-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlhs.py
57 lines (52 loc) · 1.58 KB
/
lhs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Solve model by Biondi et al. with scheduling block only repeatedly.
config: .yaml configuration file
"""
import sys
import dill
import yaml
import pyDOE
import numpy as np
from stn.blocks import blockScheduling # noqa
# Load configuration file
with open(sys.argv[1], "r") as f:
y = yaml.load(f)
# Load stn structure
with open(y["stn"], "rb") as dill_file:
stnstruct = dill.load(dill_file)
# Define demand using LHS
N = y["N"]
mlhs = pyDOE.lhs(len(stnstruct.products), samples=y["N"], criterion="maximin")
dem = {}
for p_ind, p in enumerate(stnstruct.products):
dem[p] = (np.array([mlhs[i][p_ind] for i in range(0, N)])
* (y["max"][p] - y["min"][p])
+ y["min"][p])
# Solve for each demand tupel
for i in range(0, N):
for j in stnstruct.units:
stnstruct.Rinit[j] = 0
dem_i = {}
for p in stnstruct.products:
dem_i[p] = dem[p][i]
# Initialize scheduling only model
model = blockScheduling(stnstruct, [0, y["Ts"], y["dTs"]],
dem_i)
model.build(rdir=y["rdir"])
# Solve
model.solve(
solver="cplex",
objective="terminal",
decisionrule="continuous",
tindexed=False,
save=True,
trace=True,
solverparams=y["solverparams"])
# Evaluate
if not model.inf:
dfp = model.get_unit_profile() # save task profile/schedule
df = model.eval()
with open(y["stn"], "rb") as dill_file:
stnstruct = dill.load(dill_file)