt.learning_rate
optimize.update_grad_per_n_batches=1
optimize.winit=w
print('nParams=',optimize.winit:size(1))
print('decay_factor =', decay_factor)
------------------------------------------------------------------------
-- Next batch for train
------------------------------------------------------------------------
function dataset:next_batch(batch_size)
local qinds=torch.LongTensor(batch_size):fill(0)
local iminds=torch.LongTensor(batch_size):fill(0)
local nqs=dataset['question']:size(1)
local fv_im=torch.Tensor(batch_size,2048,14,14)
-- we use the last val_num data for validation (the data already randomlized when created)
for i=1,batch_size do
qinds[i]=torch.random(nqs)
iminds[i]=dataset['img_list'][qinds[i]]
fv_im[i]:copy(h5_cache:get(paths.basename(train_list[iminds[i]])))
--fv_im[i]:copy(h5_file:read(paths.basename(train_list[iminds[i]])):all())
end
local fv_sorted_q=dataset['question']:index(1,qinds)
local labels=dataset['answers']:index(1,qinds)
-- using second candidate answer sampling
if opt.seconds then
local sampling=torch.rand(batch_size)
local qids=dataset['question_id']:index(1,qinds)
for i=1,batch_size do
local second=seconds[tostring(qids[i])]
if second then
-- print('seconds hit!')
if sampling[i]<second.p then
-- print('seconds sampled! p=', second.p)
-- print(json_file.ix_to_ans[tostring(labels[i])]..'=>'..
-- json_file.ix_to_ans[tostring(second.answer)])
labels[i]=second.answer
end
end
end
end
-- ship to gpu
if opt.gpuid >= 0 then
fv_sorted_q=fv_sorted_q:cuda()
fv_im = fv_im:cuda()
labels = labels:cuda()
end
return fv_sorted_q,fv_im,labels
end
function dataset:next_batch_vg(batch_size)
local qinds=torch.LongTensor(batch_size):fill(0)
local iminds=torch.LongTensor(batch_size):fill(0)
local nqs=dataset['question_vg']:size(1)
local fv_im=torch.Tensor(batch_size,2048,14,14)
for i=1,batch_size do
qinds[i]=torch.random(nqs)
iminds[i]=dataset['img_list_vg'][qinds[i]]
fv_im[i]:copy(h5_file_vg:read(iminds[i]..'.jpg'):all())
end
local fv_sorted_q=dataset['question_vg']:index(1,qinds)
local labels=dataset['answers_vg']:index(1,qinds)
-- ship to gpu
if opt.gpuid >= 0 then
fv_sorted_q=fv_sorted_q:cuda()
fv_im = fv_im:cuda()
labels = labels:cuda()
end
return fv_sorted_q,fv_im,labels
end
------------------------------------------------------------------------
-- Objective Function and Optimization
------------------------------------------------------------------------
function JdJ(x)
--clear gradients--
dw:zero()
--grab a batch--
local fv_sorted_q,fv_im,labels
if not opt.vg then
fv_sorted_q,fv_im,labels=dataset:next_batch(batch_size)
else
fv_sorted_q,fv_im,labels=dataset:next_batch(math.ceil(batch_size/2))
fv_sorted_q_vg,fv_im_vg,labels_vg=dataset:next_batch_vg(math.floor(batch_size/2))
local joiner=nn.JoinTable(1):cuda()
fv_sorted_q=joiner:forward{fv_sorted_q, fv_sorted_q_vg}:clone()
fv_im=joiner:forward{fv_im, fv_im_vg}:clone()
labels=joiner:forward{labels, labels_vg}:clone()
end
local scores = model:forward({fv_sorted_q, fv_im})
local f=criterion:forward(scores,labels)
local dscores=criterion:backward(scores,labels)
model:backward(fv_sorted_q, dscores)
gradients=dw
if opt.clipping > 0 then gradients:clamp(-opt.clipping,opt.clipping) end
if running_avg == nil then
running_avg = f
end
running_avg=running_avg*0.95+f*0.05
return f,gradients
end
------------------------------------------------------------------------
-- Training
------------------------------------------------------------------------
local state={}
optimize.learningRate=optimize.learningRate*decay_factor^opt.previous_iters
optimize.learningRate=optimize.learningRate*2^math.min(2, math.floor(opt.previous_iters/opt.kick_interval))
for iter = opt.previous_iters + 1, opt.max_iters do
if iter%opt.save_checkpoint_every == 0 then
paths.mkdir(model_path..'save')
torch.save(string.format(model_path..'save/'..model_name..'_iter%d.t7',iter),w)
end
if iter%100 == 0 then
print('training loss: ' .. running_avg, 'on iter: ' .. iter .. '/' .. opt.max_iters)
end
-- double learning rate at two iteration points
if iter==opt.kick_interval or iter==opt.kick_interval*2 then
optimize.learningRate=optimize.learningRate*2
print('learining rate:', optimize.learningRate)
end
if opt.previous_iters == iter-1 then
print('learining rate:', optimize.learningRate)
end
optim[opt.optimizer](JdJ, optimize.winit, optimize, state)
if opt.model_name=='MCB' and iter==opt.previous_iters+1 then
-- TODO: save only h and s, not entire module having output and tmp
print('Saving MCB\'s h and s...')
print(cbp1.h1:sub(1,5));print(cbp2.s2:sub(1,5)) -- sample check
torch.save('netdef/cbp1.t7',cbp1)
torch.save('netdef/cbp2.t7',cbp2)
end
if iter > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0 then
optimize.learningRate = optimize.learningRate * decay_factor -- set the decayed rate
end
if iter%1 == 0 then -- change this to smaller value if out of the memory
collectgarbage()
end
end
-- Saving the final model
torch.save(string.format(model_path..model_name..'.t7',i),w)
h5_file:close()