forked from dasenlab/Pbx-Neuron-Paper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDasen_RNAseq_report_thoracic_padj.Rmd
138 lines (118 loc) · 5.13 KB
/
Dasen_RNAseq_report_thoracic_padj.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
title: "Dasen lab, Pbx-mutant RNAseq, thoracic"
author: "Lisa Cohen"
output: html_document
---
# Thoracic-mutant vs. Control
Filenames containing raw transcript counts from htseq-count are as follows:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
library(DESeq2)
library(gplots)
library(RColorBrewer)
library(biomaRt)
library("genefilter")
library("lattice")
setwd("~/Documents/NYUMC/Dasen/thoracic/htseq_counts")
mypath<-"~/Documents/NYUMC/Dasen/thoracic/htseq_counts"
filenames<-list.files(path=mypath, pattern= "_counts.txt", full.names=FALSE)
datalist <-lapply(filenames, function(x){read.table(x,header=FALSE, sep="\t")})
for (i in 1:length(filenames))
{
colnames(datalist[[i]])<-c("ID",filenames[[i]])
}
mergeddata <- Reduce(function(x,y) {merge(x,y, by="ID")}, datalist)
new_data_merge<-mergeddata[-1:-5,]
#write.csv(new_data_merge,file="Dasen_thoracic_count_data_Ensembl.csv")
rownames(new_data_merge)<-new_data_merge$ID
new_data_merge<-new_data_merge[,-1]
data<-new_data_merge
colnames(data)
col.names<-c("TH-A-Control","TH-A-Mutant","TH-B-Control","TH-B-Mutant","TH-C-Control","TH-C-Mutant")
colnames(data)<-col.names
ExpDesign <- data.frame(row.names=colnames(data), condition = c("Control","Mutant","Control","Mutant","Control","Mutant"))
cds<-DESeqDataSetFromMatrix(countData=data, colData=ExpDesign,design=~condition)
cds$condition <- relevel(cds$condition, "Control")
cds<-DESeq(cds, betaPrior=FALSE)
# log2 transformation for PCA plot
# get norm counts
norm_counts<-counts(cds,normalized=TRUE)
norm_counts_data<-as.data.frame(norm_counts)
ensembl_id<-rownames(norm_counts)
norm_counts_data<-cbind(ensembl_id,norm_counts_data)
filtered_norm_counts<-norm_counts_data[!rowSums(norm_counts_data[,2:7]==0)>=1, ]
```
The size of the table with all transcripts is:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
# get gene name from Ensembl gene ID
ensembl=useMart("ensembl")
ensembl = useDataset("mmusculus_gene_ensembl",mart=ensembl)
data_table<-filtered_norm_counts
query<-getBM(attributes=c('ensembl_gene_id','external_gene_name','gene_biotype'), filters = 'ensembl_gene_id', values = ensembl_id, mart=ensembl)
col.names<-c("ensembl_id","external_gene_id","gene_biotype")
colnames(query)<-col.names
merge_biomart_res_counts <- merge(data_table,query,by="ensembl_id")
temp_data_merged_counts<-merge_biomart_res_counts
##
res<-results(cds,contrast=c("condition","Mutant","Control"))
res_ordered<-res[order(res$padj),]
ensembl_id<-rownames(res_ordered)
res_ordered<-as.data.frame(res_ordered)
res_ordered<-cbind(res_ordered,ensembl_id)
merge_biomart_res_counts <- merge(temp_data_merged_counts,res_ordered,by="ensembl_id")
merge_biomart_res_all<-subset(merge_biomart_res_counts,merge_biomart_res_counts$padj!="NA")
merge_biomart_res_all<-merge_biomart_res_all[order(merge_biomart_res_all$padj),]
dim(merge_biomart_res_all)
write.csv(merge_biomart_res_all,"Dasen_thoracic_Mutant_Control_CPM_all.csv")
```
The size of the table with only significant transcripts, padj<0.05 is:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
#res_merged_cutoff<-subset(merge_biomart_res_all,merge_biomart_res_all$padj<0.1)
res_merged_cutoff<-subset(merge_biomart_res_all,merge_biomart_res_all$padj<0.05)
dim(res_merged_cutoff)
write.csv(res_merged_cutoff,"Dasen_thoracic_Mutant_Control_padj0.05.csv")
plot(log2(res$baseMean), res$log2FoldChange, col=ifelse(res$padj < 0.05, "red","gray67"),main="(DESeq2) Thoracic Mutant vs. Control (padj<0.05)",xlim=c(1,15),pch=20,cex=1)
abline(h=c(-1,1), col="blue")
```
# Heatmap
All genes padj<0.05, Log2FC>1, Log2FC<-0.5
```{r,echo=FALSE, message=FALSE, warning=FALSE}
up_down_FC<-subset(res_merged_cutoff,res_merged_cutoff$log2FoldChange>1 | res_merged_cutoff$log2FoldChange< -0.5)
#d<-up_down_1FC
d<-as.matrix(res_merged_cutoff[,c(2:7)])
rownames(d)<-res_merged_cutoff[,8]
d<-na.omit(d)
d<-d[,c(1,3,5,2,4,6)]
colnames(d)<-c("TH-A-Control","TH-B-Control","TH-C-Control","TH-A-Mutant","TH-B-Mutant","TH-C-Mutant")
hr <- hclust(as.dist(1-cor(t(d), method="pearson")), method="complete")
mycl <- cutree(hr, h=max(hr$height/1.5))
clusterCols <- rainbow(length(unique(mycl)))
myClusterSideBar <- clusterCols[mycl]
myheatcol <- greenred(75)
#tiff("Thoracic_heatmap.tiff", width = 1000,height = 1000,units="px",res = NA,pointsize=12)
heatmap.2(d,
Rowv=as.dendrogram(hr),
cexRow=0.8,cexCol=0.8,srtCol= 90,
adjCol = c(NA,0),offsetCol=2.5, offsetRow=0.01,
Colv=NA, dendrogram="row",
scale="row", col=myheatcol,
density.info="none",
trace="none")
#dev.off()
###
```
Versions:
```{r,}
sessionInfo()
```
### Sequencing and bioinformatics analysis by:
NYU Langone Medical Center
Bioinformatics Core, Genome Technology Center, OCS
Email: [email protected]
Phone: 646-501-2834
http://ocs.med.nyu.edu/bioinformatics-core
http://ocs.med.nyu.edu/genome-technology-center
# References
M. I. Love, W. Huber, S. Anders: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biology 2014, 15:550. http://dx.doi.org/10.1186/s13059-014-0550-8
R-Bioconductor: http://www.bioconductor.org/
DESeq2: http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf